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Kapitel 1

Einleitung

Zur Untersuchung der elektroschwachen Wechselwirkung im Rahmen des Standard-
Modells der Elementarteilchen-Physik sind in den vergangenen Jahren viele Arbeiten iiber
gitterregularisierte Yukawa-Modelle erschienen. Darin werden verschiedene Aspekte eines
Modells mit bosonischen und fermionischen Feldern, die durch eine Yukawa-Kopplung
verbunden sind, beleuchtet. Der Konferenzbeitrag [10] gibt einen kurzen Uberblick iiber
Untersuchungen, die vor 1991 durchgefiihrt worden sind. In diesen Arbeiten wird das
Eichfeld des Standard-Modells nicht beriicksichtigt, so dafi die Modelle nur eine globale
Symmetrie besitzen.

Anstatt der SU(2)r, @ U(1l)y-Symmetrie des Standard-Modells werden in diesen
Versffentlichungen die Fille einer SU(2)r, @ SU(2)g- bzw. U(1)r, ® U (1) p-Symmetrie dis-
kutiert. Die letztere wird auch in dieser Arbeit betrachtet.

Zur Losung des Verdopplungsproblems, das immer auftritt, wenn Fermionen auf ei-
nem Gitter regularisiert werden, wird in diesen Arbeiten ein Wilson-Term benutzt, der die
chirale Symmetrie der Modelle nicht bricht. Dieses erfordert die Einfiihrung eines fermi-
onischen Spiegelfeldes x,. Wie die bisherigen Untersuchungen zeigen, sollte der Wilson-
Term auch im wechselwirkenden Fall, sofern das Produkt der Kopplungen GG, < oo
ist (vgl. [7]), 30 der 32 Fermionen im Kontinuumslimes aus dem physikalischen Spektrum
entfernen. In [8] wird mit Hilfe numerischer Simulationen gezeigt, daf§ die Spiegelfermi-
onen in der Phase mit spontan gebrochener Symmetrie bei geeigneter Parameterwahl eine
groflere Masse als die Fermionen erhalten, so dafl es méglich ist, das Verdopplungsproblem
so zu 16sen, dafl nur ein Fermion im niederenergetischen Spektrum verbleibt.

Durch die Gitterregularisierung gewinnt die Feldtheorie Ahnlichkeit zu einem Spin-
system in 4 Dimensionen mit ,N&chst-Nachbar-Wechselwirkung®“. Die wesentliche Idee
dieser Arbeit besteht nun darin, den Logarithmus der Zustandssumme in eine Taylorreihe
nach den Hopping-Parametern x und K zu entwickeln. Die Kopplungen zwischen den
Feldern benachbarter Gitterorte werden hier Hopping-Parameter genannt. Als Entwick-
lungspunkt wird der Fall verschwindender Hopping-Parameter verwendet, der sich in der
symmetrischen Phase des Modells befindet. Aufgrund der Singularitdten, die mit einem
Phaseniibergang verbunden sind, liegt der Konvergenzbereich der Taylorreihe vollstindig
in dem Bereich des Parameterraums, der durch die symmetrische Phase gegeben ist.

Zur Handhabung der Taylorreihe wird die Technik der ,,Linked-Cluster-Expansion®
angewandt. Die Methode wird in [1] auf sehr verstdndliche Weise am Beispiel des Ising-
Modells erklirt.

In [3, 4] wird mit diesem Verfahren das ¢*-Modell untersucht. Dazu wird ein Computer-
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Algorithmus entwickelt, der alle Graphen bis zur 14. Ordnung in der Hopping-Parameter-
Entwicklung erzeugt und ausgewertet. Das Feld ¢, wird in [3] als einkomponentiges und in
[4] als n-komponentigen reellen Skalarfeld behandelt. Zudem werden in [4] Regeln fiir die
Entwicklung von Suszeptibilitéten in einer skalaren Feldtheorie ohne Beweis angegeben.
Im Gegensatz zu den vorstehend angefiihrten Arbeiten wird in der vorliegenden Arbeit
das skalare Feld durch eine komplexe Komponente beschrieben. Dieser Fall ist dquivalent
zu einem 2-komponentigen reellen Skalarfeld. In der ,,Linked-Cluster-Expansion® fiihrt die
Behandlung des Skalarfeldes als komplexes Feld zu orientierten Graphenlinien, die im Falle
des fermionischen Feldes ohnehin bendétigt werden.

Auf chirale Yukawa-Modelle ist das Verfahren wiederholt angewandt worden. Eine
bosonische Hopping-Parameter-Entwicklung wird in [6] auf der Basis der Ergebnisse aus
[4] diskutiert. Da zu ist es notwendig den fermionischen Hopping-Parameter K auf null zu
setzen, was fiihrt dazu, dafl die Fermionen eine unendliche physikalische Masse besitzen
und nicht mehr propagieren kénnen (statische Fermionen). Diese Untersuchung wird fiir
eine U(1)r ® U(1)p-Symmetrie durchgefiihrt.

Eine Entwicklung nach dem fermionischen Hopping-Parameter K, d. h. bei verschwin-
dendem bosonischen Hopping-Parameter s, wird in [5] im Fall SU(2) @ SU (2) g diskutiert.
Das Nullsetzen des bosonischen Hopping-Parameters fithrt hier aber nicht zu einer diver-
gierenden bosonischen Masse, da in Verbindung mit der Yukawa-Kopplung die bosonischen
Felder verschiedener Gitterorte auch iiber den fermionischen Hopping-Parameter K gekop-
pelt werden.

Die Entwicklung des U (1), ® U(1)gp-symmetrische Modell beziiglich des fermionischen
Hopping-Parameters K wird in [7, 11] durchgefiihrt. Die Suszeptibilititen fiir die renor-
mierten Yukawa-Kopplungen werden dabei bis zur 5. Ordnung und die fiir die bosonische
renormierte Masse bis 8. Ordnung in K ausgewertet. Die Ordnungen der verbleibenden
Suszeptibilitdten liegen dazwischen.

In der vorliegenden Arbeit werden graphische Regeln fiir die Entwicklung des
U(1)r ® U(1)g-symmetrischen Modells nach beiden Hopping-Parametern x und K herge-
leitet. Dazu wird in Kapitel 2 eine detaillierte Einfithrung in das untersuchte Modell gege-
ben. In Kapitel 3 werden die renormierten Gréflen eingefiihrt, und in den Kapiteln 4 bis 8
werden dann die verschiedenen Aspekte der Hopping-Parameter-Entwicklung betrachtet.
Die Ergebnisse der Entwicklungen werden im Kapitel 9 vorgestellt und mit Resultaten
verglichen, die mit Monte-Carlo-Verfahren oder durch Symmetrieliberlegungen gewonnen
wurden. Die Entwicklung der renormierten Massen und Wellenfunktionsrenormierungen
konnte bis zur 4. Ordnung in den Hoppingparametern, die der renormierten Kopplungen
nur bis zur 3. Ordnung durchgefiihrt werden. Im Vergleich zu den Versffentlichungen [3, 4]
ist das verhdltnismaflig wenig, aber durch die Entwicklung in zwei Hopping-Parametern
wéichst hier die Anzahl der Graphen stark an. Eine weitere Erschwernis besteht in den
mit den Fermionen verbundenen Matrix-Operationen. Aufgrund der geringen Anzahl der
Ordnungen die in dieser Arbeit bestimmt werden konnten, sollen die Vergleiche in erster
Linie der Kontrolle der Methode dienen und weniger dem Gewinnen neuer Frkenntnisse
iber das Modell.

Aus diesen Vergleichen kénnen einige Erkenntnisse {iber die Méglichkeiten und Grenzen
der Entwicklungen gewonnen werden.



Kapitel 2

Einfithrung in das untersuchte

Modell

2.1 Euklidische Wirkung

Die Methode der graphischen Entwicklung nach den Hopping-Parametern soll hier anhand
eines U(1)@U (1) p-symmetrischen Yukawa-Modells eingefiihrt werden. Zur Konstruktion
des Modells wird neben dem urspriinglichen Fermionenfeld 1 ein Spiegelfeld x eingefiihrt.
Durch dieses Spiegelfeld ist es moglich, eine ,nackte® Masse i, und einen Wilson-Term
mit Wilson-Parameter r in das Modell einzufiihren, die die chirale Symmetrie nicht bre-
chen. Beide fermionischen Felder nehmen, wie iiblich, Werte in einer Grassmann-Algebra!
an.

Auf dem kubischen primitiven Gitter in 4 Dimensionen wird dieses Modell durch die
folgende euklidische Gitterwirkung beschrieben.

S[¢7¢+7\Il7\il] = S¢[¢7¢+]+S¢‘1’[¢7¢+7\I}7q}] (21)
Selo,0%] = L {0tos+ Mote, - 12—k Y6t 0 |
7

xr

S(b‘l![(bv ¢+7 \117 \il] = Z { \I}xG((bxv (b;)\px - K Z qlx-l—ﬂMﬂ\px }

@ i

Hierbei werden die folgenden Notationen benutzt:

— | %
oo () a2

Gy [H50t + 1526, Z
G(¢s 0F) = ~ 2.4
A Yo T .
wow () .

! Grassmann-Algebren zeichen sich u. a. dadurch aus, daB ihre Elemente paarweise antikommutieren,

7. B 0y = —thyth, oder Xz, = —t, ) etc. Siehe auch Abschnitt 5.1
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Z Summe iiber alle Punkte & des 4-dimensionalen euklidi- (2.6)
~ schen Raum-Zeit-Gitters

Z ) Summe iiber alle 4 Raum-Zeit-Richtungen in die jeweils (2.7)
P ' positive und negative Richtung, also 8 Summanden '

Die Parameter K und k werden als Hopping-Parameter bezeichnet. Werden beide
Hopping-Parameter auf 0 gesetzt, so enthilt die Wirkung S[¢, ¢*, ¥, ¥] nur Summan-
den, die Feldgroflen eines Gitterortes a verbinden. Aus dem Parameter p 148t sich die
yhackte® Fermionenmasse fiy, in Einheiten des reziproken Gitterabstandes mit

Py = o — 8T K 2.8
¥x

gewinnen. Die Wirkung des Wilson-Terms mit Parameter r wird in Abschnitt 3.1.1
erldutert. Die Parameter i und r sind so eingefiihrt, dafl die chirale Symmetrie nicht
verletzt wird. In den durchgefiihrten Rechnungen werden diese Parameter auf

r=p=1 (2.9)

normiert. Die vy,-Matrizen sind in der euklidischen Formulierung zu benutzen. Die von mir
benutzte Darstellung kann im Anhang A nachgeschlagen werden, sie entspricht der in [7]
benutzten. Es gilt v_, = —v,.

2.1.1 Chirale Symmetrie

Wie schon mehrfach erwéhnt, besitzt dieses Modell eine U(1)r, @ U(1)p-Symmetrie. Da
das Modell keine Eichfelder enthilt, handelt es sich hierbei um eine globale Symmetrie
des Modells. Sie wird durch die folgenden Symmetrietransformationen vermittelt.

¢ix = e_laL¢L$ Qb}%x - e_laR¢R$

—iOzL

/ —ia /
Xz =€ XLz  Xpzr=¢€¢ “XRe

¢, = e ilor—ar)g (2.10)

2.2 Erzeugende Funktionale

Aus der oben eingefiihrten Gitter-Wirkung S[¢, ¢1, U, ¥] lassen sich nun durch die

Einfiihrung von fermionischen 7, 7 und bosonischen Quelltermen J, JT erzeugende Funk-

tionale Z, W fiir die unverbundenen oder verbundenen Greenschen Funktionen erkldren.
ﬂLJtmm::/D¢nﬁDmD®*

S A RS WA VRS RIS R ST

Dabel bedeutet:
D¢ :=[[d¢w (2.12)

Entsprechende Formeln gelten fiir die restlichen 3 Integrationsvariablen.
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Das skalare Feld ¢, wird als komplexwertiges Feld behandelt. Dies erfordert die
Einfiihrung zweier Quellen J, und JF. Daraus ergeben sich, im Gegensatz zu den Pu-
blikationen [3, 4] {iber graphische Entwicklung in der ¢*-Theorie mit reellen bosonischen
Feldern, orientierte bosonische Linien. Natiirlich gibt es auch die Mdglichkeit, das Skalar-
feld ¢ als 2-dimensionales Vektorfeld reeller Zahlen einzufiihren, dann entfillt die Quelle
JT, aber bei .J, handelt es sich dann ebenfalls um ein 2-dimensionales Vektorfeld.

Aus dem erzeugenden Funktional Z[J,JT, n, 7] 148t sich in der iiblichen Weise das
erzeugende Funktional W[J, J* n, 7] der verbundenen Greenschen Funktionen bilden.

W, J g, =1 (Z[J,Jt,n,7)]) (2.13)

Die verbundenen Greenschen Funktionen ergeben sich nun aus W durch Differentiation
nach den jeweiligen Quellen. Beispiele:

- o 0 _
<\Ily\IIZ>C = _8— 8 W[J7 J+777777] (214)
1y 1 ¥ 1,7=0
a0 0
($y01) = 77 W, I, 0, 1] (2.15)
8Jy 8JZ J7J+ 777777:0

2.3 Basistransformation des Fermionen-Raums

Fiir die Durchfithrung der fermionischen Hopping-Parameter-Entwicklung ist es vorteil-
haft, die Matrix Mj zu diagonalisieren. Dazu werden hier wie in [7] die links- und
rechtshindigen Anteile der fermionischen Felder ¢ und y umgeordnet:

¢A1’ = QbL,x + XR,x ¢Bx = XL,z + ¢R,1’ (216)

Das Symbol ¥, wird nun als:

._ QbAl’ _ ¢x
e (5) () -

redefiniert. Dabei ist die Matrix A durch

[ P Pgr
A= ( o ) (2.18)

mit .
— s
Pr=—"—
2 =
gegeben. Fiir die Matrizen G(¢,, ¢F) und M ergibt sich damit in der neuen Basis die
folgende Gestalt:

T, o (Go—vsG

R YutT 0
M, = ( . m+r) (2.20)
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Dabei gilt:
1 1
Go = 5 (Gy + Gy Gp = 5(Gy =Gy (2.21)

In den folgenden Abschnitten wird nun, soweit nicht anders erwdhnt, diese Basis des
Fermionen-Raums verwenden.

Die hier vorgestellte Basis werde ich kurz als AB-Basis und die in Abschnitt 2.1 ein-
gefithrte als 1y-Basis bezeichnen.

2.4 Flavour-Verdopplung

Numerischen Simulationen, die mit einen Hybrid-Monte-Carlo-Algorithmus durchgefiihrt
werden, bendtigen eine Verdopplung der Flavours des fermionischen Spektrums. Da im
Rahmen dieser Arbeit Ergebnisse aus der Hopping-Parameter-Entwicklung mit denen ei-
nes derartigen Algorithmus verglichen werden sollen, ist es notwendig den Fall mehrerer
fermionischer Flavours zu diskutieren. Die Anzahl der Flavours wird im weiteren mit ng
bezeichnet. In [7] wurde der fermionische Teil der Wirkung Syy[¢, ¢, ¥, W] im Fall np = 2
wie folgt modifiziert.

2
Spulo, 67,0, 0] =3 % { vOGO (g, )oK 308w } (2.22)
=1 x n
Dabei gilt fiir G (¢, 61):
G ¢y, ¢F) = G(¢a, 67) G ¢y, ¢F) = GT (60, 67) (2.23)

Das fiihrt dazu, daB sich das Feld U(?) wie ein Spiegelfeld zu U transformiert. Die
Symmetrietransformation (2.10) erhélt in diesem Fall die Form:

Vi) = exp(—iarr) 1) W) = exp(—iarr) vl

F . F F . F
X! = exp(—iapr) X)) X = exp(—iarL) b,
a1, = oy, + g, O1R = OR + Q1, g1, = QR — (13, R = O, — Q19
¢l = e7i@L=ar) g (2.24)

Damit ergibt sich, daf das Modell im Fall np = 2 eine globale U(1)r, @ U(1)r @ U(1)1—o-
Symmetrie besitzt. Es ist zu beachten, daf§ die Wirkung .S keinen Term enthilt, der die
beiden Flavours mischt.

Diese Verdopplung der Fermionenanzahl hat nichts mit dem Verdopplungsproblem
entsprechend Abschnitt 3.1.1 zu tun, sondern ist eine rein technische Notwendigkeit in dem
Hybrid-Monte-Carlo-Algorithmus. An dieser Stelle soll ausdriicklich betont werden, daf§
die Hopping-Parameter Entwicklung diese Verdopplung der Flavours nicht benétigt. Da
sich die Methode der Entwicklung bei verschiedenen Flavour-Anzahlen np nicht wesentlich
unterscheidet, wird hier im weiteren der Fall ny = 1 diskutiert und nur an den Stellen, an
denen sich im Fall ng # 1 Unterschiede ergeben, werden diese diskutiert.



Kapitel 3

Renormierte Grofien

In diesem Kapitel werden die renormierten Gréfien definiert, dabei wird fiir die Fermionen
die 1 y-Basis verwendet.
3.1 Fermionen

3.1.1 Anmerkungen zum Fermionen—Verdopplungsproblem

Aus der Gleichung (2.1) ergibt sich im Fall freier Fermionen, das heifit bei Gy = G, =0,
fiir den inversen fermionischen Propagator (A?)_l(w, y) die folgende Matrix:

(A?)_1($7y) = 51’71/ ( 2 Ig ) - I(Z(Sy,x-l-ﬂ ( 7: " ) (31)

Y

Mit der Definition:
. . p _ .
Py i= 2sin (7“) Py = sin(p,,) (3.2)

ergibt sich hieraus unter Verwendung von Gleichung (2.8):

AN 7w = Yo (aY) (@0

s Yu 0 0 [, + 7K P
= 2iKsinp, ( 0 4, ) + ( g, + T 0 (3.3)
X 1 UKy, Py o + rKp?
Af(p) = — nliy M (3.4)
(g + P KP?)7 + AK2p? \ Hux TTRP Ky uPy

Der Propagator im Ortsraum A?(ac, y) 1aBt sich nun durch Fourierriicktransformation
1 7 ipr A
A?(LO) = W/_7r dip e'P A?(p) (3.5)

aus Gleichung (3.4) gewinnen. Dabei wird iiber die gesamte Brillouin-Zone integriert.
An dieser Stelle zeigt sich nun ein grundsétzliches Problem bei der Beschreibung von

Fermionen auf dem Gitter. Der obige Propagator besitzt in der Brillouin-Zone 16 Teil-

chenpole, die in der Ndhe der Mitte (p, = 0) und der Ecken (p, = 7) liegen. Das Integral
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(3.5) berticksichtigt diese Pole gleichberechtigt. Als Ergebnis beschreibt A?(ac, 0) die Pro-
pagation von 16 Teilchen.
Betrachten wir nun den Pol in der Nidhe von p = 7y := (7,0,0,0). Er 148t sich durch
Multiplikation der Gleichung (3.5) mit (—1)"* in die Nihe der Stelle p, = 0 verschieben:
1 ™

(D" AY(2,0) = 20t /. d'p el P=m)7 K?(P)

1 2 T - - . B
B W/o dpl/_wdm/_wdpi% _dpe™ A (p+m)  (36)

Der Pol in A}’(p) an der Stelle p = m; entspricht somit der Propagation eines ,antifer-
romagnetischen“ Feldes in der z;-Richtung und eines ,ferromagnetischen®“ Feldes in den
verbleibenden drei Richtungen.

(=17 AF (2,0) = ((=1)"1 ¥ (2)¥(0))° (3.7)

Nach Gleichung (3.4) ergibt sich aus der Lage der Polstelle in &?( ) in der Nihe von
p = w1, daB diesem Feld eine Masse von p(m1) & g7z (pyy + 1K (71)%) = 55 (Hyy + 4rK)
im Fall kleiner fi;, zuzuordnen ist.

Allgemein ist einem Teilchenpol in der Nihe der Ecken P der Brillouin-Zone eine Masse
von p(P) & g5 (pyy + rK P?) mit P, € {0,7} zuzuordnen.

Hier zeigt sich nun der Nutzen des Wilson-Terms. Wird r = 0 gesetzt, so wird allen
Polen die gleiche Masse y1(P) & 55 jyy zugeordnet.

Wird r hingegen auf einen von 0 verschiedenen positiven Wert gesetzt, so fiihrt dies
dazu, dafl den unerwiinschten Dopplern im Kontinuumslimes eine divergierende Masse
(i — o0) zugeordnet wird. Der Kontinuumslimes wird dadurch gebildet, daff der Massen-
parameter p(P) auf 0 gesetzt wird. Dieser Massenparameter gibt die Masse der beschrie-
benen Teilchen in Einheiten der reziproken Gitterlinge 1/a an. Vergleiche [2]'. Dies ist
nun an den Stellen, an denen fiir mindestens ein p, = 7 gilt, nicht mehr zu erreichen.
Als Folge davon wird den entsprechenden Teilchen eine Masse der Gréenordnung O(1/a)
zugeordnet, und sie werden somit aus dem physikalischen Spektrum entfernt. Es sollte hier
noch kurz bemerkt werden, daf§ der Wilson-Term den Kontinuumslimes der Wirkung S
nicht verdndert.

Soweit die Betrachtungen zur freien Theorie. Im n&chsten Abschnitt werden in Analogie
zu dieser Betrachtung die renormierten Gréfien in der wechselwirkenden Theorie definiert.

3.1.2 Definition der fermionischen renormierten Groflen

Die folgende Darstellung lehnt sich an die Darstellung in [7] an. In der wechselwirkenden
Theorie wird nun angenommen, daf sich das qualitative Verhalten des Propagators AY (p)
in der Nahe der Ecken der Brillouin-Zone nicht wesentlich von dem des freien Propa-
gators A?(p) unterscheidet. In Analogie zu Gleichung (3.3) wird fiir (A%)~!(p) in der
symmetrischen Phase die folgende Form, die im Anhang A niher erliutert wird, erwartet:

(a1~ <p>=(M¢f<p> e )+im(7“N%“P) WSX@))W@% (39

'Beachte: In [2] entsprechen die hier benutzten Felder, Massen etc. den Gréfien \Tf, M, etc.
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Hierbei steht P fiir den Impuls der nichstgelegenen Ecke der Brillouin-Zone, das heifit
P, e€{0,7} und p, = P, + dp, mit —7/2 < dp, < 7/2.

Die fermionischen Felder  und x werden in der Weise renormiert, dafl die Matrizen
Nyy(P) und Ny (P) in den Einheitsoperator 1g im Spinor-Raum iiberfithrt werden. Dazu
werden Wellenfunktionsrenormierungen 7, und 7, definiert.

1 1
XX

Die renormierten fermionischen Felder ip und yp ergeben sich dann folgendermafien:

bR() = ———b(p)  xR(D) = ————x(p) (3.10)
Zo(P) 7e(P)

Durch die Renormierung entsteht aus M (P) die renormierte Massenmatrix Mp(P). Aus
deren Eintrigen wird die renormierte Masse up (P) wie folgt definiert:

B 0 AV MX 0 (P)
MR(P) - ( /—Zd,ZX wa(P) v ¢ ) ( ,UR(P) 'MRO ) (3.11)

Aus Griinden der Ubersicht wird die P-Abhingigkeit der renormierten GréBen hier und
im folgenden nicht immer ausgeschrieben. Sie sollte aber aus dem Zusammenhang fiir den
Leser leicht zu ersehen sein. Insgesamt ergibt sich nach Gleichung (3.8):

1

1 0
(A" (p) = ip, ( Z’”Ow ZLOW ) + ( ) vzngHR ) O (3.12)

Durch Inversion erhilt man daraus:

- 1 S Zuvabe T T 1 i}
AY VIuPu VEPEHR ) O(p? 3.13
) = 13 —I-p ( NSV AN IS VA ©3 + p? v ( )

Es werden nun zwei Matrizen definiert, aus denen sich dann die renormierten Gréflen mit
Hilfe der ., Linked-Cluster-Entwicklung“ bestimmen lassen.

0 Aw (P) 0 Zw(P()Z)x(P)
— AU _ P
A(P) = ( Ay (P) >(<) ) =AY (P) = L) KR (3.14)
TP 0
Zy(P)
Byy(P) 0 1 J ~g xR
B(P) = ( w ) =1 ZP)/M—fA (P) - MR Z,(P) (315)
0 BulP) A=t 0
Insgesamt gilt nun:
A (P A (P
pr(P) = A¢X(P) : Z¢(P) — M; ZX(P) - M (3.16)
\/Buw (P) By (P) By (P) By (P)
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3.2 Bosonen

In diesem Abschnitt sollen die Wellenfunktionsrenormierung, die renormierte Masse und
die renormierte Selbstkopplung fiir das bosonischen Feld ¢ definiert werden. Bei der For-
mulierung einer bosonischen Theorie auf dem Gitter entsteht im allgemeinen kein Ver-
dopplungsproblem [2].

Bei der Definition der bosonischen renormierten Grofien werden die Konventionen aus
[6, 7] benutzt. Dort werden diese Grofien durch die renormierten Vertexfunktionen fiir ¢4,
bzw. ¢, definiert. Da sie hier aber aus den Vertexfunktionen fiir ¢, und ¢F bestimmt
werden sollen, ergeben sich an einigen Stellen in den Definitionen konstante Faktoren, die
nur aus Griinden der Konvention eingefiihrt werden. Als bosonischer Propagator wird hier
der folgende Ausdruck bezeichnet:

A?(2) = (¢u08)" (3.17)

Der inverse bosonische Propagator (A?)~!(p) besitzt in der wechselwirkenden Theorie
entsprechend [7] die allgemeine Form:

R () = = [52 4 2 5
(3%) " ) = g7 [ + mk+ 06" (3.18)
Inversion liefert: oy
Al (p) = ¢ h 1
() =257 e o) (3.19)
Daraus ergibt sich an der Stelle p, = 0:
~ 2
A?(0) A%(0
Zy=—4 = [ = ]~¢ mp = -8 —; 85 )~¢ (3.20)
2 =1 75,5, 2% (0) 2=t 75,57, 27 (0)

AbschlieBend ist noch die renormierte bosonische Selbstkopplung gr einzufiihren. Dazu ist
zundchst die Bezeichnung der renormierten Vertexfunktionen zu erkldren. Das Symbol

~(np.2
FSB nF)(Ph Pt 2np) it ing 1K g (3.21)
steht fiir die renormierte Vertexfunktion im Impulsraum mit np Bosonen, ny Fermionen
und np Antifermionen. Die Indizes bezeichnen bei bosonischen Feldern den Real- bzw.
den Imaginidrteil und bei fermionischen Feldern die Spinorkomponente. Die renormierte

bosonische Selbstkopplung wird nun mit Hilfe der renormierten 4-Punkt-Vertexfunktion
Fg’o)(o, 0,0, O)ijkl definiert.

(4,0)

grSim = —T5"(0,0,0,0);k (3.22)
mit: Sijk = %(&j&gl + 861 + 6idjk); i,k Le{1,2}
Dies 148t sich aus:
on = _f(4’0)(07 0,0,0)1111 _ _é£4’0)(07 0,0,0)1111 _ _&4 %nyz<¢l’¢;—¢z¢8—>c (3.23)
Z; 7 [5”%]4 120
bestimmen. Hierin steht GE”B’”F) fiir die verbundene Greensche Funktion im Impulsraum.

Die Anordnung der Indizes ist identisch zu der der zugeordneten Vertexfunktion.
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3.3 Renormierte Yukawa-Kopplungen

Als letzte der renormierten GGréflen sollen die renormierten Yukawa-Kopplungen G gy und
Gy eingefiihrt werden. Ich verwende hier die in [7] durch die dortige Gleichung (32)
gegebenen Definitionen, die ich an meine Notation angepafit habe:

Gry = \/n%@ (XLOXR)s = \/%”; (XrOTXL)s (3.24)
Gry = —%WRCWL% = —%Wﬂbﬂbﬁs (3.25)

Dabei ist: - _
(VLo R Ls = Y (VL2060 VRy) (3.26)

cy
definiert, wobei 14 fiir den Einheitsoperator im 4-dimensionalen Spinor-Raum steht.

3.4 Definition der Suszeptibilititen

Die in den renormierten Grofien verwendeten Greenschen Funktionen des Impulsraums
miissen noch durch auf dem Raum-Zeit-Gitter bestimmbare Gréfien, sogenannte Suszep-
tibilitdten ersetzt werden. Diese werden in der Weise definiert, dafi eine durchgehende
Benutzung der komplexen Notation fiir das Skalarfeld ¢, moglich ist. Damit die Resultate
auf einfache Weise mit denen in [6, 7] verglichen werden kdnnen, werden hier zusétzliche
Faktoren eingefiihrt, so dafi die Definitionen der Suzszeptibiltiten dquivalent sind.

Die Suszeptibilitdten, die zur Bestimmung von pupr bendtigt werden, sind auch in den
Ecken der Brillouin-Zone zu definieren, da das Verschwinden der unerwiinschten Doppler
gepriift werden soll. Dazu wird der Impuls P mit P, € {0, 7} eingefiihrt.

s 1 tye_ L Xe
¢ o= ey =5 A
P 1 &
= O =2 > A?
s E Hoe80) = - 3 2 Tnun, () .

R SO0

Yz

Xz (P) = D e oW, W) = A(P)

x v=1
_. ( uy (P) Ls 0 )
0 1y (P) g
s = diag [(WrdTOR)s, (VROVLY sy (XLOXR) s (XROT X)) (3.27)

Der Kosinus-Term in den Gleichung fiir 4 entsteht durch Umformen der Ableitung nach
p, auf p, nach der Kettenregel.
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Die renormierten physikalischen Gréfien sind wie folgt mit den Suszeptibilititen ver-

kniipft: ,
$ \? $
mk =822 Z:8(2) g = —64 4
¢ ¢ ? P
Ha Ha (,uf)
2 2
¥x w(p wp
P Xo  (P) Xo  (P)
BTSSRl BTSSP A ] PP L i
Vi (P) 3 (P) it ()
2 o WU 2 o UG
Gy = — TRHR (X3~ )as Gy = — EFR (X3~ )2 (3.28)



Kapitel 4

Methode der Doppelentwicklung

4.1 Taylor-Reihe

Da eine geschlossene Losung von Gleichung (2.13) nicht moglich ist, soll hier durch Tay-
lorentwicklung nach £ und K eine Ndherung mit Entwicklungspunkt x = K = 0 bestimmt
werden. Zur besseren Handhabung der dabei entstehenden Terme wird die Technik der
,Linked-Cluster-Expansion® angewandt. Das Prinzip ist in [1] am Beispiel des Ising-
Modells nachzulesen. In Analogie zu dieser Verdffentlichung wird hier zun&chst vorge-
gangen.

Zur Entwicklung der Methode ist es vorteilhaft, in der Wirkung (2.1) eine zusitzliche
Variable L;(z) einzufiihren, so daB sich fiir Sy[¢, 7] der folgende Term ergibt:

Solovotl =S { 0o + MG o = 1P =k D Lale) 6Fte (1)

xr

Diese zusétzliche Variable wird nach Abschlufl der Rechnung auf L;(z) = 1 gesetzt. Aus
dem gleichen Grund werden hier im fermionischen Teil der Wirkung die Matrixelemente
der Matrix M; als ortsabhdngige Variablen (Mj(z)),, eingefithrt. Nach Abschlufi der
Rechnung werden diese Elemente dann wieder auf die Gleichung (2.20) beziehungsweise
Gleichung (2.5) entsprechenden Werte gesetzt.

wi = 3l e 2]
! , oK " 9k T E=0n=0

J=0 7
< (1 y , 0
> {? [K 2 @), swEane,)

+x' %}L;(x)a[%m] Wik =r=o }

_. Z{%Tﬂ' W|K:H:0} (4.2)
j=o UJ°

Dabei wurde der Differentialoperator 7 als:

g / 0 N ?
T = l[& > (Mﬂ(ﬂﬁ))ab 0K (Mp(x)),,] + K ;Lg(w)m] (4.3)

l’vﬂvavb

definiert.

15
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4.2 Differentialgleichungen

Die Differentiationen nach den Bindungsvariablen xL;(x) und K (Mj(z)),, lassen sich
mit den folgenden Differentialgleichungen auf einfache Weise auf Differentiationen nach
den Quellen zuriickfiihren.

Diese Vorgehensweise ermdglicht es in Gleichung (4.2) K und s auf 0 zu setzen, bevor
die Ableitungen ausgefiihrt werden, da die Quellen nicht von den Hopping-Variablen K
und & abhdngen.

Das Nullsetzen der Hopping-Variablen fiihrt, wie in Kapitel 5.1 beschrieben wird, zum
Zerfallen von W in Summanden, die jeweils nur von Quellen eines Ortes z abhdngen.
Diese Eigenschaft wird im folgenden ausgenutzt und stellt den wesentlichen Vorteil der
Ersetzung der Ableitungen in Gleichung (4.2) durch Ableitung nach den Quellen dar.

4.2.1 Bosonen

Fiir die Ableitung nach der bosonischen Bindungsvariablen xL;(z) gilt folgende Differen-
tialgleichung:
ow 0 0 ow oW
= w 4.4
OkLp(x)]  0Jpyn 0JF + Oprp OJF (44
Die Gleichung gilt fiir beliebige Werte von «, K, J, J¥, 5 und 7. Sie ldft sich durch
Differentiation aus den Gleichungen (2.11), (2.13) und (4.1) herleiten. Dazu sind die Inte-

grationen und die Differentiationen zu vertauschen.

4.2.2 Fermionen
Im fermionischen Fall gilt:

ow 0 0 ow oW
- = - —W — — (4.5)
9 [K (Mﬂ(x))ab] 8771’+ﬂ7a 8771’75 87790-I—ﬂ,a 8771’,6
Auch diese Gleichung gilt fiir beliebige Werte der Hopping-Variablen und Quellfelder. Die
Indizes der Quellen 7, 77 in der obigen Gleichung (4.5) ergeben sich wie folgt:

Ne,q Mit: x: Ortsindex, a: Spinorindex (4.6)

Der Beweis dieser Differentialgleichung ist nicht so einfach wie der im bosonischen Fall,
deshalb soll er hier ausfiihrlicher dargestellt werden.

Beweis von Gleichung (4.5): Die Abhingigkeit von den bosonischen Feldern und Quel-
len braucht nicht beachtet zu werden. Zur Vereinfachung setze:

o= =S, U]+ (Ve + Vun,) (4.7)

Aus der linken Seite ergibt sich mit Gleichung (2.13):

oW 1 07
O[K (Ma(2)),,) 72 O[K (Mg(2)),]

1 B
= /D\Il DU [V,t4.aVs0exp (0)] (4.8)
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Zur Umformung der rechten Seite von Gleichung (4.5) ist es niitzlich zu wissen, dafl Z ein
Polynom in den Grassmann-Variablen n und 7 ist. Ansonsten enthélt 7 keine Grassmann-
Variablen, alle ¥ und W sind ausintegriert. Wird Z nun in eine Potenzreihe beziiglich der
Grassmann-Variablen entwickelt, so enthalten alle Summanden eine gerade Anzahl von
Grassmann-Variablen. Genauer gesagt 148t sich jeder Summand in der Form:

o H(nm,aiﬁyi,bi) (4.9)

darstellen, wobei « eine geeignete komplexe Zahl ist. Daraus folgt, dafi Z mit jedem Term,
der aus Grassmann-Variablen aufgebaut ist, kommutiert.

An dieser Stelle méchte ich noch kurz auf die Regeln zur Differentiation in Grassmann-
Algebren eingehen. Dazu sind die Grassmann-Variablen paarweise antizuvertauschen, bis
die Variable, nach der differenziert wird, direkt hinter dem Differentialoperator steht.
Kommt die Variable nicht vor, so ist der Term gleich 0. Zur Erlduterung werden die
folgenden Beispiele gegeben:

o L
—8 mmunznz = N2
m
o 0 o o _ _
— MmNl = = [—Mmnmhn] = s=—mmmnmmn
012 01 01

O i — o

a1 N2 mmn2

O i = 0 (4.10)
8773771771772772 :

Zur Ausfithrung der Grassmann-Differentiationen wird eine ,Produktregel® ben&tigt,
die im folgenden abgeleitet wird. Dazu seien F' und G Terme, die eine gerade Anzahl
Grassmann-Variablen enthalten.

F:=a Ney,ar Myr by Nessas Tyasbs *** Monsan Myn b (4'11)
G:=p Nwy,er Moy dy Thos,es Tuayds ** * Thop e Ton,dn (4'12)
Nun gilt:
0 0 0
FG = FlG+F G (4.13)
877957(1 877957@ 8771’,(1

Zum Beweis der Gleichung (4.13) ist eine Fallunterscheidung zu machen.

1. 73,4 ist entweder in I oder in (& enthalten

In diesem Fall ist einer der Summanden der rechten Seite null, und die Giiltigkeit
ist direkt einzusehen.

2. Npq ist in I und in G nicht enthalten

Hier sind beide Summanden null wie auch die linke Seite der Gleichung.

3. Meq ist in I/ und in GG enthalten

In diesem Fall gilt FG' = 0, so daf§ die linke Seite der Gleichung null ergibt. Die
Summanden der rechten Seite sind von null verschieden. Sie unterscheiden sich aber
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nur durch eine ungerade Permutation der Grassmann-Variablen voneinander, so dafl
sie sich gegenseitig wegheben. Somit ist auch die rechte Seite null und die Gleichung
(4.13) ist bewiesen.

Da Z sich, wie schon oben beschrieben, als Summe von Termen der Form (4.9) darstellen
148t, kann man mit Gleichung (4.13) durch vollstindige Induktion

J J
7" = AW AL 4.14
OM,a " (8771’,(1 ) (4.14)

zeigen. Da (%Z) aus Summanden mit einer ungeraden Anzahl von Grassmann-
Variablen besteht, 148t sich mit der gleichen Methode

0 VA 0 0 VA VA
7" = ANARS zm1 4.15
OMy.» l(am’,a) ] (8771/75 OMNza ) (am’v“) (8771/75) ! ( )
zeigen.

Analoge Gleichungen gelten auch fiir Differentiationen nach 7, ,. Es wird noch die
folgende Gleichung benétigt:

g 1 o & ;
8ﬁx,bZ - 8ﬁx,b jzo(l_Z)
= ]Z:%(j +1)(1 -2y 8777%76(—2)
— - _ n S — h 8 —
<[ Be o e
— —%/D\I/D\I/ (W, exp (0)] (4.16)

Damit lassen sich auch die Terme der linken Seite der Gleichung (4.5) bestimmen.

ow d
= In(Z
877x+ﬂ7a 377x+ﬂ,a ( )
o[-z
a Mot ira ]Z:; J
= D _a-zy 0z
7=0 877x+ﬂ7a
= - [Z(l —Z) - /D\Il DY [V, 5.qexp(o)]
7=0
= —% /D\Il DY [W,ysqexp(o)] (4.17)
ow 1 _
s = 7 / DU DT [, exp ()] (4.18)
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J J J J
_ — W —
877x+ﬂ,a 8771’,6 8771’,6 877x+ﬂ,a

d 1 -
- _8ﬁx,b {E/,D\II Dw [\IIZ’-I-[L,UL exp (O’)]}
1 0

= 9 /m; DU [Wyppqexp (o))

01 o
- (87795,17 2) /D\II DV [V,pnqexp(0)]

1 _
= 2 /D\Il DY [ql$+ﬂ7aqlx,b €xXp (U)]
1 _
?{ / DU DV [, exp (0)] *

* /D\Il DU [W,ys.qexp(o)] } (4.19)

Der Ausdruck in den geschweiften Klammern auf der rechten Seite von Gleichung (4.19)
ist gleich dem Produkt der rechten Seiten der Gleichungen (4.17) und (4.18). Der verblei-
bende Term der rechten Seite von Gleichung (4.19) ist identisch mit der rechten Seite von
Gleichung (4.8).

Damit ist die Gleichung (4.5) gezeigt. O



Kapitel 5

Erzeugendes Funktional fiir
1-Platz-Erwartungswerte

5.1 Grenzfall unendlicher bosonischer Selbstkopplung

Im Abschnitt 4.2 ist es gelungen, die Ableitungen in Gleichung (4.2) auf Ableitungen
beziiglich der Quellen umzuschreiben. Dies 148t sich dahingehend ausnutzen, dafl die Hop-
pingparameter K und x vor Ausfiihrung der Ableitungen auf 0 gesetzt werden. Im Verlauf
des Abschnittes wird sich zeigen, dafl in diesem Fall das erzeugende Funktional Z in Terme,
die jeweils nur von den Feldern eines Ortes abhdngen, faktorisiert.

Das erzeugende Funktional W I48t sich an der Stelle K = x = 0 im Grenzfall A — oo
analytisch bestimmen, so daf} sich die Ableitungen nach den Quellen 7, 7, J, und J
leicht ausfiihren lassen. Die zugehorige Rechnung soll in diesem Unterabschnitt verh&lt-
nismiBig detailliert ausgefiihrt werden. Das Ziel der Rechnung ist Gleichung (5.17).

Im obigen Limes gilt:

lim ¢ = ¢’ lim ¢t =717 (5.1)
A—00 A=+co
Als Kurznotation wird hier 7y := Z|g—x—o einfiihrt. Es gilt bis auf hier nicht relevante

multiplikative Konstanten:

Zl = HZl($)

= II [dv.av, a0, +

* exp (—\le G(ewi7 e_wf) U,

+JF e 47l 40, + \I’wx) (5.2)
Dabei gilt:
. . i Wa (7 _~e(F )
G 179.r —1’19:p — . ’u € ( aﬁ 75 B 53
(6 , € ) ( e—n% (Ga‘|’75GB) i ( )

Die Grassmann-Integration 148t sich direkt ausfiihren, und mit:
G—l (€i19$7 e—iﬁm)

1 ) Iz —elle (Ga_75G5) (5‘4)
[2—G Gy \ e (GatsGp) f

20



5.1. GRENZFALL UNENDLICHER BOSONISCHER SELBSTKOPPLUNG 21

ergibt sich fiir Z;:
7z = I / dd, (=G G +

* exXp (ﬁx G_l(ewi7 €_wm) Ne + J;'ewm + e 10z Jx)

_2 _ Iz
[T (7~ Gru) exp (”x (u2—GxG¢) nx) '

xr

* /dﬁw exp ( [ﬁxAmx + J;' + Jx] cos ¥,

+ [ Agne + JF — J,]isin 191,) (5.5)
Dabei wurden die folgenden Definitionen verwendet:
-1 0 (Goz - 75G5)
A = ——— 5.6
v T EmaG, ( (Ga+75Gs) 0 (5:6)
—1 0 (Ga = 75Gp)
Ay = ——— 5.7
N CRGNER ( (=G — 75G5) 0 (5.7)
Fiir die weiteren Umformungen bieten sich weitere abkiirzende Definitionen an:
z) = A+ I+ T, (5.8)
i@ = Vi @F + L) (5.10)
Nun gilt fiir reelle ji, jo:
2m 2m
d? exp (j1cos? + jasind) = d¥ exp (7sin(9 + Jg))
0
2m

= dv exp (jsin 9)
0

2T

= d¥ exp (i(—ijsin 9))
0
2T

= d¥ cos(i jsin 9)
0

= 27 1o(y) (5.11)

Hierbei symbolisiert Iy die modifizierte Bessel-Funktion 0-ter Ordnung. Iy(j) ist eine gera-
de, holomorphe Funktion auf der ganzen komplexen Ebene, somit ist auch Iy(j) holomorph
in j; und j,, da sich die Mehrdeutigkeit der Wurzel heraushebt. Da auch die rechte Seite
holomorph in j; und j; ist, folgt nach dem Identitdtssatz holomorpher Funktionen, daf§
Gleichung (5.11) auch fiir komplexe j; und j2 gilt.

Damit ergibt sich nun in der Normierung Z1|, 5 j j+=0 = 1

_ i
7y = eXp |\ Nl === |71z ] *
' 1;[ (77 (NZ_GXG¢)77)

* 1o ([(m;Amg; + I+ 1) = (e Aane + JF = 1)

[T

) (5.12)
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Zur Bestimmung von Wy :=In(Z;) werden die folgenden Reihen ben&tigt:

In(l4+2) = i— _

To(z) = +§o:1k,1k, (3)% (5.14)

()]

= (—1)* k! 2\"
2 (32, 4) T )1:[((1'!)242') ]

(5.13)

Bl
—

—_

nun gilt:

k

Nk
k:»—\

In(lo(j)) =

o
Il
—

Il
Nk
k:}—\

k=1 | A1 b ks =0
(DM (R = Dy 1
man )|
- ibmﬂm (5.15)
m=1

Zum Ubergang von der ersten zur zweiten Zeile wird die Reihe iiber [ in der ersten Zeile
in die k-te Potenz erhoben und dann nach Termen sortiert, die durch Multiplikation von
jeweils h; Termen in j% entstehen.

Die b,,-Koeffizienten werden durch Vergleich der letzten beiden Zeilen definiert. Durch
explizite Rechnung erhélt man fiir die ersten 5 Koeffizienten:

1 1 1 11 19
by=-: by=——: by=—: by=———: b= 5.16
=y 7 64> > 576 * 491527 0 614400 (5.16)

Nimmt man nun dies alles zusammen, so gilt fiir Wy:

xr

+2 J;—(ﬁw(A—)nw) + 2 (72 (A4 )ne) S + 4J;Jl’}m] (5.17)

mit: A_ = Al — A2 A_|_ = Al + A2
In [5] wird die entsprechende Gleichung fiir den Fall eines SU(2)1,®5U (2) g-symmetrischen
Yukawa-Modells bewiesen. Ohne Beweis wird eine Modifikation der Gleichung (5.17) fiir
den Fall J, = J} = 0 in den Verdffentlichungen [7, 11] angegeben.

Es ist sofort einzusehen, daf3 Ableitungen von W; nach Quellen verschiedener Orte null
ergeben. Diese Eigenschaft ist wichtig in der ,,Linked-Cluster-Expansion® in den folgenden
Abschnitten.

Fiir die Matrizen A_ und A, gilt:

A = =2 0 0y ___ -2 0 0 (5.18)
T —GGy (Gat+rsGp) 0 ) 2 -GGy (PrGy + PrGy) 0 '
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AL — -2 0 (Ga — 75G5) _ -2 0 (PRG¢ + PLGX) (5 19)
* =G Gy \ 0 0 =G Gy \ 0 0 '
Der Erwartungswert eines Operators A bei K = x = 0 wird im weiteren 1-Platz-

Erwartungswert des Operators A genannt. Die 1-Platz-Erwartungswerte werden durch
einen Index 1 gekennzeichnet: (A);. Die verbundenen 1-Platz-Erwartungswerte der Pro-
dukte von Feldfunktionen werden im Zusammenhang mit der Linked-Cluster-Entwicklung
auch als Momente der Entwicklung bezeichnet. Diese Erwartungswerte lassen sich aus
Gleichung (5.17) durch Differentiation nach den zugeordneten Quellen gewinnen. Mit Aus-
nahme von (¥, W, )$ gilt:

((¢2)™ (63)™ (VW)™ )] # 0
<~ nb—l—nk—l—nf:2N A <N A npg<N A ny <38 (5.20)

Im Anhang B werden fiir r = i = 1 die niedrigsten verbundenen 1-Platz-Erwartungswerte
tabelliert.



Kapitel 6

Entwicklung des erzeugenden
Funktionals W

Die graphische Entwicklung von W soll in dieser Arbeit nicht durchgefiihrt werden, da
sich das Interesse hier auf die Entwicklung der Suszeptibilitdten bezieht. Zur Herleitung
der graphischen Regeln fiir die Suszeptibilititen werden aber die Regeln fiir W benétigt,
die in diesem Abschnitt erldutert werden.

6.1 Graphische Entwicklung

Die linken Seiten der Gleichungen (4.4) und (4.5) lassen sich graphisch darstellen. Mit
Hilfe dieser Darstellungen 148t sich das erzeugende Funktional W entsprechend Gleichung
(4.2) auf einfache Weise entwickeln.

Dazu wird W durch einen Kreis (Vertex) ,0° dargestellt. Eine in den Kreis einlaufen-
de durchgezogene Linie ,»—o* symbolisiert dW /01,414, eine auslaufende durchgezogene
Linie ,o»* den Term 0W/07, ;. Hohere Ableitungen werden durch die entsprechenden
Anzahlen ein- und auslaufender Linien dargestellt. Wird nun fiir jede Linie, die 2 Punkte
verbindet, ein Faktor K (My(z)) ,, verbunden mit einer Summation iiber z, i1, @ und b,
eingefiihrt, so ergibt sich fiir Gleichung (4.5) die folgende graphische Darstellung:

zxﬁﬂﬁaﬁbK(Mﬂ(x))ab8[1((]\%(96))&6]o S I (6.1)

Bei der Riickiibersetzung der graphischen Symbole ist auf das Vorzeichen zu achten.
Die Regeln, um das richtige Vorzeichen zu erhalten, werden weiter unten beschrieben.
Eine analoge Konstruktion 148t sich nun auch fiir die bosonische Differentialgleichung
(4.4) durchfiihren. Zur Unterscheidung werden hier gepunktete Linien® eingefiihrt.

Zx,ﬂ’{Lﬂ(w)a[ 8A o = o 4+ o0 (6‘2)

'Bei Entwicklungen mit Papier und Bleistift ist es empfehlenswert, in einen Farbstift zu investieren und
die gepunkteten Linien durch farbige zu ersetzen.

24
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Abbildung 6.1: Entwicklung eines Teilgraphen

Eine einlaufende gepunktete Linie symbolisiert hier dW/0J,4; und eine auslaufende

oW /..

An dieser Stelle ist zu bemerken, dafl das Ableiten von W nach Quellen verschiedener
Orte im allgemeinen nicht null ergibt, wie es bei Ableitungen von W; der Fall ist. Der
jeweils erste Graph auf der rechten Seite liefert vielmehr wichtige Beitrdge zu den héheren
Ordnungen der Taylorreihe (4.2).

Nun 148t sich 77 Wk —,.—o graphisch bestimmen. Dazu wird zunéchst der jeweils links
stehende Operator 7 ensprechend den obigen Formeln (6.1, 6.2) durch Graphen ersetzt.
Dann wird das néchste 7 entsprechend der Produktregel auf die einzelnen Kreise der
Graphen angewandt, d. h. mit den Ableitungen nach den Quelltermen vertauscht. Dieses
Verfahren wird fortgefiihrt, bis alle 7’s durch Graphen ersetzt sind. Abschlielend werden
K und k auf 0 gesetzt, d. h. die W’s werden durch Wy ersetzt. Wy wird in der graphischen
Entwicklung durch einen gefiillten Kreis ,8° dargestellt. Da nun, wie schon mehrfach be-
tont, die Ableitungen von Wy nach Quelltermen verschiedener Orte verschwinden, ergibt
sich ein Verschwinden aller Graphen, die Linien mit gleichem Anfangs- und Endpunkt
enthalten. Desweiteren ergibt sich, daf alle Linien, die an dem gleichen ,®‘ ausgehen oder
enden, beim Riickiibersetzen in mathemathische Formeln durch Ableitungen am gleichen
Ort ersetzt werden miissen.

Das Verfahren wird in Abbildung 6.2 am Beispiel 72 W/, _, _, vorgefiihrt. Dabei wird
die folgende Gleichung verwendet.

To = @ + o»o + 0 + o0 (6:3)

Die einzelnen Graphen sind analog zu Abbildung 6.1 zu entwickeln, und topologisch dqui-
valente Graphen konnen aufgrund der Aquivalenz der einzelnen 7-Operatoren zusammen-
gefafit werden.

An diesem Beispiel werden schon die wesentlichen Ziige der ,Linked-Cluster-Entwick-
lung® des erzeugenden Funktionals W deutlich. Die sich daraus ergebenden Regeln sollen
im ndchsten Abschnitt im Detail erkldart werden.
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Abbildung 6.2: Graphische Entwicklung von T* W/|,_. _,

6.2 Regeln fiir die graphische Entwicklung

Bei der Auswertung der Graphen kann entsprechend Abschnitt 4.1 die Bindungsvariable
K (Mp(x))q wieder auf den Wert K (M), und L, (2) wieder auf x gesetzt werden.
Zum besseren Verstdndnis der Regeln sind einige Dinge zu beachten:

1. Ein Graph ist ein Objekt, das hier aus durchgezogenen und gepunkteten Linien
besteht, die eine Orientierung tragen und kleine ausgefiillte, bei der Konstruktion in
dem obigen Verfahren auch nichtausgefiillte Kreise (Vertizes) verbinden. Mehr ist er
nicht. Insbesondere hat er nichts mit dem Gitter und seiner Struktur zu tun.

2. Durch das Zuordnen von Gitterorten an die Vertizes eines Graphen entsteht aus dem
Graphen ein eingebetteter Graph. Die Zuordnung muff im Einklang mit den Regeln
der folgenden Unterabschnitte stehen. Einem Graphen werden auf dem unendlich
ausgedehnten Gitter ,,unendlich viele“ eingebettete Graphen zugeordnet.

3. Abschlielend kann man einen eingebetteten Graphen auch in mathematische Terme
iibersetzen. Hierbei ist zu beachten, dafi der einer fermionischen Linie zugeordnete
Term von der Richtung abhéngt, in die die Linie nach der Einbettung auf dem
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Gitter weist. Wird dies mit ,allen“ eingebetteten Graphen mit einer bestimmten
Linienanzahl [ gemacht und werden die entstehenden Terme zusammengezihlt, so
entstehen die [-te Ordnung in 7 der Taylorreihe von W.

In dieser kurzen Einfiihrung zeigt sich schon ein wesentliches Problem der Taylor-
Entwicklung der Funktionals W. Diese Reihenentwicklung enthélt in jeder Ordnung ,,un-
endlich viele® Terme. Das Problem entsteht dadurch, daf es auf dem unendlich ausgedehn-
ten Gitter ,unendlich viele“ benachbarte Gitterpunkte gibt. Werden aus dieser Reihe die
Suszeptibilititen des Abschnitts 3.4 durch Differentiation nach den Quellen bestimmt, so
entstehen nur aus den eingebetteten Graphen Beitrige zu den Suszeptibilititen, bei denen
mindestens ein Vertex auf den Gitterursprung 0 abgebildet worden ist. Dies ist in jeder
Ordnung nur eine endliche Anzahl. Somit 16st sich das Problem bei der Entwicklung der
Suszeptibilititen von allein.
Die graphische Bestimmung der Suszeptibilititen wird im Kapitel 7 beschrieben.

6.2.1 Bildelemente

Dieser Abschnitt stellt die im Abschnitt 6.1 eingefiihrten und im weiteren noch benétig-
ten graphischen Symbole noch einmal zusammen. Gleichzeitig wird auch schon der diesen
Symbolen zugeordnete mathematische Term aufgefiihrt.

‘ Graphisches Symbol ‘ Formel-Symbol ‘
° Wy
0
6ﬁx,bW1
0 W
a77x+ﬂ,a
0
o> W
ot
0
o W
OJrti '
. 0 0
— o K Wi (Mp)ay m—Wh
o f,ab Nedfa 877@',6
0
@ e | 'Y H; fdJCL‘-I—ﬂWI 8{]@_]_ Wl

Groflere Anzahlen ein- oder auslaufender Linien symbolisieren entsprechend héhere Ablei-
tungen, dabei beinhaltet eine zwei Vertizes ,e° verbindende Linie immer die oben darge-
stellten Faktoren und Summationen.

6.2.2 Summation tiber zusammenhéngende Graphen

Durch Induktion iiber die Potenzen von 7 148t sich sofort zeigen, daf} in allen Ordnungen
der Entwicklung ausschlieilich zusammenhdngende Graphen entstehen.

Die Anwendung eines Operators 7 auf die Graphen in beliebiger Ordnung fiithrt zu
einer Ersetzung einzelner ,0° durch einen Graphen, bestehend aus einer Fermionen- oder
Bosonenlinie und ein oder zwei ,0‘. Dabei bleibt der Graph zusammenhingend, da der
,Restgraph’ dann wieder an ein ,0° des eingesetzten Graphen angehdngt wird.
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6.2.3 Keine Graphen—Linie hat den gleichen Anfangs- und Endpunkt

Graphen, die Linien enthalten, die am gleichen ,#° beginnen und enden, tragen nicht zu
W bei.

Derartige Linien fiihren bei der Ubersetzung der zugeordneten eingebetteten Graphen
in mathematische Terme zu Ableitungen von W7 nach Quellen verschiedener Orte. Somit
folgt die obige Aussage direkt aus Gleichung (5.17).

6.2.4 Zusammenfassung topologisch aquivalenter Graphen

Dieser Abschnitt soll mit zwei Definitionen beginnen:

Eine bijektive Abbildung © von einem Graphen G auf einen Graphen G’ heifit
topologisch, wenn sie die nachfolgenden Eigenschaften erfiillt:

Sie bildet Vertizes von G auf Vertizes von G’ und Linien von G unter Beachtung
ihrer Orientierung auf Linien von G’ ab. Dabei wird der Vertex V am Ende
der Linie o auf ©(V) am Ende der Linie ©(«) abgebildet. Entsprechendes gilt
auch fiir den Vertex am Linienanfang.

Zwei Graphen G und G’ heifien topologisch dquivalent, wenn es eine topologische

Abbildung von G auf G’ gibt.

Die folgende Regel ergibt sich direkt aus der Symmetrie der zur Erzeugung der Graphen
bendtigten T-Operatoren unter Vertauschen der Reihenfolge ihrer Anwendung:

Topologisch dquivalente Graphen lassen sich zusammenfassen und brauchen in
der graphischen Entwicklung nicht mehrfach aufgefiihrt zu werden.

Zur graphischen Entwicklung des erzeugenden Funktionals ist {iber alle zusammenhin-
genden Graphen zu summieren, wobei topologisch dquivalente Graphen nur einmal erfafit
werden.

6.2.5 Einbettung der Graphen auf das Gitter

Zur Ausfiihrung der Orts- und Richtungssummationen ist es sinnvoll, sich einen Vertex ,e°
des Graphen herauszunehmen und zunichst erst einmal fest auf einen Gitterplatz abzubil-
den. Nun werden die an diesem Vertex beginnenden und endenden Linien iiber die positven
und negativen Raumrichtungen des Raum-Zeit-Gitters aufsummiert, wobei die an dem an-
deren Ende der Linien liegenden Vertizes ,8¢ auf die benachbarten Gitterplitze abgebildet
werden. Hierbei ist auch iiber die Fille zu summieren, in denen zwei verschiedene ,®‘ auf
den gleichen Gitterplatz abgebildet werden. Bei jedem der entstandenen Summanden ist
mit den Linien, die in den im letzten Schritt fixierten Vertizes enden oder beginnen und
die noch nicht aufsummiert sind, analog zu verfahren.

Dies Verfahren ist solange fortzufiihren, bis alle Linien erfafit sind. Dabei ist sicher-
zustellen, daf alle Linien ausschliellich benachbarte Gitterpunkte verbinden. Auf diese
Weise werden zum Beispiel einem Graphen, der aus n Linien besteht und keine Schleifen
enthilt, (2d)" Einbettungen zugeordnet. Bei Graphen mit Schleifen fiihrt die Bedingung,
daf} die Linien immer benachbarte Gitterpunkte verbinden, zu einer Verringerung der An-
zahl der Einbettungen. Manche Graphen lassen sich in bestimmten Gittern auch gar nicht
einbetten, z. B. Graphen mit geschlossenen Dreiecken im kubisch primitiven Gitter.
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Abschlielend wird der urspriinglich festgehaltene Vertex {iber das gesamte Gitter ver-
schoben, d. h. alle Einbettungen der Graphen, die bei den Summationen iiber die Linien-
richtungen erzeugt wurden, sind in allen Punkten des Gitters anzutragen.

Aufgrund dieser Einbettungsregeln werden die in diesem Kapitel beschriebenen Gra-
phen unverwurzelte (engl.: unrooted) Graphen genannt. Sie werden frei iiber das gesamte
Gitter summiert, keine Vertex des Graphen wird fest auf einen Gitterpunkt abgebildet.

6.2.6 Symmetriefaktoren

Ein Graph, bestehend aus insgesamt j fermionischen und bosonischen Linien, der keine
Symmetrie besitzt, wird, wenn man alle topologisch dquivalenten Formen entsprechend
Abschnitt 6.2.4 zusammenfafit, jl-fach erzeugt. Wenn der Graph Symmetrien besitzt, so
verringert sich die Anzahl der erzeugten in der Weise, dafi durch die Mé&chtigkeit der
Symmetriegruppe zu dividieren ist.

Dazu ist nun eine Definition dessen, was unter der Symmetriegruppe eines Graphen G
zu verstehen ist, nachzureichen:

Die Symmetriegruppe eines Graphen G ist die Gruppe der topologischen Ab-
bildungen Q : G — §G.

Die Symmetriegruppe enthilt immer die identische Abbildung und ist daher nie leer.

Zur Bestimmung der Anzahl der erzeugten Graphen ist die Symmetrie der Gleichung
(4.2) beziiglich der Vertauschung zweier 7-Operatoren zu betrachten. Wenn ein Graph
ofter als einmal erzeugt wird, so entsteht dies dadurch, daf} es verschiedene M&glichkei-
ten gibt, ihn in dem in Abschnitt 6.1 beschriebenen Verfahren zu erzeugen. Wird an jeden
Differentialoperator 7 ein Index geschrieben und dieser Index auch an die von diesem Ope-
rator erzeugte Linie iibernommen, so ist sofort einzusehen, dafl die Anzahl der erzeugten
Graphen einer topologischen Aquivalenzklasse den Méglichkeiten, die Indizes auf topolo-
gisch verschiedene Weise an die einzelnen Linien des Graphen zu verteilen, entspricht.

Topologisch dquivalente Indexverteilungen stehen fiir eine Verringerung der Moglich-
keiten, den Graphen in dem Konstruktionsverfahren zu erzeugen, da dann bestimmte Teil-
graphen nur in einer bestimmten Weise zueinander angeordnet werden kénnen. Betrachte
zur Verdeutlichung die Graphen

(6.4)

aus Abbildung 6.2. Der linke Graph enthilt keine Symmetrie, es gibt zwei Moglichkeiten
ihn zu konstruieren:

1. Die zweite Linie wird mit ihrem Anfangspunkt an den Endpunkt der ersten Linie
angehingt.

2. Die zweite Linie wird mit ihrem Endpunkt an den Anfangspunkt der ersten Linie
angehingt.

Die Symmetriegruppe des rechten Graphen besitzt aufler der identischen Symmetrieabbil-
dung die Abbildung, die die dufleren Vertizes und die beiden Graphenlinien aufeinander



30 KAPITEL 6. ENTWICKLUNG DES FRZEUGENDEN FUNKTIONALS W

abbildet. Die Symmetriegruppe besteht aus 2 Elementen. Der Graph kann nur auf eine
Weise konstruiert werden:

1. Beide Linien werden mit ihren Anfangspunkten zusammengehingt.

Die Gleichung (4.2) enthidlt noch den Faktor %, der sich gegen die maximale Anzahl
erzeugter Graphen j! herauskiirzt, so daf§ der Beitrag eines Graphen zu W durch die
Miéchtigkeit seiner Symmetriegruppe zu dividieren ist.

6.2.7 Vorzeichen

Es bleibt das Problem des Vorzeichens jedes Beitrags. Entsprechend Gleichung (4.5) wird

einer Abfolge der Ableitungen
0 0

aﬁw,b 877x+ﬂ,a

(6.5)

ein positives Vorzeichen zugeordnet, wenn diese beiden Ableitungen mit einer fermi-
onischen Linie verbunden sind.

Das Verfahren zur Ermittlung des richtigen Vorzeichens ist nun recht einfach. Die fermi-
onischen Linien des Graphen werden durchnumeriert und die Quellen in den Ableitungen
an ihren Enden werden mit den Indizes? 7,, und 7,, versehen, wobei n die Nummer der
zugeordneten Linie ist. Der Graph wird entsprechend den obigen Regeln ausgewertet und
abschlieBend dahingehend gepriift, ob es sich bei der Permutation der Quellenindizes um
eine gerade oder ungerade Permutation von by, ay, bg, ag, ... handelt. Im ersten Fall ergibt
sich ein positives Vorzeichen, im zweiten Fall ein negatives.

Es soll noch angemerkt werden, dafi diese Reihenfolge der Ableitungen nach fermi-
onischen Quellen auf eine Reihenfolge

U, U, U, W, ..U, U (6.6)

bei den fermionischen Variablen fiihrt.

2Der Ortsindex wird aus Griinden der Ubersicht fortgelassen



Kapitel 7

Graphische Regeln fiir die
Suszeptibilitaten

Ziel dieses Abschnitts ist es, graphische Regeln fiir die Bestimmung der Taylorreihen der
in Abschnitt 3.4 definierten Suszeptibilititen in K und s zu erhalten. Die graphische
Entwicklung dieser Grofien fithrt zu verwurzelten Graphen, im Gegensatz zu den unver-
wurzelten des vorstehenden Kapitels (vgl. Abschnitt 6.2.5).

In diesem Abschnitt sollen die Regeln fiir Suszeptibilitdten aufgestellt werden, die dem
im folgenden definierten Typ Xmno angehéren:

e ) .16 . = e

=1 " Wk Yk
* Py + Pucyy (sz‘l .. (b;‘mq;wl 0, ) (7.1)
mit: m,n > 0 und o € {0, 1}

Hierbei steht F' fiir eine translationsinvariante Funktion ihrer Argumente und V fiir das
Volumen des 4-dimensionalen Gitters. Die Gleichung ist so zu verstehen, daf}, wenn eine
oder mehrere der Variablen n, m oder o gleich null sind, die zugeordneten Felder in der
Greenschen Funktion nicht auftreten.

Die in Abschnitt 3.4 definierten Suszeptibilititen sind alle von diesem Typ. In ihrer
Definition wurde von der Translationsinvarianz der Funktion F' Gebrauch gemacht und
eine Summe gegen den Faktor % herausgekiirzt. Da im Rahmen dieser Arbeit keine Sus-
zeptibilititen mit mehr als einem Fermion-Antifermion-Paar berechnet werden, wird an

dieser Stelle auf die Betrachtung derartiger Groflen verzichtet.

7.1 Graphische Differentiation

Die Entwicklung der Regeln wird sich an der iiblichen Bestimmung Greenscher Funktionen
aus einem erzeugenden Funktional orientieren. Fiir die graphisch ausgefiihrte Differentia-
tion des erzeugenden Funktionals werden Symbole fiir duflere Ableitungen definiert, die
sich an den Symbolen in der graphischen Entwicklung von W orientieren:

31
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‘ Graphisches Symbol ‘ Formel Symbol ‘

oW 78 Wy
aﬁwl,b

V] >—e 0 W,
8771/1,6
0
g
0

! 8‘]% '

Diese Ableitungen werden an die Graphen, aus denen sich W zusammensetzt, angeh&ngt.
Sie unterscheiden sich von den inneren Ableitungen dadurch, daf§ sie nicht durch eine Linie
mit einer weiteren Ableitung verbunden werden.

Auf eine Indizierung der fermionischen Ableitungen kann eigentlich sofort verzichtet
werden, da die Suszeptibilititen maximal ein Fermion-Antifermion-Paar enthalten und die
Ableitungen durch ihre Art schon eindeutig charakterisiert sind. Aufgrund der Summa-
tionen iiber die Orte der &uBeren Ableitungen in Gleichung (7.1) kann zu einem spéteren
Zeitpunkt auf die Indizierung der Orte an den bosonischen Beinen verzichtet werden. Eine
kurze Erliuterung wird zeigen, dafl zwei Graphen, die sich nur durch verschiedene Ortsin-
dizes an gleichartigen dufleren Ableitungen unterscheiden, den gleichen Beitrag zu Ynmo
liefern.

Die Suszeptibilitdten lassen sich nun durch ,graphisches* Differenzieren aus den Gra-
phen der Entwicklung von W gewinnen. Dazu werden die Symbole fiir die dufleren Ab-
leitungen an die Graphen angehéngt. Hierbei sind die Regeln fiir die Differentiation, be-
sonders die Produktregel, zu beachten. Wenn alle dufleren Ableitungen an den Graphen
angehdngt sind, werden die verbliebenen Quellen auf den Wert 0 gesetzt. Durch dieses
Nullsetzen der Quellen fallen die Graphen heraus, bei denen an einem Vertex die Anzahl
der ein- und auslaufenden Linien nicht der Bedingung der Gleichung (5.20) geniigt.

Die Vertizes mit den dufleren Ableitungen werden nun auf die Gitterpunkte abgebildet,
die den dufleren Ableitungen zugeordnet sind. Dies ist in den Féllen nicht méglich, in denen
an einen Vertex zwei duflere Ableitungen mit verschiedenen Gitterpunkten angeh&ngt sind.
Die restlichen Vertizes werden nun so {iber das Gitter verteilt, daf jede innere Graphenlinie
immer benachbarte Gitterpunkte verbindet. Die Bildelemente der Graphen werden nun
entsprechend den Ubersetzungstabellen in Terme iibersetzt. Es ist zu beachten, daB die
den fermionischen Linien zugeordneten Terme von deren Einbettung abhidngen. Die Terme
werden soweit wie moglich zusammengefafit. Auf diese Weise entsteht dann der Beitrag
dieser Einbettung des Graphen zu der Greenschen Funktion der Suszeptibilitit.

Diese Beitrédge der Graphen sind nun iiber alle Finbettungen zu summieren, die die Orte
der dufleren Ableitungen unverindert lassen. Hierbei ist zu beriicksichtigen, daf es nicht zu
jeder Konstellation von Ortsindizes an den dufleren Ableitungen eine gliltige Finbettung
gibt. Abschlieflend sind die Beitrdge entsprechend der Definition der zu bestimmenden
Suszeptibilitit mit den von den Endpunkten abhingigen Vorfaktoren zu multiplizieren.
Die nun entstandenen Terme sind fiir die verschiedenen Lagen der Orte der dufieren Ab-
leitungen aufzusummieren.

Dieses Verfahren ist in der Praxis hdufig zu umsténdlich in der Handhabung. Es ist
aber sehr vorteilhaft, sich in Zweifelsfallen darauf zuriickziehen zu kénnen, da es sehr an-
schaulich ist. Zur praktischen Bestimmung der Suszeptibilititen ist das im folgenden vor-
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gestellte Verfahren, in dem iiber alle topologischen Aquivalenzklassen zusammenhingender
Graphen mit der bendtigten Anzahl duflerer Beine summiert wird, komfortabler.

Die in diesem Verfahren erzeugten Graphen werden verwurzelt (engl.: rooted) genannt,
da die Ortindizes an den dufleren Ableitungen die zugeordneten Vertizes fest auf Gitter-
punkte abbilden.

7.2 Regeln fiir die graphische Bestimmung der
Suszeptibilititen

In diesem Abschnitt sollen nun die Regeln fiir die Entwicklung der Suszeptibilitdten zu-
sammengestellt und erldutert werden. Viele Regeln ergeben sich direkt aus den Regeln in
Abschnitt 6.2.

7.2.0.1 Definitionen

Bevor auf die Regeln eingegangen werden kann, sind einige Definitionen {iber die topolo-
gischen Figenschaften der Graphen notwendig.

Zwei verwurzelte Graphen G und G’ sind toplogisch dquivalent, wenn es eine bi-
jektive topologische Abbildung © : G — G’ gibt, die die Ortindizes der dufleren
Ableitungen nicht beachtet.

Dieses bedeutet insbesondere, dafi zwei Graphen, die sich nur durch die Indizes an den
dufleren Ableitungen unterscheiden, topologisch dquivalent sind. Im folgenden werden zwei
verwurzelte Graphen, die der gleichen topologischen Aquivalenzklasse angehdren, auch als
Graphen gleichen topologischen Typs bezeichnet.

Zwei Verteilungen der Indizes an die dufleren Ableitungen eines Graphen G
heiflen topologisch dquivalent, wenn es eine bijektive topologische Abbildung
Q: G — G gibt, die die Indizes an den dufleren Ableitungen beriicksichtigt und
die eine Indexverteilung in die andere iiberfiihrt.

7.2.1 Bildelemente

Die Bildelemente aus Abschnitt 6.2.1 sind um die oben vorgestellen Bildelemente zu er-
weitern. Dabei kann, als Vorgriff auf 7.2.2, bei den dufleren Ableitungen auf den Ortsindex
verzichtet werden.

7.2.2 Zusammenfassen von Graphen mit permutierten Ortsindizes

Wie schon angedeutet, liefern topologisch dquivalente Graphen den gleichen Beitrag zu
der betrachteten Suszeptibilitidt, auch wenn die Verteilung der Ortsindizes auf die &ufleren
Ableitungen indquivalent ist. Sie kénnen somit auf einfache Weise zusammengefafit werden.
Bei den hier betrachteten Suszeptibilititen des Typs Xmno kann dies nur bei bosonischen
duBleren Ableitungen auftreten.

Zunichst ergibt die Produktregel der Differentiation, dafl die Anzahl der in dem oben
beschriebenen graphischen Differentiationsverfahren erzeugten verwurzelten Graphen ei-
nes topologischen Typs der Anzahl der Permutationen der Indizes iiber die dufleren Beine
entspricht, wenn nicht mehrere gleichartige &uflere Linien an den gleichen Vertex angehdngt
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werden. Mit jedem dieser Indizes ist eine Summation {iber das gesamte Gitter verbunden.
Wird nun eine bestimmte Einbettung der dufleren Ableitungen des Graphen auf das Git-
ter betrachtet, so tritt diese Einbettung in jeder Permutation der Indizes genau einmal
auf, und dieser Beitrag ist mit einem Faktor zu multiplizieren, der der Michtigkeit der
Permutationsgruppe entspricht. Die Grofle dieser Permutationsgruppe beziiglich Xn0 ist
m!-nl.

Hier gehen ganz entscheidend die Vertauschungsregeln fiir bosonische Operatoren ein.
Wiren die vertauschten Ortsindizes Grassmann-Variablen zugeordnet, so wiirden antisym-
metrische Spinoren entstehen. Es wird nun folgende Regel aufgestellt:

Der Beitrag aller Graphen einer topologischen Aquivalenzklasse, die sich nur
durch eine Permutation der den Hufleren Beinen zugeordneten Gitterorte un-
terscheiden, zu Y., ist gleich dem Beitrag eines einzigen dieser Graphen mul-
tipliziert mit n!-m!.

Damit dies bei Graphen mit mehreren gleichen dufileren Linien an einem Vertex nicht zu
Uberzdhlungen fiihrt, werden die Symmetriefaktoren in Abschnitt 7.2.4 zur Kompensation
angepaft.

7.2.3 Summation tiber zusammenhingende Graphen

Das Anhéngen duflerer Linien an zusammenh&ngende unverwurzelte Graphen fiithrt auf
zusammenhingende verwurzelte Graphen. Daher ist iiber alle topologischen Aquivalenz-
klassen zusammenh&ngender Graphen mit der entsprechenden Anzahl dufierer Linien (Ab-
leitungen) zu summieren. Dabei besitzt keine Graphenlinie den gleichen Anfangs- und
Endpunkt. Graphen, die sich nur durch eine Permutation der Ortsindizes an den dufleren
Beinen unterscheiden, sind hierbei als topologisch dquivalent anzusehen.

Zur Verdeutlichung dessen, was gemeint ist, m6chte ich hier ein paar Beispiele angeben:

Graphen, die zu X;S beitragen:

Upw

Graphen, die zu (x5 Jou

Jas bzw. (x5 )22 beitragen:

(7.3)

7.2.4 Symmetriefaktor

Durch den Ubergang zu verwurzelten Graphen kann die GréBe der Symmetriegruppe des
zugrundeliegenden unverwurzelten Graphen verdndert werden. Dabei tritt eine neue Art
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der Symmetrie auf, so dafl gegeniiber Abschnitt 6.2.6 eine angepafite Definition der Sym-
metriegruppe notwendig wird.

Die Symmetriegruppe eines verwurzelten Graphen G wird als die Gruppe der
topologischen Abbildungen €2 :G — G definiert. Dabei wird bei den dufleren
Linien die Orientierung, nicht aber der Ortindex beriicksichtigt.

Jedem Graphen G wird ein Symmetriefaktor Sg zugeordnet. Dieser Faktor wird wie folgt

definiert:
1

Sg =
g Miéchtigkeit der Symmetriegruppe von G

(7.4)

Zur Illustration werden an dieser Stelle einige Graphen und deren Symmetriefaktoren

angegeben:

Graph G Sg Erlauterung
> 1 Die Orientierungspfeile brechen die Symmetrie
i ........ — : 1 Alle Bildobjekte des Graphen werden auf das jeweils an-
i e i 2 dere der gleichen Art abgebildet
A A

>I<_—<’:>° % Vertauschen der einlaufenden Linien des linken Vertex
: . Produkt zweier Symmetrieabbildungen:

»ﬁs:ﬁ:':::ﬁsi 1 Vertauschen der einlaufenden Linien des linken Vertex;
IO 4 Vertauschen der beiden rechtslaufenden Verbindungslini-

en.

Fiir die Graphen gilt die folgende Regel:

Der Beitrag eines jeden Graphen G ist mit seinem Symmetriefaktor Sg zu
multiplizieren.

Zum Verstédndnis dieser Regel sind vier verschieden Arten der Symmetrie zu unterscheiden.

1. Symmetrien durch Vertauschen duflerer Linien eines Vertez.

In 7.2.2 wurde erldutert, dafl Graphen, die mehrere gleichartige duflere Linien an
einem Vertex haben, nicht mit der Haufigkeit m!- n! in dem graphischen Differen-
tiationsverfahren erzeugt werden. Die Graphen in der dritten und vierten Zeile der
vorstehenden Tabelle sind von dieser Art.

Bei einem Graphen mit einer derartigen Symmetrie ist die Anzahl der erzeugten
Graphen um einen Faktor geringer, der sich durch die Anzahl der Moglichkeiten,
die Indizes an den &ufleren Ableitungen der einzelnen Vertizes zu vertauschen, er-
gibt. Dies entspricht der Méchtigkeit der Symmetrieuntergruppe, deren Elemente nur
duflere Linien entsprechend den Regeln fiir topologische Abbildungen vertauscht, die
restlichen Bildelemente aber auf sich selbst abgebildet.

2. Gebrochene Symmetrien des zugehérigen unverwurzelten Graphen

Durch das Anhdngen duflerer Linien an einen unverwurzelten Graphen kénnen Sym-
metrien dieses Graphen gebrochen werden. Der dritte Graph in der obigen Tabelle
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ist ein Beispiel hierfiir. Der zugrundeliegende unverwurzelte Graph besitzt eine Sym-
metrie beziiglich des gleichzeitigen Austauschs der Vertizes und Verbindungslinien.
Diese Symmetrie besitzt der obige verwurzelte Graph nicht mehr. Fiir die Produktre-
gel sind die beiden Vertizes in dem Sinne unterscheidbar, daf§ die , Verzierungen*
mit drei dufleren Linien einmal an den einen und dann an den anderen Vertex an-
zuhdngen sind. Dadurch entstehen bei jeder méglichen Zuordnung der Ortsindizes
an die dufleren Linien zwei topologisch dquivalente Graphen mit dquivalenten In-
dexverteilungen. Der urspriingliche Symmetriefaktor % des unverwurzelten Graphen
wird dadurch kompensiert. Das Entstehen von nur zwei topologisch indquivalen-
ten Indexverteilungen wird durch die Austauschsymmetrie der beiden einlaufenden
bosonischen Linien am linken Vertex verursacht, wie vorstehend unter Punkt 1 be-
schrieben.

Wird im allgemeinen Fall eine Symmetriegruppe der Michtigkeit s zerbrochen, so
kénnen die &ufleren Linien auf s verschiedene Arten an den Graphen angehingt
werden, ohne dafl topologisch verschiedene verwurzelte Graphen mit topologisch un-
terscheidbarer Indexverteilung entstehen. Anschaulich bedeutet dies, dafl es s ver-
schiedene Moglichkeiten gibt, den unverwurzelten Graphen in festgehaltene duflere
Linien einzubetten. Dies kompensiert den Symmetriefaktor % des urspriinglichen
Graphen. Das Entstehen von m!- n! topologisch indquivalenten Indexverteilungen
an einem Graphen wird durch diese Art der Symmetrie nicht beeinfluf3t.

Die obige Definition (7.4) des Symmetriefaktors Sg liefert fiir gebrochene Symme-
trien des unverwurzelten Graphen einen Faktor 1, ist also nicht sensitiv auf diese
Symmetrien und ergibt somit die richtige Anzahl erzeugter Graphen mit diesem
Symmetrietyp.

. Unverdndert erhaltene Symmetrien des zugehdrigen unverwurzelten Graphen

Der 4. Graph der obigen Tabelle enthilt eine Austauschsymmetrie der beiden
rechtslaufenden bosonischen Verbindungslinien. Diese Symmetrie wurde durch das
Anhidngen der dufleren Beine nicht gebrochen oder verdndert, das heifit, die neu hin-
zugekommenen dufleren Linien werden durch die zugeordnete Symmetrieabbildung
Q auf sich selbst abgebildet, wohingegen die verbleibenden Elemente entsprechend
der Symmetrieabbildung des unverwurzelten Graphen abgebildet werden.

Der Anteil dieser Symmetrie des unverwurzelten Graphen an dessen Symmetriefak-
tor geht unverdndert in den Symmetriefaktor des verwurzelten Graphen iiber. Die
Gleichung (7.4) liefert diesen Faktor in der richtigen Weise.

. Verdnderte Symmetrien des zugehérigen unverwurzelten Graphen

Es gibt Symmetrien des zugrundeliegenden Graphen, die durch ein symmetrisches
Anhéngen der &ufleren Linien verdndert werden. Der zweite Graph der obigen Tabelle
ist ein Beispiel dafiir. Die Symmetrie dieses Graphen ist in dem unverwurzelten
Graphen, der den Symmetriefaktor % besitzt, schon vorhanden. Betrachte dazu die
folgende graphische Entwicklung, in der der verwurzelte Graph durch graphisches
Differenzieren aus dem zugeordneten unverwurzelten Graphen erzeugt wird.
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1 euguine
% I::::::':.::::::o % o::::::":.::::::I
Yi: Y1
1 Al
A A
e Re o Re
A A
a1 Y1
T R S
euRIe eRIe (7.5)
ylé éyz ylé éyz

Die beiden Graphen der zweiten Zeile sind topologisch dquivalent und besitzen eine
topologisch dquivalente Indexverteilung. Sie lassen sich zusammenfassen, so daf sich
der Faktor % heraushebt. Die Graphen der letzten Zeile sind toplogisch dquivalent,
besitzen aber eine indquivalente Indexverteilung. Da diese Graphen nach 7.2.2 eben-
falls zusammengefaf3t werden kénnen, entstehen aus dem unverwurzelten Graphen
mit Symmetriefaktor %, zwei verwurzelte Graphen mit Vorfaktor 1. Da aber nach
7.2.2 der Graph mit einem Faktor 4 multipliziert wird, ist der Graph mit einem
Faktor 1 zu multiplizieren, wie ihn die obige Definition (7.4) liefert.

Im allgemeinen Fall ist es mdoglich, dafi eine Symmetrie des unverwurzelten Gra-
phen beim ,, Verwurzeln® auf eine Untergruppe der urspriinglichen Symmetrie redu-
ziert wird. Ein Beispiel hierfiir ist die vierzidhlige Drehsymmetrie eines Graphen, der
aus vier geeignet orientierten Linien besteht, die im Quadrat angeordnet sind. Eine
derartige Symmetrie kann durch das ,,Verwurzeln“ auf eine zweizidhlige Symmetrie
reduziert werden.

Die Anzahl der entstehenden Graphen entspricht der Anzahl der Méglichkeiten, die
duBleren Beine auf topologisch verschiedene Weise an dem Graphen anzuordnen.
Die zunichst entstehenden topologisch dquivalenten Indexverteilungen werden dazu
verwendet, um den Symmetriefaktor des unverwurzelten Graphen wie in der zweiten
Zeile des Bildbeispieles herauszuheben. Dieses unterscheidet sich um die Machtigkeit
des erhaltenen Teils der Symmetrie von der in Abschnitt 7.2.2 angenommenen Zahl.

Dieses Resultat kann aber auch so verstanden werden, dafi sich der Symmetriefaktor
des zugrundeliegenden unverwurzelten Graphen erhalten hat.

Zum Abschluf} soll betont werden, daf} fiir einen Graphen mehrere dieser Fille zutreffen
kénnen, wie es fiir den dritten und den vierten Graphen des obigen Beispiels zutrifft.

7.2.5 Vorzeichenregel

In 6.2.7 wurde die Vorzeichenregel fiir unverwurzelte Graphen angegeben. Da im Fall
verwurzelter Graphen die Quellen nach der Ausfiihrung der Differentiationen auf null
gesetzt werden, gestalten sich hier die Regeln viel einfacher. Fiir die folgende Betrachtung
sind die bosonischen Linien im allgemeinen belanglos.

Zur Erlduterung soll nun zunichst ein Graph G der Entwicklung von Yy, bestehend
aus n fermionischen Verbindungslinien, die durch Vertizes mit jeweils einer ein- und aus-
laufenden Linie verbunden sind, betrachtet werden. Diese Linien bilden eine lange Kette:
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1 2 3 4 5 6 n
Hierin stehen die Zahlen 1,2, 3, ..., n fiir einen die Linien bezeichnenden Index, wohingegen

die 0 und das z fiir die Gitterorte stehen, die mit den dufleren Ableitungen verbunden sind.
Entsprechend der Vorzeichenregel unverwurzelter Graphen und Gleichung (2.14) fiihrt das
Einsetzen der Terme fiir die Bildelemente diese Graphen auf den Ausdruck Rg mit dem an-
gegebenen positiven Vorzeichen, wenn der Graph als Beitrag zu (¥, V)¢ angesehen wird.
Darin werden der Linie mit dem Index ¢ die Ableitungen 0/0n,; und 9/9m, und die Rich-
tung fi; zugeordnet. Rg besitzt unter Lorentztransformation das Transformationsverhalten
eines Spinors 2. Stufe.

" o 0 ) (A ( o 0 )
M; w W S 7
=1 ( M)aibi] <877ao O, ! L:l_[l (87711@‘ 8ﬁbi+1 1)] OMa,, O, !

Z (7.7)

(Rg)p,q0 = K" l

Dabei wurde die duflere Ableitung aﬁab mit den inneren Ableitungen entsprechend den
Regeln vertauscht. Mit:
Jg 0 -
— W = (U, W, )¢ 7.8
877(” 87jlbj < b] z>1 ( )

ergibt sich flir Rg:

<\1161\I1a0>i (7'9)

1

Die 1-Platz-Erwartungswerte (W, W, ){ kénnen im Anhang B nachgeschlagen werden. Fiir

B

fermionische Kettengraphen ergibt sich insgesamt das wichtige Zwischenergebnis:

Um bei einer fermionischen Graphenkette das richtige Vorzeichen zu erhalten,

wird der Erwartungswert (¥, W, ), an dem der Kettengraph beginnt, rechts
an das Ende der Termfolge geschrieben. Davor wird die Matrix der ersten Ver-
bindungslinie K (Z\L;l)alb1 geschrieben. Es folgt der nichste Erwartungswert

(W, Wy, )5 und so weiter, bis schliefllich der Erwartungswert (U W, )$ links
am Beginn der Termfolge steht. Einer derartigen Termfolge ist ein positives

Vorzeichen zuzuordnen.

Dieses Firgebnis 188t sich nun leicht auf den allgemeinen Fall eines beliebigen Graphen mit
oder ohne duflere fermionische Linien erweitern. In diesem Fall gibt es zwei wesentlichen
Unterschiede zu dem oben Diskutierten:

1. Die 1-Platz-Erwartungswerte kénnen mehr als ein Fermion-Antifermion-Paar ent-
halten.

2. Es gibt fermionische Graphenlinien, die sich nicht durch Bildung fermionischer Ket-
ten mit dufleren Ableitungen verbinden lassen.

Aus der Gleichung (5.17) ergibt sich, daf bei einem von null verschiedenen Graphen die
Anzahl der in jeden Vertex einlaufenden fermionischen Linien der Anzahl der wieder aus-
laufenden gleicht. Da dadurch die Endpunkte der dufleren fermionischen Ableitungen die
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beiden einzigen Punkte des Graphen sind, an denen sich die Anzahl der ein- und aus-
laufenden fermionischen Linien unterscheidet, ist es im Fall duflerer fermionischer Linien
moglich, von der einlaufenden dufleren fermionischen Linie eine rein fermionische Graphen-
kette zu der auslaufenden dufleren fermionischen Linie zu bilden, ohne eine einzige innere
Linie zweimal zu durchlaufen.

Eine Moglichkeit des weiteren Vorgehens ist es, zunéchst die den verschiedenen Bild-
elementen zugeordneten Terme niederzuschreiben. Dabei sind die fermionischen Variablen
in den 1-Platz-Erwartungswerten immer in der Reihenfolge WWWW ... WW einzusetzen und
alle Spinorindizes offen zu lassen. Den Zufleren Ableitungen werden Spinorindizes, z.B. ag
bzw. b, zugeordnet.

Als erster Spinorindex wird nun ag an das letzte W des 1-Platz-Erwartungswertes ge-
schrieben, der dem Vertex ,8° zugeordnet wird, an dem die duf8ere einlaufende fermionische
Linie endet. An das letzte ¥ dieses Vertex wird nun by geschrieben. Dieser Index wird als
hinterer Index an die Matrix M, angetragen, die der Verbindungslinie zugeordnet wird,
die in der Verbindungskette den ersten Vertex mit dem zweiten verbindet. Als vorde-
rer Index der Matrix Mj, wird a; eingesetzt, der an das letzte W des Erwartungswertes
ibernommen wird, der dem zweiten Vertex der Kette zugeordnet ist.

Ist an einem Vertex das letzte W schon mit einem Index versehen, so wird das hinterste
noch nicht mit einem Index belegte ¥ genommen, und der auslaufenden Linie wird dann
das vorstehende W zugeordnet. Die so gewonnene Indexfolge unterscheidet sich von der
Indexfolge in Gleichung (7.9) um eine gerade Permutation der Indizes, da die ,Paare’
(W4,,, ¥,,;) nicht zertrennt wurden und so die Anzahl der Vertauschungen von Indizes, die
notwendig ist, um von der einen Folge zur anderen zu gelangen, immer gerade ist. Diesem
Term ist somit ein positives Vorzeichen zuzuordnen.

Doch ist es nicht immer mo&glich, mit dieser Kette alle fermionischen Linien zu erfassen,
und manchmal gibt es auch Griinde, dies nicht zu tun, obwohl es méglich wére. Doch bevor
dieser Punkt gekldrt wird, soll erst noch einmal ein kurzes einfaches Beispiel angefiihrt
werden, das hoffentlich ein wenig Licht in die Angelegenheit bringt.

o3

aOAF@—» ba (710)

7

Hierbei wurden die Verbindungslinien mit «, 8 und + indiziert. Nun gibt es zwei Arten
fermionischer Ketten, um von ag nach b, zu gelangen:

1. Ein Beispiel fiir die erste Art ist die Kette: ~-5-«
Dies ist wie folgt zu verstehen: An der dufleren Linie bei ag beginnen, mit « von links nach
rechts, dann mit 5 zuriick und abschlieBend mit v zur auslaufenden &dufieren Linie nach b,.

2. Ein Beispiel fiir die zweite Art ist die Kette, die nur aus « besteht.

Wird den Linien mit den Indizes o und « die Richtung fi zugeordnet, so erhilt die Linie
mit Index 8 die Richtung —j. Fiir die erste Kette 148t sich der folgende Ausdruck fiir Rg
mit Vorzeichen angeben. Fine genaue Definition des Terms Rg wird im Abschnitt 7.3.1
mit der Gleichung (7.13) gegeben.

(Rg)bmao = I(S <qumqlavqlbﬂqlaa>i (Mﬂ) qua \I}a0>i

(7.11)
Damit deutlich wird, wie die Indizes der Linien den Erwartungswerten zugeordnet werden,

a~by (M_ﬂ)aﬂbﬂ (Mﬂ)aaba <\1le

wurde auf eine Umbenennung der Indizes entsprechend den obigen Ausfiihrungen verzich-
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tet. Um die obige Nomenklatur zu erhalten, ist b, mit b3, bg mit by und b, mit by zu
identifizieren. Analoges gilt fiir die a’s.

Wird mit der zweiten Kette entsprechend verfahren, dann werden die Linien S und -+
nicht erfaflt. In derartigen Fillen, die insbesondere immer dann auftreten, wenn ein Graph
ohne duflere fermionische Linien innere fermionische Linien enthilt, ist die Bildung fermi-
onischer ,,Blasen®“ notwendig. Mit einer Blase wird eine geschlossene Kette fermionischer
Graphenlinien bezeichnet. Da die dufleren Beine schon durchlaufen sind oder nicht exi-
stieren, enthilt der Graph in diesem Stadium keine Punkte, in denen sich die Anzahl der
einlaufenden von der der auslaufenden fermionischen Linien unterscheidet. Werden nun
mit den noch nicht erfaffiten Linien weitere Ketten gebildet, so ist es moglich, von jedem
Vertex, den die Kette erreicht, auch wieder weiter zu kommen, es sei denn, man ist wieder
am Anfangspunkt angekommen. Da die Anzahl der fermionische Linien eines Graphen
endlich ist, muf} jede Kette wieder an ihren Anfangspunkt zuriickkehren und wird damit
zur Blase. Damit ergibt sich, daf sich die restlichen fermionischen Linien eines Graphen
immer in eine endliche Anzahl Blasen aufteilen lassen.

Die Indizierung einer Blase kann an einem beliebigen Vertex der Blase beginnen. Dem
letzten W dieses Erwartungswertes, das heifit der vorletzten nicht indizierten fermionischen
Variable, wird der Index b, zugeordnet, wenn schon n Graphenlinien indiziert worden
sind. Der Matrix My, ,, mit der die Blase von diesem Vertex fortfiihrt, werden, analog
zum Fall der offenen Ketten, die Indizes a,+1 und b,4; zugeordnet. Das a, 41 wird dann
wieder in der iiblichen Weise an den nichsten Vertex angehdngt. Dies Verfahren wird
fortgefiihrt, bis sich die Blase schliefit. Besteht die Blase aus m inneren Linien, so wird
der Index @, 4., den die Matrix Mp, ., trégt, an das zu Beginn der Indizierung der Blase
ausgelassene U angehingt.

Wird nun die Indexreihenfolge der fermionischen Variablen betrachtet, so handelt es
sich um eine ungerade Permutation von @, 4, bytm, - - -5 4y, by, die entsprechend der Regel
in Absatz 6.2.7 mit einem positiven Vorzeichen zu belegen ist. s gilt:

Fiir jede Blase, die auf die oben beschriebene Weise indiziert wird, ist ein
zusétzliches negatives Vorzeichen einzufiihren.

Zur Verdeutlichung des hier Gesagten soll auf die Kette o des obigen Beispiels (7.10) noch
einmal eingegangen werden. Zur Bestimmung des Ausdrucks Rg miissen die Linien 5 und
~ zu einer Blase zusammengefafit werden. Auf eine Umbenennung der Indizes wird dabei
wiederum verzichtet. Es ergibt sich:

(Rg)p,ag = =KWy, W, Wy, W, )5 (M) (M—g) g0, (Ma)y b, (Wb, Wa, o, Wao )
(7.12)

Die Unterschiede zu Gleichung (7.11) bestehen in dem Minus-Zeichen und der Vertau-

schung der Indizes in dem linken Erwartungswert. Aus Anhang B ergibt sich, daf} sich

die Erwartungswerte mit den vertauschten Indizes um ein Minus-Zeichen unterscheiden.

Somit liefern die Gleichungen (7.11) und (7.12) das gleiche Resultat. Soviel zu diesem

Beispiel.

Die Terme Rg werden entsprechend der Summenkonvention zusammengefafit.

a~by

7.2.6 Modifikationen fiir nyp # 1

Dem Zusammenfassen der Terme eines Graphen ist im Fall np # 1 grofie Aufmerksamkeit
zu schenken. 1-Platz-Erwartungswerte, die fermionische Variablen enthalten, sind ent-
sprechend Anhang B immer aus einer Summe {iber Tensorprodukte der Matrizen A_ und



7.3. PRAKTISCHE DURCHFUHRUNG DES VERFAHRENS 41

Ay aufgebaut, sofern sie mehr als zwei Variablen enthalten. Sind keine &ufleren fermi-
onischen Ableitungen vorhanden, so ergibt die Berechnung von Rg eine Summe {iber Pro-
dukte von Matrizenspuren der Art {Tr[]],(My, - As,)]} mit o; € £. Im Fall &uBerer
fermionischer Ableitungen wird dies mit einer Matrix {A, - [];(Mj, - As,)} multipliziert.

Ist np # 1, so ergibt eine Matrizenspur der obigen Art das np-fache dessen, was
sich im Fall np = 1 ergeben hitte. Bei den Matrizenprodukten ergibt sich eine (8np) X
(8nr)-Matrix. An der 8 X 8-Matrix in der linken oberen Ecke dndert sich nichts, wenn np
gedndert wird. Aus diesem Teil der Matrix werden die renormierten Gréfien bestimmt. Die
Berechnungen kénnen somit im 8-komponentigen Spinorraum durchgefiihrt werden. Das
Resultat ist fiir jede Spur der obigen Art mit einem Faktor ny zu multiplizieren.

Auf diese Weise brauchen die Berechnungen nur einmal durchgefiihrt zu werden, um
Ergebnisse fiir verschiedene Werte von ng zu erhalten.

7.2.7 Einbettung verwurzelter Graphen zur Bestimmung der Suszepti-
bilitdten

Zur Einbettung eines Graphen auf das Gitter ist es sinnvoll, von der Translationsinvarianz
der Funktion F(z;,y;, wy,vx) in der Definition (7.1) Gebrauch zu machen, wie es in den
Definitionen in Abschnitt 3.4 geschehen ist. Dazu wird eine Feldvariable des Erwartungs-
wertes fest am Gitterplatz 0 angetragen. Die zugehdrige Summation und der Faktor %
entfillt dann.

Zur Einbettung wird nun ein Vertex ausgewihlt, an dem eine duflere Linie endet, die
in ihrer Art der Feldvariable entspricht, die am Gitterplatz 0 angetragen wurde. Dieser
Vertex wird auf den Gitterplatz 0 eingebettet. Das weitere Vorgehen verlduft nun ent-
sprechend Abschnitt 6.2.7, nur dafl die Verschiebung des urspriinglichen Punktes iiber
das ganze Gitter entfillt, da die Einbettung dieses Punktes auf 0 festgehalten ist. Auf-
grund der Summation in Gleichung (7.1) werden an die Einbettung der Vertizes mit den
verbleibenden dufleren Linien keine Bedingungen gestellt.

Bei diesem Verfahren ist zu beachten, dafl die Beitrdge der fermionischen Linien von
der Richtung ihrer Einbettung auf das Gitter abhdngen.

7.3 Praktische Durchfiihrung des Verfahrens

7.3.1 Anleitung zur Entwicklung der Suszeptibilitdten

Die praktische Durchfiihrung der Entwicklung der Suszeptibilititen X, bis zu einer be-
stimmten Ordnung in 7 kann entlang der in diesem Abschnitt angegebenen aus 12 Punk-
ten bestehenden Liste vorgenommen werden. Vergleichbare Regeln fiir ein rein bosonisches
Modell werden in [4] beschrieben. Die hier vorgestellten Regeln lehnen sich teilweise an
die dortigen an. In [11] werden Andeutungen fiir &hnliche Regeln in einem fermionischen
Modell gemacht.

1. Als erstes sind alle Graphen mit der entsprechenden Anzahl duflerer Graphenlinien
niederzuschreiben, bei denen die Anzahl der inneren Graphenlinien die betrachtete
Ordnung in 7 nicht iibersteigt. Graphen, bei denen sofort erkannt wird, dafl sie nicht
zu der betrachteten Suszeptibilitdt beitragen, kénnen dabei ausgelassen werden. Die
Schritte 2 bis 12 sind mit jedem Graphen einzeln durchzufiithren. Dabei wird mit {G}
die Menge der Graphen bezeichnet, die dieser Bedingung geniigen. Diese Menge ist
also von der betrachteten Suszeptibilitdt abhdngig.
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. Fiir jeden Graphen G ist der Symmetriefaktor Sg entsprechend Gleichung (7.4) zu

ermitteln.

. In jedem Graphen wird eine Anzahl innerer Linien ausgew&hlt, deren Richtungen die

Lage aller Vertizes ,o° mit dufleren Linien relativ zu dem nach Abschnitt 7.2.7 auf
den Gitterplatz 0 abgebildeten Vertex fixieren. Diese Linien werden indiziert, und
die Richtungen fi1,..., i, dieser Linien werden im weiteren zur Parametrisierung
des Graphen benutzt. Die Auswahl der Linien sollte, damit die Summation unter
Punkt 11 sich mdglichst einfach durchfiihren 148t, so vorgenommen werden, daf§ die
hier ausgewidhlten Linien einen ,Baumgraphen® bilden. Befinden sich alle dufleren
Linien an einem Vertex, so sollten an dieser Stelle keine Linien indiziert werden.

. Den in dem vorstehenden Punkt noch nicht indizierten fermionischen Linien werden

die Richtungen i,..., 7, zugeordnet.

Durch die Wahl einer Indexanordnung fiq, ..., fiy, 1,...,7, wird durch den festen
0-Punkt eine Einbettung fest vorgegeben, sofern die Richtungsindizes so gewihlt
sind, daf} jedem Vertex ein Gitterplatz eindeutig zugeordnet werden kann. Bei Gra-
phen mit Schleifen ist dies nicht immer méglich.

. Die Funktion F(z;,y;, wk, vx) wird in eine Funktion F(fi1,- -, ji,) umgeschrieben.

. Den Vertizes ,o* werden verbundene 1-Platz-Erwartungswerte mit einer den ein- und

auslaufenden Linien entsprechenden Anzahl von Feldfunktionen zugeordnet. Dabei
werden die Spinor-Indizes an den fermionischen Feldfunktionen zun&chst offen ge-
lassen. In Abschnitt B werden fiir einige Vertizes mit ein- und auslaufenden Linien
die zugeordneten Terme angegeben.

. Fiir die Verbindungslinien werden die entsprechenden Faktoren eingesetzt. Einer

bosonischen Linie wird ein Faktor k, einer fermionischen Linie, die in die Richtung 7,
weist, eine Matrix K M, zugeordnet. Auch hierbei werden die Spinor-Indizes offen
gelassen.

. Die Spinorindizes werden nun entsprechend Abschnitt 7.2.5 eingetragen. Dabei ist

fiir jede Blase ein negatives Vorzeichen einzufiihren.

. Die Terme sind entsprechend der Summenkonvention zusammenzufassen. Dabei soll-

ten die Faktoren np entsprechend Abschnitt 7.2.6 beachtet werden. Der entstehende
Ausdruck wird im folgenden Rg(f1, ..., fip, V1, ..., 0y) genannt.

Es wird ein Ausdruck Rg(f1, ..., f,) wie folgt definiert:

/

Rg(fn, .- fip) == > Rg(in, ... fip, 01y, 0) (7.13)

D1 g

Das Symbol 3 soll darauf hinweisen, da$} die Indizes 1, ..., 7, in Abhingigkeit von
fi1, ..., ft, summiert werden. Falls durch die Konstellation der Richtungsindizes die
einzelnen Vertizes nicht eindeutig auf Gitterplitze abgebildet werden, ist diese Index-
konstellation von der Summation auszunehmen. Dies ist der Fall, wenn durch Linien
verbundene Vertizes nicht widerspruchsfrei benachbarten Gitterpldtzen zugeordnet
werden kdnnen.
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11. Der Beitrag Xmno(G) des Graphen G zu Xun, bestimmt sich nun nach:

Xono(G) = Y Fljix, -+, ftn) Sg Rgji, - - ., fip) m! - n! (7.14)

ﬂlvm[‘«p

Auch bei dieser Summation ist darauf zu achten, dafl die Wahl der Richtungsindi-
zes fi1, ..., fi, nicht zu Widerspriichen gegen die Regel, daf alle Ableitungen eines
Vertizes ,8° den gleichen Ortsindex tragen, fithrt. Indexkonstellationen, die zu Wi-
derspriichen fiihren, sind von der Summation auszunehmen.

12. Abschlielend ist {iber alle unter Punkt 1 ausgewdhlten Graphen zu summieren. Das
Resultat ist dann die Taylorreihe der betrachteten Suszeptibilitit x,une-

Xmno = Zano (g) (715)
g

Auf eine Indizierung zur Unterscheidung von Y., und seiner Taylorreihe wird hier
verzichtet.

Mit den angegebenen Regeln kénnen die Suszeptibilitdten nun entwickelt werden. In den
folgenden Abschnitten werden noch einige Vereinfachungen diskutiert, die vor allem die
unter Punkt 1 auszuwdhlenden Graphen reduzieren.

7.3.2 Erlduterungen zu einzelnen Suszeptibilititen

Nachdem im vorstehenden Abschnitt die allgemeinen Regeln fiir die Entwicklung der Sus-
zeptibilititen Xy.n. entsprechend Gleichung (7.1) erldutert worden sind, soll in diesem
Abschnitt auf die einzelnen Suszeptibilitdten eingegangen werden.

7.3.2.1 Die Suszeptibilititen yJ und uy

Beide Suszeptibilititen sind vom Typ yoo1, die Auswahl der Graphen unter Punkt 1 der
Liste in Abschnitt 7.3.1 braucht somit nur einmal durchgefiihrt zu werden. Die Suszepti-
bilitdten unterscheiden sich lediglich in der jeweiligen Funktion F.

Wird unter Punkt 3 der Liste die kiirzeste Kette innerer Linien gew&hlt, die die Vertizes
mit den beiden &ufleren Linien verbindet, dann geht die Summation mit Nebenbedingung
5" in Gleichung (7.14) in eine Summation ohne Nebenbedingung 3" iiber. Es gilt:

P
r=> [ (7.16)
=1

Damit bestimmt sich nun der Beitrag eines Graphen G zu den betrachteten Suszeptibi-
litdten wie folgt:

4
ng(g) = Z ZQXP(_inxu) Sg Rg(fir, - - - fip)
ﬂl,...,ﬂp v=1
4
1 . . .
ny (G) = Z Z 'ygxgm exp(—iP,z,) Sg Rg(fi1, - - f4p) (7.17)

ﬂlv"vﬂp v,o0=1
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7.3.2.2 Die Suszeptiblitidten X;S und ,uf

Diese beiden Suszeptibilititen gehtren ebenfalls dem gleichen Typ an, in diesem Fall dem
Typ x110- Sie kbnnen analog zu den beiden vorstehenden entwickelt werden, da sie ebenfalls
zwei duflere topologisch unterscheidbare Linien besitzen. Es sollte klar sein, daf hier andere
Graphen auszuwihlen sind als fiir x§ und ud . Insgesamt gilt:

1
5(G) = 5 30 SoRglin, i)

ﬂlwwﬂp
1 N .
Mf(g) = 3 Z 2® Sg Rg(fur, - - - ) (7.18)
ﬂlwwﬂp

7.3.2.3 Die Suszeptibilitat Xff

In diesem Fall ist es bei manchen Graphen nicht moglich, die Nebenbedingung in der
Summe in Gleichung (7.14) loszuwerden. Als Beispiel wird der folgende Graph angegeben.

sy A iz
(7.19)
0 e ,F e
M1

Es ist oft notwendig, die Richtungen von drei innere Linien zu kennen, um die Lage der
Eckpunkte daraus zu rekonstruieren. Werden ji; und fiy so gewidhlt, dafi die zugeordneten
Linien weder parallel noch antiparallel zueinander stehen, so gibt es fiir iz und somit fiir
x zwei Moglichkeiten. Entweder gilt fis = fi1 oder fi3 = jio. Alle anderen Werte fiir /i3 sind
von der Summation auszunehmen. Damit ergibt sich:

3 < A .
Xi’f(g)=§ Y SoRg(jin, .- fip) (7.20)
ﬂlwwﬂp

7.3.2.4 Die Suszeptibilitat X;M\D

Nach Gleichung (3.28) ist es ausreichend, die Terme (Xg(b‘lj)zz und (Xg(b‘lj)g:g zu berechnen,
um die renormierten Yukawa-Kopplungen zu bestimmen. Es brauchen also keine Suszep-
tibilitdten vom Typ yo11 bestimmt zu werden.

Auch in diesem Fall ist es nicht mdoglich, die Nebenbedingung in der Summation in
Gleichung (7.14) zu eliminieren. Der folgende Graph mit 10 inneren Linien dient als Bei-

spiel.

(7.21)

Bei diesem Graphen miissen 5 innere Linien ausgewidhlt werden, damit alle Endpunkte
festgelegt sind. Eine mogliche Wahl ist in den Graphen eingetragen. Bei dieser Wahl ergibt

fi1 = fiz = fl3 = —fla = —fi5



7.3. PRAKTISCHE DURCHFUHRUNG DES VERFAHRENS 45

keine zuldssige Einbettung des Graphen auf das Gitter.

An dieser Stelle ist es nun sinnvoll, einen Ausdruck ng(bqj, an dem die Terme (ng(b‘lj)zz
und (Xg(b‘lj)g:g abgelesen werden kdnnen, wie folgt zu definieren.
GO =Y (Pedothy) (7.22)
zy
Dieser Ausdruck bestimmt sich aus den zugehorigen Graphen G nach:
/
~Uol N A
X3 ? (g) = Z Sg Rg (:ulv ERE) :up) (723)

ﬂlwwﬂp

7.3.3 Vereinfachungen bei der Graphenauswahl
7.3.3.1 Graphen mit rucklaufenden fermionischen Linien

Das einfachste Beispiel fiir einen Graphen mit einer riicklaufenden fermionischen Linie ist:

(7.24)

Aufgrund der Einbettungsregeln wird den beiden inneren Linien die entgegengesetzte Rich-
tung zugeordnet. Der obere Vertex liefert einen Beitrag, der proportional zum Einheits-
operator 1g im Spinorraum ist. Der Beitrag der inneren Linien und des oberen Vertex zum
Gesamtbeitrag dieses Graphen ist:

K? Yutr 0 V_p T 0 K? 9
—_— = ——7F(-1 7.25
1—GXG¢( 0 Yot T 0 Yep T 1—GXG¢( +r) (1.29)

Wird der Wilson-Parameter r auf r = 1 gesetzt, so liefern alle Graphen mit riicklaufenden
fermionischen Linien einen Beitrag null.

Damit lassen sich in der praktischen Rechnung viele Graphen ausschliefen. Zum ande-
ren koénnen mit diesem Resultat aber auch eine ganze Reihe der méglichen Einbettungen
eines Graphen, der einen Beitrag liefert, ausgeschlossen werden.

Bei der Anwendung dieses Resultates ist darauf zu achten, das der verbindende Vertex
von der Art —»—e—»— ist. Beginnen oder enden weitere Graphenlinien in dem verbindenden
Vertex, so ist dieses Resultat nicht anwendbar.

7.3.3.2 Alternierende Anordnung der Matrizen A_ und A,

Alle 1-Platz-Erwartungswerte mit fermionischen Variablen aufier (¥W)§ sind Summen iiber
Tensorprodukte der Matrizen A_ und A4, wie Anhang B verdeutlicht. Die skalaren Vor-
faktoren sind fiir die Betrachtung dieses Abschnitts unwichtig. In der AB-Basis werden
somit bei der Zusammenfassung der Terme unter Punkt 9 in Abschnitt 7.3.1 die Matrizen
A_, A4 und My in einer durch fermionische Ketten bestimmten Reihenfolge miteinander
multipliziert. Diese fermionischen Ketten werden durch die Permutation der Indizes in den
1-Platz-Erwartungswerten gebildet.

Die My werden durch 2 x 2-Matrizen mit von null verschiedenen 4 x 4-Matrixblcken
auf der Diagonalen dargestellt. Die Matrizen A_ beziehungsweise A, besitzen nur einen
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von null verschiedenen Matrixblock in der linken unteren bzw. in der rechten oberen Ma-
trixecke. Eine kurze Rechnung zeigt, dafi die Matrizen A_ und A4 immer alternierend
entlang der Ketten vorkommen miissen. Die Anzahl der dazwischen vorkommenden Ma-
trizen M ist irrelevant.

Auch mit diesem Resultat lassen sich viele Graphen oder aber bestimmte Permutatio-
nen der Indizes in den 1-Platz-Erwartungswerten direkt als nicht beitragend erkennen, so
daf} in der praktischen Rechnung einige Rechenarbeit gespart werden kann.

Desweiteren ist dieser Punkt fiir die Betrachtungen des Abschnitts 9.3 wichtig.

Als Beispiel soll noch der folgende Graph angegeben werden, der nach dem Ergebnis
dieses Abschnitts direkt als nicht beitragend ausgesondert werden kann.

Y

A Y

(7.26)

y—HP ....... Poeenee S —

Bei diesem Graphen ist nur die Bildung einer einzigen fermionischen Kette mdoglich. Ent-
lang dieser Kette sind dann die Matrizen

Ay My, A_ My, My, A_ =0

miteinander zu multiplizieren.



Kapitel 8

Zuriickfithrung auf
1-Linien-irreduzible Graphen

8.1 1-Linien-reduzible Graphen

In der hier vorgestellten , Linked-Cluster-Entwicklung® ist es wie in der Stérungstheorie
moglich, durch die Verwendung von geometrischen Reihen die Anzahl der auszuw&hlen-
den Graphen erheblich zu reduzieren. Die Graphen, die im weiteren auszuwihlen sind,
werden ,,1-Linien-irreduzibel“ genannt, in Analogie zu den ,,1-Teilchen-irreduziblen* Gra-
phen (engl.: one-particle irreducible graphs) in der Stérungstheorie. Im weiteren werden die
1-Linien-irreduziblen Graphen oft als irreduzible Graphen bezeichnet.

Ein zusammenhdngender Graph G wird I-Linien-reduzibel genannt, wenn er
durch Ausléschen einer inneren Linie in unzusammenhingende Teile zerfillt.
Existiert keine Linie mit dieser Figenschaft, so heifit der Graph 1-Linien-
irreduzibel.

Auch hier werden zur Illustration einige Beispiele angegeben. Weitere Beispiele irreduzibler
Graphen werden im Anhang D angegeben.

@ eneens ®
Y A
@B _._.@_._
!..».u. ’.’
)
It R
_’_@_P%’_._’_  SRY "TRRPRRN V2N .».' ......... PP
A
R
e (8.1)

Die Graphen der ersten Zeile sind irreduzibel, die der zweiten Zeile reduzibel. Die Linien
der reduziblen Graphen, deren Ausléschung den Graphen in nichtzusammenhéingende Teile
zertrennt, sind mit einem ,R* gekennzeichnet.

47
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Im weiteren soll gezeigt werden, wie sich die in Abschnitt 3.4 definierten Suszeptibi-
litdten aus 1-Linien-irreduziblen Graphen bestimmen lassen. Dieses verringert die unter
Punkt 1 in Abschnitt 7.3.1 auszuw&dhlenden Graphen erheblich. Dazu werden im folgen-
den Abschnitt die benétigten Formeln aufgelistet, um aus den Beitrdgen der irreduziblen
Graphen die Beitrige aller Graphen zu den Suszeptiblititen zu bestimmen. Diese Formeln
werden in den nachfolgenden Unterabschnitten bewiesen.

8.2 Bestimmung der Suszeptibilititen aus irreduziblen
Graphen

Es ist moglich, alle Suszeptibilitdten des Abschnitts 3.4 unter ausschliefllicher Verwendung
irreduzibler Graphen zu bestimmen. Dazu ist ein neues Symbol notwendig;:

;Cmno:: Zano (gh) (82)
gli

Dabei steht {G"} fiir die Menge der 1-Linien-irreduziblen Graphen, die die unter Punkt 1

in Abschnitt 7.3.1 genannten Bedingungen erfiillen. Der Ausdruck )%mno wird im folgenden
als der irreduzible Kern® der Suszeptibilitit Y,.,, bezeichnet. Nun gilt bei r = 1:

°6
X
Xy = 72% (8.3)
1—-16k X5
20 16 30 . 00
,uf _ :ug ‘|‘ 6 XQOH X22 (84)
(1 —16% x?)
° 6
X
X§ = R (8.5)
(1 — 16 x%)
4 -1
ng(P) = X;II(P) 1-2K ZCOS(PU) X;II(P)
v=1
oy oy -1
- WP [1 _ K (8= 4my) N (P)] (8.6)
- 4 —92
py(P) = | iy (P)+8K X3 (P) Xy (P)| - [1 —2K Y cos(P,) Xy (P)
L v=1
r -2
= | nY(P)+ 8K X3 (P) XY(P)| - [1 — K (8= 4n,) XY (P) (8.7)
° Y . _9
OB g ¢ E— [1 ~8K X;I’(P)] (8.8)
1— 16k X2

Es ist zu beachten, das P, € {0, 7} gilt. Mit n, wird die Anzahl der Impulskomponenten P,
bezeichnet, fiir die P, = 7 gilt.
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Entsprechende Formeln werden in [4] fiir eine bosonische Hopping-Parameter-
Entwicklung und in [11] fiir eine fermionische Hopping-Parameter-Entwicklung ohne Be-
weis angegeben.

8.2.0.1 Anmerkungen zur Notation in den folgenden Beweisen

Zur Vereinfachung der Notation ist an dieser Stelle die Einfiihrung eines neuen graphischen
Symbols notwendig.

°@’ i I-Box (8.9)

Dieses Symbol wird im weiteren als ,,I-Box“ bezeichnet, und es steht fiir den 1-Linien-
irreduziblen Graphen G" mit der eingezeichneten Anzahl #uBerer Linien. An derartigen
fiir die I-Box dufleren Ableitungen kénnen zwei I-Boxen mit den entsprechenden Linien
verbunden werden. Dadurch werden diese Ableitungen zu inneren Ableitungen beziiglich
des Gesamtgraphen, der aus den irrduzible Graphen entsteht, die den I-Boxen zugeordnet
sind. Als Beispiel mdgen hier die nachfolgenden Beweise dienen.

Desweitern wird ein Symbol benétigt, um einen Graphen durch Anhédngen eines Gra-
phenteils an einen anderen zu erzeugen.

(,,)(> ........ — ..,..):( s e ,) (8.10)

Das Anhdnge-Symbol > ist so zu verstehen, dafi sich zwischen der I-Box und und dem ,,>*
eine innere Linie befindet, die 2d Einbettungen besitzt und den mit der Linie verbundenen
Faktor x trigt. Bei fermionischen Linien ist das Anhdnge-Symbol > analog zu handhaben.

In den Beweisen stehen die Graphen stellvertretend fiir das Produkt der ihnen zuge-
ordneten Faktoren Sg und Rg.

Das Symbol > "4 steht fiir die Summe iiber alle Einbettungen des folgenden Graphen.

8.2.1 Die Suszeptibilitiat Xf

Ein beliebiger Graph, der zu X;S beitriagt, besteht aus einer Kette von einem oder mehre-
ren irreduziblen Teilgraphen, die durch bosonische Linien verbunden sind. Die irreduziblen
Graphen kénnen nicht durch eine fermionische Linie verbunden sein, da an jedem ,e° des
Graphen die Anzahl der ein- und auslaufenden fermionischer Linien gleich ist, und der
Gesamtgraph keine &ufleren fermionischen Ableitungen besitzt. Somit enthélt ein derar-
tiger Graph keine Quellen und Senken fiir fermionische Linien. Die Folge ist, daBi die
fermionischen Linien immer geschlossene Blasen bilden und sich somit alle fermionischen
Linien den irreduziblen Teilgraphen zuordnen lassen.

In diesem Beweis stehen alle I-Boxen fiir irreduzible Graphen mit jeweils einer ein- und
auslaufenden bosonischen Line. Es gilt:

1
X5 o= 52 (00
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- ixlz -0

Ebd L gt
ik Z[ 3 , ........ — ,]
Ebd gll gél
1
4 lz R T — ,]
Bbd Lgp o} g
— P 7,110 W o I I W N SR P ..,.. ’ 8.11
Z{(ZE @ )(5E @) e

Der Symmetriefaktor Sg jedes Gesamtgraphen G, der zu X beitrigt, setzt sich, da die Pfei-
le an den Verbindungslinien zwischen den I-Boxen die Symmetrie beziiglich des Austauschs
von [-Boxen brechen, multiplikativ aus den Symmetriefaktoren Sgi der irreduziblen Teil-
graphen G zusammen. Die Verbindungslinien tragen immer den Symmetriefaktor 1. Aus
der Tatsache, dafl beliebig viele Vertizes ,8° auf den gleichen Gitterpunkt abgebildet wer-
den kénnen, und der Translationsinvarianz der Beitrige der Graphenteile ergibt sich, daf§
die Summe {iber die Einbettungen ) 4 des gesamten Graphen in Summen iiber die
Einbettungen der einzelnen Verbindungslinien und I-Boxen umgeschrieben werden kann.
Anschaulich gesprochen, stehen sich die einzelnen Graphenteile nicht im Weg.

Aus dem Konstruktionsverfahren der Rg ergibt sich, dafi sich auch diese Faktoren
multiplikativ aus den den Verbindungslinien und Teilgraphen G" zugeordneten R-Faktoren
zusammensetzen.

Die letzte Zeile in Gleichung (8.11) ist nun eine geometrische Reihe, die sich mit der

bekannten Formel vereinfachen 148t. Es gilt:
. ] (8.12)

Die Verbindungslinie mit dem Anhdnge-Symbol besitzt 8 mégliche Einbettungen und jede
Einbettung liefert einen Beitrag x. Wird dies in Gleichung (8.11) eingestzt, so ergibt sich
die Gleichung (8.3).

o 1
X§=530

2 fra l gli

8.2.2 Die Suszeptibilitit vy (P)

Der Beweis der Formel (8.6) verlduft analog zu dem vorstehenden. Dabei sind alle bosoni-
schen Linien durch fermionische zu ersetzen, und es ist zu beachten, daf8 hier mit Matrizen
und nicht mit Skalaren gerechnet wird. Da die hier betrachteten Graphen keine Quellen
und Senken fiir bosonische Felder enthalten, kénnen alle bosonischen Linien den I-Boxen
zugordnet werden. Die [-Boxen werden hier also ausschlieflich durch fermionische Linien
verbunden.

Ein weiterer Unterschied ist die P-Abhingigkeit. Es ist notwendig, jeder I-Box und je-
der inneren Linie einen Vektor des Gitters zuzuordnen, der den Abstand der beiden dufleren
Ableitungen der I-Box bzw. die Richtung der inneren Linie im Raum-Zeit-Gitter angibt.
Der Vektor z, der den Abstand der beiden dufleren Ableitungen des Gesamtgraphen auf
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dem Gitter angibt, ist die Summe dieser Vektoren. Die Zuordnung dieser Gittervektoren
an die einzelnen Bildsymbole wird jeweils unter den Symbolen angegeben.

Xp (P) = D e (U, g)°

- S[sene )

Ebd L gt [y
_|_Z [ Z e —iPu[(#1) ptOp+(22) ] .@. .@.

Ebd L gli gli 1 we— [ ——ezo

- Sz )
q=0 Ebd gl 2+
q
*(Zze—iPu[ﬁwl'(xa)u] >) } (8.13)
Ebd gl e — >l o>l

Werden von den 8 Einbettungen der inneren Verbindungslinien jeweils die antiparallelen
Richtungen zusammengefafit, so heben sich die Beitrdge proportional zu vy, weg, und es
bleibt der Beitrag proportional zu r = 1. Aus zwei {exp(—iP,?,) }-Termen entsteht immer
ein Term {2cos(P,)}, und es bleibt eine Summe >71_,. Mit

U —iP,x
Xy (P) =) lze Puzu @ (8.14)
Ebd L gt ez
ergibt sich unter Verwendung der geometrischen Reihe die gesuchte Formel.
8.2.3 Die Suszeptibilitit )
Das zum Aufbau der Graphen fiir X;S Gesagte gilt natiirlich auch fiir ,u%s.
1 C
H;S = 5 Z$2 <¢x¢g_>
-5z -0
Ebd gl (|
L1 Z[Zmﬁm ) S— -
2 i gli gl et 1ol p — ez
+ o (8.15)

In jeder Zeile tritt ein Term der Form (21 + 01 + 22+ 02+ ...+ @pe1 + Pn1 + xn)2 auf.
Wird dieser Term ausmultipliziert, so heben sich aufgrund der Summation iiber die Ein-
bettungen der Graphen alle gemischten Glieder heraus.

Dazu ist anzumerken, daf§ fermionische innere Linien als einziges Bildelement einen ein-
bettungsabhingigen Beitrag liefern. Die einbettungsabhidngigen Anteile der Beitrige dieser
Linien sind immer proportional zu einer y-Matrix. Da hier bosonische Erwartungswerte
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betrachtet werden, kénnen alle fermionischen Linien der Graphen zu Blasen zusammen-
gefalit werden. Dies fiihrt, wie schon beschrieben, auf Spurbildungen. Die verbundenen
1-Platz-Erwartungswerte besitzen nur Anteile proportional zu 1g und 75. Da 14 die ein-
zige Matrix ist, die sich als Produkt von euklidischen v-Matrizen darstellen 148t und eine
von 0 verschiedener Spur hat, folgt, daf sich alle Beitrige der y-Matrizen zu ,u%s durch
das Produkt einer geradzahligen Anzahl dieser Matrizen ergeben, entweder {iber das Pro-
dukt 41 - y2 - v3 - v4 - 5 oder aber Produkte der Art v, -, sowie Produkte dieser beiden
Termarten.

Betrachte nun die Summe aller Terme proportional zu 2;-x; mit ¢ # j. Werden zunéchst
die Einbettungen von g]’i zusammengezihlt, so gibt es zu jeder giiltigen Einbettung des
Graphen auch eine giiltige Finbettung, bei der alle inneren Graphenlinien in die entgegen-
gesetzte Richtung weisen. Die diesen beiden Einbettungen zugeordneten z; unterscheiden
sich nur im Vorzeichen, das eine ist das Negative des anderen. Die Faktoren Sgu‘ und
Rgu dieser beiden Einbettungen sind identisch, da Sgn sowieso nicht von der Elnbettung
abhangt und in Rg“ alle Terme eine gerade Anzahl negatlver Vorzeichen enthalten, da,
wie vorstehend erlautert die Anzahl der y-Matrizen gerade ist.

Diese beiden Elnbettungen des Teilgraphen g]” heben sich also beziiglich ihres Beitrages
zu dem zu z; - x; proportionalen Term heraus, wenn die Richtung aller inneren Linien,
die nicht zu g]’i gehoren, festgehalten wird. Auf diese Weise entfallen alle Beitrége der
gemischten Glieder z; - 2; mit ¢« # 7.

Mit einer analogen Argumentation kénnen auch Beitrdge proportional zu z; - 7; und
D; - 0; ausgeschlossen werden. Bei o; - ; gilt wiederum ¢ # j. Damit gilt:

ud = _lex ..,....,..

Ebd L gt ez
S 2
4 Z[ S [l + 07 4 (0a)?] gy
Ebd gll gll 1 le— p — e
4+ -

_ %pi:{(zz . ............... ) i

Ebd g
*(szz - /@\, > _|_Z Z (,;)2 - .@. ........ . ») *
Ebd gt ez > Ebd gl gl v
q
*(ZZ S ,) } (8.16)
Ebd gl

Als neuer Term tritt hier
Z Z x ..,....,.. ) (8.17)
2 {a ( o

auf. Desweiteren enthilt die Formel zwei geometrische Reihen, die aus Abschnitt 8.2.1
bekannt sind. s bleibt der Term

—Z( S () .,.. ........ — ,) —\$ 16k X2 (8.18)
sl

Ebd gll gél
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Dabei wurde iiber die 8 Finbettungen der bosonischen Verbindungslinie summiert, und es
wurde (7)? = 1 ausgenutzt.

8.2.4 Die Suszeptibilitit uf (P)

Der Fall dieser Suszeptibilitdt ist im Prinzip einfacher als der vorhergehende Fall ,uf, da hier
der Differenzvektor der dufleren Linien des Gesamtgraphen linear und nicht quadratisch
eingeht. Durch die Impulsabhingigkeit geht allerdings die Ubersichtlichkeit der Rechnung
verloren. Analog zu den Fillen ,u%s und x3 (P) erhilt man:

py (P) = Zl (%%@) e‘ip“““’“<‘11x\llo>cl
- S {(pene '
—]

p,q=0 Ebd gl b grte—,,
YoTo P,z A\
* Z wp § > +
(Ebd gli o=1 cos(Fy)
4 ~ L —iP, D
YoVo & """ _iP,(214a2) /B 7\
DD et ) | +
Ebd gli gli o=1 cos(Fs) f/
q
. ( Z Ze—ipu(l;b-l-l’b)u > ) } (819)
Ebd gl (DI A— |

Hierbei wird die Vertauschbarkeit der 7,-Matrix mit einem Teil der Bildelemente be-
nétigt. Diese ist dadurch gegeben, dafi durch die Summationen iiber die Einbettungen aus
den mit der v,-Matrix vertauschten Bildelementen immer Matrizen entstehen, die keine
~v-Struktur tragen. Die beiden dufleren Terme des letzten Ausdrucks fiihren wieder auf die
aus Abschnitt 8.2.2 bekannte geometrische Reihe. Fiir den ersten Term in der mittleren
Klammer gilt:

Ty 2 ) =i s

Ebd \ gl o=1

Der zweite Term der Klammer erfordert eine genauere Betrachtung. Fiir die p-te Kompo-
nente des Einheitsvektors » gilt 7, = sgn(?) d,,,, wobei sgn(?) den Wert 1 annimmt, wenn
U in eine positve Raumrichtung zeigt, und —1, falls  in eine negative zeigt. Damit gilt

S5 52 e o () @) )

Ebd (gu gli 0=1 cos( ,;
Z Tve e~ 1Pu(z14w2)p .@. .@. ) (8.21)
Ebd (gn gli cos( ,;

Die fermionische Verbindungslinie trégt zu jeder Finbettung mit einer Matrix K - M bei.
Werden auch hier die antiparallelen Richtungen zusammengefaft, so ist nur der Anteil der
Matrix proportional zu =, relevant, da v, -+, = 1. Der Anteil proportional zu r hebt sich
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heraus, der Kosinus-Term kann gegen die Exponentialfunktion gekiirzt werden, und fiir
jedes Paar antiparalleler Einbettungen der Linie ergibt sich ein Faktor 2K.
Aus den I-Boxen entstehen in Verbindung mit den Summen der Gleichung zwei Terme

der Art )%;Ij (P). Damit gilt dann

—iP, ) o 2
3 ( S Z(U)SG(PU) o~ iPu(z14e2), @ @ ) =8K (X;Ij (P)) (8.22)

Ebd gil,gél le 1 rle— ) —>leT2]

Wird die Vertauschbarkeit der Matrix fiir die geometrische Reihe [1— K (8 —4n,) )%;II(P)]_I
mit der Matrix [,&;Ij (P) + 8K )O(;Ij (P) )O(;Ij (P)] benutzt, so ist die Formel bewiesen. Die

Vertauschbarkeit dieser Matrizen ist in der AB-Basis sofort einzusehen, da dort )O(;Ij (P)
nach Anhang A diagonal ist. Zum Problem der Riicktransformation in die 1 x-Basis ist
auch Anhang C zu beachten.

Es bleibt noch die Formel fiir die Suszeptibilititen der renormierten Kopplungen zu
zeigen. Dabei treten I-Boxen mit unterschiedlichen Anzahlen ein- und auslaufender Linien
auf.

8.2.5 Die Suszeptibilitit yvs*"

Nachdem die Beweise der vorstehenden Abschnitten recht ausfiihrlich dargestellt sind,
braucht dieser Beweis nur kurz skizziert zu werden, da keine neuen Schwierigkeiten auftre-
ten. Es treten hier drei verschiedene Arten der I-Boxen auf. Zum einen I-Boxen mit zwei
bosonischen bzw. fermionischen dufleren Linien, davon jeweils eine ein- und eine auslau-
fende. Zum anderen enthilt jeder Graph zu XQDX\D genau eine [-Box mit einer auslaufenden
bosonischen Linie und jeweils einer ein- und einer auslaufenden fermionischen Linie.

Alle Graphen, die zu der Suszeptibilitit

X:ZIJX\D = Z<q}x¢0\py>c

x7y

beitragen, lassen sich in der folgenden Form darstellen. Aus Griinden der Ubersicht werden
die Graphen G in den I-Boxen nicht als irreduzibel gekennzeichnet, dennoch stehen die I-
Boxen auch hier fiir irreduzible Graphen.

li[l( @ ) +—@» ﬁ(> @ ) (8.23)

Die Produkte wie z.B. []’_; vor den Graphen mit den Anhinge-Symbolen stehen fiir ein
Hintereinanderhingen von ¢ derartigen Graphen, wobei G # g; fiir i # j gelten kann.! Die
Reihenfolge der Terme ist dabei immer gleich zu wéhlen, z.B.: der Term mit Index 1 steht
ganz links und der mit Index ¢ ganz rechts. Das Produkt mit den bosonischen Anhidnge-
Symbolen wird an die nach oben auslaufende bosonische Linie des irreduziblen Graphen
G angehingt. Um nun >~<§J¢\I’ zu erhalten, ist in dem obigen Graphen iiber p, g, ¢, alle

'Die Striche an den Graphen G’ etc. in den I-Boxen stellen eine Indizierung und keine Ableitung oder
dhnliches dar.
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Graphen G in den I-Boxen und alle Einbettungen des gesamten Graphen zu summieren,
wie bei den {ibrigen Suszeptibilitdten auch.

Jeder zu )Z;MLD beitragende Graph besitzt somit einen irreduziblen Teilgraphen mit
einer einlaufenden fermionischen und jeweils einer auslaufenden bosonischen und fermi-
onischen Linie. Die Summation iiber alle Einbettungen und alle irreduziblen Graphen

iberfiihrt dann den Beitrag der I-Box mit drei dufleren Linien in ;%;I’W Die restlichen
[-Boxen mit den Verbindungslinien und den Anh&nge-Symbolen fiithren auf die schon be-
kannten geometrischen Reihen, und damit ergibt sich die Formel (8.8).

8.2.6 Die Suszeptibilitiat Xff

Alle Graphen, die zu der Suszeptibilitdt Xff = %sz <¢x¢;q§z¢g>c beitragen, lassen sich
auf die folgende Form bringen. Zum Verstdndnis sind die Anmerkungen im vorstehenden

Abschnitt 8.2.5 hilfreich.

ﬁ(, ........ — <) (8.24)

Dieses Bild ist so zu verstehen, dafl das Produkt iiber ¢+ an die waagerechte einlaufende
bosonische Linie des Graphen G anzuhingen ist und das Produkt iiber [ an die senkrechte
einlaufende Linie. Kin Austausch dieser Produkte ist nicht gemeint. Analoges gilt fiir die
anderen beiden Produkte.

Aus dem irreduziblen Teilgraphen G ergibt sich durch die Summationen der Term

)O(f analog zu den anderen Suszeptibilititen. Das einzige Problem dabei, das hier noch
betrachtet werden soll, ist die Austauschsymmetrie von I-Boxen. Ansonsten wird alles
analog zu den vorstehenden Fillen gehandhabt.

Diese Austauschsymmetrie trat in den zuvor besprochenen Suszeptibilitdten nicht auf,
da durch die Orientierung oder die Art der Verbindungslinien zwischen den I-Boxen diese
Symmetrie gebrochen wurde. Bei der hier zu betrachtenden Suszeptibilitit kann der Ge-
samtgraph eine derartige Symmetrie besitzen, daf§ er, wenn er in der obigen Form (8.24)
dargestellt wird, symmetrisch beziiglich des Austauschs des Produkte iiber ¢ und [ ist.

Dazu miissen beide Produkte identisch sind. Einer derartigen Symmetrie des Gesamt-
graphen wird ein Symmetriefaktor % zugeordnet. Sie setzt eine entsprechende Symmetrie
in dem irreduziblen Teilgraphen G mit den 4 bosonischen Linien voraus. Dem Gesamt-
graphen ist in diesem Fall der gleiche Symmetriefaktor beziiglich Xff zugeordnet wie dem
irreduziblen Teilgraphen G. In dem Fall, dafi der Gesamtgraph die Symmetrie besitzt, er-
gibt sich somit aus dem Symmetriefaktor von )Oij der richtige Symmetriefaktor fiir den
Gesamtgraphen. Die Produkte kénnen in der bekannten Art zu geometrischen Reihen
zusammengefafit werden.

Es tritt aber auch der Fall auf, da die Produkte tiber ¢ und [ verschieden sind und
so die oben angenommene Symmetrie des irreduziblen Teilgraphen G brechen. In diesem

Fall liefert )Oij aber immer noch den oben erw#hnten Symmetriefaktor 1. Durch die Sum-
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mationen iiber v und ¢ sowie die in den Produkten vorkommenden irreduziblen Graphen
G bzw. G treten alle derartigen Gesamtgraphen zweimal auf. Graphen, die sich nur
durch ein Vertauschen der Produkte an den dufleren einlaufenden Linien des irreduziblen
Teilgraphen G unterscheiden, sind in diesem Fall topologisch dquivalent. Der sich daraus

¢

ergebende Faktor 2 kompensiert den Symmetriefaktor von )%4.

Besitzt G keine Symmetrie, so sind die Gesamtgraphen, die sich durch ein Vertauschen
der Produkte an den dufleren einlaufenden Linien voneinander unterscheiden, nicht mehr
topologisch dquivalent, und es entsteht somit kein unerwiinschter Faktor 2.

Als weitere Symmetrien gibt es die Austauschsymmetrie der auslaufenden Linen, das
Produkt dieser Symmetrien und die Symmetrie, bei der gleichzeitig die ein- und die aus-
laufenden Linien getauscht werden. Eine analoge Diskussion fiihrt fiir diese Symmetrien
zu dem gleichen Ziel. Es ergibt sich somit keine Komplikation mit dem Symmetriefaktor,

wenn die Suszeptibilitdt Xff durch ihren irreduziblen Kern )O(f verbunden mit 4 geometri-
schen Reihen entwickelt wird.



Kapitel 9

Ergebnisse

Mit der in den Kapiteln 7 und 8 vorgestellten Methode wurden die irreduziblen Kerne der
Suszeptibilititen ¥ (P), u¥(P), x5 und u), die zur Bestimmung der renormierten Mas-
sen mp und pr(P) bendtigt werden, bis zur 4. Ordnung in 7 entwickelt. Die irreduziblen
Kerne der Suszeptibilitdten >~<§J¢\I’ und Xff wurden bis zur 3. Ordnung in T entwickelt. Die
Graphen, die fiir diese Entwicklung ausgewertet wurden, kénnen im Anhang D nachge-
schlagen werden.

Die sich hieraus ergebenden Taylorreihen der irreduziblen Kerne der Suszeptibilititen
sind im Anhang I aufgefiihrt. Die Auswertung dieser Reihen im Rahmen numerischer

Untersuchungen wird im folgenden Abschnitt 9.1 erl&utert.

9.1 Auswertung der irreduziblen Kerne

Wenn zum Zwecke des Vergleichs mit numerischen Daten, die in anderen Verfahren be-
stimmt worden sind, aus der Hopping-Parameter-Entwicklung ebenfalls numerische Werte
fiir die renormierten Grofien gewonnen werden sollen, so kann man auf zweierlei Weise
verfahren, wobei in dieser Arbeit die zweite Methode angewandt wird.

Eine Moglichkeit besteht darin, die Entwicklungen der irreduziblen Kerne bis zur n-ten
Ordnung in die Formeln (8.3) - (8.8) und (3.28) einzusetzen und daraus die Entwicklungen
der renormierten Gréflen in x und K bis zur n-ten Ordnung zu bestimmen. Dazu sind
Taylorreihen gebrochen rationaler Funktionen zu ermitteln.

Auf der anderen Seite kann man die irreduziblen Kerne mittels ihrer Entwicklungen
numerisch berechnen, dann die resultierenden Werte in die Formeln (8.3) - (8.8), (3.28) ein-
setzen und so numerische Resultate fiir die physikalischen Gréfien erhalten. Dies kommt
einer partiellen Resummation der Entwicklungen der physikalischen Grofien gleich. Da-
durch werden alle Graphen, die sich durch Verkniipfen der im Anhang D verzeichneten
irreduziblen Graphen erhalten lassen, schon beriicksichtigt. Diese Vorgehensweise ist be-
quemer, und es ist zu erwarten, daf} sich so bessere Resultate fiir die renormierten Gréfien
ergeben als mit der vorstehenden Methode. Dies wird im weiteren erdrtert.

Bei den Suszeptibilitdten Xf, ,u%s und Xff besteht nun die Hoffnung, daf§ die auf diese
Weise erhaltenen Koeffizienten hdherer als der berechneten Ordnung in # eine brauchbare
Néaherung fiir die Koeffizienten sind, die sich tatsdchlich ergeben, wenn die Reihe bis dahin
fortgefithrt wird. Als Argument fiir ein derartiges Verhalten ist die Beobachtung zu nen-
nen, dafl 1-Linien-reduzible Graphen mehr Einbettungen besitzen als irreduzible Graphen

57
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gleicher Ordnung in k. Betrachte dazu die beiden folgenden Graphen 3. Ordnung in &:

(9.1)

Der linke Graph liefert pro Einbettung einen Beitrag von & zu X;S und besitzt im kubisch
primitiven Gitter 512 Einbettungen, wenn der Vertex mit der einlaufenden dufleren Linie

fest auf 0 abgebildet wird. Der rechte Graph liefert pro FEinbettung eine Beitrag von %53

und besitzt lediglich 8 Finbettungen. Der Beitrag dieses Graphen zu X;S ist somit weniger

als 1% des Beitrags des linken Graphen. Beziiglich der Suszeptibilitit ,u%s ist das Verhiltnis
noch extremer, da dort manche Einbettungen des linken Graphen einen Beitrag von 9 x>
liefern und keine Einbettung weniger als % zu ,u%s beitrigt.

Die entscheidende Frage besteht an dieser Stelle nun darin, ob nicht bei grofien Ord-
nungen von k die irreduziblen Graphen einen erheblich gréfieren Beitrag pro Einbettung
liefern als die reduziblen, so daf} sich die geringere Anzahl der Einbettungen ausgleicht.
Ist dies nicht der Fall, so sollte es Vorteile bringen, die Reihe nicht abzuschneiden.

Beziiglich der Variablen K ist eine Verbesserung der Ergebnisse der bosonischen Sus-
zeptibilititen nicht zu erwarten, da eine grofie fermionische Blase mehr Einbettungen be-
sitzt als eine entsprechende Anzahl kleiner. Dies wird schon in dem nachstehenden Beispiel
mit 4 fermionischen Linien deutlich.

% —e»-
A A

Y
v
¢
Y

A

—— .
(9.2)

Der linke Graph besitzt 512 Einbettungen und der rechte 832 beitragende Einbettungen®.
Die Beitrdge der Graphen sind nicht so einfach zu vergleichen wie in dem vorstehenden
Beispiel.

Mit den gleichen Argumenten 148t sich bei den Suszeptibilititen vy und uj eine Ver-
besserung der Ergebnisse beziiglich der Variablen K erwarten, wohingegen in diesem Fall
beziiglich des Hopping-Parameters x mit keiner Verbesserung gerechnet werden kann.

Bei der Bestimmung der renormierten Kopplungen werden alle irreduziblen Kerne,
auch die, bei denen eine 4.0rdnung bestimmt worden ist, in der 3. Ordnung betrachtet.

Im folgenden werden zwei in der Literatur diskutierte Situationen fiir die nackten Yu-
kawakopplungen bei ng = 2 betrachtet. Durch den Vergleich mit den dortigen Ergebnissen
kénnen Aussagen {iber die Vertrauenswiirdigkeit der Ergebnisse der Hopping-Parameter-
Entwicklung gewonnen werden.

9.2 Untersuchungen bei G, < 0 und G, =0.1

9.2.1 Phasengrenzen

In [9] werden die Phasengrenzen dieses Modells numerisch untersucht. Fiir die Hopping-
Parameter-Entwicklung sind die Phasengrenzen von grofitem Interesse, da die Methode

1512 Einbettungen dieses Graphen liefern entsprechend Abschnitt 7.3.3.1 keinen Beitrag.
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nur in der symmetrischen Phase giiltige Ergebnisse liefert. Diese Phase wird hiufig ,,pa-
ramagnetisch® genannt.

Aus den Untersuchungen in [9] sind drei Phasen bekannt, in denen die Symmetrie spon-
tan gebrochen wird. Bei geeigneter Wahl der Parameter, vor allem im Bereich positiver
k-Werte, befindet man sich in einer Phase, in der das ¢,-Feld einen nichtverschwindenden
Vakuum-Erwartungswert besitzt und die in Analogie zu einem Spinsystem als die ,ferro-
magnetische® bezeichnet wird. Die Grenzline zwischen der symmetrischen und der ferro-
magnetischen Phase bildet den Hauptgegenstand der Untersuchungen dieses Abschnitts.

Im Bereich negativer x-Werte bildet sich die ,,antiferromagnetische* Phase aus. Des-
weiteren entsteht bei geeigneter Wahl der nackten Yukawa-Kopplungen eine ,ferrimagne-
tische“ Phase, in der sowohl das ferromagnetische als auch das antiferromagnetische Feld
einen nichtverschwindenden Vakuum-Erwartungswert besitzen.

Die Grenzlinie zwischen der symmetrischen und der ferromagnetischen Phase kann
aus dem Verschwinden der physikalischen Masse des bosonischen Feldes bestimmt werden.
Zur Ermittlung der Grenzlinie zur antiferromagnetischen Phase mufi der Propagator eines
antiferromagnetischen bosonischen Feldes betrachtet werden. Die Grenzlinie ergibt sich
dann aus dem Verschwinden der Masse des antiferromagnetischen Feldes. Diese Unter-
suchung kann ebenfalls mit den Graphen des Abschnitts D.2 durchgefiihrt werden. Dazu
sind dann Suszeptibilititen fiir das antiferromagnetische Feld zu definieren, was kein prin-
zipielles Problem darstellen sollte. In dieser Arbeit wird nur die Grenzlinie zwischen der
paramagnetischen und der ferromagnetischen Phase betrachtet.

Da fiir die Simulationen in [9] Gitter der Gréfie 4% x 8 und 42 x 16 verwendet wurden,
wurde dort, um starke Einfliisse der endlichen Gittergréfle zu vermeiden, die Linie in der
K x r-Ebene untersucht, auf der die bosonische Masse den Wert 1 annimmt. Im weiteren
wird mit k1 (K) der x-Wert bezeichnet, fiir den bei vorgegebenem K die renormierte
bosonische Masse mp den Wert 1 annimmt, in der Erwartung, dafl die Phasengrenze
parallel zu dieser Linie verlduft.

Diese Untersuchung soll ebenfalls mit den KErgebnissen der Hopping-Parameter-
Entwicklung durchgefiihrt werden.

Um einen Anhaltspunkt fiir den Einflul des Abbrechens der Reihenentwicklung nach
der 4. Ordnung in 7 zu erhalten, wird s (K) aus der Entwicklung der irreduziblen Kerne
bis zur dritten und bis zur vierten Ordnung bestimmt. Die Untersuchung wird fiir zwei
verschiedene Werte von G, durchgefiihrt, die Resultate sind in den Abbildungen 9.1 und
9.2 eingetragen. In diesen Abbildungen sind ebenfalls die Punkte aus [9] verzeichnet, die
in den gewidhlten Parameterbereich fiir K und « fallen. Die zugehorigen Daten wurden
freundlicherweise fiir diese Untersuchung zur Verfiigung gestellt [15]. Dabei ist zu beachten,
dafl die renormierte bosonische Masse mpr den Wert 1 dort nicht exakt annimmt. In den
Tabellen 9.1 und 9.2 werden sie mit den bosonischen Massen aus der Hopping-Parameter-
Entwicklung verglichen.

9.2.1.1 Ergebnisse fiir G, = -0.3 und Gy = 0.1

Wie in [9] beschrieben wird, nehmen bei G, = —0.3 und Gy = 0.1 die Werte fiir &
zundchst mit ansteigendem K ab, um in der Ndhe von K = 0.2 ihr Minimum anzuneh-
men. Fiir grofiere K-Werte steigt k1 dann wieder leicht an. In Abbildung 9.1 gehért der
Datenpunkt bei K = 0.2 schon zu diesem Wiederanstieg. Somit ist die gute Ubereinstim-
mung dieses Datenpunktes mit der Linie, die sich aus den irreduziblen Kernen 4. Ordnung
ergibt, zufillig und sollte in den folgenden Ordnungen wieder verschwinden.
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Abbildung 9.1: Linien, fiir die die bosonische Masse den Wert 1 annimmt, berechnet aus
den irreduziblen Kernen der Suszeptibilitidten in 3. bzw. 4. Ordnung in T, im Vergleich
mit den Daten der Monte-Carlo-Simulation in [9] nach [15] bei np = 2, Gy = 0.1 und
G = —0.3. Die obere diinnere Linie steht fiir die Ergebnisse 3. Ordnung in T, die untere
dickere Linie fiir die 4. Ordnung.

Die Hopping-Parameter-Entwicklung liefert keine Anhaltspunkte fiir den Wiederan-
stieg von ky fiir K > 0.2. Es erscheint moglich, daff sich dieser Wiederanstieg erst durch
eine Entwicklung in % ergibt. Wenn dies zutrifft, 148t die Hopping-Parameter-Entwicklung
fiir K > 0.15 in beliebiger Ordnung in 7 keine giiltigen Ergebnisse mehr erwarten. Beant-
worten &8t sich diese Frage auf der Basis der 4. Ordnung der Entwicklung nicht, dafiir
weicht diese Ordnung zu friih von den numerischen Daten ab.

Die Abbildung zeigt, dafi die 3. und die 4. Ordnung in der Entwicklung sich fiir
K > 0.075 deutlich unterscheiden. Aus der Tabelle 9.1 ergibt sich eine sehr gute Uber-
einstimmung der Daten aus der Simulation mit der Hopping-Parameter-Entwicklung fiir
K < 0.075. Fiir 0.075 < K < 0.15 stellt die 4. Ordnung eine deutliche Verbesserung

ng =2 Gy=0.1 Gy=-0.3
K K renormierte bosonische Masse mp
Monte-Carlo || 3. Ordnung | 4. Ordnung
0.02 | 0.125 || 0.9702(197) 1.017 1.000
0.06 | 0.119 || 1.1080(147) 1.109 1.099
0.10 | 0.112 || 1.0400(068) 1.174 1.104
0.15 | 0.080 || 0.9805(198) 1.856 1.503

Tabelle 9.1: Vergleich der Daten zu [9] nach [15] mit der HPE
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Abbildung 9.2: Analog zu Abbildung 9.1 fiir np = 2, Gy = 0.1 und Gy, = —1.

gegeniiber der 3. Ordnung dar, die Ubereinstimmung mit den Daten der Monte-Carlo-
Simulation ist in diesem Bereich aber noch nicht befriedigend. Bei K = 0.1 ist das Er-
gebnis der Hopping-Parameter-Entwicklung gerade auflerhalb des durch den statistischen
Fehler der Monte-Carlo-Simulation vorgegebenen Bereichs, der Wert bei K = 0.15 ist viel
zu grofl und von daher ginzlich unbefriedigend.

Die 4. Ordnung in 7 der irreduziblen Kerne der Suszeptibilitaten X;S und ,uf 186t somit
im Bereich K < 0.09 gute Ergebnisse erwarten.

9.2.1.2 Ergebnisse fiir G, = —1 und G = 0.1

Bei G, = —1 und Gy = 0.1 &ndert sich die Phasenstruktur des Modells erheblich, wie in
[9] beschrieben wird. Die paramagnetische Phase bildet in der K x x-Ebene zwei Zusam-
menhangskomponenten aus, die durch eine ferrimagnetische Phase getrennt werden. Bei
K =2 0.2 verschwindet der mit der vorgestellten Hopping-Parameter-Entwicklung erfalbare
paramagnetische Bereich.

ng =2 Gy =0.1 Gy=-1
K K renormierte bosonische Masse mpg
Monte-Carlo || 3. Ordnung | 4. Ordnung
0.02 | 0.120 || 1.1319(647) 1.102 1.099
0.06 | 0.103 || 1.1183(380) 1.185 1.125
0.10 | 0.055 || 1.1014(304) 2.098 1.587

Tabelle 9.2: Vergleich der Daten zu [9] nach [15] mit der HPE
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Fir K > 0.05 zeigt die Abbildung 9.2 bei den hier gew&hlten Parametern deutliche
Abweichungen zwischen der 3. und der 4. Ordnung. Aus der Tabelle 9.2 ergibt sich, daf}
der Datenpunkt bei K = 0.06 in der 4. Ordnung aber noch gut wiedergegeben wird, die
3. Ordnung allerdings keine befriedigenden Ergebnisse mehr liefert. Bei K = 0.10 liefern
beide Reihen unbefriedigende Ergebnisse.

Die 4. Ordnung liefert also auch in diesem Fall gute Resultate, wenn der K-Wert, fiir
den sich eine Aufspaltung zwischen den Ergebnissen 3. und 4. Ordnung ergibt, nicht zu
stark iiberschritten wird. In diesem Fall liegt die Grenze bei K = 0.065.

9.2.1.3 Auswirkungen der Umordnung der Graphenreihenfolge

Bei beiden hier diskutierten Kopplungsstirken zeigt sich, dafl sowohl in der 3. als auch
in der 4. Ordnung in 7 bis in die Nihe des Randes der symmetrischen Phase sehr gute
Ergebnisse erwartet werden kdnnen. Vor allem die Ergebnisse 3. Ordnung sind als ein
Indiz dafiir zu werten, dafl die Umordnung der Graphenreihenfolge, wie sie in Abschnitt
9.1 beschrieben wird, in der erhofften Weise wirkt. Eine renormierte bosonische Masse
der Groflenordnung 1 entspricht einer Korrelationsliange &, fiir das bosonische Feld ¢, von
& ~ 1 in Gittereinheiten.

Werden nur die Graphen 3. Ordnung in 7 fiir die Suszeptibilititen beriicksichtigt,
so vermittelt nur der linke Graph in (9.1) eine Wechselwirkung iiber 3 Gitterldngen, die
»Reichweite“ der verbleibenden Graphen 3. Ordnung ist deutlich kiirzer. Als Folge sind
in diesem Fall nur dann gute Ergebnisse zu erwarten, wenn fiir die Korrelationslinge
& < 1, das bedeutet mp > 1, gilt. Die Tatsache, daf§ sich aus den irreduziblen Kernen der
Suszeptibilitdten in 3. Ordnung schon gute Ergebnisse fiir mp = 1 erhalten lassen, zeigt,
daf} die durch die beschriebene Resummation beriicksichtigten Graphen hoherer Ordnung
eine brauchbare Ndherung fiir die ,langreichweitigen® Wechselwirkungen darstellen.

Zumindest in den sich direkt anschlieBenden Ordnungen (4te, bte, ...) ist somit der
Beitrag der reduziblen Graphen, die sich aus den irreduziblen Graphen kleinerer Ordnung
in 7 zusammensetzen, eine verniinftige Approximation fiir den Beitrag aller Graphen zu
der jeweiligen Ordnung.

9.2.2 Fermionische renormierte Masse

In Abschnitt 3.1.1 wurde das Fermionen-Verdopplungsproblem in der freien Theorie dis-
kutiert. Mit n, wird in diesem Abschnitt die Anzahl der Komponenten des Impulses, die
den Wert p, = m annehmen, bezeichnet. Es gilt n, € {0,---,4}. Das Ziel dieses Abschnitts
ist es, zu untersuchen, inwieweit sich aus der Hopping-Parameter-Entwicklung bis zur 4.
Ordnung Anhaltspunkte dafiir ergeben, dafi auch in der wechselwirkenden Theorie die
Massenentartung der Doppler durch den Wilson-Term aufgehoben wird. Dazu wurde bei
Gy = -1, Gy = 0.1 und ngp = 2 die fermionische renormierte Masse pr bei den ver-
schiedenen Werten fiir n, iiber K aufgetragen. Dieses wurde fiir xk-Werte zwischen -0.125
und 0.125 wiederholt. Grofiere Werte sind fiir « wenig sinnvoll, da dort (k &~ 0.15) die
ferromagnetische Phase beginnt. Es zeigt sich eine geringe Abhingigkeit der Kurven von
K, so daf es nicht sinnvoll erscheint, hier alle Kurven wiederzugeben. In Abbildung 9.3
wird die Kurvenschar fiir K = —0.05 abgedruckt. Um die Abh&ngigkeit von x zu dokumen-
tieren, werden in Tabelle 9.3 Werte fiir ug fiir nicht zu grofie Werte von x bei K = 0.07
angegeben.
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Abbildung 9.3: Fermionische renormierte Masse pr(K) fir verschiedene Werte von n.
Die Kurven sind aus den Ergebnissen 4. Ordnung in T bei k = —0.05, G, = -1, Gy = 0.1
und ng = 2 berechnet.

\ fr bei Gy =—1,Gy =01, np =2 und K =0.07

Neg=0|n,=1|n,=2|ny=3|n,=4
k= —0.05 3.90 5.94 7.99 10.04 12.10
K= 0.00 3.83 5.80 7.78 9.76 11,73
K= 0.05 3.74 5.66 7.58 9.51 11,44

Tabelle 9.3: Fermionische renormierte Masse ug fiir verschiedene Werte von k und in
verschiedenen FEcken der Brillouin-Zone

Fiir K wurde dieser relativ kleine Wert gewdhlt, damit die Einfliisse des Reihenab-
bruchs nicht zu grofl werden. Die Masse pr nimmt in diesem Parameterbereich recht grofie
und damit leider wenig interessante Werte an. In Abschnitt 9.2.1 wurde fiir die Entwick-
lung der bosonischen Suszeptibilititen angegeben, dafi K < 0.065 gewidhlt werden sollte.
Im Vertrauen auf das in Abschnitt 9.1 beschriebene Vorgehen wird dieser Bereich hier ge-
ringfiigig {iberschritten. Dementsprechend ist hier nicht unbedingt mit guten Ergebnissen
fiir grofie xk-Werte zu rechnen.

Zur Abschitzung der Vertrauenswiirdigkeit der Daten kann angegeben werden, daf} bei
ne = 0 flir K = 0.05 die grofite Differenz zwischen den Daten 3. und 4. Ordnung festgestellt
wurde. (Apg = 0.015) Diese Differenzen sind fiir die anderen x-Werte bei n, = 0 kleiner.
Bei den anderen Werten fiir n, wurde fiir k = 0.05 gepriift und die Differenzen blieben bis
n, = 2 gleich und nehmen dann ab, so dafl auf weitere Priifungen verzichtet worden ist.

Abbildung 9.3 zeigt deutlich, daf} bei dieser Wahl der Parameter die ,,Doppler* in den
Ecken der Brillouin-Zone schwerer sind als das Fermion-Spiegelfermion-Paar bei P = 0
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in der Mitte der Brillouin-Zone. Im Kontinuumslimes erhilt nur dieses Paar eine Masse
im physikalischen Spektrum. Die ,,Doppler® sind somit aus dem Spektrum entfernt, wie
durch die Einfiihrung des Wilson-Terms beabsichtigt.

Fiir Gy = —0.3 und Gy = 0.1 ergibt sich qualitativ das gleiche Bild, so daf hier auf
eine erneute Diskussion verzichtet wird. Die renormierten Massen der Fermionen sind bei
dieser Wahl von ¢, und G etwas kleiner.

9.3 Untersuchungen im Fall G, = 0

In dem Fall, daf die nackte Yukawa-Kopplung G/, auf G, = 0 gesetzt wird, wird sich
zeigen, daf} sich in allen Ordnungen der Hopping-Parameter-Entwicklung die folgenden
Resultate ergeben:

7P = 5 (93)
Gry = 0 (9.4)

Diese Aussagen wurden in [14] fiir ein SU(2)®@SU (2) p-symmetrisches Yukawa-Modell aus
den Golterman-Petcher-Identitdten abgeleitet. Aus einer Shift-Symmetrie des Spiegelfeldes
Xz ergibt sich bei Gy = 0 eine spezielle Form der Ward-Identitéten, die auch in [12]
angegeben werden. Durch Differentiation beziiglich der Quellen lassen sich daraus die
oben beschriebenen Resultate erhalten. Diese speziellen Ward-Identitdten gelten auch fiir
den Fall der hier betrachteten U(1)r,®@U (1) p-Symmetrie. Die hier beschriebenen Resultate
(9.3) und (9.4) stellen somit nichts neues dar, es wird nur ein neuer Beweis im Rahmen
der Reihenentwicklung dafiir geliefert, der die Shift-Symmetrie nicht benutzt. Aufler den
Eigenschaften der Hopping-Parameter-Entwicklung wird letztlich nur die chirale U(1);, @
U(1) p-Symmetrie des Modells entsprechend den Gleichungen (2.10) und (2.24) verwendet.

9.3.1 Wellenfunktionsrenormierung des Spiegelfeldes y

Der Beweis von (9.3) wird in mehreren Schritten ausgefiihrt.

9.3.1.1 Zu zeigen: )O(;Ij =1

Zunéchst soll gezeigt werden, daf in dem betrachteten Fall nur der Graph 1 der Tabelle
im Anhang D.1 einen Beitrag zum irreduziblen Kern der Suszeptiblitit x5 (P) liefert. Die
Beitrége der restlichen Graphen sind proportional zu G - GGy, sofern sie nicht gleich null
sind.

Aus Anhang A ergibt sich unter Verwendung der Transformation in Abschnitt 2.3,

dafl der Beitrag eines beliebigen Graphen zu )O(;Ij in der AB-Basis proportional zu einer
2 x 2-Matrix ist, die auf der Diagonalen den Einheitsoperator 15 enthélt.

Entsprechend Abschnitt 7.3.3.2 besteht der Beitrag dieses Graphen, sofern der min-
destens eine inneren Linie enthilt, aus einer Summe von Teilbeitrigen, die immer ein
Matrizenprodukt der folgenden Form (9.5) enthalten. Um die vorstehend beschriebene
Blockstruktur zu erhalten, muf3 die Anzahl der Matrizen A, mit o € {+} gerade sein.

A{ TL04) TT[A- TT 04, 4+ TT O] A

7 7 l;
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oder
A-{ T3 TL[As TIOM,) A= TT O3] A (9.5
7 7 kj l;
Die Beitrige der oberen Form tragen zum 4 X 4-Spinraumoperator der linken oberen Ecke,

die der unteren Form zur rechten unteren Fcke von )O(;Ij bei. Im weiteren wird nur auf die
untere Form eingegangen, da sich im Fall der oberen Form keine wesentlichen Unterschiede
ergeben.

Die Matrix in der geschweiften Klammer in (9.5) enthilt aufgrund der enthaltenen A4
und A_-Matrizen nur in dem linken oberen 4 X 4-Block von Null verschiedene Eintréige.

v

Beitrége, die proportional zu einer v,-Matrix sind, sind beziiglich )O(Q irrelevant, da sie in
der Summation iiber die Einbettungen herausfallen. Es gilt somit:

{TT0u) T[4+ TLOM5,) A- H(M%)]}:(f'Png'PR 8) (9.6)

7 7 kj

Dabei bezeichnen f und g geeignet zu wihlende Faktoren, in denen die nackten Kopplun-
gen nur im Zahler multiplikativ auftreten kénnen. Im Nenner dieser Faktoren treten die
nackten Kopplungen immer in der Form (1 — G, Gy) auf. Somit sind f und ¢ im betrach-
teten Fall (G, = 0 endlich. Mit den Symmetrieiiberlegungen des Anhangs A 148t sich noch
[ = g zeigen, aber dies ist fiir diesen Beweis nicht relevant.

Werden nun die Matrizen A} und A_ entsprechend Gleichung (5.18) eingesetzt, so ist
der untere Ausdruck in (9.5) proportional zu:

0 0
( 0 GXG¢(fPL —I—QPR) ) (9'7)

Fiir den obere Ausdruck in (9.5) 1d8t sich eine entsprechende Darstellung in der linken
oberen Ecke der Matrix beweisen.
Als Ergebnis ist festzuhalten, dafl in dem Fall &G, = 0 nur der Graph 1 des Anhangs

D.1 zu ;(;Ij (P) beitrdgt. Damit ergibt sich:

)%;Ij (P)y=1, wenn Gy, =0 (9.8)

9.3.1.2 Zu zeigen: ,loﬁz/} (P)=0

Nach dem vorstehenden Beweis ist die Durchfiihrung dieses Beweises verhdltnismafig ein-
fach, da im wesentlichen die gleichen Argumente benutzt werden. Die Unterschiede ent-
stehen aus der v,-Matrix in der Definition der Suszeptibilitat uy.

Aus Anhang A ergibt sich fiir einen Beitrag zu ,&gj in der AB-Basis die folgende Ma-
trixstruktur:

(9.9)

wPr, +vPr 0
0 vPr + wPgr

Dabei sind w und v skalare Funktionen der Kopplungen. Der erste Graph aus Anhang D.1
liefert keinen Beitrag zu uY . Analog zu (9.5) enthilt hier jeder Teilbeitrag eines Graphen
ein Matrizenprodukt der folgenden Form.

v A { T 00 T [A- TLOM) As TL04,)] f4-

7 7 l;



66 KAPITEL 9. ERGEBNISSE

oder

3 A-{ TL5) T[4+ TL O3, A~ TLM5,)] } A4 (9.10)

3 kj l;

Auch hier wird wieder nur der untere Ausdruck diskutiert. Wird die y-Matrix mit dem
ersten A_ vertauscht, so gilt:

-2 0 0 -2 0 0
T GGy ( (PLGy + PrGy) 0 ) T 2-G\Gy ( (PrGy + PLGy) 0 )%
(9.11)
Dabei wurde A_ entsprechend der Gleichung (5.18) eingesetzt. Damit die Formen der
Matrizen in (9.10) mit (9.9) vertréglich sind, muf nun das Folgende gelten:

W{H(Mm) I1[4+ T (M) A H(Mm])}} _ ( (f'.PLBrg/.PR) 8 ) (9.12)
. ; ;

7 kj

Wobei f und ¢’ geeignete Faktoren sind. Fiir den unteren Ausdruck in (9.10) ergibt sich
damit eine Proportionalitit zu:

0 0
( 0 f'PLG? + g'PrG ) (9.13)

Analog ergibt sich fiir den oberen Ausdruck von (9.10) eine Proportionalitdt zu:

(9.14)

( F'PRG? + ¢'PLG? 0 )
0 0

Wird dies entsprechend Gleichung (C.7) in die 1 x-Basis transformiert, so ist direkt ab-
zulesen, daf alle Beitrége zu ,&g} (P) den Term G2 enthalten.
9.3.1.3 Folgerung 7/, = % fir G, =0

Aus diesen beiden Ergebnissen ergibt sich mit den Gleichungen (8.6) und (8.7) fiir die
Suszeptibilitdten der folgende Ausdruck.

_ 1
A N R P
8K
py(pP) = (9.15)

[(1— (8 —4n,)K]?
Daraus folgt mit Gleichung (3.28) das gewiinschte Resultat:

1
Zy = — 9.16
X 2K ( )

9.3.2 Renormierte Yukawa-Kopplung Gp,

Zum Beweis, dafl in der symmetrischen Phase fiir die renormierte Kopplung G'r, = 0 gilt,

falls Gy, = 0, reicht es aus, den irreduziblen Kern der Suszeptibilitét >~<§J¢\I’ zu betrach-

ten. Dieser irreduzible Kern wird aus Erwartungswerten der Form (WoW)® gewonnen.
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Zur Bestimmung der Matrixform dieses Erwartungswerts sind zun&chst einige Symmetrie-
betrachtungen notwendig.

Aus Griinden der chiralen Symmetrie kénnen hier nur die folgenden Erwartungswerte
beitragen.

(VrROVLY®, (XLOXR)", (YROXR)S, (XLVL)° (9.17)

Die beiden letzten Erwartungswerte liefern Beitrége, die proportional zu 7, und 7,75
sind. Derartige Beitrége heben sich aber durch die Summation iiber alle Einbettungen der
zugeordneten Graphen heraus.

Es verbleiben somit nur Beitrige, die aus Erwartungswerten der ersten beiden Arten
aufgebaut sind, und davon wiederum nur die Anteile, die proportional zu 1g und ~5 sind.

Die Beitrdge proportional zu den Matrizen (7,7, — 7.,7,) fallen bei der Summation iiber

die Einbettungen heraus. Damit ergibt sich insgesamt fiir den irreduziblen Kern von )Z;MLD

in der AB-Basis die folgende Matrixform:

CYHy 0 0
X3 = ( V" Pr 4+ w" Py 0 ) (9.18)

Dies bedeutet, daf} in diesem Fall alle Teilbeitrige Matrizenprodukte der folgenden Form
enthalten

AT TTOa) Ax TT O A-| (9.19)

k; lj

Die weitere Argumentation verlduft nun in der nun schon bekannten Weise. Aus der An-
ordnung der Ay und A_—-Matrizen ergibt sich auch hier die Form:

(o0 oy ] (77 8)
J k; ¥

Aus den schon erwdhnten Griinden entfallen hier alle Anteile, die proportional zu einer
vu—Matrix sind. Die Gestalt von A_ nach Gleichung (5.18) fiithrt nun darauf, daf alle

Beitrige zum irreduziblen Kern von X;Ims\l} die folgende Form besitzen:

=z 0 0 (9.21)
1 -GGy Gyf'"PL+Gy¢"Pr 0 '

Wird dies entsprechend (C.6) in die 1 x-Basis transformiert, so sind bei G, = 0 alle
Beitrige zu (§<§’¢‘I’)22 gleich null. Aus den Formeln (8.8) und (3.28) folgt die Aussage

(9.4).

9.3.3 Fermionische renormierte Masse up

Fiir die renormierte fermionische Masse pupr(P) ergibt sich:
1— (8—4n,)K

VREKSK+ 1Y (P)]

pr(P) =4 (9.22)

Somit besitzt pr(P = 0) eine Nullstelle fiir K = &, wenn ,&%‘ (P =0) # —1 gilt. Dies

tritt in den Ergebnissen in 4. Ordnung der Hopping-Parameter-Entwicklung im Intervall
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k € [—0.1,0.1]fiir Gy &~ —2.5 auf. Fiir Gy, > —2 existiert in dem oben genannten s-Bereich
keine Nullstelle des Nenners von ppg.

Diese Nullstelle in pp bei P = 0 ist unabhingig von x und G. Gleichung (9.22)
zeigt, dafl bei K = % und n, > 0 fiir die fermionische renormierte Masse up > 0 gilt.
Somit entstehen auch in diesem Fall keine Probleme mit den fermionischen ,,Dopplern®.
Die weiteren Untersuchungen dieses Kapitels werden deshalb bei P = 0 durchgefiihrt.

Die Nullstellen der renormierten Masse pp gewinnen ihre Bedeutung aus der Tatsache,
dafl, wie schon in Abschnitt 3.1.1 beschrieben, der Kontinuumslimes auf der Linie in der
K x r-Ebene liegt, die durch pr = 0 ausgezeichnet ist. Beim Aufsuchen derartiger Linien
mit der Hopping-Parameter-Entwicklung ist darauf zu achten, dafl giiltige Ergebnisse nur
in der symmetrischen Phase zu erwarten sind. Es ist daher auch bei fermionischen Gréfien
sicherzustellen, dafl der betrachtete Bereich in der symmetrischen Phase liegt. Dies kann
mit der in Abschnitt 9.2.1 beschriebenen Methode geschehen.

9.4 Vergleich mit numerischen Daten

In diesem Abschnitt sollen Vergleiche mit numerischen Daten durchgefiihrt werden,
die mit Monte-Carlo-Algorithmen erzeugt wurden. Dazu wird die Hopping-Parameter-
Entwicklung entsprechend Abschnitt 9.1 ausgewertet.

9.4.1 Vergleich mit Daten, die bei \yjc = 10 gewonnen wurden

Fiir verschiedene renormierte Groflen werden in [7] Zahlenwerte angegeben, die mit ei-
nem Hybrid-Monte-Carlo-Algorithmus gewonnen worden sind. Dabei werden verschiedene
Werte fiir Gy und A bei ngp = 2 und G, = 0 gewéhlt. Der grofite betrachtete Wert fiir A
betrdgt Anic = 10. Damit sollen hier die Ergebnisse der Hopping-Parameter-Entwicklung
verglichen werden. Dabei ist zu beachten, dafl in Abschnitt 5.1 der Wert Appg = oo fiir
die Hopping-Parameter-Entwicklung fest vorgegeben wurde.

9.4.1.1 Renormierte Massen und Wellenfunktionsrenormierungen

In der Tabelle 9.4 werden die Zahlenwerte des Monte-Carlo-Verfahrens fiir die renormier-
ten Massen und die Wellenfunktionsrenormierungen den Ergebnissen aus der Hopping-
Parameter-Entwicklung in 3. und 4. Ordnung gegeniibergestellt. Dabei zeigt sich, dafi bei
Gy = 0.1 die Ubereinstimmung des Zahlenwertes der renormierten bosonischen Masse mp
mit dem Ergebnis 3. Ordnung nicht befriedigend ist und sich in der 4. Ordnung gegeniiber
der 3. verschlechtert. Aus den Ergebnissen des Abschnitts 9.2.1 fiir die renormierte boso-
nische Masse ist bei einer derartigen Parameterwahl mit einer besseren Ubereinstimmung
zwischen den Verfahren zu rechnen, zumindest sollte die 4. Ordnung eine deutliche Ver-
besserung gegeniiber der 3. Ordnung darstellen.

In [6] wird die Phasengrenze zwischen der ferromagnetischen und der symmetrischen
Phase bei K = 0 fiir verschiedene Werte von A untersucht. In dieser Untersuchung ergibt
sich, daf sich der Wert von &, fiir den mp(k) = % gilt, beim Ubergang von A = 10 zu
A = 100 um Ar ~ 0.005 zu kleineren x-Werten verschiebt, wenn GyG, = 0 gilt. Um
die verschiedenen A-Werte auszugleichen, werden die Ergebnisse der Hopping-Parameter-
Entwicklung versuchsweise bei einem um 0.005 kleineren Wert fiir x ausgewertet als die

entsprechenden Werte der Monte-Carlo-Simulation. Dabei ist zu betonen, dafi es keine
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K K G¢ mp Z¢ MR Z¢ ZX

Monte-Carlo || 0.1 | 0.135 | 0.1 || 0.86(4) | 3.24(10) | 1.0736(d) | 4.44(2) | 4.42(2)
3. Ordnung || 0.1 | 0.135 | 0.1 0.736 3.65 0.9993 4.993 5.000
4. Ordnung || 0.1 | 0.135 | 0.1 0.693 3.64 0.9989 4.989 5.000
3. Ordnung || 0.1 | 0.130 | 0.1 0.878 3.79 0.9993 4.993 5.000
4. Ordnung || 0.1 | 0.130 | 0.1 0.845 3.78 0.9990 4.990 5.000

Monte-Carlo || 0.1 | 0.117 | 0.3 [ 1.05(9) | 3.0(3) | 1.061(2) | 4.31(3) | 4.43(2)
3. Ordnung | 0.1 | 0.117 | 0.3 || 1.116 4.09 0.9946 | 4.946 | 5.000
4. Ordnung || 0.1]0.117 | 0.3 || 1.046 4.00 0.9919 | 4.920 | 5.000
3. Ordnung [ 0.1 ]0.112 ] 0.3 || 1.247 127 0.9948 | 4.948 | 5.000
4. Ordnung [ 0.1]0.112] 03 || 1.181 417 0.9924 | 4.924 | 5.000

Monte-Carlo || 0.1 | 0.100 | 0.6 |[ 0.82(14) | 2.8(3) | 0.996(8) | 3.76(4) | 4.33(3)
3. Ordnung || 0.1 | 0.100 | 0.6 || 1.268 134 0.9800 | 4.802 | 5.000
4. Ordnung || 0.1 | 0.100 | 0.6 || 1.029 4.00 0.9724 | 4.723 | 5.000
3. Ordnung || 0.1 | 0.095 | 0.6 || 1.407 158 0.9809 | 4.811 | 5.000
4. Ordnung || 0.1 | 0.095 | 0.6 || 1.170 118 0.9739 | 4.743 | 5.000

Monte-Carlo || 0.1 ] 0.030 [ 1.0 || L.1(1) | 3.1(5) | 0.99(2) | 3.60(13) | 4.40(3)

3. Ordnung || 0.1 | 0.030 | 1.0 3.14 — 0.9667 4.673 5.000
4. Ordnung | 0.1 | 0.030 | 1.0 2.38 — 0.9639 4.646 5.000
3. Ordnung || 0.1 | 0.025 | 1.0 3.42 — 0.9690 4.695 5.000
4. Ordnung | 0.1 | 0.025 | 1.0 2.58 — 0.9668 4.674 5.000

Tabelle 9.4: Vergleich der Ergebnisse der Monte-Carlo-Simulation in [7] mit den Ergeb-
nissen der Hopping-Parameter-Entwicklung bei Gy = 0. In dem Monte-Carlo-Verfahren
wurde Ayje = 10 und in der Hopping-Parameter-Entwicklung Ayppg = oo gewéhlt. In
beiden Féllen gilt np = 2. Bei den Monte-Carlo-Daten wird der statistische Fehler in
Klammern angegeben.

Erfahrungen gibt, wie die Werte von mp in dem hier benutzten Parameterbereich auf eine
Anderung von A reagieren.

Die in dieser Weise korigierten Werte fiir mpg stimmen bei &Gy, = 0.1 hervorragend mit
dem Wert des Monte-Carlo-Verfahrens iiberein. I£s zeigt sich, daffi der Wert von mp in
diesem Parameterbereich sehr empfindlich von s abhdngt. Die Differenzen zwischen dem
Monte-Carlo-Verfahren und der Hopping-Parameter-Entwicklung kénnen damit durchaus,
so legt es diese Untersuchung nahe, durch die verschiedenen Werte fiir A verursacht sein.

Mit zunehmender nackter Kopplung G, werden die Unterschiede zwischen den Werten
fiir mp in 3. und 4. Ordnung gréfer. Entsprechend der Untersuchung in Abschnitt 9.2.1 ist
dann auch in 4. Ordnung nicht mehr mit brauchbaren Ergebnissen zu rechnen. Dies wird
durch die fehlende Ubereinstimmung mit den numerischen Resultaten im Fall gréBerer Gy
unterstrichen.

In der Abbildung 9.4 ist fiir Gy = 0.3 und G, = 0.0 die Linie x; (/) eingetragen, auf
der die bosonische Masse mp den Wert 1 annimmt. Desweiteren ist die Linie eingezeichnet,
auf der up = 1 gilt. Bei letzterer sind die Unterschiede zwischen der 3. und 4. Ordnung der
Hopping-Parameter-Entwicklung so gering, daf§ fiir ur = 1 nur die 4. Ordnung angegeben
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Abbildung 9.4: Linien, auf denen die renormierten Massen den Wert 1 annehmen, bei
Gy =0.3,G, =0.0, np =2 und A = co. Fiir die bosonische renormierte Masse mp sind
die Ergebnisse aus der 3. und 4. Ordnung in T aufgetragen, fiir ur nur die 4. Ordnung.
Desweiteren ist die Lage des Datenpunkt aus [7] eingetragen, der aber bei A = 10 bestimmt
worden ist. Die Werte fiir die renormierten Massen in diesem Punkt kénnen den Tabellen
9.4 und 9.5 entnommen werden.

ist.

Fiir die bosonische Masse mp ergibt sich darin qualitativ das gleiche Bild wie in den
Abbildungen 9.1 und 9.2. Die 3. und 4. Ordnung stimmen im Bereich kleiner K gut mitein-
ander tiberein und laufen fiir grofe K auseinander. Die Linie kriimmt sich mit zunehmen-
dem K nach unten. Da auch die Werte fiir die verwendeten nackten Yukawa-Kopplungen
eine vergleichbare Gréflenordnung haben, liegen die nachfolgenden Verallgemeinerungen
der Aussagen, die in den Untersuchungen des Abschnitts 9.2.1 gewonnen wurden, auf den
hier betrachteten Fall G, = 0 nahe.

Abbildung 9.4 zeigt eine gute Ubereinstimmung der bosonischen Masse mp im Bereich
K < 0.09 fiir die 3. und 4. Ordnung. Aus den Untersuchungen des Abschnitts 9.2.1 kann
somit erwartet werden, dafl das numerische Ergebnis fiir mp aus der 4. Ordnung bis
K = 0.1 eine gute Approximation darstellt. Die Untersuchung dieses Abschnitts findet
demnach auf dem Rand des Bereichs statt, fiir den die Hopping-Parameter-Entwicklung
in 4. Ordnung gute numerische Ergebnisse fiir die bosonischen Suszeptibilititen erwarten
188t. Aus der 3. Ordnung sind in diesem Bereich nur noch qualitative Aussagen zu erwarten.
Eine genaue Abschitzung der Einfliisse des Reihenabbruchs auf den Wert fiir mp kann
leider nicht angegeben werden.

Werden nun die Ergebnisse der beiden verschiedenen Verfahren verglichen, so ergibt
sich bei GGy = 0.3 eine hervorragende Ubereinstimmung des Wertes von mpg, wenn in der
Hopping-Parameter-Entwicklung der Wert fiir x nicht in der oben beschriebenen Weise
korrigiert wird. Bei dem korrigierten x-Wert ist mp in der 4. Ordnung gerade aufierhalb des
Bereichs, der sich durch den Wert aus der Monte-Carlo-Simulation mit dem zugeordneten
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statistischen Fehler ergibt. Der Wert aus der 3. Ordnung ist bei diesem Wert fiir £ deutlich
zu grof3. In den Untersuchungen des Abschnitts 9.2.1 wurde festgestellt, daf§ die Ergebnisse
fiir die renormierte bosonische Masse mp zu grofl werden, wenn der Bereich, in dem die
4. Ordnung gute Ergebnisse verspricht {iberschritten wird. Von daher ist zu erwarten, dafl
sich der Wert der Tabelle fiir mg bei GGy = 0.3 zu geringfiigig kleineren Werten verschiebt,
wenn weitere Ordnungen der Hopping-Parameter-Entwicklung bestimmt werden.

Die Untersuchung bei Gy, = 0.3 in 4. Ordnung liefert somit kein Argument gegen eine
Korrektur der vorgeschlagenen Art fiir die unterschiedlichen A-Werte. Wenn die Erwar-
tung einer Abnahme des Wertes von mp mit zunehmender Ordnung in T eintrifft, so
stellt diese Korrektur auch hier eine Verbesserung der Ubereinstimmung mit den numeri-
schen Ergebnissen dar. Es ist aber zu beriicksichtigen, dafl der Einflul des fermionischen
Hopping-Parameters K auf die renormierten bosonischen Grofien mit zunehmender nack-
ter Kopplung Gy steigt. Dieses ist den Taylorreihen im Anhang E direkt zu entnehmen.
Als Folge kann sich auch der Einflul der verschiedenen A-Werte auf mp mit zunehmender
Kopplung Gy, verdndern, so daf} sich moglicherweise auch die Art der benstigten Korrektur
mit zunehmendem Gy bei K = 0.1 verdndert.

Bei den grofleren Werten der nackten Yukawa-Kopplung Gy, nehmen die Unterschiede
zwischen der 3. und der 4. Ordnung von mp zu. (ca. 20% bei Gy = 0.6 und ca. 30% bei
Gy = 1.0) Im letzten Fall ist zudem die Abweichung von dem Resultat der Monte-Carlo-
Simulation so grof}, dafl die Angabe weiterer renormierter Grofien, die sich aus bosonischen
Suszeptibilititen bestimmen, sinnlos erscheint.

Die Ubereinstimmung der Werte fiir die bosonische Wellenfunktionsrenormierung A
aus den verschiedenen Bestimmungsverfahren ist bei allen Werten fiir die nackte Yukawa-
Kopplung nicht so gut wie die der bosonischen Masse. Die Unterschiede zwischen der 3.
und 4. Ordnung der Hopping-Parameter-Entwicklung sind hier deutlich geringer als bei
der renormierten Masse mpg.

Bei den fermionischen Gréfien ist zu beachten, daf sie aus anderen Reihen bestimmt
werden als die bosonischen. Dies zeigt sich unter anderem darin, dafl die Unterschiede
zwischen den Resultaten aus der 3. und 4. Ordnung sehr gering sind.

Die renormierte Masse upr aus der Hopping-Parameter-Entwicklung ist vor allem bei
kleinem Gy geringer als die mit dem Monte-Carlo-Verfahren bestimmte. Dazu wird in [7]
angegeben, daf der verwendete Algorithmus im Fall freier Fermionen (Gy = Gy = 0) bei
K = 0.1 einen Wert von ur = 1.076 anstatt des fiir ein unendlich ausgedehntes Gitter
richtigen Wertes ur = 1.0 liefert. Die Hopping-Parameter-Entwicklung liefert in diesem
Fall den Wert pp = 1.0, siehe Gl. (9.22). Wie sich auch aus der Abbildung 9.4 ergibt, ist
der Einflufl von x auf ppr gering.

Der Wert von % fiir Z, wurde schon im Abschnitt 9.3.1 erldutert. Die Abweichung der
Monte-Carlo-Daten von diesem Wert entsteht durch die Vernachlissigung der Terme O(p3)
im inversen Propagator (AY) ™" (p). Diese Niherung gewinnt ihren Einflu auf das Ergebnis
durch die endliche Ausdehnung des Gitters und die damit notwendige Einfiihrung von
Randbedingungen in den Monte-Carlo-Simulationen in [7]. Da in der Hopping-Parameter-
Entwicklung von einem unendlichen Gitter ausgegangen wird, (endliche Gitter wiirden
die Zuriickfiihrung auf 1-Linien-irreduzible Graphen erschweren), wird hier das Ergebnis
durch die Vernachlissigung dieser Terme in Gleichung (3.8) nicht beeinflufit.

Die Werte fiir Z,, nehmen in beiden Verfahren bei kleiner Kopplung Gy, ungefahr den
Wert von Z, an. Bei GGy = 0.0 sollten die Werte fiir 7, und Z, aus Symmetriegriinden
iibereinstimmen, so daf} dieses Ergebnis sinnvoll erscheint. Mit zunehmenden G fallen
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K K G¢ GR¢ GRX gR
Monte-Carlo || 0.1 | 0.135 | 0.1 || 1.16(4) | -0.11(4) | -
3. Ordnung || 0.1 | 0.135 | 0.1 1.35 0.00 31
3. Ordnung || 0.1 | 0.130 | 0.1 1.38 0.00 39
Monte-Carlo || 0.1 | 0.117 | 0.3 || 3.53(13) | -0.50(6) | -
3. Ordnung || 0.1 | 0.117 | 0.3 4.29 0.00 65
3. Ordnung | 0.1 | 0.112 | 0.3 4.39 0.00 76
Monte-Carlo || 0.1 | 0.100 | 0.6 || 5.5(4) | -0.82(6) | -
3. Ordnung || 0.1 | 0.100 | 0.6 8.89 0.00 92
3. Ordnung || 0.1 | 0.095 | 0.6 9.11 0.00 103

Tabelle 9.5: Fortsetzung der Tabelle 9.4 fiir die renormierten Kopplungen. Es gilt: GG\, = 0,
ng =2, Amc = 10 und Agpg = oc.

die Werte fiir Z, in beiden Verfahren. In dem Monte-Carlo Verfahren ist diese Abnahme
starker als in der Hopping-Parameter-Entwicklung .

9.4.1.2 Renormierte Kopplungen

AbschlieBend soll noch auf die renormierten Kopplungen eingegangen werden. Diese wur-
den nur in 3. Ordnung bestimmt und sind in der Tabelle 9.5 eingetragen. Wie oben aus-
gefiihrt, ist zu erwarten, dafl die Entwicklung bosonischer Suszeptibilitdten in 3. Ordnung
beziiglich T keine gute Approximation darstellt, so daf§ nur mit qualitativen Ergebnissen
zu rechnen ist.

Vor diesem Hintergrund ist die Abweichung von ca. 20% fiir Gry bei Gy = 0.1 und
Gy = 0.3 ein durchaus befriedigendes Ergebnis. Da die renormierte Yukawa-Kopplung
G Ry in dem hier betrachteten Parameterbereich nicht sehr stark von x abhéngt, sind aus
den Ergebnissen der 3. Ordnung nur geringe Abweichungen aufgrund der verschiedenen
Werte fiir Ay und Agpg anzunehmen.

Zur Diskussion der renormierten Kopplung G g, wird auf den Abschnitt 9.3.2 verwie-
sen.

Aufgrund der grofien statistischen Fehler konnten in [7] keine Werte fiir gr angegeben
werden. Darum werden hier nur kurz die Ergebnisse der Hopping-Parameter-Entwicklung
aufgefiihrt. Die Werte der renormierten Selbstkopplung gg sind stark von x abhingig.

9.4.2 Vergleich mit Daten, die bei A\yjc = oo gewonnen wurden

Um den Einfluf der verschiedenen A-Werte besser einschitzen zu kénnen, soll abschlieflend
noch ein Vergleich mit Simulationsdaten bei Apje = oo durchgefiihrt werden. Dabei handelt
es sich um unverdffentlichtes Datenmaterial [15], das noch nicht endgiiltig ausgewertet
ist. Bei einer endgiiltigen Auswertung kénnen sich also noch Korrekturen zu den hier
abgedruckten Werten und Fehlerbereichen ergeben.

Leider sind diese Werte bei anderen Parameterwerten bestimmt worden als die Wer-
te des Abschnitts 9.4.1. So wird bei kleinen bis mittleren Werten der nackten Yukawa-
Kopplung nur der Fall &Gy, = —G' untersucht, der bislang noch nicht betrachtet wurde.
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K K G¢ GX mp Z¢ HR Z¢ ZX
M-C || 0.090 | 1.120 | 0.1 | 0.1 || 1.067(9) | 3.682(12) | 1.690(1) | 5.23(3) | 5.29(4)
3.0rd || 0.090 | 0.120 | 0.1 | —0.1 1.113 4.077 1.6140 5.549 5.549
4.0Ord || 0.090 | 0.120 | 0.1 | -0.1 1.092 4.061 1.6139 5.547 5.547
M-C ][ 0.091 [ 0.108 | 0.3 | 0.3 ][ 1.051(13) | 3.650(29) | 2.083(9) | 5.15(3) | 5.267(12)
3.0rd || 0.091 | 0.108 | 0.3 | -0.3 1.166 4.194 2.0101 5.436 5.436
4.0rd || 0.091 | 0.108 | 0.3 | -0.3 1.096 4.051 2.0072 5.415 5.415
M-C [[0.122 [ 0.054 | 0.6 | —0.6 || 1.005(9) | 3.490(27) | 1.712(5) | 3.556(7) | 3.524(20)
3.0rd || 0.122 | 0.054 | 0.6 | —0.6 2.024 6.162 1.6590 3.948 3.948
4.0rd || 0.122 | 0.054 | 0.6 | -0.6 1.520 5.061 1.6450 3.929 3.929
M-C [ 0.100 [ 0.090 | 0.6 | 0.0 || 1.104(12) | 3.513(15) | 1.02(1) | 3.955(7) | 4.379(3)
3.0rd || 0.100 | 0.090 | 0.6 | 0.0 1.547 4.815 0.9817 4.819 5.000
4. 0Ord || 0.100 | 0.090 | 0.6 | 0.0 1.309 4.371 0.9754 4.757 5.000

Tabelle 9.6: Vergleich von Simulationsdaten mit der Hopping-Parameter-Entwicklung bei
Avie = Appg = oo und ngp = 2. Bei den Simulationsdaten handelt es sich um unverdoffent-
lichte Daten nach [15], die nicht endgiiltig ausgewertet sind, so da8 Korrekturen der Daten,
besonders der Fehlerschranken, méglich sind.

Weiterhin sind die K-Werte hier so gew&hlt, dafl gréflere fermionische Massen ugr entste-
hen als in den vorstehenden Untersuchungen. Dies sollte vor allen Dingen die Genauigkeit
der Zahlenwerte der bosonischen Suszeptibilititen der Hopping-Parameter-Entwicklung
verbessern, da bei diesen Grofien fiir grofle K-Werte nicht mit einer Verbesserung der
Ergebnisse durch das in Abschnitt 9.1 beschriebene Verfahren zu rechnen ist.

9.4.2.1 Renormierte Massen

Die Werte fiir die renormierten Massen und Wellenfunktionsrenormierungen sind in der
Tabelle 9.6 wiedergegeben.

Es zeigt sich, dafl die Werte der renormierten bosonischen Masse mp aus der Hopping-
Parameter-Entwicklung immer gréfier sind als die entsprechenden Werte des Monte-Carlo-
Verfahrens. Dabei stellt die 4. Ordnung eine deutliche Verbesserung gegeniiber der 3. Ord-
nung dar. Wenn die Unterschiede zwischen der 3. und der 4. Ordnung grof} sind, so ist die
4. Ordnung auch deutlich gréfer als das zugehorige Monte-Carlo-Datum und stellt keine
gute Approximation mehr da. Dieses Verhalten wurde schon im Abschnitt 9.2.1 festge-
stellt. Werden fiir die nackten Yukawa-Kopplungen Werte |G| < 0.3 gew#hlt, so zeigt die
Tabelle 9.6 eine gute Ubereinstimmung der Werte fiir mp.

Aus der Hopping-Parameter-Entwicklung ergibt sich auch hier eine kleinere renor-
mierte fermionische Masse ug als aus der Monte-Carlo-Rechnung. Dieser Unterschied ist
vergleichbar mit dem, der sich aus Tabelle 9.4 ergibt.

9.4.2.2 Renormierte Kopplung

Der Vergleich der renormierten Kopplungen ist in der Tabelle 9.7 wiedergegeben. Es zeigt
sich hier eine bessere Ubereinstimmung als in Tabelle 9.5 bei vergleichbarer Stirke der
nackten Kopplungen. Ob dies an den verschiedenen Werten fiir A oder an der anderen
Wahl der Parameter Gy und G, liegt muf hier offen bleiben. Dies kann aber auch in den
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K K G¢ GX GR¢ GRX gR
Monte-Carlo || 0.090 | 1.120 | 0.1 | —0.1 || 1.482(64) | ~1.578(39) | —
3. Ordnung || 0.090 | 0.120 | 0.1 | 0.1 1.603 -1.603 59
Monte Carlo || 0.091 | 0.108 | 0.3 | 0.3 || 4.79(12) | —4.84(18) | —
3. Ordnung || 0.091 | 0.108 | 0.3 | —0.3 5.228 —5.228 80
Monte-Carlo || 0.122 | 0.054 | 0.6 | -0.6 || 8.66(9) -8.82(8) | —
3. Ordnung || 0.122 | 0.054 | 0.6 | —0.6 11.9 -11.9 162
Monte-Carlo || 0.100 | 0.090 | 0.6 | 0.0 || 6.161(66) | 0.852(10) |
3. Ordnung || 0.100 | 0.090 | 0.6 | 0.0 9.333 0.000 116

Tabelle 9.7: Fortsetzung der Tabelle 9.6 fiir die renormierten Kopplungen.
Es gilt: Apje = Agpe = oo und np = 2. Das in der Unterschrift zu Tabelle 9.6 iiber die
Simulationsdaten Gesagte gilt auch hier.

kleineren Werte der Hopping-Parameter in Tabelle 9.7 begriindet liegen. Bei Gy, = 0.6 er-
geben sich aus der 3. Ordnung der Hopping-Parameter-Entwicklung in keinem der in der
Tabelle betrachteten Fille zufriedenstellende Ergebnisse, was aber schon aus den schlech-
ten Ergebnisse fiir die bosonische Masse mp in Tabelle 9.6 zu erwarten war.



Kapitel 10

Diskussion

10.1 Diskussion der Ergebnisse

Im Kapitel 9 wurden die Ergebnisse der Hopping-Parameter-Entwicklung in 4. Ordnung
mit numerischen Daten verglichen. Dabei konnten wichtige Erkenntnisse iiber das Kon-
vergenzverhalten der Hopping-Parameter-Entwicklung gewonnen werden.

In den Untersuchungen des Abschnitts 9.2.1 konnte gezeigt werden, dafl die Werte fiir
mp aus der Hopping-Parameter-Entwicklung 4. Ordnung in dem Parameterbereich eine
hervorragende Ubereinstimmung mit den Ergebnissen numerischer Simulationen ergibt, in
dem sich die Ergebnisse 4. Ordnung von denen der 3. Ordnung nur geringfiigig unterschei-
den. Dieses Bild konnte in den Untersuchungen des Abschnitts 9.4 bestédtigt werden.

Dieses Verhalten legt es nahe, aus der Abweichung der zweihdchsten von der héchsten
betrachteten Ordnung der Hopping-Parameter-Entwicklung Riickschliisse auf die Zu-
verldssigkeit der erhaltenen Ergebnisse zu ziehen.

Wird der Parameterbereich betrachtet, in dem die renormierten Massen mp und pug
nicht kleiner als 1 sind, so ergeben sich aus der Hopping-Parameter-Entwicklung in 4. Ord-
nung fiir kleine nackte Yukawa-Kopplungen (|G| < 0.4) erstaunlich gute Resultate. Wegen
des Zusammenhangs zwischen der Masse und der Korrelationslinge lassen sich aus Monte-
Carlo-Simulationen auf einem 43 x 8-Gitter nur in diesem Bereich der renormierten Massen
gute Ergebnisse erwarten. Bei gréfieren Werten fiir die nackten Kopplungen miissen wei-
tere Ordnungen der Hopping-Parameter-Entwicklung bestimmt werden, wenn der Bereich
untersucht werden soll, indem fiir die renomierten Massen mp, pr ~ 1 gilt.

Beziiglich der bosonischen Gréfien ist erst in 6. Ordnung eine deutliche Verbesserung
der Werte bei groflem K zu erwarten. Diese Erwartung ergibt sich aus der Tatsache, dafl
in den Graphen der bosonischen Suszeptibilititen immer eine gerade Anzahl fermionischer
Linien auftritt. So sind in 6. Ordnung erstmals Terme, die die nackten Yukawa-Kopplungen
in 6. Potenz enthalten, méglich, so wie in der betrachteten 4. Ordnung erstmals Terme in
4. Potenz entstehen. Terme 5. Potenz in den nackten Yukawa-Kopplungen kénnen in den
bosonischen Suszeptibilititen bei Agpg = oo nicht entstehen.

An dieser Stelle sei noch einmal kurz an die Diskussion des Abschnitt 9.2.1.3 erinnert.
Dort wurde ausgefiihrt, dafi die guten Ergebnisse des Abschnitts 9.2.1 ein Indiz dafiir
sind, daf} die in Abschnitt 9.1 erlduterte Art der Auswertung der irreduziblen Kerne der
Suszeptibilitdten eine Verbesserung der Ergebnisse bewirkt.

Aus den Ergebnissen des Abschnitts 9.4.2 ergibt sich ein weiterer Hinweis darauf, daf§
die Abweichungen der Werte der bosonischen Masse mp bei kleinen Werten der nackten

75
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Yukawa-Kopplungen in den verschiedenen A-Werten begriindet liegen, wie in Abschnitt
9.4.1 diskutiert. In Tabelle 9.6 wurden bei vergleichbaren Werten der nackten Kopplungen
keine derartigen Unterschiede mehr festgestellt.

10.2 Vorschlige zur Verbesserung der Methode

Wenn weitere Ordnungen der Hopping-Parameter-Entwicklung bestimmt werden sollen,
so scheint vom jetzigen Standpunkt eine weitere Reduzierung der Graphen vorteilhaft.

10.2.1 Vertexrenormierung

Dazu bietet sich das Verfahren der Vertexrenormierung an. Dieses Verfahren wird in [4]
diskutiert und rekursiv geldst. Die Idee der Vertexrenormierung soll hier kurz am Beispiel
der Graphen des Anhangs D erldutert werden.

Wird der Graph 2 der Liste D.1 betrachtet, so entsteht der Graph 14 hieraus durch
Anhéngen einer Schleife aus zwei bosonischen Linien an einen Vertex des zugrundeliegen-
den Graphen. Entsprechend entsteht der Graph 17 dieser Liste aus dem Graphen 3 durch
Anhdngen des gleichen Objekts.

Wird zur Liste D.2 iibergegangen, so entsteht dort der Graph 15 durch Anhdngen dieses
Objekts an den Graphen 2 der Liste. Der gleiche Zusammenhang besteht ebenfalls zwischen
den Graphen 1 und 3 der Liste D.3. In allen Beispielen wird der folgende Teilgraph an
einen Vertex mit zwei fermionischen und einer auslaufenden bosonischen Linie angeh&ngt.

i
(10.1)

Der Beitrag Rg(fi1,- -+, ity) des einfacheren Graphen und des komplizierteren Graphen
unterscheiden sich in allen betrachteten Féllen um einen Faktor —8k?2.

Der Unterschied zwischen dem Beitrag des einfacheren und des komplizierteren Gra-
phen ist abhdngig von dem Vertex, an den angehdngt wird, und von dem Teilgraphen,
der angehdngt wird. Fin schdnes Beispiel bilden hier die Graphen 1 und 3 der Liste D.4.
Hier betridgt der Unterschied, der durch das Anhdngen des Teilgraphen in (10.1) an den
einfachen Graphen entsteht, —32x2.

An dieser Stelle wird auch schon der rekursive Charakter der Vertexrenormierung
deutlich. Der Teilgraph in (10.1) kann auf seinen eigenen Vertex angewandt werden. Die
Graphen 1, 3 und 19 der Liste D.2 sind hier Beispiele. Aus den Graphen 1 und 3 ergibt sich
sofort, dal das Anhdngen des Teilgraphen (10.1) an einen Vertex mit zwei bosonischen
Linien ebenfalls einen Faktor —8x?% ergibt. Daraus ist zu schlieffien, dafl das Anhiingen des
folgenden Teilgraphen in (10.2) an einen Vertex mit zwei bosonischen Linien einen Faktor
(—8k%)? = 64r* ergibt.

(10.2)

Wie erwartet, unterscheidet sich der Beitrag des Graphen 19 der Tabelle D.2 um einen
Faktor 64k vom Graphen 1.
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Werden die Faktoren, die durch das Anhidngen der Teilgraphen entstehen, zusammen-
gefafit, so brauchen nur noch die Graphen ausgewertet zu werden, die keine Teilgraphen
der obigen Art enthalten. In Anhang D fallen dann viele Graphen heraus. In Tabelle D.1
brauchen die Graphen 11 sowie 14 bis 11, in D.2 die Graphen 3 bis 5, 7 und 14 bis 19 nicht
mehr betrachtet zu werden. In Tabelle D.3 fallen die Graphen 3 bis 5 heraus und in D.4
die Graphen 3, 11 und 12. Da aber die Beitrége dieser Teilgraphen in Abh&ngigkeit von
dem Vertex, an den angehidngt wird, bestimmt werden miissen, bietet das beschriebene
Verfahren erst Vorteile, wenn der gleiche Teilgraph &fter als einmal an den gleichen Vertex
anzuhdngen ist.

Oben wurde nur das Anhdngen von Teilgraphen, die ausschlieilich bosonische Lini-
en enthalten, diskutiert. Das Anhdngen von Teilgraphen mit fermionischen Linien wurde
im Rahmen dieser Arbeit nicht betrachtet, wie iiberhaupt die Vertexrenormierung in die-
ser Arbeit nicht angewandt wird. Aus Teilgraphen mit fermionischen Linien ergiben sich
Matrixfaktoren, so dafi Schwierigkeiten mit der Nichtvertauschbarkeit zu erwarten sind.
Betrachte zur Verdeutlichung die Graphen 1 und 11 der Tabelle D.1. Der Graph 11 ent-
steht aus dem Graphen 1 durch Anh&ngen eines Teilgraphen mit 4 fermionischen Linien.
Aufgrund der Struktur des Vertizes mit 4 fermionischen Linien ergibt sich entsprechend
Abschnitt 7.3.3.2 aus dem Graphen 11 nur dann ein Beitrag, wenn die fermionische Kette,
entlang der die Matrizen multipliziert werden, die Schleife des Graphen durchlduft. Die
fermionische Vertexrenormierung sollte von daher schwieriger sein als die bosonische, bei
der der ganze Graph mit einem skalaren Faktor multipliziert wird.

Weiterhin ist zu untersuchen, wie die Teilgraphen die Symmetriefaktoren beeinflussen.
Durch das Anhingen der Teilgraphen kénnen Symmetrien des Graphen gebrochen werden,
und die Teilgraphen kénnen selber auch einen Symmetriefaktor besitzen. Eventuell sind
hier weitere Korrekturen notwendig.

10.2.2 Computerisierung des Verfahrens

In [4] wird ein Verfahren vorgestellt, nach dem die Graphen in einem bosonischen Modell
mit Hilfe eines Computers erzeugt und ausgewertet werden kénnen. Dadurch wurde es in
dieser Arbeit moglich, die Graphen bis zur 14. Ordnung im skalaren Hopping-Parameter
auszuwerten.

Auch hier ist wieder mit Problemen durch den fermionischen Teil des Modells zu rech-
nen. Schon der Vertex mit vier fermionischen Linien (WWWW)$ enthilt 4096 Eintrige. Aus
diesem Grund diirfte es bei der Auswertung der Graphen Vorteile bringen, die Eigenschaf-
ten der y-Matrizen und die in Abschnitt 7.3.3 beschriebenen Hilfen auszunutzen.
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Anhang A

Zur Struktur des Propagators

Zunéchst wird die benutzte Darstellung der euklidischen Gamma-Matrizen angegeben:

00 0 - 0 0 0 -1
oo =0 o 01 0
=10 i 0 o0 2= 0 10 0
i 0 0 0 -1 0 0 0
0 0 i 0 00 10
10 0 0 i 10001
=i o0 0 0 110 0 0
0 —i 0 0 01 00
1 0 0 0
01 0 0
=100 -1 0 (A1)
00 0 -1
Zur Erlduterung der Form der Gleichung (3.8) geniigt es zu zeigen, daf, wenn &‘I’(p) in

eine Taylor-Reihe nach p entwickelt wird:

AY(p) = C(P) = ipu7,D(P) + O(") (A-2)
Die Matrizen C'(P) und D(P) in der 1 y-Basis die folgende Form besitzen:
O Cy(P) Dyy(P) 0
C = x D = A3
( Cyx(P) 0 ) ( 0 Dy« (P) (4-3)

Beweis von (A.3): Aus der Forderung nach Kovarianz des Propagators AY (p) ergibt sich,
daf die Matrizen C'(P) und D(P) sich als 2 X 2 Matrizen, deren Eintrige skalare Vielfache
des Einheitsoperators 1¢ im Spinor-Raum sind, schreiben lassen. Aus der Definition (A.2)
fiir die Matrizen C' und D ergibt sich nun folgende mdogliche Bestimmung dieser Gréfien
auf dem Gitter:

C(P) = Y e () B (0))* (A4)
1 e—leacy _
DP) = 3 | T Sy o (H)FO) (A5)
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In der symmetrischen Phase ist der Propagator invariant unter der Transformation der
chiralen Symmetrie (2.10). In der hier benutzten Darstellung der ~-Matrizen sind bei
einem linkshdndigen Spinoranteil nur die beiden oberen, bei einem rechtshdndigen nur
die beiden unteren Spinorkomponenten von null verschieden. Damit ergibt sich fiir einen
fermionischen Zweipunkt-Erwartungswert in der symmetrischen Phase die folgende Form,
wobei jede Eintragung in der Matrix auf der rechten Seite fiir eine 2 x 2-Matrix steht.

0 <¢L,y¢1—{,x>c <¢L7yX1—5,x>c 0
- <¢Ry¢E ) 0 0 <¢RyX;I:— )
U, 0,)° = VR WALl A6
R O SR 0 O (A.5)
0 <XR,y¢z,x>c <XR,yX1—5,x>C 0

Die Matrizen C' und D sind aus derartigen Erwartungswerten aufgebaut. Aufgrund der
speziellen Gestalt der v,-Matrizen (A.1) sind die folgenden Matrixelemente gleich null.
Dabei ist die Proportionalitdt der Matrizen C' und D zur 1g-Matrix zu beriicksichtigen.

Cyp =Cyy =Dyy =Dyy =0 VP:P,e{0,7}, (A.7)

Es bleibt noch Cy, (P) = Cyy(P) zu zeigen. Betrachte dazu die folgende Symmetrietrans-
formation?:

Y, — 77¥;
U, — ‘1’5’74’7173
¢ = OF
oF = e (A.8)
mit:
= 74@5

Die Wirkung S des Modells ist nun invariant unter dieser Symmetrietransformation.
Bei den folgenden Manipulationen ist das Vorzeichen bei Vertauschung von Grassmann-
Variablen zu beriicksichtigen. Diese Vertauschung wird im folgenden durch Transposition
erzeugt.

Nothy = XEvamyvsmysy)
= XLy}
:¢yXx (AQ)

Als Folge ist Y, + gZny invariant unter (A.8), wenn 2 = y gilt oder iiber # und y
unabhingig summiert wird.

S Woravu Ve = D VI vumvsyumvs Vs
T T

Z Z qlg+ﬂ7471737u7173\p; = _Z Z qlg+ﬂ7u74\pa*c
¢ pu=+1,43 T pu=t1,43
= > > UiV
r pu=%£1,%43

'Im Funktionalintegralformalismus sind ¥, und ¥, unabhéngige Variablen, iiber die unabhingig inte-
griert wird, so daB (v172U%)Y va = =0 y4717s gelten darf.
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= 2 2 VeV

r pu=%£1,%£3

Z Z q’fm%’h%%%%‘p; = Z Z ‘I’a-g%%q’;
r pu=42,+4 r pu=%£2,+4

= 2 2 VeV

r pu=%£2,+4

= qux-l—ﬂ'm\px - qux-l-ﬂ'm\px (A.10)

Es bleibt die Priifung der Invarianz des Yukawaterms:

1-|-75 + s 1

be + ‘—%;] ——

6, + L8 ¢;] ¥
1 ‘|‘ Vs

by oF + —~ ¢x] Yy — 1#3747173 [1

1‘|"Y5

= —10374

1—7
:_¢g 25¢x
1_

2

¢+] e

= b ”75

75
b +

¢+] Vy (A.11)

Eine analoge Rechnung zeigt, dafl auch v, {H;f’ or + P%qbﬂ Xz invariant unter der Sym-

metrietransformation (A.8) ist. Damit gilt:

(YoXa)” = (Xota)® (A.12)

Da die Symmetrietransformation (A.8) die Ausdriicke in einander iiberfiihrt. Es folgt
Cyn (P) = Cyy(P), wie zu zeigen beabsichtigt.



Anhang B

Verbundene
1-Platz-Erwartungswerte

Aus der Gleichung (5.17) lassen sich durch Differentiation nach den zugeordneten Quellen
die 1-Platz-Erwartungswerte bestimmen. In diesem Anhang sollen nun bei

r=p=1
die 1-Platz-Erwartungswerte tabelliert werden, die fiir die Graphen der niedrigsten Ord-
nungen bendtigt werden.

Die Bezeichnung (A){ steht fiir den verbundenen Erwartungswert des Operators A
beziiglich des Mafles 7.

Erwartungswert graph. Symbol Term
U, )¢ > o b
<qu\pa>1 1_ GXGzp 66(1
(P TS P 4b = 1
(U (b\I/aﬁ »—i» 2b1 (A )pg
(U, o W,)§ »r» 201 (A4 )pa
T . N\ b1[(A=)de (At )ba — (A=)da (A4 )be
(Watlelole)s - $ - (A ae (A )b — (A )an (A
i
(Pt o)y »:» 64by = —1
) i
(U0, pp o] +:/{ 32bg (A-)ba
(U, T pT)s ;}A’ 3205 (AL )ba
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<H22:1 (qui qjaz) ¢ ¢>i

<H22:1 (qui qjaz) ¢ ¢+>i

<H22:1 (qui \IIU«i ) ¢+¢+>i

<[ ?:1 (ququaz):l ¢>i

<[H§:1 (ququaz)] ¢+>i

<H2’1:1 (qui \IIU«i )>i

(potootd o)

(UpWad oot dot)g

(U W dtd ot o)

“of

A

YL

f Y
' ..».... ...».. "

\

16b2[(A-)byay (A )by ay
— (A—)62a1 (A—)b1a2]

16023 p ges, [(—1)7 (—=1)%x
# (A2)P(61)0(ar) (A4) P (b3) Q(ar)]

16b2[(A4)byar (At )byay
— (Ap)brar (Ad)bras)

4by p ges, [(-1)7 (-1)9 (A-)p@1)Q(ar)*
* (A4)P(hy)0(az) (A=) P(52)Q(as)]

4by Yop ges (=17 (-1
# (AZ) P (b)0(az

C (AL P51 (ar)*
+)P(63)Q(a3)]

B

)
) (
by 3 p ges,[(—1)7 (-1)°
)
)

*

* (A=) p(by)
(A=) p(ss)
230463 = 4

1152b5(A_)pa

1152b5( A4 )pa
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Hierin bezeichnet S, die Gruppe der Permutationen von n Elementen. Das Symbol (—1)P
steht fiir das Vorzeichen der Permutation P. Es ist zu beachten, dafi die Permutationen
die Indizes der Fermionen und der Antifermionen jeweils nur untereinander vertauschen.



Anhang C

Riicktransformation der
fermionischen Suszeptibilitaten
aus der AB-Basis in die yy -Basis

In Abschnitt 2.3 wurde die AB-Basis vorgestellt, in der die fermionische Bindungsma-
trix Mj diagonal ist. Werden in dieser Basis die irreduziblen Kerne der Suszeptibilitdten
entwickelt, so ergibt sich die Frage, wie die einzelnen Suszeptibilititen bei der Riicktrans-
formation behandelt werden miissen und wie die dazugehé6rigen Matrixelemente auf ein-
fache Weise aus den Formeln (8.6)—(8.8) abgelesen werden kénnen. Aus

[ P Pgr o +. [ Pr Fr
A= ( PR PL ) A= 7414 Y4 = ( PL PR ) (Cl)
ergibt sich
- - 10 - - 01
A-A=A A_(O 1) A-A=A A_(l 0) (C.2)

Desweiteren gilt:

Aus der Forderung nach Invarianz der Wirkung S unter dieser Transformation ergibt sich,
dafl die Matrix M; wie folgt transformiert wird:

(Mﬂ)¢X—BaSiS = A . (Mﬂ)AB—Basis A (C4)

Die Matrizen 3 (P) und )Z;MLD haben das gleiche Transformationsverhalten. Es gilt:

() = 3 [ R (U W0) i
x—DBasis p

=3 [ P AN (W) AA]
= A Z {e_ip“x“ <\pxq}0>ilB—BasiS} A

= 4-(\1») ] (C.5)

AB—Basis
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Entsprechend gilt:

. W

)wx—Basis - (X3 )AB—Basis‘ (C.6)

(2"

Die Suszeptibilitit u3(P) besitzt ein anderes Transformationsverhalten, da ihre Definition
eine 7v,-Matrix enthélt.

CENRRED)>

('ug] P))AB—Basis A (C7)
Dabei wird Gleichung (C.3) angewandt. Die irreduziblen Kerne der Suszeptibilitdten trans-
formieren sich wie die zugeordneten Suszeptibilitdten.

In der AB-Basis sind die Matrizen M, und X;/J(P) diagonal beziiglich des
2-dimensionalen Raums, der von ¢4 und ¥ g aufgespannt wird. Da die 7,-Matrizen durch
die Summation > herausfallen, ist die Matrix (Eu M, - X;b) in der AB-Basis proportional
zur Einheitsmatrix im Raum der 8-komponentigen Bi-Spinoren. Es gilt:

(Z (Mﬂ)wx—Basis ) (ng)wx—Basis)
= (Z A ' (Mﬂ)AB—Basis “AA- (ng)AB—Basis ) A)
i

= A (Z (M3) 4B _Basis ° (X%D)AB—Basis) A
= (Z (M3) AB_Basis ° (ng)AB—Basis) (C.8)

i

Die Matrix (>, M - xY) transformiert sich somit trivial von der einen in die andere Basis
und ist in beiden Basen proportional zur 8-dimensionalen Einheitsmatrix. In der Rechnung
wurde die Diagonalstruktur der Matrix (3°, M, x¥) in der AB-Basis ausgenutzt.

Als Folge sind in den Formeln (8.6) — (8.8) die fermionischen geometrischen Reihen
ebenfalls diagonal, da sie nach Kapitel 8.2 aus Termen der Art

(w5

aufgebaut werden.
Diese Betrachtung zeigt, da die Matrixstruktur der Suszeptibilititen Yy und )Z;MLD
aus der Matrixstruktur des zugeordneten irreduziblen Kerns abgelesen werden kann. Die

Matrixelemente der Suszeptibilititen ergeben sich durch skalare Multiplikation mit der

jeweils bendtigten Potenz von [1 — 2K 32, cos(P,) )O(ZQZJX (P)]™" aus den entsprechenden
Matrixelementen des zugordneten irreduziblen Kerns in der gleichen Basis.!

'Der Term )?gjx ist ein Matrixelement von ;;Ij, das in der ¢x-Basis entsprechend Gleichung (3.27)
bestimmt wird.
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Der Fall der Suszeptibilitit py verdient noch eine genauere Betrachtung. Auch hier
lassen sich die Matrizen A bzw. A an den geometrischen Reihen vorbeiziehen. Die Trans-
formation des Terms (,&;II(P) + 8K )O(;Ij (P))OCSII (P)) von der AB-Basis in die t¢x-Basis
ist noch nicht beschrieben. Dieser Term ergibt sich nach Abschnitt 8.2.4 aus dem Term

(,&gj +X .7 )%;Ij M; )O(;Ij ). Aus dem Transformationsverhalten von ,&;Ij nach Gleichung
(C.7) ergibt sich mit Gleichung (C.3):

A A A
((’MZ )wx—Basis + Z'Yy( X2 )wx—Basis(Ml;)wx—Basis( X2 )wx—Basis)

— O\If — O\If [ O\If
= (A(’MQ )AB—BasisA—I_ 2711 A(XQ )AB—BasisAA(Mﬁ)AB—BasisAA(XQ )AB—BasisA)

o

hAJ A 3\
= A ((“2 ) AB—Basis ‘|‘Z%( X2 ) AB—Basis (M0) 4B _Basis( X2 )AB—Basis) A (C9)

Dies fithrt auf das schon bestimmete Transformationsverhalten fiir u3 .

Die Matrix (8K ;(;Ij (P);(;Ij (P)) ist ebenfalls in beiden Basen proportional
zu der 8-dimensionalen Einheitsmatrix und transformiert sich trivial beim Ba-
siswechsel. Die Matrixelemente von puj kénnen ebenso einfach aus denen von

(,&;II(P) + 8K )%;Ij (P);(;Ij (P)) abgelesen werden wie im Fall der anderen Suszeptibilitdten.
Dabei ist mit [1 — 2K >4_, cos(P,) )OCZQZJX(P)]_Z zu multiplizieren.



Anhang D

Tabelle der Graphen

In diesem Abschnitt sollen die im Rahmen dieser Arbeit ausgewerteten irreduziblen Gra-
phen angegeben werden. Sie sind nach ihrer Ordnung in 7 geordnet.

Bei der Auswertung von Graphen mit fermionischen Linien sind die folgenden Matrix-
formeln hilfreich.

8-np 2
In der AB-Basis gilt:
4 0 0 0 0
A-Mpdy = m[(o Gwa)+7“(0 PRGWLGz)] D)
A _ 4 GyGy 0 PLG?Z}—I—PRGi 0

An den Graphen werden entsprechend Punkt 3 in Abschnitt 7.3.1 einige innere Linien
mit f; bezeichnet. Diese Bezeichnungen sind an den Graphen angegeben. Sind innere
Graphenlinien nicht mit einem derartigen Index bezeichnet, so sind sie entweder durch die
f;’s festgelegt oder aber die Summation {iber deren Richtungen ist in Abh&ngigkeit von
den [i;’s schon ausgefiihrt.

D.1 Eine einlaufende und eine auslaufende fermionische
Linie

In diesem Abschnitt werden alle irreduziblen Graphen mit einer einlaufenden und einer
auslaufenden fermionischen Linie bis zur 4. Ordnung in 7 vorgestellt. Diese Graphen
werden zur Entwicklung der Suszeptibilititen \J (P) und u (P) benétigt. Die Terme
Rg(fi1,- -, ftp) werden in der AB-Basis angegeben.

Nr. Graph G S Rg(fu,---, ityp)

1 o> ;)
‘ 1= GGy

9 k- K G¢Gx 0 i PLGQZN‘PRG)Z( 0
‘ (1= Gy Gy)? 0 o) 0 0
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3 1 k- K 0 0 n 0 0
' (1= GyGy)? (N0 GyGy ) T\ 0 PRG34+PLG?
4K3 . np Gy G 0
N " (G =G Yy
' 2 PrG24PrG? 0
_1_7 P X
s 0 PRGQZN‘PLG)Z(
~———0o 2k2K? P.G:4+PrG2 0
. H2 ‘ 1 (I_GxGw)S [ o ( t wo X 0) (1_5M1(—M2) _5M1(M2)>
firA A
GyGy 0 PLGE4PRG 0 s
J Poeeonen PS + 0 0 +’YM1 0 0 ( - M1(_“2))
——>—0 > 2k2 K2 0 0
H2 (1— Gy Gy)? |:7M2 ( 0 PRGi,-l—PLGi ) (1 _5M1(—M2) - 5#1(#2))
6 Y Y 1
: N 0 0 N 0 0 (1-s )
J S RN [ R ® 0 G"l’GX G 0 PRGi‘i'PLGi w1 (—p2)
? ........ ». ...... ?
21k3K GuGy 0 PrLG2+PRrG? 0
. A s YLx LUy RGY
‘ o e (0 ) 0 o
T l,l T
. ...... ..< ....... .
21k3K 0 0 0 0
. A 1 s
i Y ] (1 —GyGy)? [(0 Gwa) LR (0 PRG12¢1+PLG>2<)]
> —0»—
3
9. A ' 1 126 K PLGi—i—PRGf< 0
) (1-GGy)* [ 0 0
_H.li. ...... *r—
10 A ' 1 12k K3 0 0
‘ P (1= GyGy)* "\ 0 PrG2+PLG?
[ _4“ ...... *r—
4
11. v A 1 & Gy Gy 0
= GG\ 0 Guly
—1*
12 L ®E [(GyGy 0, ( PLGi+PRGY 0
' 2 (1= GyGy)? 0 o))" n 0 0
13 1 k3K 0 0 N 0 0
' 2 (1= GyGy)Z [\ 0 GyGy ) T\ 0 PrGI+PLGE
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83K GuG, 0 PrG24PrG2 0
. A . LRSS LUyTRUY
R A U e (G0 0) e (AT )]
8k3 K 0 0 0 0
i _
O LU A Gy
8Kk3K GuGy 0 PrG24PRrG2? 0
A o LRSS LUy RGY
o A (N K 0 0)”“( 0 0
8k3 K 0 0 0 0
i _
e L, ! (1 - GyGy)? [(o G¢Gx)+7ﬂ<o PRGi—i—PLGi)]

D.2 Eine einlaufende und eine auslaufende bosonische
Linie

In diesem Abschnitt werden die irreduziblien Graphen bis zur 4. Ordnung in 7 angegeben,
die zu X;S und ,u%s beitragen.

Nr. Graph g Sg Rg (ﬂlv Ty ﬂp)
f 9K? . np
2 e 1 0= GGy) (Gy —GYy)
3 AY 1 —8%32
16kK? np
+ 1 — e (Gy =Gy )?
(1 — G Gy)? (Gy x)
16kK? np
> 1 — e (Gy =Gy )?
(1—G><Gw)2 ( (4 x)
[
6 il 1 K3



90

10.

11.

12.

13.

14.

15.

16.

..»...
fiz
i
...»..
- cPee
H1
A fiz \j
...».. :
A
L o - -
Y A
fi

| =

N | —

| =

ANHANG D. TABELLE DER GRAPHEN

128K (np)®

(1 - GXG¢)4

4 K% (np)2
(1 - GXG¢)4

[(4 oy
(1_G><G¢)4

24 K% . np
(1_G><G¢)4

24 K% . np
(1_G><G¢)4

2k2K?% np (
(1_G><G¢)2

2k K? - np
(1_G><G¢)2

166 K? -np

(1—-GyGy)?

—32k*

(Gy—

(Gw_Gx)4

(Gw_Gx)4

|:8(G¢_GX)26N1N2

+4 (Gi + G>2< + (Glﬂ_Gx)z) (1 - 6u1u2 - 6u1(—u2)) }

(G +G3)

(GL+G)

G¢—Gx)2

(G¢—Gx)2

Gy)?



D.3. ZWEI FERMIONISCHE LINIEN UND EINE BOSONISCHE LINIE

17, i
o::::::':.::::::;»

A

e 1

TR S

—_

256 k*

—168 k*

64 Kkt
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D.3 Eine einlaufende und eine auslaufende fermionische

Linie, eine auslaufende bosonische Linie

Die Graphen werden bis zur 3. Ordnung in 7 angegeben, und auch hier werden alle
Angaben beziiglich der A B-Basis gemacht.

Nr. Graph G

L

..»....
9 W

:

Sg

1

N | —

_ 1 0 0
(1 —GXG¢) PLG¢+PRGX 0

2K2 np 0 0
- (Gy—Gy)?
(I—GXG¢)3( v =) (PLG¢+PRGX 0

8 K2 0 0
(1 — GXG¢) PLG¢—|-PRGX 0

8k K2 9 0
(1 -G\ Gy)? [2 (Gy=Ci)"nr ( PLGy+PrGy
0

T\ (PG - PrG2) (G —Gy)

16k K? - np 9 0 0
Tt @60 ( pyg,4mc, ©)

w® 0 0
(I—GXG¢) PLG¢+PRGX 0

oo © O
Se— N
| I



92 ANHANG D. TABELLE DER GRAPHEN

Die Graphen dieses Abschnitts werden zur Bestimmung der renormierten Yukawakopplung
unter Verwendung der Suszeptibilitét X:;DX\D bend&tigt. Sie besitzt die Gestalt einer diago-
nalen 8 x 8-Matrix. I£s gibt darin nur zwei Arten unabh&ngiger Eintrége. Beide lassen sich
mit Hilfe der Graphen mit einer auslaufenden bosonischen Linie, einer einlaufenden und
einer auslaufenden fermionischen Linie bestimmen. Die entsprechenden Graphen mit einer
einlaufenden bosonischen Linie brauchen nicht ausgewertet zu werden, da aus ihnen keine
neue Information gewonnen werden kann.

D.4 Zwei einlaufende und zwei auslaufende bosonische Li-
nien

Dieirreduziblen Graphen zur Bestimmung der Suszeptibilitit Xff werden in diesem Anhang

bis zur 3. Ordnung in 7 angegeben.

Nr. Graph G Sg Ro(fua, -+ fap)
A 1
1 > - -1
i 4
Aoa
2 6::::::'5?::::::6 1 K2
i A 2
3. b % 32 1?2
A
P4
4 > o::::::::é::::::&v é K2
A
i 2 (1—GyGy)z v X
i 2 (1—GyGy)z v X
i
7 > ....;;5:4:;;5.....,.. % —4 g3
A
i
S, eeniEiess L A&
A
Ao 2kK? np

Iwz (1—GXG¢)2( P X)



D.4.

10.

11.

12.

W | =

(1 - GXG¢)2 (

(1 - GXG¢)2

(1 - GXG¢)2

VIER AUSSERE BOSONISCHE LINIEN

2kK?% - np

64k K? - np

64k K? - np

G¢—Gx)2

(G¢—Gx)2

(G¢—Gx)2
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Anhang E

Taylorreihe fiir die irreduziblen
Kerne

In diesem Abschnitt werden die Taylorentwicklungen der irreduziblen Kerne angegeben,
die sich mit den Abschnitten 7.3.1 und 7.3.2 aus den Faktoren Sg und Rg(fy, - -, fip) des
Anhangs D gewinnen lassen.

Bei den P abhdngigen Groflen wird mit n, die Anzahl der Komponenten P, mit P, =7
bezeichnet. Alle Terme einer Zeile gehdren der gleichen Ordnung in 7 an. Existieren mehr
Terme einer Ordnung, als in eine Zeile passen, so wird die folgende Zeile eingeriickt.

Taylorreihe fiir )%ZQZJX(P)
vUXx Py = 1
WP = e

k- K
—— G, G
(1_G><G¢)2 A
2K3. ng (
(1 - GXG¢)4

+(8 —4n,)

+(8 — 4n,) Gy _Gx)2 GGy

96 K*
GGyt (202 — 8, +7)

16 K2 - K2
(1 - GxGw) 3 GXGdJ

(1 - GxGw)

11&3- K
3 GXG¢ (El)

A= 2m) (1-G\Gy)

Taylorreihe fiir ,&gj(P)

op 8k-K
py(P) = (1= G Gy)? G

16 K3 - np
— Gy —-G,)*G?
—I_(l _ GxGw)4 ( P X) X
96 k K3

452 K2
+ _ 4 3 G>2<
(1 GxGw)

2
G —28n,)————
24 (56 8n)(1_ xem)

4453 K 9
HESIRNERS "
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° Sk K
X P — —G2
’u2( ) (1 _ GXG¢)2 w
16 K3 np ) o
oG, GGG
96 1 K3 Ar2. K2
G2 4+ (56 — 28ny) e G
(1- GGyt ( ) (1— GyGy)? ¥
4K K,
T _c a2 E.
TN (E.3)
Taylorreihe fur )%g
o¢ _ 1
X§ o= g
8K? - np
—4 K7 Gy—Gy)?
H+(1—GXG¢)2( ¥ x)
16k K% np

3 _ . 2

+2K (1 — G Gy)? (Gy—Gy)
116 % K% -np

- (Gw_Gx)Q

o (1 - GdeJ)z
K*-np 4 2 2 2
+ 112 g (Gy— G+ 128 (Gy—Gy)? + 288 (G2 + G2)

(1-GGy)t
(E.4)
Taylorreihe fur ,u%’
0’ — 8[(2—7117 2
I T eNeHER
+2 K3
116 k% K? - np 9
C(1-G,Gy)? (Gy—Gy)
Kt ng 4 5 ) )
+m 256 - g (Gy— Gy ) + 320 (Gy—Gy)? + 384 (G2 + G2)
X

(E.5)
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Taylorreihe fur )Zgjqﬂj

oV oW

Die Matrix )Z;Ij wird hier in der ¢ x-Basis angegeben. Der Term ( X5 " ),, ist in dieser

Basis identisch mit dem Vorfaktor von Pp in der linken oberen Ecke von ;z:‘fw, der Term
° YW

(X3 ?" )55 entspricht dem Vorfaktor von Pr, in der rechten unteren Ecke.
Wl 1 PrG 0
s T TU-GGy \ 0 PGy
8 k? 16 K2 . ng PrG 0
- Gy—Gy)? X
i l(l GGy -GGy T ] ( 0 PGy

B 453 PrG 0
(1 -G Gy) 0 PGy
8k - K2 PrG? 0
(G- X
EENENE (Gy=G) ( 0 PG )

32k - K? “np 2 PRGX 0
— — E.
+ (1 -G Gy)3 (Gy—Gy) ( 0 PLGy (E.6)
Taylorreihe fiir )%f
O¢ . _§
Xy = 3
39 ,  24K?%-np 5
L TSN (Gy=G)
K7
4?4 B B (Gy—Gy)? (E.7)

(1 - Gde/)z
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