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Kapitel 1EinleitungZur Untersu
hung der elektros
hwa
hen We
hselwirkung im Rahmen des Standard-Modells der Elementarteil
hen-Physik sind in den vergangenen Jahren viele Arbeiten �ubergitterregularisierte Yukawa-Modelle ers
hienen. Darin werden vers
hiedene Aspekte einesModells mit bosonis
hen und fermionis
hen Feldern, die dur
h eine Yukawa-Kopplungverbunden sind, beleu
htet. Der Konferenzbeitrag [10℄ gibt einen kurzen �Uberbli
k �uberUntersu
hungen, die vor 1991 dur
hgef�uhrt worden sind. In diesen Arbeiten wird dasEi
hfeld des Standard-Modells ni
ht ber�u
ksi
htigt, so da� die Modelle nur eine globaleSymmetrie besitzen.Anstatt der SU(2)L 
 U(1)Y -Symmetrie des Standard-Modells werden in diesenVer�o�entli
hungen die F�alle einer SU(2)L
SU(2)R- bzw. U(1)L
U(1)R-Symmetrie dis-kutiert. Die letztere wird au
h in dieser Arbeit betra
htet.Zur L�osung des Verdopplungsproblems, das immer auftritt, wenn Fermionen auf ei-nem Gitter regularisiert werden, wird in diesen Arbeiten ein Wilson-Term benutzt, der die
hirale Symmetrie der Modelle ni
ht bri
ht. Dieses erfordert die Einf�uhrung eines fermi-onis
hen Spiegelfeldes �x. Wie die bisherigen Untersu
hungen zeigen, sollte der Wilson-Term au
h im we
hselwirkenden Fall, sofern das Produkt der Kopplungen G G� < 1ist (vgl. [7℄), 30 der 32 Fermionen im Kontinuumslimes aus dem physikalis
hen Spektrumentfernen. In [8℄ wird mit Hilfe numeris
her Simulationen gezeigt, da� die Spiegelfermi-onen in der Phase mit spontan gebro
hener Symmetrie bei geeigneter Parameterwahl einegr�o�ere Masse als die Fermionen erhalten, so da� es m�ogli
h ist, das Verdopplungsproblemso zu l�osen, da� nur ein Fermion im niederenergetis
hen Spektrum verbleibt.Dur
h die Gitterregularisierung gewinnt die Feldtheorie �Ahnli
hkeit zu einem Spin-system in 4 Dimensionen mit "N�a
hst-Na
hbar-We
hselwirkung\. Die wesentli
he Ideedieser Arbeit besteht nun darin, den Logarithmus der Zustandssumme in eine Taylorreihena
h den Hopping-Parametern � und K zu entwi
keln. Die Kopplungen zwis
hen denFeldern bena
hbarter Gitterorte werden hier Hopping-Parameter genannt. Als Entwi
k-lungspunkt wird der Fall vers
hwindender Hopping-Parameter verwendet, der si
h in dersymmetris
hen Phase des Modells be�ndet. Aufgrund der Singularit�aten, die mit einemPhasen�ubergang verbunden sind, liegt der Konvergenzberei
h der Taylorreihe vollst�andigin dem Berei
h des Parameterraums, der dur
h die symmetris
he Phase gegeben ist.Zur Handhabung der Taylorreihe wird die Te
hnik der "Linked-Cluster-Expansion\angewandt. Die Methode wird in [1℄ auf sehr verst�andli
he Weise am Beispiel des Ising-Modells erkl�art.In [3, 4℄ wird mit diesem Verfahren das �4-Modell untersu
ht. Dazu wird ein Computer-3



4 KAPITEL 1. EINLEITUNGAlgorithmus entwi
kelt, der alle Graphen bis zur 14. Ordnung in der Hopping-Parameter-Entwi
klung erzeugt und ausgewertet. Das Feld �x wird in [3℄ als einkomponentiges und in[4℄ als n-komponentigen reellen Skalarfeld behandelt. Zudem werden in [4℄ Regeln f�ur dieEntwi
klung von Suszeptibilit�aten in einer skalaren Feldtheorie ohne Beweis angegeben.Im Gegensatz zu den vorstehend angef�uhrten Arbeiten wird in der vorliegenden Arbeitdas skalare Feld dur
h eine komplexe Komponente bes
hrieben. Dieser Fall ist �aquivalentzu einem 2-komponentigen reellen Skalarfeld. In der "Linked-Cluster-Expansion\ f�uhrt dieBehandlung des Skalarfeldes als komplexes Feld zu orientierten Graphenlinien, die im Falledes fermionis
hen Feldes ohnehin ben�otigt werden.Auf 
hirale Yukawa-Modelle ist das Verfahren wiederholt angewandt worden. Einebosonis
he Hopping-Parameter-Entwi
klung wird in [6℄ auf der Basis der Ergebnisse aus[4℄ diskutiert. Da zu ist es notwendig den fermionis
hen Hopping-Parameter K auf null zusetzen, was f�uhrt dazu, da� die Fermionen eine unendli
he physikalis
he Masse besitzenund ni
ht mehr propagieren k�onnen (statis
he Fermionen). Diese Untersu
hung wird f�ureine U(1)L 
 U(1)R-Symmetrie dur
hgef�uhrt.Eine Entwi
klung na
h dem fermionis
hen Hopping-Parameter K, d. h. bei vers
hwin-dendem bosonis
hen Hopping-Parameter �, wird in [5℄ im Fall SU(2)L
SU(2)R diskutiert.Das Nullsetzen des bosonis
hen Hopping-Parameters f�uhrt hier aber ni
ht zu einer diver-gierenden bosonis
hen Masse, da in Verbindung mit der Yukawa-Kopplung die bosonis
henFelder vers
hiedener Gitterorte au
h �uber den fermionis
hen Hopping-ParameterK gekop-pelt werden.Die Entwi
klung des U(1)L
U(1)R-symmetris
he Modell bez�ugli
h des fermionis
henHopping-Parameters K wird in [7, 11℄ dur
hgef�uhrt. Die Suszeptibilit�aten f�ur die renor-mierten Yukawa-Kopplungen werden dabei bis zur 5. Ordnung und die f�ur die bosonis
herenormierte Masse bis 8. Ordnung in K ausgewertet. Die Ordnungen der verbleibendenSuszeptibilit�aten liegen dazwis
hen.In der vorliegenden Arbeit werden graphis
he Regeln f�ur die Entwi
klung desU(1)L 
 U(1)R-symmetris
hen Modells na
h beiden Hopping-Parametern � und K herge-leitet. Dazu wird in Kapitel 2 eine detaillierte Einf�uhrung in das untersu
hte Modell gege-ben. In Kapitel 3 werden die renormierten Gr�o�en eingef�uhrt, und in den Kapiteln 4 bis 8werden dann die vers
hiedenen Aspekte der Hopping-Parameter-Entwi
klung betra
htet.Die Ergebnisse der Entwi
klungen werden im Kapitel 9 vorgestellt und mit Resultatenvergli
hen, die mit Monte-Carlo-Verfahren oder dur
h Symmetrie�uberlegungen gewonnenwurden. Die Entwi
klung der renormierten Massen und Wellenfunktionsrenormierungenkonnte bis zur 4. Ordnung in den Hoppingparametern, die der renormierten Kopplungennur bis zur 3. Ordnung dur
hgef�uhrt werden. Im Verglei
h zu den Ver�o�entli
hungen [3, 4℄ist das verh�altnism�a�ig wenig, aber dur
h die Entwi
klung in zwei Hopping-Parameternw�a
hst hier die Anzahl der Graphen stark an. Eine weitere Ers
hwernis besteht in denmit den Fermionen verbundenen Matrix-Operationen. Aufgrund der geringen Anzahl derOrdnungen die in dieser Arbeit bestimmt werden konnten, sollen die Verglei
he in ersterLinie der Kontrolle der Methode dienen und weniger dem Gewinnen neuer Erkenntnisse�uber das Modell.Aus diesen Verglei
hen k�onnen einige Erkenntnisse �uber die M�ogli
hkeiten und Grenzender Entwi
klungen gewonnen werden.



Kapitel 2Einf�uhrung in das untersu
hteModell2.1 Euklidis
he WirkungDie Methode der graphis
hen Entwi
klung na
h den Hopping-Parametern soll hier anhandeines U(1)L
U(1)R-symmetris
hen Yukawa-Modells eingef�uhrt werden. Zur Konstruktiondes Modells wird neben dem urspr�ungli
hen Fermionenfeld  ein Spiegelfeld � eingef�uhrt.Dur
h dieses Spiegelfeld ist es m�ogli
h, eine "na
kte\ Masse � � und einen Wilson-Termmit Wilson-Parameter r in das Modell einzuf�uhren, die die 
hirale Symmetrie ni
ht bre-
hen. Beide fermionis
hen Felder nehmen, wie �ubli
h, Werte in einer Grassmann-Algebra1an. Auf dem kubis
hen primitiven Gitter in 4 Dimensionen wird dieses Modell dur
h diefolgende euklidis
he Gitterwirkung bes
hrieben.S[�; �+;	; �	℄ := S�[�; �+℄ + S�	[�; �+;	; �	℄ (2.1)S�[�; �+℄ := Xx ��+x �x + �(�+x�x � 1)2 � �X̂� �+x+�̂ �x �S�	[�; �+;	; �	℄ := Xx � �	xG(�x; �+x )	x �K X̂� �	x+�̂M�̂	x �Hierbei werden die folgenden Notationen benutzt:	x :=   x�x ! (2.2)�x := �1x + i�2x (2.3)G(�x; �+x ) := 0� G h1+
52 �+x + 1�
52 �xi ���� G� h1+
52 �x + 1�
52 �+x i 1A (2.4)M�̂ :=  
� rr 
� ! (2.5)1Grassmann-Algebren zei
hen si
h u. a. dadur
h aus, da� ihre Elemente paarweise antikommutieren,z. B.:  x y = � y x oder �x � x = � � x�x et
. Siehe au
h Abs
hnitt 5.15



6 KAPITEL 2. EINF�UHRUNG IN DAS UNTERSUCHTE MODELLXx : Summe �uber alle Punkte x des 4-dimensionalen euklidi-s
hen Raum-Zeit-Gitters (2.6)X̂� : Summe �uber alle 4 Raum-Zeit-Ri
htungen in die jeweilspositive und negative Ri
htung, also 8 Summanden (2.7)Die Parameter K und � werden als Hopping-Parameter bezei
hnet. Werden beideHopping-Parameter auf 0 gesetzt, so enth�alt die Wirkung S[�; �+;	; �	℄ nur Summan-den, die Feldgr�o�en eines Gitterortes x verbinden. Aus dem Parameter �� l�a�t si
h die"na
kte\ Fermionenmasse � � in Einheiten des reziproken Gitterabstandes mit� � = �� � 8rK (2.8)gewinnen. Die Wirkung des Wilson-Terms mit Parameter r wird in Abs
hnitt 3.1.1erl�autert. Die Parameter �� und r sind so eingef�uhrt, da� die 
hirale Symmetrie ni
htverletzt wird. In den dur
hgef�uhrten Re
hnungen werden diese Parameter aufr = �� = 1 (2.9)normiert. Die 
�-Matrizen sind in der euklidis
hen Formulierung zu benutzen. Die von mirbenutzte Darstellung kann im Anhang A na
hges
hlagen werden, sie entspri
ht der in [7℄benutzten. Es gilt 
�� = �
�.2.1.1 Chirale SymmetrieWie s
hon mehrfa
h erw�ahnt, besitzt dieses Modell eine U(1)L 
 U(1)R-Symmetrie. Dadas Modell keine Ei
hfelder enth�alt, handelt es si
h hierbei um eine globale Symmetriedes Modells. Sie wird dur
h die folgenden Symmetrietransformationen vermittelt. 0Lx = e�i�L Lx  0Rx = e�i�R Rx�0Lx = e�i�R�Lx �0Rx = e�i�L�Rx�0x = e�i(�L��R)�x (2.10)2.2 Erzeugende FunktionaleAus der oben eingef�uhrten Gitter-Wirkung S[�; �+;	; �	℄ lassen si
h nun dur
h dieEinf�uhrung von fermionis
hen �, �� und bosonis
hen Quelltermen J , J+ erzeugende Funk-tionale Z, W f�ur die unverbundenen oder verbundenen Greens
hen Funktionen erkl�aren.Z[J; J+; �; ��℄ := Z D�D�+D	D �	 �� exp(�S[�; �+;	; �	℄ +Xx �J+x �x + �+x Jx + ��x	x + �	x�x�) (2.11)Dabei bedeutet: D� :=Yx d�x (2.12)Entspre
hende Formeln gelten f�ur die restli
hen 3 Integrationsvariablen.



2.3. BASISTRANSFORMATION DES FERMIONEN-RAUMS 7Das skalare Feld �x wird als komplexwertiges Feld behandelt. Dies erfordert dieEinf�uhrung zweier Quellen Jx und J+x . Daraus ergeben si
h, im Gegensatz zu den Pu-blikationen [3, 4℄ �uber graphis
he Entwi
klung in der �4-Theorie mit reellen bosonis
henFeldern, orientierte bosonis
he Linien. Nat�urli
h gibt es au
h die M�ogli
hkeit, das Skalar-feld � als 2-dimensionales Vektorfeld reeller Zahlen einzuf�uhren, dann entf�allt die QuelleJ+x , aber bei Jx handelt es si
h dann ebenfalls um ein 2-dimensionales Vektorfeld.Aus dem erzeugenden Funktional Z[J; J+; �; ��℄ l�a�t si
h in der �ubli
hen Weise daserzeugende Funktional W [J; J+; �; ��℄ der verbundenen Greens
hen Funktionen bilden.W [J; J+; �; ��℄ := ln �Z[J; J+; �; ��℄� (2.13)Die verbundenen Greens
hen Funktionen ergeben si
h nun aus W dur
h Di�erentiationna
h den jeweiligen Quellen. Beispiele:h	y �	zi
 = � ����y ���zW [J; J+; �; ��℄ �����J;J+;�;��=0 (2.14)h�y�+z i
 = ��J+y ��JzW [J; J+; �; ��℄ �����J;J+;�;��=0 (2.15)2.3 Basistransformation des Fermionen-RaumsF�ur die Dur
hf�uhrung der fermionis
hen Hopping-Parameter-Entwi
klung ist es vorteil-haft, die Matrix M�̂ zu diagonalisieren. Dazu werden hier wie in [7℄ die links- undre
htsh�andigen Anteile der fermionis
hen Felder  und � umgeordnet: Ax :=  L;x + �R;x  Bx := �L;x +  R;x (2.16)Das Symbol 	x wird nun als: 	x :=   Ax Bx ! = A  x�x ! (2.17)rede�niert. Dabei ist die Matrix A dur
hA =  PL PRPR PL ! (2.18)mit PL = 1 + 
52 ; PR = 1� 
52gegeben. F�ur die Matrizen G(�x; �+x ) und M�̂ ergibt si
h damit in der neuen Basis diefolgende Gestalt: G(�x; �+x ) :=  �� �x(G��
5G�)�+x (G�+
5G�) �� ! (2.19)M�̂ :=  
� + r 00 
� + r ! (2.20)



8 KAPITEL 2. EINF�UHRUNG IN DAS UNTERSUCHTE MODELLDabei gilt: G� := 12(G +G�) G� := 12(G �G�) (2.21)In den folgenden Abs
hnitten wird nun, soweit ni
ht anders erw�ahnt, diese Basis desFermionen-Raums verwenden.Die hier vorgestellte Basis werde i
h kurz als AB-Basis und die in Abs
hnitt 2.1 ein-gef�uhrte als  �-Basis bezei
hnen.2.4 Flavour-VerdopplungNumeris
hen Simulationen, die mit einen Hybrid-Monte-Carlo-Algorithmus dur
hgef�uhrtwerden, ben�otigen eine Verdopplung der Flavours des fermionis
hen Spektrums. Da imRahmen dieser Arbeit Ergebnisse aus der Hopping-Parameter-Entwi
klung mit denen ei-nes derartigen Algorithmus vergli
hen werden sollen, ist es notwendig den Fall mehrererfermionis
her Flavours zu diskutieren. Die Anzahl der Flavours wird im weiteren mit nFbezei
hnet. In [7℄ wurde der fermionis
he Teil der Wirkung S�	[�; �+;	; �	℄ im Fall nF = 2wie folgt modi�ziert.S�	[�; �+;	; �	℄ := 2XF=1Xx � �	(F )x G(F )(�x; �+x )	(F )x �K X̂� �	(F )x+�̂M�̂	(F )x � (2.22)Dabei gilt f�ur G(F )(�x; �+x ):G(1)(�x; �+x ) = G(�x; �+x ) G(2)(�x; �+x ) = G+(�x; �+x ) (2.23)Das f�uhrt dazu, da� si
h das Feld 	(2) wie ein Spiegelfeld zu 	(1) transformiert. DieSymmetrietransformation (2.10) erh�alt in diesem Fall die Form: 0(F )Lx = exp(�i�FL) (F )Lx  0(F )Rx = exp(�i�FR) (F )Rx�0(F )Lx = exp(�i�FR)�(F )Lx �0(F )Rx = exp(�i�FL)�(F )Rx�1L = �L + �1�2; �1R = �R + �1�2; �2L = �R � �1�2; �2R = �L � �1�2�0x = e�i(�L��R)�x (2.24)Damit ergibt si
h, da� das Modell im Fall nF = 2 eine globale U(1)L 
 U(1)R 
 U(1)1�2-Symmetrie besitzt. Es ist zu bea
hten, da� die Wirkung S keinen Term enth�alt, der diebeiden Flavours mis
ht.Diese Verdopplung der Fermionenanzahl hat ni
hts mit dem Verdopplungsproblementspre
hend Abs
hnitt 3.1.1 zu tun, sondern ist eine rein te
hnis
he Notwendigkeit in demHybrid-Monte-Carlo-Algorithmus. An dieser Stelle soll ausdr�u
kli
h betont werden, da�die Hopping-Parameter Entwi
klung diese Verdopplung der Flavours ni
ht ben�otigt. Dasi
h die Methode der Entwi
klung bei vers
hiedenen Flavour-Anzahlen nF ni
ht wesentli
hunters
heidet, wird hier im weiteren der Fall nF = 1 diskutiert und nur an den Stellen, andenen si
h im Fall nF 6= 1 Unters
hiede ergeben, werden diese diskutiert.



Kapitel 3Renormierte Gr�o�enIn diesem Kapitel werden die renormierten Gr�o�en de�niert, dabei wird f�ur die Fermionendie  �-Basis verwendet.3.1 Fermionen3.1.1 Anmerkungen zum Fermionen{VerdopplungsproblemAus der Glei
hung (2.1) ergibt si
h im Fall freier Fermionen, das hei�t bei G = G� = 0,f�ur den inversen fermionis
hen Propagator (�	f )�1(x; y) die folgende Matrix:��	f ��1(x; y) = Æx;y  0 ���� 0 !�K X̂� Æy;x+�̂  
� rr 
� ! (3.1)Mit der De�nition: p̂� := 2 sin�p�2 � �p� := sin(p�) (3.2)ergibt si
h hieraus unter Verwendung von Glei
hung (2.8):�e�	f ��1(p) = Xx e�ipx ��	f ��1(x; 0)= 2 iK sin p� 
� 00 
� !+  0 � � + rKp̂2� � + rKp̂2 0 ! (3.3)e�	f (p) = 1(� � + rKp̂2)2 + 4K2�p2  �2iK
��p� � � + rKp̂2� � + rKp̂2 �2iK
��p� ! (3.4)Der Propagator im Ortsraum �	f (x; y) l�a�t si
h nun dur
h Fourierr�u
ktransformation�	f (x; 0) = 1(2�)4 Z ��� d4p eipx e�	f (p) (3.5)aus Glei
hung (3.4) gewinnen. Dabei wird �uber die gesamte Brillouin-Zone integriert.An dieser Stelle zeigt si
h nun ein grunds�atzli
hes Problem bei der Bes
hreibung vonFermionen auf dem Gitter. Der obige Propagator besitzt in der Brillouin-Zone 16 Teil-
henpole, die in der N�ahe der Mitte (p� = 0) und der E
ken (p� = �) liegen. Das Integral9



10 KAPITEL 3. RENORMIERTE GR�OSSEN(3.5) ber�u
ksi
htigt diese Pole glei
hbere
htigt. Als Ergebnis bes
hreibt �	f (x; 0) die Pro-pagation von 16 Teil
hen.Betra
hten wir nun den Pol in der N�ahe von p = �1 := (�; 0; 0; 0). Er l�a�t si
h dur
hMultiplikation der Glei
hung (3.5) mit (�1)x1 in die N�ahe der Stelle p� = 0 vers
hieben:(�1)x1�	f (x; 0) = 1(2�)4 Z ��� d4p ei(p��1)x e�	f (p)= 1(2�)4 Z 2�0 dp1 Z ��� dp2 Z ��� dp3 Z ��� dp4 eipx e�	f (p+ �1) (3.6)Der Pol in e�	f (p) an der Stelle p = �1 entspri
ht somit der Propagation eines "antifer-romagnetis
hen\ Feldes in der x1-Ri
htung und eines "ferromagnetis
hen\ Feldes in denverbleibenden drei Ri
htungen.(�1)x1�	f (x; 0) = h(�1)x1	(x)�	(0)i
 (3.7)Na
h Glei
hung (3.4) ergibt si
h aus der Lage der Polstelle in e�	f (p) in der N�ahe vonp = �1, da� diesem Feld eine Masse von �(�1) � 12K (� � + rK(�̂1)2) = 12K (� � + 4rK)im Fall kleiner � � zuzuordnen ist.Allgemein ist einem Teil
henpol in der N�ahe der E
ken P der Brillouin-Zone eine Massevon �(P ) � 12K (� � + rKP̂ 2) mit P� 2 f0; �g zuzuordnen.Hier zeigt si
h nun der Nutzen des Wilson-Terms. Wird r = 0 gesetzt, so wird allenPolen die glei
he Masse �(P ) � 12K� � zugeordnet.Wird r hingegen auf einen von 0 vers
hiedenen positiven Wert gesetzt, so f�uhrt diesdazu, da� den unerw�uns
hten Dopplern im Kontinuumslimes eine divergierende Masse(�!1) zugeordnet wird. Der Kontinuumslimes wird dadur
h gebildet, da� der Massen-parameter �(P ) auf 0 gesetzt wird. Dieser Massenparameter gibt die Masse der bes
hrie-benen Teil
hen in Einheiten der reziproken Gitterl�ange 1=a an. Verglei
he [2℄1. Dies istnun an den Stellen, an denen f�ur mindestens ein p� = � gilt, ni
ht mehr zu errei
hen.Als Folge davon wird den entspre
henden Teil
hen eine Masse der Gr�o�enordnung O(1=a)zugeordnet, und sie werden somit aus dem physikalis
hen Spektrum entfernt. Es sollte hierno
h kurz bemerkt werden, da� der Wilson-Term den Kontinuumslimes der Wirkung Sni
ht ver�andert.Soweit die Betra
htungen zur freien Theorie. Im n�a
hsten Abs
hnitt werden in Analogiezu dieser Betra
htung die renormierten Gr�o�en in der we
hselwirkenden Theorie de�niert.3.1.2 De�nition der fermionis
hen renormierten Gr�o�enDie folgende Darstellung lehnt si
h an die Darstellung in [7℄ an. In der we
hselwirkendenTheorie wird nun angenommen, da� si
h das qualitative Verhalten des Propagators e�	(p)in der N�ahe der E
ken der Brillouin-Zone ni
ht wesentli
h von dem des freien Propa-gators e�	f (p) unters
heidet. In Analogie zu Glei
hung (3.3) wird f�ur ( e�	)�1 (p) in dersymmetris
hen Phase die folgende Form, die im Anhang A n�aher erl�autert wird, erwartet:�e�	��1 (p) =  0 M �(P )M �(P ) 0 !+ i�p�  
�N  (P ) 00 
�N��(P ) !+ O(�p2) (3.8)1Bea
hte: In [2℄ entspre
hen die hier benutzten Felder, Massen et
. den Gr�o�en 	̂, M̂ , et
.



3.1. FERMIONEN 11Hierbei steht P f�ur den Impuls der n�a
hstgelegenen E
ke der Brillouin-Zone, das hei�tP� 2 f0; �g und p� = P� + Æp� mit ��=2 < Æp� < �=2.Die fermionis
hen Felder  und � werden in der Weise renormiert, da� die MatrizenN  (P ) und N��(P ) in den Einheitsoperator 1S im Spinor-Raum �uberf�uhrt werden. Dazuwerden Wellenfunktionsrenormierungen Z und Z� de�niert.Z (P ) = 1N  und Z�(P ) = 1N�� (3.9)Die renormierten fermionis
hen Felder  R und �R ergeben si
h dann folgenderma�en: R(p) = 1qZ (P ) (p) �R(p) = 1qZ�(P )�(p) (3.10)Dur
h die Renormierung entsteht aus M(P ) die renormierte Massenmatrix MR(P ). Ausderen Eintr�agen wird die renormierte Masse �R (P ) wie folgt de�niert:MR(P ) =  0 pZ Z�M� (P )pZ Z�M� (P ) 0 ! =:  0 �R(P )�R(P ) 0 ! (3.11)Aus Gr�unden der �Ubersi
ht wird die P -Abh�angigkeit der renormierten Gr�o�en hier undim folgenden ni
ht immer ausges
hrieben. Sie sollte aber aus dem Zusammenhang f�ur denLeser lei
ht zu ersehen sein. Insgesamt ergibt si
h na
h Glei
hung (3.8):( e�	)�1(p) = i�p�  1Z 
� 00 1Z�
� !+ 0� 0 1pZ Z��R1pZ�Z �R 0 1A+ O(�p2) (3.12)Dur
h Inversion erh�alt man daraus:e�	(p) = 1�2R + �p2  �iZ 
��p� pZ Z��RpZ Z��R �iZ�
��p� !+ 1�2R + �p2 O(�p2) (3.13)Es werden nun zwei Matrizen de�niert, aus denen si
h dann die renormierten Gr�o�en mitHilfe der "Linked-Cluster-Entwi
klung\ bestimmen lassen.A(P ) =  0 A �(P )A �(P ) 0 ! := e�	(P ) = 0B� 0 pZ (P )Z�(P )�R(P )pZ (P )Z�(P )�R(P ) 0 1CA (3.14)B(P ) =  B  (P ) 00 B��(P ) ! := i14 4X�=1 
� ���p� e�	(P ) = 0� Z (P )�2R(P ) 00 Z�(P )�2R(P ) 1A (3.15)Insgesamt gilt nun:�R(P ) = A �(P )qB  (P )B��(P ) ; Z (P ) = A2 �(P )B��(P ) ; Z�(P ) = A2 �(P )B  (P ) (3.16)



12 KAPITEL 3. RENORMIERTE GR�OSSEN3.2 BosonenIn diesem Abs
hnitt sollen die Wellenfunktionsrenormierung, die renormierte Masse unddie renormierte Selbstkopplung f�ur das bosonis
hen Feld � de�niert werden. Bei der For-mulierung einer bosonis
hen Theorie auf dem Gitter entsteht im allgemeinen kein Ver-dopplungsproblem [2℄.Bei der De�nition der bosonis
hen renormierten Gr�o�en werden die Konventionen aus[6, 7℄ benutzt. Dort werden diese Gr�o�en dur
h die renormierten Vertexfunktionen f�ur �1xbzw. �2x de�niert. Da sie hier aber aus den Vertexfunktionen f�ur �x und �+x bestimmtwerden sollen, ergeben si
h an einigen Stellen in den De�nitionen konstante Faktoren, dienur aus Gr�unden der Konvention eingef�uhrt werden. Als bosonis
her Propagator wird hierder folgende Ausdru
k bezei
hnet: e��(x) := h�x�+0 i
 (3.17)Der inverse bosonis
he Propagator ( e��)�1(p) besitzt in der we
hselwirkenden Theorieentspre
hend [7℄ die allgemeine Form:�e����1 (p) = 12Z� hp̂2 +m2R + O(p̂4)i (3.18)Inversion liefert: e��(p) = 2Z�p̂2 +m2R +O(p̂4) (3.19)Daraus ergibt si
h an der Stelle p� = 0:Z� = �4 h e��(0)i2P4�=1 �2�p��p� e��(0) m2R = �8 e��(0)P4�=1 �2�p��p� e��(0) (3.20)Abs
hlie�end ist no
h die renormierte bosonis
he Selbstkopplung gR einzuf�uhren. Dazu istzun�a
hst die Bezei
hnung der renormierten Vertexfunktionen zu erkl�aren. Das Symbole�(nB ;2nF )R (p1; : : :pnB+2nF )i1:::inB j1k1:::jnF knF (3.21)steht f�ur die renormierte Vertexfunktion im Impulsraum mit nB Bosonen, nF Fermionenund nF Antifermionen. Die Indizes bezei
hnen bei bosonis
hen Feldern den Real- bzw.den Imagin�arteil und bei fermionis
hen Feldern die Spinorkomponente. Die renormiertebosonis
he Selbstkopplung wird nun mit Hilfe der renormierten 4-Punkt-Vertexfunktione�(4;0)R (0; 0; 0; 0)ijkl de�niert.gR Sijkl := �e�(4;0)R (0; 0; 0; 0)ijkl (3.22)mit: Sijkl := 13(ÆijÆkl + ÆikÆjl + ÆilÆjk); i; j; k; l 2 f1; 2gDies l�a�t si
h aus:gR = � e�(4;0)(0; 0; 0; 0)1111Z2� = � eG(4;0)
 (0; 0; 0; 0)1111Z2� � eG(2;0)
 (0;0)11Z� �4 = �64 38Pxyzh�x�+y �z�+0 i
h12 �2�p��p� e��(0)i2 (3.23)bestimmen. Hierin steht eG(nB;nF )
 f�ur die verbundene Greens
he Funktion im Impulsraum.Die Anordnung der Indizes ist identis
h zu der der zugeordneten Vertexfunktion.



3.3. RENORMIERTE YUKAWA-KOPPLUNGEN 133.3 Renormierte Yukawa-KopplungenAls letzte der renormierten Gr�o�en sollen die renormierten Yukawa-Kopplungen GR undGR� eingef�uhrt werden. I
h verwende hier die in [7℄ dur
h die dortige Glei
hung (32)gegebenen De�nitionen, die i
h an meine Notation angepa�t habe:GR = � m2R �2Rp2Z� Z� h�L���Ris = � m2R �2Rp2Z� Z� h�R�+ ��Lis (3.24)GR� = � m2R �2Rp2Z� Z h R� � Lis = � m2R �2Rp2Z� Z h L�+ � Ris (3.25)Dabei ist: h L�+ � Ris 1S :=Xxy h L;x�+0 � R;yi
 (3.26)de�niert, wobei 1S f�ur den Einheitsoperator im 4-dimensionalen Spinor-Raum steht.3.4 De�nition der Suszeptibilit�atenDie in den renormierten Gr�o�en verwendeten Greens
hen Funktionen des Impulsraumsm�ussen no
h dur
h auf dem Raum-Zeit-Gitter bestimmbare Gr�o�en, sogenannte Suszep-tibilit�aten ersetzt werden. Diese werden in der Weise de�niert, da� eine dur
hgehendeBenutzung der komplexen Notation f�ur das Skalarfeld �x m�ogli
h ist. Damit die Resultateauf einfa
he Weise mit denen in [6, 7℄ vergli
hen werden k�onnen, werden hier zus�atzli
heFaktoren eingef�uhrt, so da� die De�nitionen der Suzszeptibilt�aten �aquivalent sind.Die Suszeptibilit�aten, die zur Bestimmung von �R ben�otigt werden, sind au
h in denE
ken der Brillouin-Zone zu de�nieren, da das Vers
hwinden der unerw�uns
hten Dopplergepr�uft werden soll. Dazu wird der Impuls P mit P� 2 f0; �g eingef�uhrt.��2 := 12Xx h�x�+0 i
 = 12 e��(p)���p=0��2 := 12Xx x2h�x�+0 i
 = � 12 4X�=1 �2�p��p� e��(p)������p=0��4 := 38Xxyzh�x�+y �z�+0 i
�	2 (P ) := Xx e�iP�x�h	x �	0i
 = A(P )=: � �2 (P ) �  0 1S1S 0 !�	2 (P ) := Xx " 4X�=1�
�x� 1
os(P�)� e�iP�x�h	x �	0i
# = 4B(P )=:  � 2 (P ) 1S 00 ��2 (P ) 1S !�	�	3 := diag �h L�+ � Ris; h R� � Lis; h�L���Ris; h�R�+ ��Lis� (3.27)Der Kosinus-Term in den Glei
hung f�ur �	2 entsteht dur
h Umformen der Ableitung na
h�p� auf p� na
h der Kettenregel.



14 KAPITEL 3. RENORMIERTE GR�OSSENDie renormierten physikalis
hen Gr�o�en sind wie folgt mit den Suszeptibilit�aten ver-kn�upft: m2R = 8 ��2��2 Z� = 8 ���2�2��2 gR = �64 ��4���2�2�R(P ) = 4 � �2 (P )q� 2 (P ) ��2 (P ) Z (P ) = 4 h� �2 (P )i2��2 (P ) Z�(P ) = 4 h� �2 (P )i2� 2 (P )GR = �m2R �2R (�	�	3 )33Z�p2Z� GR� = �m2R �2R (�	�	3 )22Z p2Z� (3.28)



Kapitel 4Methode der Doppelentwi
klung4.1 Taylor-ReiheDa eine ges
hlossene L�osung von Glei
hung (2.13) ni
ht m�ogli
h ist, soll hier dur
h Tay-lorentwi
klung na
h � und K eine N�aherung mit Entwi
klungspunkt � = K = 0 bestimmtwerden. Zur besseren Handhabung der dabei entstehenden Terme wird die Te
hnik der"Linked-Cluster-Expansion\ angewandt. Das Prinzip ist in [1℄ am Beispiel des Ising-Modells na
hzulesen. In Analogie zu dieser Ver�o�entli
hung wird hier zun�a
hst vorge-gangen.Zur Entwi
klung der Methode ist es vorteilhaft, in der Wirkung (2.1) eine zus�atzli
heVariable L�̂(x) einzuf�uhren, so da� si
h f�ur S�[�; �+℄ der folgende Term ergibt:S�[�; �+℄ =Xx ��+x �x + �(�+x �x � 1)2 � �X̂� L�̂(x) �+x+�̂ �x � (4.1)Diese zus�atzli
he Variable wird na
h Abs
hlu� der Re
hnung auf L�̂(x) = 1 gesetzt. Ausdem glei
hen Grund werden hier im fermionis
hen Teil der Wirkung die Matrixelementeder Matrix M�̂ als ortsabh�angige Variablen (M�̂(x))ab eingef�uhrt. Na
h Abs
hlu� derRe
hnung werden diese Elemente dann wieder auf die Glei
hung (2.20) beziehungsweiseGlei
hung (2.5) entspre
henden Werte gesetzt.W (K0; �0) = 1Xj=0( 1j! �K0 ��K + �0 ����j W jK=0;�=0 )= 1Xj=0( 1j!"K0 Xx;�̂;a;b�M 0̂�(x)�ab �� �K (M�̂(x))ab�+�0Xx;�̂ L0̂�(x) �� [�L�̂(x)℄#j W jK=�=0 )=: 1Xj=0( 1j! T j W jK=�=0 ) (4.2)Dabei wurde der Di�erentialoperator T als:T := "K 0 Xx;�̂;a;b�M 0̂�(x)�ab �� �K (M�̂(x))ab� + �0Xx;�̂ L0̂�(x) �� [�L�̂(x)℄# (4.3)de�niert. 15



16 KAPITEL 4. METHODE DER DOPPELENTWICKLUNG4.2 Di�erentialglei
hungenDie Di�erentiationen na
h den Bindungsvariablen �L�̂(x) und K (M�̂(x))ab lassen si
hmit den folgenden Di�erentialglei
hungen auf einfa
he Weise auf Di�erentiationen na
hden Quellen zur�u
kf�uhren.Diese Vorgehensweise erm�ogli
ht es in Glei
hung (4.2) K und � auf 0 zu setzen, bevordie Ableitungen ausgef�uhrt werden, da die Quellen ni
ht von den Hopping-Variablen Kund � abh�angen.Das Nullsetzen der Hopping-Variablen f�uhrt, wie in Kapitel 5.1 bes
hrieben wird, zumZerfallen von W in Summanden, die jeweils nur von Quellen eines Ortes x abh�angen.Diese Eigens
haft wird im folgenden ausgenutzt und stellt den wesentli
hen Vorteil derErsetzung der Ableitungen in Glei
hung (4.2) dur
h Ableitung na
h den Quellen dar.4.2.1 BosonenF�ur die Ableitung na
h der bosonis
hen Bindungsvariablen �L�̂(x) gilt folgende Di�eren-tialglei
hung: �W� [�L�̂(x)℄ = ��Jx+�̂ ��J+x W + �W�Jx+�̂ �W�J+x (4.4)Die Glei
hung gilt f�ur beliebige Werte von �, K, J , J+ , � und ��. Sie l�a�t si
h dur
hDi�erentiation aus den Glei
hungen (2.11), (2.13) und (4.1) herleiten. Dazu sind die Inte-grationen und die Di�erentiationen zu vertaus
hen.4.2.2 FermionenIm fermionis
hen Fall gilt:�W� �K (M�̂(x))ab� = � ���x+�̂;a ����x;bW � �W��x+�̂;a �W���x;b (4.5)Au
h diese Glei
hung gilt f�ur beliebige Werte der Hopping-Variablen und Quellfelder. DieIndizes der Quellen �, �� in der obigen Glei
hung (4.5) ergeben si
h wie folgt:�x;a mit: x: Ortsindex, a: Spinorindex (4.6)Der Beweis dieser Di�erentialglei
hung ist ni
ht so einfa
h wie der im bosonis
hen Fall,deshalb soll er hier ausf�uhrli
her dargestellt werden.Beweis von Glei
hung (4.5): Die Abh�angigkeit von den bosonis
hen Feldern und Quel-len brau
ht ni
ht bea
htet zu werden. Zur Vereinfa
hung setze:� := �S[	; �	℄ +Xx ���x	x + �	x�x� (4.7)Aus der linken Seite ergibt si
h mit Glei
hung (2.13):�W� �K (M�̂(x))ab� = 1Z �Z� �K (M�̂(x))ab�= 1Z Z D	D �	 ��	x+�̂;a	x;b exp (�)� (4.8)



4.2. DIFFERENTIALGLEICHUNGEN 17Zur Umformung der re
hten Seite von Glei
hung (4.5) ist es n�utzli
h zu wissen, da� Z einPolynom in den Grassmann-Variablen � und �� ist. Ansonsten enth�alt Z keine Grassmann-Variablen, alle 	 und �	 sind ausintegriert. Wird Z nun in eine Potenzreihe bez�ugli
h derGrassmann-Variablen entwi
kelt, so enthalten alle Summanden eine gerade Anzahl vonGrassmann-Variablen. Genauer gesagt l�a�t si
h jeder Summand in der Form:�Yi (�xi;ai ��yi;bi) (4.9)darstellen, wobei � eine geeignete komplexe Zahl ist. Daraus folgt, da� Z mit jedem Term,der aus Grassmann-Variablen aufgebaut ist, kommutiert.An dieser Stelle m�o
hte i
h no
h kurz auf die Regeln zur Di�erentiation in Grassmann-Algebren eingehen. Dazu sind die Grassmann-Variablen paarweise antizuvertaus
hen, bisdie Variable, na
h der di�erenziert wird, direkt hinter dem Di�erentialoperator steht.Kommt die Variable ni
ht vor, so ist der Term glei
h 0. Zur Erl�auterung werden diefolgenden Beispiele gegeben:���1�1��1�2��2 = ��1�2��2����2�1��1�2��2 = ����2 [��1��1��2�2℄ = ����2�1��2��1�2= ����2 [���2�1��1�2℄ = ��1��1�2���3�1��1�2��2 = 0 (4.10)Zur Ausf�uhrung der Grassmann-Di�erentiationen wird eine "Produktregel\ ben�otigt,die im folgenden abgeleitet wird. Dazu seien F und G Terme, die eine gerade AnzahlGrassmann-Variablen enthalten.F := � �x1;a1 ��y1;b1 �x2;a2 ��y2;b2 � � ��xn;an ��yn;bn (4.11)G := � �w1;
1 ��v1;d1 �w2;
2 ��v2;d2 � � ��wn;
n ��vn;dn (4.12)Nun gilt: ���x;aFG =  ���x;aF!G+ F  ���x;aG! (4.13)Zum Beweis der Glei
hung (4.13) ist eine Fallunters
heidung zu ma
hen.1. �x;a ist entweder in F oder in G enthaltenIn diesem Fall ist einer der Summanden der re
hten Seite null, und die G�ultigkeitist direkt einzusehen.2. �x;a ist in F und in G ni
ht enthaltenHier sind beide Summanden null wie au
h die linke Seite der Glei
hung.3. �x;a ist in F und in G enthaltenIn diesem Fall gilt FG = 0, so da� die linke Seite der Glei
hung null ergibt. DieSummanden der re
hten Seite sind von null vers
hieden. Sie unters
heiden si
h aber



18 KAPITEL 4. METHODE DER DOPPELENTWICKLUNGnur dur
h eine ungerade Permutation der Grassmann-Variablen voneinander, so da�sie si
h gegenseitig wegheben. Somit ist au
h die re
hte Seite null und die Glei
hung(4.13) ist bewiesen.Da Z si
h, wie s
hon oben bes
hrieben, als Summe von Termen der Form (4.9) darstellenl�a�t, kann man mit Glei
hung (4.13) dur
h vollst�andige Induktion���x;aZn = n ���x;aZ!Zn�1 (4.14)zeigen. Da � ���x;aZ� aus Summanden mit einer ungeraden Anzahl von Grassmann-Variablen besteht, l�a�t si
h mit der glei
hen Methode���y;b " �Z��x;a!Zn# =  ���y;b ���x;aZ!Zn �  �Z��x;a! �Z��y;b!nZn�1 (4.15)zeigen.Analoge Glei
hungen gelten au
h f�ur Di�erentiationen na
h ��x;a. Es wird no
h diefolgende Glei
hung ben�otigt:����x;b 1Z = ����x;b 24 1Xj=0(1� Z)j35= 24 1Xj=0(j + 1)(1� Z)j35 ����x;b (�Z)= " 1Xn=0(1� Z)n# " 1Xh=0(1� Z)h# ����x;b (�Z)= � 1Z2 Z D	D �	 [	x;b exp (�)℄ (4.16)Damit lassen si
h au
h die Terme der linken Seite der Glei
hung (4.5) bestimmen.�W��x+�̂;a = ���x+�̂;a ln(Z)= ���x+�̂;a 24� 1Xj=1 (1� Z)jj 35= 24 1Xj=0(1� Z)j35 �Z��x+�̂;a= �24 1Xj=0(1� Z)j35 � Z D	D �	 ��	x+�̂;a exp (�)�= � 1Z Z D	D �	 � �	x+�̂;a exp (�)� (4.17)�W���x;b = 1Z Z D	D �	 [	x;b exp (�)℄ (4.18)



4.2. DIFFERENTIALGLEICHUNGEN 19� ���x+�̂;a ����x;bW = ����x;b ���x+�̂;aW= � ����x;b � 1Z Z D	D �	 ��	x+�̂;a exp (�)��= � 1Z ����x;b Z D	D �	 ��	x+�̂;a exp (�)�� ����x;b 1Z! Z D	D �	 � �	x+�̂;a exp (�)�= 1Z Z D	D �	 � �	x+�̂;a	x;b exp (�)�+ 1Z2(Z D	D �	 [	x;b exp (�)℄ �� Z D	D �	 � �	x+�̂;a exp (�)� ) (4.19)Der Ausdru
k in den ges
hweiften Klammern auf der re
hten Seite von Glei
hung (4.19)ist glei
h dem Produkt der re
hten Seiten der Glei
hungen (4.17) und (4.18). Der verblei-bende Term der re
hten Seite von Glei
hung (4.19) ist identis
h mit der re
hten Seite vonGlei
hung (4.8).Damit ist die Glei
hung (4.5) gezeigt. 2



Kapitel 5Erzeugendes Funktional f�ur1-Platz-Erwartungswerte5.1 Grenzfall unendli
her bosonis
her SelbstkopplungIm Abs
hnitt 4.2 ist es gelungen, die Ableitungen in Glei
hung (4.2) auf Ableitungenbez�ugli
h der Quellen umzus
hreiben. Dies l�a�t si
h dahingehend ausnutzen, da� die Hop-pingparameter K und � vor Ausf�uhrung der Ableitungen auf 0 gesetzt werden. Im Verlaufdes Abs
hnittes wird si
h zeigen, da� in diesem Fall das erzeugende Funktional Z in Terme,die jeweils nur von den Feldern eines Ortes abh�angen, faktorisiert.Das erzeugende Funktional W l�a�t si
h an der Stelle K = � = 0 im Grenzfall �!1analytis
h bestimmen, so da� si
h die Ableitungen na
h den Quellen �x, ��x, Jx und J+xlei
ht ausf�uhren lassen. Die zugeh�orige Re
hnung soll in diesem Unterabs
hnitt verh�alt-nism�a�ig detailliert ausgef�uhrt werden. Das Ziel der Re
hnung ist Glei
hung (5.17).Im obigen Limes gilt: lim�!1� = ei# lim�!1�+ = e�i# (5.1)Als Kurznotation wird hier Z1 := ZjK=�=0 einf�uhrt. Es gilt bis auf hier ni
ht relevantemultiplikative Konstanten:Z1 = Yx Z1(x)= Yx Z d	x d�	x d#x �� exp���	xG(ei#x ; e�i#x) 	x+J+x ei#x + e�i#xJx + ��x	x + �	x�x� (5.2)Dabei gilt: G(ei#x ; e�i#x) :=  �� ei#x(G��
5G�)e�i#x(G�+
5G�) �� ! (5.3)Die Grassmann-Integration l�a�t si
h direkt ausf�uhren, und mit:G�1(ei#x ; e�i#x)= 1��2�G�G  �� �ei#x(G��
5G�)�e�i#x (G�+
5G�) �� ! (5.4)20



5.1. GRENZFALL UNENDLICHER BOSONISCHER SELBSTKOPPLUNG 21ergibt si
h f�ur Z1:Z1 = Yx Z d#x ���2�G G�� �� exp���xG�1(ei#x ; e�i#x) �x + J+x ei#x + e�i#xJx�= Yx ���2�G G�� exp ��x ����2�G�G ! �x! �� Z d#x exp����xA1�x + J+x + Jx� 
os#x+ ���xA2�x + J+x � Jx� i sin #x� (5.5)Dabei wurden die folgenden De�nitionen verwendet:A1 := �1��2�G�G  0 (G� � 
5G�)(G� + 
5G�) 0 ! (5.6)A2 := �1��2�G�G  0 (G� � 
5G�)(�G� � 
5G�) 0 ! (5.7)F�ur die weiteren Umformungen bieten si
h weitere abk�urzende De�nitionen an:j1(x) := ��xA1�x + J+x + Jx (5.8)j2(x) := i ���xA2�x + J+x � Jx� (5.9)j(x) := q[j1(x)℄2 + [j2(x)℄2 (5.10)Nun gilt f�ur reelle j1, j2:Z 2�0 d# exp (j1 
os#+ j2 sin#) = Z 2�0 d# exp (j sin(#+ #0))= Z 2�0 d# exp (j sin #)= Z 2�0 d# exp (i(�i j sin #))= Z 2�0 d# 
os(i j sin #)= 2� I0(j) (5.11)Hierbei symbolisiert I0 die modi�zierte Bessel-Funktion 0-ter Ordnung. I0(j) ist eine gera-de, holomorphe Funktion auf der ganzen komplexen Ebene, somit ist au
h I0(j) holomorphin j1 und j2, da si
h die Mehrdeutigkeit der Wurzel heraushebt. Da au
h die re
hte Seiteholomorph in j1 und j2 ist, folgt na
h dem Identit�atssatz holomorpher Funktionen, da�Glei
hung (5.11) au
h f�ur komplexe j1 und j2 gilt.Damit ergibt si
h nun in der Normierung Z1j�;��;J;J+=0 = 1Z1 = Yx exp ��x ����2 �G�G ! �x! �� I0�h���xA1�x + J+x + Jx�2 � ���xA2�x + J+x � Jx�2i 12� (5.12)



22 KAPITEL 5. 1-PLATZ-ERWARTUNGSWERTEZur Bestimmung von W1 := ln(Z1) werden die folgenden Reihen ben�otigt:ln(1 + x) = 1Xk=1�(�x)kk (5.13)I0(x) = 1 + 1Xk=1 1k! � k! �x2�2k (5.14)nun gilt: ln (I0(j)) = 1Xk=1�1k 24 1Xl=1 �1l! � l!  j24 !l 35k= 1Xk=1�1k 24 1Xh1;h2;h3���=0 Æk;(Pi hi) (�1)k k!Qi(hi!) Yi  j2i(i!)2 4i!hi35= 1Xm=1 j2m " 14m 1Xk=1 1Xh1 ;h2;h3 ���=0 Æm;(Pi i�hi) Æk;(Pi hi)(�1)k�1 (k � 1)!Qi(hi!) Yi � 1i!�2hi !#=: 1Xm=1 bmj2m (5.15)Zum �Ubergang von der ersten zur zweiten Zeile wird die Reihe �uber l in der ersten Zeilein die k-te Potenz erhoben und dann na
h Termen sortiert, die dur
h Multiplikation vonjeweils hl Termen in j2l entstehen.Die bm-KoeÆzienten werden dur
h Verglei
h der letzten beiden Zeilen de�niert. Dur
hexplizite Re
hnung erh�alt man f�ur die ersten 5 KoeÆzienten:b1 = 14; b2 = � 164; b3 = 1576; b4 = � 1149152; b5 = 19614400 (5.16)Nimmt man nun dies alles zusammen, so gilt f�ur W1:W1 = Xx "��x ����2�G�G ! �x + 1Xm=1 bmh(��x(A+)�x)(��x(A�)�x)+2 J+x (��x(A�)�x) + 2 (��x(A+)�x)Jx + 4 J+xJxim# (5.17)mit: A� := A1 � A2 A+ := A1 + A2In [5℄ wird die entspre
hende Glei
hung f�ur den Fall eines SU(2)L
SU(2)R-symmetris
henYukawa-Modells bewiesen. Ohne Beweis wird eine Modi�kation der Glei
hung (5.17) f�urden Fall Jx = J+x = 0 in den Ver�o�entli
hungen [7, 11℄ angegeben.Es ist sofort einzusehen, da� Ableitungen vonW1 na
h Quellen vers
hiedener Orte nullergeben. Diese Eigens
haft ist wi
htig in der "Linked-Cluster-Expansion\ in den folgendenAbs
hnitten.F�ur die Matrizen A� und A+ gilt:A� = �2��2�G�G  0 0(G� + 
5G�) 0 ! = �2��2�G�G  0 0(PLG + PRG�) 0 ! (5.18)



5.1. GRENZFALL UNENDLICHER BOSONISCHER SELBSTKOPPLUNG 23A+ = �2��2�G�G  0 (G� � 
5G�)0 0 ! = �2��2�G�G  0 (PRG + PLG�)0 0 ! (5.19)Der Erwartungswert eines Operators A bei K = � = 0 wird im weiteren 1-Platz-Erwartungswert des Operators A genannt. Die 1-Platz-Erwartungswerte werden dur
heinen Index 1 gekennzei
hnet: hAi1. Die verbundenen 1-Platz-Erwartungswerte der Pro-dukte von Feldfunktionen werden im Zusammenhang mit der Linked-Cluster-Entwi
klungau
h als Momente der Entwi
klung bezei
hnet. Diese Erwartungswerte lassen si
h ausGlei
hung (5.17) dur
h Di�erentiation na
h den zugeordneten Quellen gewinnen. Mit Aus-nahme von h	x �	xi
1 gilt:h (�x)nb(�+x )nk(	x �	x)nf i
1 6= 0() nb + nk + nf = 2N ^ nb � N ^ nk � N ^ nf � 8 (5.20)Im Anhang B werden f�ur r = �� = 1 die niedrigsten verbundenen 1-Platz-Erwartungswertetabelliert.



Kapitel 6Entwi
klung des erzeugendenFunktionals WDie graphis
he Entwi
klung von W soll in dieser Arbeit ni
ht dur
hgef�uhrt werden, dasi
h das Interesse hier auf die Entwi
klung der Suszeptibilit�aten bezieht. Zur Herleitungder graphis
hen Regeln f�ur die Suszeptibilit�aten werden aber die Regeln f�ur W ben�otigt,die in diesem Abs
hnitt erl�autert werden.6.1 Graphis
he Entwi
klungDie linken Seiten der Glei
hungen (4.4) und (4.5) lassen si
h graphis
h darstellen. MitHilfe dieser Darstellungen l�a�t si
h das erzeugende Funktional W entspre
hend Glei
hung(4.2) auf einfa
he Weise entwi
keln.Dazu wird W dur
h einen Kreis (Vertex) ' 
̀ dargestellt. Eine in den Kreis einlaufen-de dur
hgezogene Linie ' 
- ` symbolisiert �W=��x+�̂;a, eine auslaufende dur
hgezogeneLinie ' 
- ` den Term �W=���x;b. H�ohere Ableitungen werden dur
h die entspre
hendenAnzahlen ein- und auslaufender Linien dargestellt. Wird nun f�ur jede Linie, die 2 Punkteverbindet, ein Faktor K (M�̂(x))ab, verbunden mit einer Summation �uber x, �̂, a und b,eingef�uhrt, so ergibt si
h f�ur Glei
hung (4.5) die folgende graphis
he Darstellung:
Px;�̂;a;bK (M�̂(x))ab �� �K (M�̂(x))ab� = 
 + 
 
� - (6.1)Bei der R�u
k�ubersetzung der graphis
hen Symbole ist auf das Vorzei
hen zu a
hten.Die Regeln, um das ri
htige Vorzei
hen zu erhalten, werden weiter unten bes
hrieben.Eine analoge Konstruktion l�a�t si
h nun au
h f�ur die bosonis
he Di�erentialglei
hung(4.4) dur
hf�uhren. Zur Unters
heidung werden hier gepunktete Linien1 eingef�uhrt.
Px;�̂ �L�̂(x) �� [�L�̂(x)℄ = 
p p p p p p p p p p pppppppp p p p p p p p p p ppppppp + 
p p p p p p p p p p p
� - (6.2)1Bei Entwi
klungen mit Papier und Bleistift ist es empfehlenswert, in einen Farbstift zu investieren unddie gepunkteten Linien dur
h farbige zu ersetzen. 24
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klung eines TeilgraphenEine einlaufende gepunktete Linie symbolisiert hier �W=�Jx+�̂ und eine auslaufende�W=�J+x .An dieser Stelle ist zu bemerken, da� das Ableiten von W na
h Quellen vers
hiedenerOrte im allgemeinen ni
ht null ergibt, wie es bei Ableitungen von W1 der Fall ist. Derjeweils erste Graph auf der re
hten Seite liefert vielmehr wi
htige Beitr�age zu den h�oherenOrdnungen der Taylorreihe (4.2).Nun l�a�t si
h T j W jK=�=0 graphis
h bestimmen. Dazu wird zun�a
hst der jeweils linksstehende Operator T enspre
hend den obigen Formeln (6.1, 6.2) dur
h Graphen ersetzt.Dann wird das n�a
hste T entspre
hend der Produktregel auf die einzelnen Kreise derGraphen angewandt, d. h. mit den Ableitungen na
h den Quelltermen vertaus
ht. DiesesVerfahren wird fortgef�uhrt, bis alle T 's dur
h Graphen ersetzt sind. Abs
hlie�end werdenK und � auf 0 gesetzt, d. h. die W 's werden dur
h W1 ersetzt.W1 wird in der graphis
henEntwi
klung dur
h einen gef�ullten Kreis ' s̀ dargestellt. Da nun, wie s
hon mehrfa
h be-tont, die Ableitungen von W1 na
h Quelltermen vers
hiedener Orte vers
hwinden, ergibtsi
h ein Vers
hwinden aller Graphen, die Linien mit glei
hem Anfangs- und Endpunktenthalten. Desweiteren ergibt si
h, da� alle Linien, die an dem glei
hen ' s̀ ausgehen oderenden, beim R�u
k�ubersetzen in mathemathis
he Formeln dur
h Ableitungen am glei
henOrt ersetzt werden m�ussen.Das Verfahren wird in Abbildung 6.2 am Beispiel T 2 W jK=�=0 vorgef�uhrt. Dabei wirddie folgende Glei
hung verwendet.T 
 := 
 
 
 
 
 
+ + +p p p p p p p p p p pppppppp p p p p p p p p p ppppppp p p p p p p p p p p p� - � - (6.3)Die einzelnen Graphen sind analog zu Abbildung 6.1 zu entwi
keln, und topologis
h �aqui-valente Graphen k�onnen aufgrund der �Aquivalenz der einzelnen T -Operatoren zusammen-gefa�t werden.An diesem Beispiel werden s
hon die wesentli
hen Z�uge der "Linked-Cluster-Entwi
k-lung\ des erzeugenden Funktionals W deutli
h. Die si
h daraus ergebenden Regeln sollenim n�a
hsten Abs
hnitt im Detail erkl�art werden.
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he Entwi
klung von T 2 W jK=�=06.2 Regeln f�ur die graphis
he Entwi
klungBei der Auswertung der Graphen kann entspre
hend Abs
hnitt 4.1 die BindungsvariableK (M�̂(x))ab wieder auf den Wert K (M�̂)ab und �L�̂(x) wieder auf � gesetzt werden.Zum besseren Verst�andnis der Regeln sind einige Dinge zu bea
hten:1. Ein Graph ist ein Objekt, das hier aus dur
hgezogenen und gepunkteten Linienbesteht, die eine Orientierung tragen und kleine ausgef�ullte, bei der Konstruktion indem obigen Verfahren au
h ni
htausgef�ullte Kreise (Vertizes) verbinden. Mehr ist erni
ht. Insbesondere hat er ni
hts mit dem Gitter und seiner Struktur zu tun.2. Dur
h das Zuordnen von Gitterorten an die Vertizes eines Graphen entsteht aus demGraphen ein eingebetteter Graph. Die Zuordnung mu� im Einklang mit den Regelnder folgenden Unterabs
hnitte stehen. Einem Graphen werden auf dem unendli
hausgedehnten Gitter "unendli
h viele\ eingebettete Graphen zugeordnet.3. Abs
hlie�end kann man einen eingebetteten Graphen au
h in mathematis
he Terme�ubersetzen. Hierbei ist zu bea
hten, da� der einer fermionis
hen Linie zugeordneteTerm von der Ri
htung abh�angt, in die die Linie na
h der Einbettung auf dem



6.2. REGELN F�UR DIE GRAPHISCHE ENTWICKLUNG 27Gitter weist. Wird dies mit "allen\ eingebetteten Graphen mit einer bestimmtenLinienanzahl l gema
ht und werden die entstehenden Terme zusammengez�ahlt, soentstehen die l-te Ordnung in T der Taylorreihe von W .In dieser kurzen Einf�uhrung zeigt si
h s
hon ein wesentli
hes Problem der Taylor-Entwi
klung der Funktionals W . Diese Reihenentwi
klung enth�alt in jeder Ordnung "un-endli
h viele\ Terme. Das Problem entsteht dadur
h, da� es auf dem unendli
h ausgedehn-ten Gitter "unendli
h viele\ bena
hbarte Gitterpunkte gibt. Werden aus dieser Reihe dieSuszeptibilit�aten des Abs
hnitts 3.4 dur
h Di�erentiation na
h den Quellen bestimmt, soentstehen nur aus den eingebetteten Graphen Beitr�age zu den Suszeptibilit�aten, bei denenmindestens ein Vertex auf den Gitterursprung 0 abgebildet worden ist. Dies ist in jederOrdnung nur eine endli
he Anzahl. Somit l�ost si
h das Problem bei der Entwi
klung derSuszeptibilit�aten von allein.Die graphis
he Bestimmung der Suszeptibilit�aten wird im Kapitel 7 bes
hrieben.6.2.1 BildelementeDieser Abs
hnitt stellt die im Abs
hnitt 6.1 eingef�uhrten und im weiteren no
h ben�otig-ten graphis
hen Symbole no
h einmal zusammen. Glei
hzeitig wird au
h s
hon der diesenSymbolen zugeordnete mathematis
he Term aufgef�uhrt.Graphis
hes Symbol Formel-Symbols W1s- ����x;bW1s- ���x+�̂;aW1sp p p p p p p p p- ��J+x W1sppppppppp- ��Jx+�̂W1s s- K Xx;�̂;a;b ���x+�̂;aW1 (M�̂)ab ����x;bW1p p p p p p p p p p p p p p p p p ps s- �Xx;�̂ fdJx+�̂W1 ��J+x W1Gr�o�ere Anzahlen ein- oder auslaufender Linien symbolisieren entspre
hend h�ohere Ablei-tungen, dabei beinhaltet eine zwei Vertizes ' s̀ verbindende Linie immer die oben darge-stellten Faktoren und Summationen.6.2.2 Summation �uber zusammenh�angende GraphenDur
h Induktion �uber die Potenzen von T l�a�t si
h sofort zeigen, da� in allen Ordnungender Entwi
klung auss
hlie�li
h zusammenh�angende Graphen entstehen.Die Anwendung eines Operators T auf die Graphen in beliebiger Ordnung f�uhrt zueiner Ersetzung einzelner ' 
̀ dur
h einen Graphen, bestehend aus einer Fermionen- oderBosonenlinie und ein oder zwei ' 
̀ . Dabei bleibt der Graph zusammenh�angend, da der'Restgraph` dann wieder an ein ' 
̀ des eingesetzten Graphen angeh�angt wird.



28 KAPITEL 6. ENTWICKLUNG DES ERZEUGENDEN FUNKTIONALS W6.2.3 Keine Graphen{Linie hat den glei
hen Anfangs- und EndpunktGraphen, die Linien enthalten, die am glei
hen ' s̀ beginnen und enden, tragen ni
ht zuW bei.Derartige Linien f�uhren bei der �Ubersetzung der zugeordneten eingebetteten Graphenin mathematis
he Terme zu Ableitungen von W1 na
h Quellen vers
hiedener Orte. Somitfolgt die obige Aussage direkt aus Glei
hung (5.17).6.2.4 Zusammenfassung topologis
h �aquivalenter GraphenDieser Abs
hnitt soll mit zwei De�nitionen beginnen:Eine bijektive Abbildung � von einem Graphen G auf einen Graphen G0 hei�ttopologis
h, wenn sie die na
hfolgenden Eigens
haften erf�ullt:Sie bildet Vertizes von G auf Vertizes von G0 und Linien von G unter Bea
htungihrer Orientierung auf Linien von G 0 ab. Dabei wird der Vertex V am Endeder Linie � auf �(V ) am Ende der Linie �(�) abgebildet. Entspre
hendes giltau
h f�ur den Vertex am Linienanfang.Zwei Graphen G und G0 hei�en topologis
h �aquivalent, wenn es eine topologis
heAbbildung von G auf G0 gibt.Die folgende Regel ergibt si
h direkt aus der Symmetrie der zur Erzeugung der Graphenben�otigten T -Operatoren unter Vertaus
hen der Reihenfolge ihrer Anwendung:Topologis
h �aquivalente Graphen lassen si
h zusammenfassen und brau
hen inder graphis
hen Entwi
klung ni
ht mehrfa
h aufgef�uhrt zu werden.Zur graphis
hen Entwi
klung des erzeugenden Funktionals ist �uber alle zusammenh�an-genden Graphen zu summieren, wobei topologis
h �aquivalente Graphen nur einmal erfa�twerden.6.2.5 Einbettung der Graphen auf das GitterZur Ausf�uhrung der Orts- und Ri
htungssummationen ist es sinnvoll, si
h einen Vertex ' s̀des Graphen herauszunehmen und zun�a
hst erst einmal fest auf einen Gitterplatz abzubil-den. Nun werden die an diesem Vertex beginnenden und endenden Linien �uber die positvenund negativen Raumri
htungen des Raum-Zeit-Gitters aufsummiert, wobei die an dem an-deren Ende der Linien liegenden Vertizes ' s̀ auf die bena
hbarten Gitterpl�atze abgebildetwerden. Hierbei ist au
h �uber die F�alle zu summieren, in denen zwei vers
hiedene ' s̀ aufden glei
hen Gitterplatz abgebildet werden. Bei jedem der entstandenen Summanden istmit den Linien, die in den im letzten S
hritt �xierten Vertizes enden oder beginnen unddie no
h ni
ht aufsummiert sind, analog zu verfahren.Dies Verfahren ist solange fortzuf�uhren, bis alle Linien erfa�t sind. Dabei ist si
her-zustellen, da� alle Linien auss
hlie�li
h bena
hbarte Gitterpunkte verbinden. Auf dieseWeise werden zum Beispiel einem Graphen, der aus n Linien besteht und keine S
hleifenenth�alt, (2d)n Einbettungen zugeordnet. Bei Graphen mit S
hleifen f�uhrt die Bedingung,da� die Linien immer bena
hbarte Gitterpunkte verbinden, zu einer Verringerung der An-zahl der Einbettungen. Man
he Graphen lassen si
h in bestimmten Gittern au
h gar ni
hteinbetten, z. B. Graphen mit ges
hlossenen Dreie
ken im kubis
h primitiven Gitter.
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hlie�end wird der urspr�ungli
h festgehaltene Vertex �uber das gesamte Gitter ver-s
hoben, d. h. alle Einbettungen der Graphen, die bei den Summationen �uber die Linien-ri
htungen erzeugt wurden, sind in allen Punkten des Gitters anzutragen.Aufgrund dieser Einbettungsregeln werden die in diesem Kapitel bes
hriebenen Gra-phen unverwurzelte (engl.: unrooted) Graphen genannt. Sie werden frei �uber das gesamteGitter summiert, keine Vertex des Graphen wird fest auf einen Gitterpunkt abgebildet.6.2.6 SymmetriefaktorenEin Graph, bestehend aus insgesamt j fermionis
hen und bosonis
hen Linien, der keineSymmetrie besitzt, wird, wenn man alle topologis
h �aquivalenten Formen entspre
hendAbs
hnitt 6.2.4 zusammenfa�t, j!-fa
h erzeugt. Wenn der Graph Symmetrien besitzt, soverringert si
h die Anzahl der erzeugten in der Weise, da� dur
h die M�a
htigkeit derSymmetriegruppe zu dividieren ist.Dazu ist nun eine De�nition dessen, was unter der Symmetriegruppe eines Graphen Gzu verstehen ist, na
hzurei
hen:Die Symmetriegruppe eines Graphen G ist die Gruppe der topologis
hen Ab-bildungen 
 : G ! G.Die Symmetriegruppe enth�alt immer die identis
he Abbildung und ist daher nie leer.Zur Bestimmung der Anzahl der erzeugten Graphen ist die Symmetrie der Glei
hung(4.2) bez�ugli
h der Vertaus
hung zweier T -Operatoren zu betra
hten. Wenn ein Graph�ofter als einmal erzeugt wird, so entsteht dies dadur
h, da� es vers
hiedene M�ogli
hkei-ten gibt, ihn in dem in Abs
hnitt 6.1 bes
hriebenen Verfahren zu erzeugen. Wird an jedenDi�erentialoperator T ein Index ges
hrieben und dieser Index au
h an die von diesem Ope-rator erzeugte Linie �ubernommen, so ist sofort einzusehen, da� die Anzahl der erzeugtenGraphen einer topologis
hen �Aquivalenzklasse den M�ogli
hkeiten, die Indizes auf topolo-gis
h vers
hiedene Weise an die einzelnen Linien des Graphen zu verteilen, entspri
ht.Topologis
h �aquivalente Indexverteilungen stehen f�ur eine Verringerung der M�ogli
h-keiten, den Graphen in dem Konstruktionsverfahren zu erzeugen, da dann bestimmte Teil-graphen nur in einer bestimmten Weise zueinander angeordnet werden k�onnen. Betra
htezur Verdeutli
hung die Graphens s s ss s- - -6 (6.4)aus Abbildung 6.2. Der linke Graph enth�alt keine Symmetrie, es gibt zwei M�ogli
hkeitenihn zu konstruieren:1. Die zweite Linie wird mit ihrem Anfangspunkt an den Endpunkt der ersten Linieangeh�angt.2. Die zweite Linie wird mit ihrem Endpunkt an den Anfangspunkt der ersten Linieangeh�angt.Die Symmetriegruppe des re
hten Graphen besitzt au�er der identis
hen Symmetrieabbil-dung die Abbildung, die die �au�eren Vertizes und die beiden Graphenlinien aufeinander



30 KAPITEL 6. ENTWICKLUNG DES ERZEUGENDEN FUNKTIONALS Wabbildet. Die Symmetriegruppe besteht aus 2 Elementen. Der Graph kann nur auf eineWeise konstruiert werden:1. Beide Linien werden mit ihren Anfangspunkten zusammengeh�angt.Die Glei
hung (4.2) enth�alt no
h den Faktor 1j! , der si
h gegen die maximale Anzahlerzeugter Graphen j! herausk�urzt, so da� der Beitrag eines Graphen zu W dur
h dieM�a
htigkeit seiner Symmetriegruppe zu dividieren ist.6.2.7 Vorzei
henEs bleibt das Problem des Vorzei
hens jedes Beitrags. Entspre
hend Glei
hung (4.5) wirdeiner Abfolge der Ableitungen ����x;b ���x+�̂;a (6.5)ein positives Vorzei
hen zugeordnet, wenn diese beiden Ableitungen mit einer fermi-onis
hen Linie verbunden sind.Das Verfahren zur Ermittlung des ri
htigen Vorzei
hens ist nun re
ht einfa
h. Die fermi-onis
hen Linien des Graphen werden dur
hnumeriert und die Quellen in den Ableitungenan ihren Enden werden mit den Indizes2 ��bn und �an versehen, wobei n die Nummer derzugeordneten Linie ist. Der Graph wird entspre
hend den obigen Regeln ausgewertet undabs
hlie�end dahingehend gepr�uft, ob es si
h bei der Permutation der Quellenindizes umeine gerade oder ungerade Permutation von b1; a1; b2; a2; : : : handelt. Im ersten Fall ergibtsi
h ein positives Vorzei
hen, im zweiten Fall ein negatives.Es soll no
h angemerkt werden, da� diese Reihenfolge der Ableitungen na
h fermi-onis
hen Quellen auf eine Reihenfolge�	an	bn �	an�1	bn�1 : : : �	a1	b1 (6.6)bei den fermionis
hen Variablen f�uhrt.
2Der Ortsindex wird aus Gr�unden der �Ubersi
ht fortgelassen



Kapitel 7Graphis
he Regeln f�ur dieSuszeptibilit�atenZiel dieses Abs
hnitts ist es, graphis
he Regeln f�ur die Bestimmung der Taylorreihen derin Abs
hnitt 3.4 de�nierten Suszeptibilit�aten in K und � zu erhalten. Die graphis
heEntwi
klung dieser Gr�o�en f�uhrt zu verwurzelten Graphen, im Gegensatz zu den unver-wurzelten des vorstehenden Kapitels (vgl. Abs
hnitt 6.2.5).In diesem Abs
hnitt sollen die Regeln f�ur Suszeptibilit�aten aufgestellt werden, die demim folgenden de�nierten Typ �mno angeh�oren:�mno := 1V " mYi=1�Xxi �#" nYj=1�Xyj �#" oYk=1�Xwk Xyk �#F (xi; yj; wk; vk) �� h�x1 � � ��xn �+y1 � � ��+ym	w1 �	v1i
 (7.1)mit: m;n � 0 und o 2 f0; 1gHierbei steht F f�ur eine translationsinvariante Funktion ihrer Argumente und V f�ur dasVolumen des 4-dimensionalen Gitters. Die Glei
hung ist so zu verstehen, da�, wenn eineoder mehrere der Variablen n, m oder o glei
h null sind, die zugeordneten Felder in derGreens
hen Funktion ni
ht auftreten.Die in Abs
hnitt 3.4 de�nierten Suszeptibilit�aten sind alle von diesem Typ. In ihrerDe�nition wurde von der Translationsinvarianz der Funktion F Gebrau
h gema
ht undeine Summe gegen den Faktor 1V herausgek�urzt. Da im Rahmen dieser Arbeit keine Sus-zeptibilit�aten mit mehr als einem Fermion-Antifermion-Paar bere
hnet werden, wird andieser Stelle auf die Betra
htung derartiger Gr�o�en verzi
htet.7.1 Graphis
he Di�erentiationDie Entwi
klung der Regeln wird si
h an der �ubli
hen Bestimmung Greens
her Funktionenaus einem erzeugenden Funktional orientieren. F�ur die graphis
h ausgef�uhrte Di�erentia-tion des erzeugenden Funktionals werden Symbole f�ur �au�ere Ableitungen de�niert, diesi
h an den Symbolen in der graphis
hen Entwi
klung von W orientieren:31



32 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENGraphis
hes Symbol Formel Symbols w1- ����w1;bW1sv1- ���v1;bW1sp p p p p p p p pxi- ��J+xiW1spppppppppyj- ��Jyj W1Diese Ableitungen werden an die Graphen, aus denen si
h W zusammensetzt, angeh�angt.Sie unters
heiden si
h von den inneren Ableitungen dadur
h, da� sie ni
ht dur
h eine Liniemit einer weiteren Ableitung verbunden werden.Auf eine Indizierung der fermionis
hen Ableitungen kann eigentli
h sofort verzi
htetwerden, da die Suszeptibilit�aten maximal ein Fermion-Antifermion-Paar enthalten und dieAbleitungen dur
h ihre Art s
hon eindeutig 
harakterisiert sind. Aufgrund der Summa-tionen �uber die Orte der �au�eren Ableitungen in Glei
hung (7.1) kann zu einem sp�aterenZeitpunkt auf die Indizierung der Orte an den bosonis
hen Beinen verzi
htet werden. Einekurze Erl�auterung wird zeigen, da� zwei Graphen, die si
h nur dur
h vers
hiedene Ortsin-dizes an glei
hartigen �au�eren Ableitungen unters
heiden, den glei
hen Beitrag zu �nmoliefern.Die Suszeptibilit�aten lassen si
h nun dur
h "graphis
hes\ Di�erenzieren aus den Gra-phen der Entwi
klung von W gewinnen. Dazu werden die Symbole f�ur die �au�eren Ab-leitungen an die Graphen angeh�angt. Hierbei sind die Regeln f�ur die Di�erentiation, be-sonders die Produktregel, zu bea
hten. Wenn alle �au�eren Ableitungen an den Graphenangeh�angt sind, werden die verbliebenen Quellen auf den Wert 0 gesetzt. Dur
h diesesNullsetzen der Quellen fallen die Graphen heraus, bei denen an einem Vertex die Anzahlder ein- und auslaufenden Linien ni
ht der Bedingung der Glei
hung (5.20) gen�ugt.Die Vertizes mit den �au�eren Ableitungen werden nun auf die Gitterpunkte abgebildet,die den �au�eren Ableitungen zugeordnet sind. Dies ist in den F�allen ni
ht m�ogli
h, in denenan einen Vertex zwei �au�ere Ableitungen mit vers
hiedenen Gitterpunkten angeh�angt sind.Die restli
hen Vertizes werden nun so �uber das Gitter verteilt, da� jede innere Graphenlinieimmer bena
hbarte Gitterpunkte verbindet. Die Bildelemente der Graphen werden nunentspre
hend den �Ubersetzungstabellen in Terme �ubersetzt. Es ist zu bea
hten, da� dieden fermionis
hen Linien zugeordneten Terme von deren Einbettung abh�angen. Die Termewerden soweit wie m�ogli
h zusammengefa�t. Auf diese Weise entsteht dann der Beitragdieser Einbettung des Graphen zu der Greens
hen Funktion der Suszeptibilit�at.Diese Beitr�age der Graphen sind nun �uber alle Einbettungen zu summieren, die die Orteder �au�eren Ableitungen unver�andert lassen. Hierbei ist zu ber�u
ksi
htigen, da� es ni
ht zujeder Konstellation von Ortsindizes an den �au�eren Ableitungen eine g�ultige Einbettunggibt. Abs
hlie�end sind die Beitr�age entspre
hend der De�nition der zu bestimmendenSuszeptibilit�at mit den von den Endpunkten abh�angigen Vorfaktoren zu multiplizieren.Die nun entstandenen Terme sind f�ur die vers
hiedenen Lagen der Orte der �au�eren Ab-leitungen aufzusummieren.Dieses Verfahren ist in der Praxis h�au�g zu umst�andli
h in der Handhabung. Es istaber sehr vorteilhaft, si
h in Zweifelsf�allen darauf zur�u
kziehen zu k�onnen, da es sehr an-s
hauli
h ist. Zur praktis
hen Bestimmung der Suszeptibilit�aten ist das im folgenden vor-



7.2. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN 33gestellte Verfahren, in dem �uber alle topologis
hen �Aquivalenzklassen zusammenh�angenderGraphen mit der ben�otigten Anzahl �au�erer Beine summiert wird, komfortabler.Die in diesem Verfahren erzeugten Graphen werden verwurzelt (engl.: rooted) genannt,da die Ortindizes an den �au�eren Ableitungen die zugeordneten Vertizes fest auf Gitter-punkte abbilden.7.2 Regeln f�ur die graphis
he Bestimmung derSuszeptibilit�atenIn diesem Abs
hnitt sollen nun die Regeln f�ur die Entwi
klung der Suszeptibilit�aten zu-sammengestellt und erl�autert werden. Viele Regeln ergeben si
h direkt aus den Regeln inAbs
hnitt 6.2.7.2.0.1 De�nitionenBevor auf die Regeln eingegangen werden kann, sind einige De�nitionen �uber die topolo-gis
hen Eigens
haften der Graphen notwendig.Zwei verwurzelte Graphen G und G0 sind toplogis
h �aquivalent, wenn es eine bi-jektive topologis
he Abbildung � : G ! G 0 gibt, die die Ortindizes der �au�erenAbleitungen ni
ht bea
htet.Dieses bedeutet insbesondere, da� zwei Graphen, die si
h nur dur
h die Indizes an den�au�eren Ableitungen unters
heiden, topologis
h �aquivalent sind. Im folgenden werden zweiverwurzelte Graphen, die der glei
hen topologis
hen �Aquivalenzklasse angeh�oren, au
h alsGraphen glei
hen topologis
hen Typs bezei
hnet.Zwei Verteilungen der Indizes an die �au�eren Ableitungen eines Graphen Ghei�en topologis
h �aquivalent, wenn es eine bijektive topologis
he Abbildung
 : G ! G gibt, die die Indizes an den �au�eren Ableitungen ber�u
ksi
htigt unddie eine Indexverteilung in die andere �uberf�uhrt.7.2.1 BildelementeDie Bildelemente aus Abs
hnitt 6.2.1 sind um die oben vorgestellen Bildelemente zu er-weitern. Dabei kann, als Vorgri� auf 7.2.2, bei den �au�eren Ableitungen auf den Ortsindexverzi
htet werden.7.2.2 Zusammenfassen von Graphen mit permutierten OrtsindizesWie s
hon angedeutet, liefern topologis
h �aquivalente Graphen den glei
hen Beitrag zuder betra
hteten Suszeptibilit�at, au
h wenn die Verteilung der Ortsindizes auf die �au�erenAbleitungen in�aquivalent ist. Sie k�onnen somit auf einfa
he Weise zusammengefa�t werden.Bei den hier betra
hteten Suszeptibilit�aten des Typs �mno kann dies nur bei bosonis
hen�au�eren Ableitungen auftreten.Zun�a
hst ergibt die Produktregel der Di�erentiation, da� die Anzahl der in dem obenbes
hriebenen graphis
hen Di�erentiationsverfahren erzeugten verwurzelten Graphen ei-nes topologis
hen Typs der Anzahl der Permutationen der Indizes �uber die �au�eren Beineentspri
ht, wenn ni
ht mehrere glei
hartige �au�ere Linien an den glei
hen Vertex angeh�angt



34 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENwerden. Mit jedem dieser Indizes ist eine Summation �uber das gesamte Gitter verbunden.Wird nun eine bestimmte Einbettung der �au�eren Ableitungen des Graphen auf das Git-ter betra
htet, so tritt diese Einbettung in jeder Permutation der Indizes genau einmalauf, und dieser Beitrag ist mit einem Faktor zu multiplizieren, der der M�a
htigkeit derPermutationsgruppe entspri
ht. Die Gr�o�e dieser Permutationsgruppe bez�ugli
h �mno istm! � n!.Hier gehen ganz ents
heidend die Vertaus
hungsregeln f�ur bosonis
he Operatoren ein.W�aren die vertaus
hten Ortsindizes Grassmann-Variablen zugeordnet, so w�urden antisym-metris
he Spinoren entstehen. Es wird nun folgende Regel aufgestellt:Der Beitrag aller Graphen einer topologis
hen �Aquivalenzklasse, die si
h nurdur
h eine Permutation der den �au�eren Beinen zugeordneten Gitterorte un-ters
heiden, zu �mno ist glei
h dem Beitrag eines einzigen dieser Graphen mul-tipliziert mit n! �m!.Damit dies bei Graphen mit mehreren glei
hen �au�eren Linien an einem Vertex ni
ht zu�Uberz�ahlungen f�uhrt, werden die Symmetriefaktoren in Abs
hnitt 7.2.4 zur Kompensationangepa�t.7.2.3 Summation �uber zusammenh�angende GraphenDas Anh�angen �au�erer Linien an zusammenh�angende unverwurzelte Graphen f�uhrt aufzusammenh�angende verwurzelte Graphen. Daher ist �uber alle topologis
hen �Aquivalenz-klassen zusammenh�angender Graphen mit der entspre
henden Anzahl �au�erer Linien (Ab-leitungen) zu summieren. Dabei besitzt keine Graphenlinie den glei
hen Anfangs- undEndpunkt. Graphen, die si
h nur dur
h eine Permutation der Ortsindizes an den �au�erenBeinen unters
heiden, sind hierbei als topologis
h �aquivalent anzusehen.Zur Verdeutli
hung dessen, was gemeint ist, m�o
hte i
h hier ein paar Beispiele angeben:Graphen, die zu ��2 beitragen: s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppp p p p p p p p p p- ---�ss sppppppppp p p p p p p p p pDD����DD  `̀`̀   - --�6?sppppppppp p p p p p p p p p- - (7.2)Graphen, die zu (�	�	3 )33 bzw. (�	�	3 )22 beitragen:s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p- -6 --� sspppppppppppppppppppppLL��p p p p p p p p p- -6?6? (7.3)7.2.4 SymmetriefaktorDur
h den �Ubergang zu verwurzelten Graphen kann die Gr�o�e der Symmetriegruppe deszugrundeliegenden unverwurzelten Graphen ver�andert werden. Dabei tritt eine neue Art



7.2. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN 35der Symmetrie auf, so da� gegen�uber Abs
hnitt 6.2.6 eine angepa�te De�nition der Sym-metriegruppe notwendig wird.Die Symmetriegruppe eines verwurzelten Graphen G wird als die Gruppe dertopologis
hen Abbildungen 
 : G ! G de�niert. Dabei wird bei den �au�erenLinien die Orientierung, ni
ht aber der Ortindex ber�u
ksi
htigt.Jedem Graphen G wird ein Symmetriefaktor SG zugeordnet. Dieser Faktor wird wie folgtde�niert: SG := 1M�a
htigkeit der Symmetriegruppe von G (7.4)Zur Illustration werden an dieser Stelle einige Graphen und deren Symmetriefaktorenangegeben:Graph G SG Erl�auterungs- - 1 Die Orientierungspfeile bre
hen die Symmetries sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppppppppppp pppppppppppppppppp-�66 66 12 Alle Bildobjekte des Graphen werden auf das jeweils an-dere der glei
hen Art abgebildets s  `̀`̀   pppppppppppppppppp pppppppppppppppppp -�66- 6 12 Vertaus
hen der einlaufenden Linien des linken Vertexs sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppppppppppp pppppppppppppppppp --�66- 6 14 Produkt zweier Symmetrieabbildungen:Vertaus
hen der einlaufenden Linien des linken Vertex;Vertaus
hen der beiden re
htslaufenden Verbindungslini-en.F�ur die Graphen gilt die folgende Regel:Der Beitrag eines jeden Graphen G ist mit seinem Symmetriefaktor SG zumultiplizieren.Zum Verst�andnis dieser Regel sind vier vers
hieden Arten der Symmetrie zu unters
heiden.1. Symmetrien dur
h Vertaus
hen �au�erer Linien eines Vertex.In 7.2.2 wurde erl�autert, da� Graphen, die mehrere glei
hartige �au�ere Linien aneinem Vertex haben, ni
ht mit der H�au�gkeit m! � n! in dem graphis
hen Di�eren-tiationsverfahren erzeugt werden. Die Graphen in der dritten und vierten Zeile dervorstehenden Tabelle sind von dieser Art.Bei einem Graphen mit einer derartigen Symmetrie ist die Anzahl der erzeugtenGraphen um einen Faktor geringer, der si
h dur
h die Anzahl der M�ogli
hkeiten,die Indizes an den �au�eren Ableitungen der einzelnen Vertizes zu vertaus
hen, er-gibt. Dies entspri
ht der M�a
htigkeit der Symmetrieuntergruppe, deren Elemente nur�au�ere Linien entspre
hend den Regeln f�ur topologis
he Abbildungen vertaus
ht, dierestli
hen Bildelemente aber auf si
h selbst abgebildet.2. Gebro
hene Symmetrien des zugeh�origen unverwurzelten GraphenDur
h das Anh�angen �au�erer Linien an einen unverwurzelten Graphen k�onnen Sym-metrien dieses Graphen gebro
hen werden. Der dritte Graph in der obigen Tabelle



36 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENist ein Beispiel hierf�ur. Der zugrundeliegende unverwurzelte Graph besitzt eine Sym-metrie bez�ugli
h des glei
hzeitigen Austaus
hs der Vertizes und Verbindungslinien.Diese Symmetrie besitzt der obige verwurzelte Graph ni
ht mehr. F�ur die Produktre-gel sind die beiden Vertizes in dem Sinne unters
heidbar, da� die "Verzierungen\mit drei �au�eren Linien einmal an den einen und dann an den anderen Vertex an-zuh�angen sind. Dadur
h entstehen bei jeder m�ogli
hen Zuordnung der Ortsindizesan die �au�eren Linien zwei topologis
h �aquivalente Graphen mit �aquivalenten In-dexverteilungen. Der urspr�ungli
he Symmetriefaktor 12 des unverwurzelten Graphenwird dadur
h kompensiert. Das Entstehen von nur zwei topologis
h in�aquivalen-ten Indexverteilungen wird dur
h die Austaus
hsymmetrie der beiden einlaufendenbosonis
hen Linien am linken Vertex verursa
ht, wie vorstehend unter Punkt 1 be-s
hrieben.Wird im allgemeinen Fall eine Symmetriegruppe der M�a
htigkeit s zerbro
hen, sok�onnen die �au�eren Linien auf s vers
hiedene Arten an den Graphen angeh�angtwerden, ohne da� topologis
h vers
hiedene verwurzelte Graphen mit topologis
h un-ters
heidbarer Indexverteilung entstehen. Ans
hauli
h bedeutet dies, da� es s ver-s
hiedene M�ogli
hkeiten gibt, den unverwurzelten Graphen in festgehaltene �au�ereLinien einzubetten. Dies kompensiert den Symmetriefaktor 1s des urspr�ungli
henGraphen. Das Entstehen von m! � n! topologis
h in�aquivalenten Indexverteilungenan einem Graphen wird dur
h diese Art der Symmetrie ni
ht beein
u�t.Die obige De�nition (7.4) des Symmetriefaktors SG liefert f�ur gebro
hene Symme-trien des unverwurzelten Graphen einen Faktor 1, ist also ni
ht sensitiv auf dieseSymmetrien und ergibt somit die ri
htige Anzahl erzeugter Graphen mit diesemSymmetrietyp.3. Unver�andert erhaltene Symmetrien des zugeh�origen unverwurzelten GraphenDer 4. Graph der obigen Tabelle enth�alt eine Austaus
hsymmetrie der beidenre
htslaufenden bosonis
hen Verbindungslinien. Diese Symmetrie wurde dur
h dasAnh�angen der �au�eren Beine ni
ht gebro
hen oder ver�andert, das hei�t, die neu hin-zugekommenen �au�eren Linien werden dur
h die zugeordnete Symmetrieabbildung
 auf si
h selbst abgebildet, wohingegen die verbleibenden Elemente entspre
hendder Symmetrieabbildung des unverwurzelten Graphen abgebildet werden.Der Anteil dieser Symmetrie des unverwurzelten Graphen an dessen Symmetriefak-tor geht unver�andert in den Symmetriefaktor des verwurzelten Graphen �uber. DieGlei
hung (7.4) liefert diesen Faktor in der ri
htigen Weise.4. Ver�anderte Symmetrien des zugeh�origen unverwurzelten GraphenEs gibt Symmetrien des zugrundeliegenden Graphen, die dur
h ein symmetris
hesAnh�angen der �au�eren Linien ver�andert werden. Der zweite Graph der obigen Tabelleist ein Beispiel daf�ur. Die Symmetrie dieses Graphen ist in dem unverwurzeltenGraphen, der den Symmetriefaktor 12 besitzt, s
hon vorhanden. Betra
hte dazu diefolgende graphis
he Entwi
klung, in der der verwurzelte Graph dur
h graphis
hesDi�erenzieren aus dem zugeordneten unverwurzelten Graphen erzeugt wird.



7.2. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN 37s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p-�1212 12s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppp s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppy1 y1-�6 -� 6s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppppppppppp s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppp pppppppppy1 y1x1 x1-�66 -�6 6s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppppppppppp pppppppppppppppppp s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p ppppppppppppppppppp ppppppppppppppppppy1 y2x1 x2 y2y1x2 x1-�66 66 -�66 66 (7.5)Die beiden Graphen der zweiten Zeile sind topologis
h �aquivalent und besitzen einetopologis
h �aquivalente Indexverteilung. Sie lassen si
h zusammenfassen, so da� si
hder Faktor 12 heraushebt. Die Graphen der letzten Zeile sind toplogis
h �aquivalent,besitzen aber eine in�aquivalente Indexverteilung. Da diese Graphen na
h 7.2.2 eben-falls zusammengefa�t werden k�onnen, entstehen aus dem unverwurzelten Graphenmit Symmetriefaktor 12 , zwei verwurzelte Graphen mit Vorfaktor 1. Da aber na
h7.2.2 der Graph mit einem Faktor 4 multipliziert wird, ist der Graph mit einemFaktor 12 zu multiplizieren, wie ihn die obige De�nition (7.4) liefert.Im allgemeinen Fall ist es m�ogli
h, da� eine Symmetrie des unverwurzelten Gra-phen beim "Verwurzeln\ auf eine Untergruppe der urspr�ungli
hen Symmetrie redu-ziert wird. Ein Beispiel hierf�ur ist die vierz�ahlige Drehsymmetrie eines Graphen, deraus vier geeignet orientierten Linien besteht, die im Quadrat angeordnet sind. Einederartige Symmetrie kann dur
h das "Verwurzeln\ auf eine zweiz�ahlige Symmetriereduziert werden.Die Anzahl der entstehenden Graphen entspri
ht der Anzahl der M�ogli
hkeiten, die�au�eren Beine auf topologis
h vers
hiedene Weise an dem Graphen anzuordnen.Die zun�a
hst entstehenden topologis
h �aquivalenten Indexverteilungen werden dazuverwendet, um den Symmetriefaktor des unverwurzelten Graphen wie in der zweitenZeile des Bildbeispieles herauszuheben. Dieses unters
heidet si
h um die M�a
htigkeitdes erhaltenen Teils der Symmetrie von der in Abs
hnitt 7.2.2 angenommenen Zahl.Dieses Resultat kann aber au
h so verstanden werden, da� si
h der Symmetriefaktordes zugrundeliegenden unverwurzelten Graphen erhalten hat.Zum Abs
hlu� soll betont werden, da� f�ur einen Graphen mehrere dieser F�alle zutre�enk�onnen, wie es f�ur den dritten und den vierten Graphen des obigen Beispiels zutri�t.7.2.5 Vorzei
henregelIn 6.2.7 wurde die Vorzei
henregel f�ur unverwurzelte Graphen angegeben. Da im Fallverwurzelter Graphen die Quellen na
h der Ausf�uhrung der Di�erentiationen auf nullgesetzt werden, gestalten si
h hier die Regeln viel einfa
her. F�ur die folgende Betra
htungsind die bosonis
hen Linien im allgemeinen belanglos.Zur Erl�auterung soll nun zun�a
hst ein Graph G der Entwi
klung von �	2 , bestehendaus n fermionis
hen Verbindungslinien, die dur
h Vertizes mit jeweils einer ein- und aus-laufenden Linie verbunden sind, betra
htet werden. Diese Linien bilden eine lange Kette:



38 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENs s s s s s s s sp p p1 2 3 4 5 6 n0 x- - - - - - - - - (7.6)Hierin stehen die Zahlen 1; 2; 3; : : : ; n f�ur einen die Linien bezei
hnenden Index, wohingegendie 0 und das x f�ur die Gitterorte stehen, die mit den �au�eren Ableitungen verbunden sind.Entspre
hend der Vorzei
henregel unverwurzelter Graphen und Glei
hung (2.14) f�uhrt dasEinsetzen der Terme f�ur die Bildelemente diese Graphen auf den Ausdru
k RG mit dem an-gegebenen positiven Vorzei
hen, wenn der Graph als Beitrag zu h	x �	0i
 angesehen wird.Darin werden der Linie mit dem Index i die Ableitungen �=��ai und �=���bi und die Ri
h-tung �̂i zugeordnet. RG besitzt unter Lorentztransformation das Transformationsverhalteneines Spinors 2. Stufe.(RG)bxa0 = Kn " nYi=1 (M�̂i)aibi#� ���a0 ����b1W1�"n�1Yi=1  ���ai ����bi+1W1!#� ���an ����bxW1�(7.7)Dabei wurde die �au�ere Ableitung ����bx mit den inneren Ableitungen entspre
hend denRegeln vertaus
ht. Mit: ���ai ����bjW1 = h	bj �	aii
1 (7.8)ergibt si
h f�ur RG:(RG)bxa0 = Kn h	bx �	ani
1 (M�̂i)anbn 24 1Yi=n�1h	bi+1 �	aii
1 (M�̂i)aibi35 h	b1 �	a0i
1 (7.9)Die 1-Platz-Erwartungswerte h	bj �	aii
1 k�onnen im Anhang B na
hges
hlagen werden. F�urfermionis
he Kettengraphen ergibt si
h insgesamt das wi
htige Zwis
henergebnis:Um bei einer fermionis
hen Graphenkette das ri
htige Vorzei
hen zu erhalten,wird der Erwartungswert h	b1 �	a0i
1, an dem der Kettengraph beginnt, re
htsan das Ende der Termfolge ges
hrieben. Davor wird die Matrix der ersten Ver-bindungslinie K (M�̂1)a1b1 ges
hrieben. Es folgt der n�a
hste Erwartungswerth	b2 �	a1i
1 und so weiter, bis s
hlie�li
h der Erwartungswert h	bx �	ani
1 linksam Beginn der Termfolge steht. Einer derartigen Termfolge ist ein positivesVorzei
hen zuzuordnen.Dieses Ergebnis l�a�t si
h nun lei
ht auf den allgemeinen Fall eines beliebigen Graphen mitoder ohne �au�ere fermionis
he Linien erweitern. In diesem Fall gibt es zwei wesentli
henUnters
hiede zu dem oben Diskutierten:1. Die 1-Platz-Erwartungswerte k�onnen mehr als ein Fermion-Antifermion-Paar ent-halten.2. Es gibt fermionis
he Graphenlinien, die si
h ni
ht dur
h Bildung fermionis
her Ket-ten mit �au�eren Ableitungen verbinden lassen.Aus der Glei
hung (5.17) ergibt si
h, da� bei einem von null vers
hiedenen Graphen dieAnzahl der in jeden Vertex einlaufenden fermionis
hen Linien der Anzahl der wieder aus-laufenden glei
ht. Da dadur
h die Endpunkte der �au�eren fermionis
hen Ableitungen die



7.2. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN 39beiden einzigen Punkte des Graphen sind, an denen si
h die Anzahl der ein- und aus-laufenden fermionis
hen Linien unters
heidet, ist es im Fall �au�erer fermionis
her Linienm�ogli
h, von der einlaufenden �au�eren fermionis
hen Linie eine rein fermionis
he Graphen-kette zu der auslaufenden �au�eren fermionis
hen Linie zu bilden, ohne eine einzige innereLinie zweimal zu dur
hlaufen.Eine M�ogli
hkeit des weiteren Vorgehens ist es, zun�a
hst die den vers
hiedenen Bild-elementen zugeordneten Terme niederzus
hreiben. Dabei sind die fermionis
hen Variablenin den 1-Platz-Erwartungswerten immer in der Reihenfolge 	�		�	 : : :	�	 einzusetzen undalle Spinorindizes o�en zu lassen. Den �au�eren Ableitungen werden Spinorindizes, z.B. a0bzw. bx, zugeordnet.Als erster Spinorindex wird nun a0 an das letzte �	 des 1-Platz-Erwartungswertes ge-s
hrieben, der dem Vertex ' s̀ zugeordnet wird, an dem die �au�ere einlaufende fermionis
heLinie endet. An das letzte 	 dieses Vertex wird nun b1 ges
hrieben. Dieser Index wird alshinterer Index an die Matrix M�̂1 angetragen, die der Verbindungslinie zugeordnet wird,die in der Verbindungskette den ersten Vertex mit dem zweiten verbindet. Als vorde-rer Index der Matrix M�̂1 wird a1 eingesetzt, der an das letzte �	 des Erwartungswertes�ubernommen wird, der dem zweiten Vertex der Kette zugeordnet ist.Ist an einem Vertex das letzte �	 s
hon mit einem Index versehen, so wird das hintersteno
h ni
ht mit einem Index belegte �	 genommen, und der auslaufenden Linie wird danndas vorstehende 	 zugeordnet. Die so gewonnene Indexfolge unters
heidet si
h von derIndexfolge in Glei
hung (7.9) um eine gerade Permutation der Indizes, da die 'Paare`(	bi+1 �	ai) ni
ht zertrennt wurden und so die Anzahl der Vertaus
hungen von Indizes, dienotwendig ist, um von der einen Folge zur anderen zu gelangen, immer gerade ist. DiesemTerm ist somit ein positives Vorzei
hen zuzuordnen.Do
h ist es ni
ht immer m�ogli
h, mit dieser Kette alle fermionis
hen Linien zu erfassen,und man
hmal gibt es au
h Gr�unde, dies ni
ht zu tun, obwohl es m�ogli
h w�are. Do
h bevordieser Punkt gekl�art wird, soll erst no
h einmal ein kurzes einfa
hes Beispiel angef�uhrtwerden, das ho�entli
h ein wenig Li
ht in die Angelegenheit bringt.s s"" bbbb ""��
a0 bx�--- - (7.10)Hierbei wurden die Verbindungslinien mit �, � und 
 indiziert. Nun gibt es zwei Artenfermionis
her Ketten, um von a0 na
h bx zu gelangen:1. Ein Beispiel f�ur die erste Art ist die Kette: 
 � � � �Dies ist wie folgt zu verstehen: An der �au�eren Linie bei a0 beginnen, mit � von links na
hre
hts, dann mit � zur�u
k und abs
hlie�end mit 
 zur auslaufenden �au�eren Linie na
h bx.2. Ein Beispiel f�ur die zweite Art ist die Kette, die nur aus � besteht.Wird den Linien mit den Indizes � und 
 die Ri
htung �̂ zugeordnet, so erh�alt die Liniemit Index � die Ri
htung ��̂. F�ur die erste Kette l�a�t si
h der folgende Ausdru
k f�ur RGmit Vorzei
hen angeben. Eine genaue De�nition des Terms RG wird im Abs
hnitt 7.3.1mit der Glei
hung (7.13) gegeben.(RG)bxa0 = K3 h	bx �	a
	b� �	a�i
1 (M�̂)a
b
 (M��̂)a�b� (M�̂)a�b� h	b
 �	a�	b� �	a0i
1(7.11)Damit deutli
h wird, wie die Indizes der Linien den Erwartungswerten zugeordnet werden,wurde auf eine Umbenennung der Indizes entspre
hend den obigen Ausf�uhrungen verzi
h-



40 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENtet. Um die obige Nomenklatur zu erhalten, ist b
 mit b3, b� mit b2 und b� mit b1 zuidenti�zieren. Analoges gilt f�ur die a's.Wird mit der zweiten Kette entspre
hend verfahren, dann werden die Linien � und 
ni
ht erfa�t. In derartigen F�allen, die insbesondere immer dann auftreten, wenn ein Graphohne �au�ere fermionis
he Linien innere fermionis
he Linien enth�alt, ist die Bildung fermi-onis
her "Blasen\ notwendig. Mit einer Blase wird eine ges
hlossene Kette fermionis
herGraphenlinien bezei
hnet. Da die �au�eren Beine s
hon dur
hlaufen sind oder ni
ht exi-stieren, enth�alt der Graph in diesem Stadium keine Punkte, in denen si
h die Anzahl dereinlaufenden von der der auslaufenden fermionis
hen Linien unters
heidet. Werden nunmit den no
h ni
ht erfa�ten Linien weitere Ketten gebildet, so ist es m�ogli
h, von jedemVertex, den die Kette errei
ht, au
h wieder weiter zu kommen, es sei denn, man ist wiederam Anfangspunkt angekommen. Da die Anzahl der fermionis
he Linien eines Graphenendli
h ist, mu� jede Kette wieder an ihren Anfangspunkt zur�u
kkehren und wird damitzur Blase. Damit ergibt si
h, da� si
h die restli
hen fermionis
hen Linien eines Graphenimmer in eine endli
he Anzahl Blasen aufteilen lassen.Die Indizierung einer Blase kann an einem beliebigen Vertex der Blase beginnen. Demletzten 	 dieses Erwartungswertes, das hei�t der vorletzten ni
ht indizierten fermionis
henVariable, wird der Index bn+1 zugeordnet, wenn s
hon n Graphenlinien indiziert wordensind. Der Matrix M�̂n+1 , mit der die Blase von diesem Vertex fortf�uhrt, werden, analogzum Fall der o�enen Ketten, die Indizes an+1 und bn+1 zugeordnet. Das an+1 wird dannwieder in der �ubli
hen Weise an den n�a
hsten Vertex angeh�angt. Dies Verfahren wirdfortgef�uhrt, bis si
h die Blase s
hlie�t. Besteht die Blase aus m inneren Linien, so wirdder Index an+m , den die MatrixM�̂n+m tr�agt, an das zu Beginn der Indizierung der Blaseausgelassene �	 angeh�angt.Wird nun die Indexreihenfolge der fermionis
hen Variablen betra
htet, so handelt essi
h um eine ungerade Permutation von an+m ; bn+m; : : : ; an; bn, die entspre
hend der Regelin Absatz 6.2.7 mit einem positiven Vorzei
hen zu belegen ist. Es gilt:F�ur jede Blase, die auf die oben bes
hriebene Weise indiziert wird, ist einzus�atzli
hes negatives Vorzei
hen einzuf�uhren.Zur Verdeutli
hung des hier Gesagten soll auf die Kette � des obigen Beispiels (7.10) no
heinmal eingegangen werden. Zur Bestimmung des Ausdru
ks RG m�ussen die Linien � und
 zu einer Blase zusammengefa�t werden. Auf eine Umbenennung der Indizes wird dabeiwiederum verzi
htet. Es ergibt si
h:(RG)bxa0 = �K3h	b� �	a
	bx �	a�i
1 (M�̂)a
b
 (M��̂)a�b� (M�̂)a�b� h	b
 �	a�	b� �	a0i
1(7.12)Die Unters
hiede zu Glei
hung (7.11) bestehen in dem Minus-Zei
hen und der Vertau-s
hung der Indizes in dem linken Erwartungswert. Aus Anhang B ergibt si
h, da� si
hdie Erwartungswerte mit den vertaus
hten Indizes um ein Minus-Zei
hen unters
heiden.Somit liefern die Glei
hungen (7.11) und (7.12) das glei
he Resultat. Soviel zu diesemBeispiel.Die Terme RG werden entspre
hend der Summenkonvention zusammengefa�t.7.2.6 Modi�kationen f�ur nF 6= 1Dem Zusammenfassen der Terme eines Graphen ist im Fall nF 6= 1 gro�e Aufmerksamkeitzu s
henken. 1-Platz-Erwartungswerte, die fermionis
he Variablen enthalten, sind ent-spre
hend Anhang B immer aus einer Summe �uber Tensorprodukte der Matrizen A� und



7.3. PRAKTISCHE DURCHF�UHRUNG DES VERFAHRENS 41A+ aufgebaut, sofern sie mehr als zwei Variablen enthalten. Sind keine �au�eren fermi-onis
hen Ableitungen vorhanden, so ergibt die Bere
hnung von RG eine Summe �uber Pro-dukte von Matrizenspuren der Art fTr[Qi(M�̂i � A�i)℄g mit �i 2 �. Im Fall �au�ererfermionis
her Ableitungen wird dies mit einer Matrix fA� �Qi(M�̂i �A�i)g multipliziert.Ist nF 6= 1, so ergibt eine Matrizenspur der obigen Art das nF -fa
he dessen, wassi
h im Fall nF = 1 ergeben h�atte. Bei den Matrizenprodukten ergibt si
h eine (8nF ) �(8nF )-Matrix. An der 8� 8-Matrix in der linken oberen E
ke �andert si
h ni
hts, wenn nFge�andert wird. Aus diesem Teil der Matrix werden die renormierten Gr�o�en bestimmt. DieBere
hnungen k�onnen somit im 8-komponentigen Spinorraum dur
hgef�uhrt werden. DasResultat ist f�ur jede Spur der obigen Art mit einem Faktor nF zu multiplizieren.Auf diese Weise brau
hen die Bere
hnungen nur einmal dur
hgef�uhrt zu werden, umErgebnisse f�ur vers
hiedene Werte von nF zu erhalten.7.2.7 Einbettung verwurzelter Graphen zur Bestimmung der Suszepti-bilit�atenZur Einbettung eines Graphen auf das Gitter ist es sinnvoll, von der Translationsinvarianzder Funktion F (xi; yj; wk; vk) in der De�nition (7.1) Gebrau
h zu ma
hen, wie es in denDe�nitionen in Abs
hnitt 3.4 ges
hehen ist. Dazu wird eine Feldvariable des Erwartungs-wertes fest am Gitterplatz 0 angetragen. Die zugeh�orige Summation und der Faktor 1Ventf�allt dann.Zur Einbettung wird nun ein Vertex ausgew�ahlt, an dem eine �au�ere Linie endet, diein ihrer Art der Feldvariable entspri
ht, die am Gitterplatz 0 angetragen wurde. DieserVertex wird auf den Gitterplatz 0 eingebettet. Das weitere Vorgehen verl�auft nun ent-spre
hend Abs
hnitt 6.2.7, nur da� die Vers
hiebung des urspr�ungli
hen Punktes �uberdas ganze Gitter entf�allt, da die Einbettung dieses Punktes auf 0 festgehalten ist. Auf-grund der Summation in Glei
hung (7.1) werden an die Einbettung der Vertizes mit denverbleibenden �au�eren Linien keine Bedingungen gestellt.Bei diesem Verfahren ist zu bea
hten, da� die Beitr�age der fermionis
hen Linien vonder Ri
htung ihrer Einbettung auf das Gitter abh�angen.7.3 Praktis
he Dur
hf�uhrung des Verfahrens7.3.1 Anleitung zur Entwi
klung der Suszeptibilit�atenDie praktis
he Dur
hf�uhrung der Entwi
klung der Suszeptibilit�aten �mno bis zu einer be-stimmten Ordnung in T kann entlang der in diesem Abs
hnitt angegebenen aus 12 Punk-ten bestehenden Liste vorgenommen werden. Verglei
hbare Regeln f�ur ein rein bosonis
hesModell werden in [4℄ bes
hrieben. Die hier vorgestellten Regeln lehnen si
h teilweise andie dortigen an. In [11℄ werden Andeutungen f�ur �ahnli
he Regeln in einem fermionis
henModell gema
ht.1. Als erstes sind alle Graphen mit der entspre
henden Anzahl �au�erer Graphenlinienniederzus
hreiben, bei denen die Anzahl der inneren Graphenlinien die betra
hteteOrdnung in T ni
ht �ubersteigt. Graphen, bei denen sofort erkannt wird, da� sie ni
htzu der betra
hteten Suszeptibilit�at beitragen, k�onnen dabei ausgelassen werden. DieS
hritte 2 bis 12 sind mit jedem Graphen einzeln dur
hzuf�uhren. Dabei wird mit fGgdie Menge der Graphen bezei
hnet, die dieser Bedingung gen�ugen. Diese Menge istalso von der betra
hteten Suszeptibilit�at abh�angig.



42 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN2. F�ur jeden Graphen G ist der Symmetriefaktor SG entspre
hend Glei
hung (7.4) zuermitteln.3. In jedem Graphen wird eine Anzahl innerer Linien ausgew�ahlt, deren Ri
htungen dieLage aller Vertizes ' s̀ mit �au�eren Linien relativ zu dem na
h Abs
hnitt 7.2.7 aufden Gitterplatz 0 abgebildeten Vertex �xieren. Diese Linien werden indiziert, unddie Ri
htungen �̂1; : : : ; �̂p dieser Linien werden im weiteren zur Parametrisierungdes Graphen benutzt. Die Auswahl der Linien sollte, damit die Summation unterPunkt 11 si
h m�ogli
hst einfa
h dur
hf�uhren l�a�t, so vorgenommen werden, da� diehier ausgew�ahlten Linien einen "Baumgraphen\ bilden. Be�nden si
h alle �au�erenLinien an einem Vertex, so sollten an dieser Stelle keine Linien indiziert werden.4. Den in dem vorstehenden Punkt no
h ni
ht indizierten fermionis
hen Linien werdendie Ri
htungen �̂1; : : : ; �̂q zugeordnet.Dur
h die Wahl einer Indexanordnung �̂1; : : : ; �̂p; �̂1; : : : ; �̂q wird dur
h den festen0-Punkt eine Einbettung fest vorgegeben, sofern die Ri
htungsindizes so gew�ahltsind, da� jedem Vertex ein Gitterplatz eindeutig zugeordnet werden kann. Bei Gra-phen mit S
hleifen ist dies ni
ht immer m�ogli
h.5. Die Funktion F (xi; yj; wk; vk) wird in eine Funktion ~F (�̂1; � � � ; �̂n) umges
hrieben.6. Den Vertizes ' s̀ werden verbundene 1-Platz-Erwartungswerte mit einer den ein- undauslaufenden Linien entspre
henden Anzahl von Feldfunktionen zugeordnet. Dabeiwerden die Spinor-Indizes an den fermionis
hen Feldfunktionen zun�a
hst o�en ge-lassen. In Abs
hnitt B werden f�ur einige Vertizes mit ein- und auslaufenden Liniendie zugeordneten Terme angegeben.7. F�ur die Verbindungslinien werden die entspre
henden Faktoren eingesetzt. Einerbosonis
hen Linie wird ein Faktor �, einer fermionis
hen Linie, die in die Ri
htung �̂nweist, eine Matrix KM�̂n zugeordnet. Au
h hierbei werden die Spinor-Indizes o�engelassen.8. Die Spinorindizes werden nun entspre
hend Abs
hnitt 7.2.5 eingetragen. Dabei istf�ur jede Blase ein negatives Vorzei
hen einzuf�uhren.9. Die Terme sind entspre
hend der Summenkonvention zusammenzufassen. Dabei soll-ten die Faktoren nF entspre
hend Abs
hnitt 7.2.6 bea
htet werden. Der entstehendeAusdru
k wird im folgenden ~RG(�̂1; : : : ; �̂p; �̂1; : : : ; �̂q) genannt.10. Es wird ein Ausdru
k RG(�̂1; : : : ; �̂p) wie folgt de�niert:RG(�̂1; : : : ; �̂p) := 0X�̂1;:::;�̂q ~RG(�̂1; : : : ; �̂p; �̂1; : : : ; �̂q) (7.13)Das Symbol P0 soll darauf hinweisen, da� die Indizes �̂1; : : : ; �̂q in Abh�angigkeit von�̂1; : : : ; �̂p summiert werden. Falls dur
h die Konstellation der Ri
htungsindizes dieeinzelnen Vertizes ni
ht eindeutig auf Gitterpl�atze abgebildet werden, ist diese Index-konstellation von der Summation auszunehmen. Dies ist der Fall, wenn dur
h Linienverbundene Vertizes ni
ht widerspru
hsfrei bena
hbarten Gitterpl�atzen zugeordnetwerden k�onnen.



7.3. PRAKTISCHE DURCHF�UHRUNG DES VERFAHRENS 4311. Der Beitrag �mno(G) des Graphen G zu �mno bestimmt si
h nun na
h:�mno(G) = 0X�̂1;:::�̂p ~F (�̂1; � � � ; �̂n)SGRG(�̂1; : : : ; �̂p)m! � n! (7.14)Au
h bei dieser Summation ist darauf zu a
hten, da� die Wahl der Ri
htungsindi-zes �̂1; : : : ; �̂p ni
ht zu Widerspr�u
hen gegen die Regel, da� alle Ableitungen einesVertizes ' s̀ den glei
hen Ortsindex tragen, f�uhrt. Indexkonstellationen, die zu Wi-derspr�u
hen f�uhren, sind von der Summation auszunehmen.12. Abs
hlie�end ist �uber alle unter Punkt 1 ausgew�ahlten Graphen zu summieren. DasResultat ist dann die Taylorreihe der betra
hteten Suszeptibilit�at �mno.�mno =XG �mno(G) (7.15)Auf eine Indizierung zur Unters
heidung von �mno und seiner Taylorreihe wird hierverzi
htet.Mit den angegebenen Regeln k�onnen die Suszeptibilit�aten nun entwi
kelt werden. In denfolgenden Abs
hnitten werden no
h einige Vereinfa
hungen diskutiert, die vor allem dieunter Punkt 1 auszuw�ahlenden Graphen reduzieren.7.3.2 Erl�auterungen zu einzelnen Suszeptibilit�atenNa
hdem im vorstehenden Abs
hnitt die allgemeinen Regeln f�ur die Entwi
klung der Sus-zeptibilit�aten �mno entspre
hend Glei
hung (7.1) erl�autert worden sind, soll in diesemAbs
hnitt auf die einzelnen Suszeptibilit�aten eingegangen werden.7.3.2.1 Die Suszeptibilit�aten �	2 und �	2Beide Suszeptibilit�aten sind vom Typ �001, die Auswahl der Graphen unter Punkt 1 derListe in Abs
hnitt 7.3.1 brau
ht somit nur einmal dur
hgef�uhrt zu werden. Die Suszepti-bilit�aten unters
heiden si
h ledigli
h in der jeweiligen Funktion F .Wird unter Punkt 3 der Liste die k�urzeste Kette innerer Linien gew�ahlt, die die Vertizesmit den beiden �au�eren Linien verbindet, dann geht die Summation mit NebenbedingungP0 in Glei
hung (7.14) in eine Summation ohne Nebenbedingung P �uber. Es gilt:x = pXi=1 �̂i (7.16)Damit bestimmt si
h nun der Beitrag eines Graphen G zu den betra
hteten Suszeptibi-lit�aten wie folgt:�	2 (G) = X�̂1;:::;�̂p 4X�=1 exp(�iP�x�)SG RG(�̂1; : : : ; �̂p)�	2 (G) = X�̂1;:::;�̂p 4X�;�=1 
�x� 1
os(P�) exp(�iP�x�)SGRG(�̂1; : : : ; �̂p) (7.17)



44 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATEN7.3.2.2 Die Suszeptiblit�aten ��2 und ��2Diese beiden Suszeptibilit�aten geh�oren ebenfalls dem glei
hen Typ an, in diesem Fall demTyp �110. Sie k�onnen analog zu den beiden vorstehenden entwi
kelt werden, da sie ebenfallszwei �au�ere topologis
h unters
heidbare Linien besitzen. Es sollte klar sein, da� hier andereGraphen auszuw�ahlen sind als f�ur �	2 und �	2 . Insgesamt gilt:��2 (G) = 12 X�̂1;:::;�̂p SG RG(�̂1; : : : ; �̂p)��2 (G) = 12 X�̂1;:::;�̂p x2 SG RG(�̂1; : : : ; �̂p) (7.18)7.3.2.3 Die Suszeptibilit�at ��4In diesem Fall ist es bei man
hen Graphen ni
ht m�ogli
h, die Nebenbedingung in derSumme in Glei
hung (7.14) loszuwerden. Als Beispiel wird der folgende Graph angegeben.s sssppppppppp ppppppppp p p p p p p p p pp p p p p p p p p- -� �- 6�?0x zy�̂1 �̂2�̂3 (7.19)Es ist oft notwendig, die Ri
htungen von drei innere Linien zu kennen, um die Lage derE
kpunkte daraus zu rekonstruieren. Werden �̂1 und �̂2 so gew�ahlt, da� die zugeordnetenLinien weder parallel no
h antiparallel zueinander stehen, so gibt es f�ur �̂3 und somit f�urx zwei M�ogli
hkeiten. Entweder gilt �̂3 = �̂1 oder �̂3 = �̂2. Alle anderen Werte f�ur �̂3 sindvon der Summation auszunehmen. Damit ergibt si
h:��4(G) = 38 0X�̂1 ;:::;�̂p SG RG(�̂1; : : : ; �̂p) (7.20)7.3.2.4 Die Suszeptibilit�at �	�	3Na
h Glei
hung (3.28) ist es ausrei
hend, die Terme (�	�	3 )22 und (�	�	3 )33 zu bere
hnen,um die renormierten Yukawa-Kopplungen zu bestimmen. Es brau
hen also keine Suszep-tibilit�aten vom Typ �011 bestimmt zu werden.Au
h in diesem Fall ist es ni
ht m�ogli
h, die Nebenbedingung in der Summation inGlei
hung (7.14) zu eliminieren. Der folgende Graph mit 10 inneren Linien dient als Bei-spiel. s sss ss ssppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppppppppppppy x0�̂1 �̂2 �̂3�̂5�̂4- -6- -6 - 6�-�- ? (7.21)Bei diesem Graphen m�ussen 5 innere Linien ausgew�ahlt werden, damit alle Endpunktefestgelegt sind. Eine m�ogli
he Wahl ist in den Graphen eingetragen. Bei dieser Wahl ergibt�̂1 = �̂2 = �̂3 = ��̂4 = ��̂5



7.3. PRAKTISCHE DURCHF�UHRUNG DES VERFAHRENS 45keine zul�assige Einbettung des Graphen auf das Gitter.An dieser Stelle ist es nun sinnvoll, einen Ausdru
k ~�	�	3 , an dem die Terme (�	�	3 )22und (�	�	3 )33 abgelesen werden k�onnen, wie folgt zu de�nieren.~�	�	3 :=Xxy h x�0 � yi
 (7.22)Dieser Ausdru
k bestimmt si
h aus den zugeh�origen Graphen G na
h:~�	�	3 (G) = 0X�̂1;:::;�̂p SG RG(�̂1; : : : ; �̂p) (7.23)7.3.3 Vereinfa
hungen bei der Graphenauswahl7.3.3.1 Graphen mit r�u
klaufenden fermionis
hen LinienDas einfa
hste Beispiel f�ur einen Graphen mit einer r�u
klaufenden fermionis
hen Linie ist:ss��DDDD��- -6? (7.24)Aufgrund der Einbettungsregeln wird den beiden inneren Linien die entgegengesetzte Ri
h-tung zugeordnet. Der obere Vertex liefert einen Beitrag, der proportional zum Einheits-operator 1S im Spinorraum ist. Der Beitrag der inneren Linien und des oberen Vertex zumGesamtbeitrag dieses Graphen ist:K21�G�G  
� + r 00 
� + r !  
�� + r 00 
�� + r ! = K21� G�G (�1 + r2) (7.25)Wird der Wilson-Parameter r auf r = 1 gesetzt, so liefern alle Graphen mit r�u
klaufendenfermionis
hen Linien einen Beitrag null.Damit lassen si
h in der praktis
hen Re
hnung viele Graphen auss
hlie�en. Zum ande-ren k�onnen mit diesem Resultat aber au
h eine ganze Reihe der m�ogli
hen Einbettungeneines Graphen, der einen Beitrag liefert, ausges
hlossen werden.Bei der Anwendung dieses Resultates ist darauf zu a
hten, das der verbindende Vertexvon der Art s- - ist. Beginnen oder enden weitere Graphenlinien in dem verbindendenVertex, so ist dieses Resultat ni
ht anwendbar.7.3.3.2 Alternierende Anordnung der Matrizen A� und A+Alle 1-Platz-Erwartungswertemit fermionis
hen Variablen au�er h	�	i
1 sind Summen �uberTensorprodukte der Matrizen A� und A+, wie Anhang B verdeutli
ht. Die skalaren Vor-faktoren sind f�ur die Betra
htung dieses Abs
hnitts unwi
htig. In der AB-Basis werdensomit bei der Zusammenfassung der Terme unter Punkt 9 in Abs
hnitt 7.3.1 die MatrizenA�, A+ und M�̂ in einer dur
h fermionis
he Ketten bestimmten Reihenfolge miteinandermultipliziert. Diese fermionis
hen Ketten werden dur
h die Permutation der Indizes in den1-Platz-Erwartungswerten gebildet.Die M�̂ werden dur
h 2� 2-Matrizen mit von null vers
hiedenen 4� 4-Matrixbl�o
kenauf der Diagonalen dargestellt. Die Matrizen A� beziehungsweise A+ besitzen nur einen



46 KAPITEL 7. GRAPHISCHE REGELN F�UR DIE SUSZEPTIBILIT�ATENvon null vers
hiedenen Matrixblo
k in der linken unteren bzw. in der re
hten oberen Ma-trixe
ke. Eine kurze Re
hnung zeigt, da� die Matrizen A� und A+ immer alternierendentlang der Ketten vorkommen m�ussen. Die Anzahl der dazwis
hen vorkommenden Ma-trizen M�̂ ist irrelevant.Au
h mit diesem Resultat lassen si
h viele Graphen oder aber bestimmte Permutatio-nen der Indizes in den 1-Platz-Erwartungswerten direkt als ni
ht beitragend erkennen, soda� in der praktis
hen Re
hnung einige Re
henarbeit gespart werden kann.Desweiteren ist dieser Punkt f�ur die Betra
htungen des Abs
hnitts 9.3 wi
htig.Als Beispiel soll no
h der folgende Graph angegeben werden, der na
h dem Ergebnisdieses Abs
hnitts direkt als ni
ht beitragend ausgesondert werden kann.s sssp p p p p p p p p p p p p p p p p p p p pp p p p p p p p py x0- ---6 ?- (7.26)Bei diesem Graphen ist nur die Bildung einer einzigen fermionis
hen Kette m�ogli
h. Ent-lang dieser Kette sind dann die MatrizenA+M�̂3 A�M�̂2 M�̂1 A� = 0miteinander zu multiplizieren.



Kapitel 8Zur�u
kf�uhrung auf1-Linien-irreduzible Graphen8.1 1-Linien-reduzible GraphenIn der hier vorgestellten "Linked-Cluster-Entwi
klung\ ist es wie in der St�orungstheoriem�ogli
h, dur
h die Verwendung von geometris
hen Reihen die Anzahl der auszuw�ahlen-den Graphen erhebli
h zu reduzieren. Die Graphen, die im weiteren auszuw�ahlen sind,werden "1-Linien-irreduzibel\ genannt, in Analogie zu den "1-Teil
hen-irreduziblen\ Gra-phen (engl.: one-parti
le irredu
ible graphs) in der St�orungstheorie. Im weiteren werden die1-Linien-irreduziblen Graphen oft als irreduzible Graphen bezei
hnet.Ein zusammenh�angender Graph G wird 1-Linien-reduzibel genannt, wenn erdur
h Ausl�os
hen einer inneren Linie in unzusammenh�angende Teile zerf�allt.Existiert keine Linie mit dieser Eigens
haft, so hei�t der Graph 1-Linien-irreduzibel.Au
h hier werden zur Illustration einige Beispiele angegeben. Weitere Beispiele irreduziblerGraphen werden im Anhang D angegeben.s s s ss sss s s s s ssssppppppppp p p p p p p p p p !! aaaa !! pppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppp!! aaaa !! pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p ppppppppp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p pR R RRR- - -- - -- - --- ----� -� 6?--� - ?66 - -66 (8.1)Die Graphen der ersten Zeile sind irreduzibel, die der zweiten Zeile reduzibel. Die Liniender reduziblen Graphen, deren Ausl�os
hung den Graphen in ni
htzusammenh�angende Teilezertrennt, sind mit einem "R\ gekennzei
hnet.47



48 KAPITEL 8. 1-LINIEN-IRREDUZIBLE GRAPHENIm weiteren soll gezeigt werden, wie si
h die in Abs
hnitt 3.4 de�nierten Suszeptibi-lit�aten aus 1-Linien-irreduziblen Graphen bestimmen lassen. Dieses verringert die unterPunkt 1 in Abs
hnitt 7.3.1 auszuw�ahlenden Graphen erhebli
h. Dazu werden im folgen-den Abs
hnitt die ben�otigten Formeln aufgelistet, um aus den Beitr�agen der irreduziblenGraphen die Beitr�age aller Graphen zu den Suszeptiblit�aten zu bestimmen. Diese Formelnwerden in den na
hfolgenden Unterabs
hnitten bewiesen.8.2 Bestimmung der Suszeptibilit�aten aus irreduziblenGraphenEs ist m�ogli
h, alle Suszeptibilit�aten des Abs
hnitts 3.4 unter auss
hlie�li
her Verwendungirreduzibler Graphen zu bestimmen. Dazu ist ein neues Symbol notwendig:Æ�mno:=XGli �mno(Gli) (8.2)Dabei steht fGlig f�ur die Menge der 1-Linien-irreduziblen Graphen, die die unter Punkt 1in Abs
hnitt 7.3.1 genannten Bedingungen erf�ullen. Der Ausdru
k Æ�mno wird im folgendenals der "irreduzible Kern\ der Suszeptibilit�at �mno bezei
hnet. Nun gilt bei r = 1:��2 = Æ��21� 16 � Æ��2 (8.3)��2 = Æ��2 +16 Æ��2 � Æ��2�1� 16 � Æ��2�2 (8.4)��4 = Æ��4�1� 16 � Æ��2�4 (8.5)�	2 (P ) = Æ�	2 (P ) "1� 2K 4X�=1 
os(P�) Æ�	2 (P )#�1= Æ�	2 (P ) �1�K (8� 4n�) Æ�	2 (P )��1 (8.6)�	2 (P ) = " Æ�	2 (P ) + 8K Æ�	2 (P ) Æ�	2 (P )# � "1� 2K 4X�=1 
os(P�) Æ�	2 (P )#�2= " Æ�	2 (P ) + 8K Æ�	2 (P ) Æ�	2 (P )# � "1�K (8� 4n�) Æ�	2 (P )#�2 (8.7)~�	�	3 = 24 Æ~�	�	31� 16 � Æ��2 35 � �1� 8K Æ�	2 (P )��2 (8.8)Es ist zu bea
hten, das P� 2 f0; �g gilt. Mit n� wird die Anzahl der Impulskomponenten P�bezei
hnet, f�ur die P� = � gilt.



8.2. SUSZEPTIBILIT�ATEN AUS IRREDUZIBLEN GRAPHEN 49Entspre
hende Formeln werden in [4℄ f�ur eine bosonis
he Hopping-Parameter-Entwi
klung und in [11℄ f�ur eine fermionis
he Hopping-Parameter-Entwi
klung ohne Be-weis angegeben.8.2.0.1 Anmerkungen zur Notation in den folgenden BeweisenZur Vereinfa
hung der Notation ist an dieser Stelle die Einf�uhrung eines neuen graphis
henSymbols notwendig.��AA ��AA��AA ��AAGli : I-Box (8.9)Dieses Symbol wird im weiteren als "I-Box\ bezei
hnet, und es steht f�ur den 1-Linien-irreduziblen Graphen Gli mit der eingezei
hneten Anzahl �au�erer Linien. An derartigenf�ur die I-Box �au�eren Ableitungen k�onnen zwei I-Boxen mit den entspre
henden Linienverbunden werden. Dadur
h werden diese Ableitungen zu inneren Ableitungen bez�ugli
hdes Gesamtgraphen, der aus den irrduzible Graphen entsteht, die den I-Boxen zugeordnetsind. Als Beispiel m�ogen hier die na
hfolgenden Beweise dienen.Desweitern wird ein Symbol ben�otigt, um einen Graphen dur
h Anh�angen eines Gra-phenteils an einen anderen zu erzeugen. ��AA ��AA��AA ��AAGli1ppppppppp p p p p p p p p p- - ! ��AA ��AA��AA ��AAGli2>p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - ! =  ��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - ! (8.10)Das Anh�ange-Symbol > ist so zu verstehen, da� si
h zwis
hen der I-Box und und dem ">\eine innere Linie be�ndet, die 2d Einbettungen besitzt und den mit der Linie verbundenenFaktor � tr�agt. Bei fermionis
hen Linien ist das Anh�ange-Symbol > analog zu handhaben.In den Beweisen stehen die Graphen stellvertretend f�ur das Produkt der ihnen zuge-ordneten Faktoren SG und RG.Das SymbolPEbd steht f�ur die Summe �uber alle Einbettungen des folgenden Graphen.8.2.1 Die Suszeptibilit�at ��2Ein beliebiger Graph, der zu ��2 beitr�agt, besteht aus einer Kette von einem oder mehre-ren irreduziblen Teilgraphen, die dur
h bosonis
he Linien verbunden sind. Die irreduziblenGraphen k�onnen ni
ht dur
h eine fermionis
he Linie verbunden sein, da an jedem ' s̀ desGraphen die Anzahl der ein- und auslaufenden fermionis
her Linien glei
h ist, und derGesamtgraph keine �au�eren fermionis
hen Ableitungen besitzt. Somit enth�alt ein derar-tiger Graph keine Quellen und Senken f�ur fermionis
he Linien. Die Folge ist, da� diefermionis
hen Linien immer ges
hlossene Blasen bilden und si
h somit alle fermionis
henLinien den irreduziblen Teilgraphen zuordnen lassen.In diesem Beweis stehen alle I-Boxen f�ur irreduzible Graphen mit jeweils einer ein- undauslaufenden bosonis
hen Line. Es gilt:��2 = 12Xx h�x�+0 i




50 KAPITEL 8. 1-LINIEN-IRREDUZIBLE GRAPHEN= 12XEbd"XGli ��AA ��AA��AA ��AAGlippppppppp p p p p p p p p p- - #+12 XEbd" XGli1 ;Gli2 ��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - #+12 XEbd" XGli1 ;Gli2 ;Gli3 ��AA ��AA��AA ��AA ��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2 Gli3ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - - #+ � � �= 12 1Xp=08><>: XEbdXGli1 ��AA ��AA��AA ��AAGli1ppppppppp p p p p p p p p p- - ! XEbdXGli� ��AA ��AA��AA ��AAGli�>p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - !p 9>=>; (8.11)Der Symmetriefaktor SG jedes Gesamtgraphen G, der zu ��2 beitr�agt, setzt si
h, da die Pfei-le an den Verbindungslinien zwis
hen den I-Boxen die Symmetrie bez�ugli
h des Austaus
hsvon I-Boxen bre
hen, multiplikativ aus den Symmetriefaktoren SGli der irreduziblen Teil-graphen Gli zusammen. Die Verbindungslinien tragen immer den Symmetriefaktor 1. Ausder Tatsa
he, da� beliebig viele Vertizes ' s̀ auf den glei
hen Gitterpunkt abgebildet wer-den k�onnen, und der Translationsinvarianz der Beitr�age der Graphenteile ergibt si
h, da�die Summe �uber die Einbettungen PEbd des gesamten Graphen in Summen �uber dieEinbettungen der einzelnen Verbindungslinien und I-Boxen umges
hrieben werden kann.Ans
hauli
h gespro
hen, stehen si
h die einzelnen Graphenteile ni
ht im Weg.Aus dem Konstruktionsverfahren der RG ergibt si
h, da� si
h au
h diese Faktorenmultiplikativ aus den den Verbindungslinien und Teilgraphen Gli zugeordneten R-Faktorenzusammensetzen.Die letzte Zeile in Glei
hung (8.11) ist nun eine geometris
he Reihe, die si
h mit derbekannten Formel vereinfa
hen l�a�t. Es gilt:Æ��2= 12XEbd"XGli ��AA ��AA��AA ��AAGlippppppppp p p p p p p p p p- - # (8.12)Die Verbindungslinie mit dem Anh�ange-Symbol besitzt 8 m�ogli
he Einbettungen und jedeEinbettung liefert einen Beitrag �. Wird dies in Glei
hung (8.11) eingestzt, so ergibt si
hdie Glei
hung (8.3).8.2.2 Die Suszeptibilit�at �	2 (P )Der Beweis der Formel (8.6) verl�auft analog zu dem vorstehenden. Dabei sind alle bosoni-s
hen Linien dur
h fermionis
he zu ersetzen, und es ist zu bea
hten, da� hier mit Matrizenund ni
ht mit Skalaren gere
hnet wird. Da die hier betra
hteten Graphen keine Quellenund Senken f�ur bosonis
he Felder enthalten, k�onnen alle bosonis
hen Linien den I-Boxenzugordnet werden. Die I-Boxen werden hier also auss
hlie�li
h dur
h fermionis
he Linienverbunden.Ein weiterer Unters
hied ist die P -Abh�angigkeit. Es ist notwendig, jeder I-Box und je-der inneren Linie einen Vektor des Gitters zuzuordnen, der den Abstand der beiden �au�erenAbleitungen der I-Box bzw. die Ri
htung der inneren Linie im Raum-Zeit-Gitter angibt.Der Vektor x, der den Abstand der beiden �au�eren Ableitungen des Gesamtgraphen auf



8.2. SUSZEPTIBILIT�ATEN AUS IRREDUZIBLEN GRAPHEN 51dem Gitter angibt, ist die Summe dieser Vektoren. Die Zuordnung dieser Gittervektorenan die einzelnen Bildsymbole wird jeweils unter den Symbolen angegeben.�	2 (P ) = Xx e�iP�x�h	x �	0i
= XEbd"XGli e�iP�x� �-x��AA ��AA��AA ��AAGli- - #+XEbd" XGli1 ;Gli2 e�iP� [(x1)�+�̂�+(x2)�℄ �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2- - - #+ � � �= 1Xq=0( XEbdXGli1 e�iP�x� �-x��AA ��AA��AA ��AAGli1- - ! �� XEbdXGlia e�iP�[�̂�+(xa)�℄ �-xa� -�̂ ��AA ��AA��AA ��AAGlia> - - !q ) (8.13)Werden von den 8 Einbettungen der inneren Verbindungslinien jeweils die antiparallelenRi
htungen zusammengefa�t, so heben si
h die Beitr�age proportional zu 
� weg, und esbleibt der Beitrag proportional zu r = 1. Aus zwei fexp(�iP��̂�)g-Termen entsteht immerein Term f2 
os(P�)g, und es bleibt eine Summe P4�=1. MitÆ�	2 (P ) = XEbd"XGli e�iP�x� �-x��AA ��AA��AA ��AAGli- - # (8.14)ergibt si
h unter Verwendung der geometris
hen Reihe die gesu
hte Formel.8.2.3 Die Suszeptibilit�at ��2Das zum Aufbau der Graphen f�ur ��2 Gesagte gilt nat�urli
h au
h f�ur ��2 .��2 = 12Xx x2 h�x�+0 i
= 12XEbd"XGli x2 �-x��AA ��AA��AA ��AAGlippppppppp p p p p p p p p p- - #+12 XEbd" XGli1 ;Gli2 (x1 + �̂ + x2)2 �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - #+ � � � (8.15)In jeder Zeile tritt ein Term der Form (x1 + �̂1 + x2 + �̂2 + : : :+ xn�1 + �̂n�1 + xn)2 auf.Wird dieser Term ausmultipliziert, so heben si
h aufgrund der Summation �uber die Ein-bettungen der Graphen alle gemis
hten Glieder heraus.Dazu ist anzumerken, da� fermionis
he innere Linien als einziges Bildelement einen ein-bettungsabh�angigen Beitrag liefern. Die einbettungsabh�angigen Anteile der Beitr�age dieserLinien sind immer proportional zu einer 
-Matrix. Da hier bosonis
he Erwartungswerte



52 KAPITEL 8. 1-LINIEN-IRREDUZIBLE GRAPHENbetra
htet werden, k�onnen alle fermionis
hen Linien der Graphen zu Blasen zusammen-gefa�t werden. Dies f�uhrt, wie s
hon bes
hrieben, auf Spurbildungen. Die verbundenen1-Platz-Erwartungswerte besitzen nur Anteile proportional zu 1S und 
5. Da 1S die ein-zige Matrix ist, die si
h als Produkt von euklidis
hen 
-Matrizen darstellen l�a�t und einevon 0 vers
hiedener Spur hat, folgt, da� si
h alle Beitr�age der 
-Matrizen zu ��2 dur
hdas Produkt einer geradzahligen Anzahl dieser Matrizen ergeben, entweder �uber das Pro-dukt 
1 � 
2 � 
3 � 
4 � 
5 oder aber Produkte der Art 
� � 
� sowie Produkte dieser beidenTermarten.Betra
hte nun die Summe aller Terme proportional zu xi�xj mit i 6= j. Werden zun�a
hstdie Einbettungen von Glij zusammengez�ahlt, so gibt es zu jeder g�ultigen Einbettung desGraphen au
h eine g�ultige Einbettung, bei der alle inneren Graphenlinien in die entgegen-gesetzte Ri
htung weisen. Die diesen beiden Einbettungen zugeordneten xj unters
heidensi
h nur im Vorzei
hen, das eine ist das Negative des anderen. Die Faktoren SGlij undRGlij dieser beiden Einbettungen sind identis
h, da SGlij sowieso ni
ht von der Einbettungabh�angt und in RGlij alle Terme eine gerade Anzahl negativer Vorzei
hen enthalten, da,wie vorstehend erl�autert, die Anzahl der 
-Matrizen gerade ist.Diese beiden Einbettungen des Teilgraphen Glij heben si
h also bez�ugli
h ihres Beitrageszu dem zu xi � xj proportionalen Term heraus, wenn die Ri
htung aller inneren Linien,die ni
ht zu Glij geh�oren, festgehalten wird. Auf diese Weise entfallen alle Beitr�age dergemis
hten Glieder xi � xj mit i 6= j.Mit einer analogen Argumentation k�onnen au
h Beitr�age proportional zu xi � �̂j und�̂i � �̂j ausges
hlossen werden. Bei �̂i � �̂j gilt wiederum i 6= j. Damit gilt:��2 = 12XEbd"XGli x2 �-x��AA ��AA��AA ��AAGlippppppppp p p p p p p p p p- - #+12XEbd" XGli1 ;Gli2 h(x1)2 + (�̂)2 + (x2)2i �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - #+ � � �= 12 1Xp;q=0( XEbdXGlia ��AA ��AA��AA ��AAGlia <p p p p p p p p p p p p p p p p p p p p pppppppppp- - !p �� XEbdXGli x2 �-x��AA ��AA��AA ��AAGlippppppppp p p p p p p p p p- - +XEbd XGli1 ;Gli2 (�̂)2 � -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - ! �� XEbdXGlib ��AA ��AA��AA ��AAGlib>p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - !q ) (8.16)Als neuer Term tritt hier Æ��2= 12XEbd XGli1 x2 �-x1��AA ��AA��AA ��AAGli1ppppppppp p p p p p p p p p- - ! (8.17)auf. Desweiteren enth�alt die Formel zwei geometris
he Reihen, die aus Abs
hnitt 8.2.1bekannt sind. Es bleibt der Term12XEbd XGli1 ;Gli2 (�̂)2 � -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p- - - ! = Æ��2 16� Æ��2 (8.18)



8.2. SUSZEPTIBILIT�ATEN AUS IRREDUZIBLEN GRAPHEN 53Dabei wurde �uber die 8 Einbettungen der bosonis
hen Verbindungslinie summiert, und eswurde (�̂)2 = 1 ausgenutzt.8.2.4 Die Suszeptibilit�at �	2 (P )Der Fall dieser Suszeptibilit�at ist im Prinzip einfa
her als der vorhergehende Fall ��2 , da hierder Di�erenzvektor der �au�eren Linien des Gesamtgraphen linear und ni
ht quadratis
heingeht. Dur
h die Impulsabh�angigkeit geht allerdings die �Ubersi
htli
hkeit der Re
hnungverloren. Analog zu den F�allen ��2 und �	2 (P ) erh�alt man:�	2 (P ) = Xx " 4X�=1�
�x� 1
os(P�)� e�iP�x�h	x �	0i
#= 1Xp;q=0( XEbdXGlia e�iP�(xa+�̂a)� �-xa � -�̂a��AA ��AA��AA ��AAGlia <- - !p �� XEbdXGli 4X�=1 
�x�
os(P�)e�iP�x� �-x��AA ��AA��AA ��AAGli- - ++XEbd XGli1 ;Gli2 4X�=1 
��̂� e�iP��̂�
os(P�) e�iP�(x1+x2)� �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2- - - ! �� XEbdXGlib e�iP�(�̂b+xb)� �-xb� -�̂b ��AA ��AA��AA ��AAGlib> - - !q ) (8.19)Hierbei wird die Vertaus
hbarkeit der 
�-Matrix mit einem Teil der Bildelemente be-n�otigt. Diese ist dadur
h gegeben, da� dur
h die Summationen �uber die Einbettungen ausden mit der 
�-Matrix vertaus
hten Bildelementen immer Matrizen entstehen, die keine
-Struktur tragen. Die beiden �au�eren Terme des letzten Ausdru
ks f�uhren wieder auf dieaus Abs
hnitt 8.2.2 bekannte geometris
he Reihe. F�ur den ersten Term in der mittlerenKlammer gilt: XEbd XGli 4X�=1 
�x�
os(P�)e�iP�x� �-x��AA ��AA��AA ��AAGli- - ! = Æ�	2 (P ) (8.20)Der zweite Term der Klammer erfordert eine genauere Betra
htung. F�ur die �-te Kompo-nente des Einheitsvektors �̂ gilt �̂� = sgn(�̂) Æ��, wobei sgn(�̂) den Wert 1 annimmt, wenn�̂ in eine positve Raumri
htung zeigt, und �1, falls �̂ in eine negative zeigt. Damit giltXEbd XGli1 ;Gli2 4X�=1 
��̂� e�iP��̂�
os(P�) e�iP�(x1+x2)� �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2- - - != XEbd XGli1 ;Gli2 
� e�iP�
os(P�) e�iP�(x1+x2)� �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2- - - ! (8.21)Die fermionis
he Verbindungslinie tr�agt zu jeder Einbettung mit einer Matrix K �M�̂ bei.Werden au
h hier die antiparallelen Ri
htungen zusammengefa�t, so ist nur der Anteil derMatrix proportional zu 
� relevant, da 
� � 
� = 1. Der Anteil proportional zu r hebt si
h



54 KAPITEL 8. 1-LINIEN-IRREDUZIBLE GRAPHENheraus, der Kosinus-Term kann gegen die Exponentialfunktion gek�urzt werden, und f�urjedes Paar antiparalleler Einbettungen der Linie ergibt si
h ein Faktor 2K.Aus den I-Boxen entstehen in Verbindung mit den Summen der Glei
hung zwei Termeder Art Æ�	2 (P ). Damit gilt dannXEbd XGli1 ;Gli2 
� e�iP�
os(P�) e�iP�(x1+x2)� �-x1 �-x2� -�̂��AA ��AA��AA ��AA ��AA ��AA��AA ��AAGli1 Gli2- - - ! = 8K �Æ�	2 (P )�2 (8.22)Wird die Vertaus
hbarkeit der Matrix f�ur die geometris
he Reihe [1�K(8�4n�) Æ�	2 (P )℄�1mit der Matrix [Æ�	2 (P ) + 8K Æ�	2 (P ) Æ�	2 (P )℄ benutzt, so ist die Formel bewiesen. DieVertaus
hbarkeit dieser Matrizen ist in der AB-Basis sofort einzusehen, da dort Æ�	2 (P )na
h Anhang A diagonal ist. Zum Problem der R�u
ktransformation in die  �-Basis istau
h Anhang C zu bea
hten.Es bleibt no
h die Formel f�ur die Suszeptibilit�aten der renormierten Kopplungen zuzeigen. Dabei treten I-Boxen mit unters
hiedli
hen Anzahlen ein- und auslaufender Linienauf.8.2.5 Die Suszeptibilit�at ~�	�	3Na
hdem die Beweise der vorstehenden Abs
hnitten re
ht ausf�uhrli
h dargestellt sind,brau
ht dieser Beweis nur kurz skizziert zu werden, da keine neuen S
hwierigkeiten auftre-ten. Es treten hier drei vers
hiedene Arten der I-Boxen auf. Zum einen I-Boxen mit zweibosonis
hen bzw. fermionis
hen �au�eren Linien, davon jeweils eine ein- und eine auslau-fende. Zum anderen enth�alt jeder Graph zu ~�	�	3 genau eine I-Box mit einer auslaufendenbosonis
hen Linie und jeweils einer ein- und einer auslaufenden fermionis
hen Linie.Alle Graphen, die zu der Suszeptibilit�at~�	�	3 =Xx;y h	x�0	yi
beitragen, lassen si
h in der folgenden Form darstellen. Aus Gr�unden der �Ubersi
ht werdendie Graphen G in den I-Boxen ni
ht als irreduzibel gekennzei
hnet, denno
h stehen die I-Boxen au
h hier f�ur irreduzible Graphen.qYi=1 ��AA ��AA��AA ��AA < !G0i ��AA ��AA��AA ��AApppppppppG pYj=1 > !��AA ��AA��AA ��AAG00jtYk=1 p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p> !��AA ��AA��AA ��AAG000k- - - - - -- -6 (8.23)Die Produkte wie z.B. Qqi=1 vor den Graphen mit den Anh�ange-Symbolen stehen f�ur einHintereinanderh�angen von q derartigen Graphen, wobei G0i 6= G 0j f�ur i 6= j gelten kann.1 DieReihenfolge der Terme ist dabei immer glei
h zu w�ahlen, z.B.: der Term mit Index 1 stehtganz links und der mit Index q ganz re
hts. Das Produkt mit den bosonis
hen Anh�ange-Symbolen wird an die na
h oben auslaufende bosonis
he Linie des irreduziblen GraphenG angeh�angt. Um nun ~�	�	3 zu erhalten, ist in dem obigen Graphen �uber p, q, t, alle1Die Stri
he an den Graphen G0 et
. in den I-Boxen stellen eine Indizierung und keine Ableitung oder�ahnli
hes dar.



8.2. SUSZEPTIBILIT�ATEN AUS IRREDUZIBLEN GRAPHEN 55Graphen G in den I-Boxen und alle Einbettungen des gesamten Graphen zu summieren,wie bei den �ubrigen Suszeptibilit�aten au
h.Jeder zu ~�	�	3 beitragende Graph besitzt somit einen irreduziblen Teilgraphen miteiner einlaufenden fermionis
hen und jeweils einer auslaufenden bosonis
hen und fermi-onis
hen Linie. Die Summation �uber alle Einbettungen und alle irreduziblen Graphen�uberf�uhrt dann den Beitrag der I-Box mit drei �au�eren Linien in Æ~�	�	3 . Die restli
henI-Boxen mit den Verbindungslinien und den Anh�ange-Symbolen f�uhren auf die s
hon be-kannten geometris
hen Reihen, und damit ergibt si
h die Formel (8.8).8.2.6 Die Suszeptibilit�at ��4Alle Graphen, die zu der Suszeptibilit�at ��4 = 38Pxyzh�x�+y �z�+0 i
 beitragen, lassen si
hauf die folgende Form bringen. Zum Verst�andnis sind die Anmerkungen im vorstehendenAbs
hnitt 8.2.5 hilfrei
h.qYi=1 ppppppppp ��AA ��AA��AA ��AA p p p p p p p p p p p p p p p p p p p p p< !G0i ppppppppp ��AA ��AA��AA ��AA p p p p p p p p pppppppppppppppppppG pYj=1 p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p> !��AA ��AA��AA ��AAG00jtYk=1 p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p> !��AA ��AA��AA ��AAG000kvYl=1 ppppppppp ��AA ��AA��AA ��AA p p p p p p p p p p p p p p p p p p p p p< !G0000l- -- - - - - -- -66 (8.24)Dieses Bild ist so zu verstehen, da� das Produkt �uber i an die waagere
hte einlaufendebosonis
he Linie des Graphen G anzuh�angen ist und das Produkt �uber l an die senkre
hteeinlaufende Linie. Ein Austaus
h dieser Produkte ist ni
ht gemeint. Analoges gilt f�ur dieanderen beiden Produkte.Aus dem irreduziblen Teilgraphen G ergibt si
h dur
h die Summationen der TermÆ��4 analog zu den anderen Suszeptibilit�aten. Das einzige Problem dabei, das hier no
hbetra
htet werden soll, ist die Austaus
hsymmetrie von I-Boxen. Ansonsten wird allesanalog zu den vorstehenden F�allen gehandhabt.Diese Austaus
hsymmetrie trat in den zuvor bespro
henen Suszeptibilit�aten ni
ht auf,da dur
h die Orientierung oder die Art der Verbindungslinien zwis
hen den I-Boxen dieseSymmetrie gebro
hen wurde. Bei der hier zu betra
htenden Suszeptibilit�at kann der Ge-samtgraph eine derartige Symmetrie besitzen, da� er, wenn er in der obigen Form (8.24)dargestellt wird, symmetris
h bez�ugli
h des Austaus
hs des Produkte �uber i und l ist.Dazu m�ussen beide Produkte identis
h sind. Einer derartigen Symmetrie des Gesamt-graphen wird ein Symmetriefaktor 12 zugeordnet. Sie setzt eine entspre
hende Symmetriein dem irreduziblen Teilgraphen G mit den 4 bosonis
hen Linien voraus. Dem Gesamt-graphen ist in diesem Fall der glei
he Symmetriefaktor bez�ugli
h ��4 zugeordnet wie demirreduziblen Teilgraphen G. In dem Fall, da� der Gesamtgraph die Symmetrie besitzt, er-gibt si
h somit aus dem Symmetriefaktor von Æ��4 der ri
htige Symmetriefaktor f�ur denGesamtgraphen. Die Produkte k�onnen in der bekannten Art zu geometris
hen Reihenzusammengefa�t werden.Es tritt aber au
h der Fall auf, da� die Produkte �uber i und l vers
hieden sind undso die oben angenommene Symmetrie des irreduziblen Teilgraphen G bre
hen. In diesemFall liefert Æ��4 aber immer no
h den oben erw�ahnten Symmetriefaktor 12 . Dur
h die Sum-



56 KAPITEL 8. 1-LINIEN-IRREDUZIBLE GRAPHENmationen �uber v und q sowie die in den Produkten vorkommenden irreduziblen GraphenG0i bzw. G0000l treten alle derartigen Gesamtgraphen zweimal auf. Graphen, die si
h nurdur
h ein Vertaus
hen der Produkte an den �au�eren einlaufenden Linien des irreduziblenTeilgraphen G unters
heiden, sind in diesem Fall topologis
h �aquivalent. Der si
h darausergebende Faktor 2 kompensiert den Symmetriefaktor von Æ��4 .Besitzt G keine Symmetrie, so sind die Gesamtgraphen, die si
h dur
h ein Vertaus
hender Produkte an den �au�eren einlaufenden Linien voneinander unters
heiden, ni
ht mehrtopologis
h �aquivalent, und es entsteht somit kein unerw�uns
hter Faktor 2.Als weitere Symmetrien gibt es die Austaus
hsymmetrie der auslaufenden Linen, dasProdukt dieser Symmetrien und die Symmetrie, bei der glei
hzeitig die ein- und die aus-laufenden Linien getaus
ht werden. Eine analoge Diskussion f�uhrt f�ur diese Symmetrienzu dem glei
hen Ziel. Es ergibt si
h somit keine Komplikation mit dem Symmetriefaktor,wenn die Suszeptibilit�at ��4 dur
h ihren irreduziblen Kern Æ��4 verbunden mit 4 geometri-s
hen Reihen entwi
kelt wird.



Kapitel 9ErgebnisseMit der in den Kapiteln 7 und 8 vorgestellten Methode wurden die irreduziblen Kerne derSuszeptibilit�aten �	2 (P ), �	2 (P ), ��2 und ��2 , die zur Bestimmung der renormierten Mas-sen mR und �R(P ) ben�otigt werden, bis zur 4. Ordnung in T entwi
kelt. Die irreduziblenKerne der Suszeptibilit�aten ~�	�	3 und ��4 wurden bis zur 3. Ordnung in T entwi
kelt. DieGraphen, die f�ur diese Entwi
klung ausgewertet wurden, k�onnen im Anhang D na
hge-s
hlagen werden.Die si
h hieraus ergebenden Taylorreihen der irreduziblen Kerne der Suszeptibilit�atensind im Anhang E aufgef�uhrt. Die Auswertung dieser Reihen im Rahmen numeris
herUntersu
hungen wird im folgenden Abs
hnitt 9.1 erl�autert.9.1 Auswertung der irreduziblen KerneWenn zum Zwe
ke des Verglei
hs mit numeris
hen Daten, die in anderen Verfahren be-stimmt worden sind, aus der Hopping-Parameter-Entwi
klung ebenfalls numeris
he Wertef�ur die renormierten Gr�o�en gewonnen werden sollen, so kann man auf zweierlei Weiseverfahren, wobei in dieser Arbeit die zweite Methode angewandt wird.Eine M�ogli
hkeit besteht darin, die Entwi
klungen der irreduziblen Kerne bis zur n-tenOrdnung in die Formeln (8.3) - (8.8) und (3.28) einzusetzen und daraus die Entwi
klungender renormierten Gr�o�en in � und K bis zur n-ten Ordnung zu bestimmen. Dazu sindTaylorreihen gebro
hen rationaler Funktionen zu ermitteln.Auf der anderen Seite kann man die irreduziblen Kerne mittels ihrer Entwi
klungennumeris
h bere
hnen, dann die resultierenden Werte in die Formeln (8.3) - (8.8), (3.28) ein-setzen und so numeris
he Resultate f�ur die physikalis
hen Gr�o�en erhalten. Dies kommteiner partiellen Resummation der Entwi
klungen der physikalis
hen Gr�o�en glei
h. Da-dur
h werden alle Graphen, die si
h dur
h Verkn�upfen der im Anhang D verzei
hnetenirreduziblen Graphen erhalten lassen, s
hon ber�u
ksi
htigt. Diese Vorgehensweise ist be-quemer, und es ist zu erwarten, da� si
h so bessere Resultate f�ur die renormierten Gr�o�energeben als mit der vorstehenden Methode. Dies wird im weiteren er�ortert.Bei den Suszeptibilit�aten ��2 , ��2 und ��4 besteht nun die Ho�nung, da� die auf dieseWeise erhaltenen KoeÆzienten h�oherer als der bere
hneten Ordnung in � eine brau
hbareN�aherung f�ur die KoeÆzienten sind, die si
h tats�a
hli
h ergeben, wenn die Reihe bis dahinfortgef�uhrt wird. Als Argument f�ur ein derartiges Verhalten ist die Beoba
htung zu nen-nen, da� 1-Linien-reduzible Graphen mehr Einbettungen besitzen als irreduzible Graphen57



58 KAPITEL 9. ERGEBNISSEglei
her Ordnung in �. Betra
hte dazu die beiden folgenden Graphen 3. Ordnung in �:s s s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppp p p p p p p p p p- - - -- s sppppppppp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p- --� - (9.1)Der linke Graph liefert pro Einbettung einen Beitrag von �3 zu ��2 und besitzt im kubis
hprimitiven Gitter 512 Einbettungen, wenn der Vertex mit der einlaufenden �au�eren Liniefest auf 0 abgebildet wird. Der re
hte Graph liefert pro Einbettung eine Beitrag von 12�3und besitzt ledigli
h 8 Einbettungen. Der Beitrag dieses Graphen zu ��2 ist somit wenigerals 1% des Beitrags des linken Graphen. Bez�ugli
h der Suszeptibilit�at ��2 ist das Verh�altnisno
h extremer, da dort man
he Einbettungen des linken Graphen einen Beitrag von 9 �3liefern und keine Einbettung weniger als �3 zu ��2 beitr�agt.Die ents
heidende Frage besteht an dieser Stelle nun darin, ob ni
ht bei gro�en Ord-nungen von � die irreduziblen Graphen einen erhebli
h gr�o�eren Beitrag pro Einbettungliefern als die reduziblen, so da� si
h die geringere Anzahl der Einbettungen ausglei
ht.Ist dies ni
ht der Fall, so sollte es Vorteile bringen, die Reihe ni
ht abzus
hneiden.Bez�ugli
h der Variablen K ist eine Verbesserung der Ergebnisse der bosonis
hen Sus-zeptibilit�aten ni
ht zu erwarten, da eine gro�e fermionis
he Blase mehr Einbettungen be-sitzt als eine entspre
hende Anzahl kleiner. Dies wird s
hon in dem na
hstehenden Beispielmit 4 fermionis
hen Linien deutli
h.s ss sppppppppp p p p p p p p p p  `̀  `̀`̀   ppppppppppppppppppppp̀̀   - -� �-6 - ss ss sppppppppp p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p- �- -?6 - (9.2)Der linke Graph besitzt 512 Einbettungen und der re
hte 832 beitragende Einbettungen1.Die Beitr�age der Graphen sind ni
ht so einfa
h zu verglei
hen wie in dem vorstehendenBeispiel.Mit den glei
hen Argumenten l�a�t si
h bei den Suszeptibilit�aten �	2 und �	2 eine Ver-besserung der Ergebnisse bez�ugli
h der Variablen K erwarten, wohingegen in diesem Fallbez�ugli
h des Hopping-Parameters � mit keiner Verbesserung gere
hnet werden kann.Bei der Bestimmung der renormierten Kopplungen werden alle irreduziblen Kerne,au
h die, bei denen eine 4.Ordnung bestimmt worden ist, in der 3. Ordnung betra
htet.Im folgenden werden zwei in der Literatur diskutierte Situationen f�ur die na
kten Yu-kawakopplungen bei nF = 2 betra
htet. Dur
h den Verglei
h mit den dortigen Ergebnissenk�onnen Aussagen �uber die Vertrauensw�urdigkeit der Ergebnisse der Hopping-Parameter-Entwi
klung gewonnen werden.9.2 Untersu
hungen bei G� < 0 und G = 0:19.2.1 PhasengrenzenIn [9℄ werden die Phasengrenzen dieses Modells numeris
h untersu
ht. F�ur die Hopping-Parameter-Entwi
klung sind die Phasengrenzen von gr�o�tem Interesse, da die Methode1512 Einbettungen dieses Graphen liefern entspre
hend Abs
hnitt 7.3.3.1 keinen Beitrag.



9.2. UNTERSUCHUNGEN BEI G� < 0 UND G = 0:1 59nur in der symmetris
hen Phase g�ultige Ergebnisse liefert. Diese Phase wird h�au�g "pa-ramagnetis
h\ genannt.Aus den Untersu
hungen in [9℄ sind drei Phasen bekannt, in denen die Symmetrie spon-tan gebro
hen wird. Bei geeigneter Wahl der Parameter, vor allem im Berei
h positiver�-Werte, be�ndet man si
h in einer Phase, in der das �x-Feld einen ni
htvers
hwindendenVakuum-Erwartungswert besitzt und die in Analogie zu einem Spinsystem als die "ferro-magnetis
he\ bezei
hnet wird. Die Grenzline zwis
hen der symmetris
hen und der ferro-magnetis
hen Phase bildet den Hauptgegenstand der Untersu
hungen dieses Abs
hnitts.Im Berei
h negativer �-Werte bildet si
h die "antiferromagnetis
he\ Phase aus. Des-weiteren entsteht bei geeigneter Wahl der na
kten Yukawa-Kopplungen eine "ferrimagne-tis
he\ Phase, in der sowohl das ferromagnetis
he als au
h das antiferromagnetis
he Feldeinen ni
htvers
hwindenden Vakuum-Erwartungswert besitzen.Die Grenzlinie zwis
hen der symmetris
hen und der ferromagnetis
hen Phase kannaus dem Vers
hwinden der physikalis
hen Masse des bosonis
hen Feldes bestimmt werden.Zur Ermittlung der Grenzlinie zur antiferromagnetis
hen Phase mu� der Propagator einesantiferromagnetis
hen bosonis
hen Feldes betra
htet werden. Die Grenzlinie ergibt si
hdann aus dem Vers
hwinden der Masse des antiferromagnetis
hen Feldes. Diese Unter-su
hung kann ebenfalls mit den Graphen des Abs
hnitts D.2 dur
hgef�uhrt werden. Dazusind dann Suszeptibilit�aten f�ur das antiferromagnetis
he Feld zu de�nieren, was kein prin-zipielles Problem darstellen sollte. In dieser Arbeit wird nur die Grenzlinie zwis
hen derparamagnetis
hen und der ferromagnetis
hen Phase betra
htet.Da f�ur die Simulationen in [9℄ Gitter der Gr�o�e 43� 8 und 43� 16 verwendet wurden,wurde dort, um starke Ein
�usse der endli
hen Gittergr�o�e zu vermeiden, die Linie in derK � �-Ebene untersu
ht, auf der die bosonis
he Masse den Wert 1 annimmt. Im weiterenwird mit �1(K) der �-Wert bezei
hnet, f�ur den bei vorgegebenem K die renormiertebosonis
he Masse mR den Wert 1 annimmt, in der Erwartung, da� die Phasengrenzeparallel zu dieser Linie verl�auft.Diese Untersu
hung soll ebenfalls mit den Ergebnissen der Hopping-Parameter-Entwi
klung dur
hgef�uhrt werden.Um einen Anhaltspunkt f�ur den Ein
u� des Abbre
hens der Reihenentwi
klung na
hder 4. Ordnung in T zu erhalten, wird �1(K) aus der Entwi
klung der irreduziblen Kernebis zur dritten und bis zur vierten Ordnung bestimmt. Die Untersu
hung wird f�ur zweivers
hiedene Werte von G� dur
hgef�uhrt, die Resultate sind in den Abbildungen 9.1 und9.2 eingetragen. In diesen Abbildungen sind ebenfalls die Punkte aus [9℄ verzei
hnet, diein den gew�ahlten Parameterberei
h f�ur K und � fallen. Die zugeh�origen Daten wurdenfreundli
herweise f�ur diese Untersu
hung zur Verf�ugung gestellt [15℄. Dabei ist zu bea
hten,da� die renormierte bosonis
he Masse mR den Wert 1 dort ni
ht exakt annimmt. In denTabellen 9.1 und 9.2 werden sie mit den bosonis
hen Massen aus der Hopping-Parameter-Entwi
klung vergli
hen.9.2.1.1 Ergebnisse f�ur G� = �0:3 und G = 0:1Wie in [9℄ bes
hrieben wird, nehmen bei G� = �0:3 und G = 0:1 die Werte f�ur �1zun�a
hst mit ansteigendem K ab, um in der N�ahe von K = 0:2 ihr Minimum anzuneh-men. F�ur gr�o�ere K-Werte steigt �1 dann wieder lei
ht an. In Abbildung 9.1 geh�ort derDatenpunkt bei K = 0:2 s
hon zu diesem Wiederanstieg. Somit ist die gute �Ubereinstim-mung dieses Datenpunktes mit der Linie, die si
h aus den irreduziblen Kernen 4. Ordnungergibt, zuf�allig und sollte in den folgenden Ordnungen wieder vers
hwinden.
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3. Ordnung4. OrdnungMonte-Carlo 33 3 3 33Abbildung 9.1: Linien, f�ur die die bosonis
he Masse den Wert 1 annimmt, bere
hnet ausden irreduziblen Kernen der Suszeptibilit�aten in 3. bzw. 4. Ordnung in T , im Verglei
hmit den Daten der Monte-Carlo-Simulation in [9℄ na
h [15℄ bei nF = 2, G = 0:1 undG� = �0:3. Die obere d�unnere Linie steht f�ur die Ergebnisse 3. Ordnung in T , die unteredi
kere Linie f�ur die 4. Ordnung.Die Hopping-Parameter-Entwi
klung liefert keine Anhaltspunkte f�ur den Wiederan-stieg von �1 f�ur K > 0:2. Es ers
heint m�ogli
h, da� si
h dieser Wiederanstieg erst dur
heine Entwi
klung in 1K ergibt. Wenn dies zutri�t, l�a�t die Hopping-Parameter-Entwi
klungf�ur K > 0:15 in beliebiger Ordnung in T keine g�ultigen Ergebnisse mehr erwarten. Beant-worten l�a�t si
h diese Frage auf der Basis der 4. Ordnung der Entwi
klung ni
ht, daf�urwei
ht diese Ordnung zu fr�uh von den numeris
hen Daten ab.Die Abbildung zeigt, da� die 3. und die 4. Ordnung in der Entwi
klung si
h f�urK > 0:075 deutli
h unters
heiden. Aus der Tabelle 9.1 ergibt si
h eine sehr gute �Uber-einstimmung der Daten aus der Simulation mit der Hopping-Parameter-Entwi
klung f�urK < 0:075. F�ur 0:075 < K < 0:15 stellt die 4. Ordnung eine deutli
he VerbesserungnF = 2 G = 0:1 G� = �0:3K � renormierte bosonis
he Masse mRMonte-Carlo 3. Ordnung 4. Ordnung0.02 0.125 0.9702(197) 1.017 1.0000.06 0.119 1.1080(147) 1.109 1.0990.10 0.112 1.0400(068) 1.174 1.1040.15 0.080 0.9805(198) 1.856 1.503Tabelle 9.1: Verglei
h der Daten zu [9℄ na
h [15℄ mit der HPE
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3. Ordnung4. OrdnungMonte-Carlo 33 3 3Abbildung 9.2: Analog zu Abbildung 9.1 f�ur nF = 2, G = 0:1 und G� = �1.gegen�uber der 3. Ordnung dar, die �Ubereinstimmung mit den Daten der Monte-Carlo-Simulation ist in diesem Berei
h aber no
h ni
ht befriedigend. Bei K = 0:1 ist das Er-gebnis der Hopping-Parameter-Entwi
klung gerade au�erhalb des dur
h den statistis
henFehler der Monte-Carlo-Simulation vorgegebenen Berei
hs, der Wert bei K = 0:15 ist vielzu gro� und von daher g�anzli
h unbefriedigend.Die 4. Ordnung in T der irreduziblen Kerne der Suszeptibilit�aten ��2 und ��2 l�a�t somitim Berei
h K < 0:09 gute Ergebnisse erwarten.9.2.1.2 Ergebnisse f�ur G� = �1 und G = 0:1Bei G� = �1 und G = 0:1 �andert si
h die Phasenstruktur des Modells erhebli
h, wie in[9℄ bes
hrieben wird. Die paramagnetis
he Phase bildet in der K � �-Ebene zwei Zusam-menhangskomponenten aus, die dur
h eine ferrimagnetis
he Phase getrennt werden. BeiK � 0:2 vers
hwindet der mit der vorgestellten Hopping-Parameter-Entwi
klung erfa�bareparamagnetis
he Berei
h. nF = 2 G = 0:1 G� = �1K � renormierte bosonis
he Masse mRMonte-Carlo 3. Ordnung 4. Ordnung0.02 0.120 1.1319(647) 1.102 1.0990.06 0.103 1.1183(380) 1.185 1.1250.10 0.055 1.1014(304) 2.098 1.587Tabelle 9.2: Verglei
h der Daten zu [9℄ na
h [15℄ mit der HPE



62 KAPITEL 9. ERGEBNISSEF�ur K > 0:05 zeigt die Abbildung 9.2 bei den hier gew�ahlten Parametern deutli
heAbwei
hungen zwis
hen der 3. und der 4. Ordnung. Aus der Tabelle 9.2 ergibt si
h, da�der Datenpunkt bei K = 0:06 in der 4. Ordnung aber no
h gut wiedergegeben wird, die3. Ordnung allerdings keine befriedigenden Ergebnisse mehr liefert. Bei K = 0:10 liefernbeide Reihen unbefriedigende Ergebnisse.Die 4. Ordnung liefert also au
h in diesem Fall gute Resultate, wenn der K-Wert, f�urden si
h eine Aufspaltung zwis
hen den Ergebnissen 3. und 4. Ordnung ergibt, ni
ht zustark �ubers
hritten wird. In diesem Fall liegt die Grenze bei K � 0:065.9.2.1.3 Auswirkungen der Umordnung der GraphenreihenfolgeBei beiden hier diskutierten Kopplungsst�arken zeigt si
h, da� sowohl in der 3. als au
hin der 4. Ordnung in T bis in die N�ahe des Randes der symmetris
hen Phase sehr guteErgebnisse erwartet werden k�onnen. Vor allem die Ergebnisse 3. Ordnung sind als einIndiz daf�ur zu werten, da� die Umordnung der Graphenreihenfolge, wie sie in Abs
hnitt9.1 bes
hrieben wird, in der erho�ten Weise wirkt. Eine renormierte bosonis
he Masseder Gr�o�enordnung 1 entspri
ht einer Korrelationsl�ange �b f�ur das bosonis
he Feld �x von�b � 1 in Gittereinheiten.Werden nur die Graphen 3. Ordnung in T f�ur die Suszeptibilit�aten ber�u
ksi
htigt,so vermittelt nur der linke Graph in (9.1) eine We
hselwirkung �uber 3 Gitterl�angen, die"Rei
hweite\ der verbleibenden Graphen 3. Ordnung ist deutli
h k�urzer. Als Folge sindin diesem Fall nur dann gute Ergebnisse zu erwarten, wenn f�ur die Korrelationsl�ange�b � 1, das bedeutet mR � 1, gilt. Die Tatsa
he, da� si
h aus den irreduziblen Kernen derSuszeptibilit�aten in 3. Ordnung s
hon gute Ergebnisse f�ur mR = 1 erhalten lassen, zeigt,da� die dur
h die bes
hriebene Resummation ber�u
ksi
htigten Graphen h�oherer Ordnungeine brau
hbare N�aherung f�ur die "langrei
hweitigen\ We
hselwirkungen darstellen.Zumindest in den si
h direkt ans
hlie�enden Ordnungen (4te, 5te, : : : ) ist somit derBeitrag der reduziblen Graphen, die si
h aus den irreduziblen Graphen kleinerer Ordnungin T zusammensetzen, eine vern�unftige Approximation f�ur den Beitrag aller Graphen zuder jeweiligen Ordnung.9.2.2 Fermionis
he renormierte MasseIn Abs
hnitt 3.1.1 wurde das Fermionen-Verdopplungsproblem in der freien Theorie dis-kutiert. Mit n� wird in diesem Abs
hnitt die Anzahl der Komponenten des Impulses, dieden Wert p� = � annehmen, bezei
hnet. Es gilt n� 2 f0; � � � ; 4g. Das Ziel dieses Abs
hnittsist es, zu untersu
hen, inwieweit si
h aus der Hopping-Parameter-Entwi
klung bis zur 4.Ordnung Anhaltspunkte daf�ur ergeben, da� au
h in der we
hselwirkenden Theorie dieMassenentartung der Doppler dur
h den Wilson-Term aufgehoben wird. Dazu wurde beiG� = �1, G = 0:1 und nF = 2 die fermionis
he renormierte Masse �R bei den ver-s
hiedenen Werten f�ur n� �uber K aufgetragen. Dieses wurde f�ur �-Werte zwis
hen -0.125und 0.125 wiederholt. Gr�o�ere Werte sind f�ur � wenig sinnvoll, da dort (� � 0:15) dieferromagnetis
he Phase beginnt. Es zeigt si
h eine geringe Abh�angigkeit der Kurven von�, so da� es ni
ht sinnvoll ers
heint, hier alle Kurven wiederzugeben. In Abbildung 9.3wird die Kurvens
har f�ur � = �0:05 abgedru
kt. Um die Abh�angigkeit von � zu dokumen-tieren, werden in Tabelle 9.3 Werte f�ur �R f�ur ni
ht zu gro�e Werte von � bei K = 0:07angegeben.
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Abbildung 9.3: Fermionis
he renormierte Masse �R(K) f�ur vers
hiedene Werte von n� .Die Kurven sind aus den Ergebnissen 4. Ordnung in T bei � = �0:05, G� = �1, G = 0:1und nF = 2 bere
hnet.�R bei G� = �1, G = 0:1, nF = 2 und K = 0:07n� = 0 n� = 1 n� = 2 n� = 3 n� = 4� = �0:05 3.90 5.94 7.99 10.04 12.10� = 0:00 3.83 5.80 7.78 9.76 11,73� = 0:05 3.74 5.66 7.58 9.51 11,44Tabelle 9.3: Fermionis
he renormierte Masse �R f�ur vers
hiedene Werte von � und invers
hiedenen E
ken der Brillouin-ZoneF�ur K wurde dieser relativ kleine Wert gew�ahlt, damit die Ein
�usse des Reihenab-bru
hs ni
ht zu gro� werden. Die Masse �R nimmt in diesem Parameterberei
h re
ht gro�eund damit leider wenig interessante Werte an. In Abs
hnitt 9.2.1 wurde f�ur die Entwi
k-lung der bosonis
hen Suszeptibilit�aten angegeben, da� K < 0:065 gew�ahlt werden sollte.Im Vertrauen auf das in Abs
hnitt 9.1 bes
hriebene Vorgehen wird dieser Berei
h hier ge-ringf�ugig �ubers
hritten. Dementspre
hend ist hier ni
ht unbedingt mit guten Ergebnissenf�ur gro�e �-Werte zu re
hnen.Zur Abs
h�atzung der Vertrauensw�urdigkeit der Daten kann angegeben werden, da� bein� = 0 f�ur � = 0:05 die gr�o�te Di�erenz zwis
hen den Daten 3. und 4. Ordnung festgestelltwurde. (��R = 0:015) Diese Di�erenzen sind f�ur die anderen �-Werte bei n� = 0 kleiner.Bei den anderen Werten f�ur n� wurde f�ur � = 0:05 gepr�uft und die Di�erenzen blieben bisn� = 2 glei
h und nehmen dann ab, so da� auf weitere Pr�ufungen verzi
htet worden ist.Abbildung 9.3 zeigt deutli
h, da� bei dieser Wahl der Parameter die "Doppler\ in denE
ken der Brillouin-Zone s
hwerer sind als das Fermion-Spiegelfermion-Paar bei P = 0



64 KAPITEL 9. ERGEBNISSEin der Mitte der Brillouin-Zone. Im Kontinuumslimes erh�alt nur dieses Paar eine Masseim physikalis
hen Spektrum. Die "Doppler\ sind somit aus dem Spektrum entfernt, wiedur
h die Einf�uhrung des Wilson-Terms beabsi
htigt.F�ur G� = �0:3 und G = 0:1 ergibt si
h qualitativ das glei
he Bild, so da� hier aufeine erneute Diskussion verzi
htet wird. Die renormierten Massen der Fermionen sind beidieser Wahl von G� und G etwas kleiner.9.3 Untersu
hungen im Fall G� = 0In dem Fall, da� die na
kte Yukawa-Kopplung G� auf G� = 0 gesetzt wird, wird si
hzeigen, da� si
h in allen Ordnungen der Hopping-Parameter-Entwi
klung die folgendenResultate ergeben: Z�(P ) = 12K (9.3)GR� = 0 (9.4)Diese Aussagen wurden in [14℄ f�ur ein SU(2)L
SU(2)R-symmetris
hes Yukawa-Modell ausden Golterman-Pet
her-Identit�aten abgeleitet. Aus einer Shift-Symmetrie des Spiegelfeldes�x ergibt si
h bei G� = 0 eine spezielle Form der Ward-Identit�aten, die au
h in [12℄angegeben werden. Dur
h Di�erentiation bez�ugli
h der Quellen lassen si
h daraus dieoben bes
hriebenen Resultate erhalten. Diese speziellen Ward-Identit�aten gelten au
h f�urden Fall der hier betra
hteten U(1)L
U(1)R-Symmetrie. Die hier bes
hriebenen Resultate(9.3) und (9.4) stellen somit ni
hts neues dar, es wird nur ein neuer Beweis im Rahmender Reihenentwi
klung daf�ur geliefert, der die Shift-Symmetrie ni
ht benutzt. Au�er denEigens
haften der Hopping-Parameter-Entwi
klung wird letztli
h nur die 
hirale U(1)L
U(1)R -Symmetrie des Modells entspre
hend den Glei
hungen (2.10) und (2.24) verwendet.9.3.1 Wellenfunktionsrenormierung des Spiegelfeldes �Der Beweis von (9.3) wird in mehreren S
hritten ausgef�uhrt.9.3.1.1 Zu zeigen: Æ�	2 = 1Zun�a
hst soll gezeigt werden, da� in dem betra
hteten Fall nur der Graph 1 der Tabelleim Anhang D.1 einen Beitrag zum irreduziblen Kern der Suszeptiblit�at �	2 (P ) liefert. DieBeitr�age der restli
hen Graphen sind proportional zu G� �G , sofern sie ni
ht glei
h nullsind.Aus Anhang A ergibt si
h unter Verwendung der Transformation in Abs
hnitt 2.3,da� der Beitrag eines beliebigen Graphen zu Æ�	2 in der AB-Basis proportional zu einer2� 2-Matrix ist, die auf der Diagonalen den Einheitsoperator 1S enth�alt.Entspre
hend Abs
hnitt 7.3.3.2 besteht der Beitrag dieses Graphen, sofern der min-destens eine inneren Linie enth�alt, aus einer Summe von Teilbeitr�agen, die immer einMatrizenprodukt der folgenden Form (9.5) enthalten. Um die vorstehend bes
hriebeneBlo
kstruktur zu erhalten, mu� die Anzahl der Matrizen A� mit � 2 f�g gerade sein.A+�Yi (M�̂i) Yj hA� Ykj (M�̂kj ) A+ Ylj (M�̂lj )i�A�



9.3. UNTERSUCHUNGEN IM FALL G� = 0 65oder A��Yi (M�̂i) Yj hA+ Ykj (M�̂kj ) A� Ylj (M�̂lj )i�A+ (9.5)Die Beitr�age der oberen Form tragen zum 4�4-Spinraumoperator der linken oberen E
ke,die der unteren Form zur re
hten unteren E
ke von Æ�	2 bei. Im weiteren wird nur auf dieuntere Form eingegangen, da si
h im Fall der oberen Form keine wesentli
hen Unters
hiedeergeben.Die Matrix in der ges
hweiften Klammer in (9.5) enth�alt aufgrund der enthaltenen A+und A�-Matrizen nur in dem linken oberen 4 � 4-Blo
k von Null vers
hiedene Eintr�age.Beitr�age, die proportional zu einer 
�-Matrix sind, sind bez�ugli
h Æ� 2 irrelevant, da sie inder Summation �uber die Einbettungen herausfallen. Es gilt somit:�Yi (M�̂i) Yj hA+ Ykj (M�̂kj ) A� Ylj (M�̂lj )i� =  f � PL + g � PR 00 0 ! (9.6)Dabei bezei
hnen f und g geeignet zu w�ahlende Faktoren, in denen die na
kten Kopplun-gen nur im Z�ahler multiplikativ auftreten k�onnen. Im Nenner dieser Faktoren treten diena
kten Kopplungen immer in der Form (1�G�G ) auf. Somit sind f und g im betra
h-teten Fall G� = 0 endli
h. Mit den Symmetrie�uberlegungen des Anhangs A l�a�t si
h no
hf = g zeigen, aber dies ist f�ur diesen Beweis ni
ht relevant.Werden nun die Matrizen A+ und A� entspre
hend Glei
hung (5.18) eingesetzt, so istder untere Ausdru
k in (9.5) proportional zu: 0 00 G�G (fPL + gPR) ! (9.7)F�ur den obere Ausdru
k in (9.5) l�a�t si
h eine entspre
hende Darstellung in der linkenoberen E
ke der Matrix beweisen.Als Ergebnis ist festzuhalten, da� in dem Fall G� = 0 nur der Graph 1 des AnhangsD.1 zu Æ�	2 (P ) beitr�agt. Damit ergibt si
h:Æ�	2 (P ) = 1 ; wenn G� = 0 (9.8)9.3.1.2 Zu zeigen: Æ� 2 (P ) = 0Na
h dem vorstehenden Beweis ist die Dur
hf�uhrung dieses Beweises verh�altnism�a�ig ein-fa
h, da im wesentli
hen die glei
hen Argumente benutzt werden. Die Unters
hiede ent-stehen aus der 
�-Matrix in der De�nition der Suszeptibilit�at �	2 .Aus Anhang A ergibt si
h f�ur einen Beitrag zu Æ�	2 in der AB-Basis die folgende Ma-trixstruktur:  wPL + vPR 00 vPL + wPR ! (9.9)Dabei sind w und v skalare Funktionen der Kopplungen. Der erste Graph aus Anhang D.1liefert keinen Beitrag zu �	2 . Analog zu (9.5) enth�alt hier jeder Teilbeitrag eines Graphenein Matrizenprodukt der folgenden Form.
� A+�Yi (M�̂i) Yj hA� Ykj (M�̂kj ) A+ Ylj (M�̂lj )i�A�



66 KAPITEL 9. ERGEBNISSEoder 
� A��Yi (M�̂i) Yj hA+ Ykj (M�̂kj ) A� Ylj (M�̂lj )i�A+ (9.10)Au
h hier wird wieder nur der untere Ausdru
k diskutiert. Wird die 
-Matrix mit demersten A� vertaus
ht, so gilt:
� �2��2�G�G  0 0(PLG + PRG�) 0 ! = �2��2�G�G  0 0(PRG + PLG�) 0 !
�(9.11)Dabei wurde A� entspre
hend der Glei
hung (5.18) eingesetzt. Damit die Formen derMatrizen in (9.10) mit (9.9) vertr�agli
h sind, mu� nun das Folgende gelten:
� �Yi (M�̂i) Yj hA+ Ykj (M�̂kj ) A� Ylj (M�̂lj )i� =  (f 0 � PL + g0 � PR) 00 0 ! (9.12)Wobei f 0 und g0 geeignete Faktoren sind. F�ur den unteren Ausdru
k in (9.10) ergibt si
hdamit eine Proportionalit�at zu: 0 00 f 0PLG2� + g0PRG2 ! (9.13)Analog ergibt si
h f�ur den oberen Ausdru
k von (9.10) eine Proportionalit�at zu: f 0PRG2� + g0PLG2 00 0 ! (9.14)Wird dies entspre
hend Glei
hung (C.7) in die  �-Basis transformiert, so ist direkt ab-zulesen, da� alle Beitr�age zu Æ� 2 (P ) den Term G2� enthalten.9.3.1.3 Folgerung Z� = 12K f�ur G� = 0Aus diesen beiden Ergebnissen ergibt si
h mit den Glei
hungen (8.6) und (8.7) f�ur dieSuszeptibilit�aten der folgende Ausdru
k.�	2 = 11� (8� 4n�)K� 2 (P ) = 8K[(1� (8� 4n�)K℄2 (9.15)Daraus folgt mit Glei
hung (3.28) das gew�uns
hte Resultat:Z� = 12K (9.16)9.3.2 Renormierte Yukawa-Kopplung GR�Zum Beweis, da� in der symmetris
hen Phase f�ur die renormierte Kopplung GR� = 0 gilt,falls G� = 0, rei
ht es aus, den irreduziblen Kern der Suszeptibilit�at ~�	�	3 zu betra
h-ten. Dieser irreduzible Kern wird aus Erwartungswerten der Form h	��	i
 gewonnen.



9.3. UNTERSUCHUNGEN IM FALL G� = 0 67Zur Bestimmung der Matrixform dieses Erwartungswerts sind zun�a
hst einige Symmetrie-betra
htungen notwendig.Aus Gr�unden der 
hiralen Symmetrie k�onnen hier nur die folgenden Erwartungswertebeitragen. h R� � Li
; h�L���Ri
; h R���Ri
; h�L� � Li
 (9.17)Die beiden letzten Erwartungswerte liefern Beitr�age, die proportional zu 
� und 
�
5sind. Derartige Beitr�age heben si
h aber dur
h die Summation �uber alle Einbettungen derzugeordneten Graphen heraus.Es verbleiben somit nur Beitr�age, die aus Erwartungswerten der ersten beiden Artenaufgebaut sind, und davon wiederum nur die Anteile, die proportional zu 1S und 
5 sind.Die Beitr�age proportional zu den Matrizen (
�
� � 
�
�) fallen bei der Summation �uberdie Einbettungen heraus. Damit ergibt si
h insgesamt f�ur den irreduziblen Kern von ~�	�	3in der AB-Basis die folgende Matrixform:Æ~�	�	3 =  0 0v00PL + w00PR 0 ! (9.18)Dies bedeutet, da� in diesem Fall alle Teilbeitr�age Matrizenprodukte der folgenden Formenthalten A� Yj �Ykj (M�̂kj ) A+ Ylj (M�̂lj ) A�� (9.19)Die weitere Argumentation verl�auft nun in der nun s
hon bekannten Weise. Aus der An-ordnung der A+ und A�{Matrizen ergibt si
h au
h hier die Form:Yj �Ykj (M�̂kj ) A+ Ylj (M�̂lj ) A�� =  f 00 � PL + g00 � PR 00 0 ! (9.20)Aus den s
hon erw�ahnten Gr�unden entfallen hier alle Anteile, die proportional zu einer
�{Matrix sind. Die Gestalt von A� na
h Glei
hung (5.18) f�uhrt nun darauf, da� alleBeitr�age zum irreduziblen Kern von ~�	�	3 die folgende Form besitzen:�21�G�G  0 0G f 00PL +G�g00PR 0 ! (9.21)Wird dies entspre
hend (C.6) in die  �-Basis transformiert, so sind bei G� = 0 alleBeitr�age zu ( Æ�	�	3 )22 glei
h null. Aus den Formeln (8.8) und (3.28) folgt die Aussage(9.4).9.3.3 Fermionis
he renormierte Masse �RF�ur die renormierte fermionis
he Masse �R(P ) ergibt si
h:�R(P ) = 4 1� (8� 4n�)Kq8K[8K+ Æ��2 (P )℄ (9.22)Somit besitzt �R(P = 0) eine Nullstelle f�ur K = 18 , wenn Æ��2 (P = 0) 6= �1 gilt. Diestritt in den Ergebnissen in 4. Ordnung der Hopping-Parameter-Entwi
klung im Intervall



68 KAPITEL 9. ERGEBNISSE� 2 [�0:1; 0:1℄ f�ur G � �2:5 auf. F�ur G > �2 existiert in dem oben genannten �-Berei
hkeine Nullstelle des Nenners von �R.Diese Nullstelle in �R bei P = 0 ist unabh�angig von � und G . Glei
hung (9.22)zeigt, da� bei K = 18 und n� > 0 f�ur die fermionis
he renormierte Masse �R > 0 gilt.Somit entstehen au
h in diesem Fall keine Probleme mit den fermionis
hen "Dopplern\.Die weiteren Untersu
hungen dieses Kapitels werden deshalb bei P = 0 dur
hgef�uhrt.Die Nullstellen der renormierten Masse �R gewinnen ihre Bedeutung aus der Tatsa
he,da�, wie s
hon in Abs
hnitt 3.1.1 bes
hrieben, der Kontinuumslimes auf der Linie in derK � �-Ebene liegt, die dur
h �R = 0 ausgezei
hnet ist. Beim Aufsu
hen derartiger Linienmit der Hopping-Parameter-Entwi
klung ist darauf zu a
hten, da� g�ultige Ergebnisse nurin der symmetris
hen Phase zu erwarten sind. Es ist daher au
h bei fermionis
hen Gr�o�ensi
herzustellen, da� der betra
htete Berei
h in der symmetris
hen Phase liegt. Dies kannmit der in Abs
hnitt 9.2.1 bes
hriebenen Methode ges
hehen.9.4 Verglei
h mit numeris
hen DatenIn diesem Abs
hnitt sollen Verglei
he mit numeris
hen Daten dur
hgef�uhrt werden,die mit Monte-Carlo-Algorithmen erzeugt wurden. Dazu wird die Hopping-Parameter-Entwi
klung entspre
hend Abs
hnitt 9.1 ausgewertet.9.4.1 Verglei
h mit Daten, die bei �MC = 10 gewonnen wurdenF�ur vers
hiedene renormierte Gr�o�en werden in [7℄ Zahlenwerte angegeben, die mit ei-nem Hybrid-Monte-Carlo-Algorithmus gewonnen worden sind. Dabei werden vers
hiedeneWerte f�ur G und � bei nF = 2 und G� = 0 gew�ahlt. Der gr�o�te betra
htete Wert f�ur �betr�agt �MC = 10. Damit sollen hier die Ergebnisse der Hopping-Parameter-Entwi
klungvergli
hen werden. Dabei ist zu bea
hten, da� in Abs
hnitt 5.1 der Wert �HPE = 1 f�urdie Hopping-Parameter-Entwi
klung fest vorgegeben wurde.9.4.1.1 Renormierte Massen und WellenfunktionsrenormierungenIn der Tabelle 9.4 werden die Zahlenwerte des Monte-Carlo-Verfahrens f�ur die renormier-ten Massen und die Wellenfunktionsrenormierungen den Ergebnissen aus der Hopping-Parameter-Entwi
klung in 3. und 4. Ordnung gegen�ubergestellt. Dabei zeigt si
h, da� beiG = 0:1 die �Ubereinstimmung des Zahlenwertes der renormierten bosonis
hen MassemRmit dem Ergebnis 3. Ordnung ni
ht befriedigend ist und si
h in der 4. Ordnung gegen�uberder 3. vers
hle
htert. Aus den Ergebnissen des Abs
hnitts 9.2.1 f�ur die renormierte boso-nis
he Masse ist bei einer derartigen Parameterwahl mit einer besseren �Ubereinstimmungzwis
hen den Verfahren zu re
hnen, zumindest sollte die 4. Ordnung eine deutli
he Ver-besserung gegen�uber der 3. Ordnung darstellen.In [6℄ wird die Phasengrenze zwis
hen der ferromagnetis
hen und der symmetris
henPhase bei K = 0 f�ur vers
hiedene Werte von � untersu
ht. In dieser Untersu
hung ergibtsi
h, da� si
h der Wert von �, f�ur den mR(�) = 12 gilt, beim �Ubergang von � = 10 zu� = 100 um �� � 0:005 zu kleineren �-Werten vers
hiebt, wenn G G� = 0 gilt. Umdie vers
hiedenen �-Werte auszuglei
hen, werden die Ergebnisse der Hopping-Parameter-Entwi
klung versu
hsweise bei einem um 0.005 kleineren Wert f�ur � ausgewertet als dieentspre
henden Werte der Monte-Carlo-Simulation. Dabei ist zu betonen, da� es keine



9.4. VERGLEICH MIT NUMERISCHEN DATEN 69K � G mR Z� �R Z Z�Monte-Carlo 0.1 0.135 0.1 0.86(4) 3.24(10) 1.0736(4) 4.44(2) 4.42(2)3. Ordnung 0.1 0.135 0.1 0.736 3.65 0.9993 4.993 5.0004. Ordnung 0.1 0.135 0.1 0.693 3.64 0.9989 4.989 5.0003. Ordnung 0.1 0.130 0.1 0.878 3.79 0.9993 4.993 5.0004. Ordnung 0.1 0.130 0.1 0.845 3.78 0.9990 4.990 5.000Monte-Carlo 0.1 0.117 0.3 1.05(9) 3.0(3) 1.061(2) 4.31(3) 4.43(2)3. Ordnung 0.1 0.117 0.3 1.116 4.09 0.9946 4.946 5.0004. Ordnung 0.1 0.117 0.3 1.046 4.00 0.9919 4.920 5.0003. Ordnung 0.1 0.112 0.3 1.247 4.27 0.9948 4.948 5.0004. Ordnung 0.1 0.112 0.3 1.181 4.17 0.9924 4.924 5.000Monte-Carlo 0.1 0.100 0.6 0.82(14) 2.8(3) 0.996(8) 3.76(4) 4.33(3)3. Ordnung 0.1 0.100 0.6 1.268 4.34 0.9800 4.802 5.0004. Ordnung 0.1 0.100 0.6 1.029 4.00 0.9724 4.723 5.0003. Ordnung 0.1 0.095 0.6 1.407 4.58 0.9809 4.811 5.0004. Ordnung 0.1 0.095 0.6 1.170 4.18 0.9739 4.743 5.000Monte-Carlo 0.1 0.030 1.0 1.1(1) 3.1(5) 0.99(2) 3.60(13) 4.40(3)3. Ordnung 0.1 0.030 1.0 3.14 | 0.9667 4.673 5.0004. Ordnung 0.1 0.030 1.0 2.38 | 0.9639 4.646 5.0003. Ordnung 0.1 0.025 1.0 3.42 | 0.9690 4.695 5.0004. Ordnung 0.1 0.025 1.0 2.58 | 0.9668 4.674 5.000Tabelle 9.4: Verglei
h der Ergebnisse der Monte-Carlo-Simulation in [7℄ mit den Ergeb-nissen der Hopping-Parameter-Entwi
klung bei G� = 0. In dem Monte-Carlo-Verfahrenwurde �MC = 10 und in der Hopping-Parameter-Entwi
klung �HPE = 1 gew�ahlt. Inbeiden F�allen gilt nF = 2. Bei den Monte-Carlo-Daten wird der statistis
he Fehler inKlammern angegeben.Erfahrungen gibt, wie die Werte vonmR in dem hier benutzten Parameterberei
h auf eine�Anderung von � reagieren.Die in dieser Weise korigierten Werte f�ur mR stimmen bei G = 0:1 hervorragend mitdem Wert des Monte-Carlo-Verfahrens �uberein. Es zeigt si
h, da� der Wert von mR indiesem Parameterberei
h sehr emp�ndli
h von � abh�angt. Die Di�erenzen zwis
hen demMonte-Carlo-Verfahren und der Hopping-Parameter-Entwi
klung k�onnen damit dur
haus,so legt es diese Untersu
hung nahe, dur
h die vers
hiedenen Werte f�ur � verursa
ht sein.Mit zunehmender na
kter Kopplung G werden die Unters
hiede zwis
hen den Wertenf�urmR in 3. und 4. Ordnung gr�o�er. Entspre
hend der Untersu
hung in Abs
hnitt 9.2.1 istdann au
h in 4. Ordnung ni
ht mehr mit brau
hbaren Ergebnissen zu re
hnen. Dies wirddur
h die fehlende �Ubereinstimmung mit den numeris
hen Resultaten im Fall gr�o�erer G unterstri
hen.In der Abbildung 9.4 ist f�ur G = 0:3 und G� = 0:0 die Linie �1(K) eingetragen, aufder die bosonis
he MassemR den Wert 1 annimmt. Desweiteren ist die Linie eingezei
hnet,auf der �R = 1 gilt. Bei letzterer sind die Unters
hiede zwis
hen der 3. und 4. Ordnung derHopping-Parameter-Entwi
klung so gering, da� f�ur �R = 1 nur die 4. Ordnung angegeben
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Abbildung 9.4: Linien, auf denen die renormierten Massen den Wert 1 annehmen, beiG = 0:3, G� = 0:0, nF = 2 und � = 1. F�ur die bosonis
he renormierte Masse mR sinddie Ergebnisse aus der 3. und 4. Ordnung in T aufgetragen, f�ur �R nur die 4. Ordnung.Desweiteren ist die Lage des Datenpunkt aus [7℄ eingetragen, der aber bei � = 10 bestimmtworden ist. Die Werte f�ur die renormierten Massen in diesem Punkt k�onnen den Tabellen9.4 und 9.5 entnommen werden.ist. F�ur die bosonis
he Masse mR ergibt si
h darin qualitativ das glei
he Bild wie in denAbbildungen 9.1 und 9.2. Die 3. und 4. Ordnung stimmen im Berei
h kleiner K gut mitein-ander �uberein und laufen f�ur gro�e K auseinander. Die Linie kr�ummt si
h mit zunehmen-dem K na
h unten. Da au
h die Werte f�ur die verwendeten na
kten Yukawa-Kopplungeneine verglei
hbare Gr�o�enordnung haben, liegen die na
hfolgenden Verallgemeinerungender Aussagen, die in den Untersu
hungen des Abs
hnitts 9.2.1 gewonnen wurden, auf denhier betra
hteten Fall G� = 0 nahe.Abbildung 9.4 zeigt eine gute �Ubereinstimmung der bosonis
hen Masse mR im Berei
hK < 0:09 f�ur die 3. und 4. Ordnung. Aus den Untersu
hungen des Abs
hnitts 9.2.1 kannsomit erwartet werden, da� das numeris
he Ergebnis f�ur mR aus der 4. Ordnung bisK � 0:1 eine gute Approximation darstellt. Die Untersu
hung dieses Abs
hnitts �ndetdemna
h auf dem Rand des Berei
hs statt, f�ur den die Hopping-Parameter-Entwi
klungin 4. Ordnung gute numeris
he Ergebnisse f�ur die bosonis
hen Suszeptibilit�aten erwartenl�a�t. Aus der 3. Ordnung sind in diesem Berei
h nur no
h qualitative Aussagen zu erwarten.Eine genaue Abs
h�atzung der Ein
�usse des Reihenabbru
hs auf den Wert f�ur mR kannleider ni
ht angegeben werden.Werden nun die Ergebnisse der beiden vers
hiedenen Verfahren vergli
hen, so ergibtsi
h bei G = 0:3 eine hervorragende �Ubereinstimmung des Wertes von mR, wenn in derHopping-Parameter-Entwi
klung der Wert f�ur � ni
ht in der oben bes
hriebenen Weisekorrigiert wird. Bei dem korrigierten �-Wert istmR in der 4. Ordnung gerade au�erhalb desBerei
hs, der si
h dur
h den Wert aus der Monte-Carlo-Simulation mit dem zugeordneten
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hen Fehler ergibt. Der Wert aus der 3. Ordnung ist bei diesem Wert f�ur � deutli
hzu gro�. In den Untersu
hungen des Abs
hnitts 9.2.1 wurde festgestellt, da� die Ergebnissef�ur die renormierte bosonis
he Masse mR zu gro� werden, wenn der Berei
h, in dem die4. Ordnung gute Ergebnisse verspri
ht �ubers
hritten wird. Von daher ist zu erwarten, da�si
h der Wert der Tabelle f�ur mR bei G = 0:3 zu geringf�ugig kleineren Werten vers
hiebt,wenn weitere Ordnungen der Hopping-Parameter-Entwi
klung bestimmt werden.Die Untersu
hung bei G = 0:3 in 4. Ordnung liefert somit kein Argument gegen eineKorrektur der vorges
hlagenen Art f�ur die unters
hiedli
hen �-Werte. Wenn die Erwar-tung einer Abnahme des Wertes von mR mit zunehmender Ordnung in T eintri�t, sostellt diese Korrektur au
h hier eine Verbesserung der �Ubereinstimmung mit den numeri-s
hen Ergebnissen dar. Es ist aber zu ber�u
ksi
htigen, da� der Ein
u� des fermionis
henHopping-Parameters K auf die renormierten bosonis
hen Gr�o�en mit zunehmender na
k-ter Kopplung G steigt. Dieses ist den Taylorreihen im Anhang E direkt zu entnehmen.Als Folge kann si
h au
h der Ein
u� der vers
hiedenen �-Werte auf mR mit zunehmenderKopplung G ver�andern, so da� si
h m�ogli
herweise au
h die Art der ben�otigten Korrekturmit zunehmendem G bei K = 0.1 ver�andert.Bei den gr�o�eren Werten der na
kten Yukawa-Kopplung G nehmen die Unters
hiedezwis
hen der 3. und der 4. Ordnung von mR zu. (
a. 20% bei G = 0:6 und 
a. 30% beiG = 1:0) Im letzten Fall ist zudem die Abwei
hung von dem Resultat der Monte-Carlo-Simulation so gro�, da� die Angabe weiterer renormierter Gr�o�en, die si
h aus bosonis
henSuszeptibilit�aten bestimmen, sinnlos ers
heint.Die �Ubereinstimmung der Werte f�ur die bosonis
he Wellenfunktionsrenormierung Z�aus den vers
hiedenen Bestimmungsverfahren ist bei allen Werten f�ur die na
kte Yukawa-Kopplung ni
ht so gut wie die der bosonis
hen Masse. Die Unters
hiede zwis
hen der 3.und 4. Ordnung der Hopping-Parameter-Entwi
klung sind hier deutli
h geringer als beider renormierten Masse mR.Bei den fermionis
hen Gr�o�en ist zu bea
hten, da� sie aus anderen Reihen bestimmtwerden als die bosonis
hen. Dies zeigt si
h unter anderem darin, da� die Unters
hiedezwis
hen den Resultaten aus der 3. und 4. Ordnung sehr gering sind.Die renormierte Masse �R aus der Hopping-Parameter-Entwi
klung ist vor allem beikleinem G geringer als die mit dem Monte-Carlo-Verfahren bestimmte. Dazu wird in [7℄angegeben, da� der verwendete Algorithmus im Fall freier Fermionen (G = G� = 0) beiK = 0:1 einen Wert von �R = 1:076 anstatt des f�ur ein unendli
h ausgedehntes Gitterri
htigen Wertes �R = 1:0 liefert. Die Hopping-Parameter-Entwi
klung liefert in diesemFall den Wert �R = 1:0, siehe Gl. (9.22). Wie si
h au
h aus der Abbildung 9.4 ergibt, istder Ein
u� von � auf �R gering.Der Wert von 12K f�ur Z� wurde s
hon im Abs
hnitt 9.3.1 erl�autert. Die Abwei
hung derMonte-Carlo-Daten von diesem Wert entsteht dur
h die Verna
hl�assigung der Terme O(p24)im inversen Propagator ( e�	)�1(p). Diese N�aherung gewinnt ihren Ein
u� auf das Ergebnisdur
h die endli
he Ausdehnung des Gitters und die damit notwendige Einf�uhrung vonRandbedingungen in den Monte-Carlo-Simulationen in [7℄. Da in der Hopping-Parameter-Entwi
klung von einem unendli
hen Gitter ausgegangen wird, (endli
he Gitter w�urdendie Zur�u
kf�uhrung auf 1-Linien-irreduzible Graphen ers
hweren), wird hier das Ergebnisdur
h die Verna
hl�assigung dieser Terme in Glei
hung (3.8) ni
ht beein
u�t.Die Werte f�ur Z nehmen in beiden Verfahren bei kleiner Kopplung G ungef�ahr denWert von Z� an. Bei G = 0:0 sollten die Werte f�ur Z und Z� aus Symmetriegr�unden�ubereinstimmen, so da� dieses Ergebnis sinnvoll ers
heint. Mit zunehmenden G fallen



72 KAPITEL 9. ERGEBNISSEK � G GR GR� gRMonte-Carlo 0.1 0.135 0.1 1.16(4) {0.11(4) {3. Ordnung 0.1 0.135 0.1 1.35 0.00 313. Ordnung 0.1 0.130 0.1 1.38 0.00 39Monte-Carlo 0.1 0.117 0.3 3.53(13) {0.50(6) {3. Ordnung 0.1 0.117 0.3 4.29 0.00 653. Ordnung 0.1 0.112 0.3 4.39 0.00 76Monte-Carlo 0.1 0.100 0.6 5.5(4) {0.82(6) {3. Ordnung 0.1 0.100 0.6 8.89 0.00 923. Ordnung 0.1 0.095 0.6 9.11 0.00 103Tabelle 9.5: Fortsetzung der Tabelle 9.4 f�ur die renormierten Kopplungen. Es gilt: G� = 0,nF = 2, �MC = 10 und �HPE =1.die Werte f�ur Z in beiden Verfahren. In dem Monte-Carlo Verfahren ist diese Abnahmest�arker als in der Hopping-Parameter-Entwi
klung .9.4.1.2 Renormierte KopplungenAbs
hlie�end soll no
h auf die renormierten Kopplungen eingegangen werden. Diese wur-den nur in 3. Ordnung bestimmt und sind in der Tabelle 9.5 eingetragen. Wie oben aus-gef�uhrt, ist zu erwarten, da� die Entwi
klung bosonis
her Suszeptibilit�aten in 3. Ordnungbez�ugli
h T keine gute Approximation darstellt, so da� nur mit qualitativen Ergebnissenzu re
hnen ist.Vor diesem Hintergrund ist die Abwei
hung von 
a. 20% f�ur GR bei G = 0:1 undG = 0:3 ein dur
haus befriedigendes Ergebnis. Da die renormierte Yukawa-KopplungGR in dem hier betra
hteten Parameterberei
h ni
ht sehr stark von � abh�angt, sind ausden Ergebnissen der 3. Ordnung nur geringe Abwei
hungen aufgrund der vers
hiedenenWerte f�ur �MC und �HPE anzunehmen.Zur Diskussion der renormierten Kopplung GR� wird auf den Abs
hnitt 9.3.2 verwie-sen.Aufgrund der gro�en statistis
hen Fehler konnten in [7℄ keine Werte f�ur gR angegebenwerden. Darum werden hier nur kurz die Ergebnisse der Hopping-Parameter-Entwi
klungaufgef�uhrt. Die Werte der renormierten Selbstkopplung gR sind stark von � abh�angig.9.4.2 Verglei
h mit Daten, die bei �MC = 1 gewonnen wurdenUm den Ein
u� der vers
hiedenen �-Werte besser eins
h�atzen zu k�onnen, soll abs
hlie�endno
h ein Verglei
h mit Simulationsdaten bei �MC =1 dur
hgef�uhrt werden. Dabei handeltes si
h um unver�o�entli
htes Datenmaterial [15℄, das no
h ni
ht endg�ultig ausgewertetist. Bei einer endg�ultigen Auswertung k�onnen si
h also no
h Korrekturen zu den hierabgedru
kten Werten und Fehlerberei
hen ergeben.Leider sind diese Werte bei anderen Parameterwerten bestimmt worden als die Wer-te des Abs
hnitts 9.4.1. So wird bei kleinen bis mittleren Werten der na
kten Yukawa-Kopplung nur der Fall G = �G� untersu
ht, der bislang no
h ni
ht betra
htet wurde.



9.4. VERGLEICH MIT NUMERISCHEN DATEN 73K � G G� mR Z� �R Z Z�M-C 0.090 1.120 0.1 {0.1 1.067(9) 3.682(12) 1.690(1) 5.23(3) 5.29(4)3. Ord 0.090 0.120 0.1 {0.1 1.113 4.077 1.6140 5.549 5.5494. Ord 0.090 0.120 0.1 {0.1 1.092 4.061 1.6139 5.547 5.547M-C 0.091 0.108 0.3 {0.3 1.051(13) 3.650(29) 2.083(9) 5.15(3) 5.267(12)3. Ord 0.091 0.108 0.3 {0.3 1.166 4.194 2.0101 5.436 5.4364. Ord 0.091 0.108 0.3 {0.3 1.096 4.051 2.0072 5.415 5.415M-C 0.122 0.054 0.6 {0.6 1.005(9) 3.490(27) 1.712(5) 3.556(7) 3.524(20)3. Ord 0.122 0.054 0.6 {0.6 2.024 6.162 1.6590 3.948 3.9484. Ord 0.122 0.054 0.6 {0.6 1.520 5.061 1.6450 3.929 3.929M-C 0.100 0.090 0.6 0.0 1.104(12) 3.513(15) 1.02(1) 3.955(7) 4.379(3)3. Ord 0.100 0.090 0.6 0.0 1.547 4.815 0.9817 4.819 5.0004. Ord 0.100 0.090 0.6 0.0 1.309 4.371 0.9754 4.757 5.000Tabelle 9.6: Verglei
h von Simulationsdaten mit der Hopping-Parameter-Entwi
klung bei�MC = �HPE =1 und nF = 2. Bei den Simulationsdaten handelt es si
h um unver�o�ent-li
hte Daten na
h [15℄, die ni
ht endg�ultig ausgewertet sind, so da� Korrekturen der Daten,besonders der Fehlers
hranken, m�ogli
h sind.Weiterhin sind die K-Werte hier so gew�ahlt, da� gr�o�ere fermionis
he Massen �R entste-hen als in den vorstehenden Untersu
hungen. Dies sollte vor allen Dingen die Genauigkeitder Zahlenwerte der bosonis
hen Suszeptibilit�aten der Hopping-Parameter-Entwi
klungverbessern, da bei diesen Gr�o�en f�ur gro�e K-Werte ni
ht mit einer Verbesserung derErgebnisse dur
h das in Abs
hnitt 9.1 bes
hriebene Verfahren zu re
hnen ist.9.4.2.1 Renormierte MassenDie Werte f�ur die renormierten Massen und Wellenfunktionsrenormierungen sind in derTabelle 9.6 wiedergegeben.Es zeigt si
h, da� die Werte der renormierten bosonis
hen Masse mR aus der Hopping-Parameter-Entwi
klung immer gr�o�er sind als die entspre
henden Werte des Monte-Carlo-Verfahrens. Dabei stellt die 4. Ordnung eine deutli
he Verbesserung gegen�uber der 3. Ord-nung dar. Wenn die Unters
hiede zwis
hen der 3. und der 4. Ordnung gro� sind, so ist die4. Ordnung au
h deutli
h gr�o�er als das zugeh�orige Monte-Carlo-Datum und stellt keinegute Approximation mehr da. Dieses Verhalten wurde s
hon im Abs
hnitt 9.2.1 festge-stellt. Werden f�ur die na
kten Yukawa-Kopplungen Werte jGj � 0:3 gew�ahlt, so zeigt dieTabelle 9.6 eine gute �Ubereinstimmung der Werte f�ur mR.Aus der Hopping-Parameter-Entwi
klung ergibt si
h au
h hier eine kleinere renor-mierte fermionis
he Masse �R als aus der Monte-Carlo-Re
hnung. Dieser Unters
hied istverglei
hbar mit dem, der si
h aus Tabelle 9.4 ergibt.9.4.2.2 Renormierte KopplungDer Verglei
h der renormierten Kopplungen ist in der Tabelle 9.7 wiedergegeben. Es zeigtsi
h hier eine bessere �Ubereinstimmung als in Tabelle 9.5 bei verglei
hbarer St�arke derna
kten Kopplungen. Ob dies an den vers
hiedenen Werten f�ur � oder an der anderenWahl der Parameter G und G� liegt mu� hier o�en bleiben. Dies kann aber au
h in den



74 KAPITEL 9. ERGEBNISSEK � G G� GR GR� gRMonte-Carlo 0.090 1.120 0.1 {0.1 1.482(64) {1.578(39) |3. Ordnung 0.090 0.120 0.1 {0.1 1.603 {1.603 59Monte-Carlo 0.091 0.108 0.3 {0.3 4.79(12) {4.84(18) |3. Ordnung 0.091 0.108 0.3 {0.3 5.228 {5.228 80Monte-Carlo 0.122 0.054 0.6 {0.6 8.66(9) {8.82(8) |3. Ordnung 0.122 0.054 0.6 {0.6 11.9 {11.9 162Monte-Carlo 0.100 0.090 0.6 0.0 6.161(66) {0.852(10) |3. Ordnung 0.100 0.090 0.6 0.0 9.333 0.000 116Tabelle 9.7: Fortsetzung der Tabelle 9.6 f�ur die renormierten Kopplungen.Es gilt: �MC = �HPE = 1 und nF = 2. Das in der Unters
hrift zu Tabelle 9.6 �uber dieSimulationsdaten Gesagte gilt au
h hier.kleineren Werte der Hopping-Parameter in Tabelle 9.7 begr�undet liegen. Bei G = 0:6 er-geben si
h aus der 3. Ordnung der Hopping-Parameter-Entwi
klung in keinem der in derTabelle betra
hteten F�alle zufriedenstellende Ergebnisse, was aber s
hon aus den s
hle
h-ten Ergebnisse f�ur die bosonis
he Masse mR in Tabelle 9.6 zu erwarten war.



Kapitel 10Diskussion10.1 Diskussion der ErgebnisseIm Kapitel 9 wurden die Ergebnisse der Hopping-Parameter-Entwi
klung in 4. Ordnungmit numeris
hen Daten vergli
hen. Dabei konnten wi
htige Erkenntnisse �uber das Kon-vergenzverhalten der Hopping-Parameter-Entwi
klung gewonnen werden.In den Untersu
hungen des Abs
hnitts 9.2.1 konnte gezeigt werden, da� die Werte f�urmR aus der Hopping-Parameter-Entwi
klung 4. Ordnung in dem Parameterberei
h einehervorragende �Ubereinstimmung mit den Ergebnissen numeris
her Simulationen ergibt, indem si
h die Ergebnisse 4. Ordnung von denen der 3. Ordnung nur geringf�ugig unters
hei-den. Dieses Bild konnte in den Untersu
hungen des Abs
hnitts 9.4 best�atigt werden.Dieses Verhalten legt es nahe, aus der Abwei
hung der zweih�o
hsten von der h�o
hstenbetra
hteten Ordnung der Hopping-Parameter-Entwi
klung R�u
ks
hl�usse auf die Zu-verl�assigkeit der erhaltenen Ergebnisse zu ziehen.Wird der Parameterberei
h betra
htet, in dem die renormierten Massen mR und �Rni
ht kleiner als 1 sind, so ergeben si
h aus der Hopping-Parameter-Entwi
klung in 4. Ord-nung f�ur kleine na
kte Yukawa-Kopplungen (jGj < 0:4) erstaunli
h gute Resultate. Wegendes Zusammenhangs zwis
hen der Masse und der Korrelationsl�ange lassen si
h aus Monte-Carlo-Simulationen auf einem 43�8-Gitter nur in diesem Berei
h der renormierten Massengute Ergebnisse erwarten. Bei gr�o�eren Werten f�ur die na
kten Kopplungen m�ussen wei-tere Ordnungen der Hopping-Parameter-Entwi
klung bestimmt werden, wenn der Berei
huntersu
ht werden soll, indem f�ur die renomierten Massen mR, �R � 1 gilt.Bez�ugli
h der bosonis
hen Gr�o�en ist erst in 6. Ordnung eine deutli
he Verbesserungder Werte bei gro�em K zu erwarten. Diese Erwartung ergibt si
h aus der Tatsa
he, da�in den Graphen der bosonis
hen Suszeptibilit�aten immer eine gerade Anzahl fermionis
herLinien auftritt. So sind in 6. Ordnung erstmals Terme, die die na
kten Yukawa-Kopplungenin 6. Potenz enthalten, m�ogli
h, so wie in der betra
hteten 4. Ordnung erstmals Terme in4. Potenz entstehen. Terme 5. Potenz in den na
kten Yukawa-Kopplungen k�onnen in denbosonis
hen Suszeptibilit�aten bei �HPE =1 ni
ht entstehen.An dieser Stelle sei no
h einmal kurz an die Diskussion des Abs
hnitt 9.2.1.3 erinnert.Dort wurde ausgef�uhrt, da� die guten Ergebnisse des Abs
hnitts 9.2.1 ein Indiz daf�ursind, da� die in Abs
hnitt 9.1 erl�auterte Art der Auswertung der irreduziblen Kerne derSuszeptibilit�aten eine Verbesserung der Ergebnisse bewirkt.Aus den Ergebnissen des Abs
hnitts 9.4.2 ergibt si
h ein weiterer Hinweis darauf, da�die Abwei
hungen der Werte der bosonis
hen Masse mR bei kleinen Werten der na
kten75



76 KAPITEL 10. DISKUSSIONYukawa-Kopplungen in den vers
hiedenen �-Werten begr�undet liegen, wie in Abs
hnitt9.4.1 diskutiert. In Tabelle 9.6 wurden bei verglei
hbaren Werten der na
kten Kopplungenkeine derartigen Unters
hiede mehr festgestellt.10.2 Vors
hl�age zur Verbesserung der MethodeWenn weitere Ordnungen der Hopping-Parameter-Entwi
klung bestimmt werden sollen,so s
heint vom jetzigen Standpunkt eine weitere Reduzierung der Graphen vorteilhaft.10.2.1 VertexrenormierungDazu bietet si
h das Verfahren der Vertexrenormierung an. Dieses Verfahren wird in [4℄diskutiert und rekursiv gel�ost. Die Idee der Vertexrenormierung soll hier kurz am Beispielder Graphen des Anhangs D erl�autert werden.Wird der Graph 2 der Liste D.1 betra
htet, so entsteht der Graph 14 hieraus dur
hAnh�angen einer S
hleife aus zwei bosonis
hen Linien an einen Vertex des zugrundeliegen-den Graphen. Entspre
hend entsteht der Graph 17 dieser Liste aus dem Graphen 3 dur
hAnh�angen des glei
hen Objekts.Wird zur Liste D.2 �ubergegangen, so entsteht dort der Graph 15 dur
h Anh�angen diesesObjekts an den Graphen 2 der Liste. Der glei
he Zusammenhang besteht ebenfalls zwis
henden Graphen 1 und 3 der Liste D.3. In allen Beispielen wird der folgende Teilgraph aneinen Vertex mit zwei fermionis
hen und einer auslaufenden bosonis
hen Linie angeh�angt.spppppppppppppppppppppppppppppppppppppppppp?6 (10.1)Der Beitrag RG(�̂1; � � � ; �̂p) des einfa
heren Graphen und des komplizierteren Graphenunters
heiden si
h in allen betra
hteten F�allen um einen Faktor �8�2.Der Unters
hied zwis
hen dem Beitrag des einfa
heren und des komplizierteren Gra-phen ist abh�angig von dem Vertex, an den angeh�angt wird, und von dem Teilgraphen,der angeh�angt wird. Ein s
h�ones Beispiel bilden hier die Graphen 1 und 3 der Liste D.4.Hier betr�agt der Unters
hied, der dur
h das Anh�angen des Teilgraphen in (10.1) an deneinfa
hen Graphen entsteht, �32�2.An dieser Stelle wird au
h s
hon der rekursive Charakter der Vertexrenormierungdeutli
h. Der Teilgraph in (10.1) kann auf seinen eigenen Vertex angewandt werden. DieGraphen 1, 3 und 19 der Liste D.2 sind hier Beispiele. Aus den Graphen 1 und 3 ergibt si
hsofort, da� das Anh�angen des Teilgraphen (10.1) an einen Vertex mit zwei bosonis
henLinien ebenfalls einen Faktor �8�2 ergibt. Daraus ist zu s
hlie�en, da� das Anh�angen desfolgenden Teilgraphen in (10.2) an einen Vertex mit zwei bosonis
hen Linien einen Faktor(�8�2)2 = 64�4 ergibt. s sppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p?6 -� (10.2)Wie erwartet, unters
heidet si
h der Beitrag des Graphen 19 der Tabelle D.2 um einenFaktor 64�4 vom Graphen 1.



10.2. VORSCHL�AGE ZUR VERBESSERUNG DER METHODE 77Werden die Faktoren, die dur
h das Anh�angen der Teilgraphen entstehen, zusammen-gefa�t, so brau
hen nur no
h die Graphen ausgewertet zu werden, die keine Teilgraphender obigen Art enthalten. In Anhang D fallen dann viele Graphen heraus. In Tabelle D.1brau
hen die Graphen 11 sowie 14 bis 11, in D.2 die Graphen 3 bis 5, 7 und 14 bis 19 ni
htmehr betra
htet zu werden. In Tabelle D.3 fallen die Graphen 3 bis 5 heraus und in D.4die Graphen 3, 11 und 12. Da aber die Beitr�age dieser Teilgraphen in Abh�angigkeit vondem Vertex, an den angeh�angt wird, bestimmt werden m�ussen, bietet das bes
hriebeneVerfahren erst Vorteile, wenn der glei
he Teilgraph �ofter als einmal an den glei
hen Vertexanzuh�angen ist.Oben wurde nur das Anh�angen von Teilgraphen, die auss
hlie�li
h bosonis
he Lini-en enthalten, diskutiert. Das Anh�angen von Teilgraphen mit fermionis
hen Linien wurdeim Rahmen dieser Arbeit ni
ht betra
htet, wie �uberhaupt die Vertexrenormierung in die-ser Arbeit ni
ht angewandt wird. Aus Teilgraphen mit fermionis
hen Linien ergiben si
hMatrixfaktoren, so da� S
hwierigkeiten mit der Ni
htvertaus
hbarkeit zu erwarten sind.Betra
hte zur Verdeutli
hung die Graphen 1 und 11 der Tabelle D.1. Der Graph 11 ent-steht aus dem Graphen 1 dur
h Anh�angen eines Teilgraphen mit 4 fermionis
hen Linien.Aufgrund der Struktur des Vertizes mit 4 fermionis
hen Linien ergibt si
h entspre
hendAbs
hnitt 7.3.3.2 aus dem Graphen 11 nur dann ein Beitrag, wenn die fermionis
he Kette,entlang der die Matrizen multipliziert werden, die S
hleife des Graphen dur
hl�auft. Diefermionis
he Vertexrenormierung sollte von daher s
hwieriger sein als die bosonis
he, beider der ganze Graph mit einem skalaren Faktor multipliziert wird.Weiterhin ist zu untersu
hen, wie die Teilgraphen die Symmetriefaktoren beein
ussen.Dur
h das Anh�angen der Teilgraphen k�onnen Symmetrien des Graphen gebro
hen werden,und die Teilgraphen k�onnen selber au
h einen Symmetriefaktor besitzen. Eventuell sindhier weitere Korrekturen notwendig.10.2.2 Computerisierung des VerfahrensIn [4℄ wird ein Verfahren vorgestellt, na
h dem die Graphen in einem bosonis
hen Modellmit Hilfe eines Computers erzeugt und ausgewertet werden k�onnen. Dadur
h wurde es indieser Arbeit m�ogli
h, die Graphen bis zur 14. Ordnung im skalaren Hopping-Parameterauszuwerten.Au
h hier ist wieder mit Problemen dur
h den fermionis
hen Teil des Modells zu re
h-nen. S
hon der Vertex mit vier fermionis
hen Linien h	�		�	i
1 enth�alt 4096 Eintr�age. Ausdiesem Grund d�urfte es bei der Auswertung der Graphen Vorteile bringen, die Eigens
haf-ten der 
-Matrizen und die in Abs
hnitt 7.3.3 bes
hriebenen Hilfen auszunutzen.
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Anhang AZur Struktur des PropagatorsZun�a
hst wird die benutzte Darstellung der euklidis
hen Gamma-Matrizen angegeben:
1 = 0BBB� 0 0 0 �i0 0 �i 00 i 0 0i 0 0 0 1CCCA 
2 = 0BBB� 0 0 0 �10 0 1 00 1 0 0�1 0 0 0 1CCCA
3 = 0BBB� 0 0 �i 00 0 0 ii 0 0 00 �i 0 0 1CCCA 
4 = 0BBB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCCA
5 = 0BBB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCCA (A.1)Zur Erl�auterung der Form der Glei
hung (3.8) gen�ugt es zu zeigen, da�, wenn e�	(p) ineine Taylor-Reihe na
h �p entwi
kelt wird:e�	(p) = C(P )� i�p�
�D(P ) + O(�p2) (A.2)Die Matrizen C(P ) und D(P ) in der  �-Basis die folgende Form besitzen:C =  O C �(P )C �(P ) O ! D =  D  (P ) 00 D��(P ) ! (A.3)Beweis von (A.3):Aus der Forderung na
h Kovarianz des Propagators e�	(p) ergibt si
h,da� die Matrizen C(P ) und D(P ) si
h als 2�2 Matrizen, deren Eintr�age skalare Vielfa
hedes Einheitsoperators 1S im Spinor-Raum sind, s
hreiben lassen. Aus der De�nition (A.2)f�ur die Matrizen C und D ergibt si
h nun folgende m�ogli
he Bestimmung dieser Gr�o�enauf dem Gitter: C(P ) = Xx e�iP�x�h	(x)�	(0)i
 (A.4)D(P ) = 14 4X�=1 
� � �Xx e�iP�x�
os(P�) x� h	(x)�	(0)i
� (A.5)79



80 ANHANG A. ZUR STRUKTUR DES PROPAGATORSIn der symmetris
hen Phase ist der Propagator invariant unter der Transformation der
hiralen Symmetrie (2.10). In der hier benutzten Darstellung der 
-Matrizen sind beieinem linksh�andigen Spinoranteil nur die beiden oberen, bei einem re
htsh�andigen nurdie beiden unteren Spinorkomponenten von null vers
hieden. Damit ergibt si
h f�ur einenfermionis
hen Zweipunkt-Erwartungswert in der symmetris
hen Phase die folgende Form,wobei jede Eintragung in der Matrix auf der re
hten Seite f�ur eine 2� 2-Matrix steht.h	y �	xi
 = 0BBB� 0 h L;y +L;xi
 h L;y�+R;xi
 0h R;y +R;xi
 0 0 h R;y�+L;xi
h�L;y +R;xi
 0 0 h�L;y�+L;xi
0 h�R;y +L;xi
 h�R;y�+R;xi
 0 1CCCA (A.6)Die Matrizen C und D sind aus derartigen Erwartungswerten aufgebaut. Aufgrund derspeziellen Gestalt der 
�-Matrizen (A.1) sind die folgenden Matrixelemente glei
h null.Dabei ist die Proportionalit�at der Matrizen C und D zur 1S -Matrix zu ber�u
ksi
htigen.C  = C�� = D � = D� = 0 8P : P� 2 f0; �g; (A.7)Es bleibt no
h C �(P ) = C� (P ) zu zeigen. Betra
hte dazu die folgende Symmetrietrans-formation1: 	x ! 
1
3	�x�	x ! 	Tx
4
1
3�x ! �+x�+x ! �x (A.8)mit: 	�x := 
4 �	TxDie Wirkung S des Modells ist nun invariant unter dieser Symmetrietransformation.Bei den folgenden Manipulationen ist das Vorzei
hen bei Vertaus
hung von Grassmann-Variablen zu ber�u
ksi
htigen. Diese Vertaus
hung wird im folgenden dur
h Transpositionerzeugt. ��x y ! �Tx 
4
1
3
1
3 �y= ��Tx 
4 �y= � y�x (A.9)Als Folge ist ��x y + � x�y invariant unter (A.8), wenn x = y gilt oder �uber x und yunabh�angig summiert wird. Xx� �	x+�̂
�	x ! Xx� 	Tx+�̂
4
1
3
�
1
3	�xXx X�=�1;�3	Tx+�̂
4
1
3
�
1
3	�x = �Xx X�=�1;�3	Tx+�̂
�
4	�x= Xx X�=�1;�3 �	x
T�	x+�̂1Im Funktionalintegralformalismus sind �	x und 	x unabh�angige Variablen, �uber die unabh�angig inte-griert wird, so da� (
1
3	�x)+ 
4 = �	Tx 
4
1
3 gelten darf.



81= Xx X�=�1;�3 �	x��̂
��	xXx X�=�2;�4	Tx+�̂
4
1
3
�
1
3	�x = Xx X�=�2;�4	Tx+�̂
�
4	�x= Xx X�=�2;�4 �	x��̂
��	x=) Xx� �	x+�̂
�	x ! Xx� �	x+�̂
�	x (A.10)Es bleibt die Pr�ufung der Invarianz des Yukawaterms:� x �1 + 
52 �+x + 1� 
52 �x� x !  Tx 
4
1
3 �1 + 
52 �x + 1� 
52 �+x � 
1
3 �x= � Tx 
4 �1 + 
52 �x + 1� 
52 �+x � �x= � Tx �1� 
52 �x + 1 + 
52 �+x � 
4 �x= � x �1� 
52 �x + 1 + 
52 �+x � x (A.11)Eine analoge Re
hnung zeigt, da� au
h ��x h1+
52 �x + 1�
52 �+x i�x invariant unter der Sym-metrietransformation (A.8) ist. Damit gilt:h x��xi
 = h�x � xi
 (A.12)Da die Symmetrietransformation (A.8) die Ausdr�u
ke in einander �uberf�uhrt. Es folgtC �(P ) = C� (P ), wie zu zeigen beabsi
htigt.



Anhang BVerbundene1-Platz-ErwartungswerteAus der Glei
hung (5.17) lassen si
h dur
h Di�erentiation na
h den zugeordneten Quellendie 1-Platz-Erwartungswerte bestimmen. In diesem Anhang sollen nun beir = �� = 1die 1-Platz-Erwartungswerte tabelliert werden, die f�ur die Graphen der niedrigsten Ord-nungen ben�otigt werden.Die Bezei
hnung hAi
1 steht f�ur den verbundenen Erwartungswert des Operators Abez�ugli
h des Ma�es Z1.Erwartungswert graph. Symbol Termh	b �	ai
1 s- - 11� G�G Æbah� �+i
1 sppppppppp p p p p p p p p p- - 4b1 = 1h	b � �	ai
1 sp p p p p p p p p- -6 2b1 (A�)bah	b �+ �	ai
1 sppppppppp- -6 2b1 (A+)bah	d �	
	b �	ai
1 s- -66 b1[(A�)d
 (A+)ba � (A�)da (A+)b
+(A+)d
 (A�)ba � (A+)da (A�)b
℄h��+��+i
1 sppppppppp p p p p p p p p ppppppppppppppppppp- -66 64b2 = �1h	b �	a ���+i
1 sp p p p p p p p ppppppppppppppppppp��- -66� 32b2 (A�)bah	b �	a �+��+i
1 sppppppppp p p p p p p p p pppppppppp��- -66� 32b2 (A+)ba82



83hQ2i=1(	bi �	ai)��i
1 sp p p p p p p p pppppppppp����- -66�R 16b2[(A�)b2a2 (A�)b1a1� (A�)b2a1 (A�)b1a2 ℄hQ2i=1(	bi �	ai)��+i
1 sp p p p p p p p pppppppppp�� ��- -66�� 16b2PP;Q2S2 [(�1)P (�1)Q�� (A�)P(b1)Q(a1) (A+)P(b2)Q(a2)℄hQ2i=1(	bi �	ai)�+�+i
1 sppppppppp ppppppppp����- -66�R 16b2[(A+)b2a2 (A+)b1a1� (A+)b2a1 (A+)b1a2 ℄h[Q3i=1(	bi �	ai)℄�i
1 sppppppppp�� ����- -66� �R 4b2PP;Q2S3 [(�1)P (�1)Q (A�)P(b1)Q(a1)�� (A+)P(b2)Q(a2) (A�)P(b3)Q(a3)℄h[Q3i=1(	bi �	ai)℄�+i
1 sppppppppp������- -66�R � 4b2PP;Q2S3 [(�1)P (�1)Q (A+)P(b1)Q(a1)�� (A�)P(b2)Q(a2) (A+)P(b3)Q(a3)℄hQ4i=1(	bi �	ai)i
1 s���� ����- -66�R R� b2PP;Q2S4[(�1)P (�1)Q�� (A�)P(b1)Q(a1) (A+)P(b2)Q(a2)�� (A�)P(b3)Q(a3) (A+)P(b4)Q(a4)℄h��+��+��+i
1 sppppppppp p p p p p p p p pppppppppppppppppppp p p p p p p p pppppppppp- -66�� 2304b3 = 4h	b �	a���+��+i
1 sppppppppp p p p p p p p p pppppppppppppppppppp p p p p p p p p�� ��- -66�R� 1152b3(A�)bah	b �	a�+��+��+i
1 sppppppppp p p p p p p p p pppppppppppppppppppppppppppp ����- -66�R� 1152b3(A+)baHierin bezei
hnet Sn die Gruppe der Permutationen von n Elementen. Das Symbol (�1)Psteht f�ur das Vorzei
hen der Permutation P . Es ist zu bea
hten, da� die Permutationendie Indizes der Fermionen und der Antifermionen jeweils nur untereinander vertaus
hen.



Anhang CR�u
ktransformation derfermionis
hen Suszeptibilit�atenaus der AB-Basis in die � -BasisIn Abs
hnitt 2.3 wurde die AB-Basis vorgestellt, in der die fermionis
he Bindungsma-trix M�̂ diagonal ist. Werden in dieser Basis die irreduziblen Kerne der Suszeptibilit�atenentwi
kelt, so ergibt si
h die Frage, wie die einzelnen Suszeptibilit�aten bei der R�u
ktrans-formation behandelt werden m�ussen und wie die dazugeh�origen Matrixelemente auf ein-fa
he Weise aus den Formeln (8.6){(8.8) abgelesen werden k�onnen. AusA =  PL PRPR PL ! �A := 
4A+
4 =  PR PLPL PR ! (C.1)ergibt si
h A �A = �A � �A =  1 00 1 ! A � �A = �A �A =  0 11 0 ! (C.2)Desweiteren gilt: 
� �A = �A � 
� (C.3)Aus der Forderung na
h Invarianz der Wirkung S unter dieser Transformation ergibt si
h,da� die Matrix M�̂ wie folgt transformiert wird:(M�̂) ��Basis = �A � (M�̂)AB�Basis �A (C.4)Die Matrizen �	2(P ) und ~�	�	3 haben das glei
he Transformationsverhalten. Es gilt:��	2(P )� ��Basis = Xx he�iP�x�h	x �	0i
 ��Basisi= Xx he�iP�x�AA h	x �	0i
 ��Basis �A �Ai= AXx he�iP�x�h	x �	0i
AB�Basisi �A= A � ��	2(P )�AB�Basis � �A (C.5)84



85Entspre
hend gilt: �~�	�	3 � ��Basis = A � �~�	�	3 �AB�Basis � �A (C.6)Die Suszeptibilit�at �	2(P ) besitzt ein anderes Transformationsverhalten, da ihre De�nitioneine 
�-Matrix enth�alt.��	2(P )� ��Basis = Xx " 4X�=1�
�x� 1
os(P�)� e�iP�x�h	x �	0i
 ��Basis#= Xx " 4X�=1�
�x� 1
os(P�)� e�iP�x� A h	x �	0i
AB�Basis �A#= �A � ��	2(P )�AB�Basis � �A (C.7)Dabei wird Glei
hung (C.3) angewandt. Die irreduziblen Kerne der Suszeptibilit�aten trans-formieren si
h wie die zugeordneten Suszeptibilit�aten.In der AB-Basis sind die Matrizen M�̂ und � 2 (P ) diagonal bez�ugli
h des2-dimensionalen Raums, der von  A und  B aufgespannt wird. Da die 
�-Matrizen dur
hdie SummationP�̂ herausfallen, ist die Matrix (P�̂M�̂ � � 2 ) in der AB-Basis proportionalzur Einheitsmatrix im Raum der 8-komponentigen Bi-Spinoren. Es gilt:�X̂� (M�̂) ��Basis � (�	2 ) ��Basis�= �X̂� �A � (M�̂)AB�Basis �AA � (�	2 )AB�Basis � �A�= �A � �X̂� (M�̂)AB�Basis � (�	2 )AB�Basis� � �A= �X̂� (M�̂)AB�Basis � (�	2 )AB�Basis� (C.8)Die Matrix (P�̂M�̂ � �	2 ) transformiert si
h somit trivial von der einen in die andere Basisund ist in beiden Basen proportional zur 8-dimensionalen Einheitsmatrix. In der Re
hnungwurde die Diagonalstruktur der Matrix (P�̂M�̂ � �	2 ) in der AB-Basis ausgenutzt.Als Folge sind in den Formeln (8.6) { (8.8) die fermionis
hen geometris
hen Reihenebenfalls diagonal, da sie na
h Kapitel 8.2 aus Termen der ArtYq �X̂�i M�̂i � Æ�	2 �aufgebaut werden.Diese Betra
htung zeigt, da� die Matrixstruktur der Suszeptibilit�aten �	2 und ~�	�	3aus der Matrixstruktur des zugeordneten irreduziblen Kerns abgelesen werden kann. DieMatrixelemente der Suszeptibilit�aten ergeben si
h dur
h skalare Multiplikation mit derjeweils ben�otigten Potenz von [1� 2KP4�=1 
os(P�) Æ� �2 (P )℄�1 aus den entspre
hendenMatrixelementen des zugordneten irreduziblen Kerns in der glei
hen Basis.11Der Term Æ� �2 ist ein Matrixelement von Æ�	2 , das in der  �-Basis entspre
hend Glei
hung (3.27)bestimmt wird.



86 ANHANG C. R�UCKTRANSFORMATION IN DIE � -BASISDer Fall der Suszeptibilit�at �	2 verdient no
h eine genauere Betra
htung. Au
h hierlassen si
h die Matrizen A bzw. �A an den geometris
hen Reihen vorbeiziehen. Die Trans-formation des Terms ( Æ�	2 (P ) + 8K Æ�	2 (P )� Æ�	2 (P )) von der AB-Basis in die  �-Basisist no
h ni
ht bes
hrieben. Dieser Term ergibt si
h na
h Abs
hnitt 8.2.4 aus dem Term( Æ�	2 +P� 
� Æ�	2 M�̂ Æ�	2 ) . Aus dem Transformationsverhalten von Æ�	2 na
h Glei
hung(C.7) ergibt si
h mit Glei
hung (C.3):�( Æ�	2 ) ��Basis +X� 
�( Æ�	2 ) ��Basis(M�̂) ��Basis( Æ�	2 ) ��Basis�= � �A( Æ�	2 )AB�Basis �A+X� 
� A( Æ�	2 )AB�Basis �A �A(M�̂)AB�BasisAA( Æ�	2 )AB�Basis �A�= �A � �( Æ�	2 )AB�Basis +X� 
�( Æ�	2 )AB�Basis(M�̂)AB�Basis( Æ�	2 )AB�Basis� � �A (C.9)Dies f�uhrt auf das s
hon bestimmete Transformationsverhalten f�ur �	2 .Die Matrix (8K Æ�	2 (P )� Æ�	2 (P )) ist ebenfalls in beiden Basen proportionalzu der 8-dimensionalen Einheitsmatrix und transformiert si
h trivial beim Ba-siswe
hsel. Die Matrixelemente von �	2 k�onnen ebenso einfa
h aus denen von( Æ�	2 (P ) + 8K Æ�	2 (P )� Æ�	2 (P )) abgelesen werden wie im Fall der anderen Suszeptibilit�aten.Dabei ist mit [1� 2KP4�=1 
os(P�) Æ� �2 (P )℄�2 zu multiplizieren.



Anhang DTabelle der GraphenIn diesem Abs
hnitt sollen die im Rahmen dieser Arbeit ausgewerteten irreduziblen Gra-phen angegeben werden. Sie sind na
h ihrer Ordnung in T geordnet.Bei der Auswertung von Graphen mit fermionis
hen Linien sind die folgenden Matrix-formeln hilfrei
h. Tr�A+M�̂A�M(��̂)� = � 8 � nF(1�G�G )2 (G �G�)2 (D.1)In der AB-Basis gilt:A�M�̂A+ = 4(1� G�G )2 " 0 00 G G� !+ 
�  0 00 PRG2 +PLG2� !# (D.2)A+M�̂A� = 4(1� G�G )2 " G G� 00 0 !+ 
�  PLG2 +PRG2� 00 0 !# (D.3)An den Graphen werden entspre
hend Punkt 3 in Abs
hnitt 7.3.1 einige innere Linienmit �̂i bezei
hnet. Diese Bezei
hnungen sind an den Graphen angegeben. Sind innereGraphenlinien ni
ht mit einem derartigen Index bezei
hnet, so sind sie entweder dur
h die�̂i's festgelegt oder aber die Summation �uber deren Ri
htungen ist in Abh�angigkeit vonden �̂i's s
hon ausgef�uhrt.D.1 Eine einlaufende und eine auslaufende fermionis
heLinieIn diesem Abs
hnitt werden alle irreduziblen Graphen mit einer einlaufenden und einerauslaufenden fermionis
hen Linie bis zur 4. Ordnung in T vorgestellt. Diese Graphenwerden zur Entwi
klung der Suszeptibilit�aten �	2 (P ) und �	2 (P ) ben�otigt. Die TermeRG(�̂1; � � � ; �̂p) werden in der AB-Basis angegeben.Nr. Graph G SG RG(�̂1; � � � ; �̂p)1. s- - 1 11� G�G 2. s s  `̀p p p p p p p p p p p p p p p p p p p p p�̂- -- - 1 � �K(1� G�G )2 �� G G� 00 0 �+ 
� � PLG2 +PRG2� 00 0 ��87



88 ANHANG D. TABELLE DER GRAPHEN3. s s  `̀p p p p p p p p p p p p p p p p p p p p p�̂- -� - 1 � �K(1� G�G )2 �� 0 00 G G� �+ 
�� 0 00 PRG2 +PLG2� ��4. s s!! aaaa !!�̂- --� - 12 8>>><>>>: 4K3 � nF(1� G�G )4 (G �G�)2 �� G G� 00 G G� �+
� � PLG2 +PRG2� 00 PRG2 +PLG2� ��5. s ss sp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppp�̂1 �̂2- --6 6- 1 2�2K2(1�G�G )3 �
�2 � PLG2 +PRG2� 00 0 ��1� Æ�1(��2) � Æ�1(�2)�+ �� G G� 00 0 �+ 
�1 � PLG2 +PRG2� 00 0 ���1� Æ�1(��2)��6. s ss sp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppp�̂1 �̂2- �-6 ?- 1 2�2K2(1�G�G )3 �
�2 � 0 00 PRG2 +PLG2� ��1� Æ�1(��2) � Æ�1(�2)�+ �� 0 00 G G� �+ 
�1 � 0 00 PRG2 +PLG2� ���1� Æ�1(��2)��7. s ss spppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppp�̂- --6 ?- 1 21�3K(1� G�G )2 �� G G� 00 0 �+ 
�� PLG2 +PRG2� 00 0 ��8. s ss spppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppp�̂- -� 6? - 1 21�3K(1� G�G )2 �� 0 00 G G� �+ 
�� 0 00 PRG2 +PLG2� ��9. s ss sp p p p p p p p p p p p p p p p p p p p p�̂- --6 ?- 1 12�K3(1� G�G )4 �
�� PLG2 +PRG2� 00 0 ��10. s ss sp p p p p p p p p p p p p p p p p p p p p��̂- �-6 ?- 1 12�K3(1� G�G )4 �
�� 0 00 PRG2 +PLG2� ��11. s ss s6-� 6? - 1 96K4(1� G�G )5 � G G� 00 G G� �12. s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p"" bbp p p p p p p p p p p p p p p p p p p p p�̂- -�-- - 12 �3K(1� G�G )2 �� G G� 00 0 �+ 
�� PLG2 +PRG2� 00 0 ��13. s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p"" bbp p p p p p p p p p p p p p p p p p p p p�̂- -�-� - 12 �3K(1� G�G )2 �� 0 00 G G� �+ 
�� 0 00 PRG2 +PLG2� ��



D.2. EINLAUFENDE UND AUSLAUFENDE BOSONISCHE LINIE 8914. s ss  `̀p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppp �̂- -? -6 - 1 � 8�3K(1� G�G )2 �� G G� 00 0 �+ 
�� PLG2 +PRG2� 00 0 ��15. s ss  `̀p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppp �̂- -? �6 - 1 � 8�3K(1� G�G )2 �� 0 00 G G� �+ 
�� 0 00 PRG2 +PLG2� ��16. s ss  `̀p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppp�̂- - ?- 6- 1 � 8�3K(1� G�G )2 �� G G� 00 0 �+ 
�� PLG2 +PRG2� 00 0 ��17. s ss  `̀p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppp�̂- - ?� 6- 1 � 8�3K(1� G�G )2 �� 0 00 G G� �+ 
�� 0 00 PRG2 +PLG2� ��D.2 Eine einlaufende und eine auslaufende bosonis
heLinieIn diesem Abs
hnitt werden die irreduziblien Graphen bis zur 4. Ordnung in T angegeben,die zu ��2 und ��2 beitragen.Nr. Graph G SG RG(�̂1; � � � ; �̂p)1. sppppppppp p p p p p p p p p- - 1 12. s sppppppppp   `̀`̀   p p p p p p p p p�̂- -� - 1 2K2 � nF(1� G�G )2 (G �G�)23. ssppppppppp ppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p- ?6- 1 �8�24. ssppppppppp ppppppppppppppppppppp��DD��TTp p p p p p p p p- ?66- 1 � 16�K2 � nF(1 �G�G )2 (G �G�)25. ssppppppppp pppppppppppppppppppppDD��TT��p p p p p p p p p- ?6?- 1 � 16�K2 � nF(1 �G�G )2 (G �G�)26. s sppppppppp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- --� - 12 �3



90 ANHANG D. TABELLE DER GRAPHEN7. ssppppppppp TT����TTDD����DDp p p p p p p p p- ?6?6- 14 �128K4 � (nF )2(1� G�G )4 � (G �G�)48. s ssppppppppp   `̀`̀   DD����DDp p p p p p p p p�̂1 �̂2- - ?� 6- 1 4K4 � (nF )2(1� G�G )4 (G �G�)49. ss ssppppppppp p p p p p p p p p�̂1�̂2- - ?�6 - 1 K4 � nF(1� G�G )4 h8(G �G�)2Æ�1�2+ 4 �G2 + G2� + (G �G�)2� �1� Æ�1�2 � Æ�1(��2)� i10. ss ssppppppppp p p p p p p p p p��̂- - ?�6 - 1 24K4 � nF(1� G�G )4 �G2� + G2 �11. ss ssppppppppp p p p p p p p p p�̂- -? � 6- 1 24K4 � nF(1� G�G )4 �G2� + G2 �12. s sppppppppp "" bb  `̀p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- --�� - 1 2�2K2 � nF(1� G�G )2 (G �G�)213. s sppppppppp `̀     `̀p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- ---� - 12 2�2K2 � nF(1� G�G )2 (G �G�)214. s ssppppppppp   `̀`̀   pppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p�̂- -? �6 - 1 �16�2K2 � nF(1�G�G )2 (G �G�)215. s ssppppppppp   `̀`̀   ppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p�̂- - ?� 6- 1 �16�2K2 � nF(1�G�G )2 (G �G�)216. ssppppppppp pppppppppppppppppp pppp ppp pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p- ?6?6- 14 �32 �4



D.3. ZWEI FERMIONISCHE LINIEN UND EINE BOSONISCHE LINIE 9117. s sspppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p6�- ?6- 12 256 �418. s ss sppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p pppppppppppppppppppppp6-� 6? - 1 �168 �419. s ssppppppppp p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p- -? �6- 1 64 �4D.3 Eine einlaufende und eine auslaufende fermionis
heLinie, eine auslaufende bosonis
he LinieDie Graphen werden bis zur 3. Ordnung in T angegeben, und au
h hier werden alleAngaben bez�ugli
h der AB-Basis gema
ht.Nr. Graph G SG RG(�̂1; � � � ; �̂p)1. sp p p p p p p p p- -? 1 � 1(1 �G�G ) � 0 0PLG +PRG� 0 �2. s s`̀     `̀p p p p p p p p p�̂- -� -? 1 � 2K2 � nF(1 �G�G )3 (G �G�)2� 0 0PLG +PRG� 0 �3. ssppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p- ?6-? 1 8�2(1� G�G ) � 0 0PLG +PRG� 0 �4. ssppppppppppppppppppppp��DD��TTp p p p p p p p p- ??66- 1 8�K2(1� G�G )3 �2 (G �G�)2 �nF � 0 0PLG +PRG� 0 �+� 0 0�PLG2 �PRG2��(G��G ) 0��5. sspppppppppppppppppppppDD��TT��p p p p p p p p p- ??6?- 1 16�K2 � nF(1� G�G )3 (G �G�)2� 0 0PLG +PRG� 0 �6. s sp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- --� -? 12 � �3(1 �G�G ) � 0 0PLG +PRG� 0 �



92 ANHANG D. TABELLE DER GRAPHENDie Graphen dieses Abs
hnitts werden zur Bestimmung der renormierten Yukawakopplungunter Verwendung der Suszeptibilit�at �	�	3 ben�otigt. Sie besitzt die Gestalt einer diago-nalen 8� 8-Matrix. Es gibt darin nur zwei Arten unabh�angiger Eintr�age. Beide lassen si
hmit Hilfe der Graphen mit einer auslaufenden bosonis
hen Linie, einer einlaufenden undeiner auslaufenden fermionis
hen Linie bestimmen. Die entspre
henden Graphen mit einereinlaufenden bosonis
hen Linie brau
hen ni
ht ausgewertet zu werden, da aus ihnen keineneue Information gewonnen werden kann.D.4 Zwei einlaufende und zwei auslaufende bosonis
he Li-nienDie irreduziblen Graphen zur Bestimmung der Suszeptibilit�at ��4 werden in diesem Anhangbis zur 3. Ordnung in T angegeben.Nr. Graph G SG RG(�̂1; � � � ; �̂p)1. sppppppppp ppppppppppppppppppp p p p p p p p p- -66 14 �12. s sppppppppp pppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pppppppppp ppppppppp�̂6 -� 66 6 12 �23. ssppppppppp pppppppppp p p p p p p p pp p p p p p p p ppppppppppppppppppppppppppppppppppppppppppp- -�66? 14 32 �24. s sppppppppp ppppppppp pppppppppp p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p�̂- -66 -- 18 �25. s spppppppppppppppppp pppppppppp p p p p p p p p`̀     `̀�̂ 6-6- �- 12 � 2K2 � nF(1�G�G )2 (G �G�)26. s spppppppppppppppppp ppppppppp p p p p p p p p p`̀     `̀�̂6 -6- �- 12 � 2K2 � nF(1�G�G )2 (G �G�)27. s sppppppppp ppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- 66--� - 14 �4 �38. s sppppppppp ppppppppppppppppppp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p�̂- 66 --� - 14 �4 �39. s sppppppppp ppppppppppppppppppp p p p p p p p p p p p p p p p p p p p paa !! ppppppppp�̂6 66 6--� 1 2�K2 � nF(1� G�G )2 (G �G�)2



D.4. VIER �AUSSERE BOSONISCHE LINIEN 9310. s spppppppppppppppppp p p p p p p p p p p p p p p p p p p p p paa !! pppppppppp p p p p p p p p�̂6 6- ---� 14 2�K2 � nF(1� G�G )2 (G �G�)211. ssppppppppp pppppppppp p p p p p p p pp p p p p p p p p��DDDD��pppppppppppppppppp ppp- -�666? 14 64�K2 � nF(1� G�G )2 (G �G�)212. ssppppppppp pppppppppp p p p p p p p pp p p p p p p p ppppppppppppppppppppppDD��TT��- -�66?? 14 64�K2 � nF(1� G�G )2 (G �G�)2



Anhang ETaylorreihe f�ur die irreduziblenKerneIn diesem Abs
hnitt werden die Taylorentwi
klungen der irreduziblen Kerne angegeben,die si
h mit den Abs
hnitten 7.3.1 und 7.3.2 aus den Faktoren SG und RG(�̂1; � � � ; �̂p) desAnhangs D gewinnen lassen.Bei den P abh�angigen Gr�o�en wird mit n� die Anzahl der Komponenten P� mit P� = �bezei
hnet. Alle Terme einer Zeile geh�oren der glei
hen Ordnung in T an. Existieren mehrTerme einer Ordnung, als in eine Zeile passen, so wird die folgende Zeile einger�u
kt.Taylorreihe f�ur Æ� �2 (P )Æ� �2 (P ) = 11�G�G +(8� 4n�) � �K(1� G�G )2 G�G +(8� 4n�) 2K3 � nF(1� G�G )4 (G �G�)2G�G � 96K4(1�G�G )5 G�G + (2n2� � 8n� + 7) 16 �2 �K2(1� G�G )3 G�G +(4� 2n�) 11 �3 �K(1� G�G )2 G�G (E.1)Taylorreihe f�ur Æ�	2 (P )Æ� 2 (P ) = 8 � �K(1�G�G )2 G2�+ 16K3 � nF(1� G�G )4 (G �G�)2G2�+ 96 �K3(1� G�G )4 G2� + (56� 28n�) 4 �2 �K2(1�G�G )3 G2�+ 44 �3 �K(1�G�G )2 G2� (E.2)94



95Æ��2(P ) = 8 � �K(1�G�G )2 G2 + 16K3 � nF(1� G�G )4 (G �G�)2G2 + 96 �K3(1� G�G )4 G2 + (56� 28n�) 4 �2 �K2(1� G�G )3 G2 + 44 �3 �K(1� G�G )2 G2 (E.3)Taylorreihe f�ur Æ��2Æ��2 = 12�4 �2 + 8K2 � nF(1�G�G )2 (G �G�)2+2 �3 � 16 � �K2 � nF(1�G�G )2 (G �G�)2+8 �4 � 116 �2 �K2 � nF(1� G�G )2 (G �G�)2+ K4 � nF(1� G�G )4 �112 � nF (G �G�)4 + 128 (G �G�)2 + 288 (G2 +G2�)�(E.4)Taylorreihe f�ur Æ��2Æ��2 = 8K2 � nF(1� G�G )2 (G �G�)2+2 �3�116 �2 �K2 � nF(1�G�G )2 (G �G�)2+ K4 � nF(1�G�G )4�256 � nF (G �G�)4 + 320 (G �G�)2 + 384 (G2 +G2�)�(E.5)



96 ANHANG E. TAYLORREIHE F�UR DIE IRREDUZIBLEN KERNETaylorreihe f�ur Æ~�	�	3Die Matrix Æ~�	�	3 wird hier in der  �-Basis angegeben. Der Term ( Æ�	�	3 )22 ist in dieserBasis identis
h mit dem Vorfaktor von PR in der linken oberen E
ke von Æ~�	�	3 , der Term( Æ�	�	3 )33 entspri
ht dem Vorfaktor von PL in der re
hten unteren E
ke.Æ~�	�	3 = � 1(1�G�G )  PRG� 00 PLG !+ " 8 �2(1�G�G ) � 16K2 � nF(1� G�G )3 (G �G�)2#  PRG� 00 PLG !� 4 �3(1�G�G )  PRG� 00 PLG !+ 8 � �K2(1�G�G )3 (G �G�) PRG2� 00 �PLG2 !+32 � �K2 � nF(1�G�G )3 (G �G�)2 PRG� 00 PLG ! (E.6)Taylorreihe f�ur Æ��4 Æ��4 = �38+392 �2 � 24K2 � nF(1� G�G )2 (G �G�)2�24�3 + 78 � �K2 � nF(1�G�G )2 (G �G�)2 (E.7)
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