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Symbolverzeichnis

β Parameter des Razavy-Potentials, wird für die Be-
rechnungen auf

√
2 gesetzt

εn n-ter umskalierter Energieeigenwert
Fi F (xi) = 2m

~2 (E − V (xi))

h Schrittweite des Numerov-Algorithmus
~ das reduzierte Plancksche Wirkungsquantum, wird

auf 1 gesetzt
m Masse des Teilchens, wird auf 1 gesetzt
n Hauptquantenzahl (bei 0 beginnend)
ñ Parameter des Razavy-Potentials
N Menge der natürlichen Zahlen ohne 0
N0 Menge der natürlichen Zahlen mit 0
Ψi der Wert der Wellenfunktion an der Stelle xi
s Parameter des umskalierten Razavy-Potentials
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1 Einleitung

1 Einleitung

Quasi-exakt lösbare Potentiale stellen eine interessante Art von Potentialen in der Quan-
tenmechanik dar, da sie nur eine begrenzte Anzahl von analytisch berechenbaren Eigen-
energien besitzen. Mit numerischen Methoden ist hingegen eine Berechnung von beliebig
vielen Energieeigenwerten möglich. Dabei haben die quasi-exakt lösbaren Potentiale den
großen Vorteil gegenüber Potentialen, die ausschließlich numerisch untersucht werden
können, dass analytische Werte zur Verfügung stehen, um die Qualität der numerischen
Lösung abschätzen zu können. Weiterhin können entsprechende Parameter so angepasst
werden, dass die numerische und analytische Lösungen übereinstimmen. Damit sollten
auch die nur numerisch berechenbaren Werte sehr genau werden. Eines der wenigen
quasi-exakt lösbaren Potentiale ist das Razavy-Potential, welches 1980 von M. Razavy
zum ersten Mal in [Raz80] untersucht wurde und auch hier behandelt werden soll. Es
handelt sich hierbei um ein Doppelmuldenpotential, welches aus zwei hyperbolischen
Kosinus-Funktionen zusammengesetzt ist.

Damit gehört das Razavy-Potential zu einer weiteren interessanten Gruppe von Po-
tentialen, da Doppelmuldenpotentiale einige besondere charakteristische Eigenschaften
besitzen. Sie eignen sich beispielsweise zur einfachen Modellierung von Molekülen oder
Zweiteilchen-Problemen. In dieser Arbeit soll ein besonderes Augenmerk auf die Auf-
spaltung von Energieniveaus in Abhängigkeit einiger Parameter des Potentials gelegt
werden. Ist die Aufspaltung klein genug, so ist ein Übergang durch den Tunneleffekt
möglich. Beim Ammoniak-Molekül bildet dieser Übergang beispielsweise die Grundlage
für den Ammoniakmaser (vgl. [Mün10]).

Diese Arbeit baut auf den Ergebnissen aus [Pap11] und [Kem12] zur numerischen
Lösung der stationären Schrödingergleichung sowie den Ergebnissen aus [Poe11] und
[Kün14] zur analytischen Untersuchung des Razavy-Potentials auf. Es werden zunächst
die theoretischen Grundlagen aus beiden Bereichen erläutert, bevor die Erkenntnisse
aus beiden Teilen zusammengeführt werden. Zunächst wird dann die Qualität des nu-
merischen Lösungsverfahrens untersucht. Dieses soll anschließend zur Berechnung der
Energieeigenwerte genutzt werden, welche sich nicht mehr analytisch berechnen lassen.
So kann ermittelt werden, ob sich deren Verhalten von dem im analytisch lösbaren Teil
unterscheidet. Zum Schluss wird noch die semiklassische Näherung der Energieaufspal-
tung der unteren beiden Eigenenergien mit den numerischen Ergebnissen verglichen.

- 1 -



2 Theoretische Grundlagen

2 Theoretische Grundlagen

Zunächst soll das Numerov-Verfahren, welches zur numerischen Berechnung der Eigen-
energien und der Wellenfunktionen genutzt wird, erläutert, anschließend das Razavy-
Potential analytisch untersucht werden.

2.1 Numerische Lösung der Schrödingergleichung mit dem

Numerov-Algorithmus

Das Numerov-Verfahren ist in seiner hier vorgestellten Ausführung zur Lösung der ein-
dimensionalen stationären Schrödingergleichung(

− ~2

2m

∂2

∂x2
+ V (x)

)
Ψ(x) = EΨ(x) (2.1)

beliebiger symmetrischer Potentiale V (x) mit V (x) ≥ 0 ∀x geeignet.

2.1.1 Rekursive Berechnung der Wellenfunktionen

Die folgende Herleitung der Rekursionsgleichung orientiert sich wie [Kem12] und [Pap11]
an [Sch95]. Um eine numerische Lösung zu finden, wird Gleichung (2.1) in die Form

∂2

∂x2
Ψ(x) + F (x)Ψ(x) = 0 (2.2)

gebracht, wobei F (x) = 2m
~2 (E − V (x)) ist. Die numerische Berechnung kann natürlich

nicht kontinuierlich erfolgen, weshalb x diskretisiert werden muss. Führt man dies mit
konstanter Schrittweite h durch, so wird xi = i · h, i ∈ Z. Die Berechnung der Wellen-
funktion Ψ erfolgt damit nur an den Stützstellen Ψi = Ψ(xi). Die Taylorentwicklung von
Ψ um den Punkt xi ergibt sich zu

Ψi±1 = Ψi ± hΨ
(1)
i +

h2

2
Ψ

(2)
i ±

h3

6
Ψ

(3)
i +

h4

24
Ψ

(4)
i ±

h5

120
Ψ

(5)
i +O(h6) , (2.3)

mit der k-ten Ableitung Ψ
(k)
i im Punkt xi.

Addiert man nun die Gleichungen für + und −, so fallen die ungeraden Terme heraus
und es gilt:

Ψi+1 + Ψi−1 = 2Ψi + h2Ψ
(2)
i +

h4

12
Ψ

(4)
i +O(h6) . (2.4)
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2.1 Numerische Lösung der Schrödingergleichung mit dem Numerov-Algorithmus

Hieraus folgt für die zweite Ableitung

h2Ψ
(2)
i = Ψi−1 + Ψi+1 − 2Ψi +O(h4) , (2.5)

wobei hier die Terme ab O(h4) vernachlässigt werden.
Zweimaliges Ableiten und Einsetzen von (2.2) führt dann auf den Ausdruck

h2Ψ
(4)
i = −Fi−1Ψi−1 + 2FiΨi − Fi+1Ψi+1 +O(h4) . (2.6)

Schließlich liefert Einsetzen von (2.2) und (2.6) in (2.4) und Umformen nach Ψi+1 die
zweigliedrige Rekursion

Ψi+1 =
2Ψi −Ψi−1 − h2

12
(10FiΨi + Fi−1Ψi−1)

1 + h2

12
Fi+1

+O(h6) . (2.7)

2.1.2 Lösungsverfahren

Um Gleichung (2.7) anwenden zu können, muss eine Energie E vorgegeben werden. Au-
ßerdem werden zwei Anfangsbedingungen benötigt, um die Rekursion starten zu können.
Die Eigenenergien der gebundenen Zustände werden mit n ∈ N0 durchnummeriert. Da
hier symmetrische Potentiale betrachtet werden, müssen die Wellenfunktionen zu den
Energieeigenwerten abwechselnd gerade und ungerade sein. Daraus folgt für ungerade n:

Ψ0 = 0; für Ψ1 kann ein beliebiger, von Null verschiedener, Wert gewählt werden.

Der Wert von Ψ1 spielt lediglich für die Normierung der Wellenfunktion eine Rolle und
kann für eine gute Darstellung auf h gesetzt werden.
Für gerade n folgt aus (2.7) für i = 0 mit Ψ−1 = Ψ1 unter der Bedingung, dass die
Wellenfunktionen ebenfalls gerade sind und F−1 = F1 aus der Symmetrie des Potentials

Ψ1 =
1− 5h2

12
F0

1 + h2

12
F (h)

Ψ0 +O(h6) . (2.8)

Ψ0 kann einen beliebigen Wert annehmen und wird hier zu 1 gewählt. Diese Anfangsbe-
dingungen finden sich ebenfalls in [Sch95].

Um nun zu überprüfen, ob die vorgegebene Energie zu einem Eigenzustand gehört,

- 3 -



2.1 Numerische Lösung der Schrödingergleichung mit dem Numerov-Algorithmus

wird das Verhalten der berechneten Wellenfunktion untersucht. Nach dem Knotensatz
muss die Wellenfunktion zum n-ten Energieeigenwert genau n Nullstellen haben. Au-
ßerdem folgt aus der Bedingung der Normierbarkeit, dass die Wellenfunktion im Un-
endlichen gegen Null konvergieren muss. Hat die berechnete Wellenfunktion zu viele
Nullstellen, so ist die angenommene Energie zu klein, wohingegen sie bei einer zu ge-
ringen Energie im Unendlichen divergiert oder zu wenig Nullstellen aufweist. Dadurch
kann im nächsten Iterationsschritt eine angepasste Energie gewählt werden. Dies ge-
schieht mittels einer Bisektion mit dem unteren Startwert Emin = 0. Der Startwert für
die obere Grenze ergibt sich aus dem Verhalten des Potentials im Unendlichen. Konver-
giert es gegen einen Wert 0 ≤ V∞ < ∞, so wird Emax = V∞ gesetzt, da nur unterhalb
dieses Wertes gebundene Zustände existieren können. Falls das Potential hingegen gegen
unendlich strebt, so wird Emax = 10200 gesetzt. Dieser Wert ist groß genug, um alle
praktisch und theoretisch interessanten Zustände zu untersuchen und gerade klein ge-
nug, damit das Programm während der Berechnung nicht an die numerischen Grenzen
stößt.
Die Energie wird zu Emax+Emin

2
gewählt und die Wellenfunktion berechnet. Anschließend

wird entweder die obere oder die untere Energiegrenze auf diesen Wert gesetzt. Die
Bisektion bricht ab, wenn

Emax − Emin
Emax + Emin

(2.9)

kleiner oder gleich der gewählten Genauigkeit ist. Nachdem ein Energiewert gefunden
wurde, wird dieser zur Minimierung der Rechenzeit als neue untere Schranke gesetzt.

Neben dem hier gezeigten Schießverfahren gibt es noch weitere Methoden zur Lösung
der stationären Schrödingergleichung. Diese werden in [Kem12] ausführlich untersucht
und es werden auch Möglichkeiten aufgezeigt, um nichtsymmetrische Potentiale lösen
zu können. Dabei ergeben sich jedoch weder in der Performance noch in der Genau-
igkeit nennenswerte Vorteile gegenüber dem hier genutzten Verfahren, weshalb darauf
verzichtet wird, die Implementierung unnötig kompliziert zu gestalten.
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2.2 Analytische Untersuchung des Razavy-Potentials

2.2 Analytische Untersuchung des Razavy-Potentials

2.2.1 Umskalierung und Anpassung an das Programm

In [Raz80] stellt Razavy ein Potential der Form

V (x) =
~2β2

2m

[
1

8
ξ2 cosh(4βx)− (ñ+ 1)ξ cosh(2βx)− 1

8
ξ2
]

(2.10)

vor, wobei ξ, β und ñ ∈ N Parameter sind. Mit der in [Poe11] verwendeten Umskalierung

V (x) =
β2

2m
v(x)

E =
β2

2m
ε

s =
ξ

2(ñ+ 1)

x̃ = βx

v(x̃) =
1

2
(ñ+ 1)2

[
s2(cosh(4x̃)− 1)− 4s cosh(2x̃)

]

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

lässt sich das Potential eleganter aufschreiben. Damit ein Doppelmuldenpotential vor-
liegt, muss der neue Parameter s laut [Poe11] einen Wert in dem Intervall (0,1) aufweisen.
Im Folgenden soll zunächst nur v(x̃) untersucht werden.
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2.2 Analytische Untersuchung des Razavy-Potentials

Einfluss des Parameters s auf v(x ̃) mit ñ=1

v(
x̃)
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0
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x ̃
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 s=0.2
 s=0.4
 s=0.6
 s=0.8
 s=1.0

Abbildung 1 – Abhängigkeit des Potentials vom Parameter s

Einfluss des Parameters ñ auf v(x ̃) mit s=0.4

v(
x̃)

−20
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 ñ=3

Abbildung 2 – Abhängigkeit des Potentials vom Parameter ñ

Es lässt sich erkennen, dass der Parameter s die Lage der Minima stark beeinflusst und
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2.2 Analytische Untersuchung des Razavy-Potentials

einen Einfluss auf die Höhe des Potentialsberges und die Tiefe der Minima hat. Außerdem
zeigt sich, dass bei s = 1 keine Doppelmulde mehr vorliegt. Der Parameter ñ hingegen
nimmt keinen Einfluss auf die Position der Minima entlang der Abszisse, dafür ist er
maßgeblich für die Höhe des Potentialberges sowie die Tiefe der Minima verantwortlich.
Weiterhin ist in Abbildung 1 zu erkennen, dass die Bedingung v(x) ≥ 0∀x aus Abschnitt
2.1 nicht erfüllt ist.

Um dieser Bedingung zu entsprechen, muss das Potential verschoben werden. Die
Verschiebung ist dabei offensichtlich von s und ñ abhängig. In [Poe11] wird der Wert
der Minima zu

− (ñ+ 1)2(s2 + 1) (2.16)

bestimmt. Addition von (2.16) und (2.15) liefert dann mit Umformung

v(x̃) = (ñ+ 1)2 [s cosh(2x̃)− 1]2 (2.17)

In dieser Form lassen sich die Energieeigenwerte ε für v(x̃) mit dem entwickelten Pro-
gramm finden. Für einen Vergleich von numerischer und analytischer Lösung gilt es
zu beachten, dass die numerischen Werte für ε durch die Verschiebung des Potentials
ebenfalls um (ñ+ 1)2(s2 + 1) nach oben verschoben sind.

2.2.2 Analytische Bestimmung der Energieeigenwerte ε

Die analytische Lösung der Eigenwerte findet sich bereits in [Raz80], vollständiger ist
jedoch die Ausführung in [Poe11].
Als Ausgangspunkt für die quantenmechanische Rechnung dient die Schrödingerglei-
chung

∂2

∂x̃2
Ψ(x̃) + [ε− v(x̃)]Ψ(x̃) = 0 , (2.18)

mit dem nicht verschobenen Potential (2.15). Die Lösung dieser Differentialgleichung
erfolgt in [Raz80] mit der Sommerfeldschen Polynommethode.
Betrachtet man den Grenzfall x→ ±∞, so wird die Differentialgleichung

∂2

∂x̃2
Ψa(x̃)−

[
(ñ+ 1)2s2 cosh(2x̃)− 2(ñ+ 1)s cosh(2x̃)− (ñ+ 1)2s2

]
Ψa(x) = 0 , (2.19)
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2.2 Analytische Untersuchung des Razavy-Potentials

welche die gleiche asymptotische Form wie Gleichung (2.18) hat, durch den für x = ±∞
verschwindenden Ausdruck

Ψa(x̃) = e−
1
2
(ñ+1)s cosh(2x̃) (2.20)

gelöst. Damit kann der Ansatz

Ψ(x̃) = e−
1
2
(ñ+1)s cosh(2x̃)Φ(x̃) (2.21)

zur Lösung der ursprünglichen Differentialgleichung gewählt werden, sodass man durch
Einsetzen eine neue Differentialgleichung für Φ(x̃) erhält:

∂2

∂x̃2
Φ(x̃) = 2s(ñ+ 1) sinh(2x̃)

∂

∂x̃
Φ(x̃) + [ε+ 2sñ(ñ+ 1) cosh(2x̃)] Φ(x̃) (2.22)

Diese Gleichung lässt sich durch einen Reihenansatz für Φ(x̃) lösen, wobei nur die Lö-
sungen betrachtet werden, welche sich als endliche Summe von hyperbolischen Sinus-
bzw. Kosinusfunktionen von jx mit j ∈ N darstellen lassen.

Φ(x̃) =
k∑
j=0

C2j+1 cosh [(2j + 1)x̃] (2.23)

Φ(x̃) =
k∑
j=0

C2j cosh [(2jx̃] (2.24)

Φ(x̃) =
k∑
j=0

S2j+1 sinh [(2j + 1)x̃] (2.25)

Φ(x̃) =
k∑
j=0

S2j sinh [2jx̃] (2.26)

Diese Ansätze lassen sich in die Differentialgleichung einsetzen, sodass sich Rekursions-
relationen für die Koeffizienten ergeben. Das Vorgehen gestaltet sich dabei für alle vier
Ansätze analog, weshalb hier nur für (2.23) eine genauere Betrachtung erfolgen soll.
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2.2 Analytische Untersuchung des Razavy-Potentials

Einsetzen von (2.23) in (2.22) unter Ausnutzung der Beziehungen

2 cosh(ax) cosh(bx) = cosh [(a+ b)x] + cosh [(a− b)x] (2.27)

und 2 sinh(ax) sinh(bx) = cosh [(a+ b)x]− cosh [(a− b)x] , (2.28)

so gelangt man zu der Gleichung

0 =
k∑
j=0

C2j+1

[
(2j + 1)2 + ε

]
cosh [(2j + 1)x̃]

+
k∑
j=0

C2j+1s(ñ+ 1)(ñ− 2j − 1) cosh [(2j + 3)x̃]

+
k∑
j=0

C2j+1s(ñ+ 1)(ñ+ 2j + 1) cosh [(2j − 1)x̃] , (2.29)

welche sich durch Verschiebung der zweiten und dritten Summe zu

0 =
k∑
j=0

C2j+1

[
(2j + 1)2 + ε

]
cosh [(2j + 1)x̃]

+
k+1∑
j=1

C2j−1s(ñ+ 1)(ñ− 2j + 1) cosh [(2j + 1)x̃]

+
k−1∑
j=−1

C2j+3s(ñ+ 1)(ñ+ 2j + 3) cosh [(2j + 1)x̃] (2.30)

umschreiben lässt. Um die Summen zusammenfassen zu können, müssen noch einige
Terme herausgezogen werden:

0 =
k∑
j=0

cosh [(2j + 1)x̃]
{
C2j+1

[
(2j + 1)2 + ε

]
+C2j−1s(ñ+ 1)(ñ+ 1− 2j) + C2j+3s(ñ+ 1)(ñ+ 3 + 2j)}

+C2k+1s(ñ+ 1)(ñ− 1− 2k) cosh [(2k + 3)x̃]− C−1s(ñ+ 1)2 cosh(x̃)

+C1s(ñ+ 1)2 cosh(−x̃)− C2k+3s(ñ+ 1)(ñ+ 3 + 2k) cosh [(2k + 1)x̃] (2.31)
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2.2 Analytische Untersuchung des Razavy-Potentials

Die Koeffizienten Ci mit i < 0 oder i > k sind null, da hier nur endliche Summen be-
trachtet werden. Unter Ausnutzung der Symmetrie des Kosinus Hyperbolicus vereinfacht
sich die Gleichung weiter zu

0 =
k∑
j=0

cosh [(2j + 1)x̃]
{
C2j+1

[
(2j + 1)2 + ε+ s(ñ+ 1)2δj0

]
+C2j−1s(ñ+ 1)(ñ+ 1− 2j) + C2j+3s(ñ+ 1)(ñ+ 3 + 2j)} . (2.32)

Wenn alle Vorfaktoren wegfallen verschwindet diese Summe offensichtlich und die Glei-
chung ist erfüllt. Ein analoges Vorgehen für die anderen Ansätze liefert schließlich die
vier Rekursionsgleichungen für die Koeffizienten Sl bzw. Cl der Reihenentwicklung:

[
(2j + 1)2 + ε+ s(ñ+ 1)2δj0

]
C2j+1+s(ñ+ 1)(ñ+ 1− 2j)C2j−1

+s(ñ+ 1)(ñ+ 3 + 2j)C2j+3 = 0[
(2j + 1)2 + ε− s(ñ+ 1)2δj0

]
S2j+1+s(ñ+ 1)(ñ+ 1− 2j)S2j−1

+s(ñ+ 1)(ñ+ 3 + 2j)S2j+3 = 0

[
(2j)2 + ε

]
C2j + 2s(ñ+ 1)

[
ñ

2
(1 + δj1) + 1− j

]
C2j−2

+s(ñ+ 1)(ñ+ 2 + 2j)C2j+2 = 0

[
(2j)2 + ε

]
S2j + 2s(ñ+ 1)

[
ñ

2
(1− δj1) + 1− j

]
S2j−2

+s(ñ+ 1)(ñ+ 2 + 2j)S2j+2 = 0

(2.33)

(2.34)

(2.35)

(2.36)

Dabei sind die Gleichungen (2.33) und (2.34) für ungerade ñ und Gleichungen (2.35)
und (2.36) für gerade ñ gültig und j liegt in dem Intervall [0,k], wobei

k =

 ñ−1
2
, für ungerade ñ

ñ
2
, für gerade ñ .

Außerdem gilt für die Koeffizienten Si = Ci = 0∀ i /∈ {0,...,ñ}.
Mit den Gleichungen (2.33) bis (2.36) lassen sich bei gegebenem ñ zwei Gleichungssys-
teme A · C = 0 bzw. B ·D = 0 aufstellen, wobei A und B Koeffizientenmatrizen sind
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2.2 Analytische Untersuchung des Razavy-Potentials

und C bzw. D Spaltenvektoren mit den Unbekannten. Damit die Systeme nichttriviale
Lösungen besitzen, muss det(A) = det(B) = 0 gelten. Die Lösungen dieser Gleichungen
liefern dann die Eigenenergien εm mit m ∈ {0,...,ñ}. Eine analytische Lösung ist aller-
dings nur für niedrige Werte von ñ möglich. In Abschnitt 4.2 werden die Gleichungen
für ñ = 6 und ñ = 7 deshalb mit dem Newton-Verfahren berechnet.
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3 Implementierung

3 Implementierung

Für diese Arbeit wurden zwei Programme in C++ entwickelt. Das eine implementiert
den bereits erläuterten Numerov-Algorithmus, das andere stellt eine Implementierung
des Newton-Raphson-Verfahrens dar. Sowohl der Quelltext als auch die kompilierten
Versionen für Linux beider Programme liegen dieser Arbeit in den jeweiligen Ordnern
bei.

3.1 Das Numerov-Programm

Das oben vorgestellte Verfahren zur numerischen Berechnung der Eigenenergien und
Eigenfunktionen wurde in dem Programm numerov implementiert. Es ist in der La-
ge, die Eigenenergien und Eigenfunktionen zu symmetrischen Potentialen zu finden. Der
Lösungsalgorithmus ist in zwei Funktionen unterteilt. Die Funktion main wird beim Pro-
grammstart aufgerufen und übernimmt die Eingabe der Parameter und des Potentials,
die Ausgabe der gefundenen Eigenenergien und Eigenfunktionen sowie das Einstellen der
Energie. Es ruft dann die Funktion numerov mit dem eingegebenen Potential und den
gewählten Parametern auf. Diese Funktion berechnet zunächst F an jeder Stelle, bevor
es die Anfangswerte für die Rekursion liefert und schließlich diese Rekursion durchführt.
Werden für die gewünschte Quantenzahl zu viele Knoten gezählt, bricht die Funktion
die Rekursion direkt ab und teilt dies der main-Funktion mit. Diese korrigiert dann die
Energie zu einem kleineren Wert und ruft numerov erneut auf. Die Iteration endet, wenn
die gewünschte Genauigkeit erreicht wird.
Nach dem Aufruf fragt das Programm zunächst, ob die Ausgabedateien neu angelegt,
oder ob die Ergebnisse an bestehende Dateien angehängt werden sollen. Dies ist bei-
spielsweise sinnvoll, wenn das Programm mehrmals hintereinander mit einem leicht ver-
änderten Potential aufgerufen wird und die Ergebnisse verglichen werden sollen. Die
Ausgabedateien werden energien.txt und wellen.txt genannt und finden sich nach
Beendigung des Programms in demselben Verzeichnis wieder.
Danach wird der Benutzer aufgefordert anzugeben, wie weit das Programm die Wel-
lenfunktionen berechnen soll. Hier sollte ein x-Wert möglichst weit im klassisch verbo-
tenen Bereich eingegeben werden, da die Wellenfunktionen für den maximalen x-Wert
möglichst nahe bei Null liegen sollten. Ein größerer Wert für x bedeutet somit eine hö-
here Genauigkeit, jedoch geht dies zulasten der benötigten Zeit und des Speichers. Es
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gilt somit, einen Kompromiss zwischen Genauigkeit und Aufwand zu finden. Für das
Razavy-Potential ist hier ein Wert von fünf praktikabel. Dieser liegt selbst für größere
Energien schon weit im klassisch verbotenen Bereich, wie in den Abbildungen 1 und 2
zu sehen ist.
Anschließend fragt das Programm nach der Schrittweite h, mit der die Wellenfunktio-
nen berechnet werden sollen. Hier ist ein kleinerer Wert im Allgemeinen für eine höhere
Genauigkeit verantwortlich, wohingegen ein größerer Wert die Performance verbessert.
Für das Razavy-Potential hat sich ein Wert von 0,0001 als gut erwiesen.
Mit der nächsten Eingabe kann der Benutzer dem Programm ein Potential in der Form
einer Zeichenkette übergeben. Dieses wird mit der unter der MIT-Lizenz veröffentlich-
ten Bibliothek muParser in einen berechenbaren Ausdruck überführt. Eine Anleitung
zur erlaubten Syntax von muPareser sowie die Lizenz liegen dem Programm bei. Das
eingegebene Potential muss nicht symmetrisch sein, jedoch wird hier nur der Bereich
x ≥ 0 berücksichtigt. Für x < 0 wird das Potential lediglich gespiegelt, sodass immer ein
symmetrisches Potential vorliegt. Wird ein nicht-symmetrisches Potential eingegeben, so
liefert das Programm hierfür keine korrekten Ergebnisse.
Anschließend wird nach dem Intervall der Hauptquantenzahl gefragt, für welches die
Eigenenergien und Eigenfunktionen berechnet werden sollen. Die Zählung der Haupt-
quantenzahl startet bei Null.
Für die Eingabe der Genauigkeit ist es lediglich erforderlich, einen Exponenten m als
positive Zahl einzugeben. Die Genauigkeit wird dann zu 10−m gesetzt und als Abbruch-
kriterium für die Bisektion (siehe Seite 4) verwendet. Zur Untersuchung des Razavy-
Potentials wird der Exponent häufig zu neun gewählt.
Schließlich wird gefragt, ob die Wellenfunktionen zu den Eigenenergien ausgegeben wer-
den sollen. Dies ist nicht erforderlich, wenn ausschließlich die Energiewerte untersucht
werden sollen und würde nur unnötig die Performance verschlechtern.
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3.2 Das Newton-Raphson-Programm

Bei diesem Programm handelt es sich um ein Hilfsprogramm zur numerischen Lösung
der Gleichungen det(A) = 0 und det(B) = 0 für ñ = 6 und ñ = 7. Es verwendet das
weit verbreitete Newton-Raphson-Verfahren. Da es hier nur auf vier Gleichungen an-
gewendet wird, sind diese separat berechneten Determinanten direkt in das Programm
einprogrammiert. Der Newton-Algorithmus wurde in einer endrekursiven Variante im-
plementiert und greift zur Bildung der Ableitung auf die Vorwärts-Differenzen-Methode
zurück.

Zunächst wird wieder gefragt, ob eine neue Datei erstellt werden oder ob die Ausga-
be an das Ende der bestehenden Datei erfolgen soll. Da das Programm eigens für die
Untersuchung des Razavy-Potentials geschrieben wurde, wird beim Aufrufen nach den
Parametern ñ und s gefragt. Weiterhin fordert das Programm zur Laufzeit zur Einga-
be eines Startwerts für die nächste zu berechnende Nullstelle auf, da diese Startwerte
von dem Algorithmus benötigt werden. Die eingegebenen Werte sollten in der Nähe der
jeweiligen Nullstellen liegen. Dazu bietet es sich an, die Determinanten zu plotten, die
ungefähren Nullstellen abzulesen und diese dem Programm zu übergeben. Die Nullstel-
len müssen aufsteigend eingegeben werden und im Fall ñ = 6 muss die Nullstelle bei
ε = 0 ignoriert werden, da die zu ε = 0 gehörige Wellenfunktion Ψ überall null und
somit uninteressant ist. Die Ausgabe erfolgt in die Datei nullstellen.txt
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4 Evaluation

Für die folgenden Berechnungen wird aufgrund der Zweckmäßigkeit ~ = m = 1 gesetzt.

4.1 Verifizierung des Programms

Bevor das Programm auf das Razavy-Potential angewendet werden kann, muss sicher-
gestellt werden, dass es korrekte Ergebnisse liefert. Dazu wird es an zwei bekannten
Potentialen getestet.

4.1.1 Harmonischer Oszillator

Für den harmonischen Oszillator mit dem Potential

V (x) =
1

2
ω2x2 (4.1)

sind die Eigenenergien En durch

En = ω(n+
1

2
) (4.2)

gegeben. Die Gegenüberstellung der numerischen und analytischen Lösung für ω = 1

liefert folgende Grafik:
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Vergleich von numerischen und analytischen
Eigenwerten
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Abbildung 3 – Vergleich des Numerov-Algorithmus mit den analytischen Lösungen des har-
monischen Oszillators mit einem maximalen x-Wert von 10, einer Schrittweite h = 0,001 und
einer relativen Genauigkeit von 10−9 (Anmerkung: die analytischen Eigenwerte sind nur aus
Darstellungsgründen als durchgehende Linie eingezeichnet. Da n diskret ist, existieren die ana-
lytischen Lösungen nur an den Punkten, an denen auch die numerischen Werte eingezeichnet
sind.)

Das Programm liefert offenbar die richtigen Ergebnisse. Trägt man die absolute Ab-
weichung von den analytischen Werten und die vom Programm ausgegebenen Unsi-
cherheiten auf, so zeigt sich, dass die tatsächliche Abweichung stets kleiner ist als die
Unsicherheit.
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absoluter Fehler des Algorithmus
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Abbildung 4 – Untersuchung der angegebenen Unsicherheit und der tatsächlichen Abweichung

4.1.2 Modifiziertes Pöschl-Teller-Potential

Ein weiteres, gut geeignetes Potential zum Testen des Programms ist das um V0 ver-
schobene symmetrische Pöschl-Teller-Potential

V (x) =
−V0

cosh(αx)2
+ V0 (4.3)

mit der Potentialtiefe V0 > 0, welches auch als modifiziertes Pöschl-Teller-Potential
bezeichnet wird. Für dieses Potential gibt es nur eine begrenzte Anzahl an gebundenen
Zuständen, da es für große x gegen V0 konvergiert. In [LL77, S. 73–74] wird gezeigt, dass
sich die Eigenenergien durch

En = −α
2

8

[
−(1 + 2n) +

√
1 +

8V0
α2

]2
+ V0 (4.4)

berechnen lassen. Dabei gilt die Einschränkung

n < −1

2
+

√
1

4
+

2V0
α2

. (4.5)
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Für α = 1 und V0 = 40 ergibt sich folgender Vergleich von analytischer und numerischer
Lösung:

Vergleich von numerischen und analytischen
Eigenwerten
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Quantenzahl n
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numerische Eigenwerte
analytische Eigenwerte

Abbildung 5 – Vergleich des Numerov-Algorithmus mit den analytischen Lösungen des Pöschl-
Teller-Potentials mit einem maximalen x-Wert von 6, einer Schrittweite h = 0,001 und einer
relativen Genauigkeit von 10−9

Das Programm bricht die Berechnung der Eigenenergien automatisch ab, wenn die
höchste Quantenzahl erreicht ist. Bedingung (4.5) wird also erfüllt. Weiterhin zeigt sich
eine gute Übereinstimmung von numerischer und analytischer Lösung. Werden die ab-
soluten Abweichungen und die angegebenen Unsicherheiten betrachtet, so wird jedoch
ersichtlich, dass die absoluten Fehler für die oberen Quantenzahlen größer sind als die
angegebenen Unsicherheiten. Dies bedeutet, dass die tatsächlichen Werte nicht in dem
vom Programm angegebenen Intervall liegen.
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Tabelle 2 – Unsicherheiten und absolute Abweichungen der numerischen Lösung

Quantenzahl n absolute Abweichung vom exakten Wert angegebene Unsicherheit
0 6,89 · 10−10 1,16 · 10−9

1 1,77 · 10−9 4,16 · 10−9

2 5,49 · 10−9 6,48 · 10−9

3 3,83 · 10−9 9,71 · 10−9

4 7,54 · 10−9 1,39 · 10−8

5 3,37 · 10−9 9,26 · 10−9

6 1,27 · 10−8 1,11 · 10−8

7 3,80 · 10−5 1,13 · 10−8

8 0,02 1,58 · 10−8

Der Grund für dieses Verhalten ist keine Fehlfunktion oder Ungenauigkeit des Pro-
gramms oder gar des zugrunde liegenden Algorithmus, sondern die Wahl des maximal
zu berechnenden x-Wertes. Die oberen Eigenzustände liegen dicht am Übergang zum
Kontinuum, weshalb die entsprechenden Wellenfunktionen für große x-Werte nur lang-
sam gegen Null konvergieren. Berechnet man die Wellenfunktionen bis x = 15 und lässt
die anderen Parameter unverändert, erhält man beispielsweise folgende Werte:

Tabelle 3 – Unsicherheiten und absolute Abweichungen der numerischen Lösung für xmax = 15

Quantenzahl n absolute Abweichung vom exakten Wert angegebene Unsicherheit
6 9,53 · 10−9 1,11 · 10−8

7 9,29 · 10−9 1,13 · 10−8

8 4,27 · 10−6 1,58 · 10−8

Es ist eine deutliche Verbesserung gegenüber der vorherigen Berechnung zu erkennen,
auch wenn der analytische Wert für n = 8 immer noch nicht in dem angegebenen Intervall
liegt. Mit entsprechendem Aufwand ließe sich das Programm so modifizieren, dass es
automatisch einen geeigneten Wert für xmax wählt und dies idealerweise für jedes n
separat tut, um die Laufzeit möglichst kurz zu halten. Für diese Arbeit ist es jedoch
nicht zwingend erforderlich, da es schnell ersichtlich ist, ob xmax zu klein gewählt wurde.

- 19 -



4.2 Analytische und numerische Lösung des Razavy-Potentials

4.2 Analytische und numerische Lösung des Razavy-Potentials

Aus [Poe11] ist bekannt, dass die exakt berechenbare Energiewerte stets in Paaren auf-
treten. Für niedrige Werte von s liegen die beiden Energieniveaus eines Paares sehr
dicht zusammen und laufen für zunehmende s weiter auseinander. Es liegt also eine
Aufspaltung der Energien vor. Hier soll zunächst gezeigt werden, dass diese Energie-
aufspaltung auch bei der numerischen Lösung auftritt und mit der analytischen Lösung
übereinstimmt. Weiterhin kann untersucht werden ob eine Energieaufspaltung auch für
Eigenenergien auftritt, die nicht mehr durch die Rekursionsformeln (2.33) bis (2.36)
berechnet werden können.

Das Programm wurde bereits verifiziert und kann nun auf das Razavy-Potential an-
gewendet werden. Dieses wurde in 2.2.1 bereits verschoben, so dass es die Bedingung
V (x) ≥ 0∀x erfüllt. Allerdings ergibt sich durch die Umskalierung (2.11) bis (2.15) ein
Problem. Zwar gilt bei einer Verschiebung des Potentials V (x) um eine Konstante nach
oben, dass die Energiewerte um die gleiche Konstante in Richtung höherer Werte ver-
schoben werden, bei einer Multiplikation mit einer Konstanten ist der Eigenenergiewert
jedoch nicht einfach das Produkt aus ursprünglichem Wert und der Konstanten.
Betrachtet man (2.11) und (2.12), so ist ersichtlich, dass die Wahl β =

√
2 zu V (x) = v(x)

und E = ε führt. Mit dieser Wahl wird das verschobene Potential (2.17) zu:

v(x) = (ñ+ 1)2
[
s cosh(2

√
2x)− 1

]2
(4.6)

Wird das Potential dem Programm übergeben, stimmen die erhaltenen Eigenwerte bis
auf die Konstante (ñ+ 1)2(s2 + 1) mit den analytischen Werten für ε überein.

4.2.1 Energieaufspaltung für ñ = 5

Für den Wert ñ = 5 besitzen die Koeffizientenmatrizen A und B, die sich aus den
Rekursionsgleichungen ergeben, jeweils eine Determinante dritter Ordnung in ε. Die
Gleichungen det(A) = 0 und det(B) = 0 lassen sich, wie in [Poe11] gezeigt, mithilfe
der Cardanischen Formeln [Bro+05] noch relativ leicht analytisch lösen. Die exakten
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Lösungen lauten

ε0 = −
√
−4

3
pc cos

[
1

3
arccos

(
−qc

2

√
−27

p3c

)
− π

3

]
− 35 + 36s

3
(4.7)

ε1 = −
√
−4

3
ps cos

[
1

3
arccos

(
−qs

2

√
−27

p3s

)
− π

3

]
− 35− 36s

3
(4.8)

ε2 = −
√
−4

3
pc cos

[
1

3
arccos

(
−qc

2

√
−27

p3c

)
+
π

3

]
− 35 + 36s

3
(4.9)

ε3 = −
√
−4

3
ps cos

[
1

3
arccos

(
−qs

2

√
−27

p3s

)
+
π

3

]
− 35− 36s

3
(4.10)

ε4 = −
√
−4

3
pc cos

[
1

3
arccos

(
−qc

2

√
−27

p3c

)]
− 35 + 36s

3
(4.11)

ε5 = −
√
−4

3
ps cos

[
1

3
arccos

(
−qs

2

√
−27

p3s

)]
− 35− 36s

3
. (4.12)

Hier ist pc = −448
3

+384s−2304s2, qc = 10240
27

+512s−12288s2, ps = −448
3
−384s−2304s2

und qs = 10240
27
− 512s− 12288s2.

Diese exakten Lösungen sind zusammen mit den numerischen Lösungen in Abbildung
6 eingezeichnet. Die numerischen Lösungen sind dabei nur an einigen diskreten Werten
von s berechnet worden. Die Parameter, die dem Programm übergeben worden sind,
lauten xmax = 5 sowie h = 0,0001. Die relative Genauigkeit wurde auf 10−9 eingestellt.
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Energieaufspaltung in Abhängigkeit vom Parameter s
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Abbildung 6 – numerisch und analytisch berechnete Eigenenergien des Razavy-Potentials mit
ñ = 5 und Energieaufspaltung in Abhängigkeit von s

Es zeigt sich, dass die numerischen Lösungen mit den hier gewählten Parametern sehr
gut mit den analytischen Lösungen übereinstimmen. Weiterhin sieht man, dass auch bei
den Energieniveaus, für die keine analytische Lösung möglich ist, eine Paarung vorliegt,
die sich mit zunehmendem s aufspaltet. Diese Aufspaltung ist umso stärker ausgeprägt, je
höher die entsprechenden Niveaus liegen. Dieses Verhalten setzt sich aus dem analytisch
lösbaren Teil in den nur numerisch lösbaren Teil des Energiespektrums fort.

Zur genaueren Untersuchung der Abweichungen der numerisch berechneten Eigenener-
gien von den tatsächlichen können erneut die angegebene Unsicherheit und die absolute
Abweichung aufgetragen werden.
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absoluter Fehler des Algorithmus für ε1

Δ
ε

0

2e−09

4e−09

6e−09

8e−09

1e−08

s
0 0.2 0.4 0.6 0.8 1

vom Programm angegebene Unsicherheit
Abweichung vom analytischen Wert

Abbildung 7 – Untersuchung der angegebenen Unsicherheit und der absoluten Abweichung
bei ε1

Die tatsächlichen Eigenenergien liegen immer in dem von dem Programm angegebenen
Intervall. Dies sagt nicht nur aus, dass die Implementierung des Numerov-Algorithmus
auf das Razavy-Potential anwendbar ist, sondern auch, dass die Wahl der Parameter gut
ist. Daher wird diese Wahl der Parameter auch in allen weiteren Abbildungen verwendet,
sofern keine anderweitigen Angaben gemacht werden.
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4.2.2 Energieaufspaltung für ñ = 6

Für n = 6 folgen aus den Rekursionsgleichungen die Gleichungssysteme
ε 56s 0 0

84s 4 + ε 70s 0

0 28s 16 + ε 84s

0 0 14s 36 + ε


︸ ︷︷ ︸

=:A


C0

C2

C4

C6

 = 0 (4.13)


ε 56s 0 0

0 4 + ε 70s 0

0 28s 16 + ε 84s

0 0 14s 36 + ε


︸ ︷︷ ︸

=:B


S0

S2

S4

S6

 = 0 (4.14)

mit den Koeffizientenmatrizen A und B. Es müssen also die Nullstellen der folgenden
Determinanten bestimmt werden:

det(A) = 5531904s4 − 1568s2(5ε2 + 204ε+ 1728) + ε(ε+ 4)(ε+ 16)(ε+ 36) (4.15)

det(B) = ε((ε+ 4)(ε+ 16)(ε+ 36)− 3136s2(ε+ 24)) . (4.16)

Die Gleichung det(A) = 0 lässt sich analytisch nur äußerst umständlich lösen, da es
sich um eine Gleichung vierter Ordnung handelt. Für det(B) = 0 lassen sich jedoch
erneut mithilfe der Cardanischen Formeln Lösungen finden, da sich die Determinante
wie in Gleichung (4.16) faktorisieren lässt. Dabei ist die triviale Lösung ε = 0 hier
uninteressant, da diese eine überall verschwindende Wellenfunktion zur Folge hätte. Die
verbleibende Gleichung

(ε+ 4)(ε+ 16)(ε+ 36)− 3136s2(ε+ 24) = 0 (4.17)

lässt sich mithilfe der Cardanischen Formeln lösen. Ausmultiplizieren liefert

ε3 + 56ε2 + (784− 3136s2)ε+ (2304− 75264s2) = 0 (4.18)
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und die Substitution x = ε + 56
3

vereinfacht die Gleichung weiter zu ihrer reduzierten
Form

x3 + (−784

3
− 3136s2)︸ ︷︷ ︸
=:p

x+
18304

27
− 50176s2

3︸ ︷︷ ︸
=:q

. (4.19)

Die Diskriminante D =
(
q
2

)2
+
(
p
3

)3 lautet

D = −16384(1882384s6 + 355348s4 + 48559s2 + 900)

27
(4.20)

und ist somit für alle s ∈ (0,1) negativ. Es existieren damit drei reelle Lösungen. Sie
lauten

x1 = −
√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)
+
π

3

]
(4.21)

x3 =

√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)]
(4.22)

und x5 = −
√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)
− π

3

]
. (4.23)

Rücksubstitution liefert dann die Ergebnisse für ε:

ε1 = −
√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)
+
π

3

]
− 56

3
(4.24)

ε3 =

√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)]
− 56

3
(4.25)

und ε5 = −
√
−4

3
p cos

[
1

3
arccos

(
−q

2

√
−27

p3

)
− π

3

]
− 56

3
. (4.26)

Für die Berechnung der Energieeigenwerte aus der Gleichung det(A) = 0 wurde das
oben erläuterte numerische Lösungsverfahren herangezogen. In der folgenden Abbildung
sind die Lösungen dargestellt, die durch dieses Programm gefunden wurden, sowie die
Lösungen aus dem Programm, welches den Numerov-Algorithmus verwendet.
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Energieaufspaltung in Abhängigkeit vom Parameter s
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Abbildung 8 – Vergleich der Eigenenergien des Razavy-Potentials mit ñ = 6 und Energieauf-
spaltung in Abhängigkeit von s, die sich aus der numerischen Lösung der Determinaten ergeben,
mit denen, die das Numerov-Verfahren liefert (Anmerkung: Die Nullstellen der Determinanten
wurden hier und in den folgenden Abbildungen an den gleichen Stellen berechnet wie beim
Numerov-Verfahren und lediglich zu Darstellungszwecken als Splines zwischen den berechneten
Punkten aufgetragen)

Die numerisch gefundenen Nullstellen der Determinanten stimmen hervorragend mit
den numerischen Lösungen überein, die das Numerov-Verfahren liefert. Das bisher be-
obachtete Verhalten setzt sich also auch für größere Werte von n fort.
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Energieaufspaltung in Abhängigkeit vom Parameter s
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Abbildung 9 – Vergleich der Eigenenergien des Razavy-Potentials mit ñ = 6 und Energieauf-
spaltung in Abhängigkeit von s, die sich aus der analytischen Lösung der Determinate ergeben,
mit denen, die das Numerov-Verfahren liefert

Die Ergebnisse des Numerov-Verfahrens stimmen weiterhin mit der analytischen Lö-
sung überein. Da die Lösungen des Newton-Verfahrens mit denen des Numerov-Verfahrens
nahezu identisch sind, lässt sich auch der Rückschluss ziehen, dass das Newton-Verfahren
die richtigen Ergebnisse liefert.
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4.2.3 Energieaufspaltung für ñ = 7

Für ñ = 7 liefern die Gleichungen (2.35) und (2.36) die Matrizen

A =


64s+ ε+ 1 80s 0 0

48s 9 + ε 96s 0

0 32s 25 + ε 112s

0 0 16s 49 + ε

 (4.27)

B =


−64s+ ε+ 1 80s 0 0

48s 9 + ε 96s 0

0 32s 25 + ε 112s

0 0 16s 49 + ε

 (4.28)

und ihre Determinanten

det(A) = 6881280s4 − 16384s3(19ε+ 651)− 512s2(17ε2 + 890ε+ 9513)

+64s(ε+ 9)(ε+ 25)(ε+ 49) + (ε+ 1)(ε+ 9)(ε+ 25)(ε+ 49) (4.29)

det(B) = 6881280s4 + 16384s3(19ε+ 651)− 512s2(17ε2 + 890ε+ 9513)

−64s(ε+ 9)(ε+ 25)(ε+ 49) + (ε+ 1)(ε+ 9)(ε+ 25)(ε+ 49) . (4.30)

Eine analytische Lösung ist auch hier noch möglich, jedoch sehr aufwendig. Da bereits
gezeigt wurde, dass sich die Gleichungen gut mit dem Newton-Raphson-Verfahren lösen
lassen, wird auch hier dieses Vorgehen gewählt.
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Energieaufspaltung in Abhängigkeit vom Parameter s
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Abbildung 10 – Vergleich der Eigenenergien des Razavy-Potentials mit ñ = 7 und Energie-
aufspaltung in Abhängigkeit von s, die sich aus der numerischen Berechnung der Nullstellen
ergeben, mit denen, die das Numerov-Verfahren liefert

Auch in diesem Fall passen die jeweiligen Lösungen sehr gut zusammen. Alle bisherigen
Erkenntnisse treffen auch hier zu. So ist die Aufspaltung der Energien umso größer,
je höher die Energieniveaus liegen. Vergleicht man Abbildung 10 mit den vorherigen
Abbildungen fällt weiterhin auf, dass die Energien insgesamt niedriger liegen. Dies zeigt,
dass der Parameter n die Lage des Potentials beeinflusst, wie schon in Abschnitt 2.2.1
gezeigt wurde.

Für ñ = 8 lässt sich nur noch jeder zweite Energieeigenwert exakt berechnen, da
det(A) ein Polynom fünfter Ordnung in ε ist und det(B) = ε · O(ε4). Ab ñ = 9 ist eine
analytische Lösung nicht mehr möglich.
Da sich jedoch gezeigt hat, dass beide numerische Lösungswege gute Ergebnisse liefern,
stellt dies kein Problem dar. Die bisherigen Untersuchungen lassen sich also ohne großen
Aufwand für höhere ñ fortsetzen, falls dies benötigt wird. Der prinzipielle Erkenntnis-
gewinn ist jedoch gering, da sich das bisherige Verhalten der Eigenenergien fortsetzt.
Deshalb wird eine weitere Betrachtung in dieser Arbeit nicht vorgenommen und stattdes-
sen eine Untersuchung der semiklassischen Näherung für die Aufspaltung der untersten
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beiden Energieniveaus des Razavy-Potentials angeschlossen.

4.3 Vergleich der numerischen Lösung mit der semiklassischen

Näherung

In [Mün10] wird mit einem euklidischen Pfadintegral ein Ausdruck für die Energieauf-
spaltung in Doppelmuldenpotentialen hergeleitet. Dieser lautet

∆E ≈ 2

∫
Dxe−SE [x] , (4.31)

mit der euklidischen Wirkung

SE =

τ∫
0

dτ ′
{m

2
ẋ2 + V (x(τ ′))

}
. (4.32)

Es wird über alle Pfade integriert, die die Randbedingungen

x

(
−T

2

)
= −a, x

(
T

2

)
= a (4.33)

erfüllen und einen Nulldurchgang aufweisen, wobei anschließend noch der Grenzwert
T →∞ gebildet werden muss. Dabei sind −a und a die Stellen der Minima, sodass über
die dazwischen liegende Potentialbarriere integriert wird.
Da dieses Pfadintegral nicht exakt zu berechnen ist, wird eine semiklassische Näherung
verwendet, welche auf den Ausdruck

∆E = 2K exp

− a∫
−a

dx
√

2mV (x)

 (4.34)

für die Energieaufspaltung führt. Der rechte Term entspricht dem Gamow-Faktor für den
Tunneleffekt. Dieser allgemeine Ausdruck für die Energieaufspaltung wird in [Kün14]
speziell für das Razavy-Potential berechnet. Für die beiden untersten Energieniveaus
ergibt sich die Aufspaltung zu

∆E = 2~
β2~
2m

4
√

2(1− s2) 5
4

s
√
π

(ñ+ 1)
3
2

(
s

1 +
√

1− s2

)ñ+1

e(ñ+1)
√
1−s2 . (4.35)
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Zur weiteren Auswertung wird β =
√

2 gesetzt, damit die Ergebnisse mit den numeri-
schen verglichen werden können.
Da die numerische Lösung des Razavy-Potentials sehr genaue Ergebnisse lieferte, kann
ein Vergleich zwischen der Aufspaltung aus der numerischen Berechnung mit derjenigen
aus der semiklassischen Näherung die Qualität der Näherung zeigen. Nach [Mün10] ist
diese Näherung umso besser, je kleiner die Energieaufspaltung ist. Aus den bisherigen
Untersuchungen dieser Arbeit bedeutet dies vor allem, dass der Parameter s klein sein
muss.

Energieaufspaltung der beiden untersten
Energieniveaus
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0 0.2 0.4 0.6 0.8 1

semiklassisch genähert
numerisch

Abbildung 11 – Vergleich der semiklassischen Näherung mit den numerischen Ergebnissen für
ñ = 5

Die Grafik zeigt, dass die Abhängigkeit von s in der Tat sehr groß ist. Bis s = 0,2

liefert die Näherung gute Ergebnisse, danach entfernt sie sich zunächst immer weiter von
der numerischen Lösung. Die semiklassische Näherung liefert bis s ≈ 0,87 immer größere
Energieaufspaltungen als tatsächlich vorliegen. An der Stelle s ≈ 0,87 stimmt sie dann
mit der numerischen Lösung überein und liefert danach zu kleine Energieaufspaltungen.
Für s→ 1 liegen die größten Abweichungen vor. Dies wurde bereits vorhergesagt, lässt
sich jedoch auch anschaulich zeigen. Betrachtet man Abbildung 1, so zeigt sich, dass
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das Razavy-Potential bei s = 1 keine Doppelmulde mehr aufweist, was bedeutet, dass es
keine Zustände mit geringer Energiedifferenz mehr gibt, zwischen denen ein Übergang
durch den Tunneleffekt möglich ist. Dies ist jedoch die Voraussetzung für die semiklassi-
sche Näherung. Je näher s bei eins liegt, desto schwächer ist der Doppelmuldencharakter
des Potentials ausgeprägt, was die semiklassische Näherung verschlechtert.

Energieaufspaltung der beiden untersten
Energieniveaus

Δ
ε

−5

0

5

10

15

20

25

s
0 0.2 0.4 0.6 0.8 1

numerisch
semiklassisch genähert

Abbildung 12 – Vergleich der semiklassischen Näherung mit den numerischen Ergebnissen für
ñ = 6

Hier verhält sich die semiklassische Näherung ähnlich wie bei ñ = 5. Die Darstellungen
geben eine Übersicht über die semiklassische Näherung. Für eine genauere Analyse ist
die Skalierung jedoch nicht geeignet. Es bietet sich an, das Verhältnis

∆εsemi.
∆εnum.

(4.36)

zwischen numerischer und semiklassischer Energieaufspaltung aufzutragen.
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Verhältnis von numerischer und semiklassischer
Energieaufspaltung
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Abbildung 13 – Vergleich der semiklassischen Näherung mit den numerischen Ergebnissen für
ñ = 5, ñ = 6 und ñ = 7

Für die Werte von s = 0,01 wurde dabei eine relative Genauigkeit von 10−11 gewählt,
da die Energieaufspaltung in dieser Größenordnung liegt. Hier stößt man für ñ = 7 schon
an die Grenzen einer digitalen Rechenanalyse, da der Unterschied zwischen ε0 und ε1 so
gering wird, dass die Maschinengenauigkeit eine Rolle spielt. Dies lässt sich nicht einfach
durch ein weiteres Herabsetzen der relativen Genauigkeit lösen. Um dieses Problem zu
beheben, wäre es möglich, einen anderen Datentyp mit größerer Genauigkeit zu verwen-
den. Da dies jedoch die einzige Stelle ist, an der solch ein Genauigkeitsproblem auftritt
und ein anderer Datentyp die Performance des Programms beeinflussen würde, wird
darauf verzichtet. Je näher die Werte bei eins liegen, desto besser ist die semiklassische
Näherung an dieser Stelle. Interessant ist hier vor allem die Abhängigkeit von ñ. Die
semiklassische Näherung liefert bei kleinen Werten von s ein besseres Ergebnis für grö-
ßere Werte von ñ. Für große Werte von s ist es hingegen besser, wenn ñ klein ist. Diese
Eigenschaft hängt mit der Energieaufspaltung des Grundzustandes zusammen und lässt
sich ebenfalls dadurch erklären, dass die Doppelmulde für größere Werte von ñ stärker
ausgeprägt ist. Insgesamt lässt sich folgern, dass die semiklassische Näherung für kleine
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s zwar nur kleine absolute Abweichungen aufweist, dass die relative Abweichung jedoch
durchgehend groß ist, was sich darin zeigt, dass die Punkte in Abbildung 13 größtenteils
bei etwa 1,5 oder darüber liegen. Die Näherung liefert also Energieaufspaltungen, die
50% größer sind als die tatsächlichen. Weiterhin ist die Näherung an der Schnittstelle
(vgl. Abbildung 11 und 12) absolut genau, jedoch ist sie an dieser Stelle auch sehr steil,
was bedeutet, dass die Näherung in einer kleinen Umgebung um die Schnittstelle sehr
schnell schlechter wird.

In [Kün14] wird das Verhalten der semiklassischen Näherung im Grenzfall s → 0

in Abhängigkeit von ñ untersucht. Für niedrige Werte von ñ entspricht das dortige
Ergebnis dem hier erhaltenen. Für sehr große Werte von ñ verbessert sich die Näherung
dabei erheblich. So beträgt die relative Abweichung für ñ = 201 im Grenzfall s → 0

nur noch etwa 1%. Die Verbesserung der Näherung mit zunehmendem ñ konnte hier
ebenfalls im Ansatz gezeigt werden.
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5 Zusammenfassung

In dieser Arbeit wurde ein Programm zur numerischen Berechnung von Energieeigen-
werten zu symmetrischen Potentialen entwickelt, dessen Anwendung auf ein quasi-exakt
lösbares Potential untersucht und ein Vergleich mit den analytischen Lösungen vorge-
nommen. Dabei bestätigte sich die Vermutung, dass das Verhalten der Eigenenergien des
Razavy-Potentials auch für Quantenzahlen mit n > ñ nicht von dem abweicht, welches
sich im analytisch lösbaren Teil ergibt. Weiterhin konnte gezeigt werden, dass die nume-
rische Berechnung der Nullstellen der Determinanten aus den Koeffizientenmatrizen für
große Werte von ñ eine gute Alternative zu der Berechnung mit dem Numerov-Verfahren
darstellt, wenn nur Eigenenergien mit n ≤ ñ berechnet werden sollen. Die Vorteile dieser
Methode liegen in der kurzen Laufzeit und dem geringen Speicherbedarf des Programms.
Die Nachteile bestehen darin, dass zunächst die Determinanten berechnet werden müs-
sen und eine ungefähre Position der Nullstellen bekannt sein muss. Hier wäre es möglich,
ein weiteres umfangreiches Programm zu entwickeln, dass die Determinanten und deren
Nullstellen automatisch berechnet. Ein weiterer Vorteil des Numerov-Verfahrens liegt
in der Generierung der zu den Eigenenergien gehörigen Wellenfunktionen. Grundsätz-
lich lieferten beide Methoden jedoch Ergebnisse, die mit den überprüfbaren analytischen
Lösungen übereinstimmten.

Die semiklassische Näherung wies bei den hier betrachteten Werten von ñ hingegen
sehr große relative Abweichungen auf. Zwar nahmen diese Abweichungen mit steigendem
ñ ab, jedoch waren hier sehr große Werte notwendig, um eine relative Abweichung von
unter einem Prozent zu erzielen. Mit den numerischen Methoden war es im Gegensatz
dazu sehr leicht möglich, relative Genauigkeiten in einem Bereich von 10−9 zu erzielen.
Die semiklassische Näherung ist also selbst bei großen Werten von ñ um Größenordnun-
gen schlechter als die numerischen Methoden, jedoch zeigt das Auftreten des Gamow-
Faktors in der Herleitung der Näherung den Zusammenhang zwischen Tunneleffekt und
Energieaufspaltung auf.

Im Rahmen dieser Arbeit war es nicht möglich, weitere quasi-exakt lösbare Potentia-
le zu untersuchen und mit dem hier untersuchten Razavy-Potential zu vergleichen. Bei
einer Untersuchung weiterer Potentiale wäre es vor allem interessant, ob sich Parallelen
zwischen den Potentialen finden lassen. Auch wäre eine Analyse weiterer Doppelmul-
denpotentiale interessant, um deren Energieaufspaltung mit der beim Razavy-Potential
zu vergleichen. Hier bestünde zusätzlich die Möglichkeit, die semiklassische Näherung
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zu berechnen und die Qualität der Näherung für die unterschiedlichen Potentiale zu
vergleichen.
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Außerdem wurde folgende Software verwendet:

• NetBeans IDE 7.4 Patch 3, zur Entwicklung der beiden Programme

• QtiPlot 0.9.8.9 svn 2288, zur Erstellung der Graphiken

• muParser 2.2.3, zur Umwandlung von eingegebenen Potentialen in berechenbare
Ausdrücke in dem Programm numerov
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