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Parameter des Razavy-Potentials, wird fiir die Be-
rechnungen auf /2 gesetzt

n-ter umskalierter Energieeigenwert

Flos) = 2(E - V(2))

Schrittweite des Numerov-Algorithmus

das reduzierte Plancksche Wirkungsquantum, wird
auf 1 gesetzt

Masse des Teilchens, wird auf 1 gesetzt
Hauptquantenzahl (bei 0 beginnend)

Parameter des Razavy-Potentials

Menge der natiirlichen Zahlen ohne 0

Menge der natiirlichen Zahlen mit 0

der Wert der Wellenfunktion an der Stelle z;

Parameter des umskalierten Razavy-Potentials
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1 Einleitung

1 Einleitung

Quasi-exakt losbare Potentiale stellen eine interessante Art von Potentialen in der Quan-
tenmechanik dar, da sie nur eine begrenzte Anzahl von analytisch berechenbaren Eigen-
energien besitzen. Mit numerischen Methoden ist hingegen eine Berechnung von beliebig
vielen Energieeigenwerten moglich. Dabei haben die quasi-exakt l6sbaren Potentiale den
grofsen Vorteil gegeniiber Potentialen, die ausschliefslich numerisch untersucht werden
konnen, dass analytische Werte zur Verfiigung stehen, um die Qualitdt der numerischen
Losung abschétzen zu konnen. Weiterhin konnen entsprechende Parameter so angepasst
werden, dass die numerische und analytische Losungen iibereinstimmen. Damit sollten
auch die nur numerisch berechenbaren Werte sehr genau werden. Eines der wenigen
quasi-exakt 16sbaren Potentiale ist das Razavy-Potential, welches 1980 von M. Razavy
zum ersten Mal in [Raz80| untersucht wurde und auch hier behandelt werden soll. Es
handelt sich hierbei um ein Doppelmuldenpotential, welches aus zwei hyperbolischen
Kosinus-Funktionen zusammengesetzt ist.

Damit gehort das Razavy-Potential zu einer weiteren interessanten Gruppe von Po-
tentialen, da Doppelmuldenpotentiale einige besondere charakteristische Eigenschaften
besitzen. Sie eignen sich beispielsweise zur einfachen Modellierung von Molekiilen oder
Zweiteilchen-Problemen. In dieser Arbeit soll ein besonderes Augenmerk auf die Auf-
spaltung von Energieniveaus in Abhéngigkeit einiger Parameter des Potentials gelegt
werden. Ist die Aufspaltung klein genug, so ist ein Ubergang durch den Tunneleffekt
moglich. Beim Ammoniak-Molekiil bildet dieser Ubergang beispielsweise die Grundlage
fir den Ammoniakmaser (vgl. [Miinl0]).

Diese Arbeit baut auf den Ergebnissen aus [Papll| und |[Kem12| zur numerischen
Losung der stationdren Schrodingergleichung sowie den Ergebnissen aus [Poell| und
|[Kiin14] zur analytischen Untersuchung des Razavy-Potentials auf. Es werden zunéchst
die theoretischen Grundlagen aus beiden Bereichen erldutert, bevor die Erkenntnisse
aus beiden Teilen zusammengefiihrt werden. Zunéchst wird dann die Qualitdt des nu-
merischen Losungsverfahrens untersucht. Dieses soll anschlieffend zur Berechnung der
Energieeigenwerte genutzt werden, welche sich nicht mehr analytisch berechnen lassen.
So kann ermittelt werden, ob sich deren Verhalten von dem im analytisch 16sbaren Teil
unterscheidet. Zum Schluss wird noch die semiklassische Naherung der Energieaufspal-

tung der unteren beiden Eigenenergien mit den numerischen Ergebnissen verglichen.



2 Theoretische Grundlagen

2 Theoretische Grundlagen

Zunéchst soll das Numerov-Verfahren, welches zur numerischen Berechnung der Eigen-
energien und der Wellenfunktionen genutzt wird, erldutert, anschlieflend das Razavy-

Potential analytisch untersucht werden.

2.1 Numerische Losung der Schrodingergleichung mit dem

Numerov-Algorithmus

Das Numerov-Verfahren ist in seiner hier vorgestellten Ausfithrung zur Losung der ein-

dimensionalen stationédren Schrodingergleichung

2m Ox?

h2 82
(——— +V(x )) U(x) = EY(x) (2.1)
beliebiger symmetrischer Potentiale V' (z) mit V(x) > 0V z geeignet.

2.1.1 Rekursive Berechnung der Wellenfunktionen

Die folgende Herleitung der Rekursionsgleichung orientiert sich wie [Kem12| und [Pap11]
an [Sch95]. Um eine numerische Losung zu finden, wird Gleichung (2.1]) in die Form

2

S U (x) + F(a) () = 0 (2.2)

gebracht, wobei F(z) = 22(E — V/(z)) ist. Die numerische Berechnung kann natiirlich
nicht kontinuierlich erfolgen, weshalb z diskretisiert werden muss. Fiihrt man dies mit
konstanter Schrittweite h durch, so wird z; = i - h,7 € Z. Die Berechnung der Wellen-
funktion W erfolgt damit nur an den Stiitzstellen ¥; = W(z;). Die Taylorentwicklung von
U um den Punkt z; ergibt sich zu

U,y = U, £ A0 4 hzqf( ) Py Mg 20 — U L omt,  (23)

SR 2 6 ° 24 ' T 120 '

mit der k-ten Ableitung \I/Z(-k) im Punkt z;.
Addiert man nun die Gleichungen fiir + und —, so fallen die ungeraden Terme heraus

und es gilt:
4

Wiy + g =20, + K202 4 7Y

Y4 oms). (2.4)
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Hieraus folgt fiir die zweite Ableitung
RO =W,y + Uy — 20, + O(RY), (2.5)

wobei hier die Terme ab O(h*) vernachliissigt werden.
Zweimaliges Ableiten und Einsetzen von (2.2) fithrt dann auf den Ausdruck

W20 = —F 0, + 2F0; — Fip Wi + O(hY) . (2.6)

SchlieRlich liefert Einsetzen von (2.2) und (2.6)) in (2.4) und Umformen nach ¥, die

zweigliedrige Rekursion

20 — W,y — %(10qui + F1V )
1+ 45 F

Uiy = + O(h®). (2.7)

2.1.2 Losungsverfahren

Um Gleichung anwenden zu kénnen, muss eine Energie E vorgegeben werden. Au-
fserdem werden zwei Anfangsbedingungen benétigt, um die Rekursion starten zu kénnen.
Die Eigenenergien der gebundenen Zustéinde werden mit n € Ny durchnummeriert. Da
hier symmetrische Potentiale betrachtet werden, miissen die Wellenfunktionen zu den

Energieeigenwerten abwechselnd gerade und ungerade sein. Daraus folgt fiir ungerade n:
Uy = 0; fiir U kann ein beliebiger, von Null verschiedener, Wert gewéhlt werden.

Der Wert von VU, spielt lediglich fiir die Normierung der Wellenfunktion eine Rolle und
kann fiir eine gute Darstellung auf h gesetzt werden.
Fiir gerade n folgt aus (2.7) fiir ¢ = 0 mit ¥_; = ¥; unter der Bedingung, dass die

Wellenfunktionen ebenfalls gerade sind und F_; = F} aus der Symmetrie des Potentials

5h?2
— 45 1o

T 1+ E2R®0)

12

Wy + O(R°). (2.8)

U, kann einen beliebigen Wert annehmen und wird hier zu 1 gewédhlt. Diese Anfangsbe-
dingungen finden sich ebenfalls in [Sch95].

Um nun zu iiberpriifen, ob die vorgegebene Energie zu einem Eigenzustand gehort,



2.1 Numerische Losung der Schréodingergleichung mit dem Numerov-Algorithmus

wird das Verhalten der berechneten Wellenfunktion untersucht. Nach dem Knotensatz
muss die Wellenfunktion zum n-ten Energieeigenwert genau n Nullstellen haben. Au-
Kerdem folgt aus der Bedingung der Normierbarkeit, dass die Wellenfunktion im Un-
endlichen gegen Null konvergieren muss. Hat die berechnete Wellenfunktion zu viele
Nullstellen, so ist die angenommene Energie zu klein, wohingegen sie bei einer zu ge-
ringen Energie im Unendlichen divergiert oder zu wenig Nullstellen aufweist. Dadurch
kann im néachsten Iterationsschritt eine angepasste Energie gewéhlt werden. Dies ge-
schieht mittels einer Bisektion mit dem unteren Startwert FE,,;,, = 0. Der Startwert fiir
die obere Grenze ergibt sich aus dem Verhalten des Potentials im Unendlichen. Konver-
giert es gegen einen Wert 0 < V, < oo, so wird F,,.. = V4 gesetzt, da nur unterhalb
dieses Wertes gebundene Zustéande existieren konnen. Falls das Potential hingegen gegen
unendlich strebt, so wird E,,., = 10?0 gesetzt. Dieser Wert ist grof genug, um alle
praktisch und theoretisch interessanten Zusténde zu untersuchen und gerade klein ge-
nug, damit das Programm wiahrend der Berechnung nicht an die numerischen Grenzen
stoft.

Die Energie wird zu % gewahlt und die Wellenfunktion berechnet. Anschlieffend
wird entweder die obere oder die untere Energiegrenze auf diesen Wert gesetzt. Die

Bisektion bricht ab, wenn
Emax - Emm

Emaa: + Emzn

kleiner oder gleich der gewahlten Genauigkeit ist. Nachdem ein Energiewert gefunden

(2.9)

wurde, wird dieser zur Minimierung der Rechenzeit als neue untere Schranke gesetzt.
Neben dem hier gezeigten Schiefsverfahren gibt es noch weitere Methoden zur Losung
der stationéren Schrodingergleichung. Diese werden in [Kem12| ausfiihrlich untersucht
und es werden auch Moglichkeiten aufgezeigt, um nichtsymmetrische Potentiale 16sen
zu konnen. Dabei ergeben sich jedoch weder in der Performance noch in der Genau-
igkeit nennenswerte Vorteile gegeniiber dem hier genutzten Verfahren, weshalb darauf

verzichtet wird, die Implementierung unnotig kompliziert zu gestalten.
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2.2 Analytische Untersuchung des Razavy-Potentials
2.2.1 Umskalierung und Anpassung an das Programm

In [Raz80| stellt Razavy ein Potential der Form

n2p? 1,
V(z) = e { cosh(4px) — (i + 1)€ cosh(2px) — gf (2.10)

vor, wobei &, f und nn € N Parameter sind. Mit der in [Poell| verwendeten Umskalierung

Viz) = Qﬁ; (z) (2.11)
E= 26; (2.12)
5= 2(ﬁ€+ 5 (2.13)
7= fu (2.14)
v(T) = %(ﬁ +1)? [s*(cosh(4@) — 1) — 45 cosh(27)] (2.15)

lasst sich das Potential eleganter aufschreiben. Damit ein Doppelmuldenpotential vor-
liegt, muss der neue Parameter s laut [Poell]| einen Wert in dem Intervall (0,1) aufweisen.

Im Folgenden soll zundchst nur v(Z) untersucht werden.
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Einfluss des Parameters s auf v(x) mit A=1

10*75:0_2 | \
1T —— s=04
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Abbildung 1 — Abhéngigkeit des Potentials vom Parameter s

Einfluss des Parameters i auf v(X) mit s=0.4
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Abbildung 2 — Abhéngigkeit des Potentials vom Parameter 7

Es lésst sich erkennen, dass der Parameter s die Lage der Minima stark beeinflusst und
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einen Einfluss auf die Hohe des Potentialsberges und die Tiefe der Minima hat. Aufterdem
zeigt sich, dass bei s = 1 keine Doppelmulde mehr vorliegt. Der Parameter n hingegen
nimmt keinen Einfluss auf die Position der Minima entlang der Abszisse, dafiir ist er
malfgeblich fiir die Hohe des Potentialberges sowie die Tiefe der Minima verantwortlich.
Weiterhin ist in Abbildung|l|zu erkennen, dass die Bedingung v(z) > 0V z aus Abschnitt
2.1 nicht erfiillt ist.

Um dieser Bedingung zu entsprechen, muss das Potential verschoben werden. Die
Verschiebung ist dabei offensichtlich von s und 7 abhéngig. In [Poell| wird der Wert
der Minima zu

— (R+1)*(s*+1) (2.16)

bestimmt. Addition von (2.16)) und ([2.15) liefert dann mit Umformung

v(z) = (4 1)%[s cosh(2z) — 1]° (2.17)

In dieser Form lassen sich die Energieeigenwerte € fiir v(Z) mit dem entwickelten Pro-
gramm finden. Fiir einen Vergleich von numerischer und analytischer Losung gilt es
zu beachten, dass die numerischen Werte fiir ¢ durch die Verschiebung des Potentials

ebenfalls um (7 + 1)%(s + 1) nach oben verschoben sind.

2.2.2 Analytische Bestimmung der Energieeigenwerte ¢

Die analytische Losung der Eigenwerte findet sich bereits in [Raz80]|, vollsténdiger ist
jedoch die Ausfiihrung in [Poell].
Als Ausgangspunkt fiir die quantenmechanische Rechnung dient die Schrédingerglei-

chung
92
o2
mit dem nicht verschobenen Potential (2.15)). Die Losung dieser Differentialgleichung

erfolgt in [Raz80| mit der Sommerfeldschen Polynommethode.

U(7) + [e — v(@)]U(F) =0, (2.18)

Betrachtet man den Grenzfall x — 400, so wird die Differentialgleichung

82

@wa(g}) — [(ft + 1)*s® cosh(2%) — 2(n + 1)s cosh(2Z) — (7 4+ 1)*s*] U, (z) =0, (2.19)
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welche die gleiche asymptotische Form wie Gleichung (2.18)) hat, durch den fiir z = +00

verschwindenden Ausdruck
U, (7) = o~ 3 (Ai+1)s cosh(2%) (2.20)
gelost. Damit kann der Ansatz
U(7) = e 2(THDscoh@g(7) (2.21)

zur Losung der urspriinglichen Differentialgleichung gewahlt werden, sodass man durch

Einsetzen eine neue Differentialgleichung fiir ®(z) erhélt:

02

5= 0(@) = 2s(7 + 1) sinh(%)%@(.%) 4 e+ 2sa(f + 1) cosh(27)] ®(7)  (2.22)

Diese Gleichung lasst sich durch einen Reihenansatz fiir ®(Z) lsen, wobei nur die Lo-
sungen betrachtet werden, welche sich als endliche Summe von hyperbolischen Sinus-

bzw. Kosinusfunktionen von jx mit 7 € N darstellen lassen.

o) = jiocw cosh [(2j + 1) (2.23)
O(i) = ;: Cy; cosh [(2)] (2.24)
O(7) = ;Swl sinh [(2j + 1)7] (2.25)
O(F) = g Sy sinh [2;7] (2.26)

Diese Ansétze lassen sich in die Differentialgleichung einsetzen, sodass sich Rekursions-
relationen fiir die Koeffizienten ergeben. Das Vorgehen gestaltet sich dabei fiir alle vier
Ansétze analog, weshalb hier nur fiir (2.23)) eine genauere Betrachtung erfolgen soll.
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Einsetzen von ([2.23)) in ([2.22]) unter Ausnutzung der Beziechungen
2 cosh(ax) cosh(bz) = cosh [(a + b)x] + cosh [(a — b)x] (2.27)
und 2 sinh(ax) sinh(bz) = cosh [(a + b)z| — cosh [(a — b)x] , (2.28)

so gelangt man zu der Gleichung

k
0= Z Cojir [(25 + 1) + €] cosh [(2) + 1)]

k
+ Z Cojers(i + 1)(7 — 25 — 1) cosh [(25 + 3)&]
k
+ 3 Cojeas(i+ 1)(f + 2j + 1) cosh [(2j — 1)3], (2.29)

welche sich durch Verschiebung der zweiten und dritten Summe zu

0="> Cys1 [(2 +1)° + €] cosh [(2] + 1)3]

j=0
k+1

+>  Cojas(iv+ 1) (7 — 25 + 1) cosh [(25 + 1)3]
j=1
k—1

+ ) Cojpas(in + 1)(72 + 2 + 3) cosh [(2j + 1)] (2.30)

j=—1

umschreiben ldsst. Um die Summen zusammenfassen zu kénnen, miissen noch einige

Terme herausgezogen werden:

0=">cosh[(2) + 1)&] {Cyju1 [(25 +1)° + €]

=0

‘l‘CQj_lS(fL + 1)(ﬁ +1-— 2]) + 02j+3$(ﬁ + 1)(’f~L + 3+ 2])}
+Copy18(R + 1)(A — 1 — 2k) cosh [(2k + 3)Z] — C_1s(7 + 1)* cosh(Z)
]

+C15(R + 1)? cosh(—Z) — Copyas(ft + 1) (7 + 3 + 2k) cosh [(2k + 1) (2.31)
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Die Koeffizienten C; mit ¢ < 0 oder ¢ > k sind null, da hier nur endliche Summen be-
trachtet werden. Unter Ausnutzung der Symmetrie des Kosinus Hyperbolicus vereinfacht

sich die Gleichung weiter zu

0= Zcosh (2 + 1)@ {Coj1 [(25 +1)* + € + (R + 1)*5j]

7=0

+Cyj15(f+ 1) (i + 1 — 2§) + Cojgs(it + 1) (7 + 3 + 25)} (2.32)

Wenn alle Vorfaktoren wegfallen verschwindet diese Summe offensichtlich und die Glei-
chung ist erfiillt. Ein analoges Vorgehen fiir die anderen Ansétze liefert schlieklich die

vier Rekursionsgleichungen fiir die Koeffizienten S; bzw. C; der Reihenentwicklung;:

(27 + 1) + e+ s(n + 1)%050] 02J+1+s( + 1)(A 41— 25)Caj1

(27 + 1) + € — s(f 4 1)%050] Sajur+s(n+ 1)+ 1 —25)Sa;
+s(n+1)(n+3+25)S243 =0 (2.34)
[(25)% + €] Coj +2s(n+1 {g 1+6;1)+1—j|Cos
+s(n+1)(n+ 24 25)Caj0 =0 (2.35)

N | S

[(27)* + €] Soj +25(A+1) | 5(1 = 1) +1 = 3| Syj-0

+5(7+ 1) (71 + 2 4 25)S40 = 0 (2.36)

Dabei sind die Gleichungen ([2.33)) und (2.34) fiir ungerade n und Gleichungen ([2.35))
und (2.36) fiir gerade 7 giiltig und j liegt in dem Intervall [0,k], wobei

i—1
7

k=4 ?
i . .
R fiir gerade n .

fiir ungerade n

Auferdem gilt fiir die Koeffizienten S; = C; = 0Vi ¢ {0,...,n}.
Mit den Gleichungen ([2.33)) bis (2.36)) lassen sich bei gegebenem 7 zwei Gleichungssys-
teme A-C = 0 bzw. B - D = 0 aufstellen, wobei A und B Koeffizientenmatrizen sind

- 10 -



2.2 Analytische Untersuchung des Razavy-Potentials

und C bzw. D Spaltenvektoren mit den Unbekannten. Damit die Systeme nichttriviale
Losungen besitzen, muss det(A) = det(B) = 0 gelten. Die Losungen dieser Gleichungen
liefern dann die Eigenenergien €, mit m € {0,...,n}. Eine analytische Losung ist aller-
dings nur fiir niedrige Werte von n moglich. In Abschnitt werden die Gleichungen

fiir 7 = 6 und 1 = 7 deshalb mit dem Newton-Verfahren berechnet.

S 11 -



3 Implementierung

3 Implementierung

Fiir diese Arbeit wurden zwei Programme in C++ entwickelt. Das eine implementiert
den bereits erlauterten Numerov-Algorithmus, das andere stellt eine Implementierung
des Newton-Raphson-Verfahrens dar. Sowohl der Quelltext als auch die kompilierten

Versionen fiir Linux beider Programme liegen dieser Arbeit in den jeweiligen Ordnern

bei.

3.1 Das Numerov-Programm

Das oben vorgestellte Verfahren zur numerischen Berechnung der Figenenergien und
Eigenfunktionen wurde in dem Programm numerov implementiert. Es ist in der La-
ge, die Eigenenergien und Eigenfunktionen zu symmetrischen Potentialen zu finden. Der
Losungsalgorithmus ist in zwei Funktionen unterteilt. Die Funktion main wird beim Pro-
grammstart aufgerufen und {ibernimmt die Eingabe der Parameter und des Potentials,
die Ausgabe der gefundenen Eigenenergien und Eigenfunktionen sowie das Einstellen der
Energie. Es ruft dann die Funktion numerov mit dem eingegebenen Potential und den
gewahlten Parametern auf. Diese Funktion berechnet zundchst F' an jeder Stelle, bevor
es die Anfangswerte fiir die Rekursion liefert und schliefllich diese Rekursion durchfiihrt.
Werden fiir die gewiinschte Quantenzahl zu viele Knoten gezahlt, bricht die Funktion
die Rekursion direkt ab und teilt dies der main-Funktion mit. Diese korrigiert dann die
Energie zu einem kleineren Wert und ruft numerov erneut auf. Die Iteration endet, wenn
die gewiinschte Genauigkeit erreicht wird.

Nach dem Aufruf fragt das Programm zunéchst, ob die Ausgabedateien neu angelegt,
oder ob die Ergebnisse an bestehende Dateien angehidngt werden sollen. Dies ist bei-
spielsweise sinnvoll, wenn das Programm mehrmals hintereinander mit einem leicht ver-
anderten Potential aufgerufen wird und die Ergebnisse verglichen werden sollen. Die
Ausgabedateien werden energien.txt und wellen.txt genannt und finden sich nach
Beendigung des Programms in demselben Verzeichnis wieder.

Danach wird der Benutzer aufgefordert anzugeben, wie weit das Programm die Wel-
lenfunktionen berechnen soll. Hier sollte ein z-Wert mdoglichst weit im klassisch verbo-
tenen Bereich eingegeben werden, da die Wellenfunktionen fiir den maximalen x-Wert
moglichst nahe bei Null liegen sollten. Ein grofserer Wert fiir x bedeutet somit eine ho-

here Genauigkeit, jedoch geht dies zulasten der benétigten Zeit und des Speichers. Es

- 12 -
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gilt somit, einen Kompromiss zwischen Genauigkeit und Aufwand zu finden. Fiir das
Razavy-Potential ist hier ein Wert von fiinf praktikabel. Dieser liegt selbst fiir grofsere
Energien schon weit im klassisch verbotenen Bereich, wie in den Abbildungen (1| und
zu sehen ist.

Anschliefsend fragt das Programm nach der Schrittweite h, mit der die Wellenfunktio-
nen berechnet werden sollen. Hier ist ein kleinerer Wert im Allgemeinen fiir eine héhere
Genauigkeit verantwortlich, wohingegen ein groferer Wert die Performance verbessert.
Fiir das Razavy-Potential hat sich ein Wert von 0,0001 als gut erwiesen.

Mit der néchsten Eingabe kann der Benutzer dem Programm ein Potential in der Form
einer Zeichenkette iibergeben. Dieses wird mit der unter der MIT-Lizenz veroffentlich-
ten Bibliothek muParser in einen berechenbaren Ausdruck iiberfithrt. Eine Anleitung
zur erlaubten Syntax von muPareser sowie die Lizenz liegen dem Programm bei. Das
eingegebene Potential muss nicht symmetrisch sein, jedoch wird hier nur der Bereich
x > 0 beriicksichtigt. Fiir x < 0 wird das Potential lediglich gespiegelt, sodass immer ein
symmetrisches Potential vorliegt. Wird ein nicht-symmetrisches Potential eingegeben, so
liefert das Programm hierfiir keine korrekten Ergebnisse.

Anschlieffend wird nach dem Intervall der Hauptquantenzahl gefragt, fiir welches die
Eigenenergien und Eigenfunktionen berechnet werden sollen. Die Zéhlung der Haupt-
quantenzahl startet bei Null.

Fiir die Eingabe der Genauigkeit ist es lediglich erforderlich, einen Exponenten m als
positive Zahl einzugeben. Die Genauigkeit wird dann zu 107 gesetzt und als Abbruch-
kriterium fiir die Bisektion (siehe Seite |4)) verwendet. Zur Untersuchung des Razavy-
Potentials wird der Exponent héufig zu neun gewahlt.

Schlieflich wird gefragt, ob die Wellenfunktionen zu den Eigenenergien ausgegeben wer-
den sollen. Dies ist nicht erforderlich, wenn ausschliefslich die Energiewerte untersucht

werden sollen und wiirde nur unnoétig die Performance verschlechtern.
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3.2 Das Newton-Raphson-Programm

3.2 Das Newton-Raphson-Programm

Bei diesem Programm handelt es sich um ein Hilfsprogramm zur numerischen Losung
der Gleichungen det(A) = 0 und det(B) = 0 fir 7 = 6 und 7 = 7. Es verwendet das
weit verbreitete Newton-Raphson-Verfahren. Da es hier nur auf vier Gleichungen an-
gewendet wird, sind diese separat berechneten Determinanten direkt in das Programm
einprogrammiert. Der Newton-Algorithmus wurde in einer endrekursiven Variante im-
plementiert und greift zur Bildung der Ableitung auf die Vorwérts-Differenzen-Methode
zuriick.

Zunéchst wird wieder gefragt, ob eine neue Datei erstellt werden oder ob die Ausga-
be an das Ende der bestehenden Datei erfolgen soll. Da das Programm eigens fiir die
Untersuchung des Razavy-Potentials geschrieben wurde, wird beim Aufrufen nach den
Parametern n und s gefragt. Weiterhin fordert das Programm zur Laufzeit zur Einga-
be eines Startwerts fiir die néchste zu berechnende Nullstelle auf, da diese Startwerte
von dem Algorithmus beno6tigt werden. Die eingegebenen Werte sollten in der Néhe der
jeweiligen Nullstellen liegen. Dazu bietet es sich an, die Determinanten zu plotten, die
ungefahren Nullstellen abzulesen und diese dem Programm zu iibergeben. Die Nullstel-
len miissen aufsteigend eingegeben werden und im Fall n = 6 muss die Nullstelle bei
e = 0 ignoriert werden, da die zu € = 0 gehorige Wellenfunktion W iiberall null und

somit uninteressant ist. Die Ausgabe erfolgt in die Datei nullstellen.txt
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4 FEvaluation

4 Evaluation

Fiir die folgenden Berechnungen wird aufgrund der Zweckméfigkeit A = m = 1 gesetzt.

4.1 Verifizierung des Programms

Bevor das Programm auf das Razavy-Potential angewendet werden kann, muss sicher-
gestellt werden, dass es korrekte Ergebnisse liefert. Dazu wird es an zwei bekannten
Potentialen getestet.

4.1.1 Harmonischer Oszillator

Fiir den harmonischen Oszillator mit dem Potential

1
V(z) = §w23:2 (4.1)
sind die Eigenenergien FE,, durch
1
E,=w(n+ 5) (4.2)

gegeben. Die Gegeniiberstellung der numerischen und analytischen Losung fiir w = 1
liefert folgende Grafik:
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4.1 Verifizierung des Programms

Vergleich von numerischen und analytischen
Eigenwerten

~

° numerische Eigenwerte
analytische Eigenwerte

D (V) N
TN T N T A O O O B A O A

Eigenenergie E,
w

N

—_

0 rTr 17 rrrrr T T T T T T T T T T T T T T T T T T T T T T T T T T T 1T

-1 0 1 2 3 4 5 6 7
Quantenzahln

Abbildung 3 — Vergleich des Numerov-Algorithmus mit den analytischen Losungen des har-
monischen Oszillators mit einem maximalen x-Wert von 10, einer Schrittweite h = 0,001 und
einer relativen Genauigkeit von 107? (Anmerkung: die analytischen Eigenwerte sind nur aus
Darstellungsgriinden als durchgehende Linie eingezeichnet. Da n diskret ist, existieren die ana-
lytischen Losungen nur an den Punkten, an denen auch die numerischen Werte eingezeichnet
sind.)

Das Programm liefert offenbar die richtigen Ergebnisse. Tragt man die absolute Ab-
weichung von den analytischen Werten und die vom Programm ausgegebenen Unsi-
cherheiten auf, so zeigt sich, dass die tatsdchliche Abweichung stets kleiner ist als die
Unsicherheit.
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4.1 Verifizierung des Programms

absoluter Fehler des Algorithmus

2.5e-09 — . .
—— Abweichung vom analytischen Wert
1 —@— vom Programm ausgegebene Unsicherheit L4
[}
L 2e-09
o
2 1.5¢-09 -
[
[}
3 i
o
= 1e-09 —
=2
<=
= 7
s
8 5e-10+
<
0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
-1 0 1 2 3 4 5 6 7

Quantenzahl n

Abbildung 4 — Untersuchung der angegebenen Unsicherheit und der tatsidchlichen Abweichung

4.1.2 Modifiziertes Poschl-Teller-Potential

Ein weiteres, gut geeignetes Potential zum Testen des Programms ist das um V{ ver-
schobene symmetrische Poschl-Teller-Potential
-V

Vi) =——+ W 4.3

(z) cosh(ax)? Y (4:3)

mit der Potentialtiefe V[; > 0, welches auch als modifiziertes Poschl-Teller-Potential

bezeichnet wird. Fiir dieses Potential gibt es nur eine begrenzte Anzahl an gebundenen

Zusténden, da es fiir grofe x gegen Vj konvergiert. In [LL77, S. 73-74| wird gezeigt, dass

sich die Eigenenergien durch

2
2 8Vt
En:—% —(1+2n)+\/1+a—20 + Vo (4.4)
berechnen lassen. Dabei gilt die Einschrénkung
1 1 2V
n<—g+ Z+a_20‘ (4.5)
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4.1 Verifizierung des Programms

Fiir o = 1 und Vj = 40 ergibt sich folgender Vergleich von analytischer und numerischer

Losung:

Vergleich von numerischen und analytischen
Eigenwerten

o
wui

® numerische Eigenwerte
analytische Eigenwerte

N w w i
(0, o (0, o

N
o

Eigenenergie E,

—_
(9]

—_
o

(9,]

Quantenzahln

Abbildung 5 — Vergleich des Numerov-Algorithmus mit den analytischen Losungen des Poschl-
Teller-Potentials mit einem maximalen x-Wert von 6, einer Schrittweite h = 0,001 und einer
relativen Genauigkeit von 10~

Das Programm bricht die Berechnung der Eigenenergien automatisch ab, wenn die
hochste Quantenzahl erreicht ist. Bedingung wird also erfiillt. Weiterhin zeigt sich
eine gute Ubereinstimmung von numerischer und analytischer Losung. Werden die ab-
soluten Abweichungen und die angegebenen Unsicherheiten betrachtet, so wird jedoch
ersichtlich, dass die absoluten Fehler fiir die oberen Quantenzahlen grofer sind als die
angegebenen Unsicherheiten. Dies bedeutet, dass die tatséchlichen Werte nicht in dem

vom Programm angegebenen Intervall liegen.
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4.1 Verifizierung des Programms

Tabelle 2 — Unsicherheiten und absolute Abweichungen der numerischen Losung

Quantenzahl n | absolute Abweichung vom exakten Wert | angegebene Unsicherheit
0 6,89 - 10710 1,16 - 107
1 1,77-107° 4,16 -107°
2 5,49 -107° 6,48 - 107
3 3,83-107° 9,71-107°
4 7,54 1077 1,39 -1078
5t 3,37-107° 9,26 - 107
6 1,27-1078 1,11-1078
7 3,80-107° 1,13-10°8
8 0,02 1,58 -1078

Der Grund fiir dieses Verhalten ist keine Fehlfunktion oder Ungenauigkeit des Pro-
gramms oder gar des zugrunde liegenden Algorithmus, sondern die Wahl des maximal
zu berechnenden x-Wertes. Die oberen Eigenzustinde liegen dicht am Ubergang zum
Kontinuum, weshalb die entsprechenden Wellenfunktionen fiir grofse x-Werte nur lang-
sam gegen Null konvergieren. Berechnet man die Wellenfunktionen bis = 15 und l&sst

die anderen Parameter unveréndert, erhdlt man beispielsweise folgende Werte:

Tabelle 3 — Unsicherheiten und absolute Abweichungen der numerischen Losung fiir ;4. = 15

Quantenzahl n | absolute Abweichung vom exakten Wert | angegebene Unsicherheit
6 9,53-107° 1,11-10°8
7 9,29 -107° 1,13-10°8
8 4,27 107 1,58 1078

Es ist eine deutliche Verbesserung gegeniiber der vorherigen Berechnung zu erkennen,
auch wenn der analytische Wert fiir n = 8 immer noch nicht in dem angegebenen Intervall
liegt. Mit entsprechendem Aufwand liefe sich das Programm so modifizieren, dass es
automatisch einen geeigneten Wert fiir z,,,, wihlt und dies idealerweise fiir jedes n
separat tut, um die Laufzeit moglichst kurz zu halten. Fiir diese Arbeit ist es jedoch

nicht zwingend erforderlich, da es schnell ersichtlich ist, ob z,,.. zu klein gewahlt wurde.
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4.2 Analytische und numerische Losung des Razavy-Potentials

4.2 Analytische und numerische Losung des Razavy-Potentials

Aus |Poell| ist bekannt, dass die exakt berechenbare Energiewerte stets in Paaren auf-
treten. Fiir niedrige Werte von s liegen die beiden Energieniveaus eines Paares sehr
dicht zusammen und laufen fiir zunehmende s weiter auseinander. Es liegt also eine
Aufspaltung der Energien vor. Hier soll zunéchst gezeigt werden, dass diese Energie-
aufspaltung auch bei der numerischen Losung auftritt und mit der analytischen Losung
tibereinstimmt. Weiterhin kann untersucht werden ob eine Energieaufspaltung auch fiir
Eigenenergien auftritt, die nicht mehr durch die Rekursionsformeln bis
berechnet werden kénnen.

Das Programm wurde bereits verifiziert und kann nun auf das Razavy-Potential an-
gewendet werden. Dieses wurde in bereits verschoben, so dass es die Bedingung
V(x) > 0V erfiillt. Allerdings ergibt sich durch die Umskalierung (2.11)) bis ([2.15]) ein

Problem. Zwar gilt bei einer Verschiebung des Potentials V() um eine Konstante nach

oben, dass die Energiewerte um die gleiche Konstante in Richtung hoherer Werte ver-
schoben werden, bei einer Multiplikation mit einer Konstanten ist der Eigenenergiewert
jedoch nicht einfach das Produkt aus urspriinglichem Wert und der Konstanten.
Betrachtet man (2.11)) und (2.12)), so ist ersichtlich, dass die Wahl 8 = v/2 zu V() = v(x)
und F = ¢ fithrt. Mit dieser Wahl wird das verschobene Potential AR

o(z) = (7 +1)? [ s cosh(2v/2z) — 1}2 (4.6)

Wird das Potential dem Programm iibergeben, stimmen die erhaltenen Eigenwerte bis

auf die Konstante (1 + 1)*(s? 4+ 1) mit den analytischen Werten fiir € iiberein.

4.2.1 Energieaufspaltung fiir n =5

Fiir den Wert n = 5 besitzen die Koeffizientenmatrizen A und B, die sich aus den
Rekursionsgleichungen ergeben, jeweils eine Determinante dritter Ordnung in €. Die
Gleichungen det(A) = 0 und det(B) = 0 lassen sich, wie in [Poell| gezeigt, mithilfe

der Cardanischen Formeln [Bro+05] noch relativ leicht analytisch 16sen. Die exakten
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4.2 Analytische und numerische Losung des Razavy-Potentials

Losungen lauten

€ = — —ﬁpc Ccos 1arccos (—% —2—7> — Z_ _ 35+ 36s (4.7)
3 3 2 e 3] 3

€ = — —%ps coS :% arccos (—% —Z—g — %: - 35 _3368 (4.8)

€ = — —%pc oS :1 arccos (—% —2—g + g: — % (4.9)

€3 = — —gps oS :1 arccos (—% —Z—g + g: - @ (4.10)

€4 = — —gpc Ccos :1 arccos (—% —2—g>: - m (4.11)

€5 = — —%ps Ccos :% arccos (—% —Z—g): — @ (4.12)

Hier ist p, = —%2 +3845—2304s%, ¢. = 122045125 —12288s?, p, = —43° — 3845 — 23045
und ¢, = 19210 — 5125 — 1228857,

Diese exakten Losungen sind zusammen mit den numerischen Losungen in Abbildung
[6] eingezeichnet. Die numerischen Losungen sind dabei nur an einigen diskreten Werten
von s berechnet worden. Die Parameter, die dem Programm iibergeben worden sind,

lauten 4, = 5 sowie h = 0,0001. Die relative Genauigkeit wurde auf 1072 eingestellt.
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4.2 Analytische und numerische Losung des Razavy-Potentials

Energieaufspaltung in Abhdngigkeit vom Parameter s

150 . . .
- ® gomit analytischer Losung
b ® &, mitanalytischer Losung
b €, mit analytischer Lésung
b ® &3 mitanalytischer Losung
100 ] €4 mit analytischer Lésung
i ® &5 mit analytischer Losung
N €6
. €7
50
w o]
0 ® ° *—eo
-50 —N
-100 — T T
0 0.2 0.4 0.6 0.8 1

Abbildung 6 — numerisch und analytisch berechnete Eigenenergien des Razavy-Potentials mit
n = 5 und Energieaufspaltung in Abhéngigkeit von s

Es zeigt sich, dass die numerischen Losungen mit den hier gewdhlten Parametern sehr
gut mit den analytischen Losungen iibereinstimmen. Weiterhin sieht man, dass auch bei
den Energieniveaus, fiir die keine analytische Losung moglich ist, eine Paarung vorliegt,
die sich mit zunehmendem s aufspaltet. Diese Aufspaltung ist umso stirker ausgeprigt, je
héher die entsprechenden Niveaus liegen. Dieses Verhalten setzt sich aus dem analytisch
losbaren Teil in den nur numerisch losbaren Teil des Energiespektrums fort.

Zur genaueren Untersuchung der Abweichungen der numerisch berechneten Eigenener-
gien von den tatsédchlichen konnen erneut die angegebene Unsicherheit und die absolute

Abweichung aufgetragen werden.
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4.2 Analytische und numerische Losung des Razavy-Potentials

absoluter Fehler des Algorithmus Fiir g,

1e-08 —
4 —e— vom Programm angegebene Unsicherheit *
41 —®— Abweichung vom analytischen Wert
8e-09
6e-09 —
. i
5| T [ )
4e-09 —
i ®
2e-09 — [)
0 I I T T T T T T I
0 0.2 0.4 0.6 0.8 1

Abbildung 7 — Untersuchung der angegebenen Unsicherheit und der absoluten Abweichung
bei €1

Die tatsdchlichen Eigenenergien liegen immer in dem von dem Programm angegebenen
Intervall. Dies sagt nicht nur aus, dass die Implementierung des Numerov-Algorithmus
auf das Razavy-Potential anwendbar ist, sondern auch, dass die Wahl der Parameter gut
ist. Daher wird diese Wahl der Parameter auch in allen weiteren Abbildungen verwendet,

sofern keine anderweitigen Angaben gemacht werden.
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4.2 Analytische und numerische Losung des Razavy-Potentials

4.2.2 Energieaufspaltung fiir n =6

Fiir n = 6 folgen aus den Rekursionsgleichungen die Gleichungssysteme

e 565 0 0 C
845 4 70 0 C
s odwe s 2 =0 (4.13)
0 28s 16 +¢€¢ 84s Cy
0 0 14s 36+¢) \Cs
565 0 0 So
4 70 0 S
e s 2 =0 (4.14)

28s 16 +¢€¢ 84s Sy
0 14s 36 + ¢ Sﬁ

~

S O O

mit den Koeffizientenmatrizen A und B. Es miissen also die Nullstellen der folgenden

Determinanten bestimmt werden:
det(A) = 5531904s* — 15685%(5¢* + 204e + 1728) + e(e + 4)(e + 16)(e + 36)  (4.15)

det(B) = e((e +4)(e + 16) (e + 36) — 31365%(e + 24)) . (4.16)

Die Gleichung det(A) = 0 ldsst sich analytisch nur &ufserst umstédndlich 16sen, da es
sich um eine Gleichung vierter Ordnung handelt. Fiir det(B) = 0 lassen sich jedoch
erneut mithilfe der Cardanischen Formeln Losungen finden, da sich die Determinante
wie in Gleichung faktorisieren ldasst. Dabei ist die triviale Losung ¢ = 0 hier
uninteressant, da diese eine iiberall verschwindende Wellenfunktion zur Folge hétte. Die

verbleibende Gleichung
(e +4)(e+16)(e + 36) — 31365 (¢ +24) =0 (4.17)
lasst sich mithilfe der Cardanischen Formeln 16sen. Ausmultiplizieren liefert

€3+ 56€* + (784 — 31365%)e + (2304 — 752645%) = 0 (4.18)
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4.2 Analytische und numerische Losung des Razavy-Potentials

und die Substitution z = € + % vereinfacht die Gleichung weiter zu ihrer reduzierten

Form

784 18304 5017652
3 2
_°% 3136 _ . 419
x® 4 ( 3 s Zm—l— o 3 (4.19)
~ ~:
Die Diskriminante D = (%)2 + (§)3 lautet
16384(1882384s% + 355348s* + 4855952 + 900
D _ ( s+ st + 5% +900) (4.20)

27

und ist somit fiir alle s € (0,1) negativ. Es existieren damit drei reelle Losungen. Sie

4 1 27
T = —\/—gpcos {5 arccos (—g _E) + g] (4.21)
4 1 27
T3 = \/—gp cos {g arccos (—g —E)] (4.22)
4 1 27
und x5 = —/ —gPcos {5 arccos (—g ——3) - g] . (4.23)
p

Riicksubstitution liefert dann die Ergebnisse fiir e:

4 1 2
€1 = —4/ —gpcos {5 arccos (—g —E) + g} - % (4.24)
4 1 2
€3 = 1/—§p cos {g arccos <—g —p—z)] - % (4.25)
4 1 2
und €5 = —1/ —gPcos {g arccos (—g —p—Z) - %] - ? (4.26)

Fiir die Berechnung der Energieeigenwerte aus der Gleichung det(A) = 0 wurde das

lauten

oben erlauterte numerische Losungsverfahren herangezogen. In der folgenden Abbildung
sind die Losungen dargestellt, die durch dieses Programm gefunden wurden, sowie die

Losungen aus dem Programm, welches den Numerov-Algorithmus verwendet.
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4.2 Analytische und numerische Losung des Razavy-Potentials

Energieaufspaltung in Abhangigkeit vom Parameter s
100 — mittels Numerov-Verfahren mittels Newton-Verfahren

] e g — &
| [ ] €1 &
&2 &
T [ €3 - &3
- &4 &4
504 ° & s
| 3 3
w 4
2 ]
o —
= 0
c 4
w _H_\.\# ° Y & ® ®
_50_
-100 T T T T T T T T T T T T T T T T T T T |
0 0.2 0.4 0.6 0.8 1

Parameters

Abbildung 8 — Vergleich der Eigenenergien des Razavy-Potentials mit 7 = 6 und Energieauf-
spaltung in Abhéngigkeit von s, die sich aus der numerischen Lésung der Determinaten ergeben,
mit denen, die das Numerov-Verfahren liefert (Anmerkung: Die Nullstellen der Determinanten
wurden hier und in den folgenden Abbildungen an den gleichen Stellen berechnet wie beim
Numerov-Verfahren und lediglich zu Darstellungszwecken als Splines zwischen den berechneten
Punkten aufgetragen)

Die numerisch gefundenen Nullstellen der Determinanten stimmen hervorragend mit

den numerischen Losungen iiberein, die das Numerov-Verfahren liefert. Das bisher be-

obachtete Verhalten setzt sich also auch fiir grofsere Werte von n fort.
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4.2 Analytische und numerische Losung des Razavy-Potentials

Energieaufspaltung in Abhdngigkeit vom Parameters

1007 mittels Numerov-Verfahren
7 o g
b ® g, mitanalytischer Lésung
i €
E ® &3 mitanalytischer Lésung
50 €4
| ® &5 mitanalytischer Lésung
i &s
w i
2 b
2 0+
)
P i
w e —o o
_50 —
i °
| °
°
b °
i °
-100 — 7T T
0 0.2 0.4 0.6 0.8 1

Parameter s

Abbildung 9 — Vergleich der Eigenenergien des Razavy-Potentials mit 7 = 6 und Energieauf-
spaltung in Abh&ngigkeit von s, die sich aus der analytischen Lésung der Determinate ergeben,
mit denen, die das Numerov-Verfahren liefert

Die Ergebnisse des Numerov-Verfahrens stimmen weiterhin mit der analytischen Lo-
sung iiberein. Da die Losungen des Newton-Verfahrens mit denen des Numerov-Verfahrens
nahezu identisch sind, lédsst sich auch der Riickschluss ziehen, dass das Newton-Verfahren

die richtigen Ergebnisse liefert.
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4.2 Analytische und numerische Losung des Razavy-Potentials

4.2.3 Energieaufspaltung fiir n =7

Fiir n = 7 liefern die Gleichungen ([2.35)) und (2.36)) die Matrizen

64s+e¢+1 80s 0 0
48 9 96 0
A — 5 te 5 (4.27)
0 32s 25+4¢ 112s
0 0 16s 494 ¢
—64s+¢e¢+1 80s 0 0
48 9 96 0
B = s e s (4.28)
0 32s 25+¢€¢ 112s
0 0 16s 49+ ¢

und ihre Determinanten

det(A) = 68812805 — 163845%(19¢ + 651) — 5125%(17€* + 890¢ + 9513)
+64s(e +9)(e +25)(e +49) + (e + 1) (e + 9) (e + 25)(e + 49) (4.29)

det(B) = 6881280s" + 163845°(19¢ + 651) — 5125%(17¢* + 890¢ + 9513)
—64s(e +9)(e +25)(e +49) + (e + 1) (e + 9)(e + 25)(e + 49) . (4.30)

Eine analytische Losung ist auch hier noch moglich, jedoch sehr aufwendig. Da bereits
gezeigt wurde, dass sich die Gleichungen gut mit dem Newton-Raphson-Verfahren 16sen

lassen, wird auch hier dieses Vorgehen gewéhlt.

- 98 -



4.2 Analytische und numerische Losung des Razavy-Potentials

Energieaufspaltung in Abhangigkeit vom Parameter s
150 - Energieeigenwerte Energieeigenwerte

7 nach Newton nach Numerov
— & & ® g © €1
100 € &3 g o €3
€47 &5 € © Es
[ &7 13 &7

&€
Ui
o o
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Abbildung 10 — Vergleich der Eigenenergien des Razavy-Potentials mit 7 = 7 und Energie-
aufspaltung in Abhéngigkeit von s, die sich aus der numerischen Berechnung der Nullstellen
ergeben, mit denen, die das Numerov-Verfahren liefert

Auch in diesem Fall passen die jeweiligen Losungen sehr gut zusammen. Alle bisherigen
Erkenntnisse treffen auch hier zu. So ist die Aufspaltung der Energien umso grofer,
je hoher die Energieniveaus liegen. Vergleicht man Abbildung mit den vorherigen
Abbildungen fallt weiterhin auf, dass die Energien insgesamt niedriger liegen. Dies zeigt,
dass der Parameter n die Lage des Potentials beeinflusst, wie schon in Abschnitt
gezeigt wurde.

Fiir n = 8 lédsst sich nur noch jeder zweite Energieeigenwert exakt berechnen, da
det(A) ein Polynom fiinfter Ordnung in € ist und det(B) = € - O(e?). Ab i = 9 ist eine
analytische Losung nicht mehr moglich.

Da sich jedoch gezeigt hat, dass beide numerische Losungswege gute Ergebnisse liefern,
stellt dies kein Problem dar. Die bisherigen Untersuchungen lassen sich also ohne grofsen
Aufwand fiir hohere n fortsetzen, falls dies bendtigt wird. Der prinzipielle Erkenntnis-
gewinn ist jedoch gering, da sich das bisherige Verhalten der Eigenenergien fortsetzt.
Deshalb wird eine weitere Betrachtung in dieser Arbeit nicht vorgenommen und stattdes-

sen eine Untersuchung der semiklassischen Naherung fiir die Aufspaltung der untersten
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4.3 Vergleich der numerischen Lésung mit der semiklassischen Naherung

beiden Energieniveaus des Razavy-Potentials angeschlossen.

4.3 Vergleich der numerischen Losung mit der semiklassischen
Naherung

In [Miinl0] wird mit einem euklidischen Pfadintegral ein Ausdruck fiir die Energicauf-

spaltung in Doppelmuldenpotentialen hergeleitet. Dieser lautet
AFE ~ 2 / Dze 5elel (4.31)

mit der euklidischen Wirkung

T

Sp = / dr’ {%2 + V(I(T’))} . (4.32)

2
0

Es wird iiber alle Pfade integriert, die die Randbedingungen

(D) () o ws

erfiillen und einen Nulldurchgang aufweisen, wobei anschlieffend noch der Grenzwert
T — oo gebildet werden muss. Dabei sind —a und a die Stellen der Minima, sodass iiber
die dazwischen liegende Potentialbarriere integriert wird.

Da dieses Pfadintegral nicht exakt zu berechnen ist, wird eine semiklassische Nédherung

verwendet, welche auf den Ausdruck

a

AE = 2K exp —/dx\/ZmV(x) (4.34)

—a

fiir die Energieaufspaltung fiihrt. Der rechte Term entspricht dem Gamow-Faktor fiir den
Tunneleffekt. Dieser allgemeine Ausdruck fiir die Energieaufspaltung wird in [Kiin14]
speziell fiir das Razavy-Potential berechnet. Fiir die beiden untersten Energieniveaus

ergibt sich die Aufspaltung zu

B2h4v2(1 — s?)i
2m s/

e

AE = 2h A+LVI=s? (4.35)

(n+1)

< A+l
(
e e
<1+\/1 —32)
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4.3 Vergleich der numerischen Lésung mit der semiklassischen Naherung

Zur weiteren Auswertung wird 8 = /2 gesetzt, damit die Ergebnisse mit den numeri-
schen verglichen werden kénnen.

Da die numerische Losung des Razavy-Potentials sehr genaue Ergebnisse lieferte, kann
ein Vergleich zwischen der Aufspaltung aus der numerischen Berechnung mit derjenigen
aus der semiklassischen Néherung die Qualitat der Ndherung zeigen. Nach [Miinl10| ist
diese Naherung umso besser, je kleiner die Energieaufspaltung ist. Aus den bisherigen
Untersuchungen dieser Arbeit bedeutet dies vor allem, dass der Parameter s klein sein

muss.

Energieaufspaltung der beiden untersten

Energieniveaus
25 —
i semiklassisch gendhert
] ®  numerisch
20 I
15 -
g10-

Abbildung 11 — Vergleich der semiklassischen N&herung mit den numerischen Ergebnissen fiir
n=>5

Die Grafik zeigt, dass die Abhéangigkeit von s in der Tat sehr grofs ist. Bis s = 0,2
liefert die Naherung gute Ergebnisse, danach entfernt sie sich zunéchst immer weiter von
der numerischen Losung. Die semiklassische Ndherung liefert bis s ~ 0,87 immer grofere
Energieaufspaltungen als tatséchlich vorliegen. An der Stelle s ~ 0,87 stimmt sie dann
mit der numerischen Losung iiberein und liefert danach zu kleine Energieaufspaltungen.
Fiir s — 1 liegen die grofiten Abweichungen vor. Dies wurde bereits vorhergesagt, ldsst

sich jedoch auch anschaulich zeigen. Betrachtet man Abbildung [I], so zeigt sich, dass
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4.3 Vergleich der numerischen Lésung mit der semiklassischen Naherung

das Razavy-Potential bei s = 1 keine Doppelmulde mehr aufweist, was bedeutet, dass es
keine Zustinde mit geringer Energiedifferenz mehr gibt, zwischen denen ein Ubergang
durch den Tunneleffekt moglich ist. Dies ist jedoch die Voraussetzung fiir die semiklassi-
sche Nédherung. Je néher s bei eins liegt, desto schwécher ist der Doppelmuldencharakter

des Potentials ausgepragt, was die semiklassische Naherung verschlechtert.

Energieaufspaltung der beiden untersten

Energieniveaus
25—
i ® numerisch
] semiklassisch gendhert
20
15 -

Ae
—
o

Abbildung 12 — Vergleich der semiklassischen N&herung mit den numerischen Ergebnissen fiir
n==~6

Hier verhélt sich die semiklassische Naherung dhnlich wie bei n = 5. Die Darstellungen
geben eine Ubersicht iiber die semiklassische Ndherung. Fiir eine genauere Analyse ist

die Skalierung jedoch nicht geeignet. Es bietet sich an, das Verhéltnis

AEsemi.

(4.36)

zwischen numerischer und semiklassischer Energieaufspaltung aufzutragen.
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4.3 Vergleich der numerischen Lésung mit der semiklassischen Naherung

Verhaltnis von numerischer und semiklassischer

Energieaufspaltung
37 e f=5
7] [ ] A=6
] A=7
2.5 ] ®
- e o &
2 o« °
e ] o
gr: . ° [ ] [ ]
] [ J [ J
\E 15 @ e
W ]
< i
T °
] °
0.5
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0 0.2 0.4 0.6 0.8 1
S

Abbildung 13 — Vergleich der semiklassischen Naherung mit den numerischen Ergebnissen fiir
n=5n=6undn="7

Fiir die Werte von s = 0,01 wurde dabei eine relative Genauigkeit von 10~ gewéhlt,
da die Energieaufspaltung in dieser Gréfsenordnung liegt. Hier stéfst man fiir n = 7 schon
an die Grenzen einer digitalen Rechenanalyse, da der Unterschied zwischen €y und €; so
gering wird, dass die Maschinengenauigkeit eine Rolle spielt. Dies lasst sich nicht einfach
durch ein weiteres Herabsetzen der relativen Genauigkeit 16sen. Um dieses Problem zu
beheben, wire es moglich, einen anderen Datentyp mit groflerer Genauigkeit zu verwen-
den. Da dies jedoch die einzige Stelle ist, an der solch ein Genauigkeitsproblem auftritt
und ein anderer Datentyp die Performance des Programms beeinflussen wiirde, wird
darauf verzichtet. Je ndher die Werte bei eins liegen, desto besser ist die semiklassische
Néaherung an dieser Stelle. Interessant ist hier vor allem die Abhéngigkeit von 7. Die
semiklassische Naherung liefert bei kleinen Werten von s ein besseres Ergebnis fiir gro-
Kere Werte von n. Fiir grofse Werte von s ist es hingegen besser, wenn n klein ist. Diese
Eigenschaft hingt mit der Energieaufspaltung des Grundzustandes zusammen und l&sst
sich ebenfalls dadurch erklaren, dass die Doppelmulde fiir grofsere Werte von n starker

ausgepragt ist. Insgesamt lésst sich folgern, dass die semiklassische Ndherung fiir kleine

-33 -



4.3 Vergleich der numerischen Lésung mit der semiklassischen Naherung

s zwar nur kleine absolute Abweichungen aufweist, dass die relative Abweichung jedoch
durchgehend grofs ist, was sich darin zeigt, dass die Punkte in Abbildung [13| grofstenteils
bei etwa 1,5 oder dariiber liegen. Die Naherung liefert also Energieaufspaltungen, die
50% grofser sind als die tatsdchlichen. Weiterhin ist die Ndherung an der Schnittstelle
(vgl. Abbildung |11|und absolut genau, jedoch ist sie an dieser Stelle auch sehr steil,
was bedeutet, dass die Naherung in einer kleinen Umgebung um die Schnittstelle sehr
schnell schlechter wird.

In |[Kinl4] wird das Verhalten der semiklassischen Ndherung im Grenzfall s — 0
in Abhéngigkeit von n untersucht. Fiir niedrige Werte von n entspricht das dortige
Ergebnis dem hier erhaltenen. Fiir sehr grofse Werte von n verbessert sich die Naherung
dabei erheblich. So betriagt die relative Abweichung fiir n = 201 im Grenzfall s — 0
nur noch etwa 1%. Die Verbesserung der Ndherung mit zunehmendem 7 konnte hier

ebenfalls im Ansatz gezeigt werden.
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5 Zusammenfassung

In dieser Arbeit wurde ein Programm zur numerischen Berechnung von Energieeigen-
werten zu symmetrischen Potentialen entwickelt, dessen Anwendung auf ein quasi-exakt
losbares Potential untersucht und ein Vergleich mit den analytischen Losungen vorge-
nommen. Dabei bestétigte sich die Vermutung, dass das Verhalten der Eigenenergien des
Razavy-Potentials auch fiir Quantenzahlen mit n > n nicht von dem abweicht, welches
sich im analytisch I6sbaren Teil ergibt. Weiterhin konnte gezeigt werden, dass die nume-
rische Berechnung der Nullstellen der Determinanten aus den Koeffizientenmatrizen fiir
grofse Werte von n eine gute Alternative zu der Berechnung mit dem Numerov-Verfahren
darstellt, wenn nur Eigenenergien mit n < n berechnet werden sollen. Die Vorteile dieser
Methode liegen in der kurzen Laufzeit und dem geringen Speicherbedarf des Programms.
Die Nachteile bestehen darin, dass zunéchst die Determinanten berechnet werden miis-
sen und eine ungefihre Position der Nullstellen bekannt sein muss. Hier wére es moglich,
ein weiteres umfangreiches Programm zu entwickeln, dass die Determinanten und deren
Nullstellen automatisch berechnet. Ein weiterer Vorteil des Numerov-Verfahrens liegt
in der Generierung der zu den Eigenenergien gehorigen Wellenfunktionen. Grundsétz-
lich lieferten beide Methoden jedoch Ergebnisse, die mit den iiberpriifbaren analytischen
Losungen iibereinstimmten.

Die semiklassische Naherung wies bei den hier betrachteten Werten von 7 hingegen
sehr grofse relative Abweichungen auf. Zwar nahmen diese Abweichungen mit steigendem
n ab, jedoch waren hier sehr grofse Werte notwendig, um eine relative Abweichung von
unter einem Prozent zu erzielen. Mit den numerischen Methoden war es im Gegensatz
dazu sehr leicht moglich, relative Genauigkeiten in einem Bereich von 107 zu erzielen.
Die semiklassische Naherung ist also selbst bei grofsen Werten von n um Gréfenordnun-
gen schlechter als die numerischen Methoden, jedoch zeigt das Auftreten des Gamow-
Faktors in der Herleitung der Naherung den Zusammenhang zwischen Tunneleffekt und
Energieaufspaltung auf.

Im Rahmen dieser Arbeit war es nicht mdglich, weitere quasi-exakt losbare Potentia-
le zu untersuchen und mit dem hier untersuchten Razavy-Potential zu vergleichen. Bei
einer Untersuchung weiterer Potentiale wéire es vor allem interessant, ob sich Parallelen
zwischen den Potentialen finden lassen. Auch wire eine Analyse weiterer Doppelmul-
denpotentiale interessant, um deren Energieaufspaltung mit der beim Razavy-Potential

zu vergleichen. Hier bestiinde zusétzlich die Moglichkeit, die semiklassische Néherung
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zu berechnen und die Qualitdt der Naherung fiir die unterschiedlichen Potentiale zu

vergleichen.
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Aufserdem wurde folgende Software verwendet:
e NetBeans IDE 7.4 Patch 3, zur Entwicklung der beiden Programme
o QtiPlot 0.9.8.9 svn 2288, zur Erstellung der Graphiken

e muParser 2.2.3, zur Umwandlung von eingegebenen Potentialen in berechenbare

Ausdriicke in dem Programm numerov
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