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ABSTRACT

We present results from rst principle and non-perturbativ e Lattice QCD calculations
which are directly relevant to scattering experiments of hgh energy physics. In particular,
we study pion-pion scattering, where we analyze the resonance parameters in the isospin
| = 1 channel and the pion-pion scattering length in the | = 2 channel. In addition, we
consider thee* e scattering for which we provide a calcualtion of the leadingorder hadronic
contribution a"™d to the anomalous magnetic moment of the muon. All the calculdions are
carried out using two dynamical avors of maximally twisted mass fermions, which show a
guadratic continuum limit scaling in the lattice spacing.

Concerning the S-wave pion-pion scattering lengtha' > in the isospin | = 2 channel
we have used pion masses ranging from 520 MeV to 290 MeV and twlattice spacings
of 0:079 fm and Q063 fm. We use chiral perturbation theory at next-to-leading order to
extrapolate our results to the physical point where we nd m a2 = 0:0439(5). This
can be compared to the recent experimental determination ofn a'=2 =  0:0444 (9) from
NA48/2 at CERN.

For the P-wave pion-pion scattering phase in the rho decay chnnel we use very similar
pion masses and lattice spacings as above and ensure that thysical kinematics for the

{meson decay,m =m < 0:5, is satis ed. Making use of nite size methods, we evaluate
the pion-pion scattering phase in the center-of-mass frameand two moving frames, which
allowes us to map out the scattering phase as a function of thenergy in the resonance region.
From this we extract the mass and decay width and study their quark mass dependence.
The results obtained here demonstrate that resonances camdeed be analyzed on nite
size lattices with numerical calculations, opening the prepect to tackle also other hadronic
resonances.

Finally, we have calculated a"@® from the vacuum polarization tensor for pion masses
from 640 MeV to 290 MeV. We have examined both nite size e ects and lattice artifacts
in our calculations, addressing therefore for the rst time the systematic e ects in the

determination of a"ad,
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CHAPTER |

INTRODUCTION

Within the framework of the eld of high energy physics, the main research focus is to
understand the nature of the elementary constituents of mater and the fundamental inter-
actions between them. Our present knowledge about elementg particles is encoded in the
Standard Model of high energy physics which has been developed over many ysaby mu-
tual e orts in theory and experiment. A major role in these developments has been played
by collider experiments such as BEPC at IHEP China, LEP and LHC at CERN, Hera at
DESY and Tevatron at Fermilab. The high energy scattering experiments are essential in
the discovery of the by now known spectrum of elementary paricles.

To illustrate the importance of scattering experiments, let us have a look at ane* e
collider. Here, beams of electrons and positrons, once haxg reached their design energy
with a squared center-of-mass energy, are brought to collisions leading to the creation of
hadrons, leptons and gauge bosons in the* e {annihilation process. These particles are
identi ed in large and very complex detectors which record the number of the corresponding
scattering events,Nevents- Nevents iS proportional to the scattering cross section (s) which in
turn can be computed theoretically from the Standard Model Lagrangian. Although Neyents
depends on the machine characteristics, such as the luminitg the cross section itself is
solely determined by the properties of the fundamental inteactions and is hence the relevant
physical quantity. Thus measuring the energy, momentum, aml angular dependence of the
reaction cross section from experiments and comparing it taheoretical calculations will
probe the nature of fundamental interactions.

As a result, we have identi ed four types of fundamental interactions among patrticles,
the strong, weak, electromagnetic and gravitational force. The focus of this thesis is the
strong force. Quantum Chromodynamics (QCD) as the underlying theory of the strong

interaction [5{7] asserts the existence of quarks and gluasm which are supposed to bind



together to form the experimentally observed hadrons (e.g.the proton, neutron, pion and
rho) with a phenomenon calledquark con nement. The strong force also binds the protons
and neutrons together to form the nucleus of the atoms or give rise to the creation of
neutron stars.

In order to give a particular example of ane" e collision experiment to reveal properties
of the strong interaction, we will now look at e*e ! hadrons. To eliminate the e ects

from e" e initial states, it is advantageous to measure the hadronic b leptonic cross section

ratio
(e"e ! hadrons)
R(s) e 1 ) (1.1)
with (ete ! * )=4 2=8sand = €=4 being the Quantum electrodynamic

(QED) ne structure constant. Experimental results for R(s) in the range 1 GeV < P s<

13 GeV are shown in Fig. 1.1 [8]. As can be seefR(s) provides a very rich spectrum of
physical states which has revealed important information a the strong interactions.
A quantity which is closely related to R(s), given in Minkowski space-time, is the Adler

function [9{11]. It is de ned through the following dispers ive relation
z 1

R(s) .
me 5+ QO o2

whereQ? =  ¢f is now the squared Euclidean momentum transfer The Adler function can

D(Q%) = Q?

be studied both experimentally by transforming the e* e {data to a Euclidean momentum
transfer and theoretically by evaluating the Lagrangian of QCD.

We remark that the change from a Minkowskian to an Euclidean netric will become
particularly important when we discuss later lattice eld t heory techniques as employed in
this thesis.

To make the bridge between experiments and theory more cleawe give another form

of the Adler function

d( Q?) |
dQz -

Here, the vacuum polarization function ( Q2) appears and it is this quantity which can

D(Q)= (12 H)Q? (1.3)

be computed directly from Lattice QCD. Through the momentum transfer Q2, a scale
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Figure 1.1: Experimental results for R(s) intherange 1 GeV<E = =~ s < 13 GeV obtained

at the various e e storage rings.
dependence is introduced with very large momenta correspating to small physical distances
while small momenta probe large distances. This momentum deendence can be used in
the theoretical calculations by exploiting an important feature of QCD, namely asymptotic
freedom [5, 12{14]. It means that the strong coupling becomes weakeand weaker with
increasing energy scales. Thus from a certain high energy a&e on, QCD is amenable to
perturbation theory with a small coupling constant and the Feynman rules and diagrams
of perturbative QCD (pQCD) can be used to compute ( Q3).

This, of course, leaves open the question of how to treat the noblem at small energy

scales where the coupling constant is large and where we olrge the spectrum of bound

states, i.e. the experimentally determined hadrons. At these low energy scales, the con ne
ment phenomenon sets in, pQCD fails to be applicable and thealculation of ( Q?) requires
a non-perturbative treatment. Such a non-perturbative method is provided by Lattice QCD
and it is one of the subjects of this thesis to explain this mehod and to detail how it can

be used to compute quantities related to scattering experinents.



To illustrate the importance of non-perturbative contribu tions, let us point out the
computation of the muon anomalous magnetic momenta = (g 2)=2, a quantity that
can be directly computed from ( Q2). It is one of the most precisely measured quantities
in high energy physics. Latest experiments at the Brookhave National Laboratory [15]

have reached an amazing accuracy of
a"* =116592089(6:3) 10 1°: (1.4)

The theoretical calculations ofa based on the Standard Model have also reached a precision

that matches the experimental one, giving [16,17]

a M =116591834(4:9) 10 1°; e*e -based;

a™M =116591932(5:2) 10 °;: -based: (1.5)

The discrepancy between experiments and the Standard Modelalue is 32 (€' e -based)
or 1.9 ( -based). If this discrepancy remains or even gets larger wit more precise exper-
imental results and re ned theoretical analysis, this would be a sign of a breakdown of the
Standard Model and a hint for some unknown physics. Howeverjt needs to be realized
that among all the sources of the theoretical errors, the lowst order hadronic contribution,
a"ad s the dominant piece. This piece is of inherently non-perntirbative nature and cannot
be computed within pQCD. Thus, it is important to calculate a"a accurately from rst
principles using only the QCD Lagrangian. It is here, where alattice determination of
( Q?) is essential to disentangle non-perturbative e ects fromthose of new physics. The
tool, how this can be achieved, is through the expression foa"ad,

Z
had = 2 dQZF Q?

a R [

((Q ) ; (1.6)

where m is the muon mass andF(%;) is a known kernel [18]. Hence, once @Q?) has
been determined non-perturbatively, alsoa™ can be computed. The actual value ofa"d
as computed from Lattice QCD will be one of the main results ofthis thesis. In the above
discussion, we have shown some results of treéf e scattering experiments. The ratio R(s),

given in Eq. (1.1), is then used as an example for a quantity tlat can be determined by
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Figure 1.2: Inthe | = 1 channelthee*e ! *  cross section is shown. The{resonance

is formed in this channel.

such data and confronted with theoretical calculations andin particular to Lattice QCD
computations to address non-perturbative e ects.

Let us give a second example of such a bridge between experinteand Lattice QCD.
To this end, we considere* e collisions at low energies. In this case, the nal state conists
necessarily of two pions. Focusing on the isospih = 1 channel, the correspondinge* e !

* cross section is shown in Fig. 1.2 [19]. The clearly visible gak in the cross section
corresponds to the neutral and unstable (770){meson. The peak position of the cross
section can be identi ed with the mass of the (770){meson, m , while the position where
the cross section drops to half of its peak value can be relateto the decay width,

Fig. 1.2 demonstrates that experimentally the mass of a hadon and its decay width,
in case it is unstable as many hadrons are, can be determinedather accurately. The lat-
est PDG [20] values ofm = 775:49(34) MeV and = 149:1(8) MeV show that such
a determination can reach a precision of the 1 MeV level. Nattally, the question arises,
whether we can compute hadron masses and decay widths, whidre important quantities

to understand the dynamics of the strong interaction, from QCD. Since hadrons are bound



states of quarks and gluons, their properties are of an inhemntly non-perturbative nature
and cannot be computed within pQCD. One way to yield results br the masses and decay
widths is to use again Lattice QCD. However, while a stable hdron mass can be straight-
forwardly computed in Lattice QCD, as shown below, the calcuation of the decay width of
a resonance encounters conceptual problems. Resonanceg ae ned in Minkowski space
and in nite volume, while Lattice QCD is formulated in Eucli dean space. Furthermore, if
we think of numerical simulations, necessarily a nite physcal volume is to be used.

It is one subject of this thesis to show how these two conceptal di culties can be
circumvented and that the resonance properties of the {meson can be analyzed utilizing
lattice techniques, resulting in a determination of the {meson mass and width from rst
principles.

The way to treat the {meson on the lattice is to determine the pion-pion scattering
phase from Lattice QCD using Luscher's nite size methods R1{25], which establish re-
lations between the discrete energy spectrum in a nite volune and the elastic scattering
phase in the in nite volume. According to a partial wave analysis, the total cross section,

, is related to I{th partial wave scattering phase, |, through

X
/ (2l +1)sin? | : (1.7)
|

Thus, a way to determine the resonance mass and width is to skehe position where the
scattering phase, which dominates the contributions to thecross section, passes- 2 and
=4. Our ultimate goal is to determine the {resonance mass and decay width from the
P-wave * scattering phase in thel = 1 channel and compare the lattice results with
experiments.

The case of the {meson is used here as an ideal laboratory for lattice studig of res-
onances for two reasons. First, in the lattice calculations the noise to signal ratio for a
meson is proportional toe™ ™ wheremy, is the meson mass. Since the is one of the
lightest mesons, the statistical error can be well controled. Second, the principal decay
channel of the {meson is to a pair of pions with a branching rate of 99.9%. As aesult, a

two-pion scattering system provides an ideal laboratory fo the study of {resonance.



Besides thel =1 channel, we perform a calculation of the S-wave pion-piorscattering
phase in thel = 2 channel. Since no resonances are formed in this channelhé¢ interest
here is to calculate the corresponding scattering length wieh is important because it de-
termines the leading low-energy behavior of the scatteringphase. Furthermore, the pion
mass dependence of the scattering length allows to deterména low energy constant (LEC)
of chiral perturbation theory ( PT) [26,27] that enters the quark mass dependence of the
scattering length.

Above we have provided three examples, the vacuum polarizétn function and pion-pion
scattering in the | = 1 and | = 2 channels, which are related to scattering experiments.
We argued that quantities related to these experiments can B computed theoretically in
a non-perturbative way using lattice eld theory. In the fol lowing, we will demonstrate in
detail how such a calculation can be carried through and proide a study of the systematic
e ects of the computation.

We remark that all calculations are performed using the two avor maximally twisted
mass fermion [28] ensembles from the European Twisted Massollaboration (ETMC) [29{
32]. These ensembles, obtained at a number of lattice spaajs, quark masses and volumes
provide the necessary input for not only computing values fo the quantities of interest, but
also to allow a controlled estimate of the systematic e ectsappearing in the calculation.

The thesis is organized as follows. In Chapter 2, the latticeformalism of gauge and
fermion elds are given. Here we also explain the formulatim of maximally twisted mass
fermions and how it reduces lattice artifacts to appear onlyat O(a?). In Chapter 3, the
basic idea of Luscher's nite size method is described andts extension to the moving frame
is given. In Chapter 4, a calculation of the S-wave pion-pionscattering length in the | =2
channel is presented, together with the determination of réevant LEC. In Chapter 5, the
P-wave pion-pion scattering phase in the isospin = 1 channel is calculated, from which
the {meson resonance mass, its decay width and the e ective ! coupling constant,
g , are extracted. Finally, a chiral extrapolation is performed to extract the values of
the {meson mass and decay width at the physical point. In Chapter6, a calculation of

the vacuum polarization function is presented, which is nally used to determine the lowest



order hadronic contribution to the muon anomalous magneticmoment, a"ad,



CHAPTER I

LATTICE QCD FUNDAMENTALS

By now, Lattice QCD is a well established non-perturbative goproach to study QCD. It
allows to address questions which are relevant not only at lege energies where, thanks
to asymptotic freedom, perturbation theory works but also at low energies where non-
perturbative phenomena take place. Indeed, Lattice QCD haseen originally developed by
K. G. Wilson in 1974 to understand quark con nement [33]. Som after the formulation of
Lattice QCD, numerical simulation technigues have been degloped [34] which have turned
out to be a particularly useful tool for Lattice QCD computat ions. However, due to the
immense cost of such numerical simulations, the calculaties were restricted to approxima-
tions such as in nitely heavy sea quark massesquenched approximatiof). Fortunately, the
last years have seen substantial improvements of the numesal algorithms employed and
complemented by a tremendous increase of computing power thi BG/P systems reach-
ing Peta ops today. In addition, conceptual developments aich as an acceleration of the
continuum limit or non-perturbative renormalization have helped signi cantly to obtain
phenomenologically relevant results. In fact, simulatiors are performed nowadays at small
values of the lattice spacing, large volumes and almost regtic values of the quark masses.
In this way, a real connection to experimental results can beestablished and in this thesis,
we will discuss three particular applications as already otlined in the introduction.

In this chapter, | introduce rst the basic theoretical scop e of Lattice QCD before |
turn to the the speci c computations performed in this thesis. For more details, | refer the

readers to the textbooks [35{38] and the review articles [3811].

2.1 Euclidean correlation functions

Many quantities in Lattice QCD can be computed from the evaluation of suitable correlation

functions. We therefore begin by discussing the constructin of lattice correlation functions



as the basic objects from which physical quantities of inteest can be computed.
Let us start from a standard correlation function in Minkows ki space, i.e. time ordered

two point function
Z D h i E
Cu(tR) =  de ®* T 0O4(x1)0¥(0;0) (2.1)
where the operatoroé’ represents the Heisenberg creation operator of a state witquantum
numbers of O, at space-time point (0;0) and the Heisenberg operatorO; represents the
annihilation operator of a state at space-time point (;t). The integration over space-like
coordinates constraints the state momentum to a certain monentum K. The Heisenberg

operator O1(%;t) can be written as
O1(x1) = €Mt P*0y(0;0)e MHriPx; (2.2)

so that
Z D E
Cu(tR) = d*xe ®x &t Px0, (0,00 M*iP*0Y0;0) (2.3)
In Eq. (2.3), itis assumed thatt > 0 and the time ordered product is dropped. The Hamilton
operator B remains unspeci ed at this point with its particular form be ing dictated by the
physical problem under consideration. Since the vacuum isitne-space translation invariant,

the correlation function can be simpli ed as
z D . E
Cu(tR)= dxe ®*  0y(0;0)e H*iP*0Y(0:0) (2.4)
In order to adopt the above Minkowski correlation function for Lattice QCD, a Wick
rotation t ! it needs to be done, which corresponds to an analytical contiration from

Minkowski to Euclidean space, where the two-point functionis now given by

Z D E
Ce(tR)= d¥xe ** 0y (0;0)e M*iPx0Y0;0) (2.5)

Under the condition of Osterwalder-Schrader re ection positivity [42] which amounts ba-
sically to demand the positivity of the Hamilton operator H, it is guaranteed that the

Euclidean correlation function contains the same physicalinformation as its Minkowskian
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counterpart. By inserting a complete set of energy eigenstas

X 1 z
1= —— d®p EP;pihER:p ; (2.6)
L@)3
one obtains
x £ D , E
Ce(tK) = d®p (R B  0i(0;00e "' EX;pihER;p 0(0;0)
X D E
= 01(6;0) EX;RihEK;k O¥(G;0) e Ent: (2.7)

n
The eigenstatesjEX: ki are selected by the quantum numbers associated with the intgo-
lating operators O; and O,. If jni is a stable single-particle state with massM,, then its
energy EX is equal toq M2+ k2,

In particular, in the zero momentum case,k = 0, one can directly extract the mass of
a particle with the quantum number of the state jni. In this way, it is possible in Lattice
QCD to directly extract hadron masses from the computation d the Euclidean correlation

functions. For example, consider the two-point function

Z D E
C ()= d® T(x;1) (©;0) (2.8)
of the eld
0 1
= sy =B K 29
d

whereu and d represent the up- and down-quark elds, and the isospin Pauli matrices.

The large-time behavior of correlation function C (t) is given by
C()=e ™! + 2y 0o(e 3ty (2.10)

Asymptotically, for large enough Euclidean time separation t, C (t) is dominated by the
single-pion state and the pion massn can be extracted from the exponential fall-o of the

correlation function,

_ o @ :
m = tI!|1m @tlnc (1) : (2.11)

It is important to stress that the so-obtained pion mass is identical to the corresponding

one in Minkowski space. However, these arguments only holdof stable particles. Some
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resonances, such as and mesons or the baryon have masses greater than the many-
particle threshold. Thus they can no longer be extracted by smply measuring the ground
state energy. How to calculate the resonance parameters shi@s the resonance mass and
decay width is one of the major topics of this thesis which wil be discussed in detail in
Chapter 5. There, the {resonance will be treated as an example, on one hand being
interesting on its own and on the other hand serving as a labaatory case for eventual

studies of other hadron resonances.

2.2 Lattice regularization

To actually compute the Euclidean correlation functions, ane makes use of the path integral
formulation of quantum eld theories. Let us take QCD as an example. The expectation

value of a two-point correlation function is then given by

z

hO(x1)OY(x>)i :Zi D D DAO(x1)OY(x2)exp S ; ;A ; (2.12)

where normalization factor Z is a path integral, named partition function
Z

Z= D D DAexp S ; ;A : (2.13)
S is the QCD action, and and A denote the quark and gluon elds. In order to evaluate
the correlation function, the functional integral appearing in Eq. (2.12) needs to be com-
puted. A conceptually clean way to perform this calculation is to consider it as a limit of a
well-de ned integral over a discretized Euclidean space-time lattice with lattice spacing a.

One hence introduces a hypercubic lattice
= az%= fxjx =a2 Zg : (2.14)

In addition, we will consider the system in a nite volume with size La. Thus the allowed

momenta are given by

2n
= —: n=1; L=2: 2.15
P La ( )

For a non-zero value ofa, the maximal momentum that exists on the lattice is of the order

2 which serves as an ultraviolet cuto. For a nite size L, the minimal momentum is

12



given by 2= (La), which provides an infrared regulator of the theory. Thus, the functional
integral is completely well-de ned. The original function al integral can then be understood
as a limit of sending the volume to in nity and the lattice spacing to zero. It is worth
mentioning that this nite lattice regularization of the fu nctional path integral has served
as a mathematical basis to study fundamental properties of gantum eld theories, see

e.g. [43].
2.2.1 Lattice quark elds

In order to introduce the quark elds on the lattice, let us r st consider the Euclidean

free-quark eld two-point function in the continuum,
z

L d4p alPx .
h (x) (0)i = 2)iip+m’ (2.16)
where the 4-vector inner productspx and p are given as
X
pPX=pot+ P X; P = opo+t ipi (2.17)

The Euclidean Dirac matrices  are hermitian and satisfy the anti-commutation relation

Y= f ; g= : (2.18)

Using Egs. (2.17) and (2.18) and integrating Eq. (2.16) in the pg direction we obtain

dgp ip +m Et+ipx .

P
o)y & . E= m2+ ¢ (2.19)

h (x) (0)i =

Besides, we nd that the two-point correlation function ful lls the Dirac equation

(@+ mh (x) (0)i = (x): (2.20)

Let us now step to the anticipated discretized space-time ad replace continuum space-
time by a 4-dimensional hypercubic lattice . The the quark elds (x) and (x) are
now de ned only at discrete points x 2 . Furthermore, the continuum partial derivative

operator is replaced by forward and backward lattice derivdives

@ (x)
@ (x)

f (x+an) (x)g=a

f (x) (x aMg=a: (2.21)
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Performing the Fourier transform, in momentum space we have

@! g e® 1 =ip f1+ O(ap)g (2.22)

Although the so-de ned lattice derivatives reproduce the continuum derivative operator
in the limit of vanishing lattice spacing, it is not su cient to use them as the kinetic operator
for lattice fermions as they stand. As realized by Wilson in Ref. [33], this would lead to a
proliferation of fermion modes in the continuum limit. The solution found by Wilson is to
modify the kinetic term for fermions on a lattice and he proposed a lattice Dirac operator

Dw which reads
@+@ a@@ (2.23)

wherear@ @ is the so-calledWilson term, which is added to decouple the unwanted addi-
tional fermion modes, nameddoublers One can then show that this so-called Wilson-Dirac
operator indeed describes only one fermion avor in the conuum limit. We mention that
this doubling problem is deeply connected to other fundametal properties of the theory
such as locality and chiral symmetry as summarized in the Nitsen-Ninomiya theorem [44].

Let us set the Wilson parameter to ber = 1 and perform the Fourier transform
1 @+@ ! i—sin(a ) i
> '3 p p
2 @
o@'! pp; p asm — (2.24)
In momentum space, the Wilson-Dirac operator is simply give by
: 1 .
Dw! 1 p+ Eap X (2.25)
Solving the Dirac equation
(Dw+ m)h (x) ©)i=a*y0; (2.26)

one obtains the free-quark two-point function on the lattice

z _, .
. = ¢ép g
h 0i =
N T T
z - d313 Et+ip %
= e -7 2.27

14



where E is the energy of a lattice quark with 3-momentum p and (9) is the associated
spectral density. By expanding in powers of the lattice spaing a, E and (p) are given by

ip+m

| O
E= m?+ g+ O(am;ap); (P= E

+ O(am;ap) : (2.28)

Comparing to Eq. (2.19) we nd that the lattice two-point fun ction agrees with the contin-

uum two-point function as a! 0, i.e. taking the continuum limit.
2.2.2 Lattice gauge elds

In the above section, we provid the construction of free quak elds on the lattice. However,
in reality the gauge elds A (x) have to be considered as they mediate the interactions
between quarks. More speci cally, a quark moving from sitex to y in presence of a gauge

elds A (x) picks up a phase factor given by the path ordered product
Zy
(y)= Pexp A (x)dx (%) : (2.29)

X

The quantity
Zy
U(x;y) = Pexp A (x)dx (2.30)
X
is called the parallel transporter. It has been Wilson's fundamental observation that the
parallel transporter can be used to de ne the gauge degreesf dreedom on the lattice. To

illustrate this, we consider for the QCD relevant SU(3) gauge transformations ( x), which

acts on the quark and gauge elds as follows

) (x) x); (x)2SUE)

ueGy) ! (xUy) (y) *: (2.31)

In particular, for any closed curve C starting from x and ending aty = x, the gauge

transformation is
Ux;x;0 ! ( x)UX;x; 0 ( x)Y: (2.32)

This means that a Wilson loop W(C) tr fU(x; x; Qg is in fact gauge-invariant under such

transformations, given the cyclicity of the trace operation.
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On the lattice, one makes use of the concept of the parallel ansporter and de nes the

link variable U (x) U(x;x+ a”), pointing from x to its nearest neighbor in the direction
UK 2SUB): U®X! (x)U X)(x+ar) t: (2.33)

Fora! 0, U (x) can be represented as
UK =1+ aA (x)+ 0@ : (2.34)

A Wilson loop W (C) constructed from such link variables is still gauge invarant. The two
simplest Wilson loops on the lattice are the plaquette ( 1 1) and the rectangle ( 1 »2),

from which one builds the so-called plaquette elds

P X)=ReTr fl U(MXX; 1 1)9 (2.35)
and rectangle elds

R (xX)=ReTr f1 U(X;x; 1 2)g: (2.36)

The introduction of the link elds allows in particular to de ne a gauge covariant forward

and backward di erence lattice operator

C 0= IUK) x+a) (0

1N 0
ro®=5 UW(x a (x a)
ro X)) (xr xX); r X! (xr  x): (2.37)

As a consequence, based on the de nition (2.37), a gauge-amant Wilson operator can be

constructed which reads

X
Dw + mg= > r+r arr r + mop; (2.38)
=0

where mg is the bare quark mass parameter.

2.3 Lattice QCD action { Wilson action

The fundamental degrees of freedom of QCD are quark and gaugelds. Using the quark

and gauge elds introduced in Sect. 2.2.1 and 2.2.2, one canoastruct the Lattice QCD
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action. Early in 1974, the so-called Wilson action, for both quark and gauge elds, was

developed [33]

S=Sg+ S
X

Sg = 3 P (X); 6=¢f
X

Sk = a* (X)(Dw + mg) (x): (2.39)

X

This action is gauge-invariant for any lattice spacing. In aher words, it is una ected
by a local gauge transformation in which the fermion and gaug elds are rotated by SU(3)
group elements (x) de ned at each point.

A more general form of gauge action is given by

X X

Se = 3 (P (x)+ bR (X)) (2.40)

X
with normalization condition Iy =1 8b;. Note that at b; = 0 this action becomes the
usual Wilson plaquette gauge action. Forty =  1:4088, the action is so-called DBW2 gauge
action [45] and forb, = 1=12 it is the tree-level Symanzik improved gauge action [46].
Tuning the coe cient by, one expects to accelerate the convergence to the continuufimit.

We give this generalized form of the gauge action here, sindhis will be used later on
in the numerical simulations for the generation of the gauge eld con gurations on which
our physical quantities are evaluated.

In Wilson's fermionic action Sg, the Wilson term protects from the existence of doublers
in the continuum limit but it breaks chiral symmetry at O(a). Besides, the quark massng
renormalizes both additively and multiplicatively. Hence, an O(1=a) counter term needs
to be introduced to compensate the additive quark mass renanalization. It is useful and

common to de ne a subtracted bare massnqg by
Mg = Mo  Meit ; (2.41)

where mgj; is called the critical mass parameter. This leads to a ne tuning problem in
Wilson Lattice QCD as the value of the Lagrangian parametermg has to be adjusted very

carefully to reach the chiral limit.
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2.3.1 Computation of correlation functions

The partition function of the Wilson action can be expressedas
z

Z= DUD DeScllleg M (2.42)
whereM = Dw + m is the so-calledfermion matrix. The integral over the fermion elds

can be solved by using the usual integration rules of Grassnm variables [47]

z
D De M / detM: (2.43)

The partition function is then given by

Z Z Z
Z= DUdetM [U]eSclVl= pueSclVltogdet MUl - pyeSe Ul (2.44)

where we have introduced thee ective gauge actionas
Se [Ul S g[U] logdetM [U]= Sg[U] TrlogM [U] : (2.45)

Any expectation value of a physical observablehQOi, e.g. the correlation functions, can be

computed in the path integral formalism as

ya
hOi:Zi DUD D O U;; eScllle M (2.46)

After performing the Grassmann integral, it becomes a funcion depending only on gauge

variables
L Z Z
hoi= = DUO[U]detM [U]eS eVl = = DUO[U]eS e VI (2.47)

=

In practise, the above expectation value is evaluated as annsemble average over gauge

elds that are chosen according to the probability distribu tion given by
[U]= eSe VI (2.48)

The details of the numerical simulation aspects to generatehe above probability distribu-
tion can be found in [35{38]. For this thesis, we just assumehat the gauge elds have been
generated with a suitable numerical method and we will only enploy them to compute the

correlation functions of interest.
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2.3.2 Continuum limit and Symanzik's improvement program

A very important aspect of lattice simulations is the approach to the continuum limit, i.e.
the process of removing the initial lattice discretization and sending the lattice spacinga
to zero. The continuum QCD Lagrangian can be obtained by an epansion of the Wilson

action in the lattice spacing a,

z
Sg ! % d*x(F )2+ 0@ ; F =@A @A +igol[A ;A ]

Sk ! ( D+m) +0(a; D =@+ igA : (2.49)

The expression in eq. (2.49) shows that the leading order coection to the Wilson gauge
action is O(a?), while the fermion action su ers from larger lattice artif acts which appear
at O(a). We note in passing that the appearance of the lattice artifacts at O(a) is related
to the explicit breaking of chiral symmetry when using Wilson fermions. To reduce the
lattice artifacts, we could, of course, perform calculatims using small values of the lattice
spacing, such that one is close enough to the continuum limit However, the computational
costs increase dramatically when decreasing.

A better solution is to make use of the fact that the lattice formulation of the QCD action
is not unique. Alternative versions of lattice actions leadng to the same continuum action
as the lattice spacinga! 0 are equally valid. Improved lattice actions with smaller lattice
spacing artifacts can be systematically developed by meansf Symanzik's improvement
program [48{50]. In this concept the lattice theory at nite values ofa is mapped to an

e ective continuum theory,
S. = Sc+aS +a’S,+ (2.50)

where S| and Sc denote the lattice and continuum action. The correction terms S; cor-
respond to continuum operators. Similarly, the operators wsed to probe physics can be

expanded as
OL = Oc + a01 + %0, + (2.51)
Lattice expectation values are then given by the corresponihg continuum expectation value

19



plus correction terms which are proportional to powers of tre lattice spacing

hQLijat = hOcicont ahOc Siicont + @anOxicont + O(az) : (2.52)

The advantage of the Symanzik's imporvement programme is that the correction terms S
and O; carry coe cients which can be computed in such a way that, e.g the O(a) e ects
can be canceled. Such a computation has to be performed norepurbatively and involves
a large set of simulations. Nevertheless for the action itdé and a number of operators
this has indeed be performed [51]. One point to notice here ithat in order to improve a
physical expectation value to any given order ina, one has to improve both the action and
the operators to the same order, unless the physical quantt is derived from the action it
self, e.g. in the case of hadron masses. Thus, to establish amplete O(a){improvement

for many physical quantities of interest is a very demandingtask.

2.4 Lattice QCD action { Wilson twisted mass action

Another way to achieve an O(a){improvement of the lattice theory is to discretize the
theory with Wilson twisted mass fermions taken at so-calledmaximal twist, as explained
in this section. Indeed, all calculations reported in this thesis are based on two dynamical
avors maximally twisted mass QCD action. The gauge action used in our calculations is
given in Eg. (2.40) and will not be discussed further. In the bllowing, we will concentrate
on the properties of the twisted mass fermion action and, in rticular, how the wanted

O(a){improvement can be achieved.
2.4.1 Twisted mass fermion action

The twisted mass fermion action for two avor mass degenera¢ quarks is introduced by

adding a twisted mass termi g5 3 to the standard Wilson fermion action

X X
Sm=a"  (O[Dw+me+i 53 (0=a"  ()Dm (X): (2.53)

X X

The twisted mass parameter serves as an infrared cuto for the eigenvalues of the operatr

Dm

det[Dyn]=det D3 + 2 : (2.54)
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Thus the formulation avoids un-physically, so-called excetional, small eigenvalues of the
Wilson lattice Dirac operator which may lead to severe probems in the numerical simula-
tions [52,53].

In the continuum limit, the twisted mass fermion action reads as
Z
Sm= d (X)[ D +mg+i 53] (x) (2.55)

where the mass term can be rewritten as
mg+i s3 Me 53; M= m2+ 2; =arctan — (2.56)
q

The form (2.55) can be obtained from the standard continuum £rmion action

S= [ D +M] (2.57)
by an axial transformation

I L (2.58)
for a particular choice of the twist angle, namely! = . Since the transition from the

standard to the twisted form of the action corresponds only © a change of fermionic variables
leaving also the measure invariant, the physics remains copietely un-altered when using
the generalized form of the action with the twisted mass termincluded. In the following we
call the basisf ; g the twisted and f ; g the physical basis.

A particularly interesting choice of the twisted mass fermion action, in particular when

using twisted mass fermions on the lattice as we will see latgis the case withmg =0
Z

Sm= dx ()[ D +i sa (X); (2.59)

which can be achieved from the standard continuum action by ging the twisting angle

I = = =2. This is referred to as the action at maximal twist.

2.4.2 Of(a) improvement

The lattice Wilson twisted mass action (2.53) in the twisted mass basis can be translated

into the physical basis by an axial transformation (2.58)

X . i
Sm=a' (e s EDw+moti o sgle’ 97 (x): (2.60)
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By replacing bare quark mass with critical mass and subtraced mass: mg = Mgt + Mg,
the action reads

mn ! #
sk = a* () 5 roAr TS T Mg e MM (X))

X

(2.61)

In order to proceed, we rst remark that the critical mass is an odd function of the

Wilson parameter r [28]
Merit (1) = Mg (1) - (2.62)

Using this fact, it can be shown that the action (2.61) is invariant under the combined

transformation Rs

Rs= Rsg (r! rn (M! M) ; (2.63)
where R is de ned as
8
2 ] 0— 5
Rs: > . : (2.64)

In this situation, it is proved that any multiplicatively re normalizable (m.r.) operator O will
be either even or odd under the parity transformation R's which we express as ( 1)Prs[©1,

The argument implies that the expectation value of O must satisfy the relation
hOij .y y = (- DFRsOThOI . ) - (2.65)

Making use of the Symanzik expansion and relation (2.65), iiis proved in Ref. [28] that the

Wilson average of an expectation valuehQi is O(a) improved

h [
hOijm y + hOij¢ ryy = (1) hOiji?™ + O(a?) : (2.66)
In Eqg. (2.66), the change of the Wilson parameterr ! r is equivalent to the change of
'l I + _ A particular choice is the maximal twist of ! = =2, which is achieved by

tuning mg to be mei; since

Mg= Mg Mgt =0 ! | =arctan r~ = =2: (2.67)
q
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Thus it is proved that, at maximal twist, any quantity invari ant under! = =2 is auto-
matic O(a){improved. In this thesis, we could give only the basic arguments to demonstrate
that twisted mass lattice fermions when taken at maximal twist are O(a){improved. For a

detailed proof of this fact, we refer the readers to Ref. [28]
2.4.3 Isospin symmetry breaking

As mentioned above, the twisted mass fermion matrix protecs against small eigenvalues,
achieves automatic O(a) improvement at maximal twist. It is also expected to simplify
mixing problems in the renormalization process needed for amumber of physical observ-
ables [28]. At the same time, its computational cost is compeable to standard Wilson
fermions. The expense of having these good properties is that non-zero lattice spacing,
the twisted mass term explicitly breaks the full SU(2) avor symmetry down to U(1), the
conserved 3, but not |2, symmetry. A direct result of isospin symmetry breaking is that the
neutral pion mass becomes smaller than the charged ones, anohphysical parity-breaking
interactions among pions become possible.

This observation is especially relevant for this thesis sine such isospin symmetry break-
ing e ects could in principle contaminate pion-pion scattering as investigated here. Let us
sketch here the mechanism of how this can appear. On the lattie, one determines the scat-
tering phase for two-pion systems with Luscher's method, ly determining the interaction

energy
4E =E 2m : (2.68)

In the isospin zero limit, the jI;1 3i = j2;0i and jO;0i states are given by

0 0;

j2; Oi i

] i+ i 2

jo; Oi i+j %% ; (2.69)

including both neutral and charged pions. As said above, theisospin breaking leads to a
particular lattice artifact in that the charged and neutral pion masses have di erent masses,

in contrast to e.g. standard Wilson fermions where they are nass-degenerate. It turns out
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in practical simulations [29] that this mass splitting is sizable. As a consequence, there is
also a splitting in the energy shift 4 E  which can be eitherE 2m° or E 2m*
Furthermore, sincel 2 is no longer a good quantum number, the two states in Eq. (2.69
do not carry de nite isospin | anymore and they mix. A very important point is that the
unphysical states that mix have lattice artifacts that appear at O(a). Hence, for these quan-

tities the lattice artifacts can easily become sizable and red to be studied very carefully.

To deal with this problem, one needs to treat the combined stées
0 1

ja=B2% % (2.70)
jL; Qi
which turns the pion-pion scattering to be a two-channel scétering process and a very
complex analysis for the determination of the scattering marix is required.

To avoid this complexity, we study the * * scattering system with de nite quantum
number |3 = +2 only. Since |3 = +2 is already the maximal value, there is only one possible
state j2;+2i allowed. Thus the mixing problem is avoided. Moreover, the sattering state
can only consist of two charged pions leading to a unique vak of the energy shift4 E

In the process of thel = 1 pion-pion scattering channel, in which the rho resonance
appears, the possible mixing between di erent isospin stats can also happen. We will
therefore perform the calculations at di erent lattice spacings to explicitly check for any

strong lattice artifacts for | = 1.
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CHAPTER Il

FINITE SIZE METHODS

As discussed in Sect. 2.1, LQCD allows us to directly extracthe energy spectrum of a two-
particle scattering system from the computation of the corresponding Euclidean correlation
functions. However, when working in a nite box, it is not obvious how then the discrete
energy spectrum can be related to experimentally interestig physical quantities such as a
cross section or a scattering phase. To Il this gap, M. Lustder developed a particular nite
size method (FSM) which connects the scattering phase in innite volume to the discrete
energy spectrum in a nite box.

In this thesis, we will concentrate on calculations of the dscrete energy spectrum re-
lated to pion-pion scattering in di erent isospin channels. In the | = 2 channel, the large

Euclidean time limit yields a pion-pion ground state with energy

_ p p
E'®2=2m + E= m2+ @£+ mZ+( p2: (3.1

As indicated in the following section, the energy shift E appears atO(1=L%) in the lattice
size, L. Therefore, it is allowed to extract the S-wave scattering ength from the low
relative momentum p L 372 expansion of the corresponding scattering phaseg(p) for a
large lattice sizeL. In the | =1 channel, due to the parity conservation, the wave function
of a pion-pion state here is an odd function of the relative maentum. Consequently, the
S-wave scattering amplitude vanishes and the {meson appears in the dominant P-wave.
Our target is to determine the resonance parameters. i.e. the resonance mass and the
decay width. Employing the FSM, we will calculate the scattering phase at di erent discrete
energies with the aim to scan the resonance region. Clearlyhe more scattering phases are
calculated, the better the resonant behavior of the scatteing phase can be mapped out. One
method is to study | = 1 pion-pion scattering using di erent lattice sizes, which, however,

requires substantial simulation e orts especially at large lattice sizes. An alternative way
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is to use the moving frame (MF) technique provided by Rummukanen and Gottlieb [54],
which generalizes Luscher's original FSM from the centeref-mass frame (CMF) to the MF.
The important point is that the energy spectrum calculated in the MF is di erent from the
one obtained in the CMF. Thus combining the CMF and the MF allows to compute many
scattering phases using the same lattice size and hence wilicrease the accuracy of the
calculation of the desired resonance parameters.

In Ref. [54], the exact formulae to calculate thel = 1 pion-pion scattering phase for
the MF with total momentum P = (2 =L )e; (MF1) are given. In our work, in addition to
the CMF and the MF1, we further employ a second MF with P = (2 =L )(e + &) (MF2).
Note that the corresponding nite size formulae are not avaiable in the literature and their
derivation is part of this thesis.

The aim of this chapter is to explain how the connection betwen the scattering phase
in the in nite volume and the energy spectrum in a nite box is established. In addition,
we will provide the detailed expressions of the nite size fomulae associated with the CMF,
MF1 and MF2, which are used to calculate the pion-pion scatteing phase. To introduce the
FSM, our starting point is a Quantum Mechanical scattering system where we introduce
the relevant nite size formulae. It is amazing that the same nite size formulae hold also
in Quantum eld theories. The prove of this statement, as estblished in Ref. [24], can be
considered as a main theoretical breakthrough since it openthe path to compute scattering

phenomena in lattice eld theory in principle.

3.1 Scattering in the in nite volume

Following Ref. [24], let us consider two spinless bosons witmassm in the CMF and assume
that the e ective potential V(r) describes the interaction between the two particles. The
Hamiltonian operator K is then taken to be

2

7= r2—+ V) rEiHEix % (3.2)
where = m=2 is the reduced mass of the two-particle system, the vector indicates the

relative position, and %; and %, are the spatial positions of the patrticles. If the interaction
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is short-ranged, then the potential V (r) becomes trivial for large distancer,
V(r)=0; for r>R; (3.3)

where R denotes the interaction range between two particles.
The wave function (¥), which describes the eigenstate of the scattering systenis the

solution of the Schredinger Equation
R #®=E (9: (3.4)
The large distance behavior of the wave function reads as

@ 2) 32 explip v+ A@p)

exp(ipr)
Y (3.5)

where the momentum p is related to the energy E through the non-relativistic dispersion
relation £ = 2 E . Eq. (3.5) shows that, at large +, the wave function of the scattering state
can be expanded into two parts: the plain and the spherical wae function. In the case of a
non-interacting two particle system, (¥) is solely a plain wave function. This means in turn
that all information on the interaction itself is contained in the spherical wave part and,
more speci cally, in the coe cient, A(p; ), which is referred to as the scattering amplitude,
where denotes the solid angle of +.
The quantity of interest for experiments is the di erential cross section, d =d , which

is related to the scattering amplitude through

ola

= IAR) 7 (3.6)

According to a partial wave analysis, the wave function (+) can be expanded in terms
of spherical harmonicsY|» ( ;' ). In Eqg. (3.5), the plane wave function then reads
exp(ip £)= 41 j1(Pr)Yim( pi" p)Yim (") 3.7)
I;m
where | indicates the angular momentum andj,(pr) denotes the spherical Bessel function.
The coe cient of the spherical wave function is expanded as

X
Ap; ) = AA1P)Yim( pi" p)Yim (5" ) (3.8)

I;m
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where A (p) is the partial-wave amplitude, related to the scattering phase |(p) as

exp(@ (p) 1 _ exp( i(p)sin i(p)

Ai(p) = 2D 0

(3.9)

Hence, we have established a link between the scattering pka |(p), the scattering ampli-
tude A(p; ) and the di erential cross section d =d . Thus, computing the scattering phase,
as it is possible on the lattice using the FSM, enables us to dectly obtain information on
the interaction details of the system under consideration.
For r > R , the potential vanishes and (¥) is the solution of Helmholtz equation
r 2
> (m=E (¥); (3.10)
and thus can be expressed in terms of spherical harmonics argpherical Bessel functions
X
(M= bm C1Eii(pr)+ (PIM(pr)) Yim (") (3.11)
I;m
for some known constantsh,,. Note that the spherical Bessel functionsj,(pr) and n;(pr)

have asymptotical forms forr !'1  as

sin pr cos pr

Ji(pr) ! T; n(pr) ! T;

n1 it Texp(pr)

Ji(pr) + iny(pr) ! or (3.12)

We therefore make a comparison between Eq. (3.11) and (3.5jtfom which we nd that the

amplitudes |(p) and (p) are related to the scattering phase |(p) through

(p)+ i 1(p) .
i) i(p)’

As p! 0 the scattering phase |(p) can be expanded as

or tan |(p) = ﬂ (3.13)

exp(2 (p)) = 0

(P = 1 +ap?t+op?*3) (3.14)

for some integer |, which denotes themodulo ambiguity in |(p) [55]. In the case of
S-wave scattering, ag is the so-calledscattering length which determines the leading low-

energy behavior of the scattering phase o(p)
ptan ' o(p) = apt+ %re p*+ O(p*) ; (3.15)
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where the coe cient re is the e ective range parameter which determines the next leading
order behavior of o(p). In Eg. (3.15), the ambiguity ¢ is removed by the tan function.

In our work, we will use Eq. (3.15) to relate the scattering phase at su ciently small
momentum p to the scattering length which is the target of our calculation in the | = 2

channel of pion-pion scattering.

3.2 Scattering in a nite box

In Lattice QCD calculations, we consider the pion-pion scatering system in a nite box
with box size L. As a consequence, we have to introduce some boundary conigit. If we
choose periodic boundary conditions, the nite box potential V_ (¥), describing the particle

interaction, satis es in the CMF

X
VL(F) = V(j*+ AaLj) : (3.16)
A2z3

The nite box Hamiltonian operator K, is constructed as

A=
L= 2—+ VL(I’) (317)

with = m=2 the reduced mass of the system. The wave function (¥) is the solution of

the Schredinger equation, satisfying
e L(®) = E(L) L(9; (3.18)
and
L(r+AL)= L (¥); for all A2 Z3: (3.19)

Due to the periodic boundary condition, the energy spectrumi (L) of the scattering system
is now discrete and related to the lattice sizeL.
Assume that the box is large enough compared to the interactin rangeR, sayL=2> R,

to avoid signi cantly altering the two pion interaction. We can de ne the exterior region

= £2R%jr+ALj>R for all n22Z3 (3.20)
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where the potential V| (#) vanishes and the wave function | (r) satis es the Helmholtz

equation
r2+p> L(r)=0: (3.21)

In Eq. (3.21), the momentum p is given by the non-relativistic dispersion relation p? =
2 E (L) within the framework of Quantum Mechanics.

To solve the solution of the Helmholtz equation, one introdwces the Green function

X exp(iR *
G(rpY)= L 3 7;2’( p2) : (3.22)
R2
where the sum runs over the lattice momenta
_ 34 2 3.
= K2R° K= Tﬁ for somen2 Z : (3.23)
The Green function is a singular periodic solution of the Heimholtz equation
X
r2+p? G(xpd= (£+ AL) : (3.24)
A2z3

Any further singular periodic solutions G, (¥; p?) can be generated from this Green function

by introducing the harmonic polynomials
Yim® = r'Yim (5" ) (3.25)
and de ning
Gim (¥,P?) = Yim (5)G(#;p?) : (3.26)

Thus, the general solution of the Helmholtz equation, | (), can be formed by a linear
combination of Gy, (¥; p?)

X
L(F) = im Gim (¥; p2) : (3.27)

I;m
To perform a comparison with the wave function in the in nite volume case, we expand

the function G, in terms of spherical harmonics and spherical Bessel funains
8 9

o (DS X vy
Gim (£,p%) = ——p :Ylm(v yni(pr) + M im;t omo(P) Yiomo( ;" )jio(pr), 5 (3.28)

4 1&moO
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where M | omo(p) is given by

1y XX L
M im;1 omo(p) = 3=g q]-—4_1CIm;js;I moZjs (1;q2) v 9= 2_ : (3.29)

j=jl 19s= ]

The coe cient Cjy;js; ano is related to the Wigner 3j -symbols through

Cimges o = (™1 171 @I T@] + D@+ D)

| 0

I j 10 I
B &R X (3.30)
0 0O m s m°
and the zeta function Z, (1; ¢?) is given by
Z, X 2
. u - H
ZIm (1; q2) = dtetqz IIYIm ( T)( ?)3—2 eXp( %)

0 422Z3;460

1
1 _
+  di(e? 1)PT 10 mO(?)3_2 10 mo

0

X
¢ 0B en 2 ) (3:3)
2 2

For the step by step deduction of Eq. (3.28), we refer the readr to Ref. [24].

3.3 Finite size formulae in the center-of-mass frame

Let us pause for a moment and summarize. In in nite volume, atany energy levelE, the
potential V() determines the wave function (¥) of the scattering state. From the larger

behavior of (), the scattering phase can then be extracted,

vie) ®T () (3.32)

In a nite box, both the potential V_(¥) and the wave function | (¥) are chosen to be

periodic. The boundary condition results in a discrete enegy spectrum of E(L)
Vi(r))  L(r)) E(L): (3.33)

As we have discussed above, at the exterior region, both of #thwave function (+) and

L (¥) can be formed by a linear combination of spherical wave funtions, see Eq. (3.11) and
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(3.27),
8

(1) = i tm Bm Yim (3 ) Ci(@ji(pr) + 1(p)ni(pr))
r>R , innite L,
(@=" o w4 ) (3.34
n ) )
§ Yim (5 )ni(pr) +  jomoM imgomoYiomo( ;" )jio(pr)
R<r<lL= 2, nite L.

In the region of r R, the wave functions are denoted as™(¥) and ~ (¥) in the in nite and
nite volume, respectively. If we know the interaction details, say the expression ofV (¥)
and V, (¥), we can calculate 7(+) and ~_ (¥) directly, at least in principle. At the boundary,

i.e. atr = R, one obtains
8

2 Mirer= @ir) 1D

LMMir=r = LMi=r) E()

From Eq. (3.35), both the scattering phase |(p) and the discrete energy spectrume (L) can

(3.35)

be computed. However, such an approach relies on the detadeknowledge of the interaction.
An alternative way is to make use of the following observatim. If the lattice size is large
enough to avoid the distortions of the interactions, the potential V() and V_ (¥) are the

same forr R. Then it is clear that
="t r R: (3.36)

Using Eq. (3.36) and eliminating ~(#) and —_(¥) from Eqg. (3.35), we can relate (¥) to

L (¥) through the relation
(Bir=r = L(Mi=g : (3.37)

Taking Eg. (3.34) into account, this condition is equivalert to
8 8

=
2 bm 1(p) = 10mo ~1omoM %mo;lm ) 2 bA=~-M

7 B 1(P) = ~im 7 bB=~1

where 1m = mp'*t( 1)'=(4 ). In Eq. (3.38), one simpli es the equations by de ning the

(3.38)

vectors b and ~and matrices A, B and M, whose matrix elements are given
Amiomo=1(P) 1o mmo; Bimiomo= 1(P) 1o mmo; Mimiomo= M jm;omo(p) : (3.39)
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Only when the determinant of the coe cient matrix equals zer o, this homogenous sys-

tem (3.38) has a non-trivial solution,
0 1

A M
det X=0 ) detAB ! M =0; (3.40)
B

where the matrix element of AB 1 is given by

AB Im;1 omo = % 1o mmo=tan * (p) yo mmo: (3.41)

In Eq. (3.40), we note that the AB 1 M is an in nitely large matrix. To reduce it to a
nite matrix, one introduces the angular momentum cuto , w hich can be interpreted as
a parameter. By varying the value of , we are able to monitor t he in uence of the higher
scattering phases |(p). Considering the fact that the higher scattering phases ae more
suppressed in the low momentum region(p) p?*!, one can treat them as perturbations.
Particularly, if we only focus the on lowest scattering phag o(p), we can set =0 and

then Eq. (3.40) is simpli ed as

tan 1 o(p) = SEE; = M og00(p) = ( ¥20) 'Zoo(L;?); q= E—L : (3.42)

It is important to stress that in the above nite size formula e the detailed expression
of the potential is not needed. Therefore, here the deriveddrmulae are universal and
independent from the particular form of the interaction considered.

Putting low momentum expansion (3.15) of the scattering phae o(p) into Eq. (3.42),

we have

P— 1 P— 1

aop
L = Zoo(1; 7)) =2y —

5 (3.43)

2

Assuming that the lattice size is much larger than the scatteing length ag, the above

equation can be expanded as

lag ag a 2
2= == +Cc— + -
q 1 Ciymt G2

5 +0O(L % (3.44)

wherec; = 2:837297 andc, = 6:375183 are numerical constants [22]. Using= pL=(2 ),
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the energy shift E is then related to the scattering length ag through

P——Fs p? 4
E = 2 m?2+p? 2m:—m+O(p)
4ag ag a 2 6
= —— 14+ —+ = +
3 ltapte | o(L 9 (3.45)

Using Eg. (3.45) we can convert a lattice determination of the energy shift, E, into a
calculation of ag. The contribution from the e ective range re in expansion (3.15) appears
at O(L ) in Eq. (3.45) and is then neglected from the determination d ap.

In Eq. (3.42), the S-wave scattering phase ¢ appears on the left hand side and the
momentum p, or equivalently the discrete energy spectrumE(L), shows up on the right
hand side. Hence, we have indeed established a nite size fowla (3.42), or more generally
(3.40), which serves as a bridge between the physical scatiag phase and the discrete

energy spectrum on a periodic lattice.

3.4 Generalization to the moving frame

As we have seen, having a nite volume in lattice simulationsis not a disadvantage. On the
contrary, Liuscher's method makes actually use of the nite box size. Calculations performed
on several di erent volumes can help to determine the scatteing phase shift |(p) at di erent
energies. Particularly, in the determination of the resonance parameters in the process of
pion-pion scattering, we need the information of the P-wavescattering phase 1(p) at an

energy E close to the resonance peak
p
E=2 m2+p2' m : (3.46)

In the non-interacting case, a small momentump and correspondingly a large lattice sizeL
is needed,

2 9 ——

== p' m2=4 m?2: (3.47)
Since simulating with a large physical volume requires verjlarge computer resources, Rum-
mukainen and Gottlieb generalized Lsscher's formulism to the MF [54], where the total

momentum of the two particles is non-zero. A simple example bthe MF is that one pion
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carries the momentump; = (2 =L )&; while the other stays at rest with , = 0. We denote
this setup as MF1 in this thesis. The total momentumisP = g, + £ = (2 =L )&s.

In the MF, the center of mass is moving with velocity v = P=E1+ E»). The 4-momenta
in the CMF, (E; ;g ), are related to the 4-momenta E;; f) in the MF through the standard

Lorentz transformation

E;= (E v p); B=~p ~E); (3.48)

where is the Lorentz boost factor

= p— (3.49)

P= Pt ~ = At e B="zv: B=P A (3.50)
It can then be derived that
1 1 . 1 1 .
Ei=E=5 "(E1tE): m= B=5(m M) (3.51)

Thus, one proves that, after a Lorentz transformation from the MF1 to the CMF, the
two pions are moving in the opposite direction with momentump = (2 =L )=2 . The
requirement (3.47) is now replaced by
So=p Vet me (352)
In the existence of an interaction, the momentump is not simply given by (2 =L )=(2 ).
Nevertheless, the conclusion still holds that, in the proces of ! , the avoided level
crossing occurs for a smaller lattice size in the MF which hgls to reduce the simulation
costs.
In the MF with total momentum P, the energyE we calculate from Euclidean correlation

function is the energy eigenvalue of Hamiltonian operatort,

H JE; Pi = EJE; Pi : (3.53)
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whereE; Pi is a two-particle scattering state with total 4-momentum (E; P) and its wave

function is de ned as
L(X1; 6 %2;t) = h JO(xq;t; %2, t)JE; Pi - (3.54)

Here O(x1;t; %o;t) is a two-particle interpolating operator de ned on Euclid ean space-time.
Restricted by the nite size of the box with periodic boundary condition, | (%1;t; %2;t)

satis es
L+ ALty + Aol;t) = (%t %:t) ; for all AL ;A 2 z3: (3.55)

By changing the variables

KL+ Ay

X = ;
2

=% %, (3.56)
we sperate the wave function | into two parts
L(xgt%it) = e EVIP X () (3.57)
Eq. (3.55) and (3.57) together yield the so-calledd-periodic boundary condition [54]
LB =( DI L(r+AL); (3.58)

with the vector @ = PL=(2 ). To establish the formula for the scattering phase, which §
only de ned in the CMF, we need to transform the scattering system in the MF to the one

in the CMF using the Lorentz boost

(E;P) ! (Ecm;0)
L(¥) ! Liem () (3.59)
where Ecy is the total energy in the CMF with Ecy = E = E2 P2 and the wave

function |.cm (¥) satis es the boundary condition
Lem (B =( 1" Lom (F+~AL); for all A2 Z3: (3.60)

. : . . . . P———
Any wave function with momentum p, given by dispersion relationEcy =2 m2+ p?

and boundary condition (3.60) can be generated from the fobwing Green function

O 12) = 1 3x eikf .
G(rp)= L & 2 (3.61)
k2 @
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where the momentum space 9 is de ned as

%»—%m+%m form2 2% (3.62)

= g2R3Kk=

By following the procedures in Sect. 3.2, we can expand the wa function .cm (¥) in

terms of spherical harmonics gnd spherical Bessel functian

9
X ( 1)| |+1< ! X a Y -
Lem (F) = m=7 P CYim (5 )m(pr) + M it omo(P) Yiomo( ;" Djio(pr). (3.63)
I;m ) %m0 ’
whereM T . o(p) is given by
1) 1° X il L
M & oe(p) = o O miZS W) 9= B (369)
j=il 19s= |
The detailed expression for the modi ed zeta functionzﬁfn (1; ¢?) is given by
Z, X 2
2@ = de® T (1, e T
0 H2Z3;460
1
1 _
£ e Dp= 0 mo()TF 10 mo
X Y (A
) exp( (n? ) (3.65)
n< q
2. p2 @

T
Performing a comparison between .cm (¥f) and (+), which is the wave function in the

in nite volume case and given by Eq. (3.11), we nd

X
Mijr=r= Lem Bi,cg ) bm (P = Bomo 19(P)M . amo(p) (3.66)

10mO0

Requiring the nontrivial solution of fbygin Eg. (3.66), we nally have
det AB 1 M% =0; (3.67)

with the matrix M3 ¢.0= M T 4 o(p). Thus, we establish the nite size formula for the
p__
MF with total momentum P, which connects the discrete energfecy = E2 P2 onthe
lattice with the scattering phase (p) in the nite volume.
In the case of P = 0, with the properties
ad=10; =1;
ZI?"n;l omo(1; qz) = Zim; omo(1; q2) ;

M & omo(P) = M i amo(p) ; (3.68)

37



the Eq. (3.67) become the standard nite size formula estabkhed in the CMF.

3.5 Interpolating operators

In this section, we are going to discuss how to construct theriterpolating operators for
the pion-pion scattering system which project out the eigestates associated with isospin
number | and approximately angular momentum I.

The single pion states with 3-momentump form an isospin triplet jl;1 3i through

jL+li=j Ti= T(pt)j i

jL0i = %= Op0j i

L ol=j i= (g9 i; (3.69)

with the interpolating operator 2(p;t) de ned as

a

X .
0= mp eP* sy (kD5 a=+:0 (3.70)

%x
For a two pion system, there are three possible isospin charats with | =0;1;2
job= g b= jl=%ijI=1 = jIl=2ij1=1ij1=0i: (3.71)
We construct the two-pion interpolating operators o"! %(p1; f;t) to create the pion-pion

scattering state with de nite isospin number (I;1 3)
il = O3 (pppt)j i (3.72)
and list the detailed expressions for operatorsO';' }(p1; ;1) in Table. 3.1.

The next step to construct the operator with angular momentum | using o"! (o1 o5 t)
is however nontrivial, since the rotation symmetry denoted by the group O(3) is broken
by nite size e ects and the angular momentum | is then not a good quantum number
anymore. The symmetry conserved on the lattice is the so-céd hypercubic symmetry It
is associated with the good quantum number , which speci es the di erent irreducible
representation (irrep) of the hyper-cubic group, G. Therefore, we construct the operator
with de nite quantum number through

X
( ) @)= ﬁ (R)O"'s P+ Rp; Rp;t (3.73)
R2G
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+1 o %(pst) T+ T(put) (pit)

0 | P22 %put) “(mst)+  (But) "(Ei)+ “(put) (@2it)
1 s %pt) () + (put) Y(et)

2 (Pit)  (P2it)

I3 =1

+1 Yeut) Yet)  O(put) F(et)

0 T(put)  (mit) (Pst) " (m2it)

1 O(est)  (t)  (put) %(it)

s =0

0 [ ,5( %put) %)+ () “(BO)+ T(Put) (@21

Table 3.1: List of the pion-pion interpolating operators, 0"'3 classi ed by Isospin number
| and | 3.

where P is the total momentum of the two-pion system and R denotes the rotational
operation acting momentum space.P + Rpand Rp are the momenta on the lattice and

take the discrete values
L 3 L 3
> P+Rp 22Z%; > Rp 273%: (3.74)

The hyper-cubic group G is the sum of all rotational operations R, which leave the total

4-momentum of the scattering system, E; P) , invariant

q q
G= R (P+Rp2+m2+ (Rp2+m2=E; RP=P (3.75)

The normalization factor Ng denotes group element number of. The constraints (3.74)
and (3.75) together determine the rotational property of the group G. In the CMF, G is
given by the cubic group Oy, while in the MF1 and MF2, G is given by the tetragonal group
D 4n and the orthorhombic group D, respectively.

The average over all the operationsR in the group G with the coe cient  (R), which
is the character of the irrep of , projects out the scatterin g state with quantum number

on the lattice

oo i=0 ) O)j i: (3.76)

39



The state j ; | can be formed by the linear combination of the scattering stée in the

in nite volume with exact quantum number | through

X
j, = Cuislis; Cy=h;lj,; i (3.77)

|
where the coe cient C | determines how the scattering states in a nite box,j ; i, couple
to the states in the in nite volume, | ;| i, from which the I-th wave scattering phase |(p)

can be extracted. For example, in the CMF, the statej ;A i consists of by
j ;A Ji=C ;1 =0i+C 4f;l =4i+ (3.78)

As we discussed in Sect. 3.3, we can treat the states with an¢gar momenta | 4 as

perturbations and then have the approximation
jiA i C.j;l =0i: (3.79)

It yields that the S-wave scattering phase can be determinedy constructing the operator
in the A] sector on the lattice.

Inthe | =2;13 =+2 channel, our interest is to calculate the S-wave scatteing length
at vanishingly small relative momentum. Therefore, we conguct the operator ( )AI (1)

in the CMF using coe cients AL which is simply given by
( Jar®= " (@1 "(O1): (3.80)

The corresponding nite size formula to calculate the scattering length is given by Eq. (3.45).
Inthe I =1; I3 =0 channel, to obtain the maximal information on the scattering phase,
we choose the irrep = T, for the CMF, = A, for the MF1 and = B, for the MF2,
so that in each frame, the energy eigenstat¢ ; i approximates to the P-wave state if one
ignores the states with higher angular momentum.
The construction of the operator is performed using Eqg. (3.8). Here we list the the
expressions for the operators ( )(t) which will be used in our calculation of pion-pion

scattering in the | =1 channel. In the CMF, the operator is given by
2 2 2
—_ + . . + . . .
( )T1 1) = . et T €t T €t —et o (3.81)
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In the MF1, it is

( s, =7 2—%;t O;t oot 2—@;t : (3.82)
2 L L
In the MF2, it is
. 2 . 2
( g, (0= T(®* et 0t ot Ta+e)t @ (383

From these interpolating operators, one can calculate the tcrete energy spectrum from the
corresponding Euclidean correlation functions. And, makhg use of the nite size formulae,
it becomes nally possible to compute the P-wave scatteringphase.

In the CMF, the nite size formula is given by Luscher [25]
tan 1 1(p)=( *2q z2§H@;0d); for d=0and = T, ; (3.84)
in the MF1, it is provided by Rummukainen and Gottlieb [54]
1 32 150 . 29 ° q,. .
tan ~ 1(p) =( Q (Zgo+ —p?zzo), for d=& and = A, ; (3.85)

while in the MF2, we have derived a similar relation by ourseles

p_
_ 2 39 2
tan ' 1(p)=( *29 Hz&% %*EZgo+ '—9—2—0 2%, Z ) ;

for d=(e+®) and = Bj : (3.86)
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CHAPTER IV

=2 CHANNEL: T T SCATTERING LENGTH

4.1 Physical background

In the limit of massless up and down quarks a spontaneous bréing of chiral symmetry

takes place in QCD,
SU(Nf)r  SU(Nf)L ) SU(Nt)v; Nf=2: (4.1)

Due to Goldstone's theorem [56] the meson spectrum containthree massless pseudo scalar
Goldstone bosons, identi ed as the pion triplet: and 9. Introducing an explicit mass
term in the QCD Lagrangian lifts the masses of the pions, but hey still remain much lighter
than any other meson in QCD. Since the pions have an only smalnass, their interactions
are strongly determined by the underlying chiral symmetry and the the scattering lengths
are sensitive to the chiral dynamics of the strong interactons. For example, the S-wave
pion-pion scattering lengths even vanish in the chiral limt when the quark masses are
sent to zero. Non-perturbative calculations of the scatteing lengths to probe the chiral
dynamics, one of the subjects of this thesis, is an integral art of understanding the low
energy properties of QCD.

As said above, in the real world, the masses of the quarks areoh zero but small and
induce an explicit but weak breaking of chiral symmetry. This breaking of chiral symmetry
is systematically treated in PT [26,27] by considering the quark masses as perturbations
Furthermore, the pion-pion scattering lengths no longer vanish at non-zero quark masses
and at leading order (LO) in PT are predicted by Weinberg [57] solely in terms of the pion

mass,m , and the pion decay constant,f , as

1=0 m* 1=2 m? :
m a 167 2 =0:160(1) and m a T 0:0456 (1); (4.2)
where a' =0 and a' =2 denote the isospinl = 0 and | = 2 S-wave scattering lengths, re-

spectively. The next-to-leading order (NLO) corrections depend on unknown so-called low
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energy constants (LECs), which can be determined from exp@mental measurements or
lattice calculations.
The experimental measurement ofK ! * e (Kg) decays by E865 at BNL [58]

gives

m a ™ =0:203(33) and m a'7? = 0:055(23): 4.3)
When combined with constraints from PT, these measurements yield

m a ™ =0:216(14) and m a2 = 0:0454 (34): (4.4)

A combination of several experimental and theoretical inpus from Colangelo, Gasser and

Leutwyler (CGL) [59, 60] produces a consistent but more preise result of
m a0 =0:220(5) and m a'7? = 0:0444 (10): (4.5)

Additionally, the recent measurements ofK ¢4 decays [61] andK ! 0 0 decays [62]

by NA48/2 at CERN [4] give, without making any use of PT constraints,

m a0 =0:221(5) and m a'7? = 0:0429 (47) (4.6)
Including PT in their analysis, NA48/2 nds [63]

m a ™ =0:220(3) and m a'7? = 0:0444(9) 4.7)

The results are all consistent with each other and the most pecise results from NA48/2 are
in agreement with the lattice results given shortly.

One obstacle to the non-perturbative determination of the pon-pion scattering length
from Lattice QCD is the presence of disconnected diagrams it render the calculation of
the I = 0 channel computationally demanding. On the other hand, the simpler| = 2
channel does not require such diagrams and consequently mafattice groups have focused
their e orts on this case. Furthermore, most calculations o the scattering lengths to date
have been carried out within the quenched approximation [6485]. There have been only
two previous calculations ofa' =2 with dynamical fermions. The rst such calculation was

performed by CP-PACS with N = 2 tadpole-improved clover fermions at rather heavy
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pion masses in the rangan = 0:5 GeV to 1.1 GeV [3]. However, it is doubtful that PT
at NLO, or any order, can be applied to such heavy pion masses.The other full QCD
calculation was performed by NPLQCD with domain-wall valence quarks on theNs = 2+1
asqtad-improved coarse MILC ensembles witm = 290 MeV to 590 MeV [1,2]. Mixed-
action PT at NLO was used to perform the chiral and continuum extrapolations. At the

physical pion mass, NPLQCD nds
m a'¥ = 0:04330(42) and I'*2( =f.py)=6:2(1:2); (4.8)

wherel'=2( ) is a LEC appearing in the PT description of the quark mass dependence of
the scattering length. As discussed later)' =2 ( ) is evaluated at = f . pny, Wheref .y is
the physical value of the pion decay constant.

In this thesis we determine the S-wavel = 2 pion-pion scattering length and the cor-
respondingl' ¥2. Compared to the previous calculations, we have more informtion in the
low pion mass region ( 300 MeV), which allows us to further probe the chiral properties

of a' =2.

4.2 Method

4.2.1 Euclidean correlation function

As mentioned in Chapter 3, in the CMF, the nite size formula ( 3.45) establishes a rela-
tionship between the ground state energy shiftE = E(L) 2m in a nite box of size L and
the corresponding S-wave scattering lengthag. In the | = 2 pion-pion scattering channel,

by inserting the variable changes
E(L)=E'2; m=m ; E = E'??; a=a™ (4.9)

into Eq. (3.45), we can convert a lattice determination of the energy shift, E =2, into a
calculation of a' =2,
To extract E '2, we constructthe * and * * two-point correlation functions from

the operators proposed in Ref. [74],

C (t)=h ")(t+ts) " (ts)i (4.10)

44



and
C (t)=h " "P(t+ts)( 7 ")(ts)i: (4.11)

Here ts is an arbitrary time slice, ™ (t) is an interpolating operator given by Eg. (3.70)
with zero 3-momentum and ( * *)(t) is an interpolating operator for the two pion state

given by
(" )N = Tt+a) T(): (4.12)

In order to avoid complications due to Fierz rearrangement ¢ quark lines as discussed in
Ref. [74], we use the * interpolating elds at time slices separated by one lattice spacing.
As we have discussed in Sect. 3.5, the operator { *)(t) projects out the scattering state
j ;A 1i, which equals to the S-wave state in the in nite volume, ignaing the states with
higher angular momentum.

As seen in Sect. 2.1, from the large time behavior o€ (t) and C (t), it is possible to

extract the corresponding ground state energies as follows
C@)! Aexp(mt) and C (t)! A exp( E'?1); (4.13)

where we assume that is large enough to neglect excited states but still far enouly from
the boundaries to ignore boundary e ects. Furthermore, corstructing the following ratio of
correlation functions we can determine E ' =2 directly as

cC @), A -
o) L exp( E'=21) (4.14)

wheret satis es the same requirements as before. However, we usetaperiodic boundary
conditions for the quarks in the time direction in order to match the sea quarks used in our

calculation, and this leads to a more complicated time depedence forC and C

4.2.2 Anti-periodic boundary conditions

As mentioned above, in our calculation we employ anti-perialic boundary conditions in the
time direction for the fermions. Using the transfer matrix formalism, the time dependence

of our correlation functions is given by

ho'()0()i =Tr e 1T Yove o) =z; z=Tr e T (4.15)
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Here ¥ is the Hamiltonian operator, T is the total time extent of our lattice and O(t)
represents either *(t) or ( * *)(t). Inserting a complete set of eigenstates of into the
above equation yields

X

hO'(t)O(0)i jhnjojmij2e Em(T g Ent=7
m;n
jhnjojmij2e Em*ET=2cosh(En  En)t T=2)=Z:

m;n

The terms in the above series are thermally suppressed by fears of e EmT or e EnT,
Only those terms with E,, = 0 or E, = 0 remain in the zero temperature, T ! 1
limit. However, the e ects of the suppressed contributions can still distort the behavior of
correlation functions for nite values of T, particularly in the large t region.

This phenomenon does indeed occur here for the two pion opei@. Intermediate states

j=h *jand hmj= h j give a constant, int, contributionto C ,
jih *j T ijle ™ T=z: (4.16)
This is comparable to the standard contribution,
jnt tjt i oij2e BT T2coshE' (1 T=2))=Z; (4.17)

when t approachesT=2. To be precise, for large enough volumeg'=? =2m + E '
2m , and hence these two contributions toC ,e ™ T ande E'®T=2¢coshE (t T=2))
are in fact nearly equal fort = T=2. Additionally, the factor C (t)? has similar problems.
The correlator C (t) itself has a simple spectral representation. However, thesquare is
more complicated and also contains a constant, irt, contribution as well.

To eliminate these contaminations, we use the derivative mthod [86] and de ne a mod-

i ed ratio, R(t), in the following way

C (t) C (t+a) .
C2(t) C2(t+ a)

R(t + a=2) = (4.18)

The asymptotic form for R(t), ignoring terms suppressed relative to the leading conttbution,
is

R(t + a=2) = Ag cosh(E '7? t9 + sinh( E '*2 t9 coth(2m t9 (4.19)
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a L=a|m | m =f N [aET? 10° m a' =2

3.90 | 0.0100| 24 | 520 2.77(2) | 479 | 7.23(59)(41) | -0.297(20)(16)
3.90 | 0.0085| 24 | 480 2.61(1) | 487 | 7.66(65)(33) | -0.269(17)(10)
3.90 | 0.0064| 24 | 420 2.40(1) | 553 | 9.6(1.3)(.6) | -0.252(22)(13)
3.90 | 0.0040| 32 | 330 2.02(1) | 490 | 3.96(36)(22) | -0.165(14)(08)
3.90 | 0.0030| 32 | 290 | 1.85(1) | 562 | 4.05(42)(21) | -0.130(12)(06)
4.05| 0.0030| 32 | 320| 2.08(2) | 375| 7.1(1.2)(.9) | -0.171(18)(22)

Table 4.1: Ensembles used in thd = 2 pion-pion scattering. Only dimensionless quantities
are needed in this calculation, but for guidance we give the alue of m rounded to the
nearest MeV for each ensemble indicated by, a and L=a. We also list the ratio m =f ,
the number, N, of con gurations used, the energy shifta E'=? and the scattering length
m a' =2. The rst uncertainty is statistical and, when present, the second one is systematic.

where A is a combination of amplitudes inC and C andt®°= t+ a=2 T=2. Since
m is the most accurately calculated component of our calculdabn, R(t) provides a nearly

direct determination of E '=2 and cleanly eliminates the unwanted thermal contributions

that spoil the simple ratio given earlier.

4.3 Lattice calculation

4.3.1 Ensemble information

Most of the results presented here are from a sequence of ensleles with a lattice spacing
of a=0:079 fm and a box size oL =1:9 fm. The pion masses range froom =290 MeV
to 520 MeV. For the lower pion masses the volume is increasedtlL = 2:5 fm, and there
is one calculation using a ner lattice spacing ofa = 0:063 fm. The parameters relevant to

this calculation are given in Table 4.1, and further details can be found in Refs. [29{32].
4.3.2 Stochastic sources

For the calculation of pion correlation functions, it is known that the stochastic source
method is more e cient than the point source method. Therefore, in the present work,
we employ Z, stochastic noise with two noise sources generated on eachusoe time slice.

+

Since we place the source on two time slices for the* correlation function, tg and tg+ a,
we therefore perform four inversions for each con guration We remark that we also use

the one-end trick in this work for the evaluation of correlation functions [87{89] leading to
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Figure 4.1: The ratio R(t) as a function oft. The solid lines are correlated ts to Eq. (4.19),
from which the energy shiftsa E ' =2 are extracted. The ensembles have been shifted verti-
cally to facilitate easier comparison.

a further improvement in the signal-to-noise ratio. Additi onally, the source time slices s,

are chosen randomly to reduce the autocorrelation betweenansecutive trajectories.

4.4 Results

4.4.1 Calculation of m a'=2

In Fig. 4.1 we show our lattice results forR(t), de ned in Eq. (4.18), as a function of the
time t together with a correlated t ! to the asymptotic form given in Eq. (4.19). All the
ensembles shown in Fig. 4.1 visibly agree with the correspaling t and lead to reasonable
values of 2 per degree of freedom (dof), where 2 is the correlated gure-of-merit function .
To further verify these ts, we examined several possible sorces of systematic error. First,

the ratio could su er from bias at large t, so we examined the jackknife estimate of bias

1The lattice results for R(t) at time slice t = t; and t = t, are correlated. The correlated t takes full
consideration of such e ects into account.
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but found it to be signi cantly smaller than the errors for al | the ensembles. Second,
we considered the possibility that we underestimated the etors due to autocorrelations.
However, both the gamma method [90] and standard binning shwed no signi cant signs
of autocorrelation for R(t) in any of the ensembles. The possibility of © mixing, due to
the breaking of parity at non-zero lattice spacing for twisted mass fermions, is considered
in Sect. 4.4.2. But as described there in more detail, we nd o statistically signi cant
indications of the © contributions.

There is one further possible systematic error due to the camibutions from excited
states in the small t region or from unphysical © states in the larget region. To ensure
that the ts for these ensembles are safe from such e ects, wetudy the systematic errors
caused by choosing a tting window in which to match to the asymptotic form for R(t).
First we ensure that the results exhibit clear plateaus whenwe increase the minimumt or
decrease the maximumt used in the ts. However, to provide a quantitative estimate of
the systematic error, we perform the following distribution method. We collect the results
for aE'=? from all tting intervals with  ?=dof < 2. This includes varying both the
minimum and maximum time extent for the tting range and resu Its in 30 to 60 values
of a E ' for each ensemble. We then make the distribution of these setted results and
choose the median of this distribution for the central value Then we take the central,
and symmetric about the median, 68% region of the distributon to de ne the systematic
error. Finally, we use the jackknife method to determine thestatistical error on the central
values. This method is also applied tom a' =2, and the results fora E'=2 and m a' =2 are
given in Table 4.1. As shown in this table, the resulting estmates of the systematic errors
are typically smaller than the corresponding statistical arors, and are at worst of the same
order as the statistical errors. Since the distribution method used to estimate the systematic
errors is itself subject to statistical errors, this is predsely what is expected if there are no
substantial systematic e ects. However, since the nal statistical precision for the value
of m a'=? at the physical limit turns out to be quite small, we decided, in order to avoid
underestimating our nal error, to carefully propagate the se systematic errors through to

the nal result as described later in Sect. 4.4.5.
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4.4.2 9 contamination

Twisted mass fermions violate parity and isospin at non-zeo values of the lattice spacing.

+ 4+

Therefore the spectral representation of the * and correlators can admit states that
would not be present in the continuum limit. In particular, u nphysical contributions from
the ©, which has a masan o di erent, and smaller, than the massm ofthe may enter
the C and C correlators in several ways [89]. Furthermore, these e ed are believed to
be more noticeable in pion-pion scattering, so the succeasfcalculation of all three isospin
channels,| =0, 1 and 2, would test the twisted mass formulation of lattice QCD.

The © can enter theC correlator through intermediate states of the formh *j *j O
andh * 9 *j i. The former contribution is thermally suppressed by a facta of e ™ 0T,
however it leads to a time dependence with an energy ah m o that is lighter than the
usually expectedm ground state. The second contribution is not thermally suppressed but
corresponds to the rst excited state with energyE + o m + m o. This is lighter than
the rst physical excited state with energy near 3m . Similarly, C contains unphysical
contributions from h * *j * *j % andh * * 9 * *j i. Again there is an additional
light state that is thermally suppressed by e ™ °T but has an energy ofE - + m o
2m m o that is lower than the physical ground state near 2n , and the rst excited
state is lowered toE + + o 2m + m o rather than the expected energy of approximately
P mrrE =0

The parity violating matrix elements responsible for thesee ects are O(a) in the lattice
spacing, even at maximal twist, however the matrix elementsappear squared in the correla-
tors. Therefore these unphysical states make a®(a?) contribution. The question, however,
is not about the scaling in the lattice spacing, but about the size of this contribution at
the lattice spacings used in this work. A detailed discussio of this issue can be found in
Ref. [91]. Here, our focus is more practical. We want to ensur that the scattering lengths
calculated in this work are not signi cantly distorted due t o these e ects.

First, the naive estimate for the suppression factor for theadditional light contributions,

m moinC andE + + moinC ,is(a qcp)?e M °T. The value of m o is di cult

to calculate precisely, but it is clear from Ref. [91] thatm o is never more than 20% lighter
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than m for the ensembles in this work. Therefore we will simply usem and a value of
ocb = 250 MeV to set the order of magnitude for these suppressionéctors. We nd that
for the ensembles used here, the largest value of(qcp)?e ™ °T is 9 10 © forthe = 4:05,
a = 0:0030 ensemble in Table 4.1. Using the actual value ah o from [91] raises this to
2 10 5. This value is small, but it is not too far beyond the statisti cal precision of the
correlators used to calculatea E =2, hence we must carefully check for these contributions.

Second, there are the additional states that are only supprssed by @ QCD)z_ However,
these states are heavier than the physical state and hence wiw occur in the correlators as
excited states. The naive suppression factors are 110 % and 7 10 3 for a = 0:079 fm and
0:063 fm respectively. These simple estimates are larger thafor the other states, however
these contributions are also more strongly suppressed by tir own energies.

In the light of these arguments, we made a signi cant e ortto attemptto nd such e ects
anyway. We tried tting the individual C (t) and C (t) correlators as well as the ratio
R(t) to various functional forms including the physical state and both the additional heavier
and lighter states, just the lighter state or just the heavier state. We t the most general
forms, keeping all energies as free parameters, and additially constrained forms, in which
we constrainedm o based on known values. And we also explored several minimitian
methods. The net result was that one could indeed lower the 2 value for each t, but the

2 per degree of freedom still increased, indicating no stattgally signi cant contribution
from the unwanted © states.

However, we must o er a few words of caution. While we could nb nd any compelling
evidence for these contributions, we of course can not ruleub their presence at a level
beneath our statistical resolution. We should further note that there are visible excited
states in the correlators. However, the accuracy of the coelators for the ensembles studied
here does not allow us to distinguish the physical excited sites, near 3n for C and
2p m2 +(2 =L )2 for C , from the unphysical excited states, nearm + m o 2m for
C and2m + mo 3m for C . The extensive study of systematic errors due to the
tting range discussed in the previous section was partialy motivated by these issues. It

provides the quantitative statement that these e ects do not rise to the level of our statistical

51



precision and gives an estimate of the systematic error.

Additionally, there are two reasons that these contributions may be smaller than an-
ticipated. First, the unphysical contributions correspond to scattering states that may be
suppressed by a power of the volume. Second, the constructioof R(t) in Eq. (4.18) forms a
discrete approximation to the ratio of derivatives of C and C? and may further suppress

the nearly constant light state contributions.
4.4.3 Finite volume e ects

The dominant nite size e ect in this calculation is, of cour se, the shift in E'=? due to
the interactions of two pions in a nite volume. Additionall y, there are the exponentially
small, as opposed to the merely power suppressed, nite volme corrections tol = 2 pion-
pion scattering that have been determined for scattering nar threshold in Ref. [92]. The

resulting nite size corrections for the scattering length are given there as,

(ma™?)=(ma™?) + gy (4.20)
where
LTy PR IO
ex o
) 21T152 = jnjﬁo% ! %jnjrilL+OL2

Using the above result, we calculate the corrections tan a' =>. Compared to the statistical
errors, the nite volume corrections are negligible. To be pecise, they are never more than
6% of the corresponding statistical error and are hence igrmed in the following analysis.
There is a second nite size e ect originating from Eq. (3.15, which is used to relate
the scattering phase (p) at vanishingly small momentum p to the scattering length. As
argued in Sect. 3.3, the dependence on the e ective range, is very small and gives rise to
the corrections at O(L ®) in Eq. (3.45). Assuming that the e ective range is at most twice
the scattering length, this correction can be estimated usig the measured values om and
E '=2. We nd that this correction is never more than 9% of the corresponding statistical

error of m a' =2. Hence, this nite size e ect is also su ciently small to be i gnored as well.
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4.4.4 Lattice artifacts

Most of the calculations presented here use a single latticepacing of 0079 fm, but we have
also performed an additional calculation of E ' and m a' =2 at a second lattice spacing
of 0:063 fm and at a pion mass of 320 MeV. This pion mass lies very de to that of the one
obtained at a=0:079 fm andm =330 MeV. The physical volumes of these two ensembles
di er, so the values of E'=? cannot be directly compared. However, assuming that FSM
correctly accounts for the nite volume dependence of E ' =2 for these two ensembles, we can
comparem a'=2 for the two lattice spacings, and indeed we do nd statisticd agreement
between the two ensembles as indicated in Table 4.1. Furthenore, as described in the
next section, we note that the expectedO(a?) corrections from maximally twisted mass
Lattice QCD are actually weakened to O(m?2a?) for the | =2, I3 = 2 channel as shown
using twisted mass PT [93], thus suggesting further that the lattice spacing degpendence

of m a'=2 is mild for the calculations in this work.
4.4.5 Chiral extrapolation

The pion-pion scattering lengths have recently been calcalted in twisted mass PT [93].
This is an expansion of twisted mass lattice QCD in both the quark masses and the lattice
spacing. There it is shown that at NLO the lattice spacing corectionstothel =2, I3= 2
scattering lengths are proportional to cos{ ), where! is the twist angle. Thus at maximal
twist, | = =2, the explicit discretization errors vanish exactly, and the scattering length
can be simply represented by the continuum NLO PT formula [26, 94].

As suggested in Refs. [1,2], we perform the chiral extrapotion of m a' =2 in terms of
m =f instead of m . Additionally, the PT renormalization scale is xed as = f , ppy.

The resulting NLO expression is then

2 2 2
=2 _ m m m =, .
m a T 8f 2 l+16 2f 2 3|nf_2 1 170 =1 phy) ; (4.22)

wherel'=2( ) is related to the Gasser-Leutwyler coe cients |; as [95]

_ 8 16 m?% o,
|'-2():§|1+§|2 I 4l4+3In —2:

(4.22)
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It is important to note that extrapolating in m =f instead of simply m does indeed
change the expression fom a' =2 but only at the next-to-next-to-leading order (NNLO).
The advantage of this form is that m =f is calculated directly on the lattice with small
errors and the chiral extrapolation does not require xing a physical value for the lattice
spacing.

We now t our lattice results for m a'=? from Table 4.1 to the functional form in
Eq. (4.21) in order to extrapolate m a'=2 to the physical point and also extract the low
energy constant!'=2( = f .phy). The calculated values for the scattering length and

the resulting PT t curve are shown in Fig. 4.2. In the same gure, we also provide

== ——LOc-PT
" |— NLO c-PT

04 |® L=19fma=0.079 fn
' m [ =25fm a=0.079 fn
L | ¢ L=2.0fm a=0.063 fn
NPLQCD (2007)
-0.5 CP-PACS (2004)
NA48/2 (2009)

1 15 2 2.5 3 3.5

Figure 4.2: Chiral extrapolation for the I=2 pion-pion scattering leng th. The results in this
work are shown together with the lattice calculations of NPLQCD [1, 2] and CP-PACS [3]
and the direct measurement from NA48/2 at CERN [4].

a comparison to the lattice results of NPLQCD [1, 2] and CP-PACS [3] and the direct
measurement from NA48/2 at CERN [4]. We nd general agreememnbetween our calculation
and the results of NPLQCD at similar pion masses. In particulr, the agreement between

our results and NPLQCD suggests that the e ect of the missingstrange quark in our current
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calculation is small.

To highlight the impact of the NLO terms in the PT description of the pion mass
dependence ofm a'=? and to understand the role of yet higher order terms, we show
the di erence between the lattice calculations of the scatering length and the LO PT

prediction in Fig. 4.3. We nd that the scattering lengths st atistically agree with the LO

0.03- ) B
07
O L
-
T __0.03 ]
< -- LOc-PT
£ . |— NLOc-PT L |

® L=1.9fm a=0.079 fm
006- | ™ L=2.5fm a=0.079 fm _
: ¢ L=2.0 fm a=0.063 fm

NPLQCD (2007)
i CP-PACS (2004) i
NA48/2 (2009)

1 15 2 2.5 3 3.5

Figure 4.3: Dierence between the lattice calculation of the scattering lengths and the LO
PT prediction. The scattering lengths agree statistically with the LO PT prediction for
m =290 MeV to 520 MeV.

PT result for all lattice calculations with m < 520 MeV. Accordingly, the NLO PT
functional form provides a reasonable description of the Idice results in the same region
of m . As a further check, we t our calculations to the NNLO form for m a'=? [60, 95]
and foundm a'2 = 0:041(12) at the physical point. The statistical error is large, as one
would expect given that our results already agree statistially with the LO  PT form, but
the resulting NNLO extrapolation of m a' 2 does agree with the NLO t. Given the size of
the statistical errors, we are unable to make any meaningfukstimate of the NNLO LECs,

however, the e ects from truncating the PT series to NLO is included in our estimate of
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systematic errors.

The systematic error on the extrapolated value ofm a' =2 and I'? has several com-
ponents. First, the systematic errors of them a'=2 that we obtain for each ensemble are
propagated through the chiral extrapolation. This is acconplished by again collecting all t
ranges for each ensemble with 2=dof < 2 as earlier. This gives approximately 16° PT ts
from which we randomly choose 2000 to sample the distributin of the extrapolated values
of m a'=2. As for the individual m a'=2, we use the distribution method to determine
an estimate of the systematic error due to the t ranges from ech ensemble. The second
systematic uncertainty arises from the chiral titself. Th is is estimated by taking the dif-
ference in the extrapolated values from the NLO PT tto all six and just the lightest ve
ensembles. Finally, the extrapolation to the physical poirt requires the experimental value
for m =f . The experimental error on this quantity introduces an error that is nearly 50%
of the corresponding statistical error and hence is also idaoded. All three e ects are added
in quadrature to form the total estimated systematic error. Using the latest PDG [20] values
of m + = 139:5702(4) MeV andf + = 130:4(2) MeV to determine the physical limit, we

obtain the nal result
m a'*? = 0:04385(28)(38) and I'?( = f . py)=4:65(0:85)(1:07): (4.23)

This agrees with the previously mentioned results: the latice calculation from NPLQCD [1,
2], the so-called CGL analysis [59,60] and the E865 [58] andA8/2 [4] measurements and
represents agreement among the experimental and theoreti¢ determinations of m a' =2 at

the 1% level.
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CHAPTER V

I=1 CHANNEL: RESONANCE PARAMETERS

5.1 Physical background

The calculation of the hadron spectrum from rst principles is of particular interest not only
because it would provide a test of the underlying theory, QCD but also because it would lead
to a deeper understanding of the physics of the strong interetion. An important observation

is that many of these hadrons exist only as resonances. Althayh studied theoretically for
many years, the determination of the corresponding resonate parameters is aicted with
many di culties since the computation of resonance masses ad decay widths is essentially
a non-perturbative problem. The only known way to extract th e resonance parameters
non-perturbatively from rst principles is the use of Latti ce QCD.

On a fundamental level, the appearance of a resonance is premily a dynamical phe-
nomenon, which is re ected in the observed scattering procgses. Hence, to extract the
resonance parameters, one needs to study particle scatteiyj. Experimentally, one can get
the information on the nature of the considered resonance &m the experimental measure-
ment of the scattering cross section or equivalently the sdering phase. Theoretically, the
procedure used in Lattice QCD is similar. Using the FSMs promsed in Refs. [21{25, 54],
the scattering phase can be computed numerically and then el to determine the values
of the resonance mass and the decay width.

The experimental measurements of the decay width for some swnances have reached a
precision of a few MeV$, while the masses are typically several hundred MeVs. Howey,
the lattice study of the decay width is still far away from such accuracy. Therefore, at
the current stage, our study is more of a conceptual and basimature to understand how

resonances can be treated and understood within lattice el theory. We believe that in

LFor example, the latest PDG [20] value of the {meson decay width is =149:1(8) MeV
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the future, with the increase of computing power and the acckeration of algorithms, the
Lattice QCD technique can provide a competitive result to experiment.

As we have discussed in Chapter 1, the case of thelmeson decaying into two pions
in the P-wave serves as an ideal laboratory for lattice studés of resonances and is of fun-
damental importance in understanding the underlying dynamcs of hadronic interactions.
Moreover, the results for the {resonance mass and decay width can directly be used in
applications such as the calculation of the vacuum polarizon tensor that is part of the
QCD corrections tog 2 [96,97] and the comparison of the electromagnetic form faor
of the pion with the vector exchange model [98]. Pioneering iempts were made to study

{meson decay in quenched QCD [99, 100] where no actual decagkes place. The rst full
QCD calculation [101] evaluated the decay width from the ! transition amplitude
hj i, which, however, was carried out with large quark masses thado not allow for a
physical decay since the requirement for decay, m =m < 0:5, had not been ful lled. So
far, only a few lattice calculations [102{104] had quark mases light enough to address the

{meson decay directly. All these studies concentrated on oly one or two scattering phases
for each ensemble thus generating too few data points to maput the resonance region.

In this thesis we calculate the P-wave pion-pion scatteringphase in the isospinl = 1
channel ful lling the physical kinematics of m =m < 0:5. As discussed in Chapter 3, we
perform the calculation in the CMF, the MF1 and the MF2, respectively. In each frame, we
evaluate the scattering phase from the energy eigenvalued the ground state and the rst
excited state. Using three frames allows us to obtain six paits for the scattering phase for
each ensemble.

We think that therefore our calculations have several advatages compared to the earlier
works. First, using the FSMs in di erent frames provides a check of the accuracy of the
FSMs themselves. Second, extracting the resonance paranges from six data points allows
us to obtain more accurate results. Third, some of the scatteng phases are measured
at energies which lie directly in the resonance regionnf =2;m + =2], allowing
us to directly map out the resonance region. Additionally, we compute the resonance

parameters at several values of the quark mass thus obtaingnthe quark mass dependence
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of the resonance mass and decay width.

5.2 Method

5.2.1 Correlation matrix

In determining the resonance parameters, we will concentri@ on thel = 1;13 =0 channel.
The reason is simply that in this channel, by neglecting the sospin symmetry breaking

e ects, we do not have to consider the computationally demamnling disconnected diagrams

that would appear inthe | = 1;l3 = 1 channel. Inthel = 1;l3 = 0 channel, the 0
meson decays into a * and in the P-wave. In each of the frames we will be using,
the energy eigenstate] ; i approximates the P-wave state if one ignores the states with
higher angular momentum. This is feasible if we construct tle statesj ; i using the
irreducible representation = T, forthe CMF, = A, forthe MF1 and = B, for the

MF2, respectively.

The nite size formulae, which relate the center-of-mass errgy Ecy on the lattice to
the P-wave scattering phase 1(p) in the in nite volume, are given by Eq. (3.84{3.86) in
Sect. 3.5. In the CMF, the value of Ecy is directly given by the discrete energy eigenvalue
E extracted from the large time behavior of the correspondingcorrelation function. In the

MF, Ecwm is related to E through the Lorentz transformation
E2, = E2 P?; (5.1)

where P is the total momentum of the MF.
In order to calculate the energy eigenvalueE, we construct a 2 2 correlation matrix

through
t Y0 t) Y(0
c“(t):?@( e )0 ( )()()X;

M )¥(0) (t) ¥(0)

(5.2)

where the  two-point correlation function is constructed from the int erpolating operators

detailed in Sect. 3.5. In the CMF, the interpolating operator for two pions is given by

_ o+ 2 2 . .2 2 .
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This operator belongs to theT, representation of the cubic groupOy, on the lattice. In the

two MFs, the operator can be given in a uni ed form through
= * P;t o;t oot Pt ; (5.4)

where P is the total momentum of the MF system. In the MF1, P = (2 =L )& and
the operator belongs to theA, representation of the tetragonal groupDy,. In the MF2,
P = (2 =L )(e + &) and the operator belongs to theB; representation of the orthorhombic
group Doy. All these operators belong to the isospin representation I(1 3) = (1;0) as
desired.

The interpolating operator for the neutral {meson is constructed through a local vector

current,

1 X iP % 0 X
=2 ° (@) (Y a-= ai; (5.5)

% i

)= °P;t)=

where 4 indicates the polarization of the vector current. To guarantee total momentum
conservation, the summation is taken over spatial positionx with a factor eP % which
constrains the considered states to those with momentun.

With the available operators ( )(t) and (t), one can construct the o -diagonal cor-
relator W )(t) Y(0)i. Ignoring boundary condition e ects for a moment, this o -d iagonal

correlation function can be written as

X
hij( ) Y©@)j i=hj( )Oe ™ Y0 i=" ah:E +j¥0) ie &t:  (5.6)

n

Here the energy eigenstates of the Hamilton operatot!, j ;E i, are created by acting
with the operator ( )Y(0) on the vacuumj i. a, is a coe cient which depends on the
way the operator is constructed. The eigenstate§ ;E i of the operator ( )Y(0) can

be represented as

j JE ni= Pl—z i "(en)  (@n)i ] T(n) ()i (6.7)

where p1n, and o, are the momenta of the interacting two pions.

The Ward identity in the continuum
@h " (pn)  (B2n)] ji=0 (5.8)
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together with the equation
h*(pn) (n)i o i=0 (5.9)

yields

(Pin + f20) h "(pn) (Rn)i~ J 1=0: (5.10)

This equation can be equivalently written as

h " (Pwn) (Rn)i~ 1= F(nifn)(Bn  2n); (5.11)

where F (pin; £2n) is a form factor. Eq. (5.5) and (5.11) together yield

h ()  (P2n)i YO) i = F(Pwmien)(@ (Bn  #2n)) : (5.12)

Using Eq. (5.12), one can rewrite the o -diagonal correlata as

. o X 1
hij( )t)Y0)j i = P—Ean (A (Pin #2n))

n

(F(Rin; Bn)  F(Ponipun)) e 5t (5.13)
Eq. (5.13) shows that, to get the best signal, one should cha® the vector-a parallel to the
relative momentum $1n f2n;n = 1;2 in order to have an optimal overlap with the state
to be extracted. However, in the case of interacting partices, we do not knowpi,  fn in
advance. Considering the fact that the momentum shift p is proportional to L 372, which
is a small correction to free lattice momentum 2 =L for large lattice size L, we use the
relative momentum of free particles instead. Therefore, tle polarization vector 4 is taken

to be parallel to & in the CMF, €; in the MF1 and € + & in the MF2, respectively.
5.2.2 Extraction of energies

The construction of the correlation matrix (5.2) provides us an e ective approach to calcu-
late both the ground state energyE 1 and the rst excited state energy E,. Here we describe
how this is achieved.

Inserting a complete set of eigenstates off into the correlation matrix C, »(t) yields

X2
Ci ()= h jOi(t)OJ(0)j i = Vine E'Vih + O(e B~ 2Y); (5.14)

n=1
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whereO;(t) (i =1;2) represents (t) and (t), respectively. The 2 2 matrix Vi, is de ned

as
Vin = h jOi(t)jni ; (5.15)

wherejni (n = 1;2) denotes then{th eigenstate, which are normalized such thathmjni =

mn -

A variational principle [23] is formulated by (t >t r)
R(t;tr) = Cz2 2(1)C, S (tr) = VR(Ltr)V T+ O(e Br-2'r) (5.16)

wheretg is a reference time slice. It is assumed to be large enough s$uthat the contribu-
tions to the matrix R(t;tr) from the excited states with En> » can be ignored.R(t;tr) is a

diagonal matrix

0 1
Ei(t tr)

1 0
R4(t;t
R(t;tr) = %b (ttn) X = %p ¢ X (5.17)
Ra(t;tR) e Ea(t tr)

Therefore, by diagonalizing the matrix R(t;tr), one can extract the energy eigenvalues of

En (n =1;2) from the Euclidean time dependence of the matrix elementdR,(t;tRr)
V 'R(GtrR)V) R(Gtr)) Rn(ttr)=exp( En(t tr)) ; n=1;2;  (5.18)

where we assume that is far enough from the boundaries to ignore boundary e ects.
Using the variational method we are able to isolate the grounl state and rst excited
state in a clean way. This is of particular importance in the resonance region, where the
avoided level crossing occurrs and the rst excited state ispossibly close to the ground
state. Such a situation renders the extraction of the groundstate energy unsuccessful when

only a single exponential t ansatz is used.
5.2.3 Anti-periodic boundary conditions

In the present work we use anti-periodic boundary conditiors for quarks in the time di-
rection, which results in a more complicated time dependene for the correlation matrix

Ca o(t).
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Here, we follow the analysis made in Sect. 4.2.2. Due to the humdary condition e ects,

the matrix elements Cj (t) are then given by

Cj(t) = Tr e "T Yo 0)e M0Y0) =z
X
= Vimn Vi, € En*E0T=2cosh(Em  Ea)(t T=2))=Z;  (5.19)
m;n

where the elementsVi, are de ned by
Vimn = tmjO; (t)jni : (5.20)

Among the two statesjmi andjni, if one is the vacuum state and the other is a physical state,
e.g. Emn =0 and E, > 0, then from the t dependence of the correlator, costif,(t T=2)),
we extract the energy of the physical state,E,. If neither of them is the vacuum state
(Em > 0, E,, > 0), then from the correlator, we extract the energy ofE,, E,, which is not
the energy of any physical state. In the case with a nite time extent T, those terms with
Em > 0 and E, > 0 (although thermally suppressed) do not varnish and they ca distort
the behavior of the correlation functions Cj (t), particularly in the large t region.

This phenomenon does indeed occur here for the operatd®; (i = 1;2). In the CMF,
intermediate statesmj = h *;(2=L )&j and hmj = h *;(2 =L )&sj give a constant, in t,

contribution to the correlation matrix because the energies of jmi and jni are equal,
fmjO;jnihnjOjmie E®T=2_7. E0 =2E (9 : p=(2 =L)e;; (5.21)
where E (p) denotes the energy of a pion with momentumyp
p
E (= m2+ $: (5.22)

In the MFs, intermediate states nj = h *;Pj and hmj = h *;0j give a contribution to the

correlation matrix through

tmjOjjnihnjoYjmie E° T2cosh(E (P) m )t T=2)=z; E° =m +E (P):

(5.23)
On the other hand, the standard contributions are given by

h JOIJEnIhEnjO)j ie "2 coshEn(t T=2))=Z: (5.24)
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The lowest two energy eigenvalues are approximately the{resonance energy and the energy

of a pion-pion scattering state
Ei=E(P); Eo=E or E;1=E ; Ex=E (P): (5.25)

For large enough volumesE = E® + E  EY , and hence the thermally suppressed con-
tributions to the correlation matrix are comparable to the standard ones whent approaches
T=2.

Since in the MFs, the t dependence of the thermally suppressed contributions is rio
a constant but a cosh function, the derivative method used inSect. 4.2.2 fails here. To
eliminate unwanted contributions, we remove the data points at very large t{values from

our analysis. In this case, the variational method is not spded and it yields
Rn(t;tr) ! Apcosh( Ex(t T=2)); n=1;2; for O t T=2: (5.26)

5.3 Lattice calculation

5.3.1 Ensemble information

Most of the results presented here are from a sequence of endaes with a lattice spacing of
a=0:079 fm. The pion masses range froom =480 MeV to 290 MeV. At all pion masses
the physical kinematics ofm =m < 0:5 is satis ed, which indicates that it is physically
possible for the to decay into two pions. We will analyze the higher two pion masses at a
box size ofL =1:9 fm and the lower two pion masses for a larger volume witi. = 2:5 fm.
In addition, we will also perform one calculation at a ner lattice spacing ofa = 0:063 fm
to check for possible lattice spacing artifacts. The paramters relevant for this calculation
are given in Table 5.1, and further details concerning the esembles used can be found in

Refs. [29{32].
5.3.2 Various source methods

For the calculation of pion correlation functions, it is known that the stochastic source
method is more e cient than the point source method. Therefore, we employ aZ 4 stochastic

noise with one noise sourceNs = 1) generated on all the time slicests =0; ;T 1. We
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Ensemble a L=a | m m =m N
A1 3.90 | 0.0085| 24 | 480| 0.43(1) | 176
Ao 3.90 | 0.0064| 24 | 420| 0.40(1) | 278
Az 3.90 | 0.0040| 32 | 330| 0.32(1) | 124
Ay 3.90 | 0.0030| 32 | 290 | 0.30(1) | 129
B, 4.05| 0.0030| 32 | 320 | 0.32(2) | 138

Table 5.1: Ensembles used in thd = 1 pion-pion scattering. We give the ensemble name
i.e. Aj; By, the inverse bare coupling = 6=g, the bare quark massa , the lattice size L=a
and the value of m in units of MeV. We also list the ratio m =m and the number N of
con gurations used.

perform T inversions for each con guration and each momentum mode. Wh the available
propagators, the correlator C;1(t) can be calculated as
D E ,;x D E
Cu(®= ( )®(C ) (O = T ( )+t ) (ts) - (5.27)
The rather large e ort to generate propagators on all the time slices pays o because with
these propagators we obtain the correlators with high predion.

In the calculation of the o -diagonal correlator, C,1(t), the contraction of the quark
elds leads to a three-point diagram. Since the two pion interpolating operators are located
at the same source time slices, we use the sequential propagator method to construct the
correlator. We calculate C,1(t) as

D E
Ca(t)=  ®( )0 =

X D E
(t+ts)( Y(ts) (5.28)

=P

ts

and average the correlator over all time slicests. For the other o -diagonal correlator
C12(1), the two pion interpolating operators are placed at the sirk time slice t + ts which
would require T sequential propagators for each source time slice, leading another large
computational e ort. However, using the relation Ci,(t) = C%’l(t), we can substitute C1,(t)
by C%’l(t) in our calculations thus saving a lot of computer time.

For the rho-rho correlator, Cy»(t), we performed a comparison between th& 4 stochastic
source method and the point source method and found that the esults look similar in terms
of the required computational e ort for a given signal to noise ratio. Historically, we started

our work with the calculation of the hadronic vacuum polarization, see Chapter 6. In that
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work, we have generated point source propagators at the paraeters listed in Table 5.1.
Since we did not observe any advantage of stochastiZ, sources, we used these available

propagators to construct the rho-rho correlator

D E
Cop(t)=  Y(t+ts) (ts) ; (5.29)

where the source time slicests, are chosen randomly to reduce the autocorrelation between
consecutive trajectories.

Due to the isospin symmetry breaking e ects at non-zero latice spacing, the discon-
nected diagram does not vanish. To address its contributionto the neutral {meson, we
need to generate additional all-to-all propagators. Howeer, the disconnected diagram cor-
rection has been studied in Ref. [105], and found to be negiigle. Therefore, we neglect it
also here in the rho-rho correlator. In the calculation of carelator h(  )(  )Yi, we are able
to address the disconnected diagram since we put stochast&ources on each time slice. We
nd that the disconnected diagram makes only a small contribution to the correlator but
brings in a signi cant noise. Since from all existing invesigations it appears that the discon-
nected contributions are negligibly small, we leave them otiin the whole 2 2 correlation

matrix.

5.4 Results

5.4.1 Energy eigenvalues

In Fig. 5.1{5.5 we show our lattice results for R, (t;tg) (n = 1;2) de ned in Eq. (5.18)
in the CMF, MF1 and MF2, as a function of the time t together with a correlated t
to the asymptotic form given in Eq. (5.26). There are two main sources of systematic
errors. One originates from the higher excited states and aects the correlator in the low-
t region. The other arises from the unwanted thermal contribtions, which distorts the
correlator in the large-t region. By tuning the beginning tmin and the endthax of the tting
window, we can control the systematic errors e ectively andensure the tting results are
safe from these systematic e ects. In our calculations, weet t.,, to be tg + 1, where tg
is the reference time slice given in Eq. (5.16), and increasi; to reduce the higher excited

state contaminations. Besides this, we setnax to be su ciently far away from the time
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Figure 5.2: For ensembleA,, the correlator
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MF2, respectively. The solid lines are corre-
lated ts to Eg. (5.26), from which the en-
ergy eigenvaluest, are extracted.

Figure 5.1: For ensembleA1, the correlator
Rn(t;tr) (n=1;2) as a function oft. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated ts to Eg. (5.26), from which the en-
ergy eigenvaluest,, are extracted.
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Figure 5.4: For ensembleAg4, the correlator
Rn(t;tr) (n =1;2) as a function oft. From
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MF2, respectively. The solid lines are corre-
lated ts to Eq. (5.26), from which the en-
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Figure 5.3: For ensembleAs, the correlator
Rn(t;tr) (n=1;2) as a function oft. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated ts to Eq. (5.26), from which the en-
ergy eigenvaluesk,, are extracted.
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Figure 5.5: For ensembleB, the correlator Figure 5.6: For ensemble A1, the scatter-
Rn(t;tr) (n=1;2) as a function oft. From ing phases calculated in the CMF, MF1 and
top to bottom, the three plots present the MF2 together with the e ective range for-
lattice calculations in the CMF, MF1 and mula t. At the positions where the scatter-
MF2, respectively. The solid lines are corre- ing phase passes= 2 and = 4, the resonance
lated ts to Eq. (5.26), from which the en- massm and the decay width  can be de-
ergy eigenvaluesE, are extracted. termined.

slicet = T=2 in order that the tting results are protected from the unwa nted thermal
contributions. The corresponding parameterstg, tmin and tmax used in this work are listed
in Table. 5.4. All the ensembles shown in Fig. 5.1{5.5 visiby agree with the corresponding
t and lead to reasonable values of 2=dof. The t quality 2=dof together with the t

results for E, (n = 1;2) are also given in Table 5.4.
5.4.2 Lattice discretization e ects

In the continuum limit, the center-of-mass energy Ecym is simply related to the energy
spectrum E,, (n = 1;2) through the Lorentz transformation (5.1). On the lattice , the
discretization e ects explicitly break the Lorentz symmetry and the determination of Ecy

su ers from such discretization errors. Another source of dscretization errors arises from

the FSM. It uses the continuum dispersion relation
p
Ecm =2 m2+ p2 (5.30)

to relate energy Ecpm to the relative momentum p between the two interacting particles.
On the lattice, such relation should be modi ed.

These two sources of systematic errors have been studied ineR [54], where the authors
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suggest to use the lattice modi ed relations

coshEcwm ) = cosh(Ep) 2X sin(Pi=2); n=1;2;
i
coshEcm =2) = 2sin?(p=2) + cosh(m ) ; (5.31)
instead of the continuum ones to reduce the systematic erra. Following this suggestion,
we calculate the energyEcy and the momentum p from the energy eigenvaluesE, using
Eqg. (5.31) and then estimate the P-wave scattering phasei(p) by putting pinto Eq. (3.84{
3.86). The results forEcw, p, 1(p) and sin® 1 are given in Table 5.5.

Here, we want to add a word of caution. The FSMs are valid forelastic scattering
processes. In a situation with too high energy, i.e. wherEcy > 4m , the inelastic
scattering channel will open and an unknown systematic error will a ect the determination
of the scattering phase. In our calculations, we exclude theesults with energyEcym & 4m

and thus make use of the nite size formula in a safe way.
5.4.3 Extraction of resonance parameters

So far, we collected the P-wave scattering phases at six dient energy levels, two from
each of the three Lorentz frames employed. In order to interpet these results, we still
need an analytic expression that describes the dependencé the scattering phase on the

center-of-mass energ\Ecy - Usually, one employs the e ective range formula [106] to met

this demand
9 p3 q__
tan 1(p) = 6 Ecm(m? EZ,) , p= EZ,=4 m?; (5.32)
whereg is the e ective ! coupling constant, which largely determines the size of
the {meson decay width through
- C P s e e (5.33)

In Eq. (5.32), the center-of-mass energyecy and the momentum p satisfy the dispersion
relation in the continuum. Since we are working on the lattice, this relation does not hold
due to discretization e ects and we therefore employ the latice dispersion relation (5.31),

as described earlier.
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Figure 5.7: For ensembleA,, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the e ective range for-
mula t. At the positions where the scatter-
ing phase passes= 2 and =4, the resonance
massm and the decay width  can be de-
termined.
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Figure 5.9: For ensemble A4, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the e ective range for-
mula t. At the positions where the scatter-
ing phase passes= 2 and =4, the resonance
massm and the decay width  can be de-
termined.
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Figure 5.8: For ensembleAj, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the e ective range for-
mula t. At the positions where the scatter-
ing phase passes= 2 and =4, the resonance
massm and the decay width  can be de-
termined.
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Figure 5.10: For ensembleB, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the e ective range for-
mula t. At the positions where the scatter-
ing phase passes= 2 and =4, the resonance
massm and the decay width  can be de-
termined.
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m (MeV) | m (MeV) (MeV) g
A 480 1118(14) | 39.5(8.2) | 6.46(40)
A, 420 1047(15) 55(11) | 6.19(42)
Aj 330 1033(31) 123(43) | 6.31(87)
Ay 290 980(31) 156(41) | 6.77(67)
B1 320 997(52) 158(68) | 7.3(1.1)

Table 5.2: The results for the {resonance masam , the decay width  and the e ective
! couplingg at pion masses ranging from 480 MeV to 290 MeV.

We t the results for the scattering phase with the e ective r ange formula and show the
corresponding ts in Figs. 5.6{5.10. At the position where the scattering phase passes 2,
the resonance massn and hence

is determined. Additionally, the values of g are

also evaluated from the t. The corresponding results are gven in Table 5.2.

5.4.4 Isospin symmetry breaking

As we have mentioned in the previous chapters, twisted mass ditice QCD violates the
isospin and parity symmetries at any non-vanishing value ofthe lattice spacing. As a
result, for any value of a 6 0 it is possible for the {meson to decay into three pions, which
means that at non-zero lattice spacing the upper bound of theelastic scattering region
is lowered to 3n . Additionally, the isospin symmetry breaking causes a mixng between
states in the |l = 1 channel and those inl = 0 and | = 2 channels. If this e ect would
be large in our calculation, it would be necessary to adapt uscher's method to the isospin
mixing case.

In order to test for possible isospin symmetry breaking e eds, we therefore performed
our calculations of the resonance parameters at two di erent lattice spacings. To his
end, we have {besides the so far used value af = 0:079 fm{ performed an additional
calculation of m and at a second lattice spacing ofa = 0:063 fm at a pion mass of
320 MeV. This pion mass lies very close to that of the one obtaied at a = 0:079 fm
and m = 330 MeV. The physical volumes of these two ensembles di er,so the results
cannot be directly compared. However, assuming that the FSMcorrectly accounts for

the nite volume dependence of the energy eigenvalues for #hse two ensembles, we can
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compare the results for the two lattice spacings. We nd statistical agreement between the
two ensembles as indicated in Table 5.2. So far, this is only &ingle check and we need
to eventually examine the e ects of isospin symmetry breakhng more carefully, but in this

thesis, due to the large statistical errors of our results inTable 5.2, we assume that such

systematic errors are small compared to the statistical ons.
5.4.5 Quark mass dependence

We now discuss the quark mass dependence of the resonance parameters. There are
several references from e ective eld theory (EFT) for the quark mass dependence of the

{meson [107{110], that can guide the extrapolation ofm and in quark mass through

m MO+ CniM2+ CnoM 3+ CrisM 4 In(M2) + O(M %) ;

O+ C1 M2+ CoM3+ C3M?InN(M?) + O(M% : (5.34)

Note that m and are not only statistically correlated, but also inherently related to
each other, suggesting that the coe cients Cn,j and C ; (i=1,2,3) might not be completely
independent (see the following EFT descripiton as an examm@). In this work we will follow
the EFT [111] description wherem and  are considered as the real and imaginary part
of the complex pole of the {meson propagator. We therefore introduce the complex pole

parameter Z de ned through
Z=(m i =2)*: (5.35)

The power counting in the EFT is addressed by using the compbe-mass renormalization

scheme, under whichZ is written perturbatively as a loop expansion
z=20+z04+ 704+ (5.36)

Each of these terms has its own chiral expansion. Up to third ader in the chiral expansion,

they read [111]

z®=z +cM?; Z =(M i )?); C =Ci+iCo
2
I LU ¥ e i VI GO ) ¢ M* Ingz 1
= n— !
16 2Z Mz < 24 352

(5.37)
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with the real parameters M , , C1, Cp, ¢ and g?. Using the pion mass dependence
of Z, we can determineZp,y at the physical point, which can be converted to the physical
resonance massn : pny and decay width . gy .

In our calculation, the statistical errors of our lattice determination of the resonance
parameters are still large. In addition, the lightest pion mass used in our calculations is
about 300 MeV where it is unclear whether the formulae derivd in the EFTs are applicable.
Thus, as a starting point, we consider only the leading termZ (@ in expansion (5.36) and
study the quark mass dependence of the {meson using the simplest linear polynomial in

MZ
Z=7Z +CM?: (5.38)

The tting results are listed in Table 5.3.

Fit M ; phy ; phy M C1 C |9
Eq. (5.38) | 0.91(3) | 0.18(3) || 0.89(04) | 0.19(4) | 2.000.3) | 0.6(2) | |
Eq. (5.39) | 0.90(8) | 0.18(3) || 0.88(11) | 0.19(4) | 2.3(3.9) | 0.5(4) | 7(39)

Table 5.3: The mass and decay width from the chiral extrapolations of di erent models.
The values ofm.pny, :pny, M ,  are given in units of GeV andg  in units of GeV 1.

In the left panel of Fig. 5.11 we plot the mass of the {meson as a function of the square
of the pion mass together with the linear t (5.38). Using thi s simple linear extrapolation,
our lattice result turns out to lie high relative to the PDG va lue of the {meson. We try
a more sophisticated t, in which we include the term Z® in Eq. (5.36). Note that in the
chiral expansion (5.37) ofZ®, the dominant term is M 2 and the terms M #In(M 2=M?2)
and M 4 are more suppressed in the chiral limit. We therefore t our lattice results to the

asymptotic form

Z=7Z +C M? %gf Z¥2Mm 3 (5.39)

The t results are also listed in Table 5.3. We nd that the sig nal-to-noise ratio of g
is terribly poor. Therefore it is impossible to include evenhigher order terms in the t.

We plot the mass of the {meson as a function of the square of the pion mass together
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with the t to Eq. (5.39) in the right panel of Fig 5.11. Althou gh the result for the mass
is still high relative to the PDG value, the error band becomes much larger compared to
the linear t, especially in the low pion mass region. It suggests that the study of the {
resonance at yet lighter quark masses is very important to uderstand the chiral dynamics
of the {resonance. Besides this, it also indicates that a more prase comparison with
experiment will require reducing the statistical errors and tting the lattice results to more

sophisticated chiral extrapolation formulae.

1.2 1.2
S
[¢]
e
£ i . 2] ] i . i
0.8 — Fitto OM )| ogl — Fitto O(M,) |
| e a=0.079fm || | ® a=0.079fm ||
® 3=0.063fm m 3=0.063fm
0.7+ PDG data [ 0.7 PDG data H
| | | |
0'60 0.1 0.2 0.60 0.1 0.2
mpZ(GeVZ) mpz(Ge\/z)

Figure 5.11: The {meson mass as a function of the square of the pion mass. In thieft
panel, we t the lattice results to Eq. (5.38). On the right pa nel, we t them to Eq. (5.39).

In Fig. 5.12, we plot the couplingg as a function of the square of the pion mass
and nd that g is almost independent of the pion mass. Moreover, the value fog
is consistent with the PDG value. Since the decay width is lagely determined by the
coupling g , the consistency ofg  with the experimental value also implies that the
lattice determination of the decay width . ,ny should agree with the PDG value. This can

indeed be inferred from Fig. 5.13, where we show the latticeasults for  as a function of
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the square of the pion mass together with the linear t (5.38) in the left panel and with the
t to Eq. (5.39) in the right panel. We nd that including the M 2 term has only a slight
e ect on the determination of . At the physical point, the decay width turns out to

be the same for the two ts and is given as
- phy = 178(32) MeV ; (5.40)
which is consistent with the PDG value within 1
-ppc = 149:1(0:8) MeV : (5.41)

Note, however, that the value determined from our lattice cdculation is much less accu-
rate than the one extracted from experimental measurements Therefore, we consider the
present work more as an initial study of whether and how resoance parameters can be
extracted from non-perturbative lattice calculations and not as a precise determination of
these parameters. The results we have obtained here demomate, however, that reso-
nances can indeed be analyzed on nite size lattices with nurmrical calculations. This is
very promising, given the number of hadrons that appear in the physical spectrum in QCD

as resonances.
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Figure 5.12: The e ective coupling g as a function of the square of the pion mass.
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Figure 5.13: The decay width as a function of the square of the pion mass. In thdeft
panel, we t the lattice results to Eq. (5.38). On the right pa nel, we t them to Eq. (5.39).
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Frame tgr=a tnn=a tmax=a n  2=dof aE,
1 221 0.4559(52)
CMF 7 8 18 5 126  0.6584(90)
1 0.76  0.4869(35)
Ar MFL 9 10 18 5 140 0.5563(98)
1 065 0.5660(42)
MF2 8 9 18 5 080 0642011)
1 066 0.4301(52)
CMF 8 9 75 117 0.637016)
1 048  0.4537(25)
Az MFL 9 10 75 049 0.527(12)
1 0.37 0.5343(57)
MF2 9 10 175 040  0612(16)
1 1.03 0.4037(68)
CMF 8 9 5 102 0.4931(80)
1 116 0.3638(13)
As  MFL 10 11 75 o2 0.474(23)
1 0.07 0.4330(25)
MF2. 9 10 75 o067 o051808)
1 136 0.3844(79)
CMF - 8 o 205 190 0.4591(86)
1 103 0.3363(14)
As MFL 9 10 20 5 112 0.440(19)
1 072  0.4035(36)
MF2 9 10 20 5 121 049022)
1 070 0.327(14)
CMF 13 14 20 5 001 066(14)
1 0.99 0.3081(34)
B MFL 13 14 205 036 0.393(33)
1 0.08  0.378(11)
MF2 13 14 205 107 0.454(33)

Table 5.4: Extraction of energy eigenvalues for the ground state and tle rst excited state
in the CMF, MF1 and MF2. In the table we list the ensemble number, the reference time
tr, the beginning and end of the tting window, tmin and tmax, the t quality  ?=dof and
the t results for energy eigenvaluesg, (n =1;2).
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Frame n aE, aEcwm ap 1() sin®
1 0.4559(52) 0.1207(50) 136.7(3.5) 0.470(61)
CMF 5 0.6584(00) 0.2686(57) 169.9(8.7) 0.031(52)
1 0.4869(35) 0.4137(41) 0.0729(61) 4.66(29) 0.00661(83)
Ar MFL 5 05563(98)  0.494(11) 0.1543(91) 162.0(5.2) 0.095(53)
1 0.5660(42) 0.4356(56) 0.1000(62) 15.28(40) 0.0694(36)
MF2 5 0642(11) 0533(13) 0.1838(97) 159.6(6.4) 0.121(72)
1 0.4301(52) 0.1331(42) 127.9(31) 0.623(52)
CMF 5 0.637016) 0.2719(96)  165(15)  0.07(13)
1 0.4537(25) 0.3737(31) 0.0794(36) 4.425(41) 0.00595(11)
Az MFL o 0527(12)  0.461(14) 0.157(11) 159.2(6.3) 0.126(73)
1 0.5343(57) 0.3925(80) 0.0997(79) 12.89(65) 0.0497(49)
MF2 5 0612(16) 0495(20) 0.182(14) 158.6(8.7)  0.13(10)
1 0.4037(68) 0.1516(46) 69.6(5.9) 0.878(68)
CMF 5 0.4931(80) 0.2081(48) 156(10)  0.17(14)
1 0.3638(13) 0.3076(15) 0.0761(16) 2.40(42) 0.00176(61)
Az MFL o 0474(23)  0433(25) 0171(16) 103(22)  0.95(18)
1 0.4330(25) 0.3354(33) 0.1013(27) 4.3(1.5)  0.0057(40)
MF2 5 0s518(18) 0441(21) 0176(13) 120(15)  0.75(23)
1 0.3844(79) 0.1534(50) 67.4(6.6) 0.852(81)
CMF 5 04501(86)
1 0.3363(14) 0.2743(17) 0.0726(15) 2.43(33) 0.00180(49)
Ae MFL 5 044019) 0396(22) 0.161(13) 116(16)  0.80(22)
1 0.4035(36) 0.2959(50) 0.0915(40) 6.5(1.7)  0.0128(66)
MF2 5 0490(22) 0.407(27) 0167(17) 128(17)  0.63(29)
1 0.327(14) 0.1272(93) 99(11) 0.975(57)
CMF 2 0:66(14)
1 0.3081(34) 0.2387(44) 0.0607(43) 3.55(30) 0.00384(64)
Bl MFL 2 0.393(33) 0.342(38) 0.137(24) 141(22) 0.40(38)
1 0.378(11) 0.260(16) 0.080(13) 8.2(3.2) 0.021(16)
MF2 2 0.454(33) 0.362(42) 0.149(26) 144(24) 0.35(39)

Table 5.5: P-wave scattering phase 1(p) at the energies of the ground state and the

rst excited state in the CMF, MF1 and MF2. We list the ensembl e number, the energy
eigenvalue E,, the center-of-mass energyEcy , the momentum p, the scattering phase
1(p) in units of degree and sirf 1(p). The results marked by a star denotes that the
corresponding energyEcy is above the 4n  threshold. We therefore exclude them from

our calculations.
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CHAPTER VI

VACUUM POLARIZATION AND HADRONIC MUON
ANOMALOUS MAGNETIC MOMENT

6.1 Physical background

In Chapter 1, we discussed the basic motivations for the latice calculation of the hadronic
vacuum polarization function, ( Q?). First, it can be used to determine the Adler func-
tion [9{11], which provides a direct comparison to experimatal data of hadronic cross
sections. Second, it can be used to compute the hadronic caribution to the muon anoma-
lous magnetic moment,a [18,96,97,112]. Third, combined with a perturbative calcuation,
it can be used to extract the strong coupling constant, s [113,114]. In this thesis, we will
calculate ( Q3) for pion masses from 640 MeV to 290 MeV usind\; = 2 maximally twisted
mass fermions [29{32] at two lattice spacings and two physial lattice volumes to address
lattice artifacts and nite size e ects. Using the lattice d etermination of ( Q2), we will
then present results for the leading order hadronic contritution to the muon anomalous
magnetic momenta .

Similar to the electron, the muon is a Dirac fermion with intr insic spin 1=2. Its magnetic

dipole moment is related to its spin through

S; (6.1)

where~ is the magnetic dipole moment,S the spin vector andm the mass of the muon. The
Dirac theory predicts the value of the Lande gfactor for the muonasg =2[115,116]. If one
takes relativistic quantum uctuations (also called radiative corrections) into consideration,
then g deviates from 2. The di erence is the muon anomalous magnetic moment It is

de ned as

a =(g 2)=2: (6.2)
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Theoretically, the muon anomalous magnetic moment is extrated from the vertex func-

tion that describes the electromagnetic interaction of themuon with the photon,

@ (P

= ( ie)u(Pd (aQu(p)
(p)

= (RuE)  Fud+ iR U@ (63)

whereq = p® pis the photon momentum, and p and p° are the incoming and outgoing
momenta of the muon. The Dirac spinor u(p) denotes the relativistic wave function of a
free muon, and the matrix is given by = i§[ . ]. F1(0®) is the electric charge
or Dirac form factor and F»(¢?) is the magnetic or Pauli form factor. These form factors
describe how the muon interacts with the electromagnetic dd. In the static limit, q2 I 0,

we have
g =2F1(0)+2F,(0)=2+2F,(0) ; (6.4)

where we have used the charge normalization conditio-1(0) = 1. Eqg. (6.2) and Eq. (6.4)

together yield the relation for the anomalous magnetic momat
a = F,(0): (6.5)

At tree level, F»(0) is zero. The one-loop correction toF,(0) originates from quantum

uctuations via the virtual photon-lepton interaction in Q ED [117]

QED(1) _
/&\) a = =,

where is the QED ne structure constant. The higher order corrections, in the pertur-
bative expansion, involve e ects from all sectors of the Stadard Model (SM) as well as

unknown new physics (NP) contributions

a = a‘SM + aNP — aQED + aWeak + aQCD + a‘NP : (66)
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(had)

Figure 6.1: Leading hadronic contribution to g 2.

In Eq. (6.6) the NP contributions to a are proportional to

aNP / m?
2 )
a Mp

(6.7)

where M \p is the mass of a hypothetical heavy state for some new physicEq. (6.7) shows
that a is much more sensitive to contributions from new physics tha the anomalous
magnetic moment of the electron, ae, since aN® grows quadratically with the considered
lepton mass and is hence magni ed ina relative to ae by a factor (m =me)? 4  10%.
This is what drives a to be a very important quantity for probing new physics.

Today, the anomalous magnetic moment of the muon,a , has been both measured
and calculated to high precision. The measurement of the Mun (g 2) Collaboration
is a8 = 116592089(6:3) 10 10 [15] and has a fractional accuracy of B4 10 ©. The
Standard Model valueaSM has been estimated by many authors. Recent calculations peent
a discrepancy betweeraSM and aFX of 32 (e*e -based) [16] or 19 ( -based) [17]. The
dominant source of this variation is the leading order hadraic contribution a"a represented
in diagram 6.1. This quantity is a pure QCD observable and hasheen shown to be calculable
in Lattice QCD calculations even in Euclidean space-time [8].

The hadronic contribution a"@ has previously been calculated on the lattice using
guenched domain wall fermions [18], quenched improved Wits fermions [112] and dy-
namical rooted asqtad improved staggered fermions [96]. Irthis thesis we present our
calculation of a"@ using two- avor maximally twisted mass fermions. Since in this calcula-
tion we use a di erent discretization as in Ref. [96], it provides a very important cross-check
of the earlier obtained results. In addition, our work is the rst to examine nite size e ects

and lattice artifacts. This allows for a control of most sources of systematic error, which is
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necessary for a reliable calculation ofhad,

6.2 Determination of  ahad

6.2.1 Traditional method in Minkowski space

As can be seen in Fig. 6.1, the leading order hadronic contrilition a"@ originates from the

hadronic vacuum polarization tensor, which is given by

(a)
‘WV‘OWW ) (M=(aqg dg )( 5,

where q is the 4-momentum in Minkowski space. Traditionally ( ¢?) is calculated for
time-like momenta g2 > 0 by using the dispersion relation and the optical theorem. The
dispersion relation allows for an analytic continuation from the real part of ( ¢) to its
imaginary part

¢

(@ ©= & g5 M9

o S @ ¢

and the optical theorem relates the imaginary part of ( s) to the experimental data of the

total cross section ofe* e annihilation
Im( s)= §R(s,) ; (6.9)

where R(s) is the cross section ratio de ned in Eqg. (1.1). Using Eq. (68) together with
Eq. (6.9), the leading order hadronic correctiona™® can be directly calculated in terms of

R(s) via the following relation (see Ref. [118] for a review)

Z
271 ds S
had — .
a<s = _— —K — R(S); 6.10
32 ,.s —z R0 (6.10)
where
Z, 2
s x“(1 x)
K — = dx : 6.11
m?2 o X2+(1 x)s=m? (6.11)
Using recent high-precisione*e ! * cross section data from the BABAR experi-

ment [119], Ref. [16] obtains for thee* e -based evaluation of

a"d=(695:5 4:1) 10 °; e'e -based: (6.12)
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Besides thee" e -data, the experimental data of hadronic -decays can also be used to
calculate a"@d. Including the recent ! 0 data from the Belle experiment [120],

Ref. [17] reports the following result for ahad
a"d = (705:3 45) 10 *:  -pased: (6.13)

Hence, a 16 discrepancy between thee* e - and the -based determinations ofa"@ is
found. In both cases, the error ofa"™d alone represents 60% of the theoretical error. It is
exactly here where lattice calculations are desirable to povide a theoretical determination

of a"ad from rst principles.
6.2.2 Lattice determination in Euclidean space

On the lattice, the vacuum polarization function ( Q?) is calculated in Euclidean space

with Q2= ¢? > 0 (space-like momentum) via the relation

(Q=(QQ Q )(QH: (6.14)

It is proved in Ref. [18] that ( Q3?), calculated on the lattice and in Euclidean space, can be
directly inserted into the one-loop diagram for a"@ without analytically continuing ( Q3)
back to Minkowski space, or requiring its value in the regionQ? < 0 which would not be
accessible to lattice calculations. The hadronic contribtion a"@ can then be calculated

from the vacuum polarization function at space-like momeng through the relation [18]

Z
had _ 2 ld_QzF Q?

a [

Q> ) ; (6.15)

where the kernelF is given by

2 64
% = : (6.16)

F = q 79
(Q%=m?)2 1+ 1+4m?=Q? 1+4m2=Q?

Here we remark that the integrand in Eq. (6.15) is peaked at small momenta and the kernel,
F(%;), attains a maximal value at Q? = (p 5 2)m? 0:003 Ge\? with a muon mass of
m = 105:7 MeV. (The inverse power ofQ? in Eq. (6.15) is canceled by the subtraction

( Q% (0), which is proportional to Q2.
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The smallest momentum accessible in our nite volume calcution is Q2 = (2 =T )?
0:06 GeV?. Therefore a reliable low Q2 extrapolation is essential to calculate (Q?2). In
particular the ultra-violet subtraction at Q2 = 0, required to renormalize ( Q2), induces

larger uncertainties than naively expected.

6.3 Determination of ( Q9

6.3.1 Conserved current in the continuum

In the above section, the relation between the leading ordehadronic contribution to the
muon anomalous magnetic momenta™ and the hadronic vacuum polarization function
( Q?) in Euclidean space is established via Eq. (6.15). We will n& discuss how to compute

( Q?) itself. In the continuum limit, the vacuum polarization te nsor (Q) is de ned as

Z
Q) =i d*eQ X VTI (x)J (y)0i (6.17)

whereJ is the hadronic electromagnetic current

X

J (x) & (X))  f(x)

f

2 1 1
éu(x) u(x) éd(x) d(x) és(x) s(x) +

= (x) (x) %s(x) s(x) + : (6.18)

Here, is a matrix in the Ny =2 avor space
1

0
:%2:3 0 ¢
0 1=3

3. (6.19)

ol
NI =

In the continuum, the local vector current given in Eq. (6.18) is conserved, satisfying the

Ward identity
@) (x)=0 ) Q (Q =0: (6.20)

Eq. (6.20) together with Lorentz symmetry indicates that (Q) is proportional to the
projector Q Q Q2 . By eliminating the factor Q Q Q? , one can hence extract

the vacuum polarization function ( Q3).
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6.3.2 Conserved current on the lattice

On the lattice, due to discretization e ects, the local vector current is not conserved any

more. In this work, we will use twisted mass fermions. Its femionic action Sy, is given by

X
Sim = (X)[Dw + mog+i 53] (x): (6.21)

X
The Noether theoremtells us that there is a one-to-one correspondence between given

continuous transformation symmetry and a corresponding caservation law. Let us look at

a vector avor transformation under which the fermion elds behave according to
v X)=ivx) )5 v ()= 0 (X) v(x): (6.22)
We call such a transformation a symmetry if it leaves the acton invariant

vSm =0 ) X v @M+ ()Mo ] )+ ()i s[ %] (x) =0;
(6.23)
where @ is the backward lattice derivative given in Eq. (2.21) and the vector currentJ™ ()
is de ned as
JM(x) = % (x) ( NU (x) (x+7)+ (x+7) ( +n)U(x) (x) @ (6.29)

Since the avor matrix  de ned in Eq. (6.19) commutes with both mg and 2, the action

invariance condition v S, = 0 directly yields the Ward identity
@J™(x)=0 : (6.25)

In this way, we construct the conserved current (6.24) in thetwisted basis for twisted mass
fermions. Performing the axial transformation of Eq. (2.58, we can translate the conserved

current to the physical basis. From the simple property
=exp( ! 53=2) exp( i! 53=2); (6.26)

we nd that the conserved vector current in the physical basis retains the same form as for
standard Wilson fermions.

In our calculations, we will use the conserved Noether curnet in the twisted basis (6.24)
instead of the local current. This has the advantage that no enormalization factor is

required and ensures that the Ward identity holds even for nm-zero lattice spacing.
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6.3.3 Ward identities

Eq. (6.25) is only one example of the Ward identities. A more gneral form of such Ward
identities involving avor currents and general local operators O(x1; ;Xp) is derived

as [121]
hyvO(Xq; i Xp)i hO (Xq; iXn) vSmi =0: (6.27)

When O =1, Eq. (6.27) takes the form of Eq. (6.25). In the case of0O = J'™ (y), Eq. (6.27)

yields

iv(X) @IM(X)I™M(y) = hyI™@y)i=i(vQy) vy+*)@(y)i; (6.28)

X

or equivalently
h@I™M()I™Myi=( (x y N (x y)hO(yi (6.29)
where the contact term J® (y) is de ned by
I@(y) = % ) nNU +" )+ y+") ( +nUy) () @ (6.30)

Eq. (6.29) is the Ward identity for the vector-vector (actually conserved vector-conserved

vector) two-point function.
Performing a Fourier transformation, the conserved vectorcurrent in momentum space

can be expressed through

X o~
IM@Q) = REEAM(x) ;. Q =2sin % (6.31)
X
Correspondingly, we construct the vacuum polarization tersor (1)((3) as
1X o anma y A
DQ=g 2 EANM I (y)i (6.32)
Xy
with V = 1=(L3T). The Ward identity (6.29) translates into momentum space as
_ 1 X _
Q WQ=g iQuAyi: (6.33)

y
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a(fm) | v=& |L (fm) m (MeV) (M L)min
0.079 | 28 48| 1.9 420] [ 480]520] 640| 4.1
0.079 | 3® 64| 2.5 |290] 330 3.7
0.063 | 24° 48 15 450 3.5
0.063 | 3% 64| 2.0 [320 ] 450 [520] 3.3

Table 6.1: Parameters used in the calculation of the hadronic vacuum plarization function.

We are therefore led to de ne

X

Q= W+ @@Q); @WQ-= @ (y)i : (6.34)

<| kR

y

(Q) as given in Eq. (6.34) ful lls the relation & (&) = 0 and allows us to extract

the vacuum polarization function ( &2) through the relation!

@=(QQ @ ) : (6.35)
6.4 Lattice setup

The details of the ensembles used in this work are given in Tde 6.1. We perform the
calculation at two lattice spacings a = 0:079 fm and a = 0:063 fm with the pion mass
ranging from 640 MeV to 290 MeV. At the lattice spacing a = 0:063 fm and a pion mass
m = 450 MeV, there are two ensembles with di erent lattice sizes L, which allows us to
perform a study of nite volume eects. At m =520 MeV and L 2.0 fm, there are
two ensembles with di erent lattice spacings, which allowsus to perform a study of lattice
artifacts. Thus, we are in a position to estimate the system#ic uncertainties stemming
from these two e ects.
The calculation of (O) here proceeds as has been done in the previous work [18, 96,

112]. Propagators from point sources at a single lattice sé¢ and the four forward neigh-
bors are calculated and used to construct the vector currentvector current correlator in

Eq. (6.32). Here we place the sources randomly in the 4-dimesional Euclidean space to

! attice discretizaton e ects break the Lorentz symmetry. A s a result, besides the terms of &2 and
A & , other terms like a2&? &? will also appearin (@) and make its structure more complicated. In our
calculation, we neglect such lattice artifacts which is jus ti ed a posteriori when we employ a second value
of the lattice spacing to check our results.
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reduce the autocorrelation between consecutive trajectoes. For each point source, we per-
form twelve inversions due to the spin and color degree of fedom. The one exceptional
aspect of the calculation with twisted mass fermions is thatseparateu and d quark inver-
sions must be performed due to the modi ed s-hermiticity: 5D 5 = Dg. This can be

seen from the expression
D,'(xy) D My;x)= Dy'(xy) sDg'(xy) s: (6.36)

Note that we therefore perform 5 12 2 =120 inversions for each con guration, showing
that the calculation of the vacuum polarization tensor is a computationally rather demand-
ing task.

Twisted mass fermions break avor symmetry. However, the s-hermiticity relates u
and d quark loops and results in 9 (x;y) = Y (x;y). This expression is true for each
gauge eld con guration. The consequence is that Re[ 9(0?)] = Re[ Y(O?)]. Hence by
simply taking the real part of ( ©?2), which is real in the continuum limit, we eliminate any
explicit avor breaking in the valence sector?. Additionally, we expect the real part of ( §2?)
(which is the physically relevant piece) to be accurate toO(a?), even if the (unphysical)

imaginary part has O(a) corrections.

6.5 Results

6.5.1 ( Q?): analysis of systematic e ects

First we examine the nite size e ects in ( @2). We have calculated ( ®2) at two volumes,
L=2:0fmandL =1:5fm keepingm =450 MeV and a=0:063 fm xed. In Fig. 6.2 we
show the results for ( @2) for these two volumes. Since we are working at a xed value of
the the lattice spacing, we do not need to subtract (92) at 2 = 0 to cancel the ultra-
violet divergence for the study of nite volume e ects. From Fig. 6.2 it can be seen that
within the statistical errors there are no signi cant nite volume e ects for ( ©2) when
we use data withm L . 3.5 as done here. As can be inferred from Table 6.1, among all

our data sets, there is only one ensemble withm L slightly smaller than 3.5. We therefore

2|n the sea sector, the implicit avor breaking remains becau sem 6 m°.
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Figure 6.2: Volume dependence of (O2). This quantity requires an ultra-violet subtraction
but is infra-red nite. Within the statistical errors there are no signi cant nite volume
e ects for ( &2?).

expect that most of our data are safe from such systematic e ets. Below, by using di erent
tting models for the momentum dependence of ( @2), we will investigate how nite volume
e ects may in uence the results of a"@ where an additional extrapolation and subtraction
procedure has to be applied.

Next we examine the lattice artifacts in ( Q2) which we have calculated at two lattice
spacings,a = 0:079 fm anda = 0:063 fm. In both cases we have takem =520 MeV. The
lattice sizes are only slightly di erent: one isL = 1:9 fm and the other 20 fm. Fig. 6.3 shows
the unrenormalized results for ( Q2) demonstrating the ultra-violet divergence present
without the subtraction. In Fig. 6.4 we subtract ( Q2..) with Q2 taken at the lowest
momentum Q2 available for the corresponding lattice spacing. This proedure avoids the
extrapolation to @2 = 0. Since the volumes are almost the same for both lattice speings,
the values of Q2 are very similar which allows for a meaningful comparison. A shown

in Fig. 6.4, in the range 0.1 GeV? < Q2 < 4 GeV? we see no signi cant lattice artifacts in
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Figure 6.3: Lattice spacing dependence of (§?2) without the subtraction of ( ©?) needed
to regulate the vacuum polarization function.

() ()

As a next step, we now consider them dependence. Figs. 6.5 and 6.6 show the pion
mass dependence of ?2) with six values of m for a = 0:079 fm. Note that at the two
lowest pion masses, the lattice size is larger, thus th€)? values are di erent. Figs. 6.7 and
6.8 show ( Q?) with three values of m for a = 0:063 fm. Figs. 6.5 and 6.7 demonstrate that
there is no signi cant quark mass dependence for larg€)?, as expected from perturbation
theory [122,123]. Even when focussing on small values Gf2, as shown in Fig. 6.6 and 6.8,
we can only observe a systematic, but not statistically sigmcant, shift with quark mass

from 640 MeV to 270 MeV.
6.5.2 a"d: results from various data modeling

To determine the contribution of the hadronic vacuum polarization function to a"d, which
is our nal goal, we must parameterize and tthe Q2 dependence of (Q2?) and extrapolate

to &2 = 0 in order to perform the integral in Eq. (6.15). Unfortunat ely, there is no closed
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Figure 6.4: Lattice spacing dependence of (Q%) ( Q2.,). The results have been renor-
malized at the lowest value of @2  0:1 GeV? at each lattice spacing to illustrate the e ect
of the subtraction. In the range 0.1 Ge\® < Q2 < 4 GeV?, there is no explicit lattice
spacing dependence.

form available to describe the?2 dependence of (©2). However, the analyticity property
of ( Q) allows us to perform a t using simple polynomials. In Figs. 6.9 and 6.10 we show
ts to polynomials in &2 with 4 terms (cubic) and 5 terms (quartic). The lattice results
and corresponding curves are shifted vertically to illustate the quality of the ts and the
nature of the extrapolation to ©®2 = 0. For all ensembles the cubic t seems fully su cient
to describe the lattice results and hence from these t resuls we are able to calculatea"d
using Eq. (6.15). Fig. 6.11 shows the resulting values for athe ten ensembles using the
cubic t ansatz. We have also examined the volume and the latice spacing dependence of
our results and nd no explicit nite size e ects and lattice artifacts in accordance with
the discussion on (&?2) above, see Figs. 6.2 and 6.4. Additionally, there is no cleaquark
mass dependence visible in Fig. 6.11. We perform a linear tn the square of the pion mass

to extrapolate our results to the physical point where we nd a"@ = 383(44) 10 10, As
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Figure 6.5: Quark mass dependence of Figure 6.6: Quark mass dependence of

( &?) atlarge Q2 usinga = 0:079 fm. There

( &?) at low A2 usinga = 0:079 fm. There
is no noticeable quark mass dependence atis a systematic, but not statistically signif-
large A2, consistent with pQCD expecta- icant, shift with quark mass from m =

tions. 640 MeV to 270 MeV.
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Figure 6.7: Quark mass dependence of Figure 6.8: Quark mass dependence of

( @?) atlarge @2 usinga = 0:063 fm. There ( &2) at low Q2 usinga = 0:063 fm. There
is no noticeable quark mass dependence atis a systematic, but not statistically signif-
large O2, consistent with pQCD expecta- icant, shift with quark mass from m =
tions. 640 MeV to 270 MeV.
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Figure 6.9: The low Q2 extrapolation of
( &?) for a = 0:079 fm using polynomial
ts. Each ( @2 has been t to cubic
(dashed line) and quartic (solid line) func-
tions of @2, showing agreement for all data
sets.
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Figure 6.11: The results for a" using a
cubic t. Within the statistical errors, we
do not nd explicit nite size e ects and lat-
tice artifacts. Unfortunately, with the large
errors, we do not nd a clear quark mass
dependence either.
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Figure 6.10: The low O? extrapolation of
( &) for a = 0:063 fm using polynomial
ts. Each ( @2 has been t to cubic
(dashed line) and quartic (solid line) func-
tions of @2, showing agreement for all data
sets.
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Figure 6.12: The results for a"® using a
quartic t. As we increase the oder of the
polynomial from the cubic t to the quartic

t the results become much noiser and a sys-
tematic, but not statistically signi cant, rise
in a"d js found.
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Figure 6.13: The low &2 extrapolation of
( @) for a = 0:079 fm uisng a dipole t.
Each ( ®?) has been t to the dipole func-
tion (6.40) of &2, showing agreement for all
data sets.
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Figure 6.14: The low &2 extrapolation of
( @?) for a = 0:063 fm using a dipole t.
Each ( ®2) has been t to the dipole func-
tion (6.40) of O2, showing agreement for all
data sets.

can be seen in Fig. 6.11, our result indicated by the star symbl is lying rather low relative

to the e e - or -based determination ofa"™d. We will come back to this point later. In

Fig. 6.12 we show the results for all the ten ensembles usindné quartic t ansatz. We note

a systematic, but not statistically signi cant,

polynomial from the cubic t to the quartic t. At the physica

value of a" = 492(94) 10 10

rise in ahd as we increase the oder of the

| point we nd the resulting

Phenomenologically, as indicated by Eg. (6.8) and (6.9), te imaginary part of the

vacuum polarization function is related to intermediate hadronic states such as the low lying

vector mesons;!; ;

; and the hadronic multi-particle scattering states ;

3, 4; ;

which in the dispersion relation correspond to the states poduced in €" e {annihilation

via a virtual photon. In Eq. (6.10), the kernel K (s=m?) gives very high weight to the low

energy regime, in particular to the lowest vector bosons, ! and

. The contributions from

the three lightest vector mesons toa"d read [124]

a =501:37(349) 10 19;

a' =36:96(109)

10 19: a =34:42(093) 10 10;

(6.37)

present more than 80% of the total hadronic vacuum polarizaton contributions to a"ad.

This vector meson dominance is also expected fromPT [125], indicating that the vacuum
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polarization function at tree level is given by

fv 3 1
— +
12 Q%+ m? Q%+ m?

V(%) = (6.38)

where fy is the tree level vector decay constant. Notice that at tree ével, the masses of
both the and! mesons are the samem = m, = my. Eqg. (6.38) then becomes

fv_1 .
3 Q2+ mZ’

yee(Q?) = (6.39)

If we were to measure the decay constanty as well as the vector massemy from lattice

calculations, then Eq. (6.39) would have no free parameters Here, however, we set both
fyv and my as free tting parameters. Considering the ultra-violet divergent property of
( @), we need to employ a third t parameter ¢, leading to the t function

fv_ 1
3 Q2+ mg

(QY)= + 0 ; (6.40)

which we refer to as the dipole t. In Figs. 6.13 and 6.14 we shw the plots of the dipole t
for the two lattice spacings we have used. The lattice resukt and the corresponding t curves
are shifted vertically to illustrate the quality of the ts a nd the extrapolation to &2 = 0.
For all ensembles the dipole t seems to describe the latticaesults well. Using this t, we
calculate a" in the same way as discussed above for the polynomial ts. Fig6.15 shows
the resulting values fora for all the ten ensembles using the dipole t. Examining the L
and a dependence of our results we again nd that within our large $atistical errors there
are still no lattice artifacts and nite size e ects visible in our calculation. As in the case of
the cubic t, no clear quark mass dependence is found here. Wsg the linear extrapolation
we nd for a"d = 430(48) at the physical point. Our result lies low compared to the
e"e - or -based determination ofa", indicated by the triangle up and down symbols
in Fig. 6.15. Choosing the dipole t value as the nal result and taking the range of a"d
spanned by various tting models as a systematic error, we nd for a"@d = 430(73).

The results of our analysis fora"™d discussed above show that our data points are lower
than the e e - or -based value. One element of this discrepancy is due to the ¢athat
our lattice results for m lie high relative to the physical value as shown by Fig. 5.11

(see Chapter 5 for details). There, the extrapolation of the mass using e ective eld
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Figure 6.15: The results for a" using a dipole t. Within the rather large statistical
errors, we do not nd explicit lattice artifacts and nite si ze e ects in the determination of
a"ad ysing the dipole t. Unfortunately, there is no clear quark mass dependence either.

theory [111] shows that even if the mass is determined down tom 300 MeV, its quark
mass dependence may not satisfactorily be described by e @ue eld theory. Since the
meson makes the largest contribution to (Q2) and hence toa"d, it is hence important to
explore the behavior of ( Q?) and a" at even lower pion masses.

In principle, our calculation could be improved by using larger lattice sizesL or alter-
native technigues such as twisted boundary conditions withtwist angle . This could help
to explore ( Q2) in a smaller momentum region Q2 = ( =L )2. In addition, alternative
models could be used to t the data. One choice would be to setwe parameterfy free but
keep the other onemy xed, as it is done in Ref. [96]. By tting only two free parame ters,
it can be expected that the statistical errors of the tting r esults are smaller. A second

choice is that we can plug the values ofy and my calculated from lattice simulations into
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ee(Q?) and t our data points with the function

X
(QH)= U@+ o Q2" (6.41)

n
This method xes the vector meson contribution to ( Q?) and treats the contributions

from other states such asJ= and hadronic multi-particles scattering states in a simpl e

phenomenological way as polynomials irQ?2.

Besides these possible improvements, in principle also theho decay e ects should be
taken into consideration when modeling theQ? dependence of (Q?) and extracting ahad,
since such e ects become much stronger as the pion mass apphes the physical point.
Another systematic e ects, which remain undetermined, arethe contributions to ( Q?2?)
from the disconnected diagrams. Such contributions, whenwnmed overu, d and s quarks,
cancel in the SU(3) avor limit, and they are suppressed accoding to Zweig's rule [126,127].
Nevertheless, to make a precise determination of Q2), we should estimate the size of
this systematic error. However, all these new approaches wth require partly new and
demanding simulations go beyond the scope of this thesis antlave to be left for future

investigations.
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CHAPTER VII

CONCLUSION AND OUTLOOK

In this concluding section we summarize the work presentedithis thesis and give an outlook
for possible extensions. The general theme of the thesis hagen to obtain non-perturbative,
ab-initio results from Lattice QCD computations that are of direct relevance for scattering
experiments in high energy physics. In particular, we have @cussed in Chapter 4 thel =2
pion scattering length, have determined in Chapter 5 the resonance parameters and in
Chapter 6 the leading order hadronic contribution to the anomalous magnetic moment of
the muon a"ad,

In more detail, in Chapter 4, we have calculated the S-wave min-pion scattering length
in the isospin | = 2 channel using the two- avor maximally twisted mass Latti ce QCD
con gurations from ETMC. The pion masses ranged from 520 MeVto 290 MeV and the
lattice spacing wasa = 0:079 fm. A second lattice spacing ofa = 0:063 fm was used to
demonstrate the absence of large lattice artifacts. Althowh this is only a check at a single
value of a lattice spacing, when combined with the fact that the calculation is accurate to
O(a?) due to the properties of maximally twisted mass fermions, i suggests that the lattice
spacing dependence is mild.

Furthermore, from the PT side, discretization errors vanish from thel =2, Iz = 2
channel at NLO, as shown by twisted mass PT. This allowed us to extrapolate our results
for the scattering length to the physical limit, where the pion mass takes its experimentally
measured value, using continuum PT at NLO. We investigated various systematic e ects,
such as 9 contamination arising from the explicit isospin breaking of twisted mass fermions
for a 6 0, nite size e ects and lattice artifacts. This led us to ou r nal result for the
scattering length at the physical point m a'=2 = 0:04385 (28)(38) and for the low energy
constant I'*2( = f . phy) = 4:65(0:85)(1:07). Here the rst error is purely statistical while

the second one is the systematic uncertainty. These resultare in good agreement with the
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previous lattice calculation from NPLQCD, the experimental determinations from E865
at BNL and from NA48/2 at CERN and the CGL analysis using vario us theoretical and
experimental inputs (see Eqgs. (4.3{4.8) for details). It isworth to mention that the lattice
results are more accurate than the experimental measuremes

The successful determination of the pion-pion scatteringéngth performed here, lays the
basis for further lattice calculations. For example, we cold study the momentum depen-
dence of the pion-pion scattering phase, which is directly elated to the energy dependence
of the scattering cross section. In addition, the extractian of the derivative of the scattering
phase with respect to the momentum can help to determine theK to decay amplitude,
using the Lellouch-Lsscher method [128]. Clearly, the tebniques employed in this thesis
can also be used to study more general two-particle scattemg phenomena such as other
meson-meson or meson-baryon and baryon-baryon scatteringrocesses.

In Chapter 5, we have calculated the P-wave pion-pion scatténg phase in thel =1
channel. We have performed the calculations at pion massesanging from 480 MeV to
290 MeV and at a lattice spacing ofa = 0:079 fm. At all the pion masses, the physical
kinematics for the {meson decay,m =m < 0:5, is satis ed. A second lattice spacing of
a = 0:067 fm has been used to examine the lattice artifacts. Withinthe statistical errors,
we do not nd any lattice artifacts. Compared to previous calculations by other lattice
collaborations, we used a novel method by employing three Lientz frames simultaneously.
This allowed us to map out the energy region of the resonanceather precisely. Making use of
Luscher's nite size methods, we evaluated the scatteringphase at six energy levels. In this
way, we could t the scattering phase with the e ective range formula and nd the results
for the {resonance masam , the decay width  and the e ective coupling g . Taking
the high correlation betweenm and into account, we have performed an extrapolation
to the physical point of the combined parameterZ = (m i =2)? using ts guided by

PT to O(M 2) and O(M ®). However, including the higher order terms signi cantly r educes
the accuracy of the extrapolation, especially in the low pim mass region. We found that
PT might not be fully adequate to describe the quark mass depedence of the {meson

mass and its decay width, even with pion masses as small as 300 MeV.
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As the main result of this investigation, we found for the {meson massm = 900(76) MeV
and for the decay width = 178(32) MeV. When these numbers are compared to the cor-
responding experimentally measured quantities, it is cleathat the lattice computations
cannot yet match the experimental accuracy. Neverthelesspur work shows that the nite
size method can in principle be used to determine resonanceapameters from Lattice QCD
calculations. Since most of the hadrons observed in naturera in fact resonances, this work
demonstrates the practical possibility to treat these particles in a conceptually clean way on
the lattice. Thus we consider our work concerning the {resonance as a proof of principle
that resonances can be studied in lattice calculations. An bvious extension of this work
is to probe the pion-pion scattering in the | = 0 channel or the pion-nucleon scattering in
the | = 3=2 channel, where the and resonances appear. Since in these channels the
experimental accuracy is not so high, the lattice may provice more precise results.

Moreover, the phenomenon of particle decay is a truly dynantial e ect and the fact that
we indeed have observed the {meson as a resonance is a striking example of dynamical
qguark e ects. Hence, the extraction of resonance parameter from lattice calculations can
signi cantly contribute to our understanding of the dynami cal aspects of hadron interac-
tions.

Finally, let us summarize our lattice investigation of the muon anomalous magnetic
moment, a . The current high precision determinations ofa , both from experiment and
theory, indicate a small discrepancy between nature and theStandard Model. The largest
source of uncertainty in the Standard Model calculation ofa is the leading order hadronic
contribution a"@, In Chapter 6 we have presented a full QCD calculation of the acuum
polarization function and, in particular, of precisely thi s hadronic contribution a"d, We
have performed calculations with dynamical maximally twisted mass fermions with pion
masses ranging from 640 MeV to 290 MeV. We had examined both ite size e ects
and lattice artifacts in our calculations. This is a rst eo rt to begin to calculate a"d
while controlling the major sources of systematic error. Ugg both polynomial and dipole
functions to model ( Q2) and then determine a", we do not nd any obvious quark mass

dependence, at least within our large statistical errors. V@ nd that the resulting values of
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ahad optained from the lattice lie too low relative to the e* e - or -based value. One likely
reason for this is the fact that the calculated masses lie high relative to the physical value.

It would be very useful to have a more accurate determinationof a"@ from Lattice QCD.
There are several directions one could think of to improve tke calculations. One possibility
is to employ more sophisticated models to reduce the statistal error by eliminating some
t parameters. Also, larger lattice volumes should be used mt only for reducing the nite
volume e ects, but also for exploring the lower Q2 region. Some techniques like twisted
boundary conditions may also be helpful to reach smallerQ? values. Most importantly,
however, is the necessity to study both, (Q?) and a"™d, at lower pion masses than the
ones employed here ofm 300 MeV. This would allow for a clean extrapolation to the
physical pion mass. A controlled and accurate numerical calulation of ( Q?) would not
only lead to a precise value o9, but would also help to compute the Adler function and
to determine the strong coupling constant .

To summarize, in this thesis we have demonstrated that a comimation of lattice calcu-
lations with nite size methods and analytical approaches @n provide {in some cases very
accurate{ physical quantities that are directly relevant t o scattering experiments. While
there are still open issues, such as the accurate extrapolan to the physical point, it is clear
that Lattice QCD has reached a level of accuracy such that a diect interaction with phe-
nomenology and experiment can begin to take place. We believthat the results obtained

in this thesis provide an example of just such a fruitful interaction.
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