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1 Einleitung

Thema der vorliegenden Bachelorarbeit sind quasi-exakt 16sbare Potentiale, die
sich dadurch auszeichnen, dass nur endlich viele Energieeigenfunktionen mit
den zugehorigen Energieeigenwerten auf analytischem oder algebraischem Weg
bestimmt werden kénnen. Damit unterscheiden sie sich von exakt l6sbaren Sys-
temen wie dem harmonischen Oszillator oder dem Wasserstoffatom, bei denen
sich das gesamte Spektrum und damit beliebig viele Losungen der Schrédinger-
Gleichung auffinden lassen.!

Begonnen wird mit so genannten Quasi-Eichtransformationen, durch welche der
Hamilton-Operator der allgemeinen zeitunabhéngigen Schrédinger-Gleichung
eine Form erhélt, welche derjenigen dhnelt, die bei quasi-exakter Losbarkeit
auftritt. Gruppentheoretisch sind die eingehenden Differentialoperatoren eine
Darstellung der Generatoren der Gruppe SL(2,R). SchlieBlich ergibt sich die
Notwendigkeit einer Koordinatentransformation fiir den Hamilton-Operator.
In den der Bachelorarbeit zugrunde liegenden Arbeiten von M. A. Shifman und
A. Gonzalez-Lopez et al. ist jeweils ein Katalog quasi-exakt l6sbarer Potentia-
le aufgefiihrt. Interessant ist dabei, dass sich die beiden Kataloge vordergriin-
dig nicht genau entsprechen, obwohl sicherlich beide mit dem Anspruch auf
Vollstandigkeit entstanden sind. Es wird daher im né&chsten, zentralen Teil der
Bachelorarbeit versucht, diese Potentiale ineinander zu tiberfiihren bzw. als Spe-
zialfdlle voneinander zu identifizieren, um auftretende Diskrepanzen aufzulosen.
Zu diesem Zweck wird jeweils der Rechenweg nachvollzogen, der von den ein-
gehenden Polynomen, die sich aus den Generatoren ergeben, zum Ausdruck fiir
das Potential fiihrt.

Der letzte Teil der Bachelorarbeit erhélt eine Untersuchung zu den so genann-
ten Mébius-Transformationen. Nach einer Uberpriifung, dass diese die Axiome
einer nicht-abelschen Gruppe erfiillen, wird anhand eines exponentiellen Poten-
tials beispielhaft nachgerechnet, dass die Gestalt quasi-exakt 16sbarer Potentiale
unter Mobius-Transformationen erhalten bleibt.

L[Shi 99], S. 778-782



2 Theoretische Vorarbeit

2.1 Quasi-Eichtransformationen

Die allgemeine zeitunabhingige Schrodinger-Gleichung lautet in der Ortsdar-
stellung

Hip(z) = E(z) (1)

mit der ortsabhingigen Wellenfunktion ¢ (z), dem Energieeigenwert E und
dem Hamilton-Operator H, der fiir ein gegebenes Potential V(z) die Gestalt

hat, wobei aus Griinden der Einfachheit i = m = 1 gesetzt wurde.? Im Fol-
genden wird das Konzept der Quasi-Eichtransformationen erlautert, mit denen
der Hamilton-Operator in eine Form gebracht wird, an der man die Bedingun-
gen fiir quasi-exakte Losbarkeit unmittelbar ablesen kann.
Die Schrédinger-Gleichung ist invariant unter der ,globalen* Transformation

V(@) = d(a)e',

mit einer reellen Konstante «, d.h. die ,globale* Phase der Wellenfunktion
ist unbestimmt. Unter der unitaren Standard-Eichtransformation

V() = (x) = ()’

mit der von x abhingigen Funktion « ist die Schrédinger-Gleichung nicht
invariant, aber zur Gleichung

(3 i)+ Vo)) - it o

mit A(z) = d(zgf) = o(x) dquivalent.®> Hierauf wird man durch Einsetzen

der eichtransformierten Wellenfunktion in Gleichung 1 gefiihrt, wie im Folgenden
durch Ausrechnen der zweifachen Ableitung nach z verdeutlicht wird. Dabei gilt

O/I(I‘) _ dzdo;c(;c)7 ’(/AJ/(.’E) _ % und 1&//(‘%) _ d2d1/;1:(2x).

2In dieser Bachelorarbeit wird nur eindimensionale Quantenmechanik diskutiert. Die Be-
trachtung in héherdimensionalen Rdumen ist sehr viel komplizierter; vgl. [Gon 91], S. 6-10.
3[Shi 99], S. 784-785
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Die Unitaritdt der Transformation geht im Fall eines imagindren Anteils von
a(x) verloren, da sich das asymptotische Verhalten der Wahrscheinlichkeits-
dichte und damit auch die Rand- und Normierbarkeitsbedingungen dndern; die
Aquivalenz der Gleichungen 1 und 2 bleibt jedoch erhalten. Im Folgenden wird
der Fall einer rein imagindren Funktion a(x) = ia(x) mit einer reellen Funktion
a(x) diskutiert, die Wellenfunktion transformiert sich dann wie

Y(x) = d(x) = Pla)e @, (3)
der Hamilton-Operator aus Gleichung 2 geht in
H () = 2 (- A@) + Vi)
(@) = =5 x x
mit A(z) = d‘zl(xm) iiber. Die Anfiihrungsstriche im Index von H sollen ver-

deutlichen, dass es sich aufgrund der Nichtunitaritdt nur um eine ,Quasi“-
Eichtransformation handelt (engl.: quasi-gauge).* Mit der Transformationsvor-
schrift 3 lasst sich leicht ein exponentieller Abfall der Wahrscheinlichkeitsdichte
fiir grofie |z| und damit die Normierbarkeit gewdhrleisten. Offenbar muss a(x)
sowohl fiir x — oo als auch fiir z — —oo sehr grofle positive Werte annehmen.
Aus a(z) = ia(z) ergibt sich die Ersetzung A(z) — iA(x), womit der Klammer-
ausdruck der obigen Rechnung folgende Gestalt erhélt:

d? d d

T %A(x) - 2A(:v)% + A%(z)
Fiir den Hamilton-Operator liefert dies den allgemeinen Ausdruck

H g« (x) = + A(x)—x +V(x)+ %A/(az) - %A2 (x) (4)

=AV (z)

mit A'(z) = %,5 der sich vor allem aufgrund des Auftretens der einfachen

Ableitung nach x von der gewthnlichen Form unterscheidet und damit dem

4[Shi 99], S. 785-786
5[Shi 99], S. 789



allgemeinen Ausdruck eines quasi-exakt l6sbaren Hamilton-Operators bereits
recht dhnlich ist, wie im tibernéchsten Unterkapitel deutlich werden wird.

2.2 Gruppentheoretischer Hintergund

In diesem Unterkapitel wird verdeutlicht, was quasi-exakte Losbarkeit mit dem
Konzept einer Lie-Algebra und der Darstellung von Generatoren als Differentia-
loperatoren zu tun hat, um dann schliefilich den Zusammenhang mit den zuvor
angestellten Uberlegungen herstellen zu kénnen.

Wesentlich fiir eine Lie-Algebra (V, [, ] ) iiber einem Vektorraum V ist die Exis-
tenz einer Lie-Klammer [-,-] : V x V — V, d.h. einer Abbildung, die folgende
Eigenschaften aufweist:®

o Sie ist bilinear: [Zl kivi,w] =k [vi,w]7 [w, > kzivi] =3k [w,vi}
Vk; e K,v;,w eV

o Sie ist schiefsymmetrisch: [v,w] = — [w,v] Yv,w €V

« Sie erfiillt die Jacobi-Identitét: [ [u,v],w] = [[w,u],v] = [[v,w], u]
Yu,v,w eV

Unter einer Darstellung p : G — End(V) einer Gruppe G versteht man
eine Abbildung der Elemente g € G in die Endomorphismen tiber einem Dar-
stellungsraum V. Bei V handelt es sich typischerweise um einen reellen oder
komplexen Vektorraum. Ist V' endlich-dimensional, so sind diese Endomorphis-
men gerade die linearen Abbildungen iiber V.7
Werden r linear unabhéngige Differentialoperatoren

d
T = f%x)a +n%xz), a=1,.,r

erster Ordnung betrachtet, deren Koeffizienten £* und n® glatte Funktio-
nen von z sind, so spannen diese eine endlich-dimensionale Lie-Algebra auf.
Die Lie-Klammer ist in diesem Fall der Kommutator zweier Differentialopera-
toren, der wieder auf eine Linearkombination von Differentialoperatoren fiihrt.
Ein Differentialoperator zweiter Ordnung heifit Lie-algebraisch, wenn er als qua-
dratische Kombination von Differentialoperatoren erster Ordnung geschrieben
werden kann:

H=> CuaT*T"+> C,T"+ Co
a,b a
Hierbei sind Cyy, C, und Cj reelle Konstanten. Eine von Differentialoperato-
ren erster Ordnung aufgespannte Lie-Algebra heif3t quasi-exakt lGsbar, wenn sie
einen endlich-dimensionalen Darstellungsraum glatter Funktionen besitzt, d.h.
dass die Anwendung eines der Differentialoperatoren, welche die Lie-Algebra

6[Fis 06], S. 249
7[Mod 11], S. 320



aufspannen, auf eine Funktion aus dem Darstellungsraum wieder eine Funktion
aus dem Darstellungsraum ergibt. Dementsprechend gilt fiir einen quasi-exakt
lésbaren Differentialoperator zweiter Ordnung, dass er als quadratische Kombi-
nation von Differentialoperatoren erster Ordnung, die eine quasi-exakt 16sbare
Lie-Algebra aufspannen, geschrieben werden kann.®

Besagte Differentialoperatoren haben als Darstellung der Generatoren der Grup-
pe SL(2,R), d.h. der Gruppe der 2 x 2-Matrizen mit reellen Koeffizienten und
Determinante 1, folgende Gestalt:?

d
0 __ - —

Im Folgenden wird unter Verwendung einer Testfunktion f(£) explizit ge-
zeigt, dass diese Differentialoperatoren die Kommutatorrelationen

[T, 77]=27° und [Ti T = ¥T*
erfiillen. Dabei gilt df(E =f'(§u dfz = (&)

[T, T71f(€) = (T7T" =T TH)f(g)

= ((Jf 52d§)d§ d€(€ §2d§)>f(€)
= 256~ I 1O =2 (610) + (€ 55©)
= 25Ef(6) — E21"(€) — 25 1(€) — 24E1(€) + 26 £(6) + €1 (€)

= 2= j+EE) O =210

[T, 1°1f(€) = (TFT° —T°T)f(€)

- (ie-e)(- Mg) (<5 ) fe-e) )0

= 2%EF(0) + 287 (6) + € () — € o e
d

dg dg

2PE(E) = 6 16) 208 5 (67(0) + 65 (5 71O)

= —27%€f() +2j€*f'(€) +JEf'(€) — €21 (&) =€ 1"(9)

+2526f(€) — JEF'(€) — 25€£(§) — 25€3F(€) + 262 f'(€) + €2 (€)

o G

8[Gon 91], S. 3

9Dies entspricht der Darstellung bei Shifman. Der Differentialoperator T+ bei Gonzilez-
Lépez et al. geht durch Vertauschung des Vorzeichens aus dem Differentialoperator T bei
Shifman hervor; vgl. [Gon 91], S. 10.

ENO=-T"5©)




[T, 1°£(€) = (T~T°=T°T")f(¢)

- (fe(-rve) - (ivei)ig)re

= g HO)+ 5 (6 1©) + IO — €3 1O
= OO OO - e
— HO=T"1©

Der entsprechende endlich-dimensionale Darstellungsraum der SL(2,R) ist
ein Raum von Polynomen mit der Basis

Ry ={e ¢, ....%},
wobei j einen festen halbzahligen, nichtnegativen Wert hat.!? Die Eigen-
funktionen zu H sind Elemente des Darstellungsraums oder einer beliebigen
Menge eines dazu orthogonalen Raums.!! 1(¢) ist also ein Polynom in & vom
Grad von hochstens 2j. Die Anzahl algebraisch bestimmbarer Eigenwerte und
Eigenfunktionen entspricht der Dimension des Darstellungsraums.'? Mit Wahl
des Parameters j ist diese somit auf 25 + 1 festgelegt.

2.3 Konstruktion quasi-exakt losbarer Potentiale

Es muss nun eine Quasi-Eichtransformation gefunden werden, so dass sich der
Hamilton-Operator als

Ha = Y, CaT'T'+ Y CJT"+Co
a,b==%,0 a==£,0

schreiben lisst.'® Ohne Beschrankung der Allgemeinheit konnen die Koeffi-
zienten Cy;, symmetrisch gewédhlt werden, d.h. C,, = Cy,. Einsetzen der Gene-
ratoren fihrt auf

2
H.or(€) = =5 Pa(€) gz + Pal®) g + Pal©) o)

wobei die Koeffizienten Cy, und C, in die Polynome P, (§) in £ vom Grad
von hochstens n eingehen. Ein Vergleich mit dem allgemeinen Ausdruck

1 d? d

H g (z) = + A) — + V() + %A’(m) - %AQ(x) (6)

”  2da?

=AV(x)

10[Shi 99], S. 787-788
11[Shi 99], S. 783-784
12[Gon 91], S. 4
13[Shi 99], S. 788



fiir den quasi-eichtransformierten Hamilton-Operator ergibt, dass das Poly-
nom Py (&) eliminiert werden muss, was mittels der Transformation

d
E—ra(f) = \/%@ (7)
gelingt, denn es gilt offenbar
d _dvd 1 d
A€~ dEdz  \JPy(e) da
und
(1 A\ 1P 4 1 &
de2  de\ /Py(€) dz 2 P3(g)dr  Py(§) dx?
mit Py(&) = d%‘éé). Es ergibt sich dann

1 1 d 1 d?
fo@ = —3hEw) <_2 P (E(e)) P4<5<x>)dw2)

n P3(&(x) d n

— + P (&(2))
Py(&(x)) du ’
1 @2 P‘i(ff””)) + Py(e(x) d
- _- = — + P x
N e T )

fiir den Hamilton-Operator. Da die Polynome P,, und ihre Ableitungen nun
von z statt von £ abhingen sollen, muss Gleichung 7 nach £ = £(x) aufgelost
werden. Dies kann allerdings schwer durchzufiihren sein, da es sich auf der rech-
ten Seite der Gleichung im Allgemeinen um eine elliptische Funktion handelt.
Ein Vergleich mit Ausdruck 6 liefert:

P;(&)
Ay = — L
1(8) £=¢(x)
- B P4’4(5)+P3(§)
a@) = [ A= [ e
AV(@) = P8l
Viz) = AV(x)+ %AQ(I') - %Al(x)



Mit A(z) und AV (z) ergibt sich V(z) und damit der entsprechende quasi-
exakt 1osbare Hamilton-Operator, der das Auffinden von 2j + 1 Energieeigen-
funktionen und -werten auf algebraischem Wege zuldsst.' Zu beachten ist, dass
beim Ermitteln von A(z) vor dem Einsetzen von £(x) zunéchst die Differentia-
tion von Py(€) ausgefithrt werden muss.

2.4 Exakte Losbarkeit

Wenn der Ausdruck fiir H g« unabhéngig von j ist, liegt exakte Losbarkeit vor,

da sich in diesem Fall Darstellungsraume von beliebiger Dimension und damit

bei gegebener Normierbarkeit beliebig viele Energieeigenwerte und -funktionen
auf algebraischem Weg auffinden lassen.'® Fiir die j-Unabhéngigkeit von H g«

lassen sich notwendige und hinreichende Bedingungen an die Koeffizienten Cl

und C, formulieren, welche in die Polynome P,, eingehen. Der Hamilton-Operator
reduziert sich dann zu

d? d

1
H g« = —§Q2(5>d?2 + Ql(f)CT5

mit den Polynomen ), vom Grad n. Eine Variablensubstitution wie mit
der Formel 7 lasst sich auch hier durchfiihren und fiithrt auf die entsprechenden
Ausdriicke fir (€) und A(z). Durch geeignete Variation der in die Polynome
eingehenden Koeffizienten ergeben sich verschiedene exakt lésbare Systeme.'6

14[Shi 99], S. 802-804
15[Gon 91], S. 15
16[Shi 99], S. 804-805
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3 Betrachtung konkreter Fille

Jede beliebige Wahl der Koeffizienten C,p, und C, fiir die Polynome P, (§) fiihrt
auf ein quasi-exakt losbares Potential, die jeweilige assoziierte Wellenfunktion
ist jedoch nicht notwendig normierbar.'” Die im Folgenden behandelten Fille
sind alle zumindest eingeschréinkt normierbar und der allgemeine Fall ellipti-
scher Funktionen reduziert sich hier dahingehend, dass die Transformation 7
mittels elementarer Funktionen geschieht.

In [Shi 99] ist ein Katalog der folgenden quasi-exakt losbaren Potentiale aufge-
fiihrt:

Exponentielles Potential: V()

(ae” + (b— 2]'))2 + %(ce_m + (b+ 1))2

ST I

1
Hyperbolische Potentiale: V(x) sinh? z — a <2j + 2) coshx

Viz) =

STRENTY

cosh® z — g(a + 45 +2) cosh®

Dariiber hinaus werden noch das polynomiale Potential

2

2
V(z) = %xG + %x4+ (é —2v (j+ :)) z?

und das periodische Potential

1
V(z) = % cos’z +a <2j + 2) sin

sowie der allgemeine Fall quasi-exakt 16sbarer Potentiale in Form elliptischer
Funktionen diskutiert.!® Diese sind jedoch nicht Gegenstand der nachfolgen-
den Untersuchungen. Der Katalog quasi-exakt losbarer Potentiale bei Gonzéalez-
Lépez et al. umfasst folgende Falle:

Exponentielles Potential: V(z) = Ae?V"® 4 BeVV™ 4 Ce V" 4 De=2VV™
Hyperbolische Potentiale: V(z) = Asinh?(v/vz) 4+ Bsinh(y/vx)
+C tanh(v/vz) sech(v/vz) + D sech?(v/vz)
V(zr) = Acosh®(v/vz)+ Bcosh(vvz)
+C coth(v/vz) csch(y/vx) + D esch?(vvz)

Desweiteren werden noch die beiden polynomialen Potentiale

V(z) = Az® + Ba* + C2® + 22
x

17[Shi 99], S. 804
18[Shi 99], S. 790, 806-807
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und

V(z) = Az* + Ba® + C2® 4+ Dz

aufgefiihrt. Das zweite hyperbolische Potential hat im Fall C'+ D # 0 eine
Singularitiat bei x = 0, das erste polynomiale Potential im Fall D # 0. Die
periodischen Potentiale werden gesondert behandelt.'®
Bei den nachfolgenden Betrachtungen wird von der Substitution sz = y Ge-
brauch gemacht werden, wobei s eine reelle Konstante ist; somit wird nur die
reelle Achse reskaliert, das physikalische Problem jedoch nicht wesentlich ver-
dndert. Zu beachten ist, dass sich dabei der gesamte Hamilton-Operator trans-
formiert. Mit

- ) - () -

dz? ~ \dz dy sd7y = ° dy?
wird man von H(x) = —%% + V(z) auf
2 72 2
AN Y £/ NN (L i e
H(s>7 2dy2+v(s)7s ( 2dy2+s2v(s) ®)

gefithrt. Eine weitere gebrduchliche Transformation ist das Hinzufiigen ad-
ditiver Konstanten, die nur fiir eine entsprechende Verschiebung des Energie-
spektrums sorgen und somit unmittelbar in die Eigenwerte eingehen kénnen.
Folglich sind sie beim jeweils ndchsten Rechenschritt nicht mehr von Bedeutung
und werden mitunter weggelassen. Zudem kann der Hamilton-Operator natiir-
lich mit einem konstanten Faktor multipliziert werden, da dies nichts an der
Normierbarkeit der Wellenfunktion dndert und sich einfach in einer Multiplika-
tion des Energiespektrums mit diesem Faktor dufert.
Die bei der unbestimmten Integration auftretende Konstante wird der Einfach-
heit halber stets weggelassen. Bei den auftretenden lateinischen Buchstaben
handelt es sich um reelle, numerische Koeffizienten.

3.1 Exponentielles Potential
Werden die Koeffizienten so gewéhlt, dass die Polynome die Gestalt

. Py(§)=¢

o P3(§)=al*+bl+c

o P(§) = —2aj¢

haben,?° so ergibt sich fiir die Koordinatentransformation zunichst

[ fde
x(&)—/ R R

9[Gon 91], S. 15
20[Shi 99, S. 806

12



was durch Exponentieren auf die Variable {(x) = e” fiithrt. Desweiteren
erhalt man P;(¢) = 2¢ und damit

2e” 2z m
=+ b 1
Az) = 4 ae ;_ ‘ +C:ael+§+b+ce_w.
e x

Das Auffinden der Phase mittels Integration gelingt sehr leicht und liefert:

a(z) = ae” + (1 + b):r —ce ®

2
Es sei angemerkt, dass hier im Hinblick auf die Normierbarkeit der Wel-
lenfunktion a > 0 und ¢ < 0 gefordert werden sollte. AV (z) = —2aje” und

A'(z) = ae® — ce™ liefern das Potential:

1 1 2 1
V(z) = —2aje”+ 3 (aez + 3 +b+ ce*I> — i(aez —ce™¥)
. a c _
= —2aje® — 56"” + 2¢ ¢

1 1
+§ (a262”” + ae® + 2abe” + 1 + b+ b+ 2ac+ ce” + 2bce ™ + 6267230)

a? b2 c?
= 5 e® + abe® — 2aje” + 5 - 2jb + 252 + 5 e % 4 bee™®
2 2
¢ . ¢ _. b 1 »ob o ., 3
< < o bb+-dac— — — o~ +2jb—252— 2
+26 +26 +2+ +2+ac 5 2+] J 3

=const. =: Cp

(a®e* + 2abe” — 4aje® + b® — 45b + 45%)

(e ™ 4 2bce™™ +2ce™ " + b + 20+ 1) + Cj

N N =

a®e* +2a(b — 2j)e” + (b —24)?)

(026_2$ +2c(b+1

~—

e "+ (b+1)*) +Co

= 4+ NI= 4 N
N |

—~

(ce™™ + (b+1))* + Co

N | =

ae® 4+ (b— 2]’))2 +

Der letzte Ausdruck taucht (ohne die additive Konstante) in exakt dieser
Form in Shifmans Katalog auf. Dass dieses Potential dem bei Gonzalez-Lépez
et al. angegebenen Ausdruck

A2Vt 4 BeVVT 4 CemVVE 4 Dem2VVE

firv=1A4= “72, B =a(b—2j),C =c(b+1),D = g und unter Hinzunahme
weiterer additiver Konstanten entspricht, ist dem vorletzten Ausdruck am besten
zu entnehmen. Fiir die weiteren Betrachtungen ist es sinnvoll, diesen geeignet
umzusortieren:

13



V(z) = % <a262m +(b+ 1)2 + (b— 2j)2 + 9)

e 4+ 24/ (b—2j)e” +2¢(b+1) ex>

3.2 Erstes hyperbolisches Potential

Mit den Polynomen?!

o Py =¢ -1
o Ps(6)=at?—{E—a
o P2(§) = —2aj¢

erhdlt man Pj(§) = 2¢ sowie die Transformation

dg
z(§{) = [ —=== = arcosh
©=[ &= ¢
und damit {(z) = coshz. Unter Ausnutzung der Identitét
cosh? z — sinh?z = 1 (10)

ergibt sich dariiber hinaus

%_Facosh%c—%coshx—a cosh?z — 1 .
Az) = —a- = qa-sinhx

Veosh?z — 1 sinh z

und damit die Phase a(z) = a-coshz. Mit AV (z) = —2aj coshz und A’(z) =
a - cosh z kann nun das Potential bestimmt werden:

2

V(z) = —2aj coshz + % sinh? z — % - cosh x
a® 9 1
=5 sinh” x — a(?j + 5) coshx (11)

In dieser Form wird das Potential bei Shifman aufgefithrt. Um einen Ver-
gleich mit der Katalogisierung bei Gonzalez-Lépez et al. zichen zu kénnen, muss
das zweite Polynom zu P(&) = —2ajé + ﬁ mit einer reellen Konstante ¢ er-
weitert werden. Zudem wird sich folgende Identitdt als niitzlich erweisen:

21[Shi 99], S. 807
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1 coshx — 1 coshz — 1 coshz — 1

coshz +1 (coshx +1)(coshax — 1)  cosh?z — 1 - sinh? x

coshz 1 1
= = - - 5— = cothxcschz — csch? x
sinhx sinhx  sinh“z

Man erhélt somit AV (z) = —2ajcoshz + ( cothz cschz — Cesch? z sowie
unter Ausnutzung von Identitéat 10 folgende Form des Potentials:

2
V(z) = —2ajcoshz+ (cothacscha — ¢ esch? z + % sinh? z — g coshx

[ V)

1
= %(costh -1) - a(2j + 5) coshz + ( cothz eschz — ¢ esch? z
2 2

1
= %cosh2:cfa(2j + 5) coshz + ( cothz eschz — ( esch® z — %

Bis auf die additive Konstante entspricht dies dem bei Gonzélez-Lépez et al.
angegebenen Potential

Acosh?(v/vz) + B cosh(v/vz) + C coth(v/vx) esch(v/vx) + D csch?(yv/vz)

2

firv=1A=%, B= —a(2j + %), C = —D = ( ohne Singularitat bei
x=0.
Ein Vergleich der Phase a(z) = a - coshz mit derjenigen des exponentiellen
Potentials, a(x) = ae® + (% + b)x — ce™ " legt nahe, die Form des exponenti-

ellen Potentials fiir den speziellen Fall a = —c = 2, b = —% mit einer reellen

Konstante 7 zu untersuchen. Einsetzen in Ausdruck 9 liefert:

1 n? 1 2 1 2
V(z) = 2<Ze21+<—2+1> +<—2—2j)
2 1 1
+%672I +1n (2 - 2j> e’ —n (2 + 1) e””)

Setzen von j = 0 und Umsortieren fithrt auf:

L, "o n n.- L
v _ (T 2= " T Nz N —x -
(2) 2(46 +2+4 26 26 + 1 1
——
=const. =: C1
2 (et 4 emm\? ef+e’”
_ 772( 2 )_g S+ C1 = Lcosh’x — J cosha + O
2 2
= %Sinhzx—gcoshx—i- %—FCH
——
= const. =: C

15



Formal entspricht dies exakt Ausdruck 11 fir j = 0. Somit kann dieses
hyperbolische Potential offenbar als Spezialfall ¢ = —c = 2, b = —%, j =
0 des exponentiellen Potentials konstruiert werden, wobei in Ausdruck 11 der
Parameter j wieder Teil eines Vorfaktors ist. Diese nachtréglich erscheinende
Modifikation hat vermutlich den Hintergrund, dass exakte Losbarkeit und damit
ein anderer Sachverhalt vorlige, wenn V (z) génzlich unabhéngig von j wére.

3.3 Zweites hyperbolisches Potential

Ein weiteres hyperbolisches Potential ergibt sich aus:?2

o Py(§) =(1-¢%)?
o P3(§) =af— (25 — &L - €7)
o Po(§) =3 —a)— (2] — 1)

Die Koordinatentransformation lautet dann

x(§)=/ de = artanh ¢

1—¢
und es folgt {(z) = tanhz. Mit 24— — sinhxcoshz und Pj(¢) =

—4£(1 — €2) sowie

sinh(2z) = 2sinh z cosh z (12)

gilt desweiteren:

- 74tanhm(i7tanh2 2) 4+ gtanha — (2j — 1) tanhz(1 — tanh? z)
Alz) =

(1 — tanh® z)2
tanh x

1 — tanh®z

—tanha + a - — (2§ — 1) tanhz
= a-sinhzcoshx —2jtanhx = gsinh(Qx) —2jtanhz

Durch Integration und Ausnutzen der Identitit

cosh(2z) = 2 cosh?(x) — 1 (13)

erhalt man

a(z) = % cosh(2z) — 2jIn (cosh(z)) = g cosh? z — % —In (coshzj )

22[Qhi 99], S. 807
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fur die Phase. Exponentieren liefert dann die unbedeutende Konstante e
und den Faktor cosh® z, der in die Wellenfunktion selbst eingeht. Mit

= =1—tanh?z

d
— tanhx = 5
cosh”

dx dx
ergibt sich A’(z) = a - cosh(2z) — 2j(1 — tanh? z). Die Identititen

d (Sinh T ) cosh? z — sinh? x
cosh x

sinh x

. . .12 2
sinh x cosh x tanh x = sinh x cosh x - =sinh“x =cosh“z — 1

coshx

und

2
(sinh 2 coshz)? = (\/ cosh? z — 1 - cosh x) = cosh® z — cosh® z

sowie AV (z) = j(j — a) — j(2j — 1) tanh? z und Identitit 13 liefern das
Potential:?3

V(r) = j(j—a)—;(2j—1)tanh’z

1 1
+§(a -sinh z cosh z — 2j tanh x)? — 5 (a -cosh(2z) — 2j(1 — tanh? x))
2 2 2 a’ 4 a’ 2 2
= j(j —a) — 2j°tanh” x 4 j tanh” z + ?cosh T — ?cosh x — 2aj cosh” x
+2aj + 252 tanh® 2 — a - cosh® z + % +j — jtanh®z
2
= %cosh4x— g(a+4j+2)cosh2x+ g +i(G+a+1)
| e —
=const. =: C3
Auch weil sich dieses Potential bei Shifman, nicht aber bei Gonzalez-Lépez
et al. findet, liegt der Versuch nahe, einen Zusammenhang zwischen diesem und

dem zuvor behandelten hyperbolischen Potential herzustellen. Mit den beiden
Identitaten 10 und 12 lésst sich zunéachst

cosh*z = cosh?xzcosh?z = (1 + sinh? z) cosh®
1 2 h(2 1 1 2
= cosh’z + (5 sinh(?ac)) = % + (5 sinh(2x))

begriinden und das zweite hyperbolische Potential folgendermaflen umschrei-
ben:

23[Shi 99], S. 806-807
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[

Viz) = % cosh?® z — %(a +45+2) cosh? z
2 h(2 1 1 9 L )
N % <C()S(2x)+ * (5 Sinh(%)) ) - g(a 45+ 2)%

2
_ @ L2 e, . _ay..
= 3 sinh*(2x) 5 (27 + 1) cosh(2x) 1 (4j + 2)

Weiter lasst sich die Ersetzung 2z = y vornehmen. Mit der Vorschrift 8

ergibt sich dann
2
1) =1 (~5a 71V (5)

Der Vorfaktor 4 ist nicht weiter beachtlich; das transformierte Potential hat
mit der zusétzlichen Ersetzung a = 4G unter der Berticksichtigung des Vorfaktors
% folgende Gestalt:

V(y) = % sinh?(y) — @ (j + ;) cosh(y) — %(4;’ +2)
N———

=const. =: Cy

Der Vorfaktor in der Klammer vor cosh y lasst offenbar die Werte %, 1, %, 2
zu, da j nach Voraussetzung halbzahlig und nichtnegativ ist. Beim ersten hy-
perbolischen Potential mit dem Vorfaktor (25 + %) ergeben sich dagegen nur die
ungeraden Werte %7 %7 g, .... Damit stellt das erste hyperbolische Potential offen-
bar einen Spezialfall des soeben untersuchten dar, der nur die ungeraden Werte
von j umfasst. Dies ist vermutlich der Grund, warum das zweite hyperbolische

Potential bei Gonzalez-Lopez et al. nicht aufgefiihrt ist.

g e

3.4 Drittes hyperbolisches Potential
Desweiteren lassen sich die Polynome

o Py(§) =& +1

o P3(¢)=ac?—Lt+a

o Py(§) = —2aj¢

betrachten, die auf die Koordinatentransformation

z(§)

= ;i_ - = arsinh ¢

sowie &(x) = sinhz und P;(&) = 2¢ fithren. Weiter ergibt sich

18



2sinhs | gginh®z — L sinhz +a sinh?z + 1
Ar) = —a- =a-coshz

Vsinh? z 4 1 coshz
und damit die Phase a(z) = a - sinhx, fiir die jedoch entweder (im Fall

a > 0) IEIPOO a(x) = —oo oder (im Fall a < 0) IEIfooa(x) = —oo gilt, so dass

die Wellenfunktion stets nur auf einem Intervall mit mindestens einer endlichen
Grenze normierbar ist. Man erhdlt A’(z) = a - sinh 2 und damit das Potential:

2
V(z) = —2ajsinhz+ % cosh? z — g sinh z

a2 2 1
= ?cosh T—a <2j + 2) sinh z

Ergénzt man, dhnlich wie beim ersten hyperbolischen Potential, das zweite
Polynom zu P(§) = —2aj€ + v LEE mit einer reellen Konstante v, so wird

112
folgende Identitdt niitzlich sein:
1+ sinh 1+ sinh sinh 1 1
ha .1n QI -t 51121 =27 + s— = tanhxsechx + sech?x
1+ sinh* z cosh” z coshz coshz = cosh® z

Das Potential lautet dann:

1+ sinh 2
V(z) = —2ajsinhz+~- 1—:_5% %costh— gsinhx
sinh”

2 1
= %(1 +sinh?z) —a <2j + 2) sinh z + (tanh z sech z + sech?z)

2 2

1
= % sinh? z — a <2j + 2) sinh z + (tanh x sech = + sech?z) + %

Dies entspricht bis auf eine additive Konstante dem bei Gonzélez-Lépez et
al. angegebenen Ausdruck

Asinh®(y/vz) + Bsinh(v/vz) + C tanh(y/vx) sech(v/vx) + D sech®(v/vz)

fﬁrv:l,A:“;,B:—a(Qj—F%) und C' =D = .
Ein Vergleich der Phase mit derjenigen des exponentiellen Potentials legt hier
9

nahe, den Spezialfall a = ¢ = 5, b = —% mit einer reellen Konstante 9 zu

untersuchen. Einsetzen in Ausdruck 9 liefert:

(9%, 1 ? I
V(z) = 2<4e +(2+1> +(22]>
2
+%e*2x +9 (—; — Qj) s+ <—; + 1) ez>
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Setzen von j = 0 und Umsortieren fithrt auf:

1[92, 92 9% ., 9, O _, 192
V(z) = 2(46 t et et e )+ 171
———
=const. =: C5
192 x —z\ 2 ¢ T _ ,—x 192 9
= 2<e—i—2€> —5-%+C5:?cosh2x—§sinhm+05

Somit kann auch dieses hyperbolische Potential als Spezialfall des exponen-

tiellen Potentials aufgefasst werden. Das Auftreten des Parameters j ist genauso
zu interpretieren wie beim ersten hyperbolischen Potential. Uberhaupt wird man
von einem der beiden Potentiale unmittelbar auf das andere gefithrt, wenn die
jeweils auftretenden hyperbolischen Winkelfunktionen durch diejenigen Funktio-
nen ersetzt werden, die mit den jeweiligen Komplementadrwinkeln assoziiert sind,
d.h. unter den Ersetzungen sinh <+ cosh, tanh <> coth und sech < csch. Ver-
mutlich ist das soeben untersuchte Potential aufgrund dieser Symmetrie nicht
bei Shifman aufgefiihrt. Ein weiterer Grund diirfte in der eingeschrinkten Nor-
mierbarkeit bestehen.
Im Folgenden werden noch die Ergebnisse der einzelnen Rechenschritte zur Kon-
struktion des Ausdrucks fiir das polynomiale und das periodische Potential in
Shifmans Katalog angegeben. Insbesondere sind die mit periodischen Poten-
tialen assoziierten Wellenfunktionen nicht normierbar und stellen damit einen
Sonderfall dar.24

e Polynomiales Potential:

— Py(&) = 4¢, P3(&) = v€? + p& — 1, Py(§) = —2vj¢
—wO =3/ F=VE = tw=a

A(z) = $(va® + ), a(z) = §(va* 4 2ua?), AV (z) = —2wja?

2

— V(z) =L+ Bat 4 (1 —2u(j + 2))a?
o Periodisches Potential:

— Py(&) =1 - €% P3(§) = —a&? + 36 + a, Pa(§) = 2aj¢
&=/ € _ —arcsiné = &(z) =sinz

)

x) = % cos?z +a(2j + 3)sinw

\
8

\
N

a-cosz, a(xr) =a-sinz, AV(z) = 2ajsinz

(
(

|
<

24]Shi 99], S. 806
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4 Mobius-Transformationen

Thema des letzten Kapitels ist eine spezielle Symmetrie, die quasi-exakt 16sbare
Hamilton-Operatoren aufweisen. Deren allgemeine Form

1 d? d
H (&) = *§P4(§)d7§2 + P3(§)d*£ + P5(&)

ist nicht eindeutig, denn die Symmetriegruppe GL(2,R) der 2 x 2-Matrizen

(5 7)

mit Determinante ad — By # 0 und reellen Koeffizienten, deren Darstellung
auf der Riemannschen Zahlenkugel durch so genannte Mobius- Transformationen
(»,gebrochen lineare Funktionen®)

_at+p
£ wle) = S0 (14)

gegeben ist, erhélt die von den Generatoren der SL(2,R) aufgespannte Lie-
Algebra.?® Zunichst lisst sich die Identitét
af+ 8 _a(y§+0) —y(e€+B) _ ad—By
¥§+4 Y§+0 ¥§+0

begriinden und damit die Ableitung der Mobius-Transformation sowie ihrer
Inversen berechnen:

dw(€)  a(¥E+0)— (a€+B)y  ad—pBy  (a—w)?

(15)

o—yw=a-—"7y

¢ (7€ +9)° T (€02 ad- By (16)
dé(w) _ d(a—qw)+ (w—fB)y _ ad— By _ (1E+9)°
dw (a —yw)? (@—yw)*  ad—py

So ergibt sich fiir die Transformation des Differentials d%:

d dw d _ d
il G R Rk
—dg = (ad—p )_1(04— w)z—d (b — p ) o — w)Q—d
- 7 T Gw 7 T dw

= (ad = By) (o — yw)? ((a - W)Z% —2v(a — vw);;)

& d
= (a0 = By) e —qyw)' o = 29(ad = B7) (o - yw)’ o

Einsetzen in die Generatoren liefert:

25[Gon 91], S. 12
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dw — S

a—yw

. bd ? . s d
" = 5—236=< )(aé—ﬁv) (@ —yw)*—— —2j

dg

_ -1 2 d  ow—pf
= (ad = f7)7 (dw - )"~ 2 p——
Sw — d
10— (220 (5 ) - g

= (00— )Mo~ yw)ow - )

5 d

T (ad — By) " Ha —yw) o

Der allgemeine quasi-exakt losbare Hamilton-Operator hat bei Gonzdlez-
Lépez et al. folgende Gestalt:26

Ha = PO+ (0 -ZPO) ¢
+(r-ie©+ TEEDp)

Die irreduzible Multiplikatordarstellung p, ; von GL(2, R) ist durch die Trans-
formationsregel P = p,, ;(P) definiert, wobei

B(E) = (a6 — )i (7€ + 8)"P (“5 =8 )

v +6

fiir ein Polynom P vom Grad von hichstens n gilt. Das im Allgemeinen quar-
tische Polynom P(&) transformiert sich dabei nach ps o, das im Allgemeinen
quadratische Polynom Q(¢) nach pa 1, R bleibt invariant.?”

(17)

4.1 Gruppeneigenschaft

Dass die Mobius-Transformationen tatséchlich eine Gruppe bilden, wird zu-
nichst durch Auflésen der Abbildungsvorschrift 14 nach (w) klar; die inverse
Transformation

(5 _
WHf(w)Z%

hat wieder die Gestalt einer Mobius-Transformation. Fiir den Nachweis der
Abgeschlossenheit sollen die beiden Matrizen

(5 5) ma ()

26[Gon 91], S. 11
27[Gon 91], S. 12
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mit den Determinanten ¥ — n¢ # 0 und tpu — Ax # 0 und den assoziierten
Mobius-Transformationen

g€+ ¢ K€+ kK
— = d — =
€)= oy md £ () =
betrachtet werden. Werden die Transformationen hintereinander ausgefiihrt,
so ergibt sich mit

2(6) = v(u(e)) = A%EH - Serat e sd)  ler it bt o)

S by M pmE +0) (A +ap)é+ (A + Ip)

wieder eine Md&bius-Transformation, die mit der Matrix

ee+ns Q+I9s\ (v k) [e ¢
(5)\+nu O\Jrﬂu) h ()\ ,u> (77 19)
assoziiert ist. Die Determinante dieser Matrix ist geméafl dem Determinanten-
multiplikationssatz gleich dem Produkt der Determinanten der einzelnen Matri-
zen und damit wie gefordert ungleich 0, da beide Faktoren nach Voraussetzung
ungleich 0 sind. Die Verkniipfung der beiden Transformationen «(§) und v(§)

kommutiert nicht, liefert in der umgekehrten Reihenfolge jedoch ein analoges
Ergebnis:

E+k

() = u(0(e)) — Exern TC  e(l€+R)+CAE+p)  (ev+CNE+ (e +Cp)

ConEEE g G+ R) I+ p) (e INE + (s + D)

Das neutrale Element der Gruppe ist offenbar durch die Matrix

(o 0

gegeben. Die Assoziativitdt der Verkniipfung von Mobius-Transformationen
ergibt sich einfach aus der Assoziativitdt der Matrixmultiplikation.

4.2 Anwendung auf das exponentielle Potential

Im Folgenden wird das exponentielle Potential herangezogen, um die Auswir-
kungen von Mobius-Transformationen auf quasi-exakt losbare Potentiale zu un-
tersuchen. Vor Einsetzen des Ausdrucks fiir die Differentialoperatoren hat der
entsprechende Hamilton-Operator bei Shifman folgende Gestalt:2®

1 1
Hg = 5T —al* +cT™ + <b - 2) 70

28[Shi 99], S. 806
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Durch die Ersetzung T+ — —T71 geht die Darstellung bei Shifman in die
Darstellung bei Gonzalez-Lopez et al. iiber:

1
H g = —§T°T° +al™ + T + (b —-j+ ) T°

Einsetzen der Differentialoperatoren liefert dann:

Hgo = —752 d€2 + (ag® + b + ¢ )d—£—2w§+2a (2J£ £ g)
=2aT+
= —752 T (—a€ + b+ 0)L + 2aj¢
d§2 d¢
= He = 0o &t —bf—c)d?—&w&

Ein Vergleich mit dem Ausdruck

d? | — d
Ho = PO+ (e0- 2 PO) ¢

+(r-iee+ TEEDP)

fiir den allgemeinen quasi-exakt l6sbaren Hamilton-Operator bei Gonzalez-
Lépez et al. ergibt fiir das exponentielle Potential:

1
. P = 552
QO - LR = ag b
= QO = e+ (i-5-0)¢-
————

=5

Das Polynom R geht nur als additive Konstante ins Potential V(m) ein und
ist daher unbeachtlich. Die Transformation der Polynome P(£) und @(&) nach
Vorschrift 17 liefert:

PO = e+ two- o) j“ﬂ> (@3~ )" (0€ + B)* (o + )
QE) = (1E+0) (b~ By)” ( e (iﬁi?)‘)
= (ad=B9)" (a(ag +B)° + 5 (af +B) (1€ +8) — e +6)?)
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Fiir die Ableitungen %}Ef) = P'(¢), de’2§5> = P"(¢) und %g) = Q'(&) ergibt
sich dann:

P(§) = (ad—p7) 7" (at+ ) (€ +0) (a (€ +8) +7 (ak + ) )
P = (ad=8y) % (a2 (1€ +0)° +4ay (a€ + 8) (1€ +9) +77 (a§ + B)°)
Q€) = (ad—p7) " (200 (ag + ) +s(a (16 +0) +7 (g +8)) —2¢y(1€ +9))

Das Potential ist bei Gonzalez-Lépez et al. allgemein gegeben durch:2°

j(J 3 P2 27+1 P 2
Vi = (P"‘4p)‘ T (QP‘ZQ')+ w h
~—

=Vi(x) =Va(x) =V3(x)

Man erhéalt fiur die einzelnen Summanden des Potentials:

AGEE —‘“ﬁj”((@—m? (o (€ + 87 + vy (€ + 8) (1€ +8) + 17 (0 + 8)?)

2

5 (08 = 59) " (0 + 8) (16 +9) (¢ (€ +0) +7 (a6 +9))) )
4 3 (@b — By) " (ak + B)” (4 + 8)°

_ _@ ( (a6 = 1) (a2 (¥ +0)° + day (& + B) (46 +8) +7* (€ + B)°)

7; (a8 = B7) 7% (a (Ve +8) + 7 (a& + B) )2>
= D057 (<5 e+ ar (e +8) 649~ T (g + 07

L. 2
= JU; Y (a5~ )2 ( ~ S (€ + 2966 +8°)

2

2
—Hw(oz'yﬁZ + (@b + By)E+ 55) — % (a2§2 + 2a8¢ + ﬁ2) )

_ _](];’ 1) (aé' _ 6’7)_2 <—;(a252 + 5272) + ()4(55’7)
_ ij(j; Y (a6 - py)~2 <;(o¢557)2> = j“;”

29[Gon 91], S. 11
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we = -2 <<a5m>1 (a(a€ + 8 + 5 (a€ + B) (46 +9) — elr€ +0)?)

(ad — B7) 2 (e + B) (Y& +8) (a (vE + 8) + 7 (€ + B))
1 (@b — )% (€ + B)? (¢ +6)°

—2<a6—ﬁvr*(muwa£+6>+s&ﬂv£+6)+v&a5+ﬁ))—2UWW£+5D>

- —2‘7:1<a6—ﬁv)‘1((a(af+ﬁ>2+s(a£+ﬁ><vf+6>—c(vs+6)2)
a(y§+6)+7(af+B)

s o R GG

+s(a (Y€ +6) + 7 (e + B)) — 2ey(vE + 5)))

(o€ + B)?
¥¢ 49

= Hr s gy (aamg +B) +ay

2

(v€ +6)?
a +

—s(a(v€+6) + (ot + B)) + 2cv(vE + 5))

+s(a(v§ +6) +v(ak + B)) —ca —cy(v€ + 0) — 2aa(al + )

] _ 1)
= s ) 1<a(a£+ﬁ) (V2L o) +etre+o) (v—aggjﬁ))

241 aa5+ﬁ Cv£+6
B 2 ~E+§ aé+ 8

S (A (a (0t +8)* +5 (€ + 8) (1€ + ) — clr +)7) )
36 = 7 3 (a8 — B7) % (ol + B)* (46 +6)°

_ 1<a(a€+ﬁ)2+s(a£+6)(’v§+5)—c(v£+5)2>2

2 (@ + B) (v€ +9)
= 1(aa§+5+8—07€+5)2
2\ +6 al + B

V1(€) ist nur eine additive Konstante und damit nicht weiter von Interesse.
Die Invarianz der Koordinatentransformation 7 unter Mébius-Transformationen
zeigt sich mit der in 16 berechneten Ableitung:
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dg dw

=) = /\/; /Jaa BY) 7236 + 0) Pa(w(©))
(€+8)*

- <a5—m>/( =7

7§+5) /\/P4

Im Fall des exponentiellen Potentials ergibt sich wie zuvor

0= | g

und so w(§) = €”. In den Resultaten fiir V5(§) und V5(§) kann die Variable

w() = agig daher durch e* ersetzt werden:

— Inw(¢)

M (aex + cefm)

Va(z) = %(aeIJrsfce*I)z

Folglich ist die Summe der Resultate fiir Vo(x) und Vz(z) gleichsam eine
Linearkombination von e2*, €%, e~® und e~2* und damit von derselben Gestalt

wie das zuvor in Kapitel 3 ausgerechnete exponentielle Potential:

V(z) = %(aeéE +(b— 2]'))2 + %(ce‘z +(b+ 1))2

Mit diesem Ergebnis ist die Invarianz der von den Generatoren der SL(2,R)
aufgespannten Lie-Algebra unter Mobius-Transformationen beispielhaft nach-
gewiesen.
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5 Einordnung und Ausblick

Der in Kapitel 3 dargestellte Versuch, bei gegebenen eingehenden Polynomen das
gesuchte quasi-exakt losbare Potential aufzufinden, verlief grundsétzlich erfolg-
reich. Das Beispiel des dritten hyperbolischen Potentials wurde dabei selbst kon-
struiert, um maximale Vergleichbarkeit der Arbeiten von Shifman und Gonzéalez-
Lépez et al. herzustellen. Das jeweilige Vorgehen zur Bestimmung des Ausdrucks
fiir V() entspricht dabei jeweils der Notation, die Shifman in seiner Arbeit ver-
wendet. Diese deckt sich nicht vollstdndig mit der in der Arbeit von Gonzalez-
Lépez et al. verwendeten Notation, so unterscheiden sich etwa die Generato-
ren der SL(2,R) oder der allgemeine Ausdruck fiir den quasi-exakt l6sbaren
Hamilton-Operator geringfiigig. Damit ist verstdndlich, dass sich etwa zusétz-
liche additive Konstanten oder einschrénkende Bedingungen fiir die Parameter
ergeben, welche in die Potentiale eingehen. In der Arbeit von Gonzilez-Lépez
et al. sind in Bezug auf den Katalog von Potentialen solche Bedingungen fiir die
Parameter angegeben, bei denen im Einzelfall {iberpriift werden miisste, ob die-
se dquivalent zu den Ergebnissen bei Shifman sind.? Die Formalismen sollten
jedoch grundsétzlich identisch sein sollten, was in weitergehenden Untersuchun-
gen festgestellt werden konnte.

Von den behandelten Potentialen findet sich das exponentielle Potential als ein-
ziges in nahezu dquivalenter Form bei Shifman und bei Gonzélez-Lépez et al..
Das erste hyperbolische Potential ist bei Shifman aufgefiihrt, der entsprechende
Ausdruck bei Gonzélez-Lépez et al. ergibt sich erst, wenn eines der eingehen-
den Polynome erweitert wird. Das erste hyperbolische Potential ist sowohl ein
Spezialfall des exponentiellen, als auch des zweiten hyperbolischen Potentials,
welches sich nur bei Shifman findet. Dort ist wiederum das dritte hyperbolische
Potential nicht aufgefithrt, eine Erweiterung eines der eingehenden Polynome
ermdglicht jedoch auch hier die Herleitung des bei Gonzélez-Lopez et al. ange-
gebenen Ausdrucks. Diese Erweiterungen wurden jeweils selbst konstruiert und
haben in den Rechnungen jeweils die Gestalt gebrochen-rationaler Funktionen
und nicht die von Polynomen. Auch hier bietet sich der Versuch an, diesen
zundchst asymmetrisch erscheinenden Aspekt beziiglich der Formalismen bei
Shifman und bei Gonzalez-Lopez et al. aufzulésen. Das dritte hyperbolische Po-
tential ist ebenfalls ein Spezialfall des exponentiellen Potentials und gleichsam
y,komplementar® zum zweiten hyperbolischen Potential, die assoziierten Wellen-
funktionen sind jedoch nur eingeschrankt normierbar.

Moglicherweise wollte Shifman nur solche Potentiale auffithren, bei denen die
zugehorigen Wellenfunktionen auf der gesamten reellen Achse normierbar sind,
und hat das periodische Potential aufgrund dessen Bedeutung etwa fiir die Fest-
korperphysik mit aufgenommen. Dessen Nicht-Normierbarkeit ist indes von an-
derer Art als die des dritten hyperbolischen Potentials.

Offenbar lassen sich zwei der hyperbolischen Potentiale auf das exponentielle Po-
tential sowie auf das verbliebene hyperbolische Potential zuriickfithren, so dass
das exponentielle Potential zusammen mit dem verbliebenen hyperbolischen Po-

30[Gon 91], S. 15
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tential und einem polynomialen Potential offenbar einen in sich abgeschlossenen
Satz von nicht-periodischen quasi-exakt l6sbaren Potentialen darstellt.

In weitergehenden Untersuchungen koénnte man sich, wie bereits angedeutet,
um den Nachweis bemiihen, dass die Ergebnisse bei Shifman und bei Gonzélez-
Lépez bis auf Unterschiede bei den Benennungen von Parametern vollstiandig
dquivalent sind. In diesem Sinne wére zum Einen das zweite polynomiale Poten-
tial bei Gonzalez-Lépez et al. zu thematisieren, da es mit seinen geraden und
ungeraden Potenzen vordergriindig keine direkte Entsprechung bei Shifman zu
haben scheint. Zum Anderen wére die Fragestellung denkbar, warum das zweite
hyperbolische Potential nicht bei Gonzalez-Lopez et al. aufgefithrt ist, obwohl es
einen allgemeineren Fall als das erste hyperbolische Potential darstellt. Dariiber
hinaus kénnte die Suche nach einem Zusammenhang mit dem exponentiellen
Potential noch einmal aufgenommen werden. Fiir diese Untersuchungen wéren
natiirlich noch weitere Arbeiten zur Thematik der quasi-exakten Losbarkeit her-
anzuziehen.

Im letzten Kapitel der Bachelorarbeit wurde die bei Gonzalez-Lépez et al. vorge-
brachte Behauptung, dass Mobius-Transformationen die Lie-Algebra erhalten,
die mit quasi-exakt lésbaren Hamilton-Operatoren assoziiert ist, beispielhaft
belegt. Dieses Ergebnis konnte in weitergehenden Untersuchungen verallgemei-
nert werden, indem der entsprechende Nachweis fiir einen beliebigen quasi-exakt
l6sbaren Hamilton-Operator erbracht wird.

29



6 Literaturverzeichnis

o [Shi 99] Shifman, M. A.: ITEP Lectures on Particle Physics and Field
Theory, Volume II, World Scientific Lecture Notes in Physics, World Sci-
entific Publishing Co. Pte. Ltd., Singapore 1999

o [Gon 91] Gonzdlez-Lépez, A.; Kamran, N.; Olver, P. J.: Quasi-ezact Solva-
bility, Comtemp. Math. 160 (1991), S. 113-140

o [Fis 06] Fischer, H.; Kaul, H.: Mathematik fiir Physiker, Band 3, 2. Auflage,
B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2006

o [Mod 11] Modler, F.; Kreh, M.: Tutorium Analysis 1 und Lineare Algebra
1, 2. Auflage, Spektrum Akademischer Verlag, Heidelberg 2011

30



Erklarung des Studierenden

Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel

Aquivalenz von quasi-exakt 16sbaren quantenmechanischen
Potentialen

selbststdndig verfasst habe, und dass ich keine anderen Quellen und Hilfs-
mittel als die angegebenen benutzt habe und dass die Stellen der Arbeit, die
anderen Werken - auch elektronischen Medien - dem Wortlaut oder Sinn nach
entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht worden sind.

Ort, Datum:

Unterschrift:

31



