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1 Einleitung
Thema der vorliegenden Bachelorarbeit sind quasi-exakt lösbare Potentiale, die
sich dadurch auszeichnen, dass nur endlich viele Energieeigenfunktionen mit
den zugehörigen Energieeigenwerten auf analytischem oder algebraischem Weg
bestimmt werden können. Damit unterscheiden sie sich von exakt lösbaren Sys-
temen wie dem harmonischen Oszillator oder dem Wasserstoffatom, bei denen
sich das gesamte Spektrum und damit beliebig viele Lösungen der Schrödinger-
Gleichung auffinden lassen.1
Begonnen wird mit so genannten Quasi-Eichtransformationen, durch welche der
Hamilton-Operator der allgemeinen zeitunabhängigen Schrödinger-Gleichung
eine Form erhält, welche derjenigen ähnelt, die bei quasi-exakter Lösbarkeit
auftritt. Gruppentheoretisch sind die eingehenden Differentialoperatoren eine
Darstellung der Generatoren der Gruppe SL(2,R). Schließlich ergibt sich die
Notwendigkeit einer Koordinatentransformation für den Hamilton-Operator.
In den der Bachelorarbeit zugrunde liegenden Arbeiten von M. A. Shifman und
A. González-López et al. ist jeweils ein Katalog quasi-exakt lösbarer Potentia-
le aufgeführt. Interessant ist dabei, dass sich die beiden Kataloge vordergrün-
dig nicht genau entsprechen, obwohl sicherlich beide mit dem Anspruch auf
Vollständigkeit entstanden sind. Es wird daher im nächsten, zentralen Teil der
Bachelorarbeit versucht, diese Potentiale ineinander zu überführen bzw. als Spe-
zialfälle voneinander zu identifizieren, um auftretende Diskrepanzen aufzulösen.
Zu diesem Zweck wird jeweils der Rechenweg nachvollzogen, der von den ein-
gehenden Polynomen, die sich aus den Generatoren ergeben, zum Ausdruck für
das Potential führt.
Der letzte Teil der Bachelorarbeit erhält eine Untersuchung zu den so genann-
ten Möbius-Transformationen. Nach einer Überprüfung, dass diese die Axiome
einer nicht-abelschen Gruppe erfüllen, wird anhand eines exponentiellen Poten-
tials beispielhaft nachgerechnet, dass die Gestalt quasi-exakt lösbarer Potentiale
unter Möbius-Transformationen erhalten bleibt.

1[Shi 99], S. 778-782
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2 Theoretische Vorarbeit

2.1 Quasi-Eichtransformationen
Die allgemeine zeitunabhängige Schrödinger-Gleichung lautet in der Ortsdar-
stellung

Hψ(x) = Eψ(x) (1)

mit der ortsabhängigen Wellenfunktion ψ(x), dem Energieeigenwert E und
dem Hamilton-Operator H, der für ein gegebenes Potential V (x) die Gestalt

H = −1

2

d2

dx2
+ V (x)

hat, wobei aus Gründen der Einfachheit ~ = m = 1 gesetzt wurde.2 Im Fol-
genden wird das Konzept der Quasi-Eichtransformationen erläutert, mit denen
der Hamilton-Operator in eine Form gebracht wird, an der man die Bedingun-
gen für quasi-exakte Lösbarkeit unmittelbar ablesen kann.
Die Schrödinger-Gleichung ist invariant unter der ”globalen“ Transformation

ψ(x) → ψ(x)eiα,

mit einer reellen Konstante α, d.h. die ”globale“ Phase der Wellenfunktion
ist unbestimmt. Unter der unitären Standard-Eichtransformation

ψ(x) → ψ(x) = ψ̂(x)eiα(x)

mit der von x abhängigen Funktion α ist die Schrödinger-Gleichung nicht
invariant, aber zur Gleichung(

− 1

2

( d
dx

+ iA(x)
)2

+ V (x)

)
ψ̂(x) = Eψ̂(x) (2)

mit A(x) = dα(x)
dx = α′(x) äquivalent.3 Hierauf wird man durch Einsetzen

der eichtransformierten Wellenfunktion in Gleichung 1 geführt, wie im Folgenden
durch Ausrechnen der zweifachen Ableitung nach x verdeutlicht wird. Dabei gilt
α′′(x) = d2α(x)

dx2 , ψ̂′(x) = dψ̂(x)
dx und ψ̂′′(x) = d2ψ̂(x)

dx2 .
2In dieser Bachelorarbeit wird nur eindimensionale Quantenmechanik diskutiert. Die Be-

trachtung in höherdimensionalen Räumen ist sehr viel komplizierter; vgl. [Gon 91], S. 6-10.
3[Shi 99], S. 784-785
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d2

dx2

(
ψ̂(x)eiα(x)

)
=

d

dx

((
ψ̂′(x) + iα′(x)ψ̂(x)

)
eiα(x)

)
=

(
ψ̂′′(x) + iα′′(x)ψ̂(x) + iα′(x)ψ̂′(x)) + iα′(x)ψ̂′(x)−

(
α′(x)

)2
ψ̂(x)

)
eiα(x)

=
(
ψ̂′′(x) + iA′(x)ψ̂(x) + 2iA(x)ψ̂′(x)−A2(x)ψ̂(x)

)
eiα(x)

=

(
d2

dx2
ψ̂(x) + i

d

dx

(
A(x)ψ̂(x)

)
+ iA(x)

d

dx
ψ̂(x)−A2(x)ψ̂(x)

)
eiα(x)

=

(( d
dx

+ iA(x)
)( d

dx
+ iA(x)

)
ψ̂(x)

)
eiα(x) =

(( d
dx

+ iA(x)
)2
ψ̂(x)

)
eiα(x)

Die Unitarität der Transformation geht im Fall eines imaginären Anteils von
α(x) verloren, da sich das asymptotische Verhalten der Wahrscheinlichkeits-
dichte und damit auch die Rand- und Normierbarkeitsbedingungen ändern; die
Äquivalenz der Gleichungen 1 und 2 bleibt jedoch erhalten. Im Folgenden wird
der Fall einer rein imaginären Funktion α(x) = ia(x) mit einer reellen Funktion
a(x) diskutiert, die Wellenfunktion transformiert sich dann wie

ψ(x) → ψ(x) = ψ̂(x)e−a(x), (3)
der Hamilton-Operator aus Gleichung 2 geht in

H
”G“(x) = −1

2

( d
dx

−A(x)
)2

+ V (x)

mit A(x) = da(x)
dx über. Die Anführungsstriche im Index von H sollen ver-

deutlichen, dass es sich aufgrund der Nichtunitarität nur um eine ”Quasi“-
Eichtransformation handelt (engl.: quasi-gauge).4 Mit der Transformationsvor-
schrift 3 lässt sich leicht ein exponentieller Abfall der Wahrscheinlichkeitsdichte
für große |x| und damit die Normierbarkeit gewährleisten. Offenbar muss a(x)
sowohl für x→ ∞ als auch für x→ −∞ sehr große positive Werte annehmen.
Aus α(x) = ia(x) ergibt sich die Ersetzung A(x) → iA(x), womit der Klammer-
ausdruck der obigen Rechnung folgende Gestalt erhält:

d2

dx2
− d

dx
A(x)− 2A(x)

d

dx
+A2(x)

Für den Hamilton-Operator liefert dies den allgemeinen Ausdruck

H
”G“(x) = −1

2

d2

dx2
+A(x)

d

dx
+ V (x) +

1

2
A′(x)− 1

2
A2(x)︸ ︷︷ ︸

:=∆V (x)

(4)

mit A′(x) = dA(x)
dx ,5 der sich vor allem aufgrund des Auftretens der einfachen

Ableitung nach x von der gewöhnlichen Form unterscheidet und damit dem
4[Shi 99], S. 785-786
5[Shi 99], S. 789
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allgemeinen Ausdruck eines quasi-exakt lösbaren Hamilton-Operators bereits
recht ähnlich ist, wie im übernächsten Unterkapitel deutlich werden wird.

2.2 Gruppentheoretischer Hintergund
In diesem Unterkapitel wird verdeutlicht, was quasi-exakte Lösbarkeit mit dem
Konzept einer Lie-Algebra und der Darstellung von Generatoren als Differentia-
loperatoren zu tun hat, um dann schließlich den Zusammenhang mit den zuvor
angestellten Überlegungen herstellen zu können.
Wesentlich für eine Lie-Algebra

(
V, [·, ·]

)
über einem Vektorraum V ist die Exis-

tenz einer Lie-Klammer [·, ·] : V × V 7−→ V , d.h. einer Abbildung, die folgende
Eigenschaften aufweist:6

• Sie ist bilinear:
[∑

i kivi, w
]
=
∑
i ki
[
vi, w

]
,
[
w,
∑
i kivi

]
=
∑
i ki
[
w, vi

]
∀ki ∈ K, vi, w ∈ V

• Sie ist schiefsymmetrisch: [v, w] = − [w, v] ∀v, w ∈ V

• Sie erfüllt die Jacobi-Identität:
[
[u, v] , w

]
=
[
[w, u] , v

]
=
[
[v, w] , u

]
∀u, v, w ∈ V

Unter einer Darstellung ρ : G 7→ End(V ) einer Gruppe G versteht man
eine Abbildung der Elemente g ∈ G in die Endomorphismen über einem Dar-
stellungsraum V . Bei V handelt es sich typischerweise um einen reellen oder
komplexen Vektorraum. Ist V endlich-dimensional, so sind diese Endomorphis-
men gerade die linearen Abbildungen über V .7
Werden r linear unabhängige Differentialoperatoren

T a = ξa(x)
d

dx
+ ηa(x), a = 1, ..., r

erster Ordnung betrachtet, deren Koeffizienten ξa und ηa glatte Funktio-
nen von x sind, so spannen diese eine endlich-dimensionale Lie-Algebra auf.
Die Lie-Klammer ist in diesem Fall der Kommutator zweier Differentialopera-
toren, der wieder auf eine Linearkombination von Differentialoperatoren führt.
Ein Differentialoperator zweiter Ordnung heißt Lie-algebraisch, wenn er als qua-
dratische Kombination von Differentialoperatoren erster Ordnung geschrieben
werden kann:

H =
∑
a,b

CabT
aT b +

∑
a

CaT
a + C0

Hierbei sind Cab, Ca und C0 reelle Konstanten. Eine von Differentialoperato-
ren erster Ordnung aufgespannte Lie-Algebra heißt quasi-exakt lösbar, wenn sie
einen endlich-dimensionalen Darstellungsraum glatter Funktionen besitzt, d.h.
dass die Anwendung eines der Differentialoperatoren, welche die Lie-Algebra

6[Fis 06], S. 249
7[Mod 11], S. 320
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aufspannen, auf eine Funktion aus dem Darstellungsraum wieder eine Funktion
aus dem Darstellungsraum ergibt. Dementsprechend gilt für einen quasi-exakt
lösbaren Differentialoperator zweiter Ordnung, dass er als quadratische Kombi-
nation von Differentialoperatoren erster Ordnung, die eine quasi-exakt lösbare
Lie-Algebra aufspannen, geschrieben werden kann.8
Besagte Differentialoperatoren haben als Darstellung der Generatoren der Grup-
pe SL(2,R), d.h. der Gruppe der 2× 2-Matrizen mit reellen Koeffizienten und
Determinante 1, folgende Gestalt:9

T+ = 2jξ − ξ2
d

dξ
T 0 = −j + ξ

d

dξ
T− =

d

dξ

Im Folgenden wird unter Verwendung einer Testfunktion f(ξ) explizit ge-
zeigt, dass diese Differentialoperatoren die Kommutatorrelationen

[T+, T−] = 2T 0 und [T±, T 0] = ∓T±

erfüllen. Dabei gilt df(ξ)
dξ = f ′(ξ) und d2f(ξ)

dξ2 = f ′′(ξ).

[T+, T−]f(ξ) = (T+T− − T−T+)f(ξ)

=

((
2jξ − ξ2

d

dξ

) d
dξ

− d

dξ

(
2jξ − ξ2

d

dξ

))
f(ξ)

= 2jξ
d

dξ
f(ξ)− ξ2

d2

dξ2
f(ξ)− 2j

d

dξ

(
ξf(ξ)

)
+

d

dξ

(
ξ2
d

dξ
f(ξ)

)
= 2jξf ′(ξ)− ξ2f ′′(ξ)− 2jf(ξ)− 2jξf ′(ξ) + 2ξf ′(ξ) + ξ2f ′′(ξ)

= 2
(
− j + ξ

d

dξ

)
f(ξ) = 2T 0f(ξ)

[T+, T 0]f(ξ) = (T+T 0 − T 0T+)f(ξ)

=

((
2jξ − ξ2

d

dξ

)(
− j + ξ

d

dξ

)
−
(
− j + ξ

d

dξ

)(
2jξ − ξ2

d

dξ

))
f(ξ)

= −2j2ξf(ξ) + 2jξ2
d

dξ
f(ξ) + jξ2

d

dξ
f(ξ)− ξ2

d

dξ

(
ξ
d

dξ
f(ξ)

)
+2j2ξf(ξ)− jξ2

d

dξ
f(ξ)− 2jξ

d

dξ

(
ξf(ξ)

)
+ ξ

d

dξ

(
ξ2
d

dξ
f(ξ)

)
= −2j2ξf(ξ) + 2jξ2f ′(ξ) + jξ2f ′(ξ)− ξ2f ′(ξ)− ξ3f ′′(ξ)

+2j2ξf(ξ)− jξ2f ′(ξ)− 2jξf(ξ)− 2jξ2f ′(ξ) + 2ξ2f ′(ξ) + ξ3f ′′(ξ)

= −
(
2jξ − ξ2

d

dξ

)
f(ξ) = −T+f(ξ)

8[Gon 91], S. 3
9Dies entspricht der Darstellung bei Shifman. Der Differentialoperator T+ bei González-

López et al. geht durch Vertauschung des Vorzeichens aus dem Differentialoperator T+ bei
Shifman hervor; vgl. [Gon 91], S. 10.
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[T−, T 0]f(ξ) = (T−T 0 − T 0T+)f(ξ)

=

(
d

dξ

(
− j + ξ

d

dξ

)
−
(
− j + ξ

d

dξ

) d
dξ

)
f(ξ)

= −j d
dξ
f(ξ) +

d

dξ

(
ξ
d

dξ
f(ξ)

)
+ j

d

dξ
f(ξ)− ξ

d2

dξ2
f(ξ)

= −jf ′(ξ) + f ′(ξ) + ξf ′′(ξ) + jf ′(ξ)− ξf ′′(ξ)

=
d

dξ
f(ξ) = T−f(ξ)

Der entsprechende endlich-dimensionale Darstellungsraum der SL(2,R) ist
ein Raum von Polynomen mit der Basis

Rj = {ξ0, ξ1, ..., ξ2j},
wobei j einen festen halbzahligen, nichtnegativen Wert hat.10 Die Eigen-

funktionen zu H sind Elemente des Darstellungsraums oder einer beliebigen
Menge eines dazu orthogonalen Raums.11 ψ(ξ) ist also ein Polynom in ξ vom
Grad von höchstens 2j. Die Anzahl algebraisch bestimmbarer Eigenwerte und
Eigenfunktionen entspricht der Dimension des Darstellungsraums.12 Mit Wahl
des Parameters j ist diese somit auf 2j + 1 festgelegt.

2.3 Konstruktion quasi-exakt lösbarer Potentiale
Es muss nun eine Quasi-Eichtransformation gefunden werden, so dass sich der
Hamilton-Operator als

H
”G“ =

∑
a,b=±,0

CabT
aT b +

∑
a=±,0

CaT
a + C0

schreiben lässt.13 Ohne Beschränkung der Allgemeinheit können die Koeffi-
zienten Cab symmetrisch gewählt werden, d.h. Cab = Cba. Einsetzen der Gene-
ratoren führt auf

H
”G“(ξ) = −1

2
P4(ξ)

d2

dξ2
+ P3(ξ)

d

dξ
+ P2(ξ), (5)

wobei die Koeffizienten Cab und Ca in die Polynome Pn(ξ) in ξ vom Grad
von höchstens n eingehen. Ein Vergleich mit dem allgemeinen Ausdruck

H
”G“(x) = −1

2

d2

dx2
+A(x)

d

dx
+ V (x) +

1

2
A′(x)− 1

2
A2(x)︸ ︷︷ ︸

=∆V (x)

(6)

10[Shi 99], S. 787-788
11[Shi 99], S. 783-784
12[Gon 91], S. 4
13[Shi 99], S. 788
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für den quasi-eichtransformierten Hamilton-Operator ergibt, dass das Poly-
nom P4(ξ) eliminiert werden muss, was mittels der Transformation

ξ 7−→ x(ξ) =

∫
dξ√
P4(ξ)

(7)

gelingt, denn es gilt offenbar

d

dξ
=
dx

dξ

d

dx
=

1√
P4(ξ)

d

dx

und

d2

dξ2
=

d

dξ

(
1√
P4(ξ)

d

dx

)
= −1

2

P ′
4(ξ)√
P 3
4 (ξ)

d

dx
+

1

P4(ξ)

d2

dx2

mit P ′
4(ξ) =

dP4(ξ)
dξ . Es ergibt sich dann

H
”G“(x) = −1

2
P4

(
ξ(x)

)−1

2

P ′
4

(
ξ(x)

)√
P 3
4

(
ξ(x)

) ddx +
1

P4

(
ξ(x)

) d2
dx2


+

P3

(
ξ(x)

)√
P4

(
ξ(x)

) ddx + P2

(
ξ(x)

)

= −1

2

d2

dx2
+

P ′
4

(
ξ(x)
)

4 + P3

(
ξ(x)

)√
P4

(
ξ(x)

) d

dx
+ P2

(
ξ(x)

)
für den Hamilton-Operator. Da die Polynome Pn und ihre Ableitungen nun

von x statt von ξ abhängen sollen, muss Gleichung 7 nach ξ = ξ(x) aufgelöst
werden. Dies kann allerdings schwer durchzuführen sein, da es sich auf der rech-
ten Seite der Gleichung im Allgemeinen um eine elliptische Funktion handelt.
Ein Vergleich mit Ausdruck 6 liefert:

A(x) =
P ′

4(ξ)
4 + P3(ξ)√

P4(ξ)

∣∣∣∣∣
ξ=ξ(x)

a(x) =

∫
A(x)dx =

∫ P ′
4(ξ)
4 + P3(ξ)

P4(ξ)
dξ

∣∣∣∣∣
ξ=ξ(x)

∆V (x) = P2(ξ)
∣∣
ξ=ξ(x)

V (x) = ∆V (x) +
1

2
A2(x)− 1

2
A′(x)
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Mit A(x) und ∆V (x) ergibt sich V (x) und damit der entsprechende quasi-
exakt lösbare Hamilton-Operator, der das Auffinden von 2j + 1 Energieeigen-
funktionen und -werten auf algebraischem Wege zulässt.14 Zu beachten ist, dass
beim Ermitteln von A(x) vor dem Einsetzen von ξ(x) zunächst die Differentia-
tion von P4(ξ) ausgeführt werden muss.

2.4 Exakte Lösbarkeit
Wenn der Ausdruck für H

”G“ unabhängig von j ist, liegt exakte Lösbarkeit vor,
da sich in diesem Fall Darstellungsräume von beliebiger Dimension und damit
bei gegebener Normierbarkeit beliebig viele Energieeigenwerte und -funktionen
auf algebraischem Weg auffinden lassen.15 Für die j-Unabhängigkeit von H

”G“
lassen sich notwendige und hinreichende Bedingungen an die Koeffizienten Cab
und Ca formulieren, welche in die Polynome Pn eingehen. Der Hamilton-Operator
reduziert sich dann zu

H
”G“ = −1

2
Q2(ξ)

d2

dξ2
+Q1(ξ)

d

dξ

mit den Polynomen Qn vom Grad n. Eine Variablensubstitution wie mit
der Formel 7 lässt sich auch hier durchführen und führt auf die entsprechenden
Ausdrücke für x(ξ) und A(x). Durch geeignete Variation der in die Polynome
eingehenden Koeffizienten ergeben sich verschiedene exakt lösbare Systeme.16

14[Shi 99], S. 802-804
15[Gon 91], S. 15
16[Shi 99], S. 804-805
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3 Betrachtung konkreter Fälle
Jede beliebige Wahl der Koeffizienten Cab und Ca für die Polynome Pn(ξ) führt
auf ein quasi-exakt lösbares Potential, die jeweilige assoziierte Wellenfunktion
ist jedoch nicht notwendig normierbar.17 Die im Folgenden behandelten Fälle
sind alle zumindest eingeschränkt normierbar und der allgemeine Fall ellipti-
scher Funktionen reduziert sich hier dahingehend, dass die Transformation 7
mittels elementarer Funktionen geschieht.
In [Shi 99] ist ein Katalog der folgenden quasi-exakt lösbaren Potentiale aufge-
führt:

Exponentielles Potential: V (x) =
1

2

(
aex + (b− 2j)

)2
+

1

2

(
ce−x + (b+ 1)

)2
Hyperbolische Potentiale: V (x) =

a2

2
sinh2 x− a

(
2j +

1

2

)
coshx

V (x) =
a2

2
cosh4 x− a

2
(a+ 4j + 2) cosh2 x

Darüber hinaus werden noch das polynomiale Potential

V (x) =
ν2

8
x6 +

µν

4
x4 +

(
µ2

8
− 2ν

(
j +

3

8

))
x2

und das periodische Potential

V (x) =
a2

2
cos2 x+ a

(
2j +

1

2

)
sinx

sowie der allgemeine Fall quasi-exakt lösbarer Potentiale in Form elliptischer
Funktionen diskutiert.18 Diese sind jedoch nicht Gegenstand der nachfolgen-
den Untersuchungen. Der Katalog quasi-exakt lösbarer Potentiale bei González-
López et al. umfasst folgende Fälle:

Exponentielles Potential: V (x) = Ae2
√
νx +Be

√
νx + Ce−

√
νx +De−2

√
νx

Hyperbolische Potentiale: V (x) = A sinh2(
√
νx) +B sinh(

√
νx)

+C tanh(
√
νx) sech(

√
νx) +D sech2(

√
νx)

V (x) = A cosh2(
√
νx) +B cosh(

√
νx)

+C coth(
√
νx) csch(

√
νx) +D csch2(

√
νx)

Desweiteren werden noch die beiden polynomialen Potentiale

V (x) = Ax6 +Bx4 + Cx2 +
D

x2

17[Shi 99], S. 804
18[Shi 99], S. 790, 806-807
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und

V (x) = Ax4 +Bx3 + Cx2 +Dx

aufgeführt. Das zweite hyperbolische Potential hat im Fall C +D ̸= 0 eine
Singularität bei x = 0, das erste polynomiale Potential im Fall D ̸= 0. Die
periodischen Potentiale werden gesondert behandelt.19

Bei den nachfolgenden Betrachtungen wird von der Substitution sx = y Ge-
brauch gemacht werden, wobei s eine reelle Konstante ist; somit wird nur die
reelle Achse reskaliert, das physikalische Problem jedoch nicht wesentlich ver-
ändert. Zu beachten ist, dass sich dabei der gesamte Hamilton-Operator trans-
formiert. Mit

d2

dx2
=
(dy
dx

d

dy

)2
=
(
s
d

dy

)2
= s2

d2

dy2

wird man von H(x) = −1
2
d2

dx2 + V (x) auf

H
(y
s

)
= −s

2

2

d2

dy2
+ V

(y
s

)
= s2

(
−1

2

d2

dy2
+

1

s2
V
(y
s

))
(8)

geführt. Eine weitere gebräuchliche Transformation ist das Hinzufügen ad-
ditiver Konstanten, die nur für eine entsprechende Verschiebung des Energie-
spektrums sorgen und somit unmittelbar in die Eigenwerte eingehen können.
Folglich sind sie beim jeweils nächsten Rechenschritt nicht mehr von Bedeutung
und werden mitunter weggelassen. Zudem kann der Hamilton-Operator natür-
lich mit einem konstanten Faktor multipliziert werden, da dies nichts an der
Normierbarkeit der Wellenfunktion ändert und sich einfach in einer Multiplika-
tion des Energiespektrums mit diesem Faktor äußert.
Die bei der unbestimmten Integration auftretende Konstante wird der Einfach-
heit halber stets weggelassen. Bei den auftretenden lateinischen Buchstaben
handelt es sich um reelle, numerische Koeffizienten.

3.1 Exponentielles Potential
Werden die Koeffizienten so gewählt, dass die Polynome die Gestalt

• P4(ξ) = ξ2

• P3(ξ) = aξ2 + bξ + c

• P2(ξ) = −2ajξ

haben,20 so ergibt sich für die Koordinatentransformation zunächst

x(ξ) =

∫
dξ√
P4(ξ)

=

∫
dξ

ξ
= ln ξ,

19[Gon 91], S. 15
20[Shi 99], S. 806
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was durch Exponentieren auf die Variable ξ(x) = ex führt. Desweiteren
erhält man P ′

4(ξ) = 2ξ und damit

A(x) =
2ex

4 + ae2x + bex + c
√
e2x

= aex +
1

2
+ b+ ce−x.

Das Auffinden der Phase mittels Integration gelingt sehr leicht und liefert:

a(x) = aex +
(1
2
+ b
)
x− ce−x

Es sei angemerkt, dass hier im Hinblick auf die Normierbarkeit der Wel-
lenfunktion a > 0 und c < 0 gefordert werden sollte. ∆V (x) = −2ajex und
A′(x) = aex − ce−x liefern das Potential:

V (x) = −2ajex +
1

2

(
aex +

1

2
+ b+ ce−x

)2
− 1

2
(aex − ce−x)

= −2ajex − a

2
ex +

c

2
e−x

+
1

2

(
a2e2x + aex + 2abex +

1

4
+ b+ b2 + 2ac+ ce−x + 2bce−x + c2e−2x

)
=

a2

2
e2x + abex − 2ajex +

b2

2
− 2jb+ 2j2 +

c2

2
e−2x + bce−x

+
c

2
e−x +

c

2
e−x +

b2

2
+ b+

1

2
+ ac− b2

2
− b

2
+ 2jb− 2j2 − 3

8︸ ︷︷ ︸
= const. =:C0

=
1

2
(a2e2x + 2abex − 4ajex + b2 − 4jb+ 4j2)

+
1

2
(c2e−2x + 2bce−x + 2ce−x + b2 + 2b+ 1) + C0

=
1

2

(
a2e2x + 2a(b− 2j)ex + (b− 2j)2

)
+
1

2

(
c2e−2x + 2c(b+ 1)e−x + (b+ 1)2

)
+ C0

=
1

2

(
aex + (b− 2j)

)2
+

1

2

(
ce−x + (b+ 1)

)2
+ C0

Der letzte Ausdruck taucht (ohne die additive Konstante) in exakt dieser
Form in Shifmans Katalog auf. Dass dieses Potential dem bei González-López
et al. angegebenen Ausdruck

Ae2
√
νx +Be

√
νx + Ce−

√
νx +De−2

√
νx

für ν = 1,A = a2

2 ,B = a(b−2j), C = c(b+1),D = c2

2 und unter Hinzunahme
weiterer additiver Konstanten entspricht, ist dem vorletzten Ausdruck am besten
zu entnehmen. Für die weiteren Betrachtungen ist es sinnvoll, diesen geeignet
umzusortieren:

13



V (x) =
1

2

(
a2e2x + (b+ 1)

2
+ (b− 2j)

2
+ (9)

c2e−2x + 2a (b− 2j) ex + 2c (b+ 1) e−x

)

3.2 Erstes hyperbolisches Potential
Mit den Polynomen21

• P4(ξ) = ξ2 − 1

• P3(ξ) = aξ2 − 1
2ξ − a

• P2(ξ) = −2ajξ

erhält man P ′
4(ξ) = 2ξ sowie die Transformation

x(ξ) =

∫
dξ√
ξ2 − 1

= arcosh ξ

und damit ξ(x) = coshx. Unter Ausnutzung der Identität

cosh2 x− sinh2 x = 1 (10)

ergibt sich darüber hinaus

A(x) =
2 cosh x

4 + a cosh2 x− 1
2 coshx− a√

cosh2 x− 1
= a · cosh2 x− 1

sinhx = a · sinhx

und damit die Phase a(x) = a·coshx. Mit ∆V (x) = −2aj coshx und A′(x) =
a · coshx kann nun das Potential bestimmt werden:

V (x) = −2aj coshx+
a2

2
sinh2 x− a

2
· coshx

=
a2

2
sinh2 x− a

(
2j +

1

2

)
coshx (11)

In dieser Form wird das Potential bei Shifman aufgeführt. Um einen Ver-
gleich mit der Katalogisierung bei González-López et al. ziehen zu können, muss
das zweite Polynom zu P2(ξ) = −2ajξ + ζ

1+ξ mit einer reellen Konstante ζ er-
weitert werden. Zudem wird sich folgende Identität als nützlich erweisen:

21[Shi 99], S. 807
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1

coshx+ 1
=

coshx− 1

(coshx+ 1)(coshx− 1)
=

coshx− 1

cosh2 x− 1
=

coshx− 1

sinh2 x

=
coshx
sinhx

1

sinhx − 1

sinh2 x
= cothx cschx− csch2 x

Man erhält somit ∆V (x) = −2aj coshx + ζ cothx cschx − ζ csch2 x sowie
unter Ausnutzung von Identität 10 folgende Form des Potentials:

V (x) = −2aj coshx+ ζ cothx cschx− ζ csch2 x+
a2

2
sinh2 x− a

2
coshx

=
a2

2
(cosh2 x− 1)− a

(
2j +

1

2

)
coshx+ ζ cothx cschx− ζ csch2 x

=
a2

2
cosh2 x− a

(
2j +

1

2

)
coshx+ ζ cothx cschx− ζ csch2 x− a2

2

Bis auf die additive Konstante entspricht dies dem bei González-López et al.
angegebenen Potential

A cosh2(
√
νx) +B cosh(

√
νx) + C coth(

√
νx) csch(

√
νx) +D csch2(

√
νx)

für ν = 1, A = a2

2 , B = −a
(
2j + 1

2

)
, C = −D = ζ ohne Singularität bei

x = 0.
Ein Vergleich der Phase a(x) = a · coshx mit derjenigen des exponentiellen
Potentials, a(x) = aex +

(
1
2 + b

)
x − ce−x, legt nahe, die Form des exponenti-

ellen Potentials für den speziellen Fall a = −c = η
2 , b = − 1

2 mit einer reellen
Konstante η zu untersuchen. Einsetzen in Ausdruck 9 liefert:

V (x) =
1

2

(
η2

4
e2x +

(
−1

2
+ 1

)2

+

(
−1

2
− 2j

)2

+
η2

4
e−2x + η

(
−1

2
− 2j

)
ex − η

(
−1

2
+ 1

)
e−x

)
Setzen von j = 0 und Umsortieren führt auf:

V (x) =
1

2

(
η2

4
e2x +

η2

2
+
η2

4
e−2x − η

2
ex − η

2
e−x

)
+

1

4
− η2

4︸ ︷︷ ︸
= const.=:C1

=
η2

2

(
ex + e−x

2

)2

− η

2
· e

x + e−x

2
+ C1 =

η2

2
cosh2 x− η

2
coshx+ C1

=
η2

2
sinh2 x− η

2
coshx+

η2

2
+ C1︸ ︷︷ ︸

= const. =:C2
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Formal entspricht dies exakt Ausdruck 11 für j = 0. Somit kann dieses
hyperbolische Potential offenbar als Spezialfall a = −c = η

2 , b = −1
2 , j =

0 des exponentiellen Potentials konstruiert werden, wobei in Ausdruck 11 der
Parameter j wieder Teil eines Vorfaktors ist. Diese nachträglich erscheinende
Modifikation hat vermutlich den Hintergrund, dass exakte Lösbarkeit und damit
ein anderer Sachverhalt vorläge, wenn V (x) gänzlich unabhängig von j wäre.

3.3 Zweites hyperbolisches Potential
Ein weiteres hyperbolisches Potential ergibt sich aus:22

• P4(ξ) = (1− ξ2)2

• P3(ξ) = aξ − (2j − 1)ξ(1− ξ2)

• P2(ξ) = j(j − a)− j(2j − 1)ξ2

Die Koordinatentransformation lautet dann

x(ξ) =

∫
dξ

1− ξ2
= artanh ξ

und es folgt ξ(x) = tanhx. Mit tanh x
1−tanh2 x

= sinhx coshx und P ′
4(ξ) =

−4ξ(1− ξ2) sowie

sinh(2x) = 2 sinhx coshx (12)

gilt desweiteren:

A(x) =
−4 tanh x(1−tanh2 x)

4 + a tanhx− (2j − 1) tanhx(1− tanh2 x)√
(1− tanh2 x)2

= − tanhx+ a · tanhx
1− tanh2 x

− (2j − 1) tanhx

= a · sinhx coshx− 2j tanhx =
a

2
sinh(2x)− 2j tanhx

Durch Integration und Ausnutzen der Identität

cosh(2x) = 2 cosh2(x)− 1 (13)

erhält man

a(x) =
a

4
cosh(2x)− 2j ln

(
cosh(x)

)
=
a

2
cosh2 x− a

4
− ln

(
cosh2j x

)
22[Shi 99], S. 807
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für die Phase. Exponentieren liefert dann die unbedeutende Konstante e a
4

und den Faktor cosh2j x, der in die Wellenfunktion selbst eingeht. Mit

d

dx
tanhx =

d

dx

( sinhx
coshx

)
=

cosh2 x− sinh2 x

cosh2 x
= 1− tanh2 x

ergibt sich A′(x) = a · cosh(2x)− 2j(1− tanh2 x). Die Identitäten

sinhx coshx tanhx = sinhx coshx · sinhx
coshx = sinh2 x = cosh2 x− 1

und

(sinhx coshx)2 =
(√

cosh2 x− 1 · coshx
)2

= cosh4 x− cosh2 x

sowie ∆V (x) = j(j − a) − j(2j − 1) tanh2 x und Identität 13 liefern das
Potential:23

V (x) = j(j − a)− j(2j − 1) tanh2 x

+
1

2
(a · sinhx coshx− 2j tanhx)2 − 1

2

(
a · cosh(2x)− 2j(1− tanh2 x)

)
= j(j − a)− 2j2 tanh2 x+ j tanh2 x+

a2

2
cosh4 x− a2

2
cosh2 x− 2aj cosh2 x

+2aj + 2j2 tanh2 x− a · cosh2 x+
a

2
+ j − j tanh2 x

=
a2

2
cosh4 x− a

2
(a+ 4j + 2) cosh2 x+

a

2
+ j(j + a+ 1)︸ ︷︷ ︸
= const.=:C3

Auch weil sich dieses Potential bei Shifman, nicht aber bei González-López
et al. findet, liegt der Versuch nahe, einen Zusammenhang zwischen diesem und
dem zuvor behandelten hyperbolischen Potential herzustellen. Mit den beiden
Identitäten 10 und 12 lässt sich zunächst

cosh4 x = cosh2 x cosh2 x = (1 + sinh2 x) cosh2 x

= cosh2 x+
(1
2

sinh(2x)
)2

=
cosh(2x) + 1

2
+
(1
2

sinh(2x)
)2

begründen und das zweite hyperbolische Potential folgendermaßen umschrei-
ben:

23[Shi 99], S. 806-807
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V (x) =
a2

2
cosh4 x− a

2
(a+ 4j + 2) cosh2 x

=
a2

2

(
cosh(2x) + 1

2
+
(1
2

sinh(2x)
)2)

− a

2
(a+ 4j + 2)

cosh(2x) + 1

2

=
a2

8
sinh2(2x)− a

2
(2j + 1) cosh(2x)− a

4

(
4j + 2

)
Weiter lässt sich die Ersetzung 2x = y vornehmen. Mit der Vorschrift 8

ergibt sich dann

H
(y
2

)
= 4

(
−1

2

d2

dy2
+

1

4
V
(y
2

))
Der Vorfaktor 4 ist nicht weiter beachtlich; das transformierte Potential hat

mit der zusätzlichen Ersetzung a = 4â unter der Berücksichtigung des Vorfaktors
1
4 folgende Gestalt:

Ṽ (y) =
â2

2
sinh2(y)− â

(
j +

1

2

)
cosh(y)− â

4
(4j + 2)︸ ︷︷ ︸

= const. =:C4

Der Vorfaktor in der Klammer vor cosh y lässt offenbar die Werte 1
2 , 1,

3
2 , 2, ...

zu, da j nach Voraussetzung halbzahlig und nichtnegativ ist. Beim ersten hy-
perbolischen Potential mit dem Vorfaktor (2j+ 1

2 ) ergeben sich dagegen nur die
ungeraden Werte 1

2 ,
3
2 ,

5
2 , .... Damit stellt das erste hyperbolische Potential offen-

bar einen Spezialfall des soeben untersuchten dar, der nur die ungeraden Werte
von j umfasst. Dies ist vermutlich der Grund, warum das zweite hyperbolische
Potential bei González-López et al. nicht aufgeführt ist.

3.4 Drittes hyperbolisches Potential
Desweiteren lassen sich die Polynome

• P4(ξ) = ξ2 + 1

• P3(ξ) = aξ2 − 1
2ξ + a

• P2(ξ) = −2ajξ

betrachten, die auf die Koordinatentransformation

x(ξ) =

∫
dξ√
ξ2 + 1

= arsinh ξ

sowie ξ(x) = sinhx und P ′
4(ξ) = 2ξ führen. Weiter ergibt sich

18



A(x) =
2 sinh x

4 + a sinh2 x− 1
2 sinhx+ a√

sinh2 x+ 1
= a · sinh2 x+ 1

coshx = a · coshx

und damit die Phase a(x) = a · sinhx, für die jedoch entweder (im Fall
a > 0) lim

x→−∞
a(x) = −∞ oder (im Fall a < 0) lim

x→+∞
a(x) = −∞ gilt, so dass

die Wellenfunktion stets nur auf einem Intervall mit mindestens einer endlichen
Grenze normierbar ist. Man erhält A′(x) = a · sinhx und damit das Potential:

V (x) = −2aj sinhx+
a2

2
cosh2 x− a

2
sinhx

=
a2

2
cosh2 x− a

(
2j +

1

2

)
sinhx

Ergänzt man, ähnlich wie beim ersten hyperbolischen Potential, das zweite
Polynom zu P2(ξ) = −2ajξ + γ 1+ξ

1+ξ2 mit einer reellen Konstante γ, so wird
folgende Identität nützlich sein:

1 + sinhx
1 + sinh2 x

=
1 + sinhx

cosh2 x
=

sinhx
coshx

1

coshx +
1

cosh2 x
= tanhx sechx+ sech2x

Das Potential lautet dann:

V (x) = −2aj sinhx+ γ · 1 + sinhx
1 + sinh2 x

+
a2

2
cosh2 x− a

2
sinhx

=
a2

2
(1 + sinh2 x)− a

(
2j +

1

2

)
sinhx+ γ(tanhx sechx+ sech2x)

=
a2

2
sinh2 x− a

(
2j +

1

2

)
sinhx+ γ(tanhx sechx+ sech2x) +

a2

2

Dies entspricht bis auf eine additive Konstante dem bei González-López et
al. angegebenen Ausdruck

A sinh2(
√
νx) +B sinh(

√
νx) + C tanh(

√
νx) sech(

√
νx) +D sech2(

√
νx)

für ν = 1, A = a2

2 , B = −a
(
2j + 1

2

)
und C = D = γ.

Ein Vergleich der Phase mit derjenigen des exponentiellen Potentials legt hier
nahe, den Spezialfall a = c = ϑ

2 , b = − 1
2 mit einer reellen Konstante ϑ zu

untersuchen. Einsetzen in Ausdruck 9 liefert:

V (x) =
1

2

(
ϑ2

4
e2x +

(
−1

2
+ 1

)2

+

(
−1

2
− 2j

)2

+
ϑ2

4
e−2x + ϑ

(
−1

2
− 2j

)
ex + ϑ

(
−1

2
+ 1

)
e−x

)
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Setzen von j = 0 und Umsortieren führt auf:

V (x) =
1

2

(
ϑ2

4
e2x +

ϑ2

2
+
ϑ2

4
e−2x − ϑ

2
ex +

ϑ

2
e−x

)
+

1

4
− ϑ2

4︸ ︷︷ ︸
= const.=:C5

=
ϑ2

2

(
ex + e−x

2

)2

− ϑ

2
· e

x − e−x

2
+ C5 =

ϑ2

2
cosh2 x− ϑ

2
sinhx+ C5

Somit kann auch dieses hyperbolische Potential als Spezialfall des exponen-
tiellen Potentials aufgefasst werden. Das Auftreten des Parameters j ist genauso
zu interpretieren wie beim ersten hyperbolischen Potential. Überhaupt wird man
von einem der beiden Potentiale unmittelbar auf das andere geführt, wenn die
jeweils auftretenden hyperbolischen Winkelfunktionen durch diejenigen Funktio-
nen ersetzt werden, die mit den jeweiligen Komplementärwinkeln assoziiert sind,
d.h. unter den Ersetzungen sinh ↔ cosh, tanh ↔ coth und sech ↔ csch. Ver-
mutlich ist das soeben untersuchte Potential aufgrund dieser Symmetrie nicht
bei Shifman aufgeführt. Ein weiterer Grund dürfte in der eingeschränkten Nor-
mierbarkeit bestehen.
Im Folgenden werden noch die Ergebnisse der einzelnen Rechenschritte zur Kon-
struktion des Ausdrucks für das polynomiale und das periodische Potential in
Shifmans Katalog angegeben. Insbesondere sind die mit periodischen Poten-
tialen assoziierten Wellenfunktionen nicht normierbar und stellen damit einen
Sonderfall dar.24

• Polynomiales Potential:

– P4(ξ) = 4ξ, P3(ξ) = νξ2 + µξ − 1, P2(ξ) = −2νjξ

– x(ξ) = 1
2

∫
dξ√
ξ
=

√
ξ ⇒ ξ(x) = x2

– A(x) = 1
2 (νx

3 + µx), a(x) = 1
8 (νx

4 + 2µx2), ∆V (x) = −2νjx2

– V (x) = ν2

8 x
6 + µν

4 x
4 +

(
µ2

8 − 2ν(j + 3
8 )
)
x2

• Periodisches Potential:

– P4(ξ) = 1− ξ2, P3(ξ) = −aξ2 + 1
2ξ + a, P2(ξ) = 2ajξ

– x(ξ) =
∫

dξ√
1−ξ2

= arcsin ξ ⇒ ξ(x) = sinx

– A(x) = a · cosx, a(x) = a · sinx, ∆V (x) = 2aj sinx
– V (x) = a2

2 cos2 x+ a(2j + 1
2 ) sinx

24[Shi 99], S. 806
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4 Möbius-Transformationen
Thema des letzten Kapitels ist eine spezielle Symmetrie, die quasi-exakt lösbare
Hamilton-Operatoren aufweisen. Deren allgemeine Form

H
”G“(ξ) = −1

2
P4(ξ)

d2

dξ2
+ P3(ξ)

d

dξ
+ P2(ξ)

ist nicht eindeutig, denn die Symmetriegruppe GL(2,R) der 2× 2-Matrizen(
α β
γ δ

)
mit Determinante αδ − βγ ̸= 0 und reellen Koeffizienten, deren Darstellung

auf der Riemannschen Zahlenkugel durch so genannte Möbius-Transformationen
(”gebrochen lineare Funktionen“)

ξ 7−→ w(ξ) =
αξ + β

γξ + δ
(14)

gegeben ist, erhält die von den Generatoren der SL(2,R) aufgespannte Lie-
Algebra.25 Zunächst lässt sich die Identität

α− γw = α− γ
αξ + β

γξ + δ
=
α(γξ + δ)− γ(αξ + β)

γξ + δ
=
αδ − βγ

γξ + δ
(15)

begründen und damit die Ableitung der Möbius-Transformation sowie ihrer
Inversen berechnen:

dw(ξ)

dξ
=
α(γξ + δ)− (αξ + β)γ

(γξ + δ)2
=

αδ − βγ

(γξ + δ)2
=

(α− γw)2

αδ − βγ
(16)

dξ(w)

dw
=
δ(α− γw) + (δw − β)γ

(α− γw)2
=

αδ − βγ

(α− γw)2
=

(γξ + δ)2

αδ − βγ

So ergibt sich für die Transformation des Differentials d
dξ :

d

dξ
=

dw

dξ

d

dw
= (αδ − βγ)−1(α− γw)2

d

dw

d2

dξ2
= (αδ − βγ)−1(α− γw)2

d

dw

(
(αδ − βγ)−1(α− γw)2

d

dw

)
= (αδ − βγ)−2(α− γw)2

(
(α− γw)2

d2

dw2
− 2γ(α− γw)

d

dw

)
= (αδ − βγ)−2(α− γw)4

d2

dw2
− 2γ(αδ − βγ)−2(α− γw)3

d

dw

Einsetzen in die Generatoren liefert:
25[Gon 91], S. 12
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T+ = ξ2
d

dξ
− 2jξ =

(
δw − β

α− γw

)2

(αδ − βγ)−1(α− γw)2
d

dw
− 2j

δw − β

α− γw

= (αδ − βγ)−1(δw − β)2
d

dw
− 2j

δw − β

α− γw

T 0 =

(
δw − β

α− γw

)
(αδ − βγ)−1(α− γw)2

d

dw
− j

= (αδ − βγ)−1(α− γw)(δw − β)
d

dw
− j

T− = (αδ − βγ)−1(α− γw)2
d

dw

Der allgemeine quasi-exakt lösbare Hamilton-Operator hat bei González-
López et al. folgende Gestalt:26

−H
”G“ = P (ξ)

d2

dξ2
+

(
Q(ξ)− 2j − 1

2
P ′(ξ)

)
d

dξ

+

(
R− jQ′(ξ) +

2j(2j − 1)

12
P ′′(ξ)

)
Die irreduzible Multiplikatordarstellung ρn,i vonGL(2,R) ist durch die Trans-

formationsregel P̂ = ρn,i(P) definiert, wobei

P̂(ξ) = (αδ − βγ)i(γξ + δ)nP
(
αξ + β

γξ + δ

)
(17)

für ein Polynom P vom Grad von höchstens n gilt. Das im Allgemeinen quar-
tische Polynom P (ξ) transformiert sich dabei nach ρ4,−2, das im Allgemeinen
quadratische Polynom Q(ξ) nach ρ2,−1, R bleibt invariant.27

4.1 Gruppeneigenschaft
Dass die Möbius-Transformationen tatsächlich eine Gruppe bilden, wird zu-
nächst durch Auflösen der Abbildungsvorschrift 14 nach ξ(w) klar; die inverse
Transformation

w 7−→ ξ(w) =
δw − β

−γw + α

hat wieder die Gestalt einer Möbius-Transformation. Für den Nachweis der
Abgeschlossenheit sollen die beiden Matrizen(

ε ζ
η ϑ

)
und

(
ι κ
λ µ

)
26[Gon 91], S. 11
27[Gon 91], S. 12
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mit den Determinanten εϑ − ηζ ̸= 0 und ιµ − λκ ̸= 0 und den assoziierten
Möbius-Transformationen

ξ 7−→ u(ξ) =
εξ + ζ

ηξ + ϑ
und ξ 7−→ v(ξ) =

ιξ + κ

λξ + µ

betrachtet werden. Werden die Transformationen hintereinander ausgeführt,
so ergibt sich mit

Φ(ξ) := v
(
u(ξ)

)
=
ι εξ+ζηξ+ϑ + κ

λ εξ+ζηξ+ϑ + µ
=

ειξ + ζι+ κ(ηξ + ϑ)

ελξ + ζλ+ µ(ηξ + ϑ)
=

(ει+ ηκ)ξ + (ζι+ ϑκ)

(ελ+ ηµ)ξ + (ζλ+ ϑµ)

wieder eine Möbius-Transformation, die mit der Matrix(
ει+ ηκ ζι+ ϑκ
ελ+ ηµ ζλ+ ϑµ

)
=

(
ι κ
λ µ

)(
ε ζ
η ϑ

)
assoziiert ist. Die Determinante dieser Matrix ist gemäß dem Determinanten-

multiplikationssatz gleich dem Produkt der Determinanten der einzelnen Matri-
zen und damit wie gefordert ungleich 0, da beide Faktoren nach Voraussetzung
ungleich 0 sind. Die Verknüpfung der beiden Transformationen u(ξ) und v(ξ)
kommutiert nicht, liefert in der umgekehrten Reihenfolge jedoch ein analoges
Ergebnis:

Ψ(ξ) := u
(
v(ξ)

)
=
ε ιξ+κλξ+µ + ζ

η ιξ+κλξ+µ + ϑ
=
ε(ιξ + κ) + ζ(λξ + µ)

η(ιξ + κ) + ϑ(λξ + µ)
=

(ει+ ζλ)ξ + (εκ+ ζµ)

(ηι+ ϑλ)ξ + (ηκ+ ϑµ)

Das neutrale Element der Gruppe ist offenbar durch die Matrix(
1 0
0 0

)
gegeben. Die Assoziativität der Verknüpfung von Möbius-Transformationen

ergibt sich einfach aus der Assoziativität der Matrixmultiplikation.

4.2 Anwendung auf das exponentielle Potential
Im Folgenden wird das exponentielle Potential herangezogen, um die Auswir-
kungen von Möbius-Transformationen auf quasi-exakt lösbare Potentiale zu un-
tersuchen. Vor Einsetzen des Ausdrucks für die Differentialoperatoren hat der
entsprechende Hamilton-Operator bei Shifman folgende Gestalt:28

H
”G“ = −1

2
T 0T 0 − aT+ + cT− +

(
b− j +

1

2

)
T 0

28[Shi 99], S. 806
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Durch die Ersetzung T+ → −T+ geht die Darstellung bei Shifman in die
Darstellung bei González-López et al. über:

H
”G“ = −1

2
T 0T 0 + aT+ + cT− +

(
b− j +

1

2

)
T 0

Einsetzen der Differentialoperatoren liefert dann:

H
”G“ = −1

2
ξ2
d2

dξ2
+ (aξ2 + bξ + c)

d

dξ
− 2ajξ + 2a

(
2jξ − ξ2

d

dξ

)
︸ ︷︷ ︸

=2aT+

= −1

2
ξ2
d2

dξ2
+ (−aξ2 + bξ + c)

d

dξ
+ 2ajξ

⇒ −H
”G“ =

1

2
ξ2
d2

dξ2
+ (aξ2 − bξ − c)

d

dξ
− 2ajξ

Ein Vergleich mit dem Ausdruck

−H
”G“ = P (ξ)

d2

dξ2
+

(
Q(ξ)− 2j − 1

2
P ′(ξ)

)
d

dξ

+

(
R− jQ′(ξ) +

2j(2j − 1)

12
P ′′(ξ)

)
für den allgemeinen quasi-exakt lösbaren Hamilton-Operator bei González-

López et al. ergibt für das exponentielle Potential:

P (ξ) =
1

2
ξ2

Q(ξ)− 2j − 1

2
P ′(ξ) = aξ2 − bξ − c

⇒ Q(ξ) = aξ2 +

(
j − 1

2
− b

)
︸ ︷︷ ︸

=:s

ξ − c

Das Polynom R geht nur als additive Konstante ins Potential V (x) ein und
ist daher unbeachtlich. Die Transformation der Polynome P̂ (ξ) und Q̂(ξ) nach
Vorschrift 17 liefert:

P̂ (ξ) = (γξ + δ)
4
(αδ − βγ)

−2 1

2

(
αξ + β

γξ + δ

)2

=
1

2
(αδ − βγ)

−2
(αξ + β)

2
(γξ + δ)

2

Q̂(ξ) = (γξ + δ)
2
(αδ − βγ)

−1

(
a

(
αξ + β

γξ + δ

)2

+ s

(
αξ + β

γξ + δ

)
− c

)
= (αδ − βγ)

−1
(
a (αξ + β)

2
+ s (αξ + β) (γξ + δ)− c(γξ + δ)2

)
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Für die Ableitungen dP̂ (ξ)
dξ = P̂ ′(ξ), d

2P̂ (ξ)
dξ2 = P̂ ′′(ξ) und dQ̂(ξ)

dξ = Q̂′(ξ) ergibt
sich dann:

P̂ ′(ξ) = (αδ − βγ)
−2

(αξ + β) (γξ + δ)
(
α (γξ + δ) + γ (αξ + β)

)
P̂ ′′(ξ) = (αδ − βγ)

−2
(
α2 (γξ + δ)

2
+ 4αγ (αξ + β) (γξ + δ) + γ2 (αξ + β)

2
)

Q̂′(ξ) = (αδ − βγ)
−1
(
2aα (αξ + β) + s

(
α (γξ + δ) + γ (αξ + β)

)
− 2cγ(γξ + δ)

)
Das Potential ist bei González-López et al. allgemein gegeben durch:29

V (x) = −j(j + 1)

3

(
P ′′ − 3

4

P ′2

P

)
︸ ︷︷ ︸

:=V1(x)

−2j + 1

4

(
Q
P ′

P
− 2Q′

)
︸ ︷︷ ︸

:=V2(x)

+
Q2

4P︸︷︷︸
:=V3(x)

−R

Man erhält für die einzelnen Summanden des Potentials:

V1(ξ) = −j(j + 1)

3

(
(αδ − βγ)

−2
(
α2 (γξ + δ)

2
+ 4αγ (αξ + β) (γξ + δ) + γ2 (αξ + β)

2
)

−3

4

(
(αδ − βγ)

−2
(αξ + β) (γξ + δ)

(
α (γξ + δ) + γ (αξ + β)

))2
1
2 (αδ − βγ)

−2
(αξ + β)

2
(γξ + δ)

2

)

= −j(j + 1)

3

(
(αδ − βγ)

−2
(
α2 (γξ + δ)

2
+ 4αγ (αξ + β) (γξ + δ) + γ2 (αξ + β)

2
)

−3

2
(αδ − βγ)

−2 (
α (γξ + δ) + γ (αξ + β)

)2)

= −j(j + 1)

3
(αδ − βγ)−2

(
−α

2

2
(γξ + δ)

2
+ αγ (αξ + β) (γξ + δ)− γ2

2
(αξ + β)

2

)
= −j(j + 1)

3
(αδ − βγ)−2

(
− α2

2

(
γ2ξ2 + 2γδξ + δ2

)
+αγ

(
αγξ2 + (αδ + βγ)ξ + βδ

)
− γ2

2

(
α2ξ2 + 2αβξ + β2

))

= −j(j + 1)

3
(αδ − βγ)−2

(
−1

2
(α2δ2 + β2γ2) + αδβγ

)
= −j(j + 1)

3
(αδ − βγ)−2

(
−1

2
(αδ − βγ)2

)
=
j(j + 1)

6

29[Gon 91], S. 11
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V2(ξ) = −2j + 1

4

(
(αδ − βγ)

−1
(
a (αξ + β)

2
+ s (αξ + β) (γξ + δ)− c(γξ + δ)2

)
·
(αδ − βγ)

−2
(αξ + β) (γξ + δ)

(
α (γξ + δ) + γ (αξ + β)

)
1
2 (αδ − βγ)

−2
(αξ + β)

2
(γξ + δ)

2

−2 (αδ − βγ)
−1
(
2aα (αξ + β) + s

(
α (γξ + δ) + γ (αξ + β)

)
− 2cγ(γξ + δ)

))

= −2j + 1

4
(αδ − βγ)

−1

((
a (αξ + β)

2
+ s (αξ + β) (γξ + δ)− c(γξ + δ)2

)
·α (γξ + δ) + γ (αξ + β)

1
2 (αξ + β) (γξ + δ)

− 2
(
2aα (αξ + β)

+s
(
α (γξ + δ) + γ (αξ + β)

)
− 2cγ(γξ + δ)

))

= −2j + 1

2
(αδ − βγ)

−1

(
aα(αξ + β) + aγ

(αξ + β)2

γξ + δ

+s
(
α(γξ + δ) + γ(αξ + β)

)
− cα

(γξ + δ)2

αξ + β
− cγ(γξ + δ)− 2aα(αξ + β)

−s
(
α(γξ + δ) + γ(αξ + β)

)
+ 2cγ(γξ + δ)

)

= −2j + 1

2
(αδ − βγ)

−1

(
a(αξ + β)

(
γ
αξ + β

γξ + δ
− α

)
+ c(γξ + δ)

(
γ − α

γξ + δ

αξ + β

))

=
2j + 1

2

(
a
αξ + β

γξ + δ
+ c

γξ + δ

αξ + β

)

V3(ξ) =
1

4

(
(αδ − βγ)

−1
(
a (αξ + β)

2
+ s (αξ + β) (γξ + δ)− c(γξ + δ)2

))2
1
2 (αδ − βγ)

−2
(αξ + β)

2
(γξ + δ)

2

=
1

2

(
a (αξ + β)

2
+ s (αξ + β) (γξ + δ)− c(γξ + δ)2

(αξ + β) (γξ + δ)

)2

=
1

2

(
a
αξ + β

γξ + δ
+ s− c

γξ + δ

αξ + β

)2

V1(ξ) ist nur eine additive Konstante und damit nicht weiter von Interesse.
Die Invarianz der Koordinatentransformation 7 unter Möbius-Transformationen
zeigt sich mit der in 16 berechneten Ableitung:
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x(ξ) =

∫
dξ√
P̂4(ξ)

=

∫ dξ
dwdw√

(αδ − βγ)−2(γξ + δ)4P4

(
w(ξ)

)
= (αδ − βγ)

∫ (γξ+δ)2

αδ−βγ dw

(γξ + δ)2
√
P4

(
w(ξ)

) =

∫
dw√

P4

(
w(ξ)

)
Im Fall des exponentiellen Potentials ergibt sich wie zuvor

x(ξ) =

∫
dw√
w2(ξ)

=

∫
dw

w(ξ)
= lnw(ξ)

und so w(ξ) = ex. In den Resultaten für V2(ξ) und V3(ξ) kann die Variable
w(ξ) = αξ+β

γξ+δ daher durch ex ersetzt werden:

V2(x) =
2j + 1

2

(
aex + ce−x

)
V3(x) =

1

2

(
aex + s− ce−x

)2
Folglich ist die Summe der Resultate für V2(x) und V3(x) gleichsam eine

Linearkombination von e2x, ex, e−x und e−2x und damit von derselben Gestalt
wie das zuvor in Kapitel 3 ausgerechnete exponentielle Potential:

V (x) =
1

2

(
aex + (b− 2j)

)2
+

1

2

(
ce−x + (b+ 1)

)2
Mit diesem Ergebnis ist die Invarianz der von den Generatoren der SL(2,R)

aufgespannten Lie-Algebra unter Möbius-Transformationen beispielhaft nach-
gewiesen.
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5 Einordnung und Ausblick
Der in Kapitel 3 dargestellte Versuch, bei gegebenen eingehenden Polynomen das
gesuchte quasi-exakt lösbare Potential aufzufinden, verlief grundsätzlich erfolg-
reich. Das Beispiel des dritten hyperbolischen Potentials wurde dabei selbst kon-
struiert, um maximale Vergleichbarkeit der Arbeiten von Shifman und González-
López et al. herzustellen. Das jeweilige Vorgehen zur Bestimmung des Ausdrucks
für V (x) entspricht dabei jeweils der Notation, die Shifman in seiner Arbeit ver-
wendet. Diese deckt sich nicht vollständig mit der in der Arbeit von González-
López et al. verwendeten Notation, so unterscheiden sich etwa die Generato-
ren der SL(2,R) oder der allgemeine Ausdruck für den quasi-exakt lösbaren
Hamilton-Operator geringfügig. Damit ist verständlich, dass sich etwa zusätz-
liche additive Konstanten oder einschränkende Bedingungen für die Parameter
ergeben, welche in die Potentiale eingehen. In der Arbeit von González-López
et al. sind in Bezug auf den Katalog von Potentialen solche Bedingungen für die
Parameter angegeben, bei denen im Einzelfall überprüft werden müsste, ob die-
se äquivalent zu den Ergebnissen bei Shifman sind.30 Die Formalismen sollten
jedoch grundsätzlich identisch sein sollten, was in weitergehenden Untersuchun-
gen festgestellt werden könnte.
Von den behandelten Potentialen findet sich das exponentielle Potential als ein-
ziges in nahezu äquivalenter Form bei Shifman und bei González-López et al..
Das erste hyperbolische Potential ist bei Shifman aufgeführt, der entsprechende
Ausdruck bei González-López et al. ergibt sich erst, wenn eines der eingehen-
den Polynome erweitert wird. Das erste hyperbolische Potential ist sowohl ein
Spezialfall des exponentiellen, als auch des zweiten hyperbolischen Potentials,
welches sich nur bei Shifman findet. Dort ist wiederum das dritte hyperbolische
Potential nicht aufgeführt, eine Erweiterung eines der eingehenden Polynome
ermöglicht jedoch auch hier die Herleitung des bei González-López et al. ange-
gebenen Ausdrucks. Diese Erweiterungen wurden jeweils selbst konstruiert und
haben in den Rechnungen jeweils die Gestalt gebrochen-rationaler Funktionen
und nicht die von Polynomen. Auch hier bietet sich der Versuch an, diesen
zunächst asymmetrisch erscheinenden Aspekt bezüglich der Formalismen bei
Shifman und bei González-López et al. aufzulösen. Das dritte hyperbolische Po-
tential ist ebenfalls ein Spezialfall des exponentiellen Potentials und gleichsam

”komplementär“ zum zweiten hyperbolischen Potential, die assoziierten Wellen-
funktionen sind jedoch nur eingeschränkt normierbar.
Möglicherweise wollte Shifman nur solche Potentiale aufführen, bei denen die
zugehörigen Wellenfunktionen auf der gesamten reellen Achse normierbar sind,
und hat das periodische Potential aufgrund dessen Bedeutung etwa für die Fest-
körperphysik mit aufgenommen. Dessen Nicht-Normierbarkeit ist indes von an-
derer Art als die des dritten hyperbolischen Potentials.
Offenbar lassen sich zwei der hyperbolischen Potentiale auf das exponentielle Po-
tential sowie auf das verbliebene hyperbolische Potential zurückführen, so dass
das exponentielle Potential zusammen mit dem verbliebenen hyperbolischen Po-

30[Gon 91], S. 15
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tential und einem polynomialen Potential offenbar einen in sich abgeschlossenen
Satz von nicht-periodischen quasi-exakt lösbaren Potentialen darstellt.
In weitergehenden Untersuchungen könnte man sich, wie bereits angedeutet,
um den Nachweis bemühen, dass die Ergebnisse bei Shifman und bei González-
López bis auf Unterschiede bei den Benennungen von Parametern vollständig
äquivalent sind. In diesem Sinne wäre zum Einen das zweite polynomiale Poten-
tial bei González-López et al. zu thematisieren, da es mit seinen geraden und
ungeraden Potenzen vordergründig keine direkte Entsprechung bei Shifman zu
haben scheint. Zum Anderen wäre die Fragestellung denkbar, warum das zweite
hyperbolische Potential nicht bei González-López et al. aufgeführt ist, obwohl es
einen allgemeineren Fall als das erste hyperbolische Potential darstellt. Darüber
hinaus könnte die Suche nach einem Zusammenhang mit dem exponentiellen
Potential noch einmal aufgenommen werden. Für diese Untersuchungen wären
natürlich noch weitere Arbeiten zur Thematik der quasi-exakten Lösbarkeit her-
anzuziehen.
Im letzten Kapitel der Bachelorarbeit wurde die bei González-López et al. vorge-
brachte Behauptung, dass Möbius-Transformationen die Lie-Algebra erhalten,
die mit quasi-exakt lösbaren Hamilton-Operatoren assoziiert ist, beispielhaft
belegt. Dieses Ergebnis könnte in weitergehenden Untersuchungen verallgemei-
nert werden, indem der entsprechende Nachweis für einen beliebigen quasi-exakt
lösbaren Hamilton-Operator erbracht wird.
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