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2.2 Instantonen als semiklassische Näherung für Tunnelprozesse . . . . . . . . . 13

3 Der Ein-Loop-Beitrag zur effektiven Wirkung 17

3.1 Das klassische Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Der Fluktuationsoperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Die Partialwellenzerlegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Der Ein-Loop-Beitrag zur effektiven Wirkung . . . . . . . . . . . . . . . . . 23

4 Renormierung der effektiven Wirkung 25

4.1 Regularisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Renormierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Zusammenfassung und Ausblick 36

A Die Vortex-Lösung für R = 1 37

B Der harmonische Oszillator 40

C Die Symmetrisierung der Potentialmatrix 42

Literaturverzeichnis 51



II INHALTSVERZEICHNIS

Danksagung 53



Einleitung

Seit dem Jahr 1930, in dem P. A. M. Dirac die Existenz von Antimaterie postuliert hat,
ist klar, dass Teilchen und Antiteilchen symmetrisch zueinander sein sollten. Ein System,
das nur aus Teichen besteht, sollte sich genauso verhalten wie ein System, bei dem man
Teilchen durch Antiteilchen ersetzt. Die Annahme, dass sich Teilchen und Antiteilchen
symmetrisch verhalten, steht jedoch im krassen Widerspruch zu der Beobachtung, dass
unser Universum fast nur aus normaler Materie aufgebaut ist.
Man hat bisher noch keinen Beweis dafür erbringen können, dass irgendwo im Univer-
sum große Mengen an Antimaterie vorhanden sind. Würden diese auf Materie treffen,
müsste es aufgrund der Vernichtungsprozesse von Materie und Antimaterie zu gewalti-
gen Ausbrüchen von Gammastrahlung kommen. Diese sind bisher allerdings noch nicht
beobachtet worden. Daher kann man annehmen, dass das Universum, bis auf kleine Aus-
nahmen bei hochenergetischen Reaktionen, die die Erzeugung von Antiteilchen zur Folge
haben können, ausschließlich aus Materie besteht.
Im frühen Universum müssen also baryonenzahlverletzende Prozesse stattgefunden haben,
die die Symmetrie zwischen Materie und Antimaterie brachen. Eine mögliche Erklärung
liefern die sogenannten ”Großen vereinheitlichten Theorien”. Ihr Grundgedanke ist, dass
über einer gewissen Energie die innere Symmetriegruppe durch ein G gegeben ist, die
sich dann bei niedrigeren Energien durch eine Reihe von spontanen Symmetriebrechungen
auf die Gruppe des Standardmodells reduziert. Eine irreduzible Darstellung einer solchen
Gruppe G kann sowohl Quarks als auch Leptonen enthalten, so dass hier baryonenzahl-
verletzende Prozesse möglich sind.
Eine andere Möglichkeit wurde 1976 von G. ’t Hooft vorgeschlagen [23]. Er fand heraus,
dass eine Baryonenzahlverletzung im elektroschwachen Standardmodell aufgrund topologi-
scher Prozesse möglich ist. Dabei verknüpfte er die Anomaliestruktur des elektroschwachen
Standardmodells mit der Topologie der zugehörigen Eichfelder.
Berechnungen zu baryonenzahlverletzenden Prozessen im elektroschwachen Standardmo-
dell sind allerdings äußerst kompliziert und schwierig. Daher wird auf ein einfacheres
”Spielzeugmodell” zurückgegriffen, in dem sich manche Rechnungen sogar analytisch durch-
führen lassen.
Das zweidimensionale Abel’sche Higgs-Modell besitzt einige Gemeinsamkeiten mit dem
elektroschwachen Standardmodell. So sind aufgrund der nichttrivialen Vakuumstruktur
des zweidimensionalen Higgs-Modells und derselben Anomalie im baryonischen Strom auch
hier baryonenzahlverletzende Prozesse möglich.
In der Vakuumstruktur unterscheiden sich die Minima um eine topologische Größe, die man
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Pontryagin-Klasse nennt. Klassische Lösungen der Feldgleichungen, die eine ganzzahliges
Vielfaches der Pontryagin-Klasse als topologische Ladung besitzen, können also Tunnel-
prozesse von einem Vakuum in ein anderes beschreiben. Solche Lösungen, die gleichzeitig
auch ein Minimum der euklidischen Wirkung sind, nennt man Instantonen. Ihre Existenz
wurde erstmals von Belavin et al. in vierdimensionalen Yang-Mills-Theorien gezeigt [2].
In zwei Dimensionen ist eine solche Instanton-Lösung durch den Vortex gegeben. Diese
radialsymmetrische Lösung wurde von Nielsen und Olesen konstruiert [14].
Wie ’t Hooft zeigen konnte, entspricht die Verletzung der Erhaltung des axialen Stromes,
die angibt, um wie viel sich die Baryonenzahl verändern kann, aber gerade der Pontryagin-
Klasse. So kann ein Instantonübergang eine Baryonenzahlverletzung induzieren.
Die Instantonübergangsamplitude ist proportional zu e−S (s. z.B. [5], [20] oder [15]).
Um Ein-Loop-Korrekturen zur Instantonübergangsamplitude zu berücksichtigen ersetzt
man die klassische durch die effektive Wirkung (siehe [6] oder in die Quantenfeldtheorie
einführende Bücher). Diese Ein-Loop-Korrektur ist aber divergent, so dass die effektive
Wirkung renormiert werden muss. Die Isolation der Divergenzen mittels der Methode der
dimensionellen Regularisation und die anschließende Renormierung der effektiven bis zur
Ein-Loop-Ordnung war Aufgabe dieser Diplomarbeit. Die Arbeit ist wie folgt gegliedert:

Im ersten Kapitel werden die Grundlagen der U(1)-Eichtheorie besprochen und der Higgs-
Mechanismus eingeführt. Außerdem wird der Vortex als eine Soliton-Lösung in zwei Di-
mensionen erläutert. Die klassische Wirkung des Vortex wird im Anhang A für den Spe-
zialfall gleicher Higgs- und Eichfeldmasse berechnet.
Im zweiten Kapitel wird das Konzept der Instantonen dargestellt und eine Formel für die
Tunnelamplitude hergeleitet. Im Anhang B werden die Grundzustandseigenschaften des
harmonischen Oszillators mit den im Kapitel zwei besprochenen Methoden berechnet.
Im dritten Kapitel wird der Vortex als eine Instanton-Lösung im Abel’schen zweidimensio-
nalen Higgs-Modell erläutert, die eine Baryonenzahlverletzung induzieren kann. Weiterhin
wird eine nichtpertubative Methode zur Berechnung der Ein-Loop-Korrektur zur effekti-
ven Wirkung vorgestellt, die von J. Baacke entwickelt wurde [1]. Im Anhang C ist eine
Rechnung zu diesem Verfahren angegeben, die im Kapitel 3 übersprungen wurde.
Im 4. Kapitel werden zunächst die divergenten Anteile der effektiven Wirkung isoliert,
bevor diese dann renormiert wird.



Kapitel 1

U(1)-Eichtheorie und der

Higgsmechanismus

1.1 Globale und lokale Eichsymmetrien

Untersucht man Eichtheorien mit einer Lagrangedichte L, so stellt man fest, dass diese
unter bestimmten Transformationen der Felder invariant bleibt. Werden nur Transforma-
tionen der Felder selbst, die die Raum-Zeit-Koordinaten invariant lassen, betrachtet, so
nennt man diese Eichtransformationen. Man spricht in dem Zusammenhang von Eichsym-
metrien oder auch inneren Symmetrien.
Als Beispiel für das Eichprinzip soll ein komplexes Skalarfeld dienen, dessen klassische
Lagrangedichte die Form

L0 (φ(x), ∂µφ(x)) =
1
2
∂µφ

∗∂µφ− V (φ∗φ) (1.1)

besitzt, die unter globalen Phasentransformationen der Art

φ(x) −→ φ′(x) = φ(x)e−iϕ (1.2)

offensichtlich invariant ist. Hierbei ist α eine beliebige reelle Konstante, die nicht von x
abhängen, also global denselben Wert besitzen soll. Zu dieser Symmetrie gibt es nach dem
Theorem von Noether einen divergenzlosen, also erhaltenen Strom der Form:

jµ = const. (φ∗∂µφ− φ∂µφ∗) . (1.3)

Nun möchte man erreichen, dass man sich nicht auf globale Transformationen beschränken
muss, sondern auch Raum-Zeit-abhängige Phasenfaktoren zulassen darf:

φ(x) −→ φ′(x) = φ(x)e−iϕ(x). (1.4)

Allerdings transformiert sich ∂µφ nicht mehr wie φ, wie es noch bei den globalen Trans-
formationen der Fall war:

∂µφ(x) −→ ∂µφ′(x) = ∂µ(φ(x))e−iϕ(x) + ∂µ(e−iϕ(x))φ(x), (1.5)



4 U(1)-Eichtheorie und der Higgsmechanismus

sondern erhält einen zusätzlichen Term. L ist somit nicht invariant unter einer lokalen
Eichtransformation. Da dieses aber erstrebenswert ist, muss L geeignet erweitert werden,
so dass sich ∂µφ wieder genauso transformiert wie φ.
Definiert man ein Vektorfeld Aµ, das sich nach der Regel

Aµ(x) −→ A′µ(x) = Aµ(x) +
1
e
∂µϕ(x) (1.6)

transformiert, so kann man eine ”kovariante Ableitung” durch

Dµφ(x) ≡ (∂µ + ieAµ)φ(x) (1.7)

definieren, die sich genauso transformiert wie φ(x). Die Skalierung von φ zu Aµ wird durch
e festgelegt.
Die neue Lagrangedichte L(φ,Dµφ) ist nun unter lokalen Transformationen invariant,
enthält allerdings das Eichfeld Aµ als externes Feld. Um ein geschlossenes dynamisches
System zu definieren, muss man also noch einen Term zur Lagrangedichte hinzufügen, der
die Dynamik des Eichfeldes festlegt. Hierfür eignet sich ein Term proportional zu FµνFµν ,
wobei

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (1.8)

der elektro-magnetische Feldstärketensor ist.
Insgesamt gelangt man also zu einer Lagrangedichte, die ein geschlossenes dynamisches
System beschreibt und invariant unter lokalen Eichtransformationen ist:

L = −1
4
FµνFµν + L0(φ,Dµφ). (1.9)

Die Bewegungsgleichungen, die sich aus dieser Lagrangedichte ergeben, sind gerade die
der skalaren Elektrodynamik.
Schreibt man die Eichtransformationen als:

φ(x) −→ e−ieω(x)φ(x) (1.10)

Aµ(x) −→ Aµ(x) + ∂µω(x), (1.11)

erkennt man, dass es sich um eine U(1)-Symmetrie mit dem Generator e handelt.
In der Lorentz-Eichung (∂µA

µ = 0) lauten die Bewegungsgleichungen für das Eichfeld
2Aµ = jµ. Nimmt man nun an, dass φ = 0 der niedrigste Zustand des Systems ist (< φ >=
0 in einer quantisierten Theorie), geht diese Gleichung über in 2Aµ = 0. Die Lösungen
hierzu sind ebene Wellen, was masselosen Photonen in der Quantentheorie entspricht.
Diese Situation ändert sich allerdings, wenn der Vakuumerwartungswert < φ >6= 0 ist und
somit nicht mehr um 0 entwickelt werden darf. Man spricht dann von einer ”spontanen
Symmetriebrechung” oder einer ”versteckten Symmetrie”.

1.2 Spontane Symmetriebrechung

Eine Symmetrie wird ”spontan gebrochen” genannt, wenn der Zustand niedrigster Ener-
gie nicht mehr invariant unter den zu dieser Symmetrie gehörenden Transformationen ist.
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Zunächst soll der Fall einer gebrochenen globalen Symmetrie diskutiert werden. Als Bei-
spiel hierfür möge wieder die Lagrangedichte (1.1) dienen. Das Potential habe hierbei die
spezielle Form

V (φ∗φ) = m2φ∗φ+ λ(φ∗φ)2. (1.12)

Sucht man nun nach den Minima des Potentials, also den Grundzuständen der Theorie,
erkennt man, dass sie entscheidend von der Wahl der Vorzeichen der Parameter m2 und
λ abhängen (m2 wird als reiner Parameter betrachtet und nicht wie üblich als Massequa-
drat).
Wählt man m2 > 0 und λ > 0, so hat man wieder ein Potential, dessen Grundzustand bei
φ = 0 liegt und somit invariant unter Phasentransformationen der Felder ist. Das ändert
sich aber für m2 < 0. Dann erhält man nämlich einen neuen Grundzustand bei φ2

0 = −m2

2λ .
Dieser ist unendlichfach entartet, da die Minima des Potentials auf einem Kreis liegen1.
Das Potential (1.12) lässt sich hiermit auch schreiben als:

V (φ∗φ) = λ(φ∗φ− φ2
0)

2. (1.13)

Um nun die energetisch niedrigsten Zustände der zugehörigen quantisierten Theorie zu
bestimmen, muss man die niedrigsten klassischen Moden untersuchen. Dazu wird das Feld
um einen der Grundzustände entwickelt:

φ(x) = [φ0 + ζ(x)]eiϕ(x), (1.14)

so dass man, anstatt eines komplexen jetzt zwei reelle Felder zu untersuchen hat. Die
Lagrangedichte hat nun die Form:

L0 =
1
2
∂µζ∂µζ − λ(φ0 + ζ)2ζ2 + (φ0 + ζ)2

1
2
∂µϕ∂µϕ. (1.15)

Nimmt man an, dass ζ klein ist, kann man die Terme, die höher als die zweite Ordnung
sind, vernachlässigen. Man erhält:

L0
∼=

1
2
∂µζ∂µζ − 2λφ2

0ζ
2 +

1
2
φ2

0∂
µϕ∂µϕ+O(ζ3). (1.16)

Die ersten beiden Terme beschreiben ein freies skalares Teilchen der Masse 2φ0

√
λ, der

dritte ein masseloses Skalarteilchen. Die vernachlässigten Terme beschreiben die Wechsel-
wirkungen zwischen den Teilchen.
Allgemein kann man zeigen, dass die spontane Brechung einer globalen Symmetrie die
Existenz eines masselosen Spin-0-Teilchens erfordert. Dieses Theorem geht auf Goldstone
zurück und ist als der Goldstonemechanismus bekannt.
Man kann die obige Aussage auf beliebige Symmetriegruppen erweitern und muss sich
nicht auf die U(1) beschränken. Ist L invariant unter einer beliebigen Gruppe G und ist
das Vakuum gebrochen bis auf eine Untergruppe H von G, so manifestieren sich die gebro-
chenen Symmetrien in der Existenz von Goldstone-Bosonen. Allgemein kann man zeigen,
dass die Anzahl der Goldstone-Bosonen durch dim G/H gegeben ist. Hierauf möchte ich
aber nicht weiter eingehen, da ich mich im Folgenden auf die U(1)-Symmetrie beschränken
werde.

1Für den Fall m2 < 0 und λ < 0 gibt es zwar auch ein lokales Potentialminimum, allerdings ist das

Potential nach unten nicht beschränkt. In einer solchen Theorie können keine stabilen Teilchen existieren

(vgl. [10]).



6 U(1)-Eichtheorie und der Higgsmechanismus

1.3 Der Higgsmechanismus

Die Situation ändert sich nun, wenn man untersucht, wie sich eine lokale Symmetrie
verhält, wenn sie gebrochen wird. Als Beispiel soll die Lagrangedichte (1.9) dienen:

L = −1
4
FµνFµν +

1
2
(Dµφ)∗(Dµφ)− V (φ∗φ), (1.17)

wobei V (φ∗φ) durch (1.13) gegeben sei. Die lokale Eichsymmetrie, die diese Lagrangedichte
besitzt, ist allerdings gebrochen, wenn φ0 6= 0, da L in diesem Fall nicht mehr invariant
unter den lokalen Transformationen (1.10) und (1.11) ist.
Die Lösung mit der niedrigsten Energie ist für das skalare Feld durch (1.14) mit ζ(x) = 0
gegeben und für das Vektorfeld durch

Aµ = 0 (1.18)

Bei dem komplexen Skalarfeld kann man die Phase nun durch eine kontinuierliche Eichtrans-
formation wegeichen, so dass das Skalarfeld überall reell ist. Diese Eichung nennt man die
”unitäre Eichung”. Entwickelt man φ wieder um seinen Vakuumwert:

φ(x) = φ0 + ζ(x), (1.19)

erhält man für die Lagrangedichte in unitärer Eichung:

L = −1
4
FµνFµν + e2φ2

0A
µAµ +

1
2
∂µζ∂µζ − 2λφ2

0ζ
2 + h.o. . (1.20)

(h.o. steht hier für Terme höherer Ordnung) Diese Lagrangedichte besteht dann aus zwei
Feldern, dem Vektorfeld mit Spin 1 und dem reellen Skalarfeld mit Spin 0, die beide massiv
sind. Das zum Vektorfeld gehörige Photon hat die Masse ev und das Spin-0-Teilchen die
Masse

√
2λv, wobei v jetzt der Vakuumwert sein soll.

In dem Teilchenspektrum ist das Goldstone-Boson nicht enthalten. Es verschwindet durch
die Wahl der Eichung. Dafür ist das Photon, das vorher noch masselos war, jetzt massiv
geworden.
Dieses Phänomen wird ”Higgsmechanismus” genannt. Man beachte, dass die Zahl der
Freiheitsgrade bei diesem Mechanismus natürlich erhalten bleibt. Das Goldstonefeld ver-
schwindet zwar, aber dafür hat das Vektorfeld durch seine Masse eine longitudinale Pola-
risationsrichtung erhalten.

1.4 Der Vortex

Es ist nun interessant nach Lösungen der klassischen Feldgleichungen zu suchen, die ei-
ne endliche Energie besitzen. Lösungen, deren Energiedichte im Unendlichen hinreichend
schnell gegen null geht, nennt man Solitonen. Die Frage, ob solche Solitonlösungen über-
haupt stabil sind, lässt sich mit Hilfe topologischer Argumente beantworten.
Als erstes soll überlegt werden, welche Bedingungen an die Felder gestellt werden müssen,
damit Lösungen endlicher Energie möglich sind. Im Folgenden wird der zweidimensionale
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Fall betrachtet, da dieser für den weiteren Verlauf dieser Arbeit interessant ist.
Die Lagrangedichte sei wieder (1.17), die Lagrangedichte des Abel’schen Higgsmodells.
Aus der Bedingung, dass die zugehörige Hamiltondichte endlich sein soll, folgt (in zwei
Dimensionen): ∫

d2x( ~B2 + ~E2) <∞ (1.21)∫
d2xV (φ∗φ) <∞. (1.22)

Aus (1.21) ergibt sich, dass Fµν sich asymptotisch wie x−2 verhalten sollte, was bedeutet,
dass

Aµ −→ ∂µϕ+O(x−1) (|~r| → ∞). (1.23)

Aµ muss also im Unendlichen gegen eine pure Eichform streben.
Die zweite Bedingung (1.22) beinhaltet, dass φ(x) gegen seinen Vakuumswert streben
muss:

φ(x) −→ φ0(x)e−iϕ(x) (|~r| → ∞). (1.24)

Geht man zur temporären Eichung über, d.h. A0 = 0, werden die Randbedingungen im
Unendlichen zu

~A(~x) ~x→∞−→ 1
e
∇ϕ(~x) (1.25)

φ(~x) ~x→∞−→ φ0e
iϕ(~x). (1.26)

Die Felder sind auf einem Kreis K mit sehr großem Radius somit allein durch die Angabe
eines Winkels θ bestimmt. Weiterhin muss φ(θ) als Lösung einer Differentialgleichung
stetig sein, woraus

φ(2π) = φ(0) (1.27)

folgt. Diese Bedingung impliziert

ϕ(2π)− ϕ(0) = 2πn. (1.28)

Der magnetische Fluss durch K lässt sich somit leicht berechnen:

Φ =
∫

K
d~f · ~B =

∮
K
d~s · ~A. (1.29)

Hierbei ist d~f ein orientiertes Flächenelement der Kreisfläche, die von K umschlossen wird,
und d~s ist ein Linienelement des Kreisbogens um K.
Mit (1.25), (1.26) und (1.28) erhält man schließlich:

Φ =
2πn
e

(n ε Z). (1.30)

Der Fluss durch K muss also notwendigerweise quantisiert sein, damit man Lösungen
endlicher Energie erhält.
In drei räumlichen Dimensionen ist n = 0 zu wählen, da sonst die bis ins Unendliche
laufenden ~B-Feld-Linien die Bedingung (1.21) verletzen würden. In zwei Dimensionen
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ist aber jedes ganzzahlige n zugelassen. Dieser Fall kann als eine dreidimensionale Lösung
aufgefasst werden, die unabhängig von der z-Richtung konstante Energie pro Einheitslänge
entlang der z-Achse hat.
Für den zweidimensionalen Fall kann man sich überlegen, dass die Randbedingungen nur
davon abhängen, welchen spezifischen Wert n annimmt. Schreibt man nämlich ϕ(θ) als
ϕ(θ) = nθ+ α(θ) mit α(2π)− α(0) = 0, so lässt sich α als kontinuierliche Funktion durch
eine kontinuierliche Eichtransformation wegeichen. Dann gehen die Randbedingungen über
in

~A(~x) ~x→∞−→ 1
e
∇(nθ) = ~̂θ

n

er
(1.31)

φ(~x) ~x→∞−→ φ0e
inθ. (1.32)

Eine Frage, die sich jetzt natürlich stellt, ist, warum solche Lösungen überhaupt stabil
sind. Die Gründe sind, wie schon weiter oben erwähnt, topologischer Natur.
Auf dem Rand (r → ∞) wird φ durch die Gleichung (1.32) beschrieben. In zwei Dimen-
sionen ist dieser Rand gerade ein Kreis S1 (ein Kreis mit unendlichem Radius). Gleichung
(1.32) ist auch eine Darstellung der Symmetriegruppe U(1). Der Gruppenraum der U(1)
ist aber auch gerade ein Kreis S1.
φ beschreibt also eine Abbildung des Randes S1 des physikalischen Raumes in den Grup-
penraum S1 der U(1):

φ : S1 7→ S1, (1.33)

wobei diese Abbildung durch ein n ε Z festgelegt ist. Eine Lösung, die durch ein n cha-
rakterisiert ist, kann nicht kontinuierlich in eine Lösung mit anderem n überführt werden.
Daher sind Vortexlösungen in zwei Dimensionen stabil. Mathematisch ausgedrückt ist die
erste Homotopiegruppe π1(S1) des S1 nichttrivial. Man sagt auch, dass durch n verschie-
dene Eichklassen klassifiziert werden, die nicht durch kontinuierliche Eichtransformationen
ineinander überführt werden können.
Es gibt also unendlich viele Grundzustände, da n nicht beschränkt ist. Die Vakuumstruk-
tur des Abel’schen Higgsmodells ist daher nichttrivial.
Die Bewegungsgleichungen, die sich aus (1.17) ergeben, lauten:

Dµ(Dµφ) = −2m2φ− 4λφ2φ∗ (1.34)
1
2
ie(φ∂µφ

∗ − φ∗∂µφ) + e2Aµφ
∗φ = ∂νFµν . (1.35)

Man kann sich nun leicht davon überzeugen, dass diese Gleichungen Lösungen mit den
Randbedingungen (1.31) und (1.32) zulassen. Für n 6= 0 ist magnetischer Fluss vorhanden,
so dass dasA-Feld nicht überall einer puren Eichung entsprechen kann.A und φ ändern also
ihre Werte für r → 0. Es ist sinnvoll zu Polarkoordinaten überzugehen, da die Vortexlösung
offensichtlich zylindersymmetrisch ist. Aufgrund der Randbedingungen muss ~A(~r) von der
Form:

~A(~r) = −êϕ
A(r)
r

(1.36)

und φ von der Form:
φ(~r) = f(r)e−inϕ (1.37)
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sein. Die statischen Bewegungsgleichungen ergeben sich so zu:

d2A

dr2
− 1
r

dA

dr
− e(n+ eA)f2 = 0 (1.38)

d2f

dr2
− 1
r

df

dr

(n+ eA)2

r2
f + 2m2f + 4λf3 = 0. (1.39)

Zu diesem nichtlinearen gekoppelten Differentialgleichungssystem wurde bisher keine ex-
akte analytische Lösung gefunden. Für die Näherung f ∼= φ0 (d.h. für r → ∞) konnten
Nielsen und Olesen eine Lösung angeben [14]:

A(r) = −n
e
− cr

e
K1(|e|ar)

r→∞−→ −n
e
− c

e

(
π

2|e|a

) 1
2

e−|e|ar + . . . . (1.40)

Hierbei ist K1 eine modifizierte Besselfunktion und c eine Integrationskonstante.
Für die Variation des Higgsfeldes erhält man:

f(r) = φ0 + e−
√
−m2r. (1.41)

Für den Spezialfall, dass die Kopplungen die Relation e2 = 8λ erfüllen (das entspricht
einer Äquivalenz der Higgs- und Eichfeldmasse), fanden de Vega und Schaposnik 1976
sogar eine exakte Lösung [25]. Diese ist im Anhang A angegeben.



Kapitel 2

Instantonen

Als Instantonen bezeichnet man lokalisierte Lösungen von euklidischen Feldgleichungen
mit endlicher Wirkung. Instantonen spielen in der modernen Quantenfeldtheorie eine wich-
tige Rolle, weil man mit ihnen auch einige Prozesse beschreiben kann, deren Amplitude
exponentiell klein ist, und die deswegen nicht durch die Störungstheorie erfasst werden
können. Man hat somit eine Menge neuer Lösungen, die bisher verborgen waren. Der Na-
me Instanton wurde von ’t Hooft eingeführt, da die Lösung sowohl in der Zeit als auch im
Raum lokalisiert ist. Eine andere gebräuchliche Bezeichnung ist Pseudopartikel.
Zur euklidischen Version einer Theorie gelangt man, indem man die Zeit um π

2 im Uhr-
zeigersinn zur negativen imaginären Achse rotiert. Das entspricht einem Übergang von
der minkowskischen Metrik ηµν mit der Signatur (+,−,−,−) zur euklidischen Metrik δµν ,
die die Signatur (+,+,+,+) besitzt. Diese analytische Fortsetzung zu imaginärer Zeit ist
unter dem Namen Wick-Rotation bekannt. Nach einer Wick-Rotation geht die Lorentzin-
varianz in eine O(4)-Invarianz über. Da es sich bei der Metrik nun um δµν handelt, muss
man im Euklidischen nicht mehr obere und untere Indizes unterscheiden. Wie sich die Ko-
ordinaten und Feldkomponenten unter einer Wick-Rotation im einzelnen transformieren,
kann man z.B. in [10] finden. Das Entscheidene für die noch folgenden Rechnungen ist der
Übergang der minkowskischen Wirkung S zur euklidischen Wirkung Seuk:

S −→ Seuk = −iS. (2.1)

Der Übergang in die euklidische Raum-Zeit ist nützlich, da sich bestimmte Eigenschaften
von Minkowskischen Quantenfeldtheorien viel praktischer untersuchen lassen, wenn man
von euklidischen Wirkungsfunktionalen ausgeht. Ein Beispiel hierfür ist das Tunneln zwi-
schen verschiedenen entarteten Vakuumzuständen, das im nächsten Abschnitt ausführlich
beschrieben wird.
Es besteht nun ein enger Zusammenhang zwischen den Instantonen und Solitonen, wie den
in Kapitel 1 besprochenen Vortices. Wie man noch sehen wird, hat die euklidische Wir-
kung dieselbe Struktur wie die Energie einer statischen Feldkonfiguration in einer um eins
höheren Dimension. Der Vortex kann also im zweidimensionalen (euklidischen) Abel’schen
Higgs-Modell die Rolle eines Instantons übernehmen.
In der Quantenfeldtheorie werden die Instantonen in einer semiklassischen Approximati-
on entwickelt. Die Feldkonfiguration, um die die Entwicklung beginnt, ist die klassische
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Lösung.
Im nächsten Abschnitt soll zunächst die quantenmechanische Übergangsamplitude in semi-
klassischer Näherung (d.h. im Grenzwert für kleine ~) besprochen werden. Als Beispiel für
diesen Formalismus werden im Anhang [B] die Grundzustandseigenschaften des harmoni-
schen Oszillators berechnet. Danach werden dann Instantonen als semiklassische Näherung
für Tunnelprozesse erläutert, wobei die Rechnungen anhand des anharmonischen Oszilla-
tors erklärt werden. Als Ergebnis wird sich eine Gleichung für die Übergangsamplitude von
Instantonen ergeben, die sich dann ohne Probleme auf Prozesse in der Quantenfeldtheorie
übertragen lässt.

2.1 Die quantenmechanische Übergangsamplitude in semi-

klassischer Näherung

Im Euklidischen1 ist die Feynman’sche Pfadintegralformel gegeben durch:

< xf |e
−Ht0

~ |xi >= N

∫
[dx]e−

S
~ . (2.2)

Hierbei sind |xf > und |xi > Ortseigenzustände, H der Hamiltonoperator und t0 eine
positive Zahl. Auf der linken Seite kann man einen vollständigen Satz von Energieeigen-
zuständen einfügen:

< xf |e
−Ht0

~ |xi >=
∑

n

e
−Ent0

~ < xf |n >< n|xi > . (2.3)

Für große t0 ist auf der rechten Seite nur noch der Energiegrundzustand relevant. Der
Limes t0 → ∞ gibt also Aufschluss über den Energiegrundzustand und die zugehörige
Wellenfunktion.
Auf der rechten Seite der Pfadintegralformel ist N ein Normierungsfaktor und S die eukli-
dische Wirkung:

S =
∫ + to

2

− to
2

dt

[
m

2

(
dx

dt

)2

+ V (x(t))

]
; (2.4)

[dx] bezeichnet die Integration über alle Pfade, die die Randbedingungen x(− t
2) = xi und

x(+ t
2) = xf erfüllen. Man beachte, dass sich beim Übergang von der minkowskischen zur

euklidischen Wirkung das Vorzeichen beim Potential geändert hat. Daher hat die euklidi-
sche Wirkung auch dieselbe Struktur wie die Energie einer statischen Feldkonfiguration.
Man möchte jetzt das Integrationsmaß genauer definieren, um das Pfadintegral berechnen
zu können. Eine beliebige Funktion, die die Randbedingungen erfüllt, kann man nach ei-
nem vollständigen Satz reeller orthonormaler Funktionen entwickeln, die an den Rändern
verschwinden:

x(t) = X(t) +
∑

n

cnxn(t), (2.5)

1Ab jetzt wird der Index euk zur Kennzeichnung des Euklidischen weggelassen.
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wobei X(t) die Randbedingungen erfüllen muss. Damit ergibt sich für die rechte Seite von
(2.2):

N

∫
[dx]e−

S
~ = N

∫ ∞∏
0

dcn√
2π~

e−
S(X(t),[cn])

~ . (2.6)

Das komplizierte Pfadintegral geht also in ein unendliches Produkt ”einfacher” Integrale
über.
In der semiklassischen Näherung2 kann man das Pfadintegral nun in ein unendliches Pro-
dukt von Gauß’schen Integralen überführen und so auswerten. In diesem Fall wird die
rechte Seite von (2.2) von den stationären Punkten von S dominiert.
Sei X(t) jetzt ein Pfad mit minimaler Wirkung, der zu einem stationären Punkt von S
gehört3, dann gilt mit exponentieller Genauigkeit:

N

∫
[dx]e−

S(x(t))
~ ∼ e−

S0
~ , (2.7)

wobei S0 ≡ S(X(t)) die minimale Wirkung ist.X(t) bestimmt man nun aus der Bedingung,
dass die Wirkung extremal werden soll:

δS

δX
= −d

2X

dt2
+

d

dx
V (X) = 0. (2.8)

Die Lösung dieser ”euklidischen Bewegungsgleichung” muss natürlich wieder die Randbe-
dingungen x(− t

2) = xi und x(+ t
2) = xf erfüllen4.

Um die Übergangsamplitude genauer zu bestimmen, entwickelt man die Wirkung bis zur
zweiten Ordnung um das Minimum. Dazu benötigt man die zweite funktionale Ableitung
am Minimum der Wirkung:

δ2S

δX2
=

1
2

[
− d2

dt2
+

d2

dx2
V (X)

]
. (2.9)

Die Entwicklung der Wirkung um das Minimum ist somit:

S(X(t) + δx(t)) = S0 +
∫ − t

2

− t
2

dtδx(t)
1
2

[
− d2

dt2
+

d2

dx2
V (X)

]
δx(t). (2.10)

Bei dem Term in der eckigen Klammer in (2.9) handelt es sich um eine quadratische Form,
die diagonalisiert werden kann. Als geeignetes vollständiges Orthonormalsystem kann man
die Funktionen xn(t) aus (2.5) verwenden:[

− d2

dt2
+

d2

dx2
V (X)

]
xn(t) = λnxn(t). (2.11)

Damit lässt sich die Wirkung (bis zur zweiten Ordnung) schreiben als:

S = S0 +
1
2

∑
n

λ2
ncn. (2.12)

2Man spricht in diesem Zusammenhang auch von der ”Sattelpunktsnäherung”, obwohl es sich eigentlich

um ein Minimum der Wirkung handelt und nicht um einen Sattelpunkt.
3Es kann auch mehrere stationäre Punkte geben, aber im Moment möge es nur einer sein.
4Man beachte, dass es sich bei der euklidischen Bewegungsgleichung um eine Newton’sche Bewegungs-

gleichung in einem Potential mit negativen Vorzeichen handelt.



2.2 Instantonen als semiklassische Näherung für Tunnelprozesse 13

Setzt man dieses nun in (2.2) ein, erhält man:

N

∫
[dx]e−

S
~ = Ne−

S0
~

∫ ∞∏
n=0

dcn√
2π~

e−
1
2~

P
n λ2

ncn , (2.13)

also ein unendliches Produkt von Gauß’schen Integralen, deren Lösung leicht anzugeben
ist: ∫

dc√
2π~

e−
1
2~ λ2c = λ−

1
2 . (2.14)

Das Produkt der Eigenwerte5 kann auch aufgefasst werden als die Determinante der qua-
dratischen Form:

∞∏
n=0

λn = Det

[
− d2

dt2
+

d2

dx2
V (X)

]
. (2.15)

Als Ergebnis für die Übergangsamplitude in semiklassischer Näherung erhält man hiermit
schließlich:

< xf |e
−Ht0

~ |xi >= Ne−
S0
~ Det

[
− d2

dt2
+

d2

dx2
V (X)

]− 1
2

. (2.16)

Die reziproke Wurzel aus der Determinante wird manchmal auch der Präexponent genannt
[20]. Nun muss noch die Frage beantwortet werden, wie man den Normierungsfaktor be-
stimmt. Dazu schaut man sich das Verhältnis

< xf |e−
toH

~ |xi >

< xf |e−
toHfrei

~ |xi >
(2.17)

an. Man normiert also auf ein schon bekanntes System6. Im Anhang B sind als Beispiel
für das in diesem Abschnitt angegebene Verfahren die Grundzustandseigenschaften des
Harmonischen Oszillators berechnet worden.

2.2 Instantonen als semiklassische Näherung für Tunnelpro-

zesse

Die Formel (2.16) kann man nun auch dazu verwenden, um Tunnelprozesse zu beschrei-
ben. Tunnelprozesse sind ein Beispiel für Prozesse, die nicht durch die Störungstheorie
beschreibbar sind, da ihre Amplitude exponentiell klein ist. Als Beispiel soll hier der an-
harmonische Oszillator dienen, dessen Potential:

V (x) = λ(x2 − a2)2 (2.18)

ist. Das Potential möge so gewählt sein, dass es bei den Minima verschwindet, und die
Oszillatorfrequenz an den Minima sei:

d2

dx2
V (x)|x=±a = ω2. (2.19)

5Man geht erstmal davon aus, dass alle Eigenwerte positiv sind. Auf den Fall nichtpositiver Eigenwerte

komme ich im nächsten Abschnitt zurück.
6Meistens wird, wie in diesem Fall, auf das freie System normiert.
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Außerdem soll ab diesem Abschnitt ~ = 1 gesetzt werden. Für den Fall λ → ∞ einer
unendlichen hohen Barriere, existieren nur zwei Lösungen für die euklidischen Bewegungs-
gleichungen (2.8), nämlich, dass ein Teilchen entweder auf der Spitze des einen oder des
anderen Hügels bleibt7. Wenn λ 6= 0 ist, existiert aber noch die Möglichkeit, dass sich
das Teilchen von der Spitze des einen Hügels zur Spitze des anderen bewegt. Diesen Pfad
minimaler Wirkung kann man als Instanton auffassen. Diese Lösung existiert nur im Eu-
klidischen. Eine analoge Lösung zur Newton’schen Bewegungsgleichung gibt es nicht, da
man ohne Energie nicht von der einen Mulde zur anderen gelangen kann.
Die explizite Form der Instanton-Trajektorie kann als Lösung von (2.8) bestimmt werden.
Erfolgt der Übergang von −a nach a, ergibt sich für die Instanton-Trajektorie:

XI(t) = a tanh
(
ω(t− tc)

2

)
, (2.20)

wobei tc das Zentrum des Instantons genannt wird. Es ist zu beachten, dass diese Lösung
nur für den Grenzwert t0 → ∞ exakt ist. Den Übergang von a nach −a kann man dann
als Anti-Instanton XĪ auffassen, dessen Trajektorie

XI = −XĪ (2.21)

ist. Die Wirkung der Instanton-Trajektorie lässt sich berechnen zu:

S0 ≡ S(XI(t)) =
ω3

12λ
, (2.22)

womit sich dann für die Tunnelamplitude in exponentieller Genauigkeit (2.2):

< a|e−t0H | − a >∼ e−S0 = e−
ω3

12λ (2.23)

ergibt. Zur Bestimmung des Präexponenten geht man jetzt wieder über zu (2.16):

< a|e−Ht0 | − a >= Ne−S0Det

[
− d2

dt2
+

d2

dx2
V (XI)

]− 1
2

. (2.24)

Um die Normierungskonstante N zu bestimmen klammert man die schon bekannte De-
terminante des Harmonischen Oszillators (B.11) aus und erhält für die rechte Seite von
(2.24):

NDet

[
− d2

dt2
+ ω2

]− 1
2

Det
[
− d2

dt2
+ d2

dx2V (XI)
]

Det
[
− d2

dt2
+ ω2

]
− 1

2

e−S0 . (2.25)

Wird nun (2.20) in V (X) eingesetzt, erhält man für die Eigenwertgleichung der quadrati-
schen Form: [

− d2

dt2
+ ω2

(
1− 3

2
1

cosh2(ω t
2)

)]
xn(t) = λnxn(t), (2.26)

mit den Randbedingungen xn(± t0
2 ) = 0 und t0 → ∞. Diese Eigenwertgleichung wird

in diversen Standardwerken der Quantenmechanik ausführlich besprochen (z.B. [12]). Es
7Das Doppelmuldenpotential wird durch den Vorzeichenwechsel beim Übergang zum Euklidischen zu

einem Potential mit zwei Hügeln.
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existiert jetzt eine Lösung von (2.26) zu dem Eigenwert λ0 = 0. Solche zum Eigenwert
0 korrespondierenden Lösungen nennt man Nullmoden. Der physikalische Grund für das
Auftreten solcher Nullmoden hängt damit zusammen, dass die euklidische Wirkung unter
gewissen Transformationen invariant sein kann. Das Minimum der Wirkung kann also
”entartet” sein.
Im Beispiel des anharmonischen Oszillators ist die Wirkung unabhängig vom Zentrum des
Instantons tc:

S(XI(t, tc)) = S(XI(t, tc + δtc)). (2.27)

Die Eigenfunktion der Nullmode λ0 = 0 ist:

x0(t) =
1√
S0
· ∂
∂tc

XI(t, tc). (2.28)

Das Auftreten der Nullmode führt in (2.24) offensichtlich zu einer unendlichen Übergangs-
amplitude. Aus diesem Grund versucht man das Integral über die Nullmode in (2.13) vor
die Determinante zu schreiben und dann in der Determinante die Nullmode wegzulassen.
Dazu hilft die Überlegung, dass dc0 proportional zu dtc ist und somit∫

dc0√
2π

=
√
S0

∫
dtc√
2π

(2.29)

gilt8. Das Determinantenverhältnis lässt sich dann schreiben als:Det
[
− d2

dt2
+ d2

dx2V (XI)
]

Det
[
− d2

dt2
+ ω2

]
− 1

2

=

√
S0

2π
ωdtc ·

Det′
[
− d2

dt2
+ d2

dx2V (XI)
]

ω−2Det
[
− d2

dt2
+ ω2

]
− 1

2

. (2.30)

Der Strich an der Determinante bedeutet, dass die Nullmoden9 weggelassen werden sol-
len10. Den Faktor ω klammert man aus, um das Determinantenverhältnis bestimmen zu
können. Dieses kann man ausrechnen zu (s. [20]):Det′

[
− d2

dt2
+ d2

dx2V (XI)
]

ω−2Det
[
− d2

dt2
+ ω2

]
− 1

2

=
1
12
. (2.31)

Mithilfe von (2.24), (2.25), (2.30) und (2.31) ist man schließlich in der Lage, den ”Ein-
Instanton-Beitrag” zur Tunnelamplitude pro Zeit anzugeben.

< a|e−Ht0 | − a >=
(√

ω

π
e−

ωt0
2

)(√
6
π

√
S0e

−S0

)
ωdtc (2.32)

Die gesamte Amplitude für ein Zeitintervall ergibt sich dann durch Integration über dtc.
Da man sich für große Zeiten t0 interessiert, muss man in Betracht ziehen, dass nicht nur

8Dieses Ausnutzen der Proportionalität und dem damit verbundenen Übergang zur Integration über

dt0 nennt man in der Literatur manchmal auch die Einführung von sog. kollektiven Koordinaten [20].
9Es können auch mehrere Nullmoden auftreten

10Diese Methode im Umgang mit Nullmoden beschränkt sich nicht nur auf dieses Beispiel, sondern kann

allgemein angewendet werden (s. z.B. [5] oder [20] für Nullmoden bei Instantonen in der QCD).
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ein Instanton zur Tunnelamplitude beiträgt, sondern auch Superpositionen von Instanto-
nen und Anti-Instantonen11.
Durch geeignete Wahl des Parameters λ, durch den die Höhe der Barriere bestimmt ist,
kann man nun erreichen, dass die Dichte der Instantonen, also der Tunnelereignisse, klein
wird. In einem solchen Fall sind Instantonen im Durchschnitt wohlsepariert, d.h. man
kann die Wechselwirkung zwischen den Instantonen vernachlässigen. Diese Näherung ist
bekannt unter dem Namen ”dilute gas approximaton”.
Hätte man nun nicht die schmalen Übergangsregionen, würde man dasselbe Ergebnis wie
beim Harmonischen Oszillator erwarten. Die Übergangsregionen liefern dann eine Korrek-
tur hierzu: √

ω

π
e−

ωt0
2 −→

√
ω

π
e−

ωt0
2

(√
6
π

√
S0e

−S0

)n n∏
1

(ωdt0). (2.33)

Um zu dem Betrag zu gelangen, den eine solche Konfiguration zur Übergangsamplitude
beiträgt, muss man jetzt noch über die n Zentren der Instantonen integrieren:√

ω

π
e−

ωt0
2 dn

∫ +
t0
2

− t0
2

ωdtn

∫ tn

− t0
2

ωdtn−1 · · ·
∫ t2

− t0
2

ωdt1 =
√
ω

π
e−

ωt0
2 dn (ωt0)n

n!
, (2.34)

wobei d die Instanton-Dichte bedeutet:

d =

√
6
π

√
S0e

−S0 . (2.35)

Die gesamten Übergangsamplituden erhält man jetzt, wenn man über die einzelnen Bei-
träge für n Instantonen summiert. Hierbei muss beachtet werden, dass beim Übergang
von −a nach a, (bzw. a nach −a) nur die Übergänge mit einer ungeraden Anzahl von
Instantonen beitragen, während bei einem Übergang von a nach a (bzw. −a nach −a) die
Anzahl der Instantonen gerade sein muss.
Für die gesamten Übergangsamplituden folgt somit schließlich:

< a|e−Ht0 | − a > =
∑

n=1,3,···

√
ω

π
e−

ωt0
2 dn (ωt0)n

n!
(2.36)

=
√
ω

π
e−

ωt0
2 sinh(ωt0d), (2.37)

< a|e−Ht0 |a > =
∑

n=0,2,···

√
ω

π
e−

ωt0
2 dn (ωt0)n

n!
(2.38)

=
√
ω

π
e−

ωt0
2 cosh(ωt0d). (2.39)

Der Vollständigkeit halber sei noch erwähnt, dass dieses Ergebnis im Grenzwert t0 → ∞
die Grundzustandseigenschaften reproduziert, die man mit Standardmethoden der Quan-
tenmechanik berechnen kann.
Die Formel (2.24) für die Übergangsamplitude wird zusammen mit den Methoden zur Be-
rechnung des präexponentiellen Faktors und dem Umgang mit den Nullmoden im Verlauf
der Arbeit noch eine wichtige Rolle spielen.

11Instantonen sind nur für t0 →∞ exakte Lösungen der euklidischen Bewegungsgleichung. Für endliche

t0 ist diese Lösung nur noch näherungsweise gültig.



Kapitel 3

Der Ein-Loop-Beitrag zur

effektiven Wirkung

In diesem Kapitel wird eine Gleichung zur Bestimmung des Ein-Loop-Beitrags zur effekti-
ven Wirkung hergeleitet. Dazu wird zunächst das Abel’sche Higgs-Modell vorgestellt und
die effektive Wirkung eingeführt.
Mit Hilfe der effektiven Wirkung ist man in der Lage, die (unrenormierte) Instanton-Über-
gangsrate bis zur Ein-Loop-Ordnung anzugeben:

Γ =
S(φcl)

2π
exp(−S1loop

eff ) exp(−S(φcl)). (3.1)

Diese Gleichung ist die direkte Verallgemeinerung der im vorherigen Kapitel hergeleiteten
Gleichung (2.24), wobei exp(−S1loop

eff ) dem präexponentiellen Faktor entspricht. Der Faktor
S(φcl)

2π berücksichtigt die Integration über die kollektiven Koordinaten.1

Die effektive Wirkung muss noch renormiert werden, was im nächsten Kapitel geschehen
soll.

3.1 Das klassische Modell

In diesem Abschnitt wird zunächst das um einen fermionischen Sektor erweiterte euklidi-
sche Abel’sche Higgs-Modell erläutert und es wird beschrieben, welche Form die Vortex-
Lösung besitzt. Dabei wird sich zeigen, dass dieses Instanton eine topologische Ladung
besitzt, wodurch baryonenzahlverletzende Prozesse möglich sind.
Das euklidische Abel’sche Higgs-Modell wird beschrieben durch die Lagrangedichte (s. z.B.
[17] oder [5])

L =
1
4
(Fµν)2 +

1
2
|Dµφ|2 +

λ

4
(
|φ|2 − v2

)2 + Lf , (3.2)

1Es existieren also zwei Parameter unter deren Änderung die Wirkung invariant bleibt.
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mit

Fµν = ∂µAν − ∂νAµ (3.3)

Dµ = ∂µ − igAµ (3.4)

Lf = i

nf∑
i=1

Ψ(i)
L D̂LΨ(i)

L + i

nf∑
j=1

Ψ(j)
R D̂RΨ(j)

R (3.5)

D̂L(R) = γµ (∂µ ∓ igAµ) . (3.6)

Der Grundzustand liegt bei v2 = −m2

λ und das Teilchenspektrum besteht aus Eichbosonen
der Masse mW = g2v2, Higgsbosonen der Masse mH = 2λv2 und masselosen rechts- und
linkshändigen Fermionen. Im eichinvarianten fermionischen Strom

Jµ =
nf∑
i=1

Ψ(i)
L γµΨ(i)

L +
nf∑
j=1

Ψ(j)
R γµΨ(j)

R (3.7)

tritt eine Anomalie auf, die gegeben ist durch (s. z.B. [4]):

∂µJµ = 2nf

( g
4π
εµνFµν

)
. (3.8)

Wird nun über diese Divergenz integriert, ergibt sich eine Verletzung der Erhaltung der
axialen Ladung F

∆F = 2nf

(
g

4π

∫
d2x εµνFµν

)
≡ 2nfq, (3.9)

wobei q gerade der Pontryagin-Klasse in zwei Dimensionen entspricht (s. z.B. [17]). Durch
diese Verletzung sind Zerfälle möglich, die die Leptonen- und Baryonenzahl ändern [23].2

Ein Eichfeld mit nichtverschwindender topologischer Ladung q kann somit eine Baryo-
nenzahlverletzung induzieren. Sind die Parameter des Modells geeignet gewählt, so lassen
sich die Instanton-Übergänge durch die in Kapitel 2 erwähnte ”dilute gas approximation”
beschreiben.
Im weiteren wird nur noch der bosonische Teil des Modells betrachtet. Zur Bestimmung
der Instantonrate ist es nicht notwendig, Fermionen einzubeziehen.
Wie in Kap. 1 erwähnt, ist der Vortex eine Struktur, die eine topologische Ladung besitzt
und die Bewegungsgleichungen des Abel’schen Higgs-Modells erfüllt. Sie hat die Gestalt3:

Acl
µ (x) =

εµνxν

gr2
A(r) (3.10)

φcl(x) = vf(r)eiϕ(x). (3.11)

Man geht nun zur unitären Eichung über, damit das Higgsfeld rein reell wird. Die Eichtrans-
formationen

φ → e−iϕφ (3.12)

Aµ → Aµ − ∂µϕ/g (3.13)

ΨL(R) → e∓iϕΨL(R) (3.14)

2Leptonen- und Baryonenzahl sind keine Eichsymmetrien.
3Es ist zu beachten, dass diese Lösung eine andere Skalierung hat, als die in Kap.1 beschriebene.
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führen zu:

Acl
µ (x) =

εµνxν

gr2
(A(r) + 1) (3.15)

φcl(x) = vf(r). (3.16)

Wird dieser Ansatz in (3.2) eingesetzt, erhält man für die klassische Wirkung:

Scl = πv2

∫ ∞

0
dr

(
1

rm2
W

(
dA(r)
dr

)2

+ r

(
df(r)
dr

)2

+
f2(r)
r

(A(r) + 1)2

+
rm2

H

4
(
f2(r)− 1

)2)
. (3.17)

Damit diese Wirkung endlich ist, fordert man die Randbedingungen:

A(r) r→0−→ 0 , A(r) r→∞−→ −1
f(r) r→0−→ 0 , f(r) r→∞−→ 1.

(3.18)

Die Pontryagin-Klasse des Vortex berechnet sich zu:

q =
g

4π

∫
d2x εµνFµν

= − 1
2π

∫
r dr dϕ

1
r

dA(r)
dr

= 1 ,

wobei im letzten Schritt die Randbedingungen ausgenutzt wurden.
Im Abel’schen Higgs-Modell existiert also eine Instanton-Lösung, die eine topologische
Ladung trägt und somit Prozesse ermöglicht, die die Baryonenzahl verletzen können.
Bis zu dieser Stelle waren die Überlegungen in diesem Kapitel rein klassisch. Im nächsten
Abschnitt wird die effektive Wirkung betrachtet, womit dann auch Quantenkorrekturen
bis zur Ein-Loop-Ordnung berücksichtigt werden.

3.2 Der Fluktuationsoperator

Um Quantenkorrekturen einzubeziehen, ist das Prinzip der ”effektiven Wirkung” nützlich.
Dies ist eine Entwicklung der Wirkung um das Minimum bei φcl nach Ordnungen von ~.
Ausgangspunkt ist die klassische Wirkung, zu der man dann die Quantenkorrekturen in
Form von Loopbeiträgen4 addiert. Bis zur Ein-Loop-Ordnung gilt für die effektive Wirkung
Γ (s. z.B. [17]):

Γ[φcl] = S[φcl] +
1
2

ln det
δ2S

δφ∗i (x)δφj(y)

∣∣∣∣∣
φ=φcl︸ ︷︷ ︸

≡Mij(x,y)

, (3.19)

wobei die φi die fluktuierenden Felder um das klassische Hintergrundfeld φcl sind.
Im klassischen Limes geht die effektive Wirkung natürlich in die klassische Wirkung über.

4Eine Entwicklung in ~ entspricht einer Entwicklung nach Loops (s. z.B. [5])



20 Der Ein-Loop-Beitrag zur effektiven Wirkung

Der zweite Summand entspricht den Ein-Loop-Korrekturen undMij(x, y) bezeichnet man
als Fluktuationsoperator. Für diesen soll im Folgenden eine explizite Form angegeben
werden. Dazu entwickelt man zunächst die Felder um die klassischen Lösungen, welche in
diesem Fall den Instanton- und Vakuumkonfigurationen entsprechen:

Aµ = Acl
µ + aµ (3.20)

φ = φcl + ϕ. (3.21)

Entwickelt man gleichermaßen die Lagrangedichte, so besteht die folgende Beziehung zwi-
schen dem Fluktuationsoperator und der Lagrangedichte in zweiter Ordnung:

LII =
1
2
φ∗i (x)Mijφj(x), (3.22)

wobei für φi die Quantenfelder einzusetzen sind.
Um die nichtphysikalischen Freiheitsgrade des Eichfeldes zu eliminieren, führt man die
Background-Eichung ein:

F(A) = ∂µAµ +
ig

2

(
(φcl)∗φ− φclφ∗

)
, (3.23)

die in zweiter Ordnung den eichfixierenden Term

LII
GF =

(
1
2
F2(A)

)
II (3.24)

=
1
2
(∂µaµ)2 − ig

2
aµ(ϕ∂µφ

cl + φcl∂µϕ− ϕ∗∂µφ
cl − φcl∂µϕ

∗)

−g
2

8
(φcl)2(ϕ− ϕ∗)2 (3.25)

in der Lagrangedichte ergibt. Beim Schritt von (3.24) nach (3.25) wurde partiell integriert
und ausgenutzt, dass sich das Hintergrundeichfeld in der Coulomb-Eichung befindet5 und
das klassische Skalarfeld reell ist.
Die zu dieser Eichfixierung gehörige Fadeev-Popov-Determinante lautet6:

δF(A)
δϕ

= −1
g
(−∂2 + g2(φcl)2) ≡ detM. (3.26)

Diese lässt sich in einen Exponentialfaktor umschreiben:

detM → exp
[
−
∫
d2x

(
η∗(−∂2 + g2(φcl)2)η

)
︸ ︷︷ ︸

LIIFP

]
, (3.27)

den man als Beitrag zur Lagrangedichte ansehen kann, der aber völlig von den Quanten-
fluktuationen der anderen Felder entkoppelt ist.

5Bei der sog. ”Backgroundfield-Methode” ist es erlaubt, das Hintergrundfeld anders zu eichen als die

Quantenfluktuationen um diesen Hintergrund (s. z.B. [27]).
6Die Probleme, die bei der Quantisierung von Eichfeldern auftreten, und eine der Lösungen durch die

Fadeev-Popov-Prozedur werden in jedem einführenden Buch über Quantenfeldtheorie behandelt.



3.2 Der Fluktuationsoperator 21

Insgesamt gelangt man so zu der Lagrangedichte in zweiter Ordnung (der Index cl zur
Kennzeichnung des Hintergrundfeldes wird von nun an unterdrückt):

(L+ LGF + LFP )II =
1
2
aµ

(
−∂2 + g2φ2

)
aµ

+
1
4
ϕ∗
(
−D2 +

g2

2
φ2 + λ(2φ2 − v2)

)
ϕ

+
1
4
ϕ

(
−(D∗)2 +

g2

2
φ2 + λ(2φ2 − v2)

)
ϕ∗ (3.28)

+ ϕ

((
λ− g2

2

)
φ2

4

)
ϕ+ ϕ∗

((
λ− g2

2

)
φ2

4

)
ϕ∗

+ aµ(−igD∗
µφ)φ+ aµ(−igDµφ)φ∗

+ η∗(−∂2 + g2(φcl)2)η.

Es ist nun sinnvoll, die Lagrangedichte so umzuschreiben, dass sie nur noch reelle Größen
enthält. Dazu spaltet man das komplexe Skalar- und das komplexe Fadeev-Popov-Feld in
Real- und Imaginärteil auf:

ϕ = ϕ1 + iϕ2

η =
1√
2
(η1 + iη2).

Mit diesen reellen Feldern lautet die Lagrangedichte dann:

(L+ LGF + LFP )II = aµ
1
2
(
−∂2 + g2φ2

)
aµ

+ϕ1
1
2
(
−∂2 + g2A2

µ + λ
(
3φ2 − v2

))
ϕ1

+ϕ2
1
2
(
−∂2 + g2A2

µ + g2φ2 + λ
(
φ2 − v2

))
ϕ2

+ϕ2(gAµ∂µ)ϕ1 + ϕ1(−gAµ∂µ)ϕ2 (3.29)

+ aµ(2g2Aµφ)ϕ1 + aµ(2g∂µφ)ϕ2

+η1
1
2
(
−∂2 + g2φ2

)
η1 + η2

1
2
(
−∂2 + g2φ2

)
η2.

Mit Hilfe von (3.22) ist man jetzt in der Lage, den Fluktuationsoperator M anzugeben.
Die nichtverschwindenden Komponenten lauten:

M11 = −∂2 + g2φ2 M22 = −∂2 + g2φ2

M13 = 2g2A1φ M14 = 2g∂1φ

M23 = 2g2A2φ M24 = 2g∂2φ

M33 = −∂2 + g2A2
µ + λ(3φ2 − v2) M34 = −gAµ∂µ

M44 = −∂2 + g2A2
µ + g2φ2 + λ(φ2 − v2) M43 = gAµ∂µ

M55 = −∂2 + g2φ2.

Mit Gleichung (3.22) erhält man so die Lagrangedichte in zweiter Ordnung, wobei für φ
die Quantenfelder einzusetzen sind:

φ = (a1, a2, ϕ1, ϕ2, η12).
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Setzt man hier nun für φ und Aµ (3.16) bzw. (3.15) ein, erhält man den Fluktuationsope-
rator für das Instantonhintergrundfeld. Weiterhin ist es nützlich, ein Potential V über die
Relation

M = M0 + V (3.30)

zu definieren, wobei M0 der Fluktuationsoperator für das Vakuum ist.
Die Ein-Loop-Korrektur in der effektiven Wirkung (3.19) lässt sich mit Hilfe dieser beiden
Operatoren darstellen als:

S1loop
eff =

1
2

ln
{

det′M
detM0

}
. (3.31)

Man normiert die Determinante also auf den freien Operator. Der Strich im Zähler soll
bedeuten, dass die Nullmoden in der Determinante nicht berücksichtigt werden sollen.7

Dieser Ausdruck ist nun explizit zu berechnen. J. Baacke hat dafür ein nichtpertubartives
Verfahren entwickelt [1]. Bei diesem Verfahren muss zunächst eine Partialwellenzerlegung
durchgeführt werden, die im folgenden Abschnitt beschrieben wird.

3.3 Die Partialwellenzerlegung

Der Fluktuationsoperator M ist in Partialwellen zerlegbar, wobei die Determinante sich
gleichermaßen zerlegt:

ln detM =
+∞∑

n=−∞
ln detMn. (3.32)

Man führt an dieser Stelle die folgende Partialwellenzerlegung für die Quantenfelder ein:

~a =
+∞∑

n=−∞
bn(r)

(
cosϕ
sinϕ

)
einϕ

√
2π

+ icn(r)

(
− sinϕ
cosϕ

)
einϕ

√
2π

(3.33)

ϕ1 =
+∞∑

n=−∞
hn(r)

einϕ

√
2π

(3.34)

ϕ2 =
+∞∑

n=−∞
h̃n(r)

einϕ

√
2π

(3.35)

η12 =
+∞∑

n=−∞
gn(r)

einϕ

√
2π
. (3.36)

Werden diese Ausdrücke in die Lagrangedichte eingesetzt, zeigt sich, dass die folgenden
Kombinationen der Felder reell sind und den Fluktuationsoperator symmetrisieren:

Fn
1 (r) =

1
2
(bn(r) + cn(r))

Fn
2 (r) =

1
2
(bn(r)− cn(r))

Fn
3 (r) = h̃n(r)

Fn
4 (r) = ihn(r)

Fn
5 (r) = gn(r).

7Der Grund für dieses Vorgehen ist im vorherigen Kapitel angegeben.
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Zerlegt man M wieder wie in (3.30) (der Index n für die Partialwellen wird von jetzt an
unterdrückt):

M = M0 + V, (3.37)

werden die freien Operatoren M0 Diagonalmatrizen mit den Elementen:

M0
ii = − d2

dr2
− 1
r

d

dr
+
n2

i

r2
+m2

i , (3.38)

wobei (ni) = (n−1, n+1, n, n, n) und (mi) = (mW ,mW ,mW ,mH ,mW ) ist. Das Potential
hat die folgende Gestalt:

Vn
11 = m2

W

(
f2 − 1

)
Vn

12 = 0

Vn
13 =

√
2mW f ′ Vn

14 =
√

2mW f
A+ 1
r

Vn
22 = Vn

11 Vn
23 = Vn

13

Vn
24 = −Vn

14 Vn
33 =

(A+ 1)2

r2
+
m2

H

2
(
f2 − 1

)
+m2

W

(
f2 − 1

)
Vn

34 = −2
A+ 1
r2

n Vn
44 =

(A+ 1)2

r2
+

3
2
m2

H

(
f2 − 1

)
Vn

55 = m2
W

(
f2 − 1

)
Vi5. = 0

Im Anhang C ist die Rechnung angegeben, die zeigt, dass die Lagrangedichte, die sich
hieraus ergibt, dieselbe ist, wie vor der Partialwellenzerlegung.

3.4 Der Ein-Loop-Beitrag zur effektiven Wirkung

In diesem Abschnitt wird eine von J. Baacke entwickelte Methode zur Bestimmung des
Ein-Loop-Beitrages zur effektiven Wirkung vorgestellt [1].
Mit den Eigenwerten −λ2

α von M und −(λ0
α)2 von M0 lässt sich (3.31) ausdrücken als:

S1loop
eff =

1
2

∑
α

ln
λ2

α

(λ0
α)2

. (3.39)

Dieser Term kann in ein Integral umgeschrieben werden:

S1loop
eff = −

∑
α

∫ ∞

0
ν dν

(
1

λ2
α + ν2

− 1
(λ0

α)2 + ν2

)
. (3.40)

Die Beiträge der Nullmoden, die bei der Bestimmung der Determinanten weggelassen
werden sollten, können anhand dieses Integrals bestimmt und am Ende der Berechnung
subtrahiert werden. Die Eigenwerte lassen sich leider nicht direkt bestimmen, da sie im
Kontinuum liegen. Aus diesem Grund fügt man in (3.40) ein vollständiges System ortho-
normaler Funktionen ein, die Eigenfunktionen der Operatoren M und M′ zu den oben
eingeführten Eigenwerten sein sollen:

S1loop
eff = −

∑
α

∫ ∞

0
ν dν

∫
d2x

(
χαi(x)χ

†
αi(x)

λ2
α + ν2

−
ψαi(x)ψ

†
αi(x)

(λ0
α)2 + ν2

)
. (3.41)
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Bei den so erhaltenen Summanden handelt es sich um Greensche Funktionen zu den Ope-
ratoren M und M0:

(−ν2 +M)ij

∑
α

χαj(x)χ
†
αk(x)

λ2
α + ν2︸ ︷︷ ︸

≡Gjk(x,x′,ν)

= −δ(x− x′)δik (3.42)

(−ν2 +M0)ij

∑
α

ψαj(x)ψ
†
αk(x)

λ2
α + ν2︸ ︷︷ ︸

≡G0
jk(x,x′,ν)

= −δ(x− x′)δik. (3.43)

Die Berechnung des Ein-Loop-Beitrags zur effektiven Wirkung ist somit zurückgeführt auf
die Berechnung der Spur der Differenz zweier Greenscher Funktionen:

S1loop
eff = −

∫ ∞

0
ν dν

∫
d2x

(
Gjj(x, x, ν)− G0

jj(x, x, ν)
)
. (3.44)

Mit der Partialwellenzerlegung aus dem vorherigen Abschnitt lauten die Bestimmungs-
gleichungen für die Greenschen Funktionen:(

d2

dr2
− 1
r

d

dr
+
n2

i

r2
− ν2 −m2

i − Vn
ij

)
Gn

ij(r, r
′, ν) = −1

r
δ(r − r′) (3.45)(

d2

dr2
− 1
r

d

dr
+
n2

i

r2
− ν2 −m2

i

)
G0n

ij (r, r′, ν) = −1
r
δ(r − r′) (3.46)

Die Gleichung für G0 ist sogar analytisch exakt lösbar. Sie setzt sich zusammen aus mo-
difizierten ganzzahligen Besselfunktionen:

G0n
ij (r, r′, ν) = Ini((ν2 +m2

i )rk)Kni((ν2 +m2
i )rg), (3.47)

wobei rk = min(r, r′), rg = max(r, r′) und über i nicht summiert werden soll. Die Gleichung
für Gn

ij ist analytisch nicht lösbar, da schon die Profilfunktionen, die über das Potential in
die Gleichung eingehen, nur nummerisch lösbar sind.
Wie im nächsten Kapitel gezeigt wird, lässt sich die Greensche Funktion nach Ordnungen
des Potentials entwickeln. Somit ist man in der Lage einen klaren Zusammenhang zwischen
den Beiträgen zum Integral und den Feynmangraphen herzustellen. Insbesondere lässt sich
so der divergente Anteil von (3.44) isolieren. Daher eignet sich dieses Verfahren besonders
gut zur Renormierung.



Kapitel 4

Renormierung der effektiven

Wirkung

Wäre die effektive Wirkung endlich, hätte man schon das gewünschte Ergebnis in Ein-
Loop-Ordnung. Doch (3.31) ist ein divergenter Ausdruck, der renormiert werden muss.
Das Abel’sche Higgs-Modell ist super-renormierbar, d.h. es genügt, die Massen des Higgs-
und des Eichfeldes und den Vakuumerwartungswert durch ihre renormierten Größen aus-
zudrücken. Durch die Wahl des Vakuumerwartungswertes als zu renormierende Größe
ergeben sich allerdings Probleme in der unitären Eichung, die hier benutzt werden soll.
Aus diesem Grund verwendet man stattdessen die Higgs-Kopplung. Auf dieses Problem
wird im Laufe der Renormierung noch eingegangen.
Die divergenten Anteile der effektiven Wirkung können mit den entsprechenden Feynman-
Regeln bestimmt werden, wobei man um den Vakuumerwartungswert entwickelt1. Dabei
ergibt sich, dass ausschließlich die sog. ”Tadpole”-Graphen divergent sind. Das sind die
Graphen, die nur eine oder zwei externe Linien und einen geschlossen Loop besitzen (s. z.B.
[7]). Die Schleife kann dabei entweder das Higgs-, das Eich- oder das Fadeev-Popov-Feld
sein. Die Tadpole-Graphen, die die Propagation des Eichfeldes beschreiben, heben sich
gegen die der nächsthöheren Ordnung auf. Außerdem heben sich die Graphen mit Fadeev-
Popov-Loops, wie üblich, gegen die korrespondierenden Graphen mit Eichfeld-Loop auf.
Bei der Renormierung müssen also nur die Tadpole-Graphen berücksichtigt werden, die
ausschließlich aus Higgsfeld-Propagatoren bestehen.
Die effektive Wirkung ist in einer geschlossenen Form nicht anzugeben, da schon die klas-
sische Wirkung für allgemeine Massenverhältnisse nur nummerisch berechenbar ist. Im
weiteren Verlauf beschränkt man sich daher auf den Spezialfall gleicher Massen des Higgs-
und Eichfeldes. In diesem Fall ist, wie schon erwähnt, die klassische Wirkung analytisch
berechenbar. Außerdem kann ausgenutzt werden, dass einige Integrale über die Profilfunk-
tionen bekannt sind.
Um die effektive Wirkung zu renormieren, müssen zunächst die Divergenzen isoliert wer-
den. Dieser Vorgang heißt Regularisierung.

1Die Vorgehensweise ist bei einem Hintergrundfeld analog zu der Herleitung im Vakuum.
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4.1 Regularisierung

Die Regularisierung ist notwendig, da bei unendlichen Größen die üblichen Rechenmani-
pulationen ihre Bedeutung verlieren. Daher führt man bei der Regularisierung einen Pa-
rameter ein, der in einem gewissen Grenzwert wieder die ursprüngliche Form der Theorie
liefert. Bevor dieser Grenzwert betrachtet wird, sind die Ausdrücke mit diesem Parameter
allerdings endlich, und man kann mit ihnen wie üblich rechnen (s. z.B. [13], [22] oder jedes
andere einführende Buch in die Quantenfeldtheorie).
Zur Isolierung von Divergenzen gibt es mehrere Möglichkeiten. Bei Feynman-Integralen
kann man zum Beispiel einen Impuls-Cut-Off Λ einführen und später den Grenzwert
lim Λ →∞ betrachten.
In dieser Arbeit soll die dimensionelle Regularisierung verwendet werden. Bei dieser Me-
thode betrachtet man die divergenten Ausdrücke in D Dimensionen, wobei D eine beliebige
komplexe Zahl sein darf. Es zeigt sich dann, dass die Divergenzen als Pole im Grenzwert
D → N erscheinen, wobei N die ursprüngliche Anzahl der Dimensionen ist.
Im Folgenden soll der Ein-Loop-Beitrag zur effektiven Wirkung dimensionell regularisiert
werden.
Wie im vorherigen Kapitel erwähnt, lässt sich die Greensche Funktion G nach Ordnungen
des Potentials entwickeln. Dazu schaut man sich zuerst die freie Greensche Funktion G0

an. Diese ist, wie im letzten Kapitel erläutert, durch (3.43) definiert:

G0 = −(−ν2 +M0)−1. (4.1)

Durch die Zerlegung in einen freien Anteil und eine Potentialmatrix ist die komplette
Greensche Funktion durch G = −(−ν2 +M0 +V)−1 gegeben. G kann man folgendermaßen
nach Ordnungen des Potentials entwickeln:

G = −(−ν2 +M0 + V)−1

= −
[
−ν2 +M0 ·

(
1 +

(
M0

)−1 V
)]−1

=
(
1 + G0V

)−1 G0

=
(
1− G0V + G0VG0V − · · ·

)
G0

= G0 − G0VG0︸ ︷︷ ︸
1. Ord.V

+G0VG0VG0︸ ︷︷ ︸
2. Ord.V

− · · · .

Daraus folgt für die Differenz der gesamten und der freien Greenschen Funktion:

G − G0 = −G0VG0 + G0VG0VG0 − · · · . (4.2)

Wie oben erwähnt, sollen hier nur die Divergenzen bestimmter Tadpole-Graphen mit ei-
nem Loop isoliert werden. Diese Graphen sind komplett in dem ersten Summanden der
Entwicklung (4.2) enthalten. Die folgenden Terme sind entweder endlich oder enthalten
Divergenzen einer höheren Ordnung. Es muss also nur der erste Term regularisiert wer-
den. Um die Methode der dimensionellen Regularisierung anwenden zu können, muss man
wissen, welche Form der divergente Anteil in D Dimensionen hat. Dazu schaut man sich
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die Fouriertransformation an. Für G0
ij(x, y) gilt:

G0
ij(x, y) =

∫
dDp

(2π)D

δij
p2 + m̃2

i

e−ip(x−y). (4.3)

Von nun an bedeute m̃2
i die Summe m2

i +ν2 (Das ν2 hat seinen Ursprung in der Definition
der Greenschen Funktionen (3.42) bzw. (3.43)). Die Fouriertransformation des Potentials
Vij(x) ist durch

Vij(x) =
∫

dDp

(2π)D
Ṽij(p)e−ipx (4.4)

gegeben. Hierbei bezeichnet Ṽij die Fouriertransformierte von Vij . Zwischen den beiden
besteht der Zusammenhang:

Ṽ (0) =
∫
V (x)d x. (4.5)

Da das Potential lokal sein soll, gilt:

V (x, y) = V (x)δ(x− y). (4.6)

Insgesamt ergibt sich dann für den divergenten Anteil von (4.2):

(
G0V G0

)
il

=
∫
dz1 dz2G

0
ij(x, z1)Vjkδ(z1 − z2)G0

kl(z2, y)

=
∫
dz G0

ij(x, z)Vjk(z)G0
kl(z, y)

=
∫
dz

∫
dDp

(2π)D

dDr

(2π)D

dDq

(2π)D

[
e−ip(x−z) δij

p2 + m̃2
i

]
Ṽjk(r)e−ipz

[
e−iq(z−y) δkl

q2 + m̃2
l

]
=

∫
dz

∫
dDp

(2π)D

dDr

(2π)D

dDq

(2π)D

[
e−ipx δij

p2 + m̃2
i

]
Ṽjk(r)

[
eiqy δkl

q2 + m̃2
l

]
e−i[r−(p−q)]z

=
∫

dDp

(2π)D

dDr

(2π)D

dDq

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(r)

[
δkl

q2 + m̃2
l

]
(2π)Dδ(r − (p− q))e−ipxeiqy

=
∫

dDp

(2π)D

dDq

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(p− q)

[
δkl

q2 + m̃2
l

]
e−ipxeiqy.

Aus Gleichung (3.44) ist zu ersehen, dass für die effektive Wirkung nur das Verhalten bei
x = y interessant ist.

(
G0V G0

)
il

(x, x) =
∫

dDp

(2π)D

dDq

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(p− q)

[
δkl

q2 + m̃2
l

]
e−i(p−q)x (4.7)
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Das Integral über die Spur dieses Terms ist:∫
d2xTr

(
G0VG0

)
(x, x) =

∫
dx
(
G0V G0

)
ii

(x, x)

=
∫
dx

∫
dDp

(2π)D

dDq

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(p− q)

[
δki

q2 + m̃2
i

]
e−i(p−q)x

=
∫

dDp

(2π)D

dDq

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(p− q)

[
δki

q2 + m̃2
i

]
(2π)Dδ(p− q)

=
∫

dDp

(2π)D

[
δij

p2 + m̃2
i

]
Ṽjk(0)

[
δki

p2 + m̃2
i

]
=

∫
dDp

(2π)D

Ṽii(0)
(p2 + m̃2

i )2
.

Wird dieser Ausdruck nun in (3.44) eingesetzt, erhält man für den divergenten Anteil der
effektiven Wirkung in D Dimensionen:

Seff |D.R.
div =

∫
ν dν

∫
dDp

(2π)D

Ṽii(0)
(p2 +m2

i + ν2)2
. (4.8)

Um dieses Integral auszuwerten, ist die folgende Formel für die Integration in D Dimen-
sionen hilfreich (s. z.B. [17]):

∫
dDp

(2π)D

(p2)α

(p2 +m2)β
=

Γ
(
β − α− D

2

)
Γ
(
α+ D

2

)
Γ(β)Γ(D

2 )
(m2)α−β+D

2

(4π)
D
2

, (4.9)

mit der Gammafunktion Γ. Somit folgt:

∫
dDp

(2π)D

Ṽii(0)
(p2 +m2

i + ν2)2
= Ṽii(0)

Γ
(
2− D

2

)
Γ(2)

(m2
i + ν2)−2+D

2

(4π)
D
2

. (4.10)

Der divergente Anteil der effektiven Wirkung ist also:

Seff |D.R.
div =

∫
ν dνṼii(0)

Γ
(
2− D

2

)
Γ(2)

(m2
i + ν2)−2+D

2

(4π)
D
2

. (4.11)

Wird hier wie üblich2 D = 2− 2ε eingesetzt, erhält man:

Seff |D.R.
div =

Γ(1 + ε)
Γ(2)

Ṽii(0)
(4π)1−ε

∫
ν dν

1
(m2

i + ν2)1+ε
. (4.12)

Unter Ausnutzung der Gleichung (4.5),

Ṽii(0) = 2π
∫
r dr Vii(r),

2Durch diese Wahl muss man später den Limes ε → 0 betrachten, um wieder zu zwei Dimensionen zu

gelangen. Das hat den Vorteil, dass man Terme die ε enthalten um ε = 0 entwickeln kann.
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ergibt sich (Γ(2) = 1):

Seff |D.R.
div =

Γ(1 + ε)
Γ(2)

Ṽii(0)
(4π)1−ε

∫
νdν

1
(m2

i + ν2)1+ε

= Γ(1 + ε)
1

(4π)1−ε
2π
∫
r dr Vii(r)

∫
νdν

1
(m2

i + ν2)1+ε

=
Γ(1 + ε)π
(4π)1−ε

∫
ν dν

∫
r dr

Vii(r)
(m2

i + ν2)1+ε
. (4.13)

Wird nun über die Diagonalelemente der Potentialmatrix summiert, folgt:

Seff |D.R.
div = 2π

Γ(1 + ε)
(4π)1−ε

∫
ν dν

(
m2

W +m2
W +

m2
H

2
+m2

W − 2m2
W

)∫
r dr(f2 − 1)

1
(m2

W + ν2)1+ε

+
3
2
m2

H

∫
r dr(f2 − 1)

1
(m2

H + ν2)1+ε

=
Γ(1 + ε)π
(4π)1−ε

∫
ν dν

∫
r dr(f2 − 1)

(
3m2

H

(m2
H + ν2)1+ε

+
2m2

W +m2
H

(m2
W + ν2)1+ε

)
. (4.14)

Hierbei wurde in der ersten Zeile der V55-Term mit einem negativen Vorzeichen bedacht,
da es sich um den Fadeev-Popov-Anteil handelt.3 Der Faktor zwei tritt auf, weil es sich
eigentlich um zwei Felder handelt4.
Das Integral der Art ∫

νdν

(m2 + ν2)1+ε

lässt sich noch weiter auswerten:∫
νdν

(m2 + ν2)1+ε
=

1
2

∫
da

(m2) + a)1+ε

= − 1
2ε

[
1

(m2) + a)ε

]a=∞

a=0

= − 1
2ε

(
− 1

(m2)ε

)
=

1
2ε

1
m2ε

.

Somit ergibt sich schließlich für den dimensionell regularisierten divergenten Anteil der
effektiven Wirkung

Seff |D.R.
div =

Γ(1 + ε)π
(4π)1−ε

∫
r dr(f(r)2 − 1)

(
1
2ε

(
3m2

H(
m2

H

)ε +
2m2

W +m2
H(

m2
W

)ε
))

, (4.15)

wobei hier der Grenzwert lim ε→ 0 beachtet werden muss. Um diesen Ausdruck jetzt noch
weiter zu vereinfachen, entwickelt man die Ausdrücke, die ein ε enthalten, und betrachtet

3Dies hängt damit zusammen, dass die Fadeev-Popov-Felder graßmannwertig sind, also antikommutie-

ren.
4Die beiden Fadeev-Popov-Felder wurde zu einem zusammengefasst (vgl Kapitel 3).
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dann den Grenzfall kleiner ε. Für die beiden Komponenten des Bruches vor dem Integral
gilt:

Γ(1 + ε) = 1 + εΓ′ ≈ 1

(4π)1−ε = 4π(1− ε ln(4π)) ≈ 4π,

so dass sich für den Bruch
Γ(1 + ε)π
(4π)1−ε

≈ 1
4

ergibt.
Die Summanden in dem Bruch, der die Massen enthält, lassen sich für ε → 0 folgender-
maßen entwickeln:

1
2ε

3m2
H

m2ε
H

=
3m2

H

2ε
e−ε ln(m2

H) =
3m2

H

2ε
(1− ε ln(m2

H)) =
3m2

H

2ε
−

3m2
H

2
ln(m2

H),

und gleichermaßen ist

1
2ε

2m2
W +m2

H

m2ε
W

=
2m2

W +m2
H

2ε
−

2m2
W +m2

H

2
ln(m2

W ).

Für den Spezialfall gleicher Massen lässt sich das Integral in (4.15) ebenfalls berechnen:∫
r dr(f(r)2 − 1) =

1
m2

H

∫ ∞

0

dA

dr

=
1
m2

H

(A(∞)−A(0))

= − 1
m2

H

.

Hierbei wurden beim ersten Schritt die Relation (A.8) und beim Übergang zur letzten
Zeile die Randbedingungen ausgenutzt.
Insgesamt erhält man:

Seff |D.R.
div = − 1

4m2
H

(
4m2

H + 2m2
W

2ε
− T

)
= − v2

4m2
H

(
4λ+ g2

ε
− 1
v2
T

)
, (4.16)

wobei die Massen eingesetzt wurden und

T =
3m2

H

2
ln(m2

H) +
2m2

W +m2
H

2
ln(m2

W ) (4.17)

endlich ist.
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4.2 Renormierung

Wie im vorherigen Abschnitt gezeigt wurde, besitzt die Ein-Loop-Korrektur zur effektiven
Wirkung divergente Terme. Um trotzdem zu einer endlichen effektiven Wirkung zu gelan-
gen, muss die Theorie renormiert werden. Dazu drückt man die nackten Größen in der
klassischen Wirkung durch ihre renormierten Größen aus. Als Parameter wird zunächst
das Quadrat des Vakuumerwartungswertes v2 und das Verhältnis der Massen des Higgs-
und des Eichteilchens R = mH

mW
gewählt:

v2 → v2
R = v2 − δv2 (4.18)

R = 1 → RR = 1− δR. (4.19)

Der Vakuumerwartungswert besitzt eine unendliche Renormierung, d.h. δv2 ist divergent,
wohingegen R endlich renormierbar ist. Drückt man die nackten Größen v2 und R jetzt
durch ihre renormierten Größen aus, sollten sich die Divergenzen von δv2 und S1loop

eff weg-
heben.
Die klassische Wirkung ist nur für R = 1 exakt bekannt. Durch die Renormierung von R

weicht der Wert jetzt aber um einen Term δR von 1 ab.
Somit wird zunächst eine Näherungsgleichung der klassischen Wirkung benötigt, die die
Variationen R = 1 → 1 + δR berücksichtigt. Diese soll nun hergeleitet werden.
Im Folgenden ist es vorteilhaft, den dimensionslosen Parameter ρ = rmW einzuführen, da-
mit in der klassischen Wirkung explizit der Parameter R auftaucht. Die klassische Wirkung
lässt sich dann schreiben als:

Scl =

{
πv2

∫
dρ

1
ρ

(
dA

dρ

)2

+ ρ

(
df

dρ

)2

+
1
ρ
f2(A+ 1)2 +R2 ρ

4
(f2 − 1)2

}
. (4.20)

Die Bewegungsgleichungen für die Profilfunktionen lauten mit der Variablen ρ:(
d2

dρ2
− 1
ρ

d

dρ
− f2

)
(A+ 1) = 0(

d2

dρ2
+

1
ρ

d

dρ
− 1
ρ2

(A+ 1)2 − R

2
(f2 − 1)

)
f = 0.

Die klassische Wirkung Scl wurde als ein Minimum der Wirkung S bestimmt, wobei S
jetzt von den Feldern A(ρ), f(ρ) und R abhängt:

δS(A(ρ), f(ρ), R)
δ(A, f)

= 0. (4.21)

Diese Gleichung ist für alle R gültig.
Man betrachtet nun eine Variation von R:

R→ R+ δR.

Die Variationen der Profilfunktionen sind dann:

f(ρ,R) → f(ρ,R+ δR) = f(ρ,R) + δf(ρ,R)

A(ρ,R) → A(ρ,R+ δR) = A(ρ,R) + δA(ρ,R).
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Daraus folgt für die Variation der Wirkung:

δScl =
∫
dρ

δScl(A(ρ), f(ρ), R)
δ(A(ρ), f(ρ))

δ(A(ρ), f(ρ))︸ ︷︷ ︸
=0

+
∂S(A(ρ), f(ρ), R)

∂R
δR. (4.22)

Der erste Term verschwindet aufgrund der Bedingung (4.21). Die durch δR hervorgerufene
Änderung der klassischen Wirkung ist somit:

δScl =
∫
dρ

∂S(A(ρ), f(ρ), R)
∂R

δR

= πv2

∫
dρ2RδR

ρ

4
(f2 − 1)2

= πv2 1
2
δR

∫
ρ dρ(f2 − 1)2. (4.23)

Mit den renormierten Größen ausgedrückt lautet die klassische Wirkung schließlich:

Scl = π(v2
R + δv2)(1 + δR

∫
ρ dρ (f2 − 1)2) (4.24)

= πv2
R + πδv2 + πv2

RδR

∫
ρ dρ (f2 − 1)2 (4.25)

+πδv2δR

∫
ρ dρ (f2 − 1)2︸ ︷︷ ︸

Term 2.Ordnung

. (4.26)

Der letzte Term ist schon von zweiter Ordnung und soll hier nicht weiter beachtet werden,
da bei dieser Renormierung nur die Ein-Loop-Ordnung, also die erste Ordnung betrachtet
wird.
Insgesamt ist die effektive Wirkung bis zur ersten Ordnung ~ somit gegeben durch:

Seff = πv2
R + πδv2 + πv2

RδR

∫
ρ dρ (f2 − 1)2 + S1loop

eff , (4.27)

wobei der erste und der dritte Summand endlich sind, der zweite und der vierte Summand
aber divergent sind. Die Divergenzen dieser beiden Terme sollten sich neutralisieren, so
dass sich am Ende ein endliches Ergebnis für die effektive Wirkung angeben lässt.
Berechnet man nun δv2 und setzt es in die obige Gleichung ein, erkennt man, dass sich die
Divergenzen nicht aufheben. Die Ursache dieses Problems ist in der Tatsache zu finden,
dass es sich bei v2 nicht um eine physikalische Größe handelt. Dieser Aspekt führt in
der unitären Eichung (die in dieser Diplomarbeit betrachtet werden sollte) zu Problemen,
da die Divergenzen der Massen und des Vakuumerwartungswertes in Ein-Loop-Ordnung
nicht gleich sind. Dieses Problem kann man auch bei der von E. Scholz vorgenommenen
Ein-Loop-Renormierung des zweidimensionalen Abel’schen Higgs-Modells [18] erkennen.
Drückt man hier den renormierten Vakuumerwartungswert v2

R mit dem nackten v2 aus,
ergibt sich5:

v2
R = v2 + δv2 = v2

{
1 +

λ

πm2
Hε

+
g2

2πm2
Hε

+ endliche Terme

}
. (4.28)

5Dieses lässt sich mit den Gleichungen (5.9) bzw. (5.41) bei Scholz berechnen. Man beachte, dass bei

Scholz die Higgs-Kopplung anders skaliert ist.
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Bei der Massenrenormierung erhält man allerdings:

m2
H,R = m2

H + δm2
H = m2

H

{
1 +

2λ
πm2

Hε
+

g2

2πm2
Hε

+ endliche Terme

}
. (4.29)

Wie sich an dieser Stelle erkennen lässt, unterscheiden sich die Divergenzen hier bei der
Higgs-Kopplung.
Deshalb ersetzt man bei der Renormierung von v2 diesen Parameter durch v2 = m2

H
2λ . Die

Renormierung lautet dann:
m2

H

2λ
=
m2

H,R

2λR
+
δm2

H

2λR
.

Für λ wählt man ein Renormierungsschema, in dem das renormierte λR dem nackten λ

entspricht. Das ist möglich, da λ in Ein-Loop-Ordnung eine endliche Renormierung besitzt.
Das obige Schema würde dann einer ”minimalen Subtraktion” entsprechen (s. z.B. [4]).
Wird in Gleichung (4.16) v2 durch m2

H
2λ ersetzt, ergibt sich für den divergenten Anteil der

effektiven Wirkung:

Seff |D.R.
div = − 1

8λ

(
4λ+ g2

ε
− 1
v2
T

)
= − 1

2ε
− g2

8λε
+

1
4m2

H

T. (4.30)

Der divergente Anteil in der klassischen Wirkung ist nach der Renormierung durch Scholz
(4.29):

π
δm2

H

2λ
= π

m2
H

2λ

{
2λ

πm2
Hε

+
g2

2πm2
Hε

+ endliche Terme

}
=

1
ε

+
g2

4λε
+ endliche Terme. (4.31)

Wie hier nun zu sehen ist, löschen sich die Divergenzen nicht aus, da sich die Pole um
einen Faktor 1

2 unterscheiden. Eigentlich sollte das der Fall sein, da die Renormierung in
einem Hintergrundfeld dieselbe sein sollte, wie im Vakuum.
Benutzt man das δm2

H , das Baacke und Daiber aus den divergenten Feynmangraphen im
Hintergrundfeld berechnet haben ((6.2) in [1]), heben sich die Divergenzen aber auf. Für
gleiche Massen gilt nämlich nach [1] für δm2

H in nichtregularisierter Form:

δm2
H = (g2 + 4λ)

∫
d2k

(2π)2
1

k2 +m2
H

. (4.32)

In dimensioneller Regularisierung geht dieser Ausdruck über in:

δm2
H = (g2 + 4λ)

∫
dDk

(2π)D

1
k2 +m2

H

. (4.33)

Setzt man jetzt D = 2− 2ε und nutzt (4.9) aus, folgt:

δm2
H = (g2 + 4λ)

Γ(ε)
4π1−ε

m−ε. (4.34)
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Entwickelt man diese Ausdrücke nun, wie oben, für kleine ε, wobei

Γ(ε) ≈ 1
ε
− γ (4.35)

(s. z.B. [17]) und γ die Euler-Mascheroni Konstante ist, sieht man, dass

δm2
H = (g2 + 4λ)(

1
4πε

) + finit . (4.36)

Somit folgt, dass die Polterme:

π
δm2

2λ
= π

1
2λ

(g2 + 4λ)
4πε

=
1
2ε

+
g2

8λε
(4.37)

sich gegen die divergenten Terme von (4.30) wegheben.
Nach der Renormierung ist die effektive Wirkung

Seff = π
m2

H,R

2λ
+ π

δm2
H

2λ
+ π

m2
H,R

2λ
δR

∫
ρ dρ (f2 − 1)2

+ S1loop,div.
eff + S1loop,end.

eff (4.38)

also endlich.
Abschließend sollen nun noch einige Erläuterungen zu den einzelnen Termen der effektiven
Wirkung bis zur Ein-Loop-Ordnung gegeben werden.
Der erste Term ist endlich und bekannt, da er nur von den Parametern abhängt, die in
das Modell eingegeben werden müssen.
Bei dem zweiten Term bleibt mit (4.34) und (4.35) nur noch der endliche Teil

−g
2 + 4λ
4π

γ

übrig.
Im dritten Term sind δR und das Integral unbekannt. Das Integral lässt sich analytisch
auch für R=1 nicht bestimmen. Es müsste simuliert werden. Aufgrund der Randbedin-
gungen ist aber zu erkennen, dass dieses Integral endlich ist.
Der Faktor δR entspricht der Abweichung des Verhältnisses der renormierten Massen von
dem Fall R = 1:

R = 1 → RR = 1 + δR

⇔ mH

mW
= 1 → mH,R

mW,R
=

mH

mW

(
1 + δ

mH

mW

)
. (4.39)

Mit den Gleichungen (5.9) und (5.23) in [18] kann dieser Faktor bestimmt werden. Dabei
ist zu beachten, dass in der Ein-Loop-Ordnung nur die Terme der Ordnung λ und g2 im
Ergebnis zu berücksichtigen sind.
Der endliche Anteil von S1loop,div.

eff ist durch (4.30) und (4.17) gegeben.
Der Anteil der Ein-Loop-Korrektur zur effektiven Wirkung in dimensioneller Regularisie-
rung, der a priori als konvergent angenommen wurde, kann aus einem Vergleich mit dem
von Baacke und Daiber simulierten endlichen Anteil der Ein-Loop-Korrektur zur effek-
tiven Wirkung bestimmt werden [1]. Tatsächlich entspricht der von Baacke und Daiber
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angegebene Term für den divergenten Anteil der effektiven Wirkung (s. (6.4) in [1])6 dem
in dieser Arbeit berechneten divergenten Anteil der effektiven Wirkung. Somit ist man in
der Lage, den endlichen Anteil der Ein-Loop-Korrektur zur effektiven Wirkung direkt aus
Fig. 4 in [1] zu entnehmen.
Insgesamt ist die effektive Wirkung in Ein-Loop-Ordnung somit gegeben durch:

Seff = π
m2

H,R

2λ
− γ

8

(
g2 + 4λ

λ

)
+ π

m2
H,R

2λ
δR

∫
ρ dρ (f2 − 1)2

+
1

4m2
H

(
3m2

H

2
ln(m2

H) +
2m2

W +m2
H

2
ln(m2

W )
)

+ S1loop,end.
eff . (4.40)

6Man beachte, dass in dieser Formel zwei Druckfehler sind. Es fehlt ein Faktor 1
4

vor dem Integral und

bei dem m2
W im Zähler fehlt ein Faktor 2.



Zusammenfassung und Ausblick

Thema dieser Arbeit war, das von J. Baacke entwickelte Verfahren zur Bestimmung der
effektiven Wirkung bis zur ersten Ordnung ~ zu benutzen, um dann die Divergenzen, die
hierbei auftreten, mittels der Methode der dimensionellen Regularisierung zu isolieren.
Dann sollte die Renormierung des Abel’schen zweidimensionalen Higgs-Modells, die von
E. Scholz im Rahmen einer Diplomarbeit [18] berechnet wurde, benutzt werden, um die
effektive Wirkung zu renormieren.
Dazu wurde zunächst eine Einführung in die Theorie geliefert, die zum Verständnis des
Verfahrens von Baacke notwendig ist. Dabei wurden auch Rechnungen angegeben, die bei
Baacke und Daiber [1] nicht explizit ausgeführt sind. Weiterhin wurden der Ein-Loop-
Beitrag zur effektiven Wirkung dimensionell regularisiert und die Pole isoliert. Bei der
Renormierung mit den von Scholz im Vakuum renormierten Größen ergaben sich leider
Probleme, da sich die Divergenzen nicht auflösten. Eigentlich sollte das der Fall sein, da
sich die Renormierung in einem Hintergrundfeld nicht von der im Vakuum unterscheiden
sollte. Mit dem von Baacke und Daiber in [1] angegebenen Massencounterterm war die
Renormierung allerdings erfolgreich.

Es stellt sich nun die Frage, warum sich die in dieser Arbeit berechneten Divergenzen
nicht mit den von E.Scholz renormierten Größen auflösen lassen. Aufschluss könnte hier
eine Berechnung der kompletten Propagatoren im Instanton-Hintergrundfeld geben.
Wenn dieses Problem gelöst ist, wäre man auch in der Lage die endlichen Terme, die sich
mit der in [18] berechneten Renormierung in der effektiven Wirkung ergeben, aufzusum-
mieren. Die somit ermittelte Form der effektiven Wirkung könnte man dann mit den von
Baacke und Daiber in [1] nummerisch bestimmten Werten in Beziehung setzen, so dass
explizite Aussagen über die Größe der effektiven Wirkung möglich sind.
Die Instantonübergangsamplitude, die sich so berechnen ließe, wäre dann mit den Ergeb-
nissen zu vergleichen, die J. Heitger in [9] mit Gittersimulationen erzielt hat.



Anhang A

Die Vortex-Lösung für R = 1

In diesem Anhang soll die klassische Wirkung des Instantons für den Spezialfall gleicher
Massen berechnet werden. Die hier angegebene Lösung geht auf de Vega und Schaposnik
[25] zurück.
Die euklidische Lagrangedichte des Abelschen Higgsmodells ist gegeben durch:

L =
1
4
|Fµν |2 +

1
2
(|(∂µ − igAµ)φ|2 +

λ

4
(
|φ|2 − v2

)
(A.1)

mit v2 = −m2

λ . Die Vortexlösung hat die folgende Form:

~A(~r) = êϕ
A(r)
gr

(A.2)

φ(~r) = vf(r)einϕ. (A.3)

Ab jetzt sei n = 1. Mit den Massen m2
H = 2λv2 und m2

W = g2v2 lauten die Bewegungs-
gleichungen in Polarkoordinaten:(

d2

dr2
− 1
r

d

dr
−m2

W f2

)
A = m2

W f2 (A.4)(
d2

dr2
− 1
r

d

dr

(A+ 1)2

r2
−
m2

H

2
(f2 − 1)2

)
f = 0. (A.5)

Die Lagrangedichte in Polarkoordinaten ist:

L = v2

(
1

2r2m2
W

(
dA

dr2

)
+

1
2

[
df

dr2
+
f2

r2
(A+ 1)2

]
+
m2

H

8
(f2 − 1)2

)
. (A.6)

Man kann jetzt die folgenden Differentialgleichungen erster Ordnung einführen:
df

dr
= (A+ 1)

f

r
(A.7)

1
r

dA

dr
= e

√
λ

2
v2(f2 − 1). (A.8)

Quadriert man diese beiden Gleichungen, erhält man:(
df

dr

)2

= (A+ 1)2
f2

r2
(A.9)

1
(mW r)2

(
dA

dr

)2

=
m2

H

4
(f2 − 1)2. (A.10)
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Mit Hilfe einer kleinen Rechnung lässt sich zeigen, dass jede Lösung der Gleichungen
(A.7) und (A.8) auch Lösungen der Bewegungsgleichungen (A.4) und (A.5) sind, wenn
das Verhältnis R des Quadrates der beiden Massen 1 ist, also

m2
H = m2

W (A.11)

gilt. Die Gleichungen (A.7) und (A.8) sind in diesem Falle also äquivalent zu den Glei-
chungen (A.4) und (A.5).
Löst man die Gleichung (A.8) nach f2 auf und nutzt (A.11) aus, ergibt sich:

f2 =
2
m2

W

1
r

dA

dr
+ 1. (A.12)

Leitet man (A.8) nach r ab und nutzt die Beziehungen (A.7), (A.11) und (A.12), erhält
man:

d2A

dr2
− 1
r

dA

dr
− 2(A+ 1)

(
1
r

dA

dr
+
m2

W

2

)
= 0. (A.13)

Die Gleichungen (A.12) und (A.13) bilden jetzt ein System nichtlinearer Gleichungen, in
dem die Gleichung für A(r) entkoppelt ist. Außerdem hängt das System wegen (A.11)
nur noch von zwei unabhängigen Parametern ab. In diesem Fall kann man die klassische
Wirkung Scl des Vortex genau bestimmen. Setzt man (A.9), (A.10) und (A.12) in (A.6)
ein, erhält man für die Lagrangedichte

L = v2

(
1

(mW r)2

(
dA

dr

)2

+
(A+ 1)2

r2

(
1 +

2
m2

W r

dA

dr

))
. (A.14)

Die Gleichung (A.13) lässt sich umformen zu:

(A+ 1)
m2

W r2

(
d2A

dr2
− 1
r

dA

dr

)
=

(A+ 1)2

r2

(
1 +

2
m2

W r

dA

dr

)
. (A.15)

Hiermit kann man L umschreiben zu:

L = v2

(
1

(mW r)2

(
dA

dr

)2

+
(A+ 1)
m2

W r2

(
d2A

dr2
− 1
r

dA

dr

))
. (A.16)

Die klassische Wirkung des Vortex ist nun das Integral über diese Lagrangedichte:

Scl =
∫
r dr dϕL =

v2

m2
W

[∫
1
r

(
dA

dr

)2

+
(A+ 1)

r

(
d2A

dr2
− 1
r

dA

dr

)]
. (A.17)

Partielle Integration des ersten Summanden liefert:

∫
1
r

(
dA

dr

)2

= A · 1
r

dA

dr

∣∣∣∣∣
∞

0︸ ︷︷ ︸
=0

−
∫
A

r

(
d2A

dr2
− 1
r

dA

dr

)
dr. (A.18)
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Der erste Term verschwindet aufgrund der Randbedingungen, die man an den Vortex
stellt. Setzt man das obige Ergebnis in L ein, folgt:

Scl =
∫
r dr dϕL =

v2

m2
W

[∫
1
r

(
d2A

dr2
− 1
r

dA

dr

)
dr

]
(A.19)

=
v2

m2
W

[
1
r

dA

dr

]∞
0

(A.20)

=
v2

m2
W

(
−1
r

dA

dr

) ∣∣∣∣∣
r=0

. (A.21)

Beim letzten Schritt nutzt man wieder die Randbedingungen aus. Verwendet man jetzt
noch (A.8) und nutzt aus, dass f(0) = 0, folgt:

Scl =
∫
r dr dϕL = 2π

v2

m2
W

· e
√
λ

2︸ ︷︷ ︸
e2

2

v2 = πv2. (A.22)

Somit hat man die klassische Wirkung des Vortex für den Spezialfall R = 1 bestimmt.



Anhang B

Die Grundzustandseigenschaften

des harmonischen Oszillators im

Pfadintegralformalismus

Als Beispiel für das in Abschnitt 2.1 vorgestellte Verfahren sollen in diesem Anhang die
Grundzustandseigenschaften des Harmonischen Oszillators berechnet werden.
Für den Harmonischen Oszillator gilt:

V (x) =
ω2x2

2
d2

dx2
V (x) = ω2. (B.1)

Sei nun xi = xf = 0, dann ist der Pfad minimaler Wirkung durch X(t) = 0 gegeben und
die zugehörige Wirkung ist S0 = 0. Setzt man das in (2.16) ein, erhält man:

< 0|e−Ht0 |0 >= NDet

[
− d2

dt2
+ ω2

]− 1
2

. (B.2)

Diagonalisiert man diese quadratische Form wieder:[
− d2

dt2
+

d2

dx2
V (X)

]
xn(t) = λnxn(t), (B.3)

erkennt man, dass für die Eigenfunktionen

xn ∼ cos
(
nπt

to

)
, n = 1, 2, . . . (B.4)

gelten muss, woraus folgt, dass die Eigenwerte

λn =
π2n2

t20
+ ω2, n = 1, 2, . . . (B.5)

sind. Bei der Determinante kann man nun die Amplitude für das freie Teilchen ”ausklam-
mern”:

NDet

[
− d2

dt2
+ ω2

]− 1
2

= N

∞∏
n=1

(
π2n2

t20

)− 1
2

·
∞∏

n=1

(
1 +

ω2t20
π2n2

)− 1
2

. (B.6)



41

Die Amplitude für das freie Teilchen kann man ohne weiteres berechnen:

< 0|e−t0
p̂2

2 |0 >=
∫ ∞

∞

dp

2π
e
−t0p2

2 =
√

1
2πt0

. (B.7)

Der zweite nichttriviale Faktor in (B.6) lässt sich mit Hilfe der Produktentwicklung des
sinh (s. z.B.[21])

sinh(x) = x
∞∏

n=1

(
1 +

x2

n2π2

)
(B.8)

berechnen zu:
∞∏

n=1

(
1 +

ω2t20
π2n2

)− 1
2

=
(

sinh(ωt0)
ωt0

)− 1
2

. (B.9)

Zusammengefasst ergibt sich somit für die Übergangsamplitude:

< 0|e−Ht0 |0 > = NDet

[
− d2

dt2
+ ω2

]− 1
2

(B.10)

=
(ω
π

) 1
2 (2 sinh(ωt0)−

1
2 . (B.11)

Der Grenzwert großer t0 liefert, wie in Abschnitt 2.1 erwähnt, die Grundzustandseigen-
schaften des Systems. Für t0 →∞ ist:

< 0|e−Ht0 |0 >∼
(ω
π

) 1
2
e−

ωt0
2 . (B.12)

Die Energie des Grundzustandes ist somit gegeben durch:

E0 =
ω

2
, (B.13)

und die Wahrscheinlichkeit, dass sich das Teilchen am Ursprung befindet ist:

| < x = 0|n = 0 > |2 =
(ω
π

) 1
2
. (B.14)

Somit reproduziert die semiklassische Näherung die Grundzustandseigenschaften des Har-
monischen Oszillators.



Anhang C

Die Symmetrisierung der

Potentialmatrix

In diesem Anhang ist die explizite Rechnung angegeben, die zur Symmetrisierung der Po-
tentialmatrix führt.
Hierzu berechnet man zunächst die Lagrangedichte, die sich ergibt, wenn die Partialwel-
lenzerlegung

~a =
+∞∑

n=−∞
bn(r)

(
cosϕ
sinϕ

)
einϕ

√
2π

+ icn(r)

(
− sinϕ
cosϕ

)
einϕ

√
2π

(C.1)

ϕ1 =
+∞∑

n=−∞
hn(r)

einϕ

√
2π

(C.2)

ϕ2 =
+∞∑

n=−∞
h̃n(r)

einϕ

√
2π

(C.3)

η12 =
+∞∑

n=−∞
gn(r)

einϕ

√
2π

(C.4)

für die Quantenfelder eingesetzt wird.
Dazu ist die Bestimmung der folgenden Komponenten zweckmäßig:

A = a1(M11)a1 + a2(M22)a2 (C.5)

B = a1(M13)ϕ1 + a2(M23)ϕ1 (C.6)

C = a1(M14)ϕ2 + a2(M24)ϕ2 (C.7)

D = ϕ1(M34)ϕ2 + ϕ2(M43)ϕ1 (C.8)

E = ϕ1(M33)ϕ1 (C.9)

F = ϕ2(M44)ϕ2 (C.10)

G = η12(M55)η12. (C.11)

Die Summe der Komponenten ergibt dann die komplette Lagrangedichte.
Bevor diese Komponenten berechnet werden, sollen noch Relationen hergeleitet werden,
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die sich aus der Forderung nach der Realität der Quantenfelder ~a, ϕ1,2 und η12 ergeben.
Zuerst schaut man sich die Kombinationen a1 + ia2 und a1− ia2 der Eichfeldfluktuationen
an:1

a1 + ia2 =
+∞∑

n=−∞
bn cosϕ

einϕ

√
2π
− icn sinϕ

einϕ

√
2π

+
+∞∑

n=−∞
ibn sinϕ

einϕ

√
2π
− cn cosϕ

einϕ

√
2π

=
+∞∑

n=−∞
bn (cosϕ+ i sinϕ)︸ ︷︷ ︸

=eiϕ

einϕ

√
2π
− cn (cosϕ+ i sinϕ)︸ ︷︷ ︸

=eiϕ

einϕ

√
2π

=
+∞∑

n=−∞
(bn − cn)

ei(n+1)ϕ

√
2π

a1 − ia2 =
+∞∑

n=−∞
bn cosϕ

einϕ

√
2π
− icn sinϕ

einϕ

√
2π

+
+∞∑

n=−∞
−ibn sinϕ

einϕ

√
2π

+ cn cosϕ
einϕ

√
2π

=
+∞∑

n=−∞
bn (cosϕ− i sinϕ)︸ ︷︷ ︸

=e−iϕ

einϕ

√
2π

+ cn (cosϕ− i sinϕ)︸ ︷︷ ︸
=e−iϕ

einϕ

√
2π

=
+∞∑

n=−∞
(bn + cn)

ei(n−1)ϕ

√
2π

Da gefordert wird, dass a1 und a2 reell sind, muss gelten:

(a1 + ia2) = (a1 − ia2)∗ ⇔
+∞∑

n=−∞
(bn − cn)

ei(n+1)ϕ

√
2π

=
+∞∑

n=−∞
(b∗n + c∗n)

e−i(n−1)ϕ

√
2π

(C.12)

und

(a1 − ia2) = (a1 + ia2)∗ ⇔
+∞∑

n=−∞
(bn + cn)

ei(n−1)ϕ

√
2π

=
+∞∑

n=−∞
(b∗n − c∗n)

e−i(n+1)ϕ

√
2π

. (C.13)

Mit Fn
1 = 1

2(bn + cn) und Fn
2 = 1

2(bn − cn) folgen dann aus (C.12) und (C.13) die Rea-
litätsbedingungen

Fn
1 = (F−n

2 )∗ (C.14)

Fn
2 = (F−n

1 )∗. (C.15)

Die Bedingungen für die Realität von ϕ1,2 lauten:

hn = (h−n)∗,
1Die Abhängigkeit der Profilfunktionen von r wird ab jetzt nicht mehr explizit ausgeschrieben.
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bzw.
h̃n = (h̃−n)∗.

Mit Fn
3 = h̃n und Fn

4 = ihn ausgedrückt, heißen die Realitätsbedingungen:

−F−n
4 = (Fn

4 )∗, (C.16)

bzw.
Fn

3 = (F−n
3 )∗. (C.17)

Schließlich muss für die Realität von gn = Fn
5 gelten:

Fn
5 (r) = (F−n

5 )∗. (C.18)

Im Folgenden werden die Terme (C.5) bis (C.11) der Lagrangedichte einzeln berechnet.

A = a1(M11)a1 + a2(M22)a2

=
1
2
(a1 − ia2)(−∂2 + g2φ2)(a1 − ia2) +

1
2
(a1 + ia2)(−∂2 + g2φ2)(a1 − ia2)

Der Laplaceoperator in Polarkoordinaten ist ausgeschrieben:

−∂2 = − ∂2

∂r2
− 1
r

∂

∂r
− 1
r2

∂2

∂ϕ2
. (C.19)

Mit den Realtitätsbedingungen (C.12) und (C.13) folgt für A:

A =
1
2

∑
n,n′

(b∗n′ − c∗n′)
e−i(n′+1)ϕ

√
2π

(
− ∂2

∂r2
− 1
r

∂

∂r
− 1
r2

∂2

∂ϕ2
+ g2φ2

)
(bn − cn)

ei(n+1)ϕ

√
2π

+
1
2

∑
n,n′

(b∗n′ + c∗n′)
e−i(n′−1)ϕ

√
2π

(
− ∂2

∂r2
− 1
r

∂

∂r
− 1
r2

∂2

∂ϕ2
+ g2φ2

)
(bn + cn)

ei(n−1)ϕ

√
2π

.

Da man sich für die Wirkung interessiert, d.h. für das Integral über die Lagrangedichte,
wird an dieser Stelle schon die ϕ-Integration durchgeführt. Hierbei lässt sich die Orthogo-
nalität der komplexen Exponentialfunktion ausnutzen:∫ 2π

0
dϕ
e−in′ϕ

√
2π

einϕ

√
2π

= δn,n′ .

Somit ergibt sich für den ersten (schon über ϕ-integrierten) Summanden der Lagrange-
dichte2:

A ∼=
1
2

∑
n

(b∗n − c∗n)
(
− ∂2

∂r2
− 1
r

∂

∂r
+

(n− 1)2

r2
+ g2φ2

)
(bn − cn)

+
1
2

∑
n

(b∗n + c∗n)
(
− ∂2

∂r2
− 1
r

∂

∂r
+

(n+ 1)2

r2
+ g2φ2

)
(bn + cn).

2Das Zeichen ”∼=” möge ab jetzt bedeuten, dass bei dem Term auf der rechten Seite schon die ϕ-

Integration ausgeführt wurde.
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Mit Fn
1 = 1

2(bn + cn) und Fn
1 = 1

2(bn − cn) folgt:

A ∼= 2
∑

n

(Fn
1 )∗

(
− ∂2

∂r2
− 1
r

∂

∂r
+

(n− 1)2

r2
+ g2φ2

)
Fn

1

+ 2
∑

n

(Fn
2 )∗

(
− ∂2

∂r2
− 1
r

∂

∂r
+

(n+ 1)2

r2
+ g2φ2

)
Fn

2 .

Setzt man hier noch g2φ2 = g2f2v2 = f2m2
W = m2

W (f2 − 1) + m2
W ein, ergibt sich

schließlich:

A ∼= 2
∑

n

(Fn
1 )∗(M0

11 + V0
11)F

n
1 + 2

∑
n

(Fn
2 )∗(M0

22 + V0
22)F

n
2 , (C.20)

wobei die in Kapitel 3 angegebenen Operatoren ersetzt wurden.

B = a1(M13)ϕ1 + a2(M23)ϕ1

= a1(2g2A1φ)ϕ1 + a2(2g2A2φ)ϕ1

=
1
2
(a1 + ia2)(2g2φ(A1 − iA2))ϕ1 +

1
2
(a1 − ia2)(2g2φ(A1 + iA2))ϕ1.

Die Komponenten des A-Feldes A1,2 sind:

A1 =
ε12x2

gr2
(A+ 1) =

A+ 1
rg

sinϕ

A2 =
ε21x1

gr2
(A+ 1) = −A+ 1

rg
cosϕ.

Daraus folgt:

A1 + iA2 = i
A+ 1
rg

e−iϕ (C.21)

A1 + iA2 = −iA+ 1
rg

eiϕ. (C.22)

Werden (C.21) und (C.22) in B eingesetzt und (C.12) und (C.13) genutzt, ergibt sich:

B =
1
2
(a1 − ia2)∗

(
2g2φi

A+ 1
rg

)∑
n

hn
ei(n−1)ϕ

√
2π

+
1
2
(a1 + ia2)∗

(
−2g2φi

A+ 1
rg

)∑
n

hn
ei(n+1)ϕ

√
2π

=
∑
n,n′

(Fn′
1 )∗

e−i(n′−1)ϕ

√
2π

(
2g2φ

A+ 1
rg

)
Fn

4

ei(n−1)ϕ

√
2π

+
∑
n,n′

(Fn′
2 )∗

e−i(n′+1)ϕ

√
2π

(
−2g2φ

A+ 1
rg

)
Fn

4

ei(n+1)ϕ

√
2π

Integriert man über ϕ, nutzt die Orthogonalität der Exponentialfunktion aus und beachtet,
dass 2g2φA+1

rg = 2mW f A+1
r , ergibt sich für B:

B ∼=
∑

n

(Fn
1 )∗

(
2mW f

A+ 1
r

)
︸ ︷︷ ︸

=
√

2V14

Fn
4 +

∑
n

(Fn
1 )∗

(
−2mW f

A+ 1
r

)
︸ ︷︷ ︸

=
√

2V24

Fn
4 . (C.23)
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C = a1(M14)ϕ2 + a2(M24)ϕ2

= a1(2g∂1φ)ϕ2 + a2(2g∂2φ)ϕ2

=
1
2
(a1 + ia2)(2g(∂1 − i∂2)φ)ϕ2 +

1
2
(a1 − ia2)(2g(∂1 + i∂2)φ)ϕ2

Setzt man hier ∂1 = ∂
∂x1

= cosϕ ∂
∂r bzw. ∂2 = ∂

∂x2
= sinϕ ∂

∂r ein3, ergibt sich mit

(∂1 − i∂2φ = vf ′(cosϕ− i sinϕ) = vf ′e−iϕ

(∂1 + i∂2φ = vf ′(cosϕ+ i sinϕ) = vf ′eiϕ

für C:

C =
1
2
(a1 + ia2)∗

(
2gvf ′

)∑
n

h̃n
ei(n−1)ϕ

√
2π

+
1
2
(a1 + ia2)∗

(
2gvf ′

)∑
n

h̃n
ei(n+1)ϕ

√
2π

=
∑
n,n′

(Fn′
1 )∗

e−i(n′−1)ϕ

√
2π

(
2gvf ′

)
Fn

3

ei(n−1)ϕ

√
2π

+
∑
n,n′

(Fn′
2 )∗

e−i(n′+1)ϕ

√
2π

(
2gvf ′

)
Fn

3

ei(n+1)ϕ

√
2π

Integriert man über ϕ, nutzt die Orthogonalität der Exponentialfunktion aus und beachtet,
dass 2gvf ′ = 2mW f ′, ergibt sich für C:

C ∼=
∑

n

(Fn
1 )∗

(
2mW f ′

)︸ ︷︷ ︸
=
√

2V13

Fn
3 +

∑
n

(Fn
2 )∗

(
2mW f ′

)︸ ︷︷ ︸
=
√

2V23

Fn
3 (C.24)

D = ϕ1(M34)ϕ2 + ϕ2(M43)ϕ1

= ϕ1(−gAµ∂µ)ϕ2 + ϕ2((−gAµ∂µ))ϕ1

Zu dieser Berechnung sind einige Vorbemerkungen nötig. Der Term in der Klammer hat
die folgende Gestalt:

gAµ∂µ =
A+ 1
r2

εµνxν∂µ

=
A+ 1
r2

(x2∂1 − x1∂2).

Mit

x2∂1 − x1∂2 = r sinϕ
(
−sinϕ

r

∂

∂ϕ
+ cosϕ

∂

∂r

)
− r cosϕ

(
−cosϕ

r

∂

∂ϕ
+ sinϕ

∂

∂r

)
= − sinϕ2 ∂

∂ϕ
− cos2 ϕ

∂

∂ϕ

= − ∂

∂ϕ

3Die Ableitung nach ϕ wurde hier weggelassen, da f nur von r abhängt.
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erhält man:
gAµ∂µ = −A+ 1

r2
∂

∂ϕ
.

Unter Ausnutzung der obigen Gleichung, den Realitätsbedingungen und anschließender
ϕ-Integration erhält man schließlich für D:

D ∼=
∑

n

(Fn
4 )∗

(
−2

A+ 1
r2

n

)
︸ ︷︷ ︸

=V34

Fn
3 . (C.25)

E = ϕ1(M33)ϕ1

= ϕ1(−∂2 + g2Aµ2 + λ(3φ2 − v2))ϕ1

=
∑
n,n′

(hn′)∗
e−in′ϕ

√
2π

(−∂2 + g2Aµ2 + λ(3φ2 − v2))hn
einϕ

√
2π

Setzt man hier (C.19) ein, fügt −i2 = 1 ein und integriert über ϕ, dann folgt:

E ∼= (Fn
4 )∗

(
− d2

dr2
− 1
r

d

dr
+
n2

r2
+ g2A2

µ + λ(3φ2 − v2)
)
Fn

4 .

In der Klammer kann man nun die Felder φ und Aµ einsetzen. Mit der Masse mH = 2λv2

ergibt sich:

− d2

dr2
− 1
r

d

dr
+
n2

r2
+ g2A2

µ + λ(3φ2 − v2)

= − d2

dr2
− 1
r

d

dr
+
n2

r2
+m2

H︸ ︷︷ ︸
M0
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+
(A+ 1)2

r2
+

3
2
m2

H(f2 − 1)︸ ︷︷ ︸
=V44

,

und somit ist
E =

∑
n

(Fn
4 )∗(M0

44 + V44)Fn
4 . (C.26)

F = ϕ2(M44)ϕ2

= ϕ2(−∂2 + g2A2
µ + g2φ2 + λ(φ2 − v2))ϕ2.

Unter Nutzung von (C.19), Ausführung der zweifachen Ableitung nach ϕ und anschlie-
ßender Integration über ϕ erhält man:

F ∼=
∑

n

(Fn
3 )∗(M0

33 +
(A+ 1)2

r2
+ g2v2f2 + λ(v2f2 − v2)− g2v2)Fn

3

=
∑

n

(Fn
3 )∗(M0

33 +
(A+ 1)2

r2
+m2

W (f2 − 1) +
1
2
m2

H(f2 − 1)︸ ︷︷ ︸
V33

)Fn
3 .
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Insgesamt erhält man für F also:

F ∼=
∑

n

(Fn
3 )∗(M0

33 + V33)Fn
3 (C.27)

Die Rechnungen für G sind denen für A und B sehr ähnlich. Es ergibt sich:

G = η12(M55)η12

∼=
∑

n

(Fn
5 )∗(M0

55 +m2
W (f2 − 1)︸ ︷︷ ︸

V55

)Fn
5 .

(C.28)

Somit erhält man letztlich:

G ∼=
∑

n

(Fn
5 )∗(M0

55 + V55)Fn
5 . (C.29)

Addiert man schließlich diese Komponenten, ist das Ergebnis die, schon über ϕ-integrierte,

Lagrangedichte. Werden die Quantenfelder Fn
1 und Fn

2 mit einem Faktor 1√
2

umskaliert,
erhält man dieselbe Lagrangedichte, wie die, die sich aus (3.37) und (3.38) mit der in
Kapitel 3 angegebenen Potentialmatrix ergibt.
Zum Schluss soll noch erwähnt werden, dass sich mit den Realitätsbedingungen zeigen
lässt, dass die Profilfunktionen Fn

1 und Fn
2 nicht voneinander unabhängig sind. Unter

Ausnutzung der Hermitizität der Potentialmatrixelemente kann Fn
1 (bzw.Fn

2 ) zugunsten
Fn

2 (bzw. Fn
1 ) eliminiert werden.
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