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Einleitung

Seit dem Jahr 1930, in dem P. A. M. Dirac die Existenz von Antimaterie postuliert hat,
ist klar, dass Teilchen und Antiteilchen symmetrisch zueinander sein sollten. Ein System,
das nur aus Teichen besteht, sollte sich genauso verhalten wie ein System, bei dem man
Teilchen durch Antiteilchen ersetzt. Die Annahme, dass sich Teilchen und Antiteilchen
symmetrisch verhalten, steht jedoch im krassen Widerspruch zu der Beobachtung, dass
unser Universum fast nur aus normaler Materie aufgebaut ist.

Man hat bisher noch keinen Beweis dafiir erbringen konnen, dass irgendwo im Univer-
sum grofle Mengen an Antimaterie vorhanden sind. Wiirden diese auf Materie treffen,
miisste es aufgrund der Vernichtungsprozesse von Materie und Antimaterie zu gewalti-
gen Ausbriichen von Gammastrahlung kommen. Diese sind bisher allerdings noch nicht
beobachtet worden. Daher kann man annehmen, dass das Universum, bis auf kleine Aus-
nahmen bei hochenergetischen Reaktionen, die die Erzeugung von Antiteilchen zur Folge
haben konnen, ausschliefflich aus Materie besteht.

Im frithen Universum miissen also baryonenzahlverletzende Prozesse stattgefunden haben,
die die Symmetrie zwischen Materie und Antimaterie brachen. Fine mogliche Erklarung
liefern die sogenannten ”Groflien vereinheitlichten Theorien”. Thr Grundgedanke ist, dass
iiber einer gewissen Energie die innere Symmetriegruppe durch ein G gegeben ist, die
sich dann bei niedrigeren Energien durch eine Reihe von spontanen Symmetriebrechungen
auf die Gruppe des Standardmodells reduziert. Eine irreduzible Darstellung einer solchen
Gruppe G kann sowohl Quarks als auch Leptonen enthalten, so dass hier baryonenzahl-
verletzende Prozesse moglich sind.

Eine andere Méglichkeit wurde 1976 von G. ’t Hooft vorgeschlagen [23]. Er fand heraus,
dass eine Baryonenzahlverletzung im elektroschwachen Standardmodell aufgrund topologi-
scher Prozesse moglich ist. Dabei verkniipfte er die Anomaliestruktur des elektroschwachen
Standardmodells mit der Topologie der zugehorigen Eichfelder.

Berechnungen zu baryonenzahlverletzenden Prozessen im elektroschwachen Standardmo-
dell sind allerdings &uflerst kompliziert und schwierig. Daher wird auf ein einfacheres
”Spielzeugmodell” zuriickgegriffen, in dem sich manche Rechnungen sogar analytisch durch-
fithren lassen.

Das zweidimensionale Abel’sche Higgs-Modell besitzt einige Gemeinsamkeiten mit dem
elektroschwachen Standardmodell. So sind aufgrund der nichttrivialen Vakuumstruktur
des zweidimensionalen Higgs-Modells und derselben Anomalie im baryonischen Strom auch
hier baryonenzahlverletzende Prozesse moglich.

In der Vakuumstruktur unterscheiden sich die Minima um eine topologische Gréfle, die man
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Pontryagin-Klasse nennt. Klassische Losungen der Feldgleichungen, die eine ganzzahliges
Vielfaches der Pontryagin-Klasse als topologische Ladung besitzen, kénnen also Tunnel-
prozesse von einem Vakuum in ein anderes beschreiben. Solche Losungen, die gleichzeitig
auch ein Minimum der euklidischen Wirkung sind, nennt man Instantonen. Ihre Existenz
wurde erstmals von Belavin et al. in vierdimensionalen Yang-Mills-Theorien gezeigt [2].
In zwei Dimensionen ist eine solche Instanton-Losung durch den Vortex gegeben. Diese
radialsymmetrische Losung wurde von Nielsen und Olesen konstruiert [14].

Wie ’t Hooft zeigen konnte, entspricht die Verletzung der Erhaltung des axialen Stromes,
die angibt, um wie viel sich die Baryonenzahl verindern kann, aber gerade der Pontryagin-
Klasse. So kann ein Instantoniibergang eine Baryonenzahlverletzung induzieren.

Die Instantoniibergangsamplitude ist proportional zu e (s. z.B. [5], [20] oder [15]).
Um Ein-Loop-Korrekturen zur Instantoniibergangsamplitude zu beriicksichtigen ersetzt
man die klassische durch die effektive Wirkung (siehe [6] oder in die Quantenfeldtheorie
einfithrende Biicher). Diese Ein-Loop-Korrektur ist aber divergent, so dass die effektive
Wirkung renormiert werden muss. Die Isolation der Divergenzen mittels der Methode der
dimensionellen Regularisation und die anschliefende Renormierung der effektiven bis zur
Ein-Loop-Ordnung war Aufgabe dieser Diplomarbeit. Die Arbeit ist wie folgt gegliedert:

Im ersten Kapitel werden die Grundlagen der U(1)-Eichtheorie besprochen und der Higgs-
Mechanismus eingefiihrt. Auflerdem wird der Vortex als eine Soliton-Losung in zwei Di-
mensionen erldutert. Die klassische Wirkung des Vortex wird im Anhang A fiir den Spe-
zialfall gleicher Higgs- und Eichfeldmasse berechnet.

Im zweiten Kapitel wird das Konzept der Instantonen dargestellt und eine Formel fiir die
Tunnelamplitude hergeleitet. Im Anhang B werden die Grundzustandseigenschaften des
harmonischen Oszillators mit den im Kapitel zwei besprochenen Methoden berechnet.
Im dritten Kapitel wird der Vortex als eine Instanton-Losung im Abel’schen zweidimensio-
nalen Higgs-Modell erldutert, die eine Baryonenzahlverletzung induzieren kann. Weiterhin
wird eine nichtpertubative Methode zur Berechnung der Ein-Loop-Korrektur zur effekti-
ven Wirkung vorgestellt, die von J. Baacke entwickelt wurde [1]. Im Anhang C ist eine
Rechnung zu diesem Verfahren angegeben, die im Kapitel 3 iibersprungen wurde.

Im 4. Kapitel werden zun#chst die divergenten Anteile der effektiven Wirkung isoliert,
bevor diese dann renormiert wird.



Kapitel 1

U(1)-Eichtheorie und der
Higgsmechanismus

1.1 Globale und lokale Eichsymmetrien

Untersucht man Eichtheorien mit einer Lagrangedichte £, so stellt man fest, dass diese
unter bestimmten Transformationen der Felder invariant bleibt. Werden nur Transforma-
tionen der Felder selbst, die die Raum-Zeit-Koordinaten invariant lassen, betrachtet, so
nennt man diese Eichtransformationen. Man spricht in dem Zusammenhang von Eichsym-
metrien oder auch inneren Symmetrien.

Als Beispiel fiir das Eichprinzip soll ein komplexes Skalarfeld dienen, dessen klassische
Lagrangedichte die Form

1
Lo (9(2), 00(2)) = 50,6"0"6 — V(6"9) (1)
besitzt, die unter globalen Phasentransformationen der Art
p(x) — ¢ () = p(x)e™ (1.2)

offensichtlich invariant ist. Hierbei ist « eine beliebige reelle Konstante, die nicht von x
abhéngen, also global denselben Wert besitzen soll. Zu dieser Symmetrie gibt es nach dem
Theorem von Noether einen divergenzlosen, also erhaltenen Strom der Form:

gt = const. (¢p* M — pO* ") . (1.3)

Nun mo6chte man erreichen, dass man sich nicht auf globale Transformationen beschrianken
muss, sondern auch Raum-Zeit-abhéingige Phasenfaktoren zulassen darf:

¢(x) — ¢'(x) = P(a)e” ). (1.4)

Allerdings transformiert sich 0*¢ nicht mehr wie ¢, wie es noch bei den globalen Trans-
formationen der Fall war:

0"¢(x) — 0"/ () = O($(x))e ) + 9 (e ) g(2), (1.5)
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sondern erhélt einen zusétzlichen Term. £ ist somit nicht invariant unter einer lokalen
Eichtransformation. Da dieses aber erstrebenswert ist, muss £ geeignet erweitert werden,
so dass sich "¢ wieder genauso transformiert wie ¢.

Definiert man ein Vektorfeld A*, das sich nach der Regel

1
At (z) — AP (z) = A¥(x) + —0"p(x) (1.6)
e
transformiert, so kann man eine ”kovariante Ableitung” durch
Dto(x) = (0" +ieA) ¢(z) (1.7)

definieren, die sich genauso transformiert wie ¢(x). Die Skalierung von ¢ zu A* wird durch
e festgelegt.
Die neue Lagrangedichte L£(¢, D*¢) ist nun unter lokalen Transformationen invariant,
enthélt allerdings das Eichfeld A* als externes Feld. Um ein geschlossenes dynamisches
System zu definieren, muss man also noch einen Term zur Lagrangedichte hinzufiigen, der
die Dynamik des Eichfeldes festlegt. Hierfiir eignet sich ein Term proportional zu F*F,,,
wobei

FH(x) = ol A (x) — 0" AH(x) (1.8)

der elektro-magnetische Feldstéirketensor ist.
Insgesamt gelangt man also zu einer Lagrangedichte, die ein geschlossenes dynamisches
System beschreibt und invariant unter lokalen Eichtransformationen ist:

L= —%FWFW + Lo(é, D"). (1.9)

Die Bewegungsgleichungen, die sich aus dieser Lagrangedichte ergeben, sind gerade die
der skalaren Elektrodynamik.
Schreibt man die Eichtransformationen als:

$(z) — e Wg(r) (1.10)
At (x) — Af(x) + 0Hw(x), (1.11)

erkennt man, dass es sich um eine U(1)-Symmetrie mit dem Generator e handelt.

In der Lorentz-Eichung (9, A" = 0) lauten die Bewegungsgleichungen fiir das Eichfeld
OA# = j#. Nimmt man nun an, dass ¢ = 0 der niedrigste Zustand des Systems ist (< ¢ >=
0 in einer quantisierten Theorie), geht diese Gleichung iiber in OA* = 0. Die Losungen
hierzu sind ebene Wellen, was masselosen Photonen in der Quantentheorie entspricht.
Diese Situation dndert sich allerdings, wenn der Vakuumerwartungswert < ¢ > 0 ist und
somit nicht mehr um 0 entwickelt werden darf. Man spricht dann von einer ”spontanen
Symmetriebrechung” oder einer ”versteckten Symmetrie”.

1.2 Spontane Symmetriebrechung

Fine Symmetrie wird ”spontan gebrochen” genannt, wenn der Zustand niedrigster Ener-
gie nicht mehr invariant unter den zu dieser Symmetrie gehérenden Transformationen ist.
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Zunéchst soll der Fall einer gebrochenen globalen Symmetrie diskutiert werden. Als Bei-
spiel hierfiir moge wieder die Lagrangedichte (1.1) dienen. Das Potential habe hierbei die
spezielle Form

V(9" p) = m*¢* ¢+ A(¢"0)°. (1.12)
Sucht man nun nach den Minima des Potentials, also den Grundzustdnden der Theorie,
erkennt man, dass sie entscheidend von der Wahl der Vorzeichen der Parameter m? und
A abhingen (m? wird als reiner Parameter betrachtet und nicht wie iiblich als Massequa-
drat).
Wiihlt man m? > 0 und A > 0, so hat man wieder ein Potential, dessen Grundzustand bei

¢ = 0 liegt und somit invariant unter Phasentransformationen der Felder ist. Das &dndert

m2

sich aber fiir m? < 0. Dann erhiilt man némlich einen neuen Grundzustand bei ¢3 = —-55-
Dieser ist unendlichfach entartet, da die Minima des Potentials auf einem Kreis liegen!.
Das Potential (1.12) ldsst sich hiermit auch schreiben als:

V(6" ) = N0 — 67)”. (1.13)

Um nun die energetisch niedrigsten Zusténde der zugehorigen quantisierten Theorie zu
bestimmen, muss man die niedrigsten klassischen Moden untersuchen. Dazu wird das Feld
um einen der Grundzusténde entwickelt:

$(x) = [do + ((2)]e"), (1.14)

so dass man, anstatt eines komplexen jetzt zwei reelle Felder zu untersuchen hat. Die
Lagrangedichte hat nun die Form:

Lo= %a“éauc = Ao +¢)*C* + (do + 4)2%3"@%- (1.15)

Nimmt man an, dass ¢ klein ist, kann man die Terme, die hoher als die zweite Ordnung
sind, vernachldssigen. Man erhélt:

1 1
Lo = 50"CO.C ~ 2A65¢° + 5%3%%@ +0(¢%). (1.16)

Die ersten beiden Terme beschreiben ein freies skalares Teilchen der Masse 2¢ov/\, der
dritte ein masseloses Skalarteilchen. Die vernachléssigten Terme beschreiben die Wechsel-
wirkungen zwischen den Teilchen.

Allgemein kann man zeigen, dass die spontane Brechung einer globalen Symmetrie die
Existenz eines masselosen Spin-0-Teilchens erfordert. Dieses Theorem geht auf Goldstone
zuriick und ist als der Goldstonemechanismus bekannt.

Man kann die obige Aussage auf beliebige Symmetriegruppen erweitern und muss sich
nicht auf die U(1) beschrénken. Ist £ invariant unter einer beliebigen Gruppe G und ist
das Vakuum gebrochen bis auf eine Untergruppe H von G, so manifestieren sich die gebro-
chenen Symmetrien in der Existenz von Goldstone-Bosonen. Allgemein kann man zeigen,
dass die Anzahl der Goldstone-Bosonen durch dim G/H gegeben ist. Hierauf mochte ich
aber nicht weiter eingehen, da ich mich im Folgenden auf die U(1)-Symmetrie beschrinken
werde.

'Fiir den Fall m? < 0 und A < 0 gibt es zwar auch ein lokales Potentialminimum, allerdings ist das
Potential nach unten nicht beschrankt. In einer solchen Theorie kénnen keine stabilen Teilchen existieren

(vgl. [10)).
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1.3 Der Higgsmechanismus

Die Situation dndert sich nun, wenn man untersucht, wie sich eine lokale Symmetrie
verhélt, wenn sie gebrochen wird. Als Beispiel soll die Lagrangedichte (1.9) dienen:

1

£:4

M Fy + 5 (D"9)" (D) — V(6°6), (147
wobei V (¢*¢) durch (1.13) gegeben sei. Die lokale Eichsymmetrie, die diese Lagrangedichte
besitzt, ist allerdings gebrochen, wenn ¢g # 0, da £ in diesem Fall nicht mehr invariant
unter den lokalen Transformationen (1.10) und (1.11) ist.

Die Losung mit der niedrigsten Energie ist fiir das skalare Feld durch (1.14) mit {(z) =0
gegeben und fiir das Vektorfeld durch

Ar =0 (1.18)

Bei dem komplexen Skalarfeld kann man die Phase nun durch eine kontinuierliche Eichtrans-
formation wegeichen, so dass das Skalarfeld iiberall reell ist. Diese Eichung nennt man die
“unitidre Eichung”. Entwickelt man ¢ wieder um seinen Vakuumwert:

P(z) = o + (), (1.19)
erhalt man fiir die Lagrangedichte in unitérer Eichung;:
1 7% 242 Al 1 “w 2,2
L= _ZF F, +e“pgAlA, + 58 COuC — 2X¢" + h.o.. (1.20)

(h.o. steht hier fiir Terme hoherer Ordnung) Diese Lagrangedichte besteht dann aus zwei
Feldern, dem Vektorfeld mit Spin 1 und dem reellen Skalarfeld mit Spin 0, die beide massiv
sind. Das zum Vektorfeld gehorige Photon hat die Masse ev und das Spin-0-Teilchen die
Masse \/ﬁv, wobei v jetzt der Vakuumwert sein soll.

In dem Teilchenspektrum ist das Goldstone-Boson nicht enthalten. Es verschwindet durch
die Wahl der Eichung. Dafiir ist das Photon, das vorher noch masselos war, jetzt massiv
geworden.

Dieses Phidnomen wird ”Higgsmechanismus” genannt. Man beachte, dass die Zahl der
Freiheitsgrade bei diesem Mechanismus natiirlich erhalten bleibt. Das Goldstonefeld ver-
schwindet zwar, aber dafiir hat das Vektorfeld durch seine Masse eine longitudinale Pola-
risationsrichtung erhalten.

1.4 Der Vortex

Es ist nun interessant nach Losungen der klassischen Feldgleichungen zu suchen, die ei-
ne endliche Energie besitzen. Losungen, deren Energiedichte im Unendlichen hinreichend
schnell gegen null geht, nennt man Solitonen. Die Frage, ob solche Solitonlésungen iiber-
haupt stabil sind, lidsst sich mit Hilfe topologischer Argumente beantworten.

Als erstes soll iiberlegt werden, welche Bedingungen an die Felder gestellt werden miissen,
damit Losungen endlicher Energie moglich sind. Im Folgenden wird der zweidimensionale
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Fall betrachtet, da dieser fiir den weiteren Verlauf dieser Arbeit interessant ist.

Die Lagrangedichte sei wieder (1.17), die Lagrangedichte des Abel’schen Higgsmodells.
Aus der Bedingung, dass die zugehorige Hamiltondichte endlich sein soll, folgt (in zwei
Dimensionen):

/d%;(é? +E?) < (1.21)
/deV(qﬁ*tb) < oo. (1.22)

Aus (1.21) ergibt sich, dass F* sich asymptotisch wie 272 verhalten sollte, was bedeutet,
dass
AP — o+ O(z7Y) (JF] — 00). (1.23)

AP muss also im Unendlichen gegen eine pure Eichform streben.
Die zweite Bedingung (1.22) beinhaltet, dass ¢(z) gegen seinen Vakuumswert streben
muss:

¢(x) — go(x)e™ ) (| — o0). (1.24)

Geht man zur temporiren Eichung iiber, d.h. A’ = 0, werden die Randbedingungen im
Unendlichen zu

= f—oo 1 —
A(Z) — ngo(x) (1.25)
o(@) TF ppet @, (1.26)

Die Felder sind auf einem Kreis K mit sehr groffem Radius somit allein durch die Angabe
eines Winkels 6 bestimmt. Weiterhin muss ¢(0) als Losung einer Differentialgleichung
stetig sein, woraus

»(2m) = ¢(0) (1.27)
folgt. Diese Bedingung impliziert

o(2m) — p(0) = 27n. (1.28)

Der magnetische Fluss durch K l&sst sich somit leicht berechnen:

<I>_/ df-é_]é ds- A. (1.29)
K K

Hierbei ist d f ein orientiertes Flichenelement der Kreisfldche, die von K umschlossen wird,
und d§ ist ein Linienelement des Kreisbogens um K.
Mit (1.25), (1.26) und (1.28) erhélt man schlielich:

2
o="" (nen). (1.30)
e
Der Fluss durch K muss also notwendigerweise quantisiert sein, damit man Losungen
endlicher Energie erhélt.
In drei rdumlichen Dimensionen ist n = 0 zu wihlen, da sonst die bis ins Unendliche
laufenden B-Feld-Linien die Bedingung (1.21) verletzen wiirden. In zwei Dimensionen
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ist aber jedes ganzzahlige n zugelassen. Dieser Fall kann als eine dreidimensionale Losung
aufgefasst werden, die unabhéngig von der z-Richtung konstante Energie pro Einheitsldnge
entlang der z-Achse hat.

Fiir den zweidimensionalen Fall kann man sich iiberlegen, dass die Randbedingungen nur
davon abhéngen, welchen spezifischen Wert n annimmt. Schreibt man némlich ¢(6) als
©(0) = nf + a(f) mit a(27) — a(0) = 0, so lésst sich « als kontinuierliche Funktion durch
eine kontinuierliche Eichtransformation wegeichen. Dann gehen die Randbedingungen iiber

in
e Fooo 1 n
A7) =5 ZV(nh) =0— 1.31
(Z) SV(nd) =6— (1.31)
H(T) =3 gpe?, (1.32)

FEine Frage, die sich jetzt natiirlich stellt, ist, warum solche Lésungen iiberhaupt stabil
sind. Die Griinde sind, wie schon weiter oben erwéhnt, topologischer Natur.
Auf dem Rand (r — o0) wird ¢ durch die Gleichung (1.32) beschrieben. In zwei Dimen-
sionen ist dieser Rand gerade ein Kreis S! (ein Kreis mit unendlichem Radius). Gleichung
(1.32) ist auch eine Darstellung der Symmetriegruppe U(1). Der Gruppenraum der U(1)
ist aber auch gerade ein Kreis S*.
¢ beschreibt also eine Abbildung des Randes S* des physikalischen Raumes in den Grup-
penraum S der U(1):

¢St — St (1.33)

wobei diese Abbildung durch ein n € Z festgelegt ist. Eine Losung, die durch ein n cha-
rakterisiert ist, kann nicht kontinuierlich in eine Losung mit anderem n iiberfiihrt werden.
Daher sind Vortexlosungen in zwei Dimensionen stabil. Mathematisch ausgedriickt ist die
erste Homotopiegruppe 71(S') des S! nichttrivial. Man sagt auch, dass durch n verschie-
dene Eichklassen klassifiziert werden, die nicht durch kontinuierliche Eichtransformationen
ineinander {iberfithrt werden kénnen.

Es gibt also unendlich viele Grundzustédnde, da n nicht beschrédnkt ist. Die Vakuumstruk-
tur des Abel’schen Higgsmodells ist daher nichttrivial.

Die Bewegungsgleichungen, die sich aus (1.17) ergeben, lauten:

DM(Dy¢) = —2m*¢ — 4\ ¢* (1.34)
1
52’6((;58#@5* — ¢ 0u0) + 2 A = 0" F. (1.35)

Man kann sich nun leicht davon iiberzeugen, dass diese Gleichungen Losungen mit den
Randbedingungen (1.31) und (1.32) zulassen. Fiir n # 0 ist magnetischer Fluss vorhanden,
so dass das A-Feld nicht iiberall einer puren Eichung entsprechen kann. A und ¢ dndern also
ihre Werte fiir r — 0. Es ist sinnvoll zu Polarkoordinaten iiberzugehen, da die Vortexlésung
offensichtlich zylindersymmetrisch ist. Aufgrund der Randbedingungen muss /T(F) von der
Form:

A(r)

A(F) = —é, (1.36)

und ¢ von der Form:

O(F) = f(r)e (1.37)
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sein. Die statischen Bewegungsgleichungen ergeben sich so zu:

d?2A  1dA

@7 e =0 (1:38)
d? 1df (n+eA)?
dTJ; - df(2)f +2m* f +4Af* = 0. (1.39)

Zu diesem nichtlinearen gekoppelten Differentialgleichungssystem wurde bisher keine ex-
akte analytische Losung gefunden. Fiir die Ndherung f = ¢ (d.h. fiir » — oo) konnten
Nielsen und Olesen eine Losung angeben [14]:

1
n cr r—oo M C T 2

Ay = -2 9K —e D C lelar . 1.40

1) ==2 = Lha(elar) =3 =2 £ (GE) el (1.40)

Hierbei ist K eine modifizierte Besselfunktion und c eine Integrationskonstante.
Fiir die Variation des Higgsfeldes erhélt man:

f(r) = go+e V. (1.41)

Fiir den Spezialfall, dass die Kopplungen die Relation e? = 8\ erfiillen (das entspricht
einer Aquivalenz der Higgs- und Eichfeldmasse), fanden de Vega und Schaposnik 1976
sogar eine exakte Losung [25]. Diese ist im Anhang A angegeben.



Kapitel 2

Instantonen

Als Instantonen bezeichnet man lokalisierte Losungen von euklidischen Feldgleichungen
mit endlicher Wirkung. Instantonen spielen in der modernen Quantenfeldtheorie eine wich-
tige Rolle, weil man mit ihnen auch einige Prozesse beschreiben kann, deren Amplitude
exponentiell klein ist, und die deswegen nicht durch die Storungstheorie erfasst werden
konnen. Man hat somit eine Menge neuer Losungen, die bisher verborgen waren. Der Na-
me Instanton wurde von ’t Hooft eingefiithrt, da die Losung sowohl in der Zeit als auch im
Raum lokalisiert ist. Eine andere gebriduchliche Bezeichnung ist Pseudopartikel.

Zur euklidischen Version einer Theorie gelangt man, indem man die Zeit um 5 im Uhr-
zeigersinn zur negativen imaginiren Achse rotiert. Das entspricht einem Ubergang von
der minkowskischen Metrik n** mit der Signatur (4, —, —, —) zur euklidischen Metrik 6*¥,
die die Signatur (+,+,+, +) besitzt. Diese analytische Fortsetzung zu imaginérer Zeit ist
unter dem Namen Wick-Rotation bekannt. Nach einer Wick-Rotation geht die Lorentzin-
varianz in eine O(4)-Invarianz iiber. Da es sich bei der Metrik nun um §,,, handelt, muss
man im Euklidischen nicht mehr obere und untere Indizes unterscheiden. Wie sich die Ko-
ordinaten und Feldkomponenten unter einer Wick-Rotation im einzelnen transformieren,
kann man z.B. in [10] finden. Das Entscheidene fiir die noch folgenden Rechnungen ist der

Ubergang der minkowskischen Wirkung S zur euklidischen Wirkung Sey:
S — Seur = —1S. (2.1)

Der Ubergang in die euklidische Raum-Zeit ist niitzlich, da sich bestimmte Eigenschaften
von Minkowskischen Quantenfeldtheorien viel praktischer untersuchen lassen, wenn man
von euklidischen Wirkungsfunktionalen ausgeht. Ein Beispiel hierfiir ist das Tunneln zwi-
schen verschiedenen entarteten Vakuumzustinden, das im nichsten Abschnitt ausfiihrlich
beschrieben wird.

Es besteht nun ein enger Zusammenhang zwischen den Instantonen und Solitonen, wie den
in Kapitel 1 besprochenen Vortices. Wie man noch sehen wird, hat die euklidische Wir-
kung dieselbe Struktur wie die Energie einer statischen Feldkonfiguration in einer um eins
hoheren Dimension. Der Vortex kann also im zweidimensionalen (euklidischen) Abel’schen
Higgs-Modell die Rolle eines Instantons iibernehmen.

In der Quantenfeldtheorie werden die Instantonen in einer semiklassischen Approximati-
on entwickelt. Die Feldkonfiguration, um die die Entwicklung beginnt, ist die klassische
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Losung.

Im néchsten Abschnitt soll zunéichst die quantenmechanische Ubergangsamplitude in semi-
klassischer Niaherung (d.h. im Grenzwert fiir kleine /) besprochen werden. Als Beispiel fiir
diesen Formalismus werden im Anhang [B] die Grundzustandseigenschaften des harmoni-
schen Oszillators berechnet. Danach werden dann Instantonen als semiklassische Naherung
fiir Tunnelprozesse erlautert, wobei die Rechnungen anhand des anharmonischen Oszilla-
tors erklirt werden. Als Ergebnis wird sich eine Gleichung fiir die Ubergangsamplitude von
Instantonen ergeben, die sich dann ohne Probleme auf Prozesse in der Quantenfeldtheorie
tibertragen lésst.

2.1 Die quantenmechanische Ubergangsamplitude in semi-
klassischer Ndherung

Im Euklidischen! ist die Feynman’sche Pfadintegralformel gegeben durch:
—Htg S
<xgple h |z >= N/[dx]e_h. (2.2)

Hierbei sind |z; > und |z; > Ortseigenzusténde, H der Hamiltonoperator und to eine
positive Zahl. Auf der linken Seite kann man einen vollstdndigen Satz von Energieeigen-
zusténden einfiigen:

—Ent

—Ht
<xyle ho|xi >= g e h <wzpln ><nlr; > . (2.3)
n

Fiir grofle ty ist auf der rechten Seite nur noch der Energiegrundzustand relevant. Der
Limes tg — oo gibt also Aufschluss iiber den Energiegrundzustand und die zugehorige
Wellenfunktion.

Auf der rechten Seite der Pfadintegralformel ist N ein Normierungsfaktor und S die eukli-

dische Wirkung:
S +%dt m (de\* o 2.4
= [, a5 (&) +veo): (2.4

[dz] bezeichnet die Integration iiber alle Pfade, die die Randbedingungen #(—4%) = z; und

w(—l—%) = z erfiillen. Man beachte, dass sich beim Ubergang von der minkowskischen zur
euklidischen Wirkung das Vorzeichen beim Potential geédndert hat. Daher hat die euklidi-
sche Wirkung auch dieselbe Struktur wie die Energie einer statischen Feldkonfiguration.
Man mdchte jetzt das Integrationsmafl genauer definieren, um das Pfadintegral berechnen
zu konnen. Eine beliebige Funktion, die die Randbedingungen erfiillt, kann man nach ei-
nem vollstédndigen Satz reeller orthonormaler Funktionen entwickeln, die an den Réndern
verschwinden:

2(t) = X([)+ > cnzalt), (2.5)

LAb jetzt wird der Index cyur zur Kennzeichnung des Euklidischen weggelassen.
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wobei X (t) die Randbedingungen erfiillen muss. Damit ergibt sich fiir die rechte Seite von

(2.2):
s = de,  _S(X().denl)
N [ldzle " =N e h . 2.6
e J 15 (2.6

Das komplizierte Pfadintegral geht also in ein unendliches Produkt ”einfacher” Integrale

iiber.

In der semiklassischen Niherung? kann man das Pfadintegral nun in ein unendliches Pro-
dukt von Gaufi’schen Integralen iiberfithren und so auswerten. In diesem Fall wird die
rechte Seite von (2.2) von den stationdren Punkten von S dominiert.

Sei X (t) jetzt ein Pfad mit minimaler Wirkung, der zu einem stationdren Punkt von S
gehort3, dann gilt mit exponentieller Genauigkeit:

N/[dx]e_S(zﬁ(t)) ~ 6_%, (2.7)

wobei Sy = S(X (t)) die minimale Wirkung ist. X (¢) bestimmt man nun aus der Bedingung,
dass die Wirkung extremal werden soll:

08 &’X  d

X~ a2 T

Die Losung dieser ”euklidischen Bewegungsgleichung” muss natiirlich wieder die Randbe-

V(X) =0. (2.8)

dingungen z(—%) = z; und z(+%) =  erfiillen®.

Um die Ubergangsamplitude genauer zu bestimmen, entwickelt man die Wirkung bis zur
zweiten Ordnung um das Minimum. Dazu benétigt man die zweite funktionale Ableitung
am Minimum der Wirkung:

N
5X2 2

-— + ——=V(X)]. 2.9
i+ V0] (29)
Die Entwicklung der Wirkung um das Minimum ist somit:

-5 2 2
S(X(t) + 62(t)) = So + / dts(t)~ [_:ziﬂ + %

> V(X)] 5 (t). (2.10)

i
2
Bei dem Term in der eckigen Klammer in (2.9) handelt es sich um eine quadratische Form,

die diagonalisiert werden kann. Als geeignetes vollstandiges Orthonormalsystem kann man
die Funktionen z,(t) aus (2.5) verwenden:

V(X)} T (t) = A (2). (2.11)
Damit lésst sich die Wirkung (bis zur zweiten Ordnung) schreiben als:

1 2
S:So+2zn:)\ncn. (2.12)

2Man spricht in diesem Zusammenhang auch von der ”Sattelpunktsniherung”, obwohl es sich eigentlich
um ein Minimum der Wirkung handelt und nicht um einen Sattelpunkt.

3Es kann auch mehrere stationdre Punkte geben, aber im Moment mdge es nur einer sein.

4Man beachte, dass es sich bei der euklidischen Bewegungsgleichung um eine Newton’sche Bewegungs-
gleichung in einem Potential mit negativen Vorzeichen handelt.
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Setzt man dieses nun in (2.2) ein, erhélt man:

s de
N [ [dz]e™® = / Cn e~ Zn Anen 2.13
/ H \/27r ( )

also ein unendliches Produkt von Gaufi’schen Integralen, deren Losung leicht anzugeben

ist:
dC 1 )\2

1
e 2n =)\ 2. 2.14
ot (2.14)

Das Produkt der Eigenwerte® kann auch aufgefasst werden als die Determinante der qua-

dratischen Form:
ad d2 d?

Als Ergebnis fiir die Ubergangsamplitude in semiklassischer Niherung erhilt man hiermit
schlief3lich:

N

d? d?
—V(X . 2.1
] (2.16)

Die reziproke Wurzel aus der Determinante wird manchmal auch der Priexponent genannt

<:Uf|e o ]:U,> Ne™ hDet{

[20]. Nun muss noch die Frage beantwortet werden, wie man den Normierungsfaktor be-
stimmt. Dazu schaut man sich das Verhéltnis

toH
<.Tf|€_ h ’:L’l >

to Hfrez
< xyfle” |x; >

(2.17)

an. Man normiert also auf ein schon bekanntes System®. Im Anhang B sind als Beispiel
fiir das in diesem Abschnitt angegebene Verfahren die Grundzustandseigenschaften des
Harmonischen Oszillators berechnet worden.

2.2 Instantonen als semiklassische Niherung fiir Tunnelpro-
zesse

Die Formel (2.16) kann man nun auch dazu verwenden, um Tunnelprozesse zu beschrei-
ben. Tunnelprozesse sind ein Beispiel fiir Prozesse, die nicht durch die Stérungstheorie
beschreibbar sind, da ihre Amplitude exponentiell klein ist. Als Beispiel soll hier der an-
harmonische Oszillator dienen, dessen Potential:

V(z) = M2® — a?)? (2.18)
ist. Das Potential mdge so gewdhlt sein, dass es bei den Minima verschwindet, und die
Oszillatorfrequenz an den Minima sei:

d2
da?

5Man geht erstmal davon aus, dass alle Eigenwerte positiv sind. Auf den Fall nichtpositiver Eigenwerte

V(2)|pmta = w2 (2.19)

komme ich im nédchsten Abschnitt zuriick.
SMeistens wird, wie in diesem Fall, auf das freie System normiert.



14 Instantonen

AuBerdem soll ab diesem Abschnitt A = 1 gesetzt werden. Fiir den Fall A — oo einer
unendlichen hohen Barriere, existieren nur zwei Losungen fiir die euklidischen Bewegungs-
gleichungen (2.8), ndmlich, dass ein Teilchen entweder auf der Spitze des einen oder des
anderen Hiigels bleibt”. Wenn \ # 0 ist, existiert aber noch die Moglichkeit, dass sich
das Teilchen von der Spitze des einen Hiigels zur Spitze des anderen bewegt. Diesen Pfad
minimaler Wirkung kann man als Instanton auffassen. Diese Losung existiert nur im Eu-
klidischen. Eine analoge Losung zur Newton’schen Bewegungsgleichung gibt es nicht, da
man ohne Energie nicht von der einen Mulde zur anderen gelangen kann.

Die explizite Form der Instanton-Trajektorie kann als Losung von (2.8) bestimmt werden.
Erfolgt der Ubergang von —a nach a, ergibt sich fiir die Instanton-Trajektorie:

X;(t) = atanh <°"(t2_t)> , (2.20)

wobei t. das Zentrum des Instantons genannt wird. Es ist zu beachten, dass diese Losung
nur fiir den Grenzwert ty — oo exakt ist. Den Ubergang von a nach —a kann man dann
als Anti-Instanton X7 auffassen, dessen Trajektorie

X;=—-X; (2.21)

ist. Die Wirkung der Instanton-Trajektorie lasst sich berechnen zu:

3
w
So=95(X1(t) = — 2.22
0= S(X(0) = o (222)
womit sich dann fiir die Tunnelamplitude in exponentieller Genauigkeit (2.2):
w3
<aleT™H| g >~ 70 = e7ix (2.23)
ergibt. Zur Bestimmung des Priaexponenten geht man jetzt wieder iiber zu (2.16):
< aleHo| >= Ne % Det & + & V(Xr1) E (2.24)
ale a>= Ne e 2 T g I . .

Um die Normierungskonstante N zu bestimmen klammert man die schon bekannte De-
terminante des Harmonischen Oszillators (B.11) aus und erhélt fiir die rechte Seite von
(2.24):

1
2

e, (2.25)

> ~1 [ Det [—j—;Jrj—;V(XI)]
i+

N Det [—d + w?

Det [—% + w2}
Wird nun (2.20) in V(X)) eingesetzt, erhilt man fiir die Eigenwertgleichung der quadrati-
schen Form:

2
—% +w2 (1 — 3115))] -Z'n(t) = )\nxn(t>7 (226)
2

mit den Randbedingungen xn(i%’) = 0 und t9 — o0. Diese Eigenwertgleichung wird

in diversen Standardwerken der Quantenmechanik ausfiihrlich besprochen (z.B. [12]). Es

"Das Doppelmuldenpotential wird durch den Vorzeichenwechsel beim Ubergang zum Euklidischen zu
einem Potential mit zwei Hiigeln.
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existiert jetzt eine Losung von (2.26) zu dem Eigenwert \g = 0. Solche zum Eigenwert
0 korrespondierenden Lésungen nennt man Nullmoden. Der physikalische Grund fiir das
Auftreten solcher Nullmoden hingt damit zusammen, dass die euklidische Wirkung unter
gewissen Transformationen invariant sein kann. Das Minimum der Wirkung kann also
“entartet” sein.
Im Beispiel des anharmonischen Oszillators ist die Wirkung unabhéngig vom Zentrum des
Instantons t.:

S(X1(t,te)) = S(X(t,te + dte)). (2.27)

Die Eigenfunktion der Nullmode Ag = 0 ist:

19
N

Das Auftreten der Nullmode fiihrt in (2.24) offensichtlich zu einer unendlichen Ubergangs-

o(t) = 7 X1(t to). (2.28)

amplitude. Aus diesem Grund versucht man das Integral iiber die Nullmode in (2.13) vor
die Determinante zu schreiben und dann in der Determinante die Nullmode wegzulassen.
Dazu hilft die Uberlegung, dass dcy proportional zu dt. ist und somit

dCO = /S / dic (2.29)

gilt®. Das Determinantenverhiltnis lisst sich dann schreiben als:

Det [~ & + £V(X))] \/ST) L & + &vxs)]
Det { o +w2} Ve U e [—W —i—wQ}

N
N|=

(2.30)

Der Strich an der Determinante bedeutet, dass die Nullmoden® weggelassen werden sol-
len'®. Den Faktor w klammert man aus, um das Determinantenverhiltnis bestimmen zu
konnen. Dieses kann man ausrechnen zu (s. [20]):

el i) o
w~2Det { 7+ wQ} 12° .

[NIE

Mithilfe von (2.24), (2.25), (2.30) und (2.31) ist man schliefllich in der Lage, den ”Ein-
Instanton-Beitrag” zur Tunnelamplitude pro Zeit anzugeben.

< ale M| — g >= (\/> “’§°> ([ Soe~ SO) wdt, (2.32)

Die gesamte Amplitude fiir ein Zeitintervall ergibt sich dann durch Integration iiber dt..
Da man sich fiir grofle Zeiten ¢ interessiert, muss man in Betracht ziehen, dass nicht nur

8Dieses Ausnutzen der Proportionalitit und dem damit verbundenen Ubergang zur Integration iiber
dto nennt man in der Literatur manchmal auch die Einfithrung von sog. kollektiven Koordinaten [20].

9Es konnen auch mehrere Nullmoden auftreten

"Diese Methode im Umgang mit Nullmoden beschrinkt sich nicht nur auf dieses Beispiel, sondern kann
allgemein angewendet werden (s. z.B. [5] oder [20] fiir Nullmoden bei Instantonen in der QCD).
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ein Instanton zur Tunnelamplitude beitrigt, sondern auch Superpositionen von Instanto-
nen und Anti-Instantonen'!.

Durch geeignete Wahl des Parameters A, durch den die Hohe der Barriere bestimmt ist,
kann man nun erreichen, dass die Dichte der Instantonen, also der Tunnelereignisse, klein
wird. In einem solchen Fall sind Instantonen im Durchschnitt wohlsepariert, d.h. man
kann die Wechselwirkung zwischen den Instantonen vernachléssigen. Diese Ndherung ist
bekannt unter dem Namen ”dilute gas approximaton”.

Hitte man nun nicht die schmalen Ubergangsregionen, wiirde man dasselbe Ergebnis wie

beim Harmonischen Oszillator erwarten. Die Ubergangsregionen liefern dann eine Korrek-

\/‘ et \/> —uto ([\/gf]e So) n (wdty). (2.33)

Um zu dem Betrag zu gelangen, den eine solche Konfiguration zur Ubergangsamplitude

tur hierzu:

beitragt, muss man jetzt noch iiber die n Zentren der Instantonen integrieren:

+3 tn t2 n

wt 2 wt t

\/Ze;)d"/ wdtn/ wdty_1 - / wdty = \/Ee;)d" (who) , (2.34)
T _to _to ~to s n!

2 2

o

wobei d die Instanton-Dichte bedeutet:

d= \/E\/ST)e_SO. (2.35)

Die gesamten Ubergangsamplituden erhiilt man jetzt, wenn man iiber die einzelnen Bei-
triige fiir n Instantonen summiert. Hierbei muss beachtet werden, dass beim Ubergang
von —a nach a, (bzw. a nach —a) nur die Ubergéinge mit einer ungeraden Anzahl von
Instantonen beitragen, wihrend bei einem Ubergang von a nach a (bzw. —a nach —a) die
Anzahl der Instantonen gerade sein muss.

Fiir die gesamten Ubergangsamplituden folgt somit schlieflich:

_w t
<ale | —g> = Z 1/ S qn “’0 (2.36)
n=1,3,

e 5 sinh(wtod), (2.37)

w to)
<ale g > = Z 1/ _ﬂdn d 0 (2.38)
n=0,2,-

= \/;e = cosh(wtod). (2.39)

Der Vollsténdigkeit halber sei noch erwéhnt, dass dieses Ergebnis im Grenzwert tg — oo

%

die Grundzustandseigenschaften reproduziert, die man mit Standardmethoden der Quan-
tenmechanik berechnen kann.

Die Formel (2.24) fiir die Ubergangsamplitude wird zusammen mit den Methoden zur Be-
rechnung des priexponentiellen Faktors und dem Umgang mit den Nullmoden im Verlauf
der Arbeit noch eine wichtige Rolle spielen.

Hnstantonen sind nur fiir tp — oo exakte Losungen der euklidischen Bewegungsgleichung. Fiir endliche
to ist diese Losung nur noch ndherungsweise giiltig.



Kapitel 3

Der Ein-Loop-Beitrag zur
effektiven Wirkung

In diesem Kapitel wird eine Gleichung zur Bestimmung des Ein-Loop-Beitrags zur effekti-
ven Wirkung hergeleitet. Dazu wird zunéchst das Abel’sche Higgs-Modell vorgestellt und
die effektive Wirkung eingefiihrt.

Mit Hilfe der effektiven Wirkung ist man in der Lage, die (unrenormierte) Instanton-Uber-
gangsrate bis zur Ein-Loop-Ordnung anzugeben:

b= S(;::l) exp(—Sef7") exp(~5(ger))- (3.1)

Diese Gleichung ist die direkte Verallgemeinerung der im vorherigen Kapitel hergeleiteten
Gleichung (2.24), wobei exp(—SeljlcOfOp ) dem priiexponentiellen Faktor entspricht. Der Faktor
% beriicksichtigt die Integration iiber die kollektiven Koordinaten.!

Die effektive Wirkung muss noch renormiert werden, was im nichsten Kapitel geschehen

soll.

3.1 Das klassische Modell

In diesem Abschnitt wird zunéchst das um einen fermionischen Sektor erweiterte euklidi-
sche Abel’sche Higgs-Modell erldutert und es wird beschrieben, welche Form die Vortex-
Losung besitzt. Dabei wird sich zeigen, dass dieses Instanton eine topologische Ladung
besitzt, wodurch baryonenzahlverletzende Prozesse mdglich sind.
Das euklidische Abel’sche Higgs-Modell wird beschrieben durch die Lagrangedichte (s. z.B.
[17] oder [5])

1

1 A 2
L= Z(FW)Q‘*'§‘Du¢’2+z(’¢‘2_v2) +£f7 (3.2)

'Es existieren also zwei Parameter unter deren Anderung die Wirkung invariant bleibt.
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mit
F. = 0,A,-0A,
D, = 0,—1i9A,
£, = i DY iy T DuY (3.5)
i=1 j=1
ﬁL(}R) = T (au + igAu) . (3.6)
Der Grundzustand liegt bei v? = _T’”Q und das Teilchenspektrum besteht aus Eichbosonen

der Masse myy = g%v?, Higgsbosonen der Masse my = 2\v? und masselosen rechts- und
linkshéndigen Fermionen. Im eichinvarianten fermionischen Strom

ng ‘ ' ng iy ‘
Ju = Z \I/(LZ)'YM\II(LZ) + Z \Pg)')’uq/%) (3.7)
i=1 j=1
tritt eine Anomalie auf, die gegeben ist durch (s. z.B. [4]):

g
%@:mqﬁﬁwﬂ». (3.8)

Wird nun iiber diese Divergenz integriert, ergibt sich eine Verletzung der Erhaltung der
axialen Ladung F

AF = 2ny <49/d2xEWFW> = 2n4q, (3.9)
s

wobei ¢ gerade der Pontryagin-Klasse in zwei Dimensionen entspricht (s. z.B. [17]). Durch
diese Verletzung sind Zerfille moglich, die die Leptonen- und Baryonenzahl éndern [23].2
Ein Eichfeld mit nichtverschwindender topologischer Ladung ¢ kann somit eine Baryo-
nenzahlverletzung induzieren. Sind die Parameter des Modells geeignet gewihlt, so lassen
sich die Instanton-Uberginge durch die in Kapitel 2 erwihnte ”dilute gas approximation”
beschreiben.

Im weiteren wird nur noch der bosonische Teil des Modells betrachtet. Zur Bestimmung
der Instantonrate ist es nicht notwendig, Fermionen einzubeziehen.

Wie in Kap. 1 erwdhnt, ist der Vortex eine Struktur, die eine topologische Ladung besitzt
und die Bewegungsgleichungen des Abel’schen Higgs-Modells erfiillt. Sie hat die Gestalt:

el _ Ewlv
o z) = vf(r)e*®. (3.11)
Man geht nun zur unitidren Eichung iiber, damit das Higgsfeld rein reell wird. Die Eichtrans-
formationen
b — e ¥ (3.12)
A, — A, —0up/g (3.13)
\IJL(R) — e:F’LSO\I/L(R) (314)

2Leptonen- und Baryonenzahl sind keine Eichsymmetrien.
3Es ist zu beachten, dass diese Losung eine andere Skalierung hat, als die in Kap.1 beschriebene.
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fithren zu:
Ad(z) = 5;;”2””(A(r)+1) (3.15)
¢ (x) = vf(r). (3.16)

Wird dieser Ansatz in (3.2) eingesetzt, erhiilt man fiir die klassische Wirkung:

s = o [ (52 o (52 £ e e

N TmH (F2r) - )2>. (3.17)

Damit diese Wirkung endlich ist, fordert man die Randbedingungen:

A(r)y =5 0, A(r) == -1

) 0 g S L o

Die Pontryagin-Klasse des Vortex berechnet sich zu:

g
qg = — d’x € F

:—/ddldA)

wobei im letzten Schritt die Randbedingungen ausgenutzt wurden.

Im Abel’schen Higgs-Modell existiert also eine Instanton-Losung, die eine topologische
Ladung tragt und somit Prozesse ermoglicht, die die Baryonenzahl verletzen konnen.

Bis zu dieser Stelle waren die Uberlegungen in diesem Kapitel rein klassisch. Im niichsten
Abschnitt wird die effektive Wirkung betrachtet, womit dann auch Quantenkorrekturen
bis zur Ein-Loop-Ordnung berticksichtigt werden.

3.2 Der Fluktuationsoperator

Um Quantenkorrekturen einzubeziehen, ist das Prinzip der ”effektiven Wirkung” niitzlich.
Dies ist eine Entwicklung der Wirkung um das Minimum bei ¢, nach Ordnungen von #A.
Ausgangspunkt ist die klassische Wirkung, zu der man dann die Quantenkorrekturen in
Form von Loopbeitriagen® addiert. Bis zur Ein-Loop-Ordnung gilt fiir die effektive Wirkung
T (s. z.B. [17)):

528

1
Llga] = S[pal + 5 In det m - ) (3.19)

wobei die ¢; die fluktuierenden Felder um das klassische Hintergrundfeld ¢; sind.
Im klassischen Limes geht die effektive Wirkung natiirlich in die klassische Wirkung tiber.

“Eine Entwicklung in % entspricht einer Entwicklung nach Loops (s. z.B. [5])
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Der zweite Summand entspricht den Ein-Loop-Korrekturen und M;;(z,y) bezeichnet man
als Fluktuationsoperator. Fiir diesen soll im Folgenden eine explizite Form angegeben
werden. Dazu entwickelt man zunéchst die Felder um die klassischen Losungen, welche in
diesem Fall den Instanton- und Vakuumkonfigurationen entsprechen:

A, = Al+a, (3.20)
¢ = ¢+ (3.21)

Entwickelt man gleichermaflen die Lagrangedichte, so besteht die folgende Beziehung zwi-
schen dem Fluktuationsoperator und der Lagrangedichte in zweiter Ordnung:

£ = 361 (2) My (), (322)

wobei fiir ¢; die Quantenfelder einzusetzen sind.
Um die nichtphysikalischen Freiheitsgrade des Eichfeldes zu eliminieren, fiihrt man die
Background-Eichung ein:

FA) = 9y + L (676 - 6%67) (3.23)

die in zweiter Ordnung den eichfixierenden Term

1
Lip = <27'—2(A)> " (3.24)
1 2 ig cl cl * cl cl *
= 5(8,11@#) - Eau(SpauQﬁ +¢ au@ - 8u(z) - ¢ 8,1190 )
2
~L (- ¢ (3.25)

in der Lagrangedichte ergibt. Beim Schritt von (3.24) nach (3.25) wurde partiell integriert
und ausgenutzt, dass sich das Hintergrundeichfeld in der Coulomb-Eichung befindet® und
das klassische Skalarfeld reell ist.

Die zu dieser Eichfixierung gehorige Fadeev-Popov-Determinante lautet®:

0F(A) _ 1 cly2y —
5o = _5(_32 + ¢%(¢)?) = det M. (3.26)

Diese lisst sich in einen Exponentialfaktor umschreiben:

det M — exp [— /de (n*(—82 + 92(¢Cl)2)n) }, (3.27)
%,

den man als Beitrag zur Lagrangedichte ansehen kann, der aber vollig von den Quanten-
fluktuationen der anderen Felder entkoppelt ist.

5Bei der sog. ”Backgroundfield-Methode” ist es erlaubt, das Hintergrundfeld anders zu eichen als die
Quantenfluktuationen um diesen Hintergrund (s. z.B. [27]).

5Die Probleme, die bei der Quantisierung von Eichfeldern auftreten, und eine der Lésungen durch die
Fadeev-Popov-Prozedur werden in jedem einfithrenden Buch iiber Quantenfeldtheorie behandelt.
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Insgesamt gelangt man so zu der Lagrangedichte in zweiter Ordnung (der Index . zur
Kennzeichnung des Hintergrundfeldes wird von nun an unterdriickt):

(L+ Lor+Lrp)" = Za, (0% + ¢°¢%) ay
+ 1 <D2+ ¢2+A(2¢2_U2)>¢
+ i (—(D) + ¢2+)\(2¢2—v)> " (3.28)
+o((-)5)ere (-5)5) e

+ au(—igD,¢)¢ + ap(—igDu¢)e"
+ (=0 + g (6) ).
Es ist nun sinnvoll, die Lagrangedichte so umzuschreiben, dass sie nur noch reelle Gréfien

enthélt. Dazu spaltet man das komplexe Skalar- und das komplexe Fadeev-Popov-Feld in
Real- und Imaginérteil auf:

e = ¢1+ip2
1 .
n = ﬁ(nl‘{’”b)'

Mit diesen reellen Feldern lautet die Lagrangedichte dann:
(L+ Lap+Lpp)" = % (=0 + ¢°¢) ay

1
+<p1§ (—82 + ngi + A (?xb2 — v2)) 01

+9021( P+ GPA% 4+ 2" + X (¢° —v?)) o2

+ 02(9A4,0,) 01 + ©1(—gALu) P2 (3.29)
—MA%%mwrumw@@m

+771* (0% + g%¢%) m + nr (—0% + g%¢%) 1o

Mit Hilfe von (3.22) ist man jetzt in der Lage, den Fluktuationsoperator M anzugeben.
Die nichtverschwindenden Komponenten lauten:

My = -0+ g*¢? Moy = —0%+g%¢*
Mz = 2¢°Ai¢ My = 29019
Moz = 2¢°Azd Moy = 29029
Msz = 0%+ g* A% + A\(3¢* —v°) Mszy = —gA,d,
My = =P+ @A+ + N9 —v') Mz = A0,
Mss = —82—1—92(;52.

Mit Gleichung (3.22) erhilt man so die Lagrangedichte in zweiter Ordnung, wobei fiir ¢
die Quantenfelder einzusetzen sind:

o= (6117&2,901,@2,7]12)-
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Setzt man hier nun fiir ¢ und A, (3.16) bzw. (3.15) ein, erhdlt man den Fluktuationsope-
rator fiir das Instantonhintergrundfeld. Weiterhin ist es niitzlich, ein Potential V {iber die
Relation

M=M"+V (3.30)
zu definieren, wobei M der Fluktuationsoperator fiir das Vakuum ist.
Die Ein-Loop-Korrektur in der effektiven Wirkung (3.19) ldsst sich mit Hilfe dieser beiden

Operatoren darstellen als: /
St = ;m{m}. (3.31)
Man normiert die Determinante also auf den freien Operator. Der Strich im Z&hler soll
bedeuten, dass die Nullmoden in der Determinante nicht beriicksichtigt werden sollen.”
Dieser Ausdruck ist nun explizit zu berechnen. J. Baacke hat dafiir ein nichtpertubartives
Verfahren entwickelt [1]. Bei diesem Verfahren muss zunéchst eine Partialwellenzerlegung
durchgefiihrt werden, die im folgenden Abschnitt beschrieben wird.

3.3 Die Partialwellenzerlegung

Der Fluktuationsoperator M ist in Partialwellen zerlegbar, wobei die Determinante sich
gleichermaflen zerlegt:

—+o00
Indet M = ) Indet M,. (3.32)

n=—oo

Man fithrt an dieser Stelle die folgende Partialwellenzerlegung fiir die Quantenfelder ein:

+00 i . i
. cosp \ e —singp | "%
= bn n — 3.33
@ n:zoo (r) ( sin > \ 21 +ica(r) ( CoS ) V2T ( )
+oo et
= hy (7 3.34
¥1 nz_:oo ( )m ( )
too eltne
= hp(r 3.35
D SRCEE (3.3
+oo eimp
= (1) ——. 3.36

Werden diese Ausdriicke in die Lagrangedichte eingesetzt, zeigt sich, dass die folgenden
Kombinationen der Felder reell sind und den Fluktuationsoperator symmetrisieren:

Fir) = 5bu(r) +enlr)
Fpr) = 5(bur) —en(r)
Fr) = ()
Ep(r) = ihp(r)
FE?(T) = gn(T).

"Der Grund fiir dieses Vorgehen ist im vorherigen Kapitel angegeben.
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Zerlegt man M wieder wie in (3.30) (der Index n fiir die Partialwellen wird von jetzt an
unterdriickt):

M=M"+V, (3.37)
werden die freien Operatoren M Diagonalmatrizen mit den Elementen:

& 1d 2
AN, (3.38)

M= —— — ——
" dr?2  rdr r2

wobei (n;) = (n—1,n+1,n,n,n) und (m;) = (mw, mw, mw, mg, my ) ist. Das Potential
hat die folgende Gestalt:

no= miy (2 1) 2 = 0

Vig = V2myf’ Vi, = \mefA+1

Vi, = Vi Viz = Vi3 ) )

A vy = WE LT (2, (22 -1)
vi, - _2A;1n Vi = (A;1)2+;m?{(f2—1)

Vi, = wd (Po1) Vi = 0

Im Anhang C ist die Rechnung angegeben, die zeigt, dass die Lagrangedichte, die sich
hieraus ergibt, dieselbe ist, wie vor der Partialwellenzerlegung.

3.4 Der Ein-Loop-Beitrag zur effektiven Wirkung

In diesem Abschnitt wird eine von J. Baacke entwickelte Methode zur Bestimmung des
Ein-Loop-Beitrages zur effektiven Wirkung vorgestellt [1].
Mit den Eigenwerten —A2 von M und —(\2)? von MO lisst sich (3.31) ausdriicken als:

lloop
Serf = Z 7

Dieser Term kann in ein Integral umgeschrieben werden:

1loo 1
effp_ Z/ le/()\Q-i-I/z ()\0) +V2> (3-40)

Die Beitrdge der Nullmoden, die bei der Bestimmung der Determinanten weggelassen
werden sollten, konnen anhand dieses Integrals bestimmt und am Ende der Berechnung
subtrahiert werden. Die Eigenwerte lassen sich leider nicht direkt bestimmen, da sie im
Kontinuum liegen. Aus diesem Grund fiigt man in (3.40) ein vollsténdiges System ortho-
normaler Funktionen ein, die Eigenfunktionen der Operatoren M und M’ zu den oben

(3.39)

eingefithrten Eigenwerten sein sollen:

T () (2
st == X [ [ s (o) et o
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Bei den so erhaltenen Summanden handelt es sich um Greensche Funktionen zu den Ope-
ratoren M und M?:
X () x4 (2)

2
(2 + M)y — TN —5(x — 2)ou, (3.42)

=G,k (z,z',v)
Yo (@), (@)
A2 4 2

-~

Eg‘?k ({L’,wl 71/)

(=2 + MO > —6(z — ') (3.43)

Die Berechnung des Ein-Loop-Beitrags zur effektiven Wirkung ist somit zuriickgefiihrt auf
die Berechnung der Spur der Differenz zweier Greenscher Funktionen:

Suf’ =~ /OOO Vd”/d293 (Gjj(x,2,v) = GYi(x, 2, v)) . (3.44)

Mit der Partialwellenzerlegung aus dem vorherigen Abschnitt lauten die Bestimmungs-
gleichungen fiir die Greenschen Funktionen:

d2 1d n? 2 2 n n / 1 /
<d7’2_7'dr+7’2_y —mi—Vi]) gij(rﬂ'ﬂ/) = _;5(T_T) (3.45)

d? 1d n? 9 2\ -0 , 1 ,
<dr2 “rartE ‘mi) Gi'(rr'sv) = =8r=r)  (3.46)
Die Gleichung fiir G° ist sogar analytisch exakt losbar. Sie setzt sich zusammen aus mo-
difizierten ganzzahligen Besselfunktionen:

Goy'(rr' v) = Lni((V? +m i) Kni (V2 4+ mi)rg), (3.47)

wobei ry, = min(r,7’), ry = max(r, ") und tiber i nicht summiert werden soll. Die Gleichung
fiir G ist analytisch nicht 16sbar, da schon die Profilfunktionen, die {iber das Potential in
die Gleichung eingehen, nur nummerisch l6sbar sind.

Wie im néchsten Kapitel gezeigt wird, l4sst sich die Greensche Funktion nach Ordnungen
des Potentials entwickeln. Somit ist man in der Lage einen klaren Zusammenhang zwischen
den Beitrigen zum Integral und den Feynmangraphen herzustellen. Insbesondere lésst sich
so der divergente Anteil von (3.44) isolieren. Daher eignet sich dieses Verfahren besonders
gut zur Renormierung.



Kapitel 4

Renormierung der effektiven
Wirkung

Wire die effektive Wirkung endlich, hétte man schon das gewiinschte Ergebnis in Ein-
Loop-Ordnung. Doch (3.31) ist ein divergenter Ausdruck, der renormiert werden muss.
Das Abel’sche Higgs-Modell ist super-renormierbar, d.h. es geniigt, die Massen des Higgs-
und des Eichfeldes und den Vakuumerwartungswert durch ihre renormierten Gréflen aus-
zudriicken. Durch die Wahl des Vakuumerwartungswertes als zu renormierende Groéfle
ergeben sich allerdings Probleme in der unitdren Eichung, die hier benutzt werden soll.
Aus diesem Grund verwendet man stattdessen die Higgs-Kopplung. Auf dieses Problem
wird im Laufe der Renormierung noch eingegangen.

Die divergenten Anteile der effektiven Wirkung kénnen mit den entsprechenden Feynman-
Regeln bestimmt werden, wobei man um den Vakuumerwartungswert entwickelt!. Dabei
ergibt sich, dass ausschliefilich die sog. ”Tadpole’-Graphen divergent sind. Das sind die
Graphen, die nur eine oder zwei externe Linien und einen geschlossen Loop besitzen (s. z.B.
[7]). Die Schleife kann dabei entweder das Higgs-, das Eich- oder das Fadeev-Popov-Feld
sein. Die Tadpole-Graphen, die die Propagation des Eichfeldes beschreiben, heben sich
gegen die der néichsthéheren Ordnung auf. Auflerdem heben sich die Graphen mit Fadeev-
Popov-Loops, wie iiblich, gegen die korrespondierenden Graphen mit Eichfeld-Loop auf.
Bei der Renormierung miissen also nur die Tadpole-Graphen beriicksichtigt werden, die
ausschliefllich aus Higgsfeld-Propagatoren bestehen.

Die effektive Wirkung ist in einer geschlossenen Form nicht anzugeben, da schon die klas-
sische Wirkung fiir allgemeine Massenverhéltnisse nur nummerisch berechenbar ist. Im
weiteren Verlauf beschrinkt man sich daher auf den Spezialfall gleicher Massen des Higgs-
und Eichfeldes. In diesem Fall ist, wie schon erwihnt, die klassische Wirkung analytisch
berechenbar. Auflerdem kann ausgenutzt werden, dass einige Integrale iiber die Profilfunk-
tionen bekannt sind.

Um die effektive Wirkung zu renormieren, miissen zunéchst die Divergenzen isoliert wer-
den. Dieser Vorgang heifit Regularisierung.

'Die Vorgehensweise ist bei einem Hintergrundfeld analog zu der Herleitung im Vakuum.
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4.1 Regularisierung

Die Regularisierung ist notwendig, da bei unendlichen Gréflen die iiblichen Rechenmani-
pulationen ihre Bedeutung verlieren. Daher fithrt man bei der Regularisierung einen Pa-
rameter ein, der in einem gewissen Grenzwert wieder die urspriingliche Form der Theorie
liefert. Bevor dieser Grenzwert betrachtet wird, sind die Ausdriicke mit diesem Parameter
allerdings endlich, und man kann mit ihnen wie {iblich rechnen (s. z.B. [13], [22] oder jedes
andere einfithrende Buch in die Quantenfeldtheorie).

Zur Isolierung von Divergenzen gibt es mehrere Moglichkeiten. Bei Feynman-Integralen
kann man zum Beispiel einen Impuls-Cut-Off A einfithren und spédter den Grenzwert
lim A — oo betrachten.

In dieser Arbeit soll die dimensionelle Regularisierung verwendet werden. Bei dieser Me-
thode betrachtet man die divergenten Ausdriicke in D Dimensionen, wobei D eine beliebige
komplexe Zahl sein darf. Es zeigt sich dann, dass die Divergenzen als Pole im Grenzwert
D — N erscheinen, wobei N die urspriingliche Anzahl der Dimensionen ist.

Im Folgenden soll der Ein-Loop-Beitrag zur effektiven Wirkung dimensionell regularisiert
werden.

Wie im vorherigen Kapitel erwéhnt, ldsst sich die Greensche Funktion ¢ nach Ordnungen
des Potentials entwickeln. Dazu schaut man sich zuerst die freie Greensche Funktion GY
an. Diese ist, wie im letzten Kapitel erldutert, durch (3.43) definiert:

G =—(—12+ ML (4.1)

Durch die Zerlegung in einen freien Anteil und eine Potentialmatrix ist die komplette
Greensche Funktion durch G = —(—v2+ M+ V)1 gegeben. G kann man folgendermafien
nach Ordnungen des Potentials entwickeln:

G = —(-rP+M V)
_ {—1/2—1—./\/10- <1+ (MO)—1V>]—1
= (1+6%) ¢
= (1-6V+g"vg°v—...)g°
= G- G"vg° +g%vgovg° — ... .
—_—
1.0rd. V 2.0rd. V

Daraus folgt fiir die Differenz der gesamten und der freien Greenschen Funktion:
G -G =-gvg° + g°vgovg® — ... . (4.2)

Wie oben erwiéhnt, sollen hier nur die Divergenzen bestimmter Tadpole-Graphen mit ei-
nem Loop isoliert werden. Diese Graphen sind komplett in dem ersten Summanden der
Entwicklung (4.2) enthalten. Die folgenden Terme sind entweder endlich oder enthalten
Divergenzen einer héheren Ordnung. Es muss also nur der erste Term regularisiert wer-
den. Um die Methode der dimensionellen Regularisierung anwenden zu kénnen, muss man
wissen, welche Form der divergente Anteil in D Dimensionen hat. Dazu schaut man sich



4.1 Regularisierung 27

die Fouriertransformation an. Fiir G% (z,y) gilt:

dPp 6y .
0 _ ? —ip(x—
Gij(z,y) _/(QW)DpQ +Jm26 plE=y), (4.3)

Von nun an bedeute mf die Summe mf +v? (Das v? hat seinen Ursprung in der Definition
der Greenschen Funktionen (3.42) bzw. (3.43)). Die Fouriertransformation des Potentials
Vij(x) ist durch

D ~ .
Vis(a) = / mmp)e—m (4.4)

gegeben. Hierbei bezeichnet ‘7}]- die Fouriertransformierte von V;;. Zwischen den beiden

- / V(z)da. (4.5)

besteht der Zusammenhang:

Da das Potential lokal sein soll, gilt:
Viz,y) = V(z)i(z —y). (4.6)
Insgesamt ergibt sich dann fiir den divergenten Anteil von (4.2):

(GOVGO)il = /dzl dzy G?j(x,zl)vjké(zl — 29)GY (22, 7)

= [ @ V)G

- / / de dD dPq [eip(ac z)‘s]f/ (r)e—iv* |:6iq(zy)5kl~:|
D (2m)P 2 ¢ 2 R

— / dz / de dD ;i:) [e—ip:vp2 ffjmg] () [eiqy(ﬂ idml?] i)

- [ <§:>D <§:>D i | V) || o = (= e e

dPp dPq [ 0ij ] ~ Okl ipx i
— — | Vi(p — q) [ _ } e IPT gy
/ (2m)P (2m)P [p? +m7] ¢* +mj

Aus Gleichung (3.44) ist zu ersehen, dass fir die effektive Wirkung nur das Verhalten bei

x = y interessant ist.

0 0 = L) . — - _Z(p_Q)x
(G°VGY), (x,x) / (2m)D (2m)7 [pz —Hﬁf] Vik(p — q) [qQ _i_m%} e (4.7)
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Das Integral iiber die Spur dieses Terms ist:
/deTr (QOVQO) (x,z) = /dx (GOVGO),. (z,x)

- / / de dD [p i] ]‘%‘kz(p—q) [q2 iﬁmg]e—i(p—q)x

- / (;Z:)pD (;l:)D [p2 j—JmQ] ‘%k(p—Q)[ 25'“im2] (2m)Pa(p - q)

e
(2m)P (p? +m?)?

Wird dieser Ausdruck nun in (3.44) eingesetzt, erhilt man fiir den divergenten Anteil der

effektiven Wirkung in D Dimensionen:

Setsldin® / vdy / o ;;(OJ)F 2 (4.8)

Um dieses Integral auszuwerten, ist die folgende Formel fiir die Integration in D Dimen-
sionen hilfreich (s. z.B. [17]):

JEAC R [LEUES (TNCES Y i S
(2m)P (p? +m2)P L(AT(5) (4ms '
mit der Gammafunktion I'. Somit folgt:
qD Vii . r(2-2 2 4 ,2\-2+2
(s L L ua AL SETET)
(2m)P (p* +m7 + v?)? r'@) (4m)=z
Der divergente Anteil der effektiven Wirkung ist also:
o L 2—8) (mF )2y
Serslidt = /vdei(o) 2/ S (4.11)
Ik r(2) (4m) 2
Wird hier wie iiblich? D = 2 — 2¢ eingesetzt, erhilt man:
T'(1+€) Vi(0) 1
eff|dw - 1—\(2) (47’()1_6 /de(,rn?_'_yg)l_i_e' (412)

Unter Ausnutzung der Gleichung (4.5),

Vi (0) = QW/rdr‘/ii(r),

2Durch diese Wahl muss man spiter den Limes € — 0 betrachten, um wieder zu zwei Dimensionen zu
gelangen. Das hat den Vorteil, dass man Terme die € enthalten um € = 0 entwickeln kann.
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ergibt sich (I'(2) = 1):

DR _ T'(14¢€) Vii(0) /Vdu 1
Srlis’ = TGy fme | "V s o

1 1
(4)1_627r/7'd7"/;i(r) dem

Ml1+em
- 47T1 ¢ / / (m?2 +V2)1+e (4.13)

Wird nun iiber die Diagonalelemente der Potentialmatrix summiert, folgt:

= I'l+¢

I'(1+e) m? 1

eff’dzv = 27r7(47r)1_6 /z/du (m%v—l—m%V—FQH —i—m%V—Qm%V) /7“c1lr(]“'2—1)(m2 I
w
3 4 9 1
+2mH/rdr(f _1)—(m2 P
I(l1+e)m 3m? 2m?, +m?
= d dr(f?—1) a W 2 4.14
“(am)i—e / ’//T u <(m%{+y2)1+e + (m2, + v2)1+e (4.14)

Hierbei wurde in der ersten Zeile der Vs5-Term mit einem negativen Vorzeichen bedacht,
da es sich um den Fadeev-Popov-Anteil handelt.? Der Faktor zwei tritt auf, weil es sich
eigentlich um zwei Felder handelt?.

Das Integral der Art

vdy
(m? + v2)1+e
lasst sich noch weiter auswerten:

[t = 2 eoram
1 1 a=0o0

1 1
I <_(mz)>
11
2¢ m2€’

Somit ergibt sich schliellich fiir den dimensionell regularisierten divergenten Anteil der
effektiven Wirkung

Il1+em 1 [ 3m? 2m, + m?
eff’dw - W/?”d?“(f( ) _1) (26 <( He =+ (W2 )5 H)) ) (415)

H) My

wobei hier der Grenzwert lim e — 0 beachtet werden muss. Um diesen Ausdruck jetzt noch
weiter zu vereinfachen, entwickelt man die Ausdriicke, die ein € enthalten, und betrachtet

3Dies hingt damit zusammen, dass die Fadeev-Popov-Felder gramannwertig sind, also antikommutie-
ren.
“Die beiden Fadeev-Popov-Felder wurde zu einem zusammengefasst (vgl Kapitel 3).
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dann den Grenzfall kleiner e. Fiir die beiden Komponenten des Bruches vor dem Integral
gilt:

Fl4+e) = 1+el'=~1
(4m)17¢ = 4x(1 — eln(4n)) =~ 4,

so dass sich fiir den Bruch
F'l+em 1

~
~

(4m)i—c ~ 4
ergibt.

Die Summanden in dem Bruch, der die Massen enthélt, lassen sich fiir ¢ — 0 folgender-
maflen entwickeln:

2 2 2 7 7
2i?’mQI:’ _ 3;”7H€—61n(m?1) = 3ZLH(l —eln(m¥)) = 37;“{ - SW;H In(mi),
€ My € € ¢

und gleichermaflen ist

12m%v+m%{_2m%[,+qu Zm%,v—l—m%{l 9

2¢ m%{, 2¢

Fiir den Spezialfall gleicher Massen lésst sich das Integral in (4.15) ebenfalls berechnen:

[rager-n = o [T

Hierbei wurden beim ersten Schritt die Relation (A.8) und beim Ubergang zur letzten
Zeile die Randbedingungen ausgenutzt.
Insgesamt erhélt man:

1 [4m% +2m3
D.R. _ _ H wo_
Sefflain = proe) ( 5 T>

2 2

v A +g 1
H

wobei die Massen eingesetzt wurden und
3 2 9 2 2
7 = 2H 1y(m2,) + mwf“”ff In(m?) (4.17)

endlich ist.
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4.2 Renormierung

Wie im vorherigen Abschnitt gezeigt wurde, besitzt die Ein-Loop-Korrektur zur effektiven
Wirkung divergente Terme. Um trotzdem zu einer endlichen effektiven Wirkung zu gelan-
gen, muss die Theorie renormiert werden. Dazu driickt man die nackten Grofien in der
klassischen Wirkung durch ihre renormierten Groflen aus. Als Parameter wird zunéchst
das Quadrat des Vakuumerwartungswertes v? und das Verhéltnis der Massen des Higgs-
und des Eichteilchens R = % gewahlt:

v? = vk =02 — 5P (4.18)

R=1 — Rp=1-/R. (4.19)

Der Vakuumerwartungswert besitzt eine unendliche Renormierung, d.h. §v? ist divergent,
wohingegen R endlich renormierbar ist. Driickt man die nackten Gréfen v? und R jetzt
durch ihre renormierten GroéSen aus, sollten sich die Divergenzen von §v? und Seljlf}Op weg-
heben.

Die klassische Wirkung ist nur fiir R = 1 exakt bekannt. Durch die Renormierung von R
weicht der Wert jetzt aber um einen Term dR von 1 ab.

Somit wird zunéchst eine Ndherungsgleichung der klassischen Wirkung benétigt, die die
Variationen R =1 — 1+ JR beriicksichtigt. Diese soll nun hergeleitet werden.

Im Folgenden ist es vorteilhaft, den dimensionslosen Parameter p = rmyy einzufiihren, da-
mit in der klassischen Wirkung explizit der Parameter R auftaucht. Die klassische Wirkung
lasst sich dann schreiben als:

2 2
e fa () o () praer et}

Die Bewegungsgleichungen fiir die Profilfunktionen lauten mit der Variablen p:
2 1d
— - = A+1)=0
(dp2 pdp / ) (A+1)
2 1d 1 R
— e — — S(A+ 1) - =(f2 -1 =0.
Die klassische Wirkung S, wurde als ein Minimum der Wirkung S bestimmt, wobei S
jetzt von den Feldern A(p), f(p) und R abhéngt:

05(A(p), f(p), R)
(A, f)

— 0. (4.21)

Diese Gleichung ist fiir alle R giiltig.
Man betrachtet nun eine Variation von R:

R — R+0R.

Die Variationen der Profilfunktionen sind dann:

A(p,R) — A(p, R+6R) = A(p,R)+5A(p,R).
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Daraus folgt fiir die Variation der Wirkung:

o 5Scl(A(p)a f(p)7 R)
o5 = [ dp LG ELLEL(A() 1) +

=0

OS(A(p). f(p), R) |
OR

R. (4.22)

Der erste Term verschwindet aufgrund der Bedingung (4.21). Die durch § R hervorgerufene
Anderung der klassischen Wirkung ist somit:

55, = /dp 35(14(/)(;}%7‘(0),3)5}%

= WUQ/dpQR(SRZ(f2 —1)2

= WUQ;éR/pdp(fQ —1)2 (4.23)
Mit den renormierten Groflen ausgedriickt lautet die klassische Wirkung schlief8lich:
Sy = 7wk + 61+ 5R/p dp (f* —1)%) (4.24)
= mh 4+ mov? + 7rv12%5R/p dp (f* —1)? (4.25)
+7T5v25R/p dp (f* —1)2. (4.26)

Term 2.0rdnung

Der letzte Term ist schon von zweiter Ordnung und soll hier nicht weiter beachtet werden,
da bei dieser Renormierung nur die Ein-Loop-Ordnung, also die erste Ordnung betrachtet
wird.

Insgesamt ist die effektive Wirkung bis zur ersten Ordnung A somit gegeben durch:

Sepf = V% + w60 + WU%(SR/,O dp (f?> —1)2 + Seljlf;f’p, (4.27)

wobei der erste und der dritte Summand endlich sind, der zweite und der vierte Summand
aber divergent sind. Die Divergenzen dieser beiden Terme sollten sich neutralisieren, so
dass sich am Ende ein endliches Ergebnis fiir die effektive Wirkung angeben lésst.
Berechnet man nun év? und setzt es in die obige Gleichung ein, erkennt man, dass sich die
Divergenzen nicht auftheben. Die Ursache dieses Problems ist in der Tatsache zu finden,
dass es sich bei v? nicht um eine physikalische Grofie handelt. Dieser Aspekt fithrt in
der unitiren Eichung (die in dieser Diplomarbeit betrachtet werden sollte) zu Problemen,
da die Divergenzen der Massen und des Vakuumerwartungswertes in Ein-Loop-Ordnung
nicht gleich sind. Dieses Problem kann man auch bei der von E. Scholz vorgenommenen
Ein-Loop-Renormierung des zweidimensionalen Abel’schen Higgs-Modells [18] erkennen.
Driickt man hier den renormierten Vakuumerwartungswert v% mit dem nackten v? aus,
ergibt sich®:

2 A g9

vh = v? + 0v? = ov? {1 +— 5— + endliche Terme} . (4.28)
Tmi e 2Tmie

®Dieses lisst sich mit den Gleichungen (5.9) bzw. (5.41) bei Scholz berechnen. Man beachte, dass bei
Scholz die Higgs-Kopplung anders skaliert ist.
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Bei der Massenrenormierung erhélt man allerdings:

2\ g°

2 2
TMye  2mmie

m%{,R =m¥ +omy = my {1 + + endliche Terme} . (4.29)
Wie sich an dieser Stelle erkennen lésst, unterscheiden sich die Divergenzen hier bei der
Higgs-Kopplung.
Deshalb ersetzt man bei der Renormierung von v? diesen Parameter durch v? = % Die
Renormierung lautet dann:

m B m%, R Om%

20 2\gp  2Ag

Fiir A wdhlt man ein Renormierungsschema, in dem das renormierte A\p dem nackten A

entspricht. Das ist moglich, da A in Ein-Loop-Ordnung eine endliche Renormierung besitzt.
Das obige Schema wiirde dann einer "minimalen Subtraktion” entsprechen (s. z.B. [4]).
Wird in Gleichung (4.16) v? durch T;—% ersetzt, ergibt sich fiir den divergenten Anteil der
effektiven Wirkung:

1 [4x+g¢> 1
Serflant = 8/\( T>

= —— - 2 T. 4.30
2¢  8Xe + 4m%{ ( )

Der divergente Anteil in der klassischen Wirkung ist nach der Renormierung durch Scholz
(4.29):

om3 T 2x 2
T LT/ TrmH 5 9 73— + endliche Terme
2\ 2N | mmie  2mmie
1 g? .
= < + e + endliche T'erme. (4.31)

Wie hier nun zu sehen ist, l6schen sich die Divergenzen nicht aus, da sich die Pole um
einen Faktor % unterscheiden. Eigentlich sollte das der Fall sein, da die Renormierung in
einem Hintergrundfeld dieselbe sein sollte, wie im Vakuum.
Benutzt man das dm?%;, das Baacke und Daiber aus den divergenten Feynmangraphen im
Hintergrundfeld berechnet haben ((6.2) in [1]), heben sich die Divergenzen aber auf. Fiir
gleiche Massen gilt ndmlich nach [1] fiir (5m%{ in nichtregularisierter Form:

d?k 1

2 2
sm2 = (g% +4\) / T (4.32)

In dimensioneller Regularisierung geht dieser Ausdruck iiber in:

om% = ( 2+4)\)/ a7k ! (4.33)
H=\9 (2m)D k2 _|_ml2q' :
Setzt man jetzt D = 2 — 2e und nutzt (4.9) aus, folgt:
T
om; = (g% + 4\) (&) e, (4.34)

47-‘-176
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Entwickelt man diese Ausdriicke nun, wie oben, fiir kleine €, wobei

T(e) ~ % . (4.35)

(s. z.B. [17]) und ~ die Euler-Mascheroni Konstante ist, siecht man, dass
1
om3 = (g% + AN () + fimit . (4.36)

Somit folgt, dass die Polterme:

om? 1 (¢2+4N) 1 42
_ _ 9 4.37
Tox T ToN dme 9 T 8re (4.37)

sich gegen die divergenten Terme von (4.30) wegheben.
Nach der Renormierung ist die effektive Wirkung

2
My R

Imiy m%ER 2 2
Sefp = m ) +m ) + 7 ) OR [ pdp(f°—1)

T S;}(}opdiv. + Si]l:}op@nd. (438)

also endlich.

Abschlieflend sollen nun noch einige Erlduterungen zu den einzelnen Termen der effektiven
Wirkung bis zur Ein-Loop-Ordnung gegeben werden.

Der erste Term ist endlich und bekannt, da er nur von den Parametern abhéngt, die in
das Modell eingegeben werden miissen.

Bei dem zweiten Term bleibt mit (4.34) und (4.35) nur noch der endliche Teil

g% + 4\
4

iibrig.

Im dritten Term sind §R und das Integral unbekannt. Das Integral lisst sich analytisch
auch fiir R=1 nicht bestimmen. Es miisste simuliert werden. Aufgrund der Randbedin-
gungen ist aber zu erkennen, dass dieses Integral endlich ist.

Der Faktor d R entspricht der Abweichung des Verhéltnisses der renormierten Massen von
dem Fall R = 1:

R=1 —Rp= 1+46R
o M _ g i ””1<1+5’”H). (4.39)

myy TW.R myy myy

Mit den Gleichungen (5.9) und (5.23) in [18] kann dieser Faktor bestimmt werden. Dabei
ist zu beachten, dass in der Ein-Loop-Ordnung nur die Terme der Ordnung A und g¢? im
Ergebnis zu beriicksichtigen sind.

Der endliche Anteil von Seljlf}()p 4 st durch (4.30) und (4.17) gegeben.

Der Anteil der Ein-Loop-Korrektur zur effektiven Wirkung in dimensioneller Regularisie-
rung, der a priori als konvergent angenommen wurde, kann aus einem Vergleich mit dem
von Baacke und Daiber simulierten endlichen Anteil der Ein-Loop-Korrektur zur effek-
tiven Wirkung bestimmt werden [1]. Tatséchlich entspricht der von Baacke und Daiber
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angegebene Term fiir den divergenten Anteil der effektiven Wirkung (s. (6.4) in [1])% dem

in dieser Arbeit berechneten divergenten Anteil der effektiven Wirkung. Somit ist man in

der Lage, den endlichen Anteil der Ein-Loop-Korrektur zur effektiven Wirkung direkt aus

Fig. 4 in [1] zu entnehmen.

Insgesamt ist die effektive Wirkung in Ein-Loop-Ordnung somit gegeben durch:

m2 2 A\ m2
Serr = TFH’R—7<9 it >+7r H’RéR/pdp(f2—1)2

2\ 8 A 2\

2

2 2

5Man beachte, dass in dieser Formel zwei Druckfehler sind. Es fehlt ein Faktor 3

bei dem m#, im Zahler fehlt ein Faktor 2.

1 3 2 9 2 2
< 4ol In(m3;) + My =My ln(m%y)> +S

4

1loop,end.
spprend - (4.40)

vor dem Integral und



Zusammenfassung und Ausblick

Thema dieser Arbeit war, das von J. Baacke entwickelte Verfahren zur Bestimmung der
effektiven Wirkung bis zur ersten Ordnung A zu benutzen, um dann die Divergenzen, die
hierbei auftreten, mittels der Methode der dimensionellen Regularisierung zu isolieren.
Dann sollte die Renormierung des Abel’schen zweidimensionalen Higgs-Modells, die von
E. Scholz im Rahmen einer Diplomarbeit [18] berechnet wurde, benutzt werden, um die
effektive Wirkung zu renormieren.

Dazu wurde zunéchst eine Einfiihrung in die Theorie geliefert, die zum Versténdnis des
Verfahrens von Baacke notwendig ist. Dabei wurden auch Rechnungen angegeben, die bei
Baacke und Daiber [1] nicht explizit ausgefiihrt sind. Weiterhin wurden der Ein-Loop-
Beitrag zur effektiven Wirkung dimensionell regularisiert und die Pole isoliert. Bei der
Renormierung mit den von Scholz im Vakuum renormierten Gréflen ergaben sich leider
Probleme, da sich die Divergenzen nicht auflésten. Eigentlich sollte das der Fall sein, da
sich die Renormierung in einem Hintergrundfeld nicht von der im Vakuum unterscheiden
sollte. Mit dem von Baacke und Daiber in [1] angegebenen Massencounterterm war die
Renormierung allerdings erfolgreich.

Es stellt sich nun die Frage, warum sich die in dieser Arbeit berechneten Divergenzen
nicht mit den von E.Scholz renormierten Gréflen auflosen lassen. Aufschluss konnte hier
eine Berechnung der kompletten Propagatoren im Instanton-Hintergrundfeld geben.
Wenn dieses Problem gelost ist, wire man auch in der Lage die endlichen Terme, die sich
mit der in [18] berechneten Renormierung in der effektiven Wirkung ergeben, aufzusum-
mieren. Die somit ermittelte Form der effektiven Wirkung kénnte man dann mit den von
Baacke und Daiber in [1] nummerisch bestimmten Werten in Beziehung setzen, so dass
explizite Aussagen iiber die Grofle der effektiven Wirkung moglich sind.

Die Instantoniibergangsamplitude, die sich so berechnen liefle, wire dann mit den Ergeb-
nissen zu vergleichen, die J. Heitger in [9] mit Gittersimulationen erzielt hat.



Anhang A

Die Vortex-Losung fiir R =

In diesem Anhang soll die klassische Wirkung des Instantons fiir den Spezialfall gleicher
Massen berechnet werden. Die hier angegebene Losung geht auf de Vega und Schaposnik
[25] zuriick.

Die euklidische Lagrangedichte des Abelschen Higgsmodells ist gegeben durch:

1 ) A
UFwl? + 5010 — ig 40P + 2 (19 —v?) (A1)
mit v? = _ng Die Vortexlosung hat die folgende Form:
= . A(r
A(F) = é, g(r) (A.2)
¢(7) = vf(r)e™?. (A.3)

Ab jetzt sei n = 1. Mit den Massen m%{ = 2)\v? und m%/v = ¢%v? lauten die Bewegungs-
gleichungen in Polarkoordinaten:
&’ 1d 2 £2 2 £2
> 1d(A+1)? 2
<_( +1) _W;H(f2_1)2>f:0' (A.5)

dr?2  rdr r2?

Die Lagrangedichte in Polarkoordinaten ist:

£:v2<2r21n12,v (iﬁ) + = [de f2(A+1) } +”§{(f2—1)2>. (A.6)

Man kann jetzt die folgenden Differentialgleichungen erster Ordnung einfiihren:

daf f

o = A+ (A7)

1dA A 9,9
i e\/gv (f*—1). (A.8)

Quadriert man diese beiden Gleichungen, erhélt man:
AN 2 f

<dr> = (A+1) = (A.9)

1 dA\? m?2
ey () = U0 (A.10)
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Mit Hilfe einer kleinen Rechnung lédsst sich zeigen, dass jede Losung der Gleichungen
(A.7) und (A.8) auch Losungen der Bewegungsgleichungen (A.4) und (A.5) sind, wenn
das Verhiltnis R des Quadrates der beiden Massen 1 ist, also

mi = miy (A.11)

gilt. Die Gleichungen (A.7) und (A.8) sind in diesem Falle also dquivalent zu den Glei-
chungen (A.4) und (A.5).
Lost man die Gleichung (A.8) nach f? auf und nutzt (A.11) aus, ergibt sich:

(2 1dA
m%,[,r dr

f?= (A.12)

Leitet man (A.8) nach 7 ab und nutzt die Beziehungen (A.7), (A.11) und (A.12), erhélt

man:
d?A  1dA 1dA  m3

dr?  rdr ( +)<rdr+ 2> ( )
Die Gleichungen (A.12) und (A.13) bilden jetzt ein System nichtlinearer Gleichungen, in
dem die Gleichung fiir A(r) entkoppelt ist. AuBlerdem hingt das System wegen (A.11)
nur noch von zwei unabhéngigen Parametern ab. In diesem Fall kann man die klassische
Wirkung S.; des Vortex genau bestimmen. Setzt man (A.9), (A.10) und (A.12) in (A.6)
ein, erhélt man fiir die Lagrangedichte

eo it (ke () A2 (1 2 2) g

Die Gleichung (A.13) lisst sich umformen zu:

(A+1) <d2A 1dA> _(A+1? <1 2 dA) , (A.15)

2 .2 2 2 .
miyT T miyT dr

Hiermit kann man £ umschreiben zu:

) 1 dAN? (A+1) (d?2A 1dA
_ a2 ca_ 8, Al
L=v ((mwr)2 dr + mé,r2 \ dr?  rdr (A.16)

Die klassische Wirkung des Vortex ist nun das Integral iiber diese Lagrangedichte:

02 1 (dAN? (A+1) (d*A 1dA
_ drd - == - = A7
S /T rdpL m%,v [/r(dr) * r <d7‘2 rdr> ( )
Partielle Integration des ersten Summanden liefert:

1 (dA\? 1dA|™  [A (A 1dA
- =A-— = |5 ——-—)dr A18
/r<dr> rdro /r<dr2 Td?") " ( )

————

=0
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Der erste Term verschwindet aufgrund der Randbedingungen, die man an den Vortex
stellt. Setzt man das obige Ergebnis in L ein, folgt:

v? 1 /d?A 1dA
Scl = /Td?”d(pﬁ = % |:/7" <d’)"2 — 7’d’r’> dT’] (A].g)
2 0o
- - [MA] (A.20)
myy L7 dr ],

(A.21)

B v? 1dA

N m%/V r dr
Beim letzten Schritt nutzt man wieder die Randbedingungen aus. Verwendet man jetzt
noch (A.8) und nutzt aus, dass f(0) = 0, folgt:

v? A

Sel = /rdr dp L =2m—5 - e\/71)2 = 2. (A.22)
m 2
——

W

r=0

e2

2

Somit hat man die klassische Wirkung des Vortex fiir den Spezialfall R = 1 bestimmt.



Anhang B

Die Grundzustandseigenschaften
des harmonischen Oszillators im
Pfadintegralformalismus

Als Beispiel fiir das in Abschnitt 2.1 vorgestellte Verfahren sollen in diesem Anhang die
Grundzustandseigenschaften des Harmonischen Oszillators berechnet werden.
Fiir den Harmonischen Oszillator gilt:

wiz? &P

Sei nun z; = x5 = 0, dann ist der Pfad minimaler Wirkung durch X (¢) = 0 gegeben und
die zugehorige Wirkung ist Sy = 0. Setzt man das in (2.16) ein, erhélt man:

[N

2 -
< 0le H"%|0 >= NDet [_dt? + wQ} . (B.2)

Diagonalisiert man diese quadratische Form wieder:

2 2
[_jﬂ + ddeV(X)} T (t) = Mwn(t), (B.3)

erkennt man, dass fiir die Eigenfunktionen

t
xnwcos<n:>, n=12 ... (B.4)

o

gelten muss, woraus folgt, dass die Eigenwerte

72n?

2
tO

A\p = +w? n=12,... (B.5)

sind. Bei der Determinante kann man nun die Amplitude fiir das freie Teilchen ”ausklam-

1 1
d? 9| 2 (T2 T w2\~
N Det [—dt2+w} :NH< 2 ) 11 <1+W2n2> . (B.6)

n=1

mern”:

N
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Die Amplitude fiir das freie Teilchen kann man ohne weiteres berechnen:

9 0 2
<0le %0 >—/ o=y _ L (B.7)
o 2 21ty

Der zweite nichttriviale Faktor in (B.6) ldsst sich mit Hilfe der Produktentwicklung des
sinh (s. z.B.[21])

sinh(z) = xi[l (1 + nf;) (B.8)

1 1
> w2\ 2 sinh(wtp)\ 2
1420 = —= : B.
H < + 71—2n2> ( wto ) ( 9)

n=1

berechnen zu:

Zusammengefasst ergibt sich somit fiir die Ubergangsamplitude:

N|=

d? -
<0le” 0> = NDet [_dzf? +w2] (B.10)

N

- (‘;)5 (2sinh(wtg) 2. (B.11)

Der Grenzwert grofler ¢y liefert, wie in Abschnitt 2.1 erwdhnt, die Grundzustandseigen-
schaften des Systems. Fiir tg — oo ist:

< 0le”Hh0|0 >~ (E) e 2. (B.12)
m

Die Energie des Grundzustandes ist somit gegeben durch:

w

Ey=—, (B.13)
2
und die Wahrscheinlichkeit, dass sich das Teilchen am Ursprung befindet ist:
WA L
\<x:0|n:0>|2:(—)2. (B.14)
T

Somit reproduziert die semiklassische Niherung die Grundzustandseigenschaften des Har-
monischen Oszillators.



Anhang C

Die Symmetrisierung der

Potentialmatrix

In diesem Anhang ist die explizite Rechnung angegeben, die zur Symmetrisierung der Po-

tentialmatrix fiihrt.

Hierzu berechnet man zunéchst die Lagrangedichte, die sich ergibt, wenn die Partialwel-

lenzerlegung

ST
I

Y1 =

$2 =

N2 =

fiir die Quantenfelder

+oo ine o ine
cosp \ e , singp \ e
b
Z n(r) ( sin ¢ ) V2r +ien(r) ( cos ) V2

n=—oo
+00 ;
ey
> halr) =
+00 ;
- einy
+oo i
ety
Z gn(T)E

eingesetzt wird.

Dazu ist die Bestimmung der folgenden Komponenten zweckméifiig:

Jai + aa(Maz)as
Mis)e1 + az(Mag)p1
Jp2 + az(May)p2
)

I
S
= =
3
S
[\

Die Summe der Komponenten ergibt dann die komplette Lagrangedichte.

aaaaaq
© Co N O Ot

o
~— — — Y ~— ~— ~—

Bevor diese Komponenten berechnet werden, sollen noch Relationen hergeleitet werden,
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die sich aus der Forderung nach der Realitdt der Quantenfelder @, ¢1 2 und 72 ergeben.

Zuerst schaut man sich die Kombinationen aj +ias und a1 — tas der Eichfeldfluktuationen

an:l

einy eimp
ar +tae = b,, cos — ¢, Sin
too ing ingp
e e
+ ib, sin — ¢, COS
nz_:oo " S0\/% " @\/ 2
too ine eine
= by, (cosp + isin ) —— — ¢, (cos ¢ + 7 sin
n_z_oo n (COS @ ©) o e (cos ¢ ) Nor
- =el¥ —el®
Jff eintl)e
= (bn - cn)i/i
n=—00 2m
too ing inp
. e . . (&
ap —iag = by, cos p—— — icy, Sin p——
' nz_oo n e T Y
+oo ine ine
e e
+ —1by, sin p—— + ¢, CoS P———
n_z_:oo " 90\/ 2T " 90\/ 2T
Ny et eine
= by, (cosp — isin ) —— + ¢, (cos p — 1 sin
n_zoo n (cos @ ) o T en (cos ¢ ©) N
- —e— ¥ —e— ¥
+ZO° (b )ei(nfl)so
= n + Cn
e V2T

Da gefordert wird, dass a; und a9 reell sind, muss gelten:

. ) too , et(nt1l)p efi(nfl)go 19
+ = - e n — Cn :
(a1 + iag) = (a1 — iay) n:zoo( ) —— Nor n_zoo N (C.12)
und
too i(n—1)p i(n+1)p
(a1 — iaz) = (a1 + ia)* & nzzoo(bn +en)S = n_zoo CW (C.13)

Mit FJ* = 3(bn + ¢,) und F3' = 3(b, — ¢;) folgen dann aus (C.12) und (C.13) die Rea-
litdtsbedingungen

Fr = (Fy) (C.14)
FP = (F7™)* (C.15)

Die Bedingungen fiir die Realitét von ¢1 o lauten:

A= (hT,

'Die Abhingigkeit der Profilfunktionen von r wird ab jetzt nicht mehr explizit ausgeschrieben.
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bzw.

i = (i
Mit F3' = h,, und F 1 = thy, ausgedriickt, heiflen die Realitdtsbedingungen:

—F" = (F), (C.16)
bzw.
Fg = (F3")" (C.17)
Schliefllich muss fiir die Realitat von g, = F3' gelten:
F5'(r) = (F5™)" (C.18)

Im Folgenden werden die Terme (C.5) bis (C.11) der Lagrangedichte einzeln berechnet.

A = a1(Mi1)ar + aa(Maz)as

= %(al —iag)(—=0% + g%¢?) (a1 — iaz) + é(al +iag)(—=0% + ¢*¢?) (a1 — iaz)

Der Laplaceoperator in Polarkoordinaten ist ausgeschrieben:

92 10 1 92

S, A A C.19
ar2  ror  r?2op? ( )
Mit den Realtitidtsbedingungen (C.12) und (C.13) folgt fiir A:
1 e—i(n/+1)¢ 92 10 1 92 et(n+1)p
A = - b — ) ———— 55—~ — 5= + G%0% ) (b — cn
2§(” cw) Vo < or2  ror r28gp2+g¢>( cn) V2or

ei(nfl)ap

eWW( 02 19 1 92
V2T

1

z ot ——— (L 2621 (b
+ 2%(71—’_6”) m 87'2 rar r28¢2+g¢>(n+cn>
Da man sich fiir die Wirkung interessiert, d.h. fiir das Integral iiber die Lagrangedichte,
wird an dieser Stelle schon die p-Integration durchgefiihrt. Hierbei lésst sich die Orthogo-
nalitdt der komplexen Exponentialfunktion ausnutzen:

2r efin’go et
/ d(to = 5n,n’ .
0 V2T 27

Somit ergibt sich fiir den ersten (schon iiber y-integrierten) Summanden der Lagrange-
dichte?:

N N n —1)2
A= 3306 (g gt 1) e

1 " 9 19  (n+1? 5,
+ ZZn:(bn—’_Cn) <_6T2_’F8T+7’2+g ¢ > (bn"i_cn)‘

’Das Zeichen 7”2 mége ab jetzt bedeuten, dass bei dem Term auf der rechten Seite schon die -

Integration ausgefiihrt wurde.
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Mit FJ' = (b, + ¢,,) und FJ = 3(b,, — ¢,,) folgt:
22 190 (m-12 4,
A = 2) (FY) I . H. 7 A o
Z ) ( or? r8r+ r2 +g0 1

2 190 m+1)?2
oSN (Epy (- L 22 T ) Fy.
* ;(2) ( or? 7'87’+ 72 tg'e 2
Setzt man hier noch ¢%¢* = ¢>f%v? = f2m2, = m¥,(f?> — 1) + m3, ein, ergibt sich
schliefflich:

o 22 FM* (MY, + V) FPr +22 E (M3 + V) FR (C.20)

wobei die in Kapitel 3 angegebenen Operatoren ersetzt wurden.

B = ai1(Mi3g)p1 + az2(Magz)pr
= a1(29°A19)p1 + a2(29° A2 1

= %(al +iaz)(29°¢(Ar — iA2))1 + %(al — ia)(29°¢( A1 +iAs)) 1

Die Komponenten des A-Feldes A; 5 sind:

A+1
A = 612:22 (A+1) = i sin ¢
gr
Ag = 6213;1 (A+1)=— COs @
gr rg
Daraus folgt:
A+1 _;
Ay +idy =2 Lemie (C.21)
A 1,
Al + 1Ay = + e'r. (C.22)
rg
Werden (C.21) und (C.22) in B eingesetzt und (C.12) und (C.13) genutzt, ergibt sich:
1 A+1 eln=1e
B = Z(ay —ia2)* | 2¢%di hn,
o o) (2000 1) S

1 L A4+1 et (n+1)p
+ §(a1+za2) ( 2g2¢z )Z o

, —i(n'—1)p A+1 i(n—1)p
- YEye <2g2¢> ) ae

' V2T V2T
—i(n'+1)e A+1 i(n+1)e
AN €
F* -9 2 Fr
L E) (”)rg)‘lm

Integriert man iiber ¢, nutzt die Orthogonalitét der Exponentialfunktion aus und beachtet,
dass 2gQ¢AT—“Zl = 2mwf#, ergibt sich fiir B:

B3 (Fp) <2mWfA+1> Fp 4+ Y (R ( QmWfA:_l> Fr. (C.23)

n

=2V =V2Vyy
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C = a1(Mia)p2 + az(Mag)p2
= a1(29019)p2 + a2(29020)p2
— l(al +iag)(29(01 — i02)d) 2 + %(m —ia2)(2g(01 + 102)P) 2

2
S R} L0 0 3
Setzt man hier 0 = 57— = cos g bzw. y = 5= = sin gz ein”, ergibt sich mit

0.
(01 — 1020 = vf'(cosp —isinp) = vfe
(01 4 i02¢p = v f'(cos @ + isin p) = v f'e™

fir C:
¢ = %(m +ias)* (2gvf’) zn: P ei(\;;so
+ %(al +iaz)* (2gvf’) ; i ei(:;;:go
= %(F{ll)*e_m\/%w (2gvf") 2 eiij;;)w
+ g(ﬁ?)e(;;p (2gvf’) F ei(’;:*"

Integriert man iiber ¢, nutzt die Orthogonalitét der Exponentialfunktion aus und beachtet,
dass 2gv f’ = 2myy f', ergibt sich fiir C:

C= Y (FP) (2mw f) FY + Y (F3)" (2mw f) FY (C.24)
! =V2Vi3 " =v2Va3

D = @1(M3s)p2 + 02(Myz)p1
= ©1(—94,0u) 02 + 2((—9AL0L))p1

Zu dieser Berechnung sind einige Vorbemerkungen nétig. Der Term in der Klammer hat
die folgende Gestalt:

A+1

gA#(‘?u = 76#1}371,6#
A+1
= 7“2 (.Tgalfxlag).
Mit
2001 — 1109 = rsing —Sm(pz—i-cosnp2 — 1 Cos @ —COSQ@E—FSimgp2
r Oy or r 0y or
= —81n<p2a— COSQQO%
_ _9
= "

3Die Ableitung nach ¢ wurde hier weggelassen, da f nur von r abhingt.



47

erhilt man:
A+10
7 g
Unter Ausnutzung der obigen Gleichung, den Realitdtsbedingungen und anschliefSender
p-Integration erhélt man schliellich fiir D:

D= (F}) (—2 = n> Fo. (C.25)
n —_——

=V34

9gAuO = —

E = ¢1(Ms3)p1
= 1(=0*+ g2 A + A(3¢% — v?))p1

efin’ap einy
— Bt ) —0% 4+ G2 Ap® + N3¢ — ) hy——
> () Nl 9P AR? + X367 = 0*)ha

n,n’

Setzt man hier (C.19) ein, fiigt —i% = 1 ein und integriert iiber ¢, dann folgt:
* @ 1d n 2 42 2_ .2

In der Klammer kann man nun die Felder ¢ und A, einsetzen. Mit der Masse my = 202
ergibt sich:

2 1d n? 9
e la A2 4 \(302 — 2

dr?2  rdr r? T At (3¢7 — %)

d 1d n? s (A+1)?% 3 5, o
- -4 e L2 -1
2 rdr + 2 +my + 2 + 2mH(f ),
MY, =Vaq
und somit ist
E =) (F{) (MY, + Va)Fy. (C.26)

F = pa(Mys)p2
= o=+ gPA%, + g0 + N¢” — v*))pa.

Unter Nutzung von (C.19), Ausfithrung der zweifachen Ableitung nach ¢ und anschlie-
Bender Integration iiber ¢ erhélt man:
. A+1)2
P o A g e 0t - gty
n

2
= o+ A (2 4 S - )

n

Vi3
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Insgesamt erhélt man fiir F also:

F 22y (F3)* (M5 + Vig) (C.27)

Die Rechnungen fiir G sind denen fiir A und B sehr dhnlich. Es ergibt sich:

G = ma(Mss)ne
= Z(F;)*(Mgﬂ) +miy (f2 - 1))
n
Vs

(C.28)
Somit erhalt man letztlich:

G= Z(F;)*(M& + Vis5) Fy'. (C.29)

Addiert man schliefflich diese Komponenten, ist das Ergebnis die, schon iiber ¢-integrierte,

Lagrangedichte. Werden die Quantenfelder F|* und F3' mit einem Faktor L

erhélt man dieselbe Lagrangedichte, wie die, die sich aus (3.37) und (3.38) mit der in

umskaliert,

Kapitel 3 angegebenen Potentialmatrix ergibt.

Zum Schluss soll noch erwidhnt werden, dass sich mit den Realitdtsbedingungen zeigen
lasst, dass die Profilfunktionen FJ* und F3' nicht voneinander unabhéngig sind. Unter
Ausnutzung der Hermitizitét der Potentialmatrixelemente kann F}* (bzw.F3') zugunsten
F} (bzw. F') eliminiert werden.
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