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Introduction

Standard Model of particle physics
Years of theoretical studies and experimental research have come to the conclusion
that the universe is constructed of a specific number of elementary building blocks,
which are governed by four fundamental forces. These perceptions provide a deep in-
sight in the structure of the micro cosmos and help to achieve a better understanding
of the construction and coherence of the matter. The Standard Model (SM) com-
bines the fundamental particles and three of the forces to a theory, which explains
most of the experimental results and predictions successfully so far.

The SM includes matter and interaction particles. The matter particles build two

quarks
- 2000

leptones

sopo1red I9LIIRD

I I III

generations

Figure 0.1: Particles in the Standard Model.

groups: 6 quarks and 6 leptones, which split up into 3 generations, see figure (0.1).
The quarks form the particle family of the hadrones, which can be a combination of
three or two quarks. Three quarks are the constituents of baryons, e.g. the neutron
and proton, whereas mesons consist of a quark anti-quark pair. The leptones, i.e.
neutrinos or the electron, with the quarks are assumed to be elementary and are
the constituents of the matter that surrounds us. The elementary particles can be
classified by the fundamental forces. There are four fundamental interactions, which
bind the matter: gravitational force, electromagnetic force, strong and weak forces.
They differ in range and strength as one can see in table (0.1).
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force range strength mediators participants
in m (mass in GeV/c?)
strong 101 ag ~ 1 8 gluons (0) quarks and gluons

weak 1071 aw~ 107 W=, Z% boson (80,91) quarks and leptones
electrom. 00 o~ %7 photon (0) el. charged particles

gravity 00 ~ 1073 graviton (0) all particles

Table 0.1: Four fundamental forces in physics.

To the forces belong associated carrier particles. They describe the interaction of
the matter particles with each other by an exchange of mediators by which a dis-
crete amount of energy is transferred. The interaction particles are gluons for the
strong force, W and Z bosons for the weak force and photons for the electromagnetic
force. For gravity a particle called graviton is assumed only theoretically. The first
three interactions are explained by the SM whereas the gravitational force cannot be
included in the theory successfully. The theory of relativity can explain the macro
world but cannot be combined with the quantum theory yet. However in the low
energy regime of particle physics the effects of gravity are so insignificant, that they
can be ignored.

A further essential constituent of the SM is the Higgs particle. Although the Higgs
particle remains illusive and is yet to be discovered, it is one possibility to provide
mass to the other particles. This feature of the SM can be explained by the Higgs
mechanism. It explains how the gauge bosons and matter particles in the SM obtain
their masses. Therefore currently there is a global endeavor to proof the tangible ex-
istence of the Higgs particle. For example in the unified electroweak interaction the
W= and Z bosons are related by the Higgs mechanism to a Higgs field. It interacts
with itself and leads to a spontaneous symmetry breaking which finally gives three
gauge bosons their masses.

A local gauge theory, here the Yang-Mills theory, furnish a unified specification of
the three forces based on symmetries. The gauge symmetry group of the SM is the
product of the gauge symmetry groups of each three forces

SU@3)e x SU(2)yw x U(1)y (0.1)

The gauge symmetry group constitutes the characteristics of the forces. The carrier
particles are called gauge quanta and are bosons with spin 1.

Quantum Chromodynamics
The theory of the strong interaction is called Quantum Chromodynamics, or short
QCD, and is a non-abelian gauge theory under the gauge group SU(3). The theory
describes the interaction between the quarks governed by 8 gluons. In nature Ny =6
quarks are known, which are distinguished by their quantum numbers and masses.
The six quarks are up, down, strange, charm, bottom and top, f = u, d, s, ¢, b, t,
and their characteristics are tabulated in (0.2). The particles affected by the strong
coupling require an additional charge to preserve the Pauli principle in the QCD.
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Therefore quarks and gluons have a colour charge, which occurs in red, green and
blue. The colour charge is the origin of the name of the theory.
The QCD is determined by the strong coupling constant ag and the quark masses.

quark flavour charge Q mass
(in e) (in MeV)

U up IL=1 2/3 1.5-3.3
d down .= -3 -1/3 3.5-6.0
C charm C =1 2/3 127079,
S strange S = -1 -1/3 105732

T top T=1 2/3 ~ 17130
b bottom B = -1 -1/3 42001370

Table 0.2: Properties of the six quark flavours. The given quantum numbers are:
electric charge Q, isospin I, charmness C, strangeness S, topness T, bot-
tomness B. The values are taken from the Particle Data Group [1].

A characteristic property of ag is its behaviour in the low and high energy regime.
Due to this it has acquired the name running coupling. For high energies, i.e. short
distances, the running coupling decreases. The quarks behave like free particles,
which is called asymptotic freedom. The reason for this is the self interaction of
the gluons. In the low energy regime, which corresponds to the hadron physic,
the coupling constant is large and the quarks are captured inside hadrons. This
is called Confinement. The question arises how it is possible to combine the high
energy physic of QCD with the observed properties of hadrons in the low energy
regime, where perturbation theory is possible? A solution can be found in the non-
perturbative method to transfer the QCD to a finite space-time lattice. With the
discretization of the QCD the low energy regime can be explored by Monte Carlo
simulations. The dimension of the lattice QCD is governed by the lattice spacing
a and the lattice extent L. The finite lattice spacing a entails an automatically
regularized continuum theory. In this case the lattice spacing complies with the
condition of a regulator and prevents singularities to occur. The inverse of the
lattice spacing imposes a cutoff proportional to 1/a to all momenta. Therefore the
theory is automatically regularized and ultra violet divergences, which normally are
encountered are avoided.

An advantage of the lattice discretization is that the QCD can be analysed by
numerical simulations. The finer the lattice resolution a/L is selected the more
accurate the approach to the continuum QCD in the limit a — 0 will be. Certainly
the evaluation of the calculations is restricted to the computer power. The mass
of a considered particle on the lattice has the same proportionality as the cutoff.
To simulate an acceptable propagation of a quark on the lattice, the cutoff has to
be much larger than the quarks mass. With todays numerical capabilities it is not
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possible to simulate the b-quark on the lattice. The restriction 1 > amy, would
increase the resolution L/a that a correct propagation of the b-quark on the lattice
is not possible. The discussion of a heavy quark demands an effective theory, which
describes the theory of QCD correctly within its scope.

Heavy Quark Effective Theory

In a system with one heavy and one light quark, the light quark is regarded to be
relativistic and the heavy quark to be nearly static. The strategy of the Heavy Quark
Effective Theory (HQET) is that the observables of QCD are expanded in the inverse
of the heavy quark mass 1/my. To obtain useful results for QCD from the effective
theory, the two theories have to be connected. This step is called matching. The
expansion coefficients are the parameters of the effective theory and can be obtained
by a non-perturbative matching. In this work a full set of the parameters of HQET
are determined at tree level. I will consider heavy-light axial and vector currents
inside a finite volume, the Schrédinger Functional, and discuss the perturbative
expansion of the appropriate correlation functions.

My study is a preliminary of the non-perturbative matching programme of QCD
and HQET at order 1/m. The parameters of HQET are essential for example when
studying semileptonic decays as i.e. B — m and B — p at next-to-leading order in
HQET. One has to introduce potentially suitable observables in order to perform the
matching and from which the parameters can be extracted. I examine the observables
to ascertain if they provide satisfactory information about the parameters and if
they reproduce the classical values. The tree level behaviour is a prerequisite of
the non-perturbative calculations. Thus if my complete set of tree level matching
observables work out, they will also be well suited as observables in a fully non-
perturbative matching calculation. From my results of the tree level coeflicients it
should be possible to infer the behaviour of the expansion coefficients in the heavy
quark mass at O(1/my,). Furthermore indications of the corrections at order 1/m?
can be extracted.

In chapter 1 I will introduce the HQET first in the continuum and then transfer
the theory to the lattice. I intend to include a finite volume scheme, the Schréodinger
Functional scheme, to carry out my calculations. In chapter 2 I will add the 1/m
corrections to the latter discussed static approximation. I will specify the parameters
of the effective theory in chapter 3 and show the principle of a non-perturbative
matching. Furthermore the observables needed to perform the matching will be
illustrated. In chapter 4 I plan to reveal the perturbative expansion of the correlation
functions and complete the tree level results. Finally in chapter 5 the results will be
presented and discussed. I will finish my work with a conclusion and summary of
the tree level results.



1 Heavy Quark Effective Theory

Heavy Quark Effective Theory has its main application in B-Physics. From decays of
B-mesons, one can determine the parameters of the Standard Model, especially the
CKM matrix elements, which have hadronic contributions one wants to understand
with high precision. Latest experiments in B-Physics are BELLE, BarBar and LHCb.

HQET is an effective theory of QCD in the low energy regime to describe hadronic
systems with one heavy quark. The theory describes an effective theory of QCD on
the lattice with one heavy quark flavour vy. The theory containing Ny — 1 light
quarks and one heavy quark can be formulated as an asymptotic expansion of the
QCD-Lagrangian and observables in the inverse heavy quark mass m. This refers to
the works of Eichten and Hill |2, 3, 4]. The scale of low energy QCD ranges from
the mass of the pion m, = 140MeV over mp = 2GeV to mp = 5GeV. To obtain
a good continuum limit a — 0 of the lattice discretized observables the ultra violet
cutoff Ayy = é has to be large compared to the physical energy scale. Furthermore
the infrared cutoff Ajg = %, arising by the limitation of the lattice extent, has to be
much smaller than the QCD scale.

One than faces the scale problem of lattice QCD in the low energy regime to fulfill
the restrictions

1 1
AR = Z<<m,r,...,mD,mB < a:AUV- (1.1)

The challenge is now to simulate the b-quark on the lattice in such a way that Monte
Carlo (MC) evaluations are meaningful. In an O(a) improved theory one obtains
with the mass of the c-quark an amount of lattice points about L/a = 60...120.
In particular the simualtion of the b-quark on the lattice would increase the lattice
extent L/a by a factor 4.

The expansion of the Lagrangian and the observables in 1/m enables the cutoff
a~! to be much bigger than the mass of the bottom quark. This solves the problem
of the scale hierarchy, because cutoff effects are much more feasible. The heavy quark
can be considered as static in the limit m — oco. Thus the static quark field theory
is a local renormalizable quantum field theory [3, 5.

The following chapter first gives the definition of the continuum HQET, with its
action, heavy quark propagator and symmetries. Then I outline the HQET expansion
of the discretized theory, first in the static approximation and afterwards in chapter
2, T include the 1/m corrections. Furthermore I consider a renormalization scheme
in a finite volume, the Schrédinger Functional. According to my calculations it gives
appropriate formulations of the QCD [6].
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1.1 Effective theory in the continuum

The first deliberations of the effective theory of QCD was done by Eichten and Hill
[3]. In order to measure matrix elements containing the B-meson decay constant
the matrix element fi,', one has to extract the dependence of the heavy quark mass
analytically. The heavy quark mass is considered to be static in the limit my, = m —
00, thus the b-quark is at rest in the rest-frame of the system and does not propagate
in space.

In this work I consider B-mesons with one heavy and one light quark. The effective
Lagrangian describes the dynamics of the light quark whereas the heavy quark just
presents a colour source. In leading order in 1/m the field theory is called the static
approximation but one can add O((1/m)™) corrections to the observables in a series
expansion.

To distinguish between the two flavours I will label the light quark fields with
an index 1: y(z),v(z) and the heavy quark fields with a h in the static case:
Yn(z), ¥y, (z) and a b in the relativistic case: ¥y (z), ¥y (7).

Lagrangian

One possible way to derive the classical effective Lagrangian is to decouple the com-
ponents of the quark and anti-quark by the Fouldy Wouthuysen-Tani (FTW) trans-
formations which is performed in [7]. The derivation is done order by order in 1/m
to obtain an asymptotic expansion of QCD. The classical HQET Lagrangian up to
next-to-leading order is

stat | 1 (1 stat | L (1 1
& =L t+%$h( 2 t+%gg)+0(ﬁ). (1.2)

The static Lagrangians for the quark ¢ (z) and anti-quark fields vy (x) are

A = 1y () (Do + m) iy (), (1.3)
L =y (@) (= Do +m)iy (), (1.4)

whereas the quark field propagates in forward time direction
Pitn(z) =hn, Py =1y, (1.5)
and the anti-quark field propagates backwards in time
P_yy(z) = dy(z), vpla)P- = vy(2). (1.6)

The projection operator is defined as Py = %(1 + ). This property includes that
the quark fields only have two degrees of freedom per space-time point. The other
two of the spinor fields can be set to zero, because of the condition, that Py projects

lsingle hadronic parameter, parameterizing the bound state dynamics of this decay
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onto orthogonal subspaces, Py P_ = 0.
The 1/m Lagrangian is split into two parts

gh(l) - _(Okin + Ospin)a (17)
Okin = ah(x)D2wh(x)a (18)
Ospin = @h(l')O'B(.%')wh({E), (19)

1 !
Tk = 5€ijkTijk; By = Ziﬁiijz‘j- (1.10)

The kinetic energy from the heavy quarks residual motion is described by the observ-
able Oyin, where the chromomagnetic interaction with the gluon fields is described
by Ospin. The field strength tensor F),, is defined by the vector potential

Fu = 0,4, — 0,4, + A, A) (1.11)

with the gauge fields A, (z) = A} T* and the the generator of the SU(3) colour group
T®. oy are the pauli matrices, which one can find in appendix A.

Propagator

In the static approximation the continuum propagator is discussed at zero velocity.
The Green function Gy (z,y) of the static Dirac operator with the gauge field A, (z)

(Do + Ao(@) + m)Gi(w, ) = 6(z — y) Py (1.12)
provides the continuum propagator

Gh(2,y) = 0(z0 — yo)d(x — y) exp {—m(z0 — yo)} x
Pexp{—/yo dZOAo(Zo,X)}P+. (1.13)

0
The anti-quark propagator is derived in the same way. The delta function 6(x —y)
denotes that the heavy quark is static in space and the heaviside function 6(z¢ — yo)
together with the projection P, present forward time propagation. P is the path
ordering product of the gauge fields A,,. The mass of the bottom quark appears in
the propagator in the explicit factor

exp {—m(zo —yo)} (1.14)

for every gauge field. It is possible to remove the mass from the effective Lagrangian
by introducing an addend € in the Lagrangian

L = Py (@)(Do + )in(x), (1.15)

with the limit ¢ — 04, to reveal the appropriate propagation in time. Thus the
heavy mass appears in the energies of the quarks

ENP = B +m (1.16)

with m > 0. This provides a shift of the energies to the sector of the Hilbert space
containing only one heavy quark.
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Symmetries

In the static approximation the Lagrangians (1.3) and (1.4) only contain local com-
posite operators with mass dimension d < 4. The effective field theory is renormal-
izable by a finite number of counter terms. These counter terms are constrained by
the symmetry conditions of the theory.

Flavour symmetry
The theory is invariant under flavour symmetry transformations [8]. If one assumes
F' to be the number of heavy quarks, one can add a flavour index to the fields

wh — ¢h = (whp "'7th)T7 @h — Eh = (@hla "'7@hF)' (117)
Therefore one obtains the symmetry
Un(@) = Ven(@),  Pp(@) = dy(@)VF, V€ SUF). (1.18)

In the large mass limit the symmetry emerges independent of how the limit is taken.
Spin symmetry
For each field exist two spin components, but .Z has no spin dependent interaction.

The fermions are 4-component spinors, but have two zero entries. SU(2) rotations
are expressed through spin matrices oy

1 o 0

The spin rotation is transformed by
Un(x) = ey (), Py () = Py(a)e T, (1.20)

which act on each flavour component of the fields. The phases ay, are real parameters.

Local Flavour-number symmetry
The static Lagrangian does not contain spatial derivatives. This provides a local
symmetry through

Yn(x) = (@), Py(a) =y (w)e” 1, (1.21)

with a local phase n(x).

Renormalization

For an effective field theory, in which the Lagrangian is made up from local fields,
there is an unproven rule of renormalization. The effective theory is renormalizable
if the mass dimension of the fields in the Lagrangian does not exceed the space-
time dimension d [8]. Thus the ultra violet divergences can be absorbed by adding
a complete set of local composite fields. These counter terms have to share the
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symmetry of the theory and the mass dimension has to be smaller than 5. With
[Yn] = % only fermion fields with up to one derivative are possible. To preserve the
local field invariance, no spatial derivatives are required. The static Lagrangian can
be written as

Zh(x) = 101(x) + c209(x), (1.22)
O1(z) = Yy(2)in(z), O2(x) = ¥y Dothy. (1.23)

The coefficient ¢o = 1 only fixes the unphysical field normalization and ¢; = dm is
the additive mass renormalization. The mass renormalization is possible because for
a static quark it exists no chiral symmetry to forbid additive mass renormalization.
All divergences can be absorbed in dm, which has the mass dimension [dm] = 1.
Further QCD renormalization of coupling and light quark mass is necessary (see
1.2.2). One can write the energies of all states as

FACD _ pstat 1.24
h,h hh |5, T Mhare (1.24)
Mpare = 0M + M, (1.25)

with finite m, mpare and dm, which is called the residual mass. They compensate
the linear divergences of the static theory.

1.2 Lattice HQET in the static approximation

The standard formulation of the Lattice-QCD is given in [9] and [10]. The euclidean
space-time R* is replaced by a four dimensional hyper cube with lattice spacing a.
The derivatives are defined as finite differences (A.8), whereas one has to distinguish
between forward and backward derivatives. Furthermore the integrals are replaced
by finite summations. The fermion fields 1 (z) and (x) are defined at the lattice
points and carry Dirac-, colour- and flavour indices.

The gauge fields A}, are replaced by the SU(3) matrices U(z,u) for each lattice
point and direction p = 0,...,3. Thereby (z,u) = b is an ordered pair from one
lattice point x to the next neighbour x + afi. This pair is called link and represents
the connection of two neighbouring lattice points. The parallel transporter U(x, ) =
Uu(x) is called link variable.

The parallel transporter of an arbitrary path on the lattice C = b, o ... 0 by is
defined by the the product of link variables

UQC)=U(bn)-...- Ul = [[U®). (1.26)
beC

The curve of the smallest closed oriented path on the lattice is called plaquette
p = (z; p,v), see figure (1.1). The amount of all link variables build the gauge lattice
field.

The connection of the continuum gauge fields and the link variables is

U, (x) = el99T AL (1.27)
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Ul (z + ad)T
r+dp x+ap+av

U, ()T Uy(z +pj)

> M

Figure 1.1: Ilustration of the lattice definitions.

with the generators T of the Lie-algebra of the SU(NN). In the case of the SU(3) the
generators are the N2 — 1 = 8 Gell-Mann matrices A*. The fermion and gauge fields
have the following behaviour under local gauge transformations A(x) € SU(NV)

V(@) = A@)Y(x), Uu(z) = AMz)Uu(z)A(z +afp) . (1.28)

Lagrangian

To provide the discretized formulation of the HQET observables one has to transcribe
the continuum observables to the lattice. The discretization of the quark propagator
induces new poles, which can be seen as new quarks, named doublers. To avoid
the doublers, Wilson [11]| induced an additional term in the Dirac operator. The
Wilson term causes that fermion modes with p, = 0 vanish and modes with the
lattice momenta p, = 7 provide a contribution of % This contribution acts like
an additional mass term. In the continuum limit the mass of the doublers become
very heavy and they decouple from the theory. The unwanted poles vanish in the
continuum limit and only the physical poles remain. Adopting the Dirac operator
on the lattice takes the following form

3
1 * a *
D= Zw[g(VwLVu)—ng,Vu] (1.29)

Wilson term

10
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with the forward and backward gauge derivative on the lattice

vu¢($) =

Vi(z) =

[Un(x)(x + afi) — ()], (1.30)

[Y(z —aft) — Uu(z — ap) ™ (z — app)). (1.31)

QIR

To obtain the lattice Lagrangian one has to discretize (1.3), thus Dgty. The time
component of the Wilson Dirac operator is

1 " "
Doyo — 3 (Vo + V) —aVyVo], (1.32)

and the quark and anti-quark fields satisfy

Pyn(z) = vn(x), Py = ¢y (1.33)

Therewith one obtains

Dygn(z) = DoqoPy in(x) = 5 [(Vo + Vi)o — aVVol ¢ (2)
——
Py

= o {[Uow)n(a + ad) — Ul — ad) gz — ad)] 70
— [Uo(x)¢pn(x + al) — 2¢n(2) + Up(x — al) '¢pn(z — a0)] }
= [vn(a) — Up(ar — )~ (z — aD)]
= Vitn(2) (1.34)
and in total analogy for the anti-quark
Doy (x) = Vouy,. (1.35)

With these replacements it is possible to write down the static Lagrangian for heavy
quark and anti-quark fields, which was first introduced by Eichten and Hill [3]. For
appropriate calculation a specific normalization factor is included

1 _

4 = m@bh@) (VS + 0m) Y (), (1.36)
B = 1o () (=T o) vy () (1.37)

The forward and backward propagation for the quark and anti-quark fields is se-
lected in the forward and backward derivatives in the Lagrangian. The local mass
counter term dm o % appears due to the mixing of the kinetic and mass term in
the static Lagrangian under renormalization. The lattice action reads in the static
approximation

S = a4l+ﬁ S Bn (@) (V5 + om) () (1.38)

and it preserves all the continuum symmetries.

11
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Quark Propagator

The static propagator can be obtained from the Green function

1

* 1
T3 agm (Vo T om)Gu(e,y) =@ —9)Pe = 5 [ [0, sadyaPr- (1:39)
w

In analogy to the continuum expression the propagator is proportional to d(x — y).
One can choose the ansatz

Gu(w,y) = g(no, ko; x)d(x —y) Py (1.40)
with xy = ang, yo = ako and g(ng, ko; x). This yields the recursion

1
(1 + adm)~(no—ko)

9(no, ko; x) = 0(ng — ko) Py, x;0)1. (1.41)

P(y,x;0) is the parallel transporter in the fundamental representation from y to =
along a time-like path. One has

P(r,2;0) =1 and  P(z,y + a0;0) = P(z,y; 0)Us(y). (1.42)
All in all the static propagator then reads

Gu(z,y) = 0(x0 — y0)d(x — y) exp {—gf\n(l‘o - yo)} Py, 2;0)T Py (1.43)

with om = %111(1 + adm). The mass counter term dm introduces an energy shift of

EXP = B2t e (1.44)
Mpare = 0M +m (1.45)

which applies to energies of systems with one heavy quark or anti-quark.

Symmetries

All the continuum symmetries of the static theory are preserved on the lattice. Espe-
cially the U(2F') spin-flavour symmetry and the local flavour-number conservation.
The transformations on the lattice in the static approximation can be obtained by
replacing the continuum form with the lattice regularized fields. HQET symmetries
are defined in terms of transformations of the heavy quark fields and the light quark
fields do not change.

1.2.1 O(a) improvement

Once one has computed observables from data of numerical simulations, they further
depend on the lattice spacing a. To obtain physical quantities without a relation to

12



1.2 Lattice HQET in the static approximation

the finite cutoff, the continuum limit has to be taken, yielding a well-defined and
unique value after the approach of a — 0. The behaviour of how the continuum
limit is achieved is dictated by the renormalization group equations (see appendix A
4). They describe how the parameters of the theory act under a change of the scale,
which is in our case the lattice spacing a.

If the considered observable O is a dimensionless quantity, the expectation value
of the lattice regularized observable is

<O>1attice — <O>continuum + O(a") (146)

The cutoff effects of O(a™), where n depends on the discretization of the QCD-
Lagrangian. The quantity is determined for different lattice spacings a, to achieve
the continuum limit by an extrapolation. The procedure to reduce the leading order
cutoff effects in the operators and Lagrangian is called improvement. The idea of
improvement is to reduce or even eliminate the O(a™) terms in the observables by
adding appropriate combinations of operators with coefficients, which are chosen to
reduce or eliminate the lattice effects. I want to refer to the O(a) improvement of
Symanzik in the following.

Symanziks programme of O(a) improvement

The discretization of the Dirac operator requires the Wilson term (1.29) to avoid
additional poles in the quark propagator. The disadvantage of the Wilson term is
that it increases the lattice artifacts from O(a?) to O(a). Therefore the O(a) terms
in the Lagrangian and observables have to be eliminated to obtain a meaningful
continuum limit approach. A process was proposed by Symanzik [12; 13|, the O(a)
Symanzik improvement. It is an effective continuum theory which describes the
Wilson lattice action with finite spacing a and its approach to the continuum limit.
The idea is that one can reduce the discretization errors by adding higher dimensional
operators to the lattice action and composite fields. The expansion coefficient of the
theory is the lattice spacing a. In the case of the static theory the effective action
for the static quark is thus given by

Seff:So+aSl+a252+..., Sk —/d4x.§fk(x), (1.47)

with the static continuum Lagrangian %(z) = 45 (z). %, are local operators of
dimension k + 4, which are built from products of gluon and quark fields.

To achieve the O(a) improvement one has to find all operators of dimension 5,
which have the same symmetry as the lattice theory

A(z) = Z ¢i0;(x). (1.48)

13



1 Heavy Quark Effective Theory

A will contain additional derivatives or powers of the quark mass my, to have d = 5.
Possible operators are

O3(x) = Py Do Doy, (1.49)
Oy(x) = mypy, Doy, (1.50)
Os(x) = miyin. (1.51)

With the use of the equation of motion Dy, = 0, the operators O3 and O4 can be
canceled and the resulting operator in O(a) is Os. The effective action in Symanziks
theory is

Seff = / d*z (L (z) + acsmivyn + ... (1.52)

and it induces a redefinition of the mass counter term dm, which depends therefore
on my. I remark here that one has automatic on-shell O(a) improvement for the
static action, because almost in all applications the mass counter term dm can be
canceled in the relation between the physical observables [8].

1.2.2 Renormalization

The bare parameters of the theory receive a renormalization. That provides the
following renormalized coupling and quark mass in the unimproved theory

0t = 9825(95, ap), (1.53)
) (1.54)

Thereby p is the renormalization scheme. The Wilson term in the lattice fermion
action breaks the chiral symmetry in the lattice regularized theory. Consequently in
the O(a) improved theory an additive renormalization constant for the coupling and
quark mass is demanded [14]

9k = 90 2(35. ap), (1.55)
MR = 1iq Zum (93, at) (1.56)
with the parameters
~2 9 2
9 = 90(1 + bg(gp)amy), (1.57)
Mg = Mq(1 + bm(gd)amy). (1.58)

The mass mq denotes the substracted mass of the quarks mq = mo — me, to restore
the chiral symmetry on the lattice. The coefficients by and by, depend on the coupling
g8 and have to be tuned to reduce the O(a) lattice artifacts. The coefficient by, is
discussed in the quenched approximation in [15]

1 —0.6905¢2 + 0.0584g;
1 —0.6905g2

b (g3) = (—0.5 — 0.09623g7) - (1.59)
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1.3 HQET and the Schrédinger Functional

and the perturbative expansion of the renormalization constant is given in [14]

Zg/m(§g> alu’) =1+ Zg(;}zn

- 2 -
(a)G3 + 23 (a5 + - (1.60)
The perturbative expansion of the coupling constant and the quark mass can be
determined in the minimal substraction scheme. The expansion coefficients are mass-
independent and the renormalization constants at given order in the g3 expansion

are polynomials in In(au). The perturbative expansion leads to [16]

9% = 9& + Olgn); (1.61)
0 1
mo =mf” + ggm{" + O(gh). (1.62)
At tree level the renormalized mass is given by

(0)

my) =m’ (1 - afmg ), (1.63)
where I used the tree level values for b, = —0.5 and Z,,, = 1. This provides a tree

level mass of )
0 0
m(())za <1\/12am( )). (1.64)

Later I introduce the masses of the quarks through the quantity z = mqL. For the
light quarks I employ z = 0 and for the heavy quarks I utilize different values for z
to obtain a z dependence of HQET quantities.

1.3 HQET and the Schrodinger Functional

Numerical simulations require a discrete version of QCD in a finite volume. The
easiest lattice formulation implicate periodic boundary conditions for the fields in
space and time direction. If one considers periodic boundary conditions in three
space dimensions and one fixed boundary value in the fourth dimension, finite volume
boundary effects occur. A particular finite volume scheme is called the Schrodinger

Functional (SF) [6].

In my thesis I use the advantage of the SF, that correlation functions, which are
defined in this finite scheme, can be determined effectively. From these correlation
functions new observables can be built, which are also relevant to B-Physics, e.g. to
calculate the B-meson decay constant or mass.

1.3.1 Definition

The definition of the SF in the continuum Yang-Mills theory is given by specific
boundary conditions and the euclidean partition function. The space-time manifold
of the SF takes the shape of a finite cylinder with volume L3 x T.. The extent in
time direction is 7" and the extent in all three space directions is L.
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1 Heavy Quark Effective Theory
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Figure 1.2: lustration of the SF as a cylinder topology.

In time direction one has Dirichlet boundary conditions for the vector potential

B CMx) at 29 =0,
Arlw) = {C,’C(X) at xg = L, (1.65)

where C, C" are classical gauge potentials. The gauge transformation obeys
O x) = AGICLEIAG) "+ AG)IAG) ™, A€SUN).  (1.66)
Furthermore the SF has periodic boundary conditions in space for the gauge fields
Ap(z 4+ Lk) = Ap(z), A(x+ Lk) = A(x). (1.67)

An illustration of the SF manifold in 3 dimensions as a cylinder topology is shown
in figure (1.2). These boundary conditions and the partition function define the SF

Z[C', O] E/D[A]/D[A] e~ alAl (1.68)
SalA] = —é A tr {FuFu ), (1.69)
0
D[4] = [] d4%(x), DIA]=]]dA(x) (1.70)
x,u,a b

where dA(x) is the Haar measure of SU(/V). An important property of the SF is the
gauge invariance of the partition function regarding to the boundary field C

Z[C", 0% = zZ[C',C], Qe SU(N). (1.71)

Relevance of a renormalization scheme in a finite volume

Numerical calculations of a physical value, e.g. the running coupling, which depends
on an energy scale u, has to fulfill several conditions. To apply perturbation theory,
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1.3 HQET and the Schrédinger Functional

calculations have to be possible in the high energy regime to connect it to other
schemes. In lattice QCD the restrictions of the observables are given by the lattice
spacing a and the finite lattice extent L. On the one hand the lattice cutoff has to be
much larger than the energy scale. This implies, that the lattice has to be very fine,
with a small a. On the other hand the lattice extent L has to be large compared to
the confinement scale, to avoid finite size effects. All in all the energy scale y has to
satisfy the inequation
1 1 1

1
L>» -~ ——=>—~
> A 0.4GeV > uo 10GeV

> a. (1.72)

Here the energy scales range the low and high energy regimes.

With present computer simulations it is not possible to fulfill the restrictions.
Lattice resolutions are required, which cannot be achieved with todays computer
capabilities. The clue to the puzzle is to consider the artifacts, which are produced
by the finite volume, as observables [17]. The enregy scale and the lattice extent are

connected that )

n=7 (1.73)
Thus calculations of the running coupling can be achieved in several steps, by in-
creasing p by 100% or reducing L by 50%. With the finite-size scaling technique it
is possible to study the scale dependence of the observables [17]. Therefore in each
step, no substantial differences of the energy occur and the continuum limit can be
achieved. Hence the SF scheme is an intermediate renormalization scheme to relate
the low and high energy regime of QCD. The SF renders a gap in the spectrum of
the Dirac operator which enables the quark mass to be set to zero. Thus the SF is
a mass independent renormalization scheme with simplified renormalization group
invariants.

1.3.2 Discretization of the SF

An adoption of the lattice regularized theory within the SF scheme is possible, con-
sidering that the continuum limit ¢ — 0 has to be well defined and unique.

In the latter sections I discussed the SF pure Yang-Mills theory. To describe the
full strong interaction I have to introduce fermionic degrees of freedom to the theory,
which was first considered by Sint [18, 19]. In the following section light quark fields
are discussed. The boundary fields of the pure gauge theory C,C’ are joined by the
boundary fields of the fermions and anti-fermions p, p/, p and p'. p(x) and p(x)
are the boundary quark fields in the SF at zp = 0, whereas p/(x) and p'(x) are the
boundary quark fields at g =T

Gauge action

The gauge invariance of the gauge action has to be preserved on the lattice. A gauge
invariant quantity is constituted by the trace of a product of links along a closed
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1 Heavy Quark Effective Theory

path. Following Wilson [11] the gauge action in the SF is
1
U] = ?Zw(p)tr{l—U(p)}. (1.74)
0 p

The sum runs over all oriented plaquettes p on the lattice. The weight factors are
given by [6]

1 plaquette in the bulk,
w(p) =1, (1.75)
5 DPlaquette at the boundary xo = 0,7
Fermion action
The fermion action on the lattice [20] is
Se[U, 4, ¢ =a* > (@)(D +mo)i(x) (1.76)

0<z,<L

with the bare quark mass mg. D is given by the Wilson Dirac operator (1.29). The
disadvantage of the Wilson term is that it breaks the chiral symmetry and increases
discretization errors from O(a?) to O(a). Concerning the restoration of the chiral
symmetry on the lattice an additive and multiplicative renormalization constant of
the quark mass is needed. This was discussed in 1.2.2.

O(a) improvement

Adding counter terms proportional to a to the lattice action reduces the O(a) dis-
cretization effects. This is possible because they vanish in the continuum limit. In
the usual lattice regularized QCD with periodic boundary conditions in spatial and
time direction only one counter term is needed to improve the fermionic action. It
was defined by Sheikholeslami and Wohlert [21]

SSW[U @b 1/1 - CL5ZCsW’¢ O-;W /uﬂ/)( ) (177)

The field strength tensor on the lattice is a sum of plaquettes
B = gy (Quol) ~ Quue) (1.78)
@W U0 o + a4 )0 (o)
U (€)Up(x = afi + a0) "' U, (z — aft) " Up(z — aj)
Uu(z — ap) U, (z — aft — a) U, (z — afp — a?)U,(z — aD)
Uy (x — ad) U, (z — ad)U, (x + afi — ad)U,(z) L. (1.79)

F wv 1s also called the clover leaf representation in correspondence to the look of the
plaquettes, see figure (1.3).
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1.3 HQET and the Schrédinger Functional
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Figure 1.3: Illustration of the field strength tensor as a clover leaf. The different
coloured plaquettes correspond to the 4 terms in (1.79).

In [22] the improvement coefficient was discussed non-perturbatively in the quenched
approximation

1 —0.65692 — 0.152g5 — 0.05448
1 —0.922¢3

csWw = , 0<go<1. (1.80)

In the SF scheme the boundary fields in time direction have to respect Dirichlet
boundary conditions, thus to improve the gauge action one can alter the weight
factor (1.75) to

ct(go)  time plaquette related to the boundary
w(p) = %cs(go) spatial plaquette at the boundary zo = 0,7 . (1.81)

1 else

The coefficients in space ¢s and time ¢; have to be chosen correctly in order to
compensate the boundary effects. To improve the fermion action Liischer et. al. [14]
considered the counter terms

Sep =a' Yy {(& = 1)[0s(x) = O4(x)] + (& — 1)[Ou(x) — O{(x)]}, (1.82)

with & = &/(go), & = é(go) and

0.(x) = ZP(X) (Y} + Vio(x), (1.8
((x) = 57 (0(Vi + Vi)l (), (181
Oux) = 5 [F@)(P-Vo+ P ¥)uta)] | (1.85)
() = 5 [F)Pevo+ P-Tpu)] (1.86)
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1 Heavy Quark Effective Theory

1.3.3 Classical quark propagation

The lattice Dirac operator was given in (1.29). Due to the appearance of O(a)
discretization effects one has to add a counter term to the Dirac operator of O(a)

5D = 6Dy + 6Dy, (1.87)

which is a sum of a volume and a boundary term

i

ODv(x) = csway o Fut (@), (1.88)
SDW() = (1~ 1) {Sagal(a) — Ul — ) Pros(e — ad)]
+050,7—a[t)(x) — Un(2) "' P_tp(z + a0)] } . (1.89)
In the bulk of the SF the quark propagator is defined through the Green function
(D + 6D +mo) Sz, y) = %52@, 20 € (0,T), (1.90)
whereas at the boundaries it has to fulfill
PLS(z,y)|p0—0 = P-S(2,Y)| =1 = 0. (1.91)

Furthermore the quark propagator satisfies the hermiticity property

’Y5S(y,$)’y5 = S($7y)T (192)

The classical solution of the lattice Dirac operator in the SF with 0 < xg < T can
be obtained from

(D 4+ 6D + mg) Ya(x) = 0. (1.93)
At the boundaries zog = 0 and zg = T, the classical quark field obeys
Pitpai(2)|zg=0 = p(x),  P-tpa(@)]ao=1 = p'(x). (1.94)

The solution of (1.93) is therefore

Y (z) = a® Z Gt <S(:c, y)U(y — a0,0) " p(y)|

y

Yyo=a

(2, U (07 V)] o, ) - (1.95)

One finds the expression for the anti-quark in total analogy by using the adjoint
expression.

1.3.4 Heavy and light quarks on the SF

In the HQET the static and relativistic quark fields have to be considered separately
in the SF scheme. Accepting that static fermions do not propagate in space, they
differ from the light quark fields in their boundary behaviour and their corresponding
action.
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1.3 HQET and the Schrédinger Functional

Light quarks

The relativistic quarks are periodic up to a phase
i@ + Lk) = e (x), iz + Lk) = ey (@), (1.96)

with the phase angles 0, where k = 1,...3, which are real parameters. The phase
is introduced due to practical reasons in numerical calculations. With the additional
phase, small eigenvalues of the fermion matrix are prevented, thus they provide an
easy inversion of the fermion matrix [23]. The connection of the angles and the
momentum of the fermions on the lattice is

2wl 0y
= — 4+ = 7. 1.
Dk A Iy € (1.97)

In total equivalence it is possible to include the phase into the spatial components
of the covariant derivative

D, :5#+Au+i% (1.98)
with 8p = 0. This provides periodic fermion fields. I use for the integers I = 0,
therefore the lattice momenta in space dimensions are linked with the periodicity
angles via p = %(990, 6,,0.). If one uses, in a system with one heavy and one light
quark, e.g. for the axial current Ag(x) = ¥y(z)y0y5¢p(x), same periodicity angles
9_1 = §b7 the momentum of the quark is compensated by the opposite momentum
of the anti-quark. Therefore considering a bilinear system with 0, = 0, entails zero
momentum of the system.

The Dirac operator is an operator of first order, thus the equation of motion derived
from the light quark action is a differential equation of first order. Therefore only
half of the fermionic field components can be fixed at the boundaries zog = 0,7, to
obtain a unique solution of the Dirac equation. Boundary conditions for the light
quarks provide explicit boundary functions

Poapi(@)|pym = A(x),  P-thi()]y—p = pi(x), (1.99)
@1($)P—}m:0 =n(x), al(x>P+‘I0:L = 71 (%) (1.100)

Finally the light quark action in the SF is [18§]
SIU, By, ] = a* Y () (D + mo)e(x) (1.101)
with the Wilson Dirac operator D and the boundary conditions

h(x) =0 if 2z9<0 or zy>T (1.102)

and
P_h(2)|yy—0 = Prt01(@)]yg=7 = 0. (1.103)
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Static quarks

With the condition

Pipy(z) = ¥n(@),  Pu(@)P- =y () (1.104)

and the fact that static quarks do not propagate in space, no spatial boundary
conditions are needed. In time direction the boundary fields are defined as

Un ()| gm0 = Pu(x),  Yn()], _p = PL(X). (1.105)

Finally the static quark action can be written as [20]
SulU, ¥y, tn] = a* >~ Py, () Vin () (1.106)

with the boundary conditions

Yp(x) =0 if z90<0 or x9g>1T. (1.107)

Schrédinger Functional action in HQET

The complete action with one heavy and one light quark in the static approximation
is

S[U, %1, 41, s n] = S (U] + iU, ¢y, t] + Su[U, by, tn]. (1.108)
The SF in the continuum is defined through the partition function
Z[Cla p{a pia ﬁ{m C, P15 Pl ph]
= / D[AJD[t]D[¢]D[thn]D[thy] 5 A0¥1wntin], (1.109)

The expectation value of an operator O is determined for vanishing boundary fields
to obtain simple renormalization properties

©) = {5 [ PLADIIDEIDIDE o Bl (L)
p1=p1=
PL=pn=0

The operator can contain light and heavy quark fields through the sources

G(x) = 0 G(x) = S’ (1.111)
oy O oon J

G(x) = )’ G(x) = T3 (1.112)
n(x) = 5/3:()(), Ch(x) = — 5ph5(x). (1.113)

22



1.3 HQET and the Schrédinger Functional

1.3.5 Correlation functions and their renormalization

Correlation functions in the SF are expectation values of products of observables.
They are ideal to be considered in this context, because they are proportional to
the probability amplitude of quark propagation in the SF. Two-point SF correlation
functions in the static approximation from boundary-to-bulk in the pseudo-scalar
and vector channel are [24]

59 (o, 61, B) = ——Z (A5 (2) Gu(y)s6i(2)) (1.114)

I (o, 01, 0h) = —— Z (VE™(2) Guy)mci()), (1.115)
y,zk

k%;lalt(xov 017 Hh T 9 Z <VStat )flel( )> (1116)

with the static axial and vector current

A (2) = Py(2)vuy5¢n (), (1.117)
ViRt (2) = iy (2)yutn (). (1.118)

ki}“at(wo,ﬁ_i,gh) is a correlator between the space component of the vector current
in the bulk of the SF and a vector boundary source (,(y)vx(i(z) at the surface at
xg = 0. It describes the propagation of a quark anti-quark pair from the surface
g = 0 to the space-time point x, where they annihilate each other.

Including the time component of the vector current, I introduce the correlation

function .

0o @ ysta
kStat(xo,Hl,Gh) =iy Z < () Culy )’YkCI(Z)>~ (1.119)
y,z,k
To consider the space components of the axial current I write down the correlators
6
- o .a sta _
FR 0,8, 00) = % 3 (45 (@) Gu(y)15(2) (1.120)
y,z,k
6
sta oo .4 sta -
T (w0, 01, 00) = i 3 (A5™(2) Guly)nGi(2)) (1.121)
Yyz

Furthermore I consider the SF correlation functions from boundary-to-boundary

L 12 B _

k‘itat(al, Qh) = —gF Z <C]l(u)'7kzd1(v) Ch(}’)fykgl(z»v (1'122)
u,v,y,z.k

statg) 6,) = L6 Z (56 (v) G(¥)56(2)) - (1.123)
uv,y,

with two boundary sources at x9p =0 and xo = T'.
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l‘oZT
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~ ~
L3 L3
boundary-to-bulk correlation boundary-to-boundary correlation
function k§F** (o, a, gh) function k5t (51, On)

Figure 1.4: Schrodinger Functional correlation functions in the vector channel. The
straight lines symbolize the static quark and the wavy lines denote the
light quarks. The left correlation function has the space component of
the vector current V**(z) as an insertion. The quark anti-quark pair is
created at point g = 0 and annihilate each other at the insertion point
of the vector current. I also consider the first space component Vi. The
right correlation function contains vector boundary fields at the surfaces

zo=0and zog=1T.

In the relativistic case one has to replace the index for the heavy quark by a b:
h — b and the axial and vector currents have the O(a) improved form

(A1), = rstn + acaOuthyysin, (1.124)
(‘/i)ﬂ = E]’Y}ﬂbb + ac\/é,uﬁlio'm/(bb- (1125)

The improvement coefficients cp was determined non-perturbatively by Liischer et
al. in [22] in the quenched approximation and is given by

1—0.748¢3

ca = —0.0075642 - 1-0.977¢2’
. 0

0<go<l. (1.126)

The improvement coefficient of the vector current cy is discussed perturbatively in
[16]. Non-perturbative results are shown in the work of Guagnelli and Sommer in
[25].

The renormalization of the correlation functions is straightforward, i.e. for vanish-
ing light quark mass [16]. One needs a multiplicative renormalization constant for
the current and boundary quark fields and an additional improvement coefficient for
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the heavy quark mass

T 1 I

[falr(wo, 61, 0n) = Za(1 + gbAamq,b)Zg(l + beamqp) fa (o, 01, 0b), (1.127)
N 1 N

[kv]R(l’o, 91, Qb) = Z\/(l + ibvam%b)Zg(l + bcam%b)kv(xo, 01, Hb), (1.128)

[f1]Rr(6),60,) = ZH1+ beamqp)? f1(61,0), (1.129)
[k1]r (61, 0,) = ZE(1 + beamqyp) k1 (61, 0). (1.130)

The renormalization coefficients are given by [26]

1 —0.8496g2 + 0.0610g5

Z = : 1.131
algo) 1— 0.7332¢2 (1.131)
1 —0.7663g2 + 0.0488g
7 - 1.132
vigo) 1— 0636992 (1.132)
and the values for the improvement coefficients are known from [16] and [26]
ba(go) = 1+ 0.1522¢3, (1.133)
1 —0.6518¢2 — 0.1226g;
b = : 1.134
vigo) 1—0.8467g2 (1.134)

All coefficients are defined in the quenched approximation for values of the bare
gauge coupling 0 < gg < 1. Besides the O(a) improved axial and vector currents can
be renormalized by those means
(AR)H = ZA(l + bAamq,b) (AI)
(Vr), = Zv(1 + bvamgp) (V1)

(1.135)
(1.136)

o

e
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2 Including 1/m corrections

In the latter chapter I discussed the effective theory in the static approximation. To
perform the matching of HQET parameters at order 1/m the corrections of O(1/m)
have to be included in the theory.

In this chapter I directly work in the lattice regularized theory. To find the de-
scretized expressions one can transcribe the continuum observables (see section 1.1)
to the lattice.

2.1 Lagrangian and expectation values

Additionally to the leading order expression of (1.36) one has to add the 1/m cor-
rections. This provides the lattice action in HQET beyond the static approximation

Suqer = a*y (fﬁtat(x) +) 2" (x)) : (2.1)
k=1

2B (@) =3 W 2P (@), (2.2)

The HQET Lagrangians Z®*) are of order 1 /mF and the static Lagrangian reads
Z5tat = 4y (2)(VE+0m)yn(x). The coefficients dm, w;(go, m) have to be determined
from the matching condition. They are the bare parameters of the effective theory.
In next-to-leading order in 1/m the HQET Lagrangian reads

f}fl) == (wkinokin + wSpinOSpin) (23)

with the O(1/m) operators Okin, Ospin as in (1.8),(1.9) only with discretized tran-
scriptions

DDy — ViV, Fu— Fiy, (2.4)

where Fj; is the clover leaf representation defined in (1.78). The normalization is
chosen with the result that the classical values of the coefficients are wiin = Wspin =
ﬁ. The problem of the effective theory is that the path integral with the weight

PirQoD o exp {—a4 > (Lhgni(@) + Bt (@) + A1) } (2.5)

is not renormalizable since the terms consist of composite fields of dimension 5. In
perturbation theory new divergences will occur in each order therefore an infinite
number of counter terms have to be added to the observables and composite fields.
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2 Including 1/m corrections

In this case the continuum limit of the lattice QCD does not exist.

One possibility to avoid this problem is to expand the weight in 1/m and counting
the terms proportional to wkin = wspin = O(1/m). This is possible if the HQET
expansion only reproduces the next-to-leading order expansion of the observables.
One obtains for the path integral weight

Puqer = exp {—&4 Z (ﬁight(l‘) + f}ftat(ff))} {1 —a’ Z-iﬂh(l/m) (513)} ., (2.6)

T

which is now renormalizable.

In order to compute SF correlation functions in the effective theory I need expec-
tation values in HQET. Including O(1/m) the expectation value of an observable O
is defined as

(0) = (O)gtar + Wiin@’ Z (O0kin()) st + ""Spina4 Z (O0spin(2)) gt
= <O>stat + Wkin <O>kin + Wspin <O>spin (27>
with the path integral average

<O>stat = % felds Oexp {_a4 Zx: (ﬁight(m) + g}ftat (.T)) } . (28)

2.2 Renormalized HQET heavy-light currents

In order to consider matrix elements and correlation functions composite fields are
required, for example the axial and vector current. In order to eliminate the O(a)
effects of the static heavy-light currents, correction terms have to be added. The
Symanzik O(a) improvement can be applied to the currents in a similar way as to
the action as it was done in section 1.2.1. For a detailed discussion I want to refer
to the work of M. Kurth and R. Sommer in [20]. The O(a) improved currents in the
static approximation are

— 1
(4514) = A5 + act™ s 5 (Vi + V), (2:9)
— 1
(V) = Vi + aci G5 (Vs + T, (2.10)
whereas the coefficients ciat and ci}at depend on the coupling go and are independent
of the relativistic quark mass mq. The renormalization of the static axial and vector
current demand a multiplicative constant Z$*', X = AV, which depend on the

renormalization scale and the bare coupling. The improved and renormalized version
of the heavy-light currents therefore is

(AF™) o = Z3" (90, ap) (1 + b3 amq) (A7), (2.11)
(VE), = 28 g, o) (1 + B amy) (). 212
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2.2 Renormalized HQE'T heavy-light currents

The space components of the axial and vector current are not discussed here, because
they can be related to the time component by spin symmetry.

To find the 1/m corrections in the HQET expansion one has to find all dimension
four operators with the right flavor structure and the right transformation under
spatial lattice rotations and parity. The time component of the axial current in the
HQET expansion is

Ag ¥ () = Z{ T[4 (2 +Z (2.13)
A () = ()2 S5 (V5 - %s You (x (2.14)
AP (@) = — 0.4 (@) (2.15)

with the symmetric derivatives

D s lis . & 1 .
=5 @+, V=2 (Ve ¥), V=2 (wi+vi). (2.16)
For the spatial components one obtains

AT () = ZQETg5tat () 4 Z A (2.17)
AP (@) = 6y(2) 3 (V5 — T rinsman(a), (2.18)

_ 1
AP @) = (@) (VE - TDsen(a), (2.19)

1~ _
AP (@) = S Oilhi(@hivswn (@), (2.20)
A®(g) = %@;Aﬁf“(x). (2.21)

The vector current can be obtained by the corresponding expansion only dropping

the 5 and replacing C(A) with ci,) and ZHQET with ZgQET

Vo T () = 2T Vgt (o Zc W (2 (2.22)
Ve ¥ () = Zg ¥Vt (e ZC(J v (), (2.23)
Vi (x) = ) (V5 - %s (@ (2.24)
V(@) = ;a ViR (a), (2.25)
VO (z) = zm(w) (V5 = U5)mtn(x), (2.26)
Vi (z) = () (VE_%E)T%(JU), (2.27)
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2 Including 1/m corrections

Vi () = ; (V1 (2)ivn (), (2.28)
;3 Vet (). (2.29)

Transformation to a new basis

The HQET expansion of the time component of the heavy-light axial current was

given in (2.13). For zero space-time momentum i.e. 6 = 6y, the contribution Aé2)

vanishes. Following [27]| I transform to a new basis to consider all 1/m corrections.
(1)

In this basis I can express A, and ASQ) as terms with derivatives only acting on the
heavy or light quark fields

1 _
Aél) - §(¢1($)757¢V§¢h(1‘) - wl(x)'YS%%iSd)h(x))
=0 A0 =0Ao

1
= 5(5hA0 — 0Ayp), (2.30)

AP = %@1(%)75%%5%(%) + 01 (@)357 V(@)
= L 6ndg + 340). (2:31)

This transformation leads to new coefficients, with the following correspondence at
tree level

1 1

CsA = 5053) — 50&1), (2.32)
1 1

CoA = 5053) + 5053). (2.33)

In a similar way I transform the space components of the axial currents (2.20) and

(2.21) to

AP (@) = 5 [B)(VE + Tvsmana)] (230
AP @) = =3 [B@ T+ Fsin(@)] (2.35)

The expressions of the vector currents (2.25), (2.28) and (2.29) with the new basis
are

Vo (@) = % ()8 + T)vun(a)] (2.36)
Vk(B)(x) =2 [@1(95 )(VE + $is)%"}’k'¢h<l‘)] : (2.37)
Vk(ﬁ)( ) = [% (Vi + $S )¢ (z } (2.38)

I must bear in mind that I only get a 0 dependence if a spatial derivative is acting
on a heavy quark field. Furthermore the static correlation functions only depend on
éi, because the heavy quark propagator is replaced in the static approximation by
the projection Py (see section 4.4.1).
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2.3 Heavy-light correlation functions and their renormalization in next-to-leading order

2.3 Heavy-light correlation functions and their
renormalization in next-to-leading order

The HQET expansion in 1/m of the correlation functions is straightforward

falr =209z, Zoe

{ fstat + Z (2) fst(z:')c + Wiin fAkin + Wepin fspln} 7 (2.39)
[fanlr =24 3T Zghzga—"ﬂme%0 X
{ fR 4 Z £+ nanfi + wspmfspm} , (2.40)
[fava r =25 Z, Zcefmb“e”“ X
{ S + Z X f\% + wklﬂfAVzl + wspmfipvfl} ) (2.41)
[kv]p =Zu QT Zghz e MbareT0
kviylr =2y 2" Zchzce Mibare0 %
{ ko + Z k% + wWiinkY™ + wspmki}’l‘?} , (2.43)
(kvolr =Z. QETZCh ZC e et x
{kstat - Z c\ ksta) + Wian kY + wspmkbpm} (2.44)
[f1]lr :Z<hZ§e‘mbm {ffmt + wiin f1 + wspmfst} (2.45)
k] g =22 Z2emoareT {kitat F Wik wspmkspm} (2.46)

The factor e~ ™bare®0 glternatively e ™barel corresponds to the energy shift between
QCD and HQET. The correlation functions, containing the kinetic and spin term,

have the form

FA™ (0,01, 00) = ——- Z A (@) Gu(y)15G1(2) Okin(u) ) (2.47)
Y.z, u

fzpin(anél>9h = 5 Z <A5tat 75C1( ) spm(u)> . (248)
Y,Z,u

The corresponding ones for the vector correlation functions are similar. Due to the
fact that I also have a 1/m expansion of the currents I obtain additional terms in
Iafay fave . kv and ky,,, which contain the 1/m corrections of the currents. For
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2 Including 1/m corrections

the axial correlation functions they have the form
Fia o, 6, 80) = =5 Z( ¥)15(2)) (2.49)

and for the other correlation functions, they can be obtained in a similar way. At tree
level I can exploit some useful relations between the correlation functions [28|, due
to the spin symmetry of the lattice action. The relations valid for isotropic angles
are

Kin — 6— <cos(a9Lh) - 1) fiat (2.50)
On
kkm — L0 kstat 2,51
623 (costa) 1) i, (251)
and
: T—a on
kin __ stat
=6 " <cos( ar by — 1) , (2.52)
. T —a 0
kin __ h stat
k=6 2 <cos(aL) - 1> k5. (2.53)

The further relations are valid for any # combinations

fi =k, (2.54)
fstat — k?‘cat’ (255)
kstat fstat — ki}?f’ (2.56)
Kt = —friine = ki;?} i=3,5 (2.57)

1 :
ki/t% =73 Zt(%t—l)/m i =4,6, (2.58)
= = R (2.59)
w1
kspln — g Zp1n7 (260)
R = e, (2.61)
P = 3k, (2.62)
A= 3R (2.63)
f" = P =0 (2.64)

the last equation is valid for vanishing background fields only. From now on all corre-
lation functions have the renormalized and improved form if not otherwise specified.
I will drop the subscription I and R for a better readability.
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3 Parameters of HQET

In the introduction I mentioned that the HQET and the QCD need to be linked to
successfully achieve conclusions of the effective theory. A non-perturbative strategy
to determine the HQET parameters is the matching, which was first considered by
Heitger and Sommer [29, 30].

3.1 Matching of QCD and HQET

To obtain the matching condition between the HQET and the QCD there is on the
one hand the observables, e.g. dimensionless renormalized correlation functions or
energies, of HQET ®HQET and on the other the QCD observables ®RCP . The NuQET
unknown parameters are determined from the equation

BT (i, a) = 9P (), k=1, Nigqpr. 31

On the QCD side one assumes the continuum limit has already been taken, whereas
on the HQET side one have a dependence in a. The bare parameters of the theory are
defined at the lattice spacing a. Further the HQET observables have an explicit mass
dependence in the parameters. The determination of <I>SCD is difficult, because the
cutoff effects of O((amy,)?) are large, which appear by simulating the b-quark on the
lattice. The remedy for this problem is to apply a finite volume with accessible small
lattice spacings. In this way one uses the SF boundary conditions. A definition of
the QCD observables on a finite volume provides much smaller lattice spacings, thus
a well-defined and unique continuum limit can be achieved. With a lattice extent of
L = Ly ~ 0.4fm it is known from tests of HQET [24] that it provides = %Mb ~
and an accurate expansion in 1/m. My, is the renormalization group invariant (RGI)
quarkmass, which is defined in appendix A. The matching condition yields

O, Y (Ly, My, a) = 9FP(Ly, My), k=1, Nuger. (3:2)

The HQET observables require a fine resolution of the lattice, otherwise the O(a)
effects have a strong influence on the calculations. Therefore in the effective theory
larger physical volumes are required.

Step-Scaling

With the matching condition the parameters are defined for any value of the lattice
spacing. With an extent of L; ~ 0.4fm rather small lattice spacings are achieved
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3 Parameters of HQET

from a ~ 0.02fm to a =~ 0.05fm. Although one needs larger volumes to determine
the physical mass spectrum or matrix elements. To bridge the gap between lower
and higher volumes one makes use of a well-defined procedure [17| by establishing
the step-scaling functions

o, ¥ (sL, M, a) = oy { [@?QET(L, M,a),j=1,... 7NHQET} } (33

with £ = 1,..., Nuqer. Usually one uses the scaling s = 2 = L — 2L. The step-
scaling functions o} are dimensionless and relate observables in two different volumes
with L and sL. Furthermore the step-scaling functions have a dependence on the

a
QCD _ HQET
o) o Py,
1/m>a 1/m < L
: (L27 Mb7 20’)
(Lla Mba CL) .
: Trescahng
o
. \\(\’\ ’
Ll L2 Loo

Figure 3.1: The matching procedure and the step-scaling method to connect the once
determined HQET parameters to physically large volumes.

lattice quantities a and L. The dependence is described by the lattice step-scaling

function ¥(u, #). To obtain the continuum observable o(u) one has to determine

the lattice step-scaling functions for several values of a/L and extrapolate the data
to the continuum limit

— . 3.4

a 2 F(L)=u 34)

Similar step-scaling functions are applied on the HQET side of the matching equation

frequently until the extent of the lattice reaches the infinte-volume region, which is
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3.2 HQE'T parameters

about Lo ~ 2fm. The continuum limit of the HQET observables is extrapolated in
each step. The strategy is shown in figure (3.1).

I have to note here, that my calculations are at first order perturbation theory,
thus I obtain tree level results. I will perform the matching in the continuum limit.
On this account I do not apply the step-scaling method.

3.2 HQET parameters

In [28] a non-perturbative determination of the parameters of the HQET-Lagrangian
and of the time component of the heavy-light axial-vector current was performed.
The computation of the parameters was accomplished in the quenched approxima-
tion and the results show a qualitative agreement with perturbation theory.

A first step to extend the work is to determine the parameters of the lattice
HQET heavy-light currents at tree level, including the space components of the ax-
ial and vector current to obtain further 1/m-coefficients. To obtain the full set of
1/m-coefficients the currents are inserted in the SF correlation functions with zero
momentum, e.g. 6711 = 51 and with non-zero momentum, e.g. 5}1 =+ 51 Furthermore I
use unisotropic angles to obtain sensitivity to individual insertions of the currents.

The bare parameters of the effective theory wiin, Wspin, ZE%ET,CE%ET, together
with the energy shift mpae are sufficient to absorb all divergences in the effective
theory up to O(1/m). A complete set of all HQET parameters up to next-to-leading
order are tabulated in (3.1). An ideal determination of the HQET coefficients would
be in the non-perturbative way, but tree level results give a first impression of the
behaviour of the parameters in 1/z. Furthermore they are an indicator of the mag-
nitude of the corrections 1/22. My aim is to study the tree level coefficients as
functions in 1/z, where z = Lmg. This is achieved by performing the matching in
the continuum limit.

The classical values of the coefficients should agree with the tree level results. The
classical values are summarized in table (3.1)

classical values of HQET parameters

1 2 1 2 HQET HQET

Wkin ~ Wspin C(A) cg) cg,) cg,) Z A(% ZV%

1 1 1 1 1 1 1 1
2my, 2my, 2my, 2my, 2my, 2my,

(3) (4) (5) (6) (3) (4) (5) (6)
CA CA CA CA CV CV CV CV

1 1 1 1 1 __1 1 __1
2my, mp 2my, mp 2my, my, 2my, my

Table 3.1
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3 Parameters of HQET

3.3 Matching observables

In this section observables are required for the determination of the HQET pa-
rameters. They are built from SF correlation functions with suitable renormalized
combinations. The quantities depend on the lattice resolution a/L and in particular
they are universal, e.g. the continuum limit does exist. Furthermore the observables
depend on the periodicity angles of the light and the heavy quark §1 and §h, In pre-
vious calculations [28] isotropic and equal angles for the light and the heavy quark
éi = éil were chosen. Besides the parameters of the action and of the time compo-
nent of the axial current were discussed in the non-perturbative studies. I extend
the non-perturbative calculations and include a further current, the vector current.
Furthermore to obtain sensitivity to further HQET parameters I require 0, % 6y, for
some observables. By my choice of observables I orientated myself on the quantities,
which were used in the non-perturbative studies. I expect that, with the use of the
observables at tree level the classical values of the parameters can be reproduced.

I introduce the observables concerning the axial correlation functions. Using
isotropic periodicity angles for the light and heavy quark with 6, = 6, = 0 the
following QCD observables were introduced in [28]. However the quantities are de-
fined by the periodicity angles of the light and the heavy quark and thus depend on
6, and 6,,. For a better readability I write for the observables depending on 6, which
is to be interpreted as depending on H_i and gh.

Ry = {00k (6)°) ~ In(f(62)ks (62)%)) (r=5) 7
1 A(xo,61)

m= (2 >> w=$7-1) b
—fa(zo,0)

=In| —F——== Y

Ca ( f1(6) ) (2o=Z.,T=L) o

The corresponding observables in the 1/m expansion are deduced from the HQET
expansion directly. The static quantities are

stat 4]

me =t ()| (55

2)/ (r=%)

Rstat 1 Stat (.T(], ) 3 9

Ztat(xo B2 T ’ (3.9)
, (@0=Z,T=L)
sta fstat ($07 9)
A 0) (zo=%,7=L)
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3.3 Matching observables

and the observables in O(1/m) can be written as

. kln(e1 fkin(92)
Rin — < ) , 3.11
1 fstat(el fstat( 2) (Tzé) ( )
. kin kin 0 )
RY" = ( A(z0,601)  far(zo, b ) : 3.12
A stat CC(), ) fztat (CCOv 92) (mofi,T:L) ( )
Rstat o Zt(a)t l‘o, ) Zt(%)t(xo’GQ) (3 13)
IO stat an ) fstat (3707 02) on LTl ) .
=L T=
. n (9) 1 fkin(g)
\I,kln _ < .%'(), I 1 , 3.14
A fstat ($Oa 9) 9 flstat(e) (ro—%,T:L) ( )
pst?t _ ( Zt(%)t(xo’ 6)> (3 15)
A i) stat :
f (‘TO,G) (ro=L,T=L)

The observables for the space components of the axial current and the vector match-
ing are defined analogous. One just has to replace the index A with a Ag, V or V}
and use the corresponding correlation function and their normalization.

Time component of the axial current

In [28, 29| the quantities for the determination of wiy, CEX) and In ZHQET were
introduced for isotropic angles. Different combinations of angles are denoted by 61
and 07 in this case. To determine cff) a new quantity ®4 A is introduced with 6, # 60y,.

For the determination of the coefficients one uses

Py A = Ry — RS

= win R, (3.16)
RA Rstat
= ) R¥ES + g RY™, (3.17)
D34 = (A
= In Zy T 1 5 4 D el 4 g, T (3.18)

Dy = RA(T/2,6, = §{7§h,9h)
= Wkin Rkln(T/27 éi = é{a 5}17 0_’{1)

+ o) RS (T/2,00 = 01,01, 0}) + ) RS (T/2,60= 0,60, 8). (3.19)

In the setup with vanishing background field there is no sensitivity to wspin, because
the corresponding correlation functions fi'™ and fi*™" are zero, see eq. (2.64).
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3 Parameters of HQET

Time component of the vector current

Analogous to the observables of the time component of the axial current I use the
observables (3.17), (3.18) and (3.19) for the matching of the time component of the
vector current. I can extract the HQET coefficients from the matching equations

P 1Vo = RVO Rstat

= (1) RSt (1) + Wkin RV() s (320)
D3 v, = (v
= In Zy @ 4 gt g el At + wran WA (3.21)

@37\/0 == RVO (T/2 91 == 01, 9}1, Gh)
= Wkin ka(T/2 e_i = 5{1 5h7 9_{1)
+ RSt [(T/2,6, = 6,64, 6,) + 2 R% (T/2,60=0,64,6,).  (3.22)

The observables (3.20) and (3.21) are applied with equal and isotropic 6 angles for the
light and the heavy quark respectively. The matching equation (3.22) has sensitivity
to the coefficients wyin, CS) and cg) by using 51 #* 91, recall that only then the

observable Ri;fgt) does not vanish.
0

Space components of the vector current

For the matching of the space components of the vector current I introduce new
observables depending in kv and ky. With 6; = 6y, I choose the observables

— —

ke (T2, 0, = 0, = 0)

O v=Cv=1In
ki (0= 6, = 6)
4
— In ZEQET + C%tat T Wi \Ilkm + Z © )pg)’ (323)
=3

k
@27\/ = RV =1In (k;

4
— B B+ S0 ) RS (52
=3

The two quantities are sensitive to the parameters wy;n, cg’ ) and cgjl ), whereas (3.23)

HQET (5)

also has sensitivity to the renormalization constant Z5; The coefficients c;

(6)

and ¢, do not contribute because at zero-momentum the insertions Vk(s) and Vk(6)
vanish.
Further observables thus will be determined with different angles for the light and
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3.3 Matching observables

the heavy quark. A natural choice which provides further sensitivity to c$ ) and Cgs)

would be

oo 1 [ FV(T/2.6,61)
gv=Mn| ————5——
kV(T/27 9/7 9{1)
= R(T/2,0),6,,61,60,) + win REV(T/2,61,6., 61, 6.)
6

+ 3 ) R (172,66, 01, 6). (3.25)
=3

To obtain all the five parameters two more observables are needed. Let me remark
at this point that to handle on all 1/m-coefficients I introduce a further correlation

function kv,,. The contribution from Vk(4) is proportional to 912,;]5 at tree level for

large L/a [31]. If one uses 6, = 0 the correlator kyv,, has no sensitivity to cg;l ). At
tree level possible choices would be

T/2.6, = 6, —
Pyyv =In v (T ’ej (ih’el’x 0 ; (3.26)
kV11(T/27 9{ = 9{17 9{735 = O)
kv, (T/2,61,60,0) 5 = 6, =
Doy = In [ PYnlL/2:6060 010 = s = 0) ) (3.27)
kv, (T/2,6,0},0, = %,x =0)
where as ®4 v is sensitive to wyin, cg ) at tree level and ®5 v has sensitivity to wiin, cg )
and cgf).

The HQET expansions of the two observables are analogous to (3.25).

Space components of the axial current

The observables for the matching of the space components of the axial current should
be imposed in the same way as for the space components of the vector current. With
0; = 6y, I choose the observables

Dy, =Ca, =1n

f1(6r = 0, = 0)
4 . .
=In Zy T 4 Gt g, U+ 3 0 o) (3.28)
1=3
T/2,6, =6, =6
(I)Q,Ak _ RAk —In fAk( / _71 _7h _7)
fan(T 2,0, =6 =@
4
= R+ wnan R + D i) RS- (3.29)
=3

39



3 Parameters of HQET

and with G_i #* éil I use

By, o [ L0L0/2.0.)
fa (T/2,6],6)

= R(T/2,0,,0],04,0}) + wiin REN(T/2, 6,6, 01, 6})
6

Z ® Rstat (T/2,6,,0,.6,,0,). (3.30)
=3

To obtain all the five parameters two more observables are needed and I introduce
the quantity fav,, from (1.121). The correlation function has no sensitivity to the

insertions Al(f) and Al(f) at tree level. Therefore possible choices are

47Ak — ln (fAVQl (T/Q,H_; - 6_?)) , (331)
fAV21(T/2"91 = eh)
B54, =In S (172,01, ) (3.32)
fAVZl (T/2 ot 0{1)

(3)

These observables are sensitive to wyin, ¢y

to cgf) when 51 = 5h.

(5)

and c)’, whereas (3.31) has no sensitivity
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4 Perturbative expansion of the heavy-light
correlation functions

The perturbative expansion of the correlation functions follows [32] and [33]. At
first I will present the integration over the quark and anti-quark fields. Furthermore
some definitions are introduced to accomplish the perturbative expansion of the
SF correlation functions. Next in 4.3 the perturbative expansion of the relativistic
correlation functions is exposed in detail and tree level results are shown. Finally
the analogous expansion of the static correlation functions and the 1/m-corrections
are presented.

4.1 Quark functional intergal

Expectation values of observables in the quark functional framework are of interest.
One can write them as

(0) =[Ol (4.1)
with [...]r the expectation value generated with the fermionic action?
SF[U7 abv (S Ela ¢1] = Sl[Ua Ela 77[)1] + Sb[U7 @ba ¢b] (42)
and the expectation value (...) calculated with the effective gauge field action
Set[U] = Sg|U] — tr {In(D + D + myg)} . (4.3)

One can write the generating functional by using the source fields ny, 71, n,, and 7,
for the quark fields

Zr[pl, pl; P, P15 Py p; U =
/ DD Do) D[] exp { —SelU, B, o, B, 4]

+a* Y [i(@)m(x) + m@) ()]

+at > [y (@) () + v (@) ()] } (4.4)
After substituting the quark fields with derivatives of the sources
5 - 5
Ui(z) — Si(x)’ () = “om@)’ (4.5)
0 - )

!The gauge field U has to be fixed
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4 Perturbative expansion of the heavy-light correlation functions

I can write the fermionic expectation value as

op-{toz) »

Pl==p =0

I can write the quark fields as a sum of the classical values and of fluctuation fields,

(@) = Yral@) + xi(@), i) =al@) + @), (4.8)
Yo() = ¥na(2) + Xb(@), Ui (7) = Py a(@) + Xb(2), (4.9)

which have to be zero at g = 0 and zg = T, to fulfill the SF boundary conditions.
The fermion action can be split into a sum of an action depending on the classic
values for the quark fields and an action depending on the fluctuation fields. I use
the specific boundary condition of the SF and the equation of motion in the bulk for
the light and heavy quark fields,

SelU, ¢y, 1, ¥y, b] = SE[U, Y1 s Y1ets Yo 1, Ybiet] + SEIU, X1, X1 Xbs Xb)- (4.10)

Thereby the generating functional provides, including a change of the integration
variable from ¢ to x

InZp = In ZF’ﬁ’— =np=0 T SF[U El cls ¢l Cl;@b cb 77Db,cl]
-I-agzm )Si(z, y)m(y +a4z (@) () + Py a(e)m(z)]

+a8277b )Sw(2, y)m(y) + a Z [7b(2)ba(@) + Py a(@)m(z)],  (4.11)

xT

where [ distinguish between S}, the light quark propagator and Sy, the heavy quark
propagator. From [32] one knows that the improved action receives boundary con-
tributions

wcla T/fcl]

SF,impr[U
a3 Z % C ’Vk(vk + Vk) ( ) + ﬁ/(X)%(VZ + V]g)pl(x)]

&, [ px)U(x — ad,0)ga()|, _, + 7 XU, 0)*11/;61(:,;)\%:%1} } . (412)

which is valid for light and heavy quarks. The action of a bilinear system consisting
of a light and a heavy quark would be the sum of the light quark action and the heavy
quark action, as one can see in (4.2). The two-point functions can be determined
by differentiating the generating functional (4.11) with respect to the source fields.
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2 Tree level quark propagator

This results in [32]

[Y(2)0(y)]p = S(z.y),

w T f(y)] = &S(z,y) P U(y — a0,0) _1P+‘x0:a,

(V@) (¥)]p = &Sz, y) PLUY,0) ' P-|, 1,

[P = aPU(x — a0,0>S< 9| agma

By = EPU@.0) S )],y

[C(x)f(y)]F = &P_U(z — a0,0)S(x,y)U(y — a0, 0)_1P+‘x0:y0:a

— %asp,fyk(vz + Vi)a 20xy,
(€ (9)]p = EPU(x —a0,0) S(z,y) Uy, 00 P-|, 4y
[y = &PU(2,0)7" S(z,y) Uy — ab,0)~" P_|
'¥)]p = &PLU(2,0)7" S(a,y) U(y,0)" P-|

zo=T—a,yo=a’
zo=a,yo=T—a

1. N _
— §CSP+’}/k(vk + Vk)a 2(5xy.

The Wick contractions are valid for heavy and light fermion fields.

4.2 Tree level quark propagator

For simplicity some definitions are needed to evaluate SF tree level correlation func-

tions. The periodicity angles lead to a shift of the lattice momenta

21y, s T
Pk ="—7"> —— <prp < —
a a
by
0
Pa =Put T

I use the abbreviation for any momentum g,

. 1.
qu = o sin(ag,),

. 2 .
qu = - sin(aqy/2).
One now can define an effective mass for the light quark field

1
M(q) = mo+ §aq2.

The tree level solution of the free lattice Dirac equation can be written as
0 .
2 = e
and only considering states with positive energy, i.e. Impg > 0, provides

po = pg = iw(p’)mod2r/a

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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4 Perturbative expansion of the heavy-light correlation functions

with 12
22 12242
sinh <gw(q)> e (mo + 21a0{ 2) (4.29)
2 2| 1+a(mo+ 309°)
The tree level propagator for the light quark can be obtained from
(D +mo)s\" @y)| _ = w—) (4.30)
with the boundary conditions
§7@,y)| =5 wy)| =
zo=0 yo=0
sO@y|  =s@y| =0 (4.31)
= yo=T"
The Fourier transform is defined as
5 (@, yo: p) = a® Ze 500 (2, ). (4.32)
For mg = 0 and p™ = 0 the tree level propagator has the form
Py if zo > yo,
Sz, yoip) = { P if @y < o, (4.33)

1 if g = yo.

For all other cases the tree level expression is written in appendix B.
The classical solution for the free Wilson Dirac equation for a < xg < T can be
written as

W0 =Y (51“’) @]+ 50 w()
Yy

yoT_a> . (4.34)

4.3 Perturbative expansion of the relativistic correlation
functions

In this section I consider the perturbative expansion of the QCD correlation functions
fa, fi and kv in detail. The expansion of ki, kv,, kv,, and fa,, fav,, is done
analogously.

With the heavy-light axial and vector current the SF correlation functions read

fa(z0,61,0,) = —*Z (1(2)r0759n(2) b (¥)15¢(2)) 4 (4.35)

kv (20, 61, 0) = —*Z Di(@) b (@) G () 1G(2)) (4.36)
y,zk

f1(61,6) = L6 Z ({ ()¢ (v) G (y)15G(2)) - (4.37)
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4.3 Perturbative expansion of the relativistic correlation functions

Applying Wick’s theorem [34] provides the following formulations for fa, kv and f;

N a6 _
fa(zo,6,0,) = > Z (tr {[G1(2) 1 (2)]ry075[Un (2) o (¥)]Fs ) (4.38)
J— ab ’ _
kv (zo, 01,0,) = 5 Z (tr {[¢1(2)0 (@) F e [¥6 (2) b (V)]F% ) » (4.39)
y,z k

f1(61,6,) = L6 > (tr {1a@) G (W]Fys (6 (VG ()]s} g - (4.40)

u,Vv,y,z

The trace runs over Dirac and colour indices. The hermiticity property of the quark
propagator (1.92) can be utilized for the contractions in the following way

V5 (G (2) Y (2)]pys = Wl(x)fl(z)]iw (4.41)
51G(2) ¢ (W)]rys = [ ()G (2)]- (4.42)

Furthermore I use the relation of the Dirac matrices in the chiral representation (A.5)
and I obtain

JER a6 — —
fawo, 6.6) = =5 > (tr { (@) a @ oltn@G e ) - (4.43)
- o aﬁ N -
bv(20,0,05) = T Y- (tr { @G @l @) en}) o (444
y,zk
[0L8) = 35 > (e {[d@a@ILHGGI)), - (4.45)
u,v,y,z

I can write the contractions as derivatives of the classical fields with respect to the
source fields
6a(z)

op(y)

This is valid for heavy and light quarks. It provides the expressions for the SF
heavy-light correlation functions

_a sha(@)\" ([ dpa(@)
iy S (e () () e
o0 a6 c c\T
kv (@o, 01, 0b) = = > <tr {75 <6?[1) (1())> V5 Yk (%) ’Yk}> - (448)
G

Yz

[P(2) )] = (4.46)

It is appropriate to define matrices for the heavy and the light quarks and as corre-
spondingly for the boundary fields as in [22]. The matrix H(x) describes the quark
propagator from boundary at time 0 to the point x in the interior of the space-time
volume,

H(z) =a® Z (Md(x). (4.49)

45



4 Perturbative expansion of the heavy-light correlation functions

Furthermore one finds in [20] the matrices for the relativistic heavy and light quark,
which present the quark propagator from the boundary at time 0 to the boundary
at time T'

3
. a _
K =t7; > PLU(,0)  H() g (4.50)

With the use of the expressions for the quark fields I can write the heavy-light
correlation functions as

Fa(20, 01, 8) = f% (i {E(@) b)) . (4.51)
kv (o, 61, 1) = é <t1" {75H1(90)T75’YkHb(96)7k}>G , (4.52)
£1(6,6,) = % <tr {KlTKb}>G. (4.53)

Finally the perturbative expansion can be deduced by expanding the correlation
functions and the matrices in the coupling gg

Fa@o) = £ (o) + g2 £V (20) + O(gd), (4.54)
kv (z0) = kY (o) + gok“)(xo) +0(gd), (4.55)
fi=12+ 210 +0gd), (4.56)

with the matrix expansions

H(z) = B (z) + goH" (x) + go P (@) + 0(gd), (4.57)
Hy(x) = H\(x) + go VY (2) + 3 HP (2) + O(d). (4.58)
Ki(z) = K + gok" +goK <g8>, (4.59)
Ki(z) = KV + 90K\ + 2K O(g).- (4.60)

4.3.1 Tree level expressions

I have to consider the matrix H(z) at tree level. The matrix is defined as the
derivative of the quark fields with respect to the corresponding boundary source

HOz)=a®)" M. (4.61)

With (B.3) to (B.5) one obtains after some calculations for the tree level propagator
forp=0

1 y ° N 5 —w X
T A
— (M(p*) + ip§ — mp})e—w@*)(ﬂ—mw} Py. (4.62)
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4.4 Perturbative expansion of the the correlation functions in the static approximation

The tree level propagator does not depend on the space components of a point but
on the time component. Therefore I can introduce the function

x(@o) = HO(z). (4.63)
Moreover the tree level results for the K matrices can be written as
KO =P (T - a). (4.64)

In QCD I have the correlation functions with two relativistic quarks labeled with 1
and 2, for the light and the heavy quark. They have the bare masses mg, 1 and mg 2
and zero momentum p = 0.

All in all T get the QCD two-point correlation functions at tree level

f/(xo) (0, 61, 0) = —% <tr {Xl(xO)T’YOXQ(»’UO)}>G, (4.65)
k‘s)) (0, 01, ) = é <tr {75)(1(SCO)TV5’YI<;X2($0)%}>G (4.66)
106,6) = 5 (@ - o Poom-a)})_. (467

4.4 Perturbative expansion of the the correlation
functions in the static approximation

The boundary-to-bulk correlation functions in the static approximation for the pseudo-
scalar and vector channel are

it (zo, 01, 0h) = —— Z (A5 () Cu(y)r56(2)) (4.68)
k™ (o0, 01, 0n) = —— Z (Ve (x) Gu(y)mai(=)) - (4.69)
y,z,k

The computation is associated with the one in the relativistic case. I apply Wick’s
theorem and make use of the hermiticity property and the representation through
the boundary fields

w[C (@)@ = [$(2) ()]},

_ <5;”;E(Z:§) >T . (4.70)

It is convenient for the calculations to introduce the heavy and light quark matrices
as for the relativistic quarks (4.49). Thus one defines

5¢1c1

}: e, (4.71)
51/}hc1

§y: el (4.72)
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4 Perturbative expansion of the heavy-light correlation functions

Furthermore the matrices for the heavy and light quarks, which present the quark
propagator from the boundary at time 0 to the boundary at time 7" are [33]

3
. a _
K= t45 > PLU(,0)  Hi(2) | yyepea s (4.73)
3
a _
Kn =13 > PLU(,0) " Hy (@) |yy—rq - (4.74)

The correlation functions f3* and k§f** can be written with the use of the matrices
(4.71) and (4.72)

- 1
stat — _ T
f3 (@0, 61.0) = =3 (tr {Fi(@) 0 (@) } ) . (4.75)
- 1
stat i T
kV (370, o, Qh) 5 <t1“ {’71@75 Hl(:L’) Y5Vk Hh(l’)}>G . (476)
In analogy to i (zg) I get for the boundary-to-boundary correlation function
1
stat — = T
fim0) = 5 (o { K@) Kn(@) }) - (4.77)
The perturbative expansion of the correlations functions is straightforward
IR o) = 3 (o) + g 13 (@0) + O(a). (4.78)
B (0) = K™ (a0) + g3k M (o) + O (). (4.79)
= O g /Y + 0lg)) (4.80)

4.4.1 Tree level expressions

In the static case the tree level expression for the matrix (4.72), setting dm = 0 is
Xn(xo) = H}(lo)(x) =Py (4.81)

and for the light quark mass I just add an index 1 to (4.63). The tree level results
for the K matrices in the static case are

K =P.ox(T —a), K”=p,. (4.82)
This leads to the tree level formulations for the static correlation functions
stat (0) N _1 1
fam (o ) = —5 <tr {Xl(ﬂfo) P+}>G ; (4.83)
stat(0),  xy_ L t
K Oao, ) = ¢ (e {ws o) 95 P ) (4.84)
and
stat (0) /o'y 1 Nt
fi () =5 <tf {Xl(T a) P+}>G, (4.85)
sta o 1
klt to (6) = 6 <tr {'Yk75Xl(T - Q)TP+75’YI<:P+}>G . (4.86)
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4.5 Next-to-leading order in 1/m

4.5 Next-to-leading order in 1/m

To determine the coefficients of O(1/m) I have to compute the 1/m corrections of
the heavy light correlation functions. I will present the perturbative expansion and
tree level results of the 1/m corrections of the axial correlation functions. For the
vector correlation functions I refer to to appendix B.

In section 2.2 the currents fstat (zo, a, 6’1) and f§5%(xo, 51) were introduced to ob-
tain sensitivity to all O(1/m) ferms in the HQET expansion. With the relation at
tree level

- 1 - S
1385 (20,61, 61) = 5 (3 (0, 6 61) = £55" o, ) (4.87)
38 o, 01, 1) = 3 (35 o, 61 62) + 35 o, 1) (4.88)

the correlation functions f;t( and fStgt), which are used for the observables, i.e. in

(3.19), can be obtained.

Perturbative expansion of fStat(xo,éﬁ,gh)

The correlation function is given by
558 (w0, 61, 0n) = —— Z (3nAo(x) Cu(y)75¢(2)) (4.89)

with the insertion B
SnAo(z) = U1(2)75% V5 tn (@) (4.90)
Making use of Wick’s theorem yields

fan = Z (tr {15[G1(2) 1 ()] 157 V7 ¥ (@) (3] F } )

= O3 ( { @G @IV ()Gl >]F}>G

= O3 (e { ) TS @Gl ) (4.91)
y

G

Furthermore I applied the previous steps as the hermiticity condition (1.92) and the
introduction of the quark matrix (4.71). It remains to evaluate the second Wick
contraction

(V7 on (@) Gn(y)] - (4.92)

At first I calculate the covariant derivative acting on the heavy quark field

Vo (z) = [)\h JUi(2)n (z + ai) — )\iiUz(:c — at) My (x — ai)| . (4.93)
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4 Perturbative expansion of the heavy-light correlation functions

The phases A ; =
for the contraction

[V ¢n ()G (y)]F

= o (Ml @lnte + a0l = X1 = )~ n(e — )G}

1 Inl( + a%) B
=5 {AthZ( ) <5,0h(y)>

_ AN — Un cl(x - a;)
AU (e —ai) | e . 4.94
i Uil ) ( dpn(y) (4.94)
Hence the correlation function at tree level can be written as
t
i

1 1 R X
- 5 <tr {Hl@ (@)ig, [Ah,iﬂﬁo) (¢ +ai) — N H (@ — ai)} }> (4.95)

G

where I used the definition of the quark matrices (4.72). With the tree level heavy
quark matrices (4.81) I obtain

sta’ 1 o
2= (e [ -21})

7
2a “~
3

G

sin(a%) <tr {Xl(ﬂfo)TViP+}>G (4.96)

Perturbative expansion of fStat(mo,Hi)

The correlation function is given by

Fiket (o, 61) = ——Z (6A0(2) Ch(y)15¢i(2)) (4.97)

and has only a 51 dependence, because the operator
5A0(z) = i (@)157 V5 () (4.98)

contains derivatives acting on the light quark fields. Making use of Wick’s theorem
yields

= 05 (o (@ T il ()l ),
= a; <tr {[Vflﬁl(x)é(z)]}%ﬂh(fc)}>G . (4.99)

z
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4.5 Next-to-leading order in 1/m

I calculate the symmetric derivative acting on the light quark field at first and after-
wards I replace the boundary fields by the source fields

[VE(2)G(z)]p
[2 (AM Ui(2)r(z + ai) — A;}Ui(gg—aE)*lzpl(x—ai)) Q(z)]F. (4.100)

At tree level this expression reduces to

-1

AL o ALi o
L [0+ ada@)] - 5 [0 - ada@)] |

g [ ta)\ ! (@ — ai)
S 20\ dp(z) 2 5p1(2)

(4.101)

It emerges for the tree level correlation function

-1
<tr { [)\21; (@ +ai)t - )2\1; HI(O) (x — a’Z)T] %H}(IO)(ZL')}>
G
<t1"{ [)\2“ xi(zo)" — ;\ZM(UCO)T] il (x )}> (4.102)
G

and I make use of the light quark matrices (4.71) at tree level

St = 41a <tr {Xl(fﬂo)T [)‘ITZ'I - /\l’i] %H}EO)@)D
1

=50 2 sin(a 9L ) <tr {XI(CUO) %P+}>G (4.103)

DO |

i =

DO |

G
2a

If T assume equal periodicity angles in all space directions 6y, ; = 6y, and 6y; = 6;, 1
obtain the following tree level formulation

: 0
fstat 0) _ Sln(a [}j) stat (0)
oA Sln( 91 ) 0A

(4.104)

Finally the tree level results for the 1/m correlation functions in the axial channel
are

th(?‘; ©) ('IOa H_ia gh)
1

= 1a : <sin(aez’i) + sin(agll_;z’)> <tr {Xl<f’30)T’YiP+}>Ga (4.105)

and
£ (o, 61, 61)

= i (sin(aez’i) - Sin@?)) <t1" {XI(SUO)T%‘P+}>G- (4.106)

7
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5 Tree level matching

The matching of the QCD and HQET observables constructed from the axial and
vector correlation functions is discussed at tree level. I show the behaviour of the
parameters of the effective theory for the time and space components of the currents
in 1/2z. The results indicate a trend of the 1/z% corrections of the coefficients. In the
case of a non-perturbative matching one defines the quantity z = LM, where M is
the RGI quark mass and L is the extent of the matching volume. With this definition
the scale of the bottom and charm quark mass can be specified. To set my values in
correspondence to the simulations with the ALPHA collaboration' I choose for the
matching volume L; = 0.5fm and the quenched RGI quark mass for the charm quark
M, = 1.60(2)MeV [35] and for the bottom quark M;, = 6.758(86)MeV [36]. That
implies a bottom scale of 1/z, = 0.058(5) and a charm scale of 1/z. = 0.247(126).

To study the coefficients as a function of 1/z I determine equations for z = mqL =
4,8,12,16,20,24,28,32,64 and different 8 combinations. In the following chapter
I illustrate my calculations for a full set of HQET parameters at tree level. The
charm and bottom scale are presented by grey dashed lines. In the discussion of
the results in 5.4, a linear and quadratic fit of the determined tree level values are
shown, to ascertain the behaviour of the coefficients in O(1/2%) and higher orders.
The quadratic fit is performed with all values for z = 4,...,64. The linear fit of
the results is performed with the values for z = 16, 20, 24, 28, 32 and 64. This region
overlaps with the scale of the b-quark mass. Since the non-perturbative matching
is performed in the region of the b-quark mass, a linear behaviour of the tree level
results would indicate that higher order corrections in 1/z can be neglected.

5.1 Continuums extrapolation

To obtain the desired continuum limit of the observables I have to apply an extrap-
olation of the data to a/L — 0. The continuum extrapolation is governed by a fit
function, which produces the best developing of the numerical data. From [37] I infer
the fit routine for my problem to be the Linear Least Squares Function. An optimal
set of parameters {ax} is imposed and governs the fit function. The parameters are
constituted by the Merit function

=1

"http:/ /www-zeuthen.desy.de/alpha,/
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5 Tree level matching

This function describes the difference of the data point y; from the value of f(z;) =
ZQ/‘; 1 0k Xk (z;), which are weighted with measurement errors o;. To obtain the
optimal fitroutine in this case can be considered by minimizing (5.1). It is essential
to evaluate the matrix equation

M
Zakjaj = Bk (5.2)
j=1
with
o X (1) X (:)
oy = 3 S Nilz) (5.3
i=1 i
N
_ yi Xk ()
By = Z . (5.4)
i=1
For the continuum extrapolation of the observables I choose the fit function
fla/L) = ai(a/L)* + ag(a/L)? + az(a/L)? + a4 (5.5)

containing no linear term due to O(a) improvement of the observables.

The continuum limit of the observables can be computed by extrapolating data
from L/a = 84,...,256, although for z = 64 only the finest resolutions are con-
sidered. Discretization effects occur with z = 64 and consequently a meaningful
continuum limit extrapolation is not feasible. Thus one has to extrapolate the data
from lattices so that y2?/dof ~ 0.52. This restriction provides an acceptable contin-
uum limit. If not otherwise specified I use the last 50 lattice points. The errors of
the observables are determined by error propagation. I refer to appendix C for more
details.

5.2 Axial Matching

5.2.1 Wkin

I can extract wyi, from the relation (3.16) up to O(#) I use the matching at
T = L/2 and for isotropic and equal angles 6, = 6; = 6 I obtain

R — Rstat 1
AiﬁmLf:%m+O( ). (5.6)
1

The observables are given as ratios of correlation functions. For a detailed definition
of the observables I want to refer to 3.3. With the tree level relations (2.52) and
(2.54) the observables yield

_n J1(01)
m=m(55) 57)

Rkin — %(T —a) <Cos(a9Ll) - cos(a%)) . (5.8)

m?2

2dof means degrees of freedom
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5.2 Axial Matching

Determination of

o 1 9,,8) = (0510

O e : ) =(1.0,1.5 T
+ : (v 83 = Ei 5,0 5; : :

0.48 |- o, .

0.46 - 3 i

.o

0.44 - .

042 | .

2(Ry-R,*™) 1 (LR

0.4 F i
038 |- g

0.36 - i

0.34 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

Figure 5.1: Tree level results for the determination of wy, for different # combina-
tions.

In this case only R; depends on the heavy quark mass. The other observables are
determined in the static approximation.
Regarding that the classical value for wy;y is ﬁ, I consider wyip - Mg, With mq = 2/L

Z(Rl — Ritat)cl 1 1
————— = -+ 0(—). 5.9
(Llem)Cl 2 + (Z) ( )

From this equation one expects that wyi, - 2/L is a linear function in % with the

approach to % for % — 0.
The continuum limit of L - lein can be extracted analytically

: L
L-R=p. % (2 - a> (cos(aeLl) - cos(a%))
L* L 1a%6? 1 a%63
= (%2‘6@) ( ‘zp‘”zp)
3 a
a/L—0 3
302 (03 03) (5.10)

In figure (5.1) the results for (61, 62) = (0.5,1.0), (1.0,1.5) and (1.5,0.5) are shown.
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5 Tree level matching

5.2.2
Determination of cA(l)
-0.5 — T T T T
T : (61, 85) =(0.5,1.0) —e—
| (61, 87) =(1.0,1.5)
2 . (67, 65) = (1505) e
T e
* e
= 055 T e : .
= : :
5‘ 3
= z . ;
~ -0.6 ' ' B
E : :
'S .
2
3
& 3 3
S 065 ‘o 7
~ |
i.
0.7 - B
1 i 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

(1)

Figure 5.2: Tree level results for the determination of ¢, ’ for different 6 combinations.
I used the results from wy;, for the associated 6 combination.

I can extract cg) from the relation (3.17) up to O(#) If I demand zero momen-

(2)

tum, I do not get sensitivity to c,~, because the correlation function stat s zero for

A(2)
Oy, = 6;. 1 use the matching equation at "= L, 9 = T'/2 and isotropic angles. c&l)
can be determined from

Ra — Rstat _ WkianAin 1)

. =cy - (5.11)
R t(1)
At tree level I obtain for the kinetic observable
6 0 0
kin _ 1y v2
R} = 370 (Cos(a L) cos(a 7 )> . (5.12)
The classical value of cg) is _W To show the z dependence of cg) it is a possibility

to plot c&l) - mq. Multiplying (5.11) with mq = z/L provides

2 [(Ra - REM) )ka (BE")al _ 7% +O(1/2). (5.13)
1

stat
LRA(I)

. a/L
The continuum limit of Lka can be again extracted analytically to L - RIX’“ a/:>0
(0 9 ) The prev1ously determined values of wyiy - Mq are included in the
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5.2 Axial Matching

determination. In figure (5.2) the coefficient is plotted for the combinations (01, 62) =
(0.5,1.0), (1.0, 1.5) and (1.5,0.5).

Determination of cA(z)

05 F 7 T ' ' @ & B0
; (| o h)
(I (61, B, 8y)=

06 -

0.7 : i E
08 | . 5 i

09 | ]

Z(Rp)er - AinRa e caADRA®)y I (LRA@)

0 0.05 0.1 0.15 0.2 0.25 0.3
1/z

(

Figure 5.3: Tree level results for the determination of ¢ A) for different € combinations.

(1

I used the results for the coefficients wyi, and ¢ A) for the combination
(01,02) = (0.5,1.0).

5.2.3 ¢}

The coefficient cf) can be extracted from eq. (3.19) with 29 = T/2 and T' = L. If
one uses different periodicity angles for the light and the heavy quark one obtains

(2)

sensitivity to ¢y
RA — Wi Rkin _ (1)Rstat
n A (2)
Totat =cy - (5.14)
A(2)
I employ the observables for isotropic 6 combinations (6, 601y, 62,) = (0.5,0.5,1.0),
(0.5,1.0,1.5) and (1.0,0.5,1.5), with the use of 61} = 0 = 6. With the previously

determined values of CS) and wyiy for (601, 62) = (0.5,1.0) I can extract csf) - Mg by

z [(RA)Cl — Wkin (ka)cl o CE%) (Rit?l” J _ 1 +0(1/2). (5.15)

(LRjﬁ??t)) c ?
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5 Tree level matching

In figure (5.3) the 1/z dependence of csf) is shown.

5.2.4 In ZJ9ET and In Z3t

The renormalization coefficient ZEQET can be extracted from eq. (3.18). With
xo =T/2 and T = L and isotropic angles for é'h = G_i = 0 1 obtain

(6a = Ci™) g = cf (pf))d — wign (TE) , = In 29T, (5.16)

At tree level the continuum limit of LT is 0. With equal periodicity angles for the

light and the heavy quark (5 16) has only sensitivity to the 1/m -coefficient c&). In
figure (5.4) the coefficient In ZA T is presented for # = 0.5,1.0 and 1.5. The static
quantity In Zztat can be obtained by dropping the term proportional to cg) in (5.16).

The dependence of 1/z is shown in figure (5.4).

5.2.5 ¢

The coefficient can be extracted from equation (3.31) by
(RAV21 - RSAt\E}tm)c] — Wkin (le‘xiegl)cl (3)

=cy - (5.17)
Rstat )
< A\/g cl

I use equal periodicity angles for the light and the heavy quark, 01 = 01, = 01 and
021 = 92h = 92 At tree level the axial correlation function fay,, has no sensitivity

to cg). The continuum limit of Lka can be determined analytically to

in  a/L—0 3
LRy, "— 5 (63— 01). (5.18)

I employ the results of wyi, for (61,62) = (0.5,1.0) and determine the values of the

coefficient ¢\ - /g for (61,62) = (0.5,1.0), (1.0,1.5) and (1.5,0.5). They are shown
in figure (5.5).

5.2.6 CXL)

The coefficient can be extracted from equation (3.29) by
R Rstat) — Win (Rk1n> _ C( ) <Rstat>
( Ap T cl k cl A A(S) o (4)

=Cp -
stat
k cl

(5.19)
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5.2 Axial Matching
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Figure 5.4: Tree level results of the HQET (top) and static (bottom) renormalization
constant for different # combinations. I used the results of the coefficient
cg) for the combination (6;,602) = (0.5,1.0).
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5 Tree level matching
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0.5 . L T T

T (61,6,) = (0.5,1.0) o
1 (67, 65) = (1.0,1.5)
(61, 85) = (1.5,0.5) +-----

= e z

& 04 & : ; 4
K L i

e ]

= :
£ 03f i ’ i .
= ; z

>

<<

@

£ : A :

g 02 i ; 1
,l(\_g H H
y
o —

2 | |

o 01 3 3 .
z :

19 :

Nooof . .

.
1 N 1 1 1 ‘ 1
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

Figure 5.5: Tree level results for the determination of cfi’) for different # combinations.

I employ equal periodicity angles for the light and the heavy quark, 01 = O = 61
and 921 = Ggh = 02 and use isotropic angles. The continuum limit of Lka at tree
level is

Lka a/L—0 3 (

05 —07) . (5.20)
I use the results of wy, and cf) for (61,62) = (0.5,1.0) and determine the values of

the coefficient c&) mg for (61,62) = (0.5,1.0), (1.0,1.5) and (1.5,0.5). In figure (5.6)
the behaviour in 1/z is presented.

5.2.7 ¢

The coefficient can be extracted from equation (3.31) by

in 3 sta
(RAV21)CI — Wkin (RIAVM) cl ( ) <R ' t( )) (5)

21

=cC
A
( Rstat( >
5
V21) cl

by using unequal periodicity angles for the light and the heavy quark, 01 #* 01n and
021 % th Furthermore with the use of 911 = 921 = 91 the static observable RStat is
zero. At tree level the correlation function fay,, has no sensitivity to the 0(1 / m)

(5.21)
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5.2 Axial Matching
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Figure 5.6: Tree level results for the determination of ch) for different # combinations.

(4)

coefficients c, (6)

the coefficient 6(5)

figure (5.7) the behaviour in 1/z is shown.

5.2.8 ¢

The coefficient can be extracted from equation (3.30) by

(RAk)cl — Wkin (ka) o (3) <RStat )
cl

and ¢, ’, thus I only obtain a dependence on 2 and cff). I determine

A

. for the combinations (6y,61y,02n) = (0.5,1.0,1.5),(1.0,0.5,1.5)
and (1.5,0.5,1.0) by including the values of wyi, and cg) for (61,602) =

(0.5,1.0). In

(5.22)

by using unequal periodicity angles for the hght and the heavy quark, 01 #* O1n

and Oy # oy,

Furthermore with the use of 911 = 021 = (91 the static observable
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5 Tree level matching
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Figure 5.7: Tree level results for the determination of CS) for different # combinations.

(6)

is again zero. I determine the coefficient c,” for the combinations (6, 01n,02n) =
(0.5,1.0,1.5),(1.0,0.5,1.5) and (1.5,0.5,1.0). I employ the results of wip, CS) and
CXL) for (01,62) = (0.5,1.0) and the results of csf) for (61, 01n,0on) = (0.5,1.0,1.5).

The 1/z dependence of cgf) is shown in figure (5.8).

5.2.9 In Zy9T and In Z3

The renormalization coefficients can be extracted with 7= L and xg = T/2 from
equation (3.28) by

3 4 i
(Car = Zt,;“)d—c&’<p;t§$> -y (ﬁg&) — win (WD), = I ZJ 9T (5.23)
cl cl

with the use of isotropic angles and 6, = 6, = 0. In the continuum limit the tree
level result of LUK is zero, thus there is only sensitivity to the O(1/m) coefficients
CS) and cgf). I employ the values of CS) and cgl) from (61,02) = (0.5,1.0). The
renormalization constants in HQET and in the static approximation are determined
for the angles # = 0.5,1.0 and 1.5 and shown in figure (5.9).
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5.3 Vector Matching

Determination of cA(e)
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Figure 5.8: Tree level results for the determination of cﬁf) for different # combinations.
For a better readability are the observables from (5.22) replaced with an
0.

5.3 Vector Matching

The determination of the coefficients obtained by the vector matching is analogous
to the determination in the axial-vector channel.

5.3.1 CS)

The coefficient can be extracted from equation (3.20) by

(Rv, — Ri}gt)d — Wkin (R‘S;’)d _ Ci/l) (5.24)

using isotropic angles for the light and the heavy quark, (61,62) = (0.5,1.0), (1.0, 1.5)

and (1.5,0.5). The tree level continuum limit of LR{‘}S can be obtained analytically
and I employ the tree level results of wyiy, for (61,602) = (0.5,1.0). The 1/z dependence

of c&,l) is shown in figure (5.10).
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5 Tree level matching

Determination of In ZAKHQET
L T T T T
0.2 : i .
; .
5 ; ;
$ |
& o015} : : .
S : :
< : :
o : :
3 | ;
o ; ;
5 i :
>~  01r 3 3 b
o : :
< ; :
= i :
g : :
% : . :
& 5 . 5
~ 005 | : * : E
< : :
S : :
; N :
; H :
. |
¢ 7 i
0O b= e L 1 1 1 il =
0 0.05 0.1 0.15 0.2 0.25 0.3
1/z
Determination of In ZAkStat
0 LI T T T T
* : 0=05 r—e—
2o : 0=1.0 :--e--2
-0.05 |- et . =151 o
o s f
* e
0.1 F Pe ° i E
. :
0.5 | : . -
. |
s 02} g
g ° :
w ™ ‘
N 025 § i,
< 3
N :
03 . 4
-0.35 i g
io
0.4 | E
-0.45 |- R .
L I I I )
0 0.05 0.1 0.15 0.2 0.25 0.3
1/z

Figure 5.9: Tree level results of the HQET (top) and static (bottom) renormalization

constant for different 6 combinations.
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5.3 Vector Matching

Determination of cv(l)
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Figure 5.10: Tree level results for the determination of cs ) for different 6 combina-
tions.

5.3.2 ¢}

The coefficient can be extracted from equation (3.22) by

=’ (5.25)
(Rstat )
cl

using isotropic but different angles for the light and the heavy quarks (6, 011, 2n) =
(0.5,0.5,1.0),(0.5,1.0,1.5) and (1.0,0.5,1.5). Furthermore I demand 6} = 03 = 6,

and obtain Ri}gt = 0. I employ the tree level results of wy, and CS) for (01,02) =
(0.5,1.0). The 1/z dependence of cg) is shown in figure (5.11).
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5 Tree level matching

Determination of cv(z)
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Figure 5.11: Tree-level results for the determination of c&,) for different 6§ combina-

tions.

5.3.3 In Zy%" and In Z3*

The renormalization coefficients can be extracted with 7' = L and zo = T/2 from
equation (3.21) by

) .
(Gvo — G4 — b, <pi;§f)> — win (T§1) = I Zy 2T (5.26)
cl

with the use of isotropic angles and O_i = 5}1. In the continuum limit the tree level
result of L\Ill{:}(r)‘ is zero, thus there is only sensitivity to the O(1/m) coefficient cg,l ).
I employ the values of cg,l ) from (01,62) = (0.5,1.0). The renormalization constants
are determined for the angles 6 = 0.5,1.0 and 1.5 and their behaviour in 1/z is shown

in figure (5.12).
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5.3 Vector Matching
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Figure 5.12: Tree level results of the HQET and static renormalization constant for

different @ combinations. I used the results for the coefficient cg) for
the combination (6;,62) = (0.5,1.0).
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5 Tree level matching
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Figure 5.13: Tree level results for the determination of cg,) for different # combina-
tions.
3)
5.3.4 ¢,
The coefficient can be extracted from equation (3.26) by
RV _ Rstat — s Rkin
Vv kin vV 3
( 11 11)cl ( 11)cl — cs/)' (5_27)

RSta;>
< V(ll) cl

I use equal periodicity angles for the light and the heavy quark, 511 = 5111 = 51 and
fo1 = B2, = 02, however to obatin no sensitivity to c@ I demand 60y, = 62, = 0.

The continuum limit of LRI\‘}?1 can be determined analytically to

- 1
LRy 30 5 (05, +05. 01, —65.). (5.28)

I employ the results of wyi, for (61,62) = (0.5,1.0) and determine the values of the
coefficient cg) -mq for (61,62) = (0.5,1.0),(1.0,1.5) and (1.5,0.5). In this case 6;,
for i = 1,2, only label the y and z component of the angles, with 6; , = 0; . = 0;.
The results are shown in figure (5.13).
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Figure 5.14: Tree level results for the determination of c&,) for different # combina-
tions.
4
5.3.5 cs,)

The coefficient can be extracted from equation (3.24) by

(Rv — R{Y),, — win (RY™), — &) <Ri;(a3t)>cl (4)

= Cy; .
( Rstat ) v
v(4) a

(5.29)

I use equal periodicity angles for the light and the heavy quark, 511 = 51}1 = 6, and

fo1 = 69, = 0. In comparison to the determination of C$ I demand 6; , # 0 and
. . a/L—0

I use isotropic angles. The continuum limit of LRI\‘}“ at tree level is LRI\‘,ln a/;)

3 (62 — 67). 1 use the results of wy, and cs’) for (61,602) = (0.5,1.0) and determine
the values of the coefficients cg;l) -myq for (01, 62) = (0.5,1.0),(1.0,1.5) and (1.5,0.5).

In figure (5.14) the tree level results for c& ) are shown for different  combinations.
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5 Tree level matching

Determination of cv(s)
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Figure 5.15: Tree level results for the determination of ¢,” for different 6 combina-
tions.

5.3.6 cl’

The coefficient can be extracted from equation (3.27) by

(val)cl — Win (ka )C _ Cg/) (RSt(3>)
c __ 6(5)
-V
stat
<RV§51 )cl

by usmg unequal periodicity angles for the hght and the heavy quark, 911 % 01h

and 021 =+ 92h Furthermore with the use of «911 = 921 = 01 the static observable
(3)

Ri}flt is zero. Regarding to the determination of ¢y;”, I demand the z components

of the angles to be zero, 6, = 6ih, = 0onz = 0, to cancel the terms propor-
tional to cg;l). I determine the coefficient cg}r’) for the combinations (6, 01y, 09n) =
(0.5,1.0,1.5),(1.0,0.5,1.5) and (1.5,0.5,1.0). In this notation the y and z compo-
nent of the appropriate angles are equal. The tree level expression of (LRI\‘}I‘I)CI is

(5.30)

(92hy + Gzhz Olhy Glh Z> I employ the results of wyjn and cg}g’) for (01,02) =
(0.5,1.0). The behaviour of c&,) in 1/z is shown in figure (5.15).
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5.3 Vector Matching

Determination of cv(e)

LI T T T T
(6, 8, 8)=(0.5,1.0,1.5) ‘e
(8, 8, 8,)= (1.0,0.5,1.5) :----- :
& 11 (e, 6, 6,)=(1.5,0.5,1.0) —e— : E
3 f
5
& o5t 5 i
v>
(8] H
P~ A :
S’ H
0 :
S :
¢ of : | 1
g . f
9 i
i"’z) . .
‘u) H H
c . :
ZO -05 o . 3. : B
£ I. - :
<3 »* :
3 |
£ 1t : _
= i
1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

Figure 5.16: Tree level results for the determination of c$ ) for different 6 combina-
tions.

5.3.7 ¢V

The coefficient can be extracted from equation (3.25) by

© _ (Rv) e — Wiin (Rl\{/in)cl - Cg) (Ri}@ﬁ)d
CV - (Rstat )
v© )4

EACORSACH)

(5.31)
(Rstat)

v (6)

by using unequal periodicity angles for the hght and the heavy quark, 0, #* 01,
and 021 % 92h Furthermore with the use of 911 = 921 = 01 the static observable

Ri}at is zero. I determine the coefficient cg,) for the combinations (6,011, 602n) =
(0.5,1.0,1.5),(1.0,0.5,1.5) and (1.5,0.5,1.0). The tree level expression of (LRI\‘}H)C1
is % (th — 0%}1) I employ the results of wyin, ¢ s’) and c( ) for (61,02) = (0.5,1.0) and

the results of ci,) for (61, 011, 02n) = (0.5,1.0,1.5). In figure (5.16) the 1/z dependence

of c§,6 ) is shown.
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5 Tree level matching

5.3.8 In Z{/9FT and In Z3™

The renormalization coefficients can be extracted with 7' = L and zp = T'/2 from
equation (3.23) by

. 3 . 4 5 in
((V - Gftat)cl - ng) (Pi;?st))cl - cﬁ,) (p?;%)cl — Wkin (\Ill\‘/ )Cl =1In ZEQET (5.32)

with the use of isotropic angles and 6, = 6. In the continuum limit the tree level

3)

result of L\I’l\‘}“ is zero, thus there is only sensitivity to the 1/m-coefficients cy;” and
cg;l). I employ the values of cg) and cg‘) from (01,02) = (0.5,1.0). The renormal-
ization constants in HQET and in the static approximation are determined for the

angles §# = 0.5,1.0 and 1.5. and shown in figure (5.17).
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Figure 5.17: Tree level results of the HQET, In Z\},IQET, and static renormalization
constant, In Z%}:at, for different 6 combinations.

73



5 Tree level matching

5.4 Discussion of the tree level HQET parameters

One can see from figures (5.1) to (5.17), that the coefficients arrive at the classical
continuum values for 1/z — 0. The classical values are displayed in table (3.1).

For a discussion of the behaviour of the coefficients in the region of the heavy
quark mass, I include a linear and quadratic fit of the coefficients in the plots, see
figures (5.18) to (5.30). For large z the quark mass lattice corrections increase and
the discretization effects implicate large errorbars, i.e. for z = 64. The tree level
result tables are presented in appendix C.

For a discussion of the effective higher order coefficients I include plots, which
show the behaviour of z x (coeff. — classical value) in 1/z. To obtain a feasible linear
fit through the points in the region of small 1/z, I exclude the points for z = 4
and z = 8. For small 1/z the higher order corrections are expected to be small and
there the fits must be asymptotically more and more sensitive to the leading order
correction. The effective coefficients are shown in figures (5.18) to (5.30).

At first sight the coefficients show a linear behaviour in the region of the b-quark
mass. This is also confirmed by the linear fits through the data, which show that a
good linear approximation can be achieved. Although for cg), cff) and cs;l ) in figures
(5.22), (5.23) and (5.28) small deviations from the linear fits to the data can be seen,
especially for the green values, which correspond to the 6 combination concerning
the largest heavy quark angles. The quadratic fits show a good approximation of the
data in the whole region for all coefficients. Besides in (5.24) and (5.26) the quadratic
fits of the coefficients cgf) and cg,Q) corresponding to the combination (0.5,1.0,1.5)
show deviations to the data in the region of the b-quark mass. Here the linear fits
show a more accurate behaviour of the points.

The slopes of the fit functions show a influence of the heavy quark angles. The
values of the slopes increases with increasing 6. In figures (5.18), (5.19), (5.21) and
(5.25), (5.27) the slopes increase from (0.5,1.0) over (1.5,0.5) to (1.0,1.5). In the
case of CXL) the slopes of the linear fits of the different # combinations do not show
the same behaviour. Here the data points with the most sensitivity to the angles
are from (0.5,1.0). Concerning the coefficient 053) in figure (5.20) the value of the
slopes increase with (1.0,0.5,1.5) over (0.5,0.5,1.0) to (0.5,1.0,1.5), where the last
two numbers give the components of two different heavy quark angles. In this case
the conclusion, that the slope for the lar(g?st (h;aavy ql(la)rk angles shows the most

5 (3 5

sensitivity, is verified, as in the cases of ¢, ¢y;” and ¢y,’. This is not the case for

the HQET parameter c&?) in (5.30), where the 6 combination (1.5,0.5,1.0) has the
largest slope. In figure (5.23) one can see a change in the signs of the slopes for

cf). For the red points (1.5,0.5,1.0) one has a positive slope and the behaviour of
the data is nearly linear in 1/z, where as the quadratic or higher order terms occur
with higher heavy quark angles. The slopes of the fit functions for the combinations
(1.0,0.5,1.5) and (0.5,1.0,1.5) are negative and the largest slope is the one with the
largest heavy quark angles. A similar behaviour shows the coefficient c$1 ) in figure
(5.28).

In the figures (5.18) to (5.30) the effective O(1/22) coefficients can be estimated
from the y-intercept of the linear fits in the lower graphs. With an accurate linear
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5.4 Discussion of the tree level HQE'T parameters

fit of the data points for large z one obtains an indication of the leading order
corrections. In all figures a feasible fit through the data points for small 1/z is
possible, whereas the points for z = 64 do not contribute very much due of the large
errorsbars. To get an idea of the magnitude of the leading order corrections, the
values of the y-intercept are tabulated in (5.1) and (5.2).

The behaviour of the axial and vector renormalization constants at tree level is il-
lustrated in (5.31) to (5.34). The HQET quantities, which are shown at the top of the
figures show a quadratic behaviour in 142. In the range of [—0.0003(4), 0.0333164(1)]
the behaviours of the values of In ZEQ T and In ZEQET are very similar. They have

a higher sensitivity to the angles, where as the quantities In ZE}?ET and In ZgOQET
ZHQET
Vo

show more sensitivity to 1/z. The behaviour of In ZE}?ET and In are almost
identically and in the range of [0.001(1),0.2027507(4)] they are of the same order.
For the static quantities In Z3", In Zf_{ft and In Z\S}St the quadratic fits coincide with
the values. The linear fits in the region of the bottom quark mass describes the
behaviour of the data accurately. This is not the case in figure (5.34) for In ZF*.
The 1/22 effects have a great impact on the behaviour, especially for § = 1.5, how-
ever a linear approximation in the region of the bottom quark mass is possible. Just
as concluded in the latter discussion of the HQET coefficients, the renormalization
constants show an increasing sensitivity to 1/z when the angles are increased. When
comparing the HQET coefficients to HQET renormalization constants one can see,
that the coefficients are nearly linear in 1/z in the b-quark mass region, whereas
the constants show a rather quadratically behaviour. The 1/z corrections of the
HQET coefficients are small compared to the 1/z corrections of the constants. This
can be explained by the fact that the coefficients are of O(1/z) at leading order
themselves, so that their corrections are of absolute order O(1/2%) only, whereas the
HQET renormalization constants receive O(1/z) corrections to their leading order
behaviour.
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5 Tree level matching

Linear and quadratic fit of w,
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Figure 5.18: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cA(l)
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Figure 5.19: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the

values z = 12, 16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of cA(Z)
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Figure 5.20: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cA(S)
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Figure 5.21: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of cA(A)
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Figure 5.22: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.

80



5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cA(s)
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Figure 5.23: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of cA(e)
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Figure 5.24: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cv(l)
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Figure 5.25: Linear and quadratic fit of the HQET parameters (top). The linear fit

only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12,16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of cv(z)
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Figure 5.26: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cv(3)
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Figure 5.27:

Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12,16, 20, 24, 28, 32, 64.
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5 Tree level matching
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Figure 5.28: Linear and quadratic fit of the HQET parameters (top). The linear fit
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only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12,16, 20, 24, 28, 32, 64.



5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of cv(s)

T
linear fit (é 6, 61)= .
05 = quadratic fit (9,, 6, Gh )=
linear fit (), 6y, 6,)=
3 04 : quadratic fit (6, Gh, Gh )= i
5 . ‘e, linear fit (), 6y, 6,)=
& R . uadratic fit (6, Gh, Gh )=
g o3r AN Tl
= * e,
’@‘H 0.2 |
=
Q:, e,
o 0.1 | .
>
Q
£ of :
=2 Dw ;
> . :
£ o01f § ~
g .
5 02 . ; E
g \
= -03 - : y
N ~ :
04k 4
: 1 1 1 T
0 0.05 0.1 0.15 0.2 0.25 0.3
1/z
cv(s): effective coefficients of O(1/22) and higher
0 LI T T
: (el, eh, eh) 054.015) o
; 8,9=(1.0,0.5,1.5) :--e---
(6|, h' Gh) 1. 5,0 5,1.0) —e—i
Ab e . E
2 o .gg”;”i. rrrrrrr @i @ - oosssomsssosooosmsooTTosTTITooTIIITIIIIIINTT
o 3
S :
" ?
1E :
* H H
N N : :
4 | i 4
e
5} | 4
i 1 ‘ 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

Figure 5.29: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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5 Tree level matching

AR @, -0, PI00-c, D00, B0 JiLo®)

12
10
8
S
—
+
o 6
LE
g
>
o
X 4
2
0
-2

Figure 5.30:

88

Linear and quadratic fit of cv(e)

L T T .
linear fit (8, 8y, 6,)=
quadratic fit (9,, Bh, Gh) . .
11 linear fit (8, 8y 6,)= e :
quadratic fit (), 6p; eh) Pl
linear fit (), 6y, 6,) fad
quadratic fit (8, Bh‘ 6) :
05 i
0 ]
1 -—-7‘7—"‘ -
) 1 i 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3
1/z
cV(G): effective coefficients of O(1/22) and higher
T ' ' (el, eh, 8= (051.015) o -
o ; (8), B, 8,)=(1.0,0.5,1.5) :--o--
}i,*‘ ® eh, 8y)= (15,0.5,1.0) -—o—
— . :
e e : —
%0
o
1 i 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3

1/z

Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of In ZAHQET
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Figure 5.31: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of In Z,_\kHQET
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Figure 5.32: Linear and quadratic fit of the renormalization

(top) and in the static approximation (bottom).

considers the data for z = 16, 20, 24, 28, 32, 64.
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5.4 Discussion of the tree level HQET parameters

Linear and quadratic fit of In ZVOHQET
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Figure 5.33: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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5 Tree level matching

Linear and quadratic fit of In ZVHQET
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Figure 5.34: Linear and quadratic fit of the renormalization coefficient at HQET

(top) and in the static approximation (bottom).

The linear fit only

considers the data for z = 16, 20, 24, 28, 32, 64.

92



Summary

In this work I determined a full set of HQET parameters at tree level only using
two-point correlation functions. From the parameters and renormalization constants
determined from the axial and vector matching a dependence in 1/z can be inferred.
I evaluated the parameters of table (3.1) up to order 1/m?2. All my continuum limit
results approach the desired classically expected values. The behaviour of the coeffi-
cients was discussed in 1/z for different combinations of the angles for the light and
the heavy quarks éi, gh.

To summarize my results I present in tables (5.1) and (5.2) the effects in O(1/z)
and O(1/z?). Furthermore the § combinations, which show the most dependence
on higher orders in 1/z are included. The magnitude of the effective coefficients of
the O(1/2?) terms can be concluded from the y-intercept of the graphs in the lower
figures of (5.18) to (5.30).

I conclude from the results that the sensitivity to 1/z increases with higher angles
of the heavy quark 0y, for the most coefficients. I illustrated the behaviour of cg)mq
in my graphs, where X = A,V and ¢ = 1,...,6, and I included fits to reveal the
best approximated behaviour of the tree level coefficients in the region of the b-quark
mass. A linear fit through the data points provides a satisfying approach. Therefore
an feasible quadratically behaviour in 1/z in the region of the bottom quark mass of
the coefficients can be concluded.

0 combination with the

HQET O(1/z) O(1/2%) in smallest and largest
parameter the range of sensitivity to 1/z
Wkin 0.5  [~0.5174(6), —0.5000(1)] (0.5,1.0), (1.0, 1.5)
il 0.5 [-1.3748(7), —0.5161(2)] (0.5,1.0), (1.0,1.5)
) 0.5 [~4.9247(2), —2.2469(8)]  (1.0,0.5,1.5), (0.5,1.0,1.5)
B 0.5  [~2.4583(8), —2.1962(8)] (0.5,1.0), (1.0, 1.5)
B 1.0 [~0.0012(3),0.2523(5)] (1.0,1.5), (0.5, 1.0)
) 0.5  [~1.3260(9),0.3053(2)]  (1.0,0.5,1.5), (0.5,1.0,1.5)
¥ 1.0 0.034(2),1.634(7)]  (1.0,0.5,1.5), (0.5,1.0, 1.5)

Table 5.1: O(1/%) contributions of the axial HQET parameters.
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Summary

6 combination with the

HQET O(1/z) O(1/2%) in smallest and largest
parameter the range of sensitivity to 1/z

el 0.5 2.1950(6), 2.488(1)] (0.5,1.0), (1.0,1.5)
7 0.5 [~0.077(1),1.291(3)]  (0.5,0.5,1.0), (0.5,1.0,1.5)
) 0.5  [~1.1033(4), —0.7495(3)] (0.5,1.0), (1.0, 1.5)
Y 1.0 [~0.6574(4),0.1929(3)] (1.5,0.5), (1.5,0.5)
Y 05  [-4.816(1),—1.0356(4)] (1.5,0.5,1.0), (0.5,1.0,1.5)
9 1.0 0.321(2),11.739(3)]  (0.5,1.0,1.5), (1.5,0.5,1.0)

Table 5.2: O(1/z) contributions of the vector HQET parameters.

Furthermore the renormalization constants In Zx, where X = A, A, V, Vg, in HQET
and in the static approximation are considered. One can see the reduction of higher
1/z contributions in going from In ZEQET to In Z§2* for X = A, Ay, and Vp. Only the
renormalization constant In Z3f% reveals comparatively larger O(1/2%) corrections.

Previous calculations of matching parameters included in the action and time
component of the axial current were performed in [28]. The parameters have an
application in the non-perturbative determination of the b-quark mass, the hadronic
decay constant and enable the mass splitting. Further main quantities in the CKM
physics are form factors of semileptonic decays. These parameters can be extracted
from three-point correlation functions involving the space components of the vector
current. To get sensitivity to these parameters in the HQET expansion one can
choose three-point correlation functions, which are inspired by semi-leptonic decays

B — wlv, B — plv. (5.33)

For example correlation functions, which have a pseudo-scalar or vector current
at the boundaries and the spatial component of the improved QCD vector current

(Vi) = Duyuthn + acyd,uio by, in the bulk:

ful@o)oc Y {Ch()sh(v) (Vik), ()G (¥)15¢a(2)) (5.34)
u,v,y,z,k

hy(zo) o Y (G (v) (Vi) ()G (y)75¢a(2)) - (5.35)
w,v,y,z,k,i

These three-point functions correspond to the transitions and it would be possible
to include them in the calculations of the HQET parameters. This consideration can
be a perspective for future work. Tree level QCD values already exist [38]. Although
with two-point correlation functions a higher numerical precision of the coefficients is
expected in the non-perturbative determination, it would be interesting to compare
the two-point results with the results of the three-point correlation functions.
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Figure 5.35: Three-point Schrédinger Functional fy correlation function with
pseudo-scalar boundary fields.

One could consider to carry on with this work by including the 1-loop calcu-
lations, or even directly start with the non-perturbative matching including order
1/m-corrections.

The tree level study is a guidance to the non-perturbative calculations. With the
successful matching at tree level at hand, one now is in the position to extend the
non-perturbative programme by the observables introduced in 3.3. Those observables
were introduced based on the already existing observables involving the time compo-
nent of the axial current. They are chosen to provide useful information about the
HQET parameters. A further essential current, the vector current, was introduced
to make the set of coefficients complete. The expectation that the matching of the
tree level observables provide the classically expected parameters in the continuum,
was confirmed.
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Appendix A

Notations

A.1 Index conventions

In this work, the Greek letters u, v, ... label the space-time components and run from
0 to 3. Latin indices k,[,... run from 1 to 3 and represent the space components

of spatial vectors. The unit vectors are marked with a hat, g, k,....

Bold printed

letters represent a vector with three spatial components. The N? — 1 generators of
the gauge group SU(N) are indicated by a,b,.... T used the Einstein convention in

my work implying summation over repeated indices.

A.2 Dirac matrices

I used the chiral representation for the Dirac matrices
0 ey
A (eL 0> ’

€y — —1, €L = —iak.

where the 2 X 2-matrices e, are

The Pauli matrices o are given by

_ (0 1 (0 —i (1 0
=1 0)0 27 o) 7\ -1)-
In this representation the Dirac matrices have the following properties

Y =7 W} = — W =20
One can define the 75 matrix as v5 = y9y1727y3 and it has the features

=2, #=1, {57} =0

The hermitian ¢ matrices are defined through

)
Ouy = 5[')’;“ 'YV]

(A4)

(A.5)
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Appendix A Notations

and explicitly

o 0 . or O
ook = <0k > , 045 = 1€k (Ok Jk> = €jjkO0k- (A7)

—0y,

A.3 Lattice conventions

The forward and backward derivatives on the lattice acting on colour singlet functions
are

O (z) = ;[ (= + af) — ¥ ()],

) (A.8)
N(x) = ;[¥(x) —d(z —ap)],
and acting on the left
& _ R _
D(@) 8 = g[d(e +ap) — ()],
- - B (A.9)
Y(x) 0} = ;@) —P(z — ap)]
The gauge covariant derivatives in the SF acting on a quark field are
V(@) = s NU(@)9(x + aft) +(2)], (410
Viab(a) = g[(z) = A Uu(z — ap) ™ (z — af)],
with the constant phase factor
Ay =@/l gy =0, —m<b <. (A.11)
They act on the left as
0(@) T, = L + ap)Uu(2) N, + B(@)) A
@)V} = L) — 9w — ap)Uu(x — ap))
The lattice version of the § functions are
1 3 3
Oap) = ~dr,0, 0(x) = [[d(xr), 0(x) = ][ d(an) (A.13)
k=1 HZO
and for the Heaviside functions
O(x,) =1 for x, >0,
(A.14)

0(x,) =0 otherwise.
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A.4 Renormalization group functions
o

A.4 Renormalization group functions

The renormalization group (RG) functions

pHl = B(g),
9m _ 1(g). (A.15)
55 =19

are defined in terms of the running coupling g, the running quark mass m and
a matrix element of a composite field ®. The perturbative expansion of the RG
functions is

B(g) ~ —g*{bo + b15° + ...},
7(g) ~ —g*{do + drg* + .. .}, (A.16)
(@) ~ —g* {0 +mg* +.. .-

The coefficients by = ﬁ(ll —2Ny), by = ﬁ(lO?) — 3Ny) and dy = ﬁ are
independent of the renormalization scale. The RG invariants are defined by the

integration constants of the solution of the RG equations as

A= N(bOQQ)_bl/(2b(2))e_1/(2b0§2) exp {_ fl]g dx [% + bo% _ b%c] }’

M = n(2bog?) /@) exp { — [T ax |55 — ] ], (A.17)
Pprar = <I>(2b0g2)—70/(2b0) exp {— fog dx [% — I%—Ox] },

whereas g, m and ® depend on the renormalization scheme pu.
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Appendix B

Tree level calculations for the correlation
functions

B.1 The tree level quark propagator

The tree level quark propagator can be obtained from [32]. For simplicity I use the
abbreviations

I
A(q) =1+ a(mo + §aq2) (B.1)
and
R(q) = M(q) (1 - e*Qw(q)T) — ido (1 + e*Mq)T) . (B.2)
I obtain for xg > yo
- - -1
81 (wo,y0ip) = — (20pf APHREY)) (B.3)

8 {(M (p*) — ivupi) (M (p*) — ipl) e @) wo-10)
(M(p™) +WOP0 —Z’Ykpk ) (M (p™) —i—zp ) —w(p™)(2T—z0+yo)
= (M) + (pf)? — i M ()] _'YO'YkPO Cpf) e @ otuo)

— (M) + ()2 = i M)y + ompd pf) e P IETmz0mm L

_l’_

and for xg < yo

2ipf A(p)RO)) (B.4)

/N

519 (z0, y0: p) = —
o (M) + ot — i) (M) — i) 0020
(M(p*) — ivpd) (M (p*) + ipg ) e~ P CT—v0+0)

— (MP(p") + ()2 — imM(p)pf — vompgpy) e <P wotwo)

— (M) + ()% — i M (0 )y + 207 Pk)e—w(P+>(2T—yo—mo)}

_l’_
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Appendix B Tree level calculations for the correlation functions

while for zg = yo I obtain

SfO)($0?y0;p) = A(Il)‘*‘)P (2@p0 A(p )R(p+)>71 (B.5)

< { (M ") = i) (M) = i)
+(M(P+>+Wopo — i) (M(p*) +ipg) e
— (M2(ph) + (p0)? — i M (P )y — fmkp“gp};) —w(p+)220
— (M2(p*) + (p)? — i M+ vompi o) € w(pﬂ(ﬂ’—zxo)} '

~w(pt)2T

B.2 Perturbative expansion of the correlation functions

I present the tree level calculation of the the correlation functions including the time
component of the vector current as well as the space components. The tree level
results for ky,, can be obtained by using £ = 1 and changing the normalisation.
Furthermore the tree level results for the correlation functions concerning the space
components of the axial current are shown. The tree level results for fay,, are
determined in the same way, thus I only give the results. The calculations follow the
structure in chapter 4.

B.2.1 Tree level results for ky, and iy

The correlation function is given by

= z— Z (Vo(z) Cu(y)1¢i1(2)) (B.6)

y,2z,k

with Vo(x) = ¥,(z)y0vn(z) at 29 = T/2. Applying Wick’s theorem and the heavy
and light quark matrices (4.49) provides

by = 1% 3 (i LG T @l @G g

Ysz,k
ab

= =% 3 (o Luos i G ol (@6, )}
y,z,k

_ _é 3 <tr {vmsHl(x)Ws%Hb(x)}>G : (B.7)
k

G

With the tree level expressions for the heavy and light quark matrices I obtain for
the QCD correlation function

kg)o) = _é Z <t1" {7k75X1($0)T’Y5’YoXb(a:0)}>G (B.8)

k

102



B.2 Perturbative expansion of the correlation functions

and for the static correlation function

K © = —é > <tf {’YW5X1($0)T75P+}>G : (B.9)
k

B.2.2 Tree level results for k77 and k76
0 0

The correlation functions are given by

6 —
i =15 2 (% 06w, (5.10)
YsZ,
6 —
ki,t(i}t) = ’5% > <Vo(2)(90) Ch(}’)%Cl(Z)> (B.11)
y,z,k
with
%l @) =BV = ) b1
V) = BV + Ty T B
Applying Wick’s theorem yields
6
K5 = —i5 2 (r {msha @)@ Van@aWlr ).,
y,z.k
6
#ij3 X (i {wnlvanoi@lbmta@aolel), @

and

CL6 — —
K = =iy > (r { sk @) 0@l V@@l })

G
Ysz,k

a®

—i%5 3 (e { sV @a@hsln @Gl ), - (B.14)

G
Ysz,k

The contractions [¢1(x)(1(2)]r and [¢n(2)CL(y)]r can be expressed through the quark
matrices. Whereas the contractions, containing covariant gauge derivatives, are at
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Appendix B Tree level calculations for the correlation functions

tree level

= 509 (2
TG0l = 5, (s =) (W)

_ sin(a@) M
=4 L Spn(y)
)(z
Va@G @l = 5 (M=) ( wl:éz;))

i o [ 99 (@)
= asm(af) “opiz) |

From this I obtain the tree level correlation functions

ki:(alt)(()) (.’E(), 0_17 gh)
0

_ 1 . ‘9h,i . 9111‘ + A
= 190 2 (sm(a I3 )—i—sm(aL)) <tr {%75)(1(330) 75%P+}>G

and

K (0,61, )

0

1 ., Ohy . b i
= 124 2 <Sln(a I ) — sin(a i )) <tr {%75)(1@0) 75%P+}>G-

N3

B.2.3 Tree level results for k355 and A3ES

The correlation functions are given by

ke = —— Z <V(3) (¥)G(z )>

y,zkz
6 —
R = - > (V@) & )maz) )
Y%,
with
V(@) = @)} (V- Vovmon@ o
V) = BV - T T
Applying Wick’s theorem I obtain the contractions
6
k3 = % > <tr {'719'75[7/}1( )C(2) 55y VS (2 )Cl(Y)]F}>G
v,z,k,i
6
- % <’Dr {VWE)[VZSM( )Gi(2) frvs iy (x )Ch(Y)]F}>
y,z,k,i
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B.2 Perturbative expansion of the correlation functions

and

a® = b
K55 = T O (i {wshia@)G @] [Viu@)a )l })

Yiz,k
a

6
- 53 (r {wsVin@a@ i@ e},

Y2,k

G

At tree level the correlation functions provide with (B.15) and (B.16)
0 - =
ki;?;)( )($07 917 ah)
1

Y
= Toa > (sm( T )+sn(

and

ki,t(it)(o) (o, 61, 01

i in Oh
= — 1n
120 £ Stia

) + sin(a

HL’k )) <tr {'ym5xf(xo)v5P+}>G

B.2.4 Tree level results for k735 and A3

The correlation functions are given by

B = -2 Y (0@ e ).
Y,2,k,i
6
B = =% 2 (V0 @) Gma) )
Y,2,k

with

V(@) = i(2)3 (V5 + V5 imn(a)
VO (@) = hi(@) 1V + T3)(o)

Applying Wick’s theorem I obtain the contractions

at xo =T/2.

CLG _
ko = i > <tr {%75[1/11( )G (@) Evs i [V un (2 )Cl(Y)]F}>

Y»z,k
ab

G

+5 2 (r {wslVin@a@srslin@ a0 )

Ys2Z,k,i

and

G

G

ik )) <tr {7k75X1T<370)75%%P+}>G

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)
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Appendix B Tree level calculations for the correlation functions

At tree level the correlation functions provide with (B.15) and (B.16)

ki,t?;)(o) (o, 61, 01

_ i . ah,i 91 t
= 1% > (sm(aL) —sin(a—*+ 7 )> <tr {%%Xl (:Eo)fy5%7kP+}>G (B.31)

and

ki/télet)(()) (.CL'(), 517 gh)
i < . Ong :
= — sin(a—>) — sin(a
12a . L

O}f)> <tr {’Yk’Y5XI[(£C0)’Y5P+}>G. (B.32)

B.2.5 Tree level results for fa, and f3®

The correlation function is given by

ab ~
fa, = o Z (Ap(x) &b (y)r5¢i(2)) (B.33)
y,z,k

with Ag(x) = () ys1(z) at 29 = T/2. Applying Wick’s theorem and the heavy
and light quark matrices (4.49) provides

ab —
fa, = i Z (tr {751G1(2) ¢ (@) yeys[von (2 e

vsz,k

=2 (i {B@EE e @EIr ) ),

v,z,k

= % Zk: <tr {Hl(x)T'kab(x)}>G . (B.34)

With the tree level expressions for the heavy and light quark matrices I obtain for
the QCD correlation function

Y= % > <tr {Xl(ﬂco)T%Xh(ﬂ?o)}>G (B.35)

k

and for the static correlation function

ot ) _ é 3 <tr {Xl(xo)f,ykp+}>G , (B.36)
k
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B.2 Perturbative expansion of the correlation functions

B.2.6 Tree level results for fstat and fstat
A AD

The correlation functions are given by

= i— > (AP Gay)sG@)., (B.37)
y,zkz
6 —
A =1 2 (A0 GG (B.38)
Yz,

with

AD@) = B3V = Thoswin() g B
4 y(2)5(Vy —$2)75¢h($) LT o

i

TN

—~

8
[

Applying Wick’s theorem I obtain the contractions

6 _
=it Y (r {sla@ 0 )]s Vi@ a0l g
k y,z,k,i

q®

+212y;i<tr{75[<1<z>¢1<x>‘€?1mm[whmc‘h(ynF}>G. (B.40)

and

6
th?*t) = - i% Z (tr {v5[¢1(2) ¢ (2)]F V5[ Vavn(@) O (y)]F ) g

vsz,k
6

+igs > (o {3l0@0@ Vs @GWIr}) - (B4

At tree level the correlation functions provide with the hermiticity property (1.92)
and (B.15) and (B.16)

f“&’; ©) (0, 61, 61)
1

. Oy .
= ~Ton a <s1n(aL) + sin(a
1y

Ql’i)> <tf {XI(%)%‘%PJFDG (B.42)

and

fSt(T; © ($07 51, gh)
1

6
= 20 d (sin(az’k) + sin(a

9““)) <tr {Xj (xO)P+}>G. (B.43)

107



Appendix B Tree level calculations for the correlation functions

B.2.7 Tree level results for fstat and fstat
A A©

The correlation functions are given by

a6 ~
stgt) =i Z <A§€5)(:c) Ch(Y)'YSCl(Z)>7

y,z,k,i
6
with
( ) ¢1 VS —+ % %7571@7% =1T/2
Al(vﬁ)( ) = (V3 +% )V5¥n(z =T

Applying Wick’s theorem I obtain the contractions

= 2 <u{[wl< )G @ik [ VEn (2 >51(y>]F}>

12 ¥yz,k,i G
a®
+122;; (r { V@0 @@} ),

and

CLG — _
thﬂt) =135 > <tf {Wl(ﬁf)Cl(Z)]Tp[Vilbh(w)él(y)h“}>G

Y»z,k
+i % 3 (i { VR @@ @G ]

y,z,k
At tree level the correlation functions provide with (B.15) and (B.16)
0 - =
fzt?)( (0, 61, 61)

1

B ., Oh ., O + ‘
= T3 > <s1n(aL) - sm(aL)> <tr {Xl (a;o)fyl’ykP+}>G.

and

fzt:}t) © (I‘o, 517 é’h)
k

=0 2 (e —snto)) (e (sl rpi ),

B.2.8 Tree level results for fay,, and f37r

The correlation function is given by

.a®

iy Z (A2(z) Go(y)m1¢(2))

Y,z

favy, =
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B.2 Perturbative expansion of the correlation functions

With the same calculation as for fa, only with a different ~ structure I obtain

f,@m = % <tf {7175X1($0)T’72Xb(370)}>(} (B.52)

and for the static correlation function

tat (0 ?
vaZf = 5 <tr {7175X1(900)T’72P+}>G- (B.53)
B.2.9 Tree level results for f*2; to fst3,
AV AV

The tree level results of the correlation functions can be obtained similarly to the
above calculations. I only present the results.

stat (0) 1 . Oy Y
e =—7 Z <sm(aL) + sin(a T )) <tr {7175X1(x0)T’y,-fng+}>G (B.54)

AV, 4
fStat 0) _ 1 sin(aeh—’y) + sin(ael’y) <tr {7175X1(x0)TP }> (B.55)
AV T4 L L J/a
stat (0) _ _1 : % o 91,7; Th.
fAVS) ==1 XZ: (sm(a T ) — sin(a 7 )> <tr {’yl’yg,)a(xo) 7172P+}>G (B.56)
fswt 0) 1L sin(agh—’y) — sin(ael’y) <tf {7175X1(x0)TP }> (B.57)
AV 4 L L e '
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Appendix C

Numerical results

C.1 Determination of the uncertainty of the HQET
parameters

Since the expressions are analytically known at tree level, but need to be evaluated
numerically, there is no statistical error, only machine precision. I assume an error of
all correlations functions of O(1078). The errors of the observables are determined by
error propagation. For the errors of the continuum limit I extrapolate the data from
L/a =170,...,256 ! and obtain the error by the difference to the continuum limit
values of the coefficients. The continuum limit of all observables was taken and is
not mentioned in the formula. For a better readability I label different combinations
of the angels by 6; and 6y and omit other arguments of the correlation functions.
The uncertainty of the kinetic quantity is zero because it was determined analytically
and only depends on the angles in the continuum limit and not on the correlation
functions anymore.

Awkinmq = A(Rl — R?tat) (Cl)

s
(L)

2
Acing = ( T AR - Rffat)>

A
2 97 1/2
Rkln C(l)m
+ < Rstat Awkmm‘l) + ( %stafcl A( Rf\t(alt)) (02)
A A

2 i 2 stat 2
~ LRkln LR ) e
AC(A)Tnol = (LRstat ARA) + (LRstat Awkmmq + LRsAtat AC(A)an

A2 A(2) A(2)
o S CH 212
+ S aq A(LRSt(aLf))> + ( S aq A(LRSt?Qt))> (CB)
<LR t(Qt) A LR t(Qt) A

Yfor z = 64 only the finest lattices are considered, that means half of the lattices which are used
for the continuum limit extrapolation.
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Appendix C Numerical results

Aln Z{¥ = [(AG)” + (AG)?
97 1/2

LPSt?It) (1) ? C( )Th
+ TAACA g | + AZ AL, : (C.4)

The errors of the observables are given by the error propagation of the correlation
functions:

A(Ry — R{™) = \/(ARy)? + (ARj™)2, (C.5)
m- () (). o
AR} = \/(Aft:zé §)>2 + (W)Q (C.7)
A(Rx = B§™) = \/(ARA)? + (ARE)2, (C8)
s () () e
o () CE) v

and

AfE 00\ [ AFE0))
stat __ A (1)
ARG A — |:< f/itat(al) ) +< fstat( ) >
2

stalt 0 2 Stalt 9 2
+(ﬁ§§AﬁW>)+(ﬁQ§AﬁW))]. (C11)

The error of RSt(Q) can be obtained analogous to (C.11).

Afa\?  (1Af)?
Alp = \/(ffAA> + <2f{1) s (C.12)
A stat 1A stat \ 2
- CEV -G
and
stat Af St<a1t) z:c(alt) tat i
APA(I) = fstat + WA A (C.14)

For the time component of the vector current the uncertainties are determined in
the same way by replacing the axial correlation functions with the vector correlation
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C.1 Determination of the uncertainty of the HQET parameters

functions.
The uncertainties of the HQET parameters from the matching of the space com-
ponent of the vector current can be obtained by the following formula:

2
3) - z
Acgl)mq - LRstat A(‘R\/ll - Ri}?})
vy
i 2 3) 201/
LR ' m
L AWkin V_3A(LRS C.15
+ LRst‘E}gt) WkinMq |+ LRSt(alt) ( ﬁ)) ) ( )

11

2
AC(4)777, — < A RV o Rstat

. 2 2
LRkln RStat
+ (VAwkinﬁlq> + ( V) Ac(s) Mg

stat
Rv(4)

[, Rstat [, Rstat v(4)

(3) 2 @ 2] 1/2
+<CV”“AUJQ%Q> +(CV"”AUJWM>> ()
v v

2 2 2
km LRstat
AP g = *__AR + L Awyinm + viy AP
At [ Rstat Vi1 Rstat kinTMq L RSt v Mg
Vg51) (5) (5)
2 9 1/2
(3),~ (5) =
Cyy'n - Gy’ m
st ALRYS) |+ | Ppe ALRYE) , (C.17)
LRV( 11 RV(5) Vit
11 11
2
(6) ~ _ z
Acy,'mg = <LR$?§) ARV)
2
ka Rst?;;) (3)
+ Awkmmq + v 7 My
( Ri% Rsvt?eﬂ
2
+ Ri;at) 4 Ri}ﬁ’g 5
R:;?Gg LR?;?G% a
2
Cy'm m
+ ( VRsta?A LRSt )) + ( \‘/ésta?A(LRSt ))
V(6) v (6)
2 2 1/2
05
' m m
+ ( 7 it AL if?%)) + ( T et AL Rsvt?et))) . (Ca8)
v V()
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Appendix C Numerical results

Aln Zy ¥ = [(AGv)” + (A

Lpi;??’t) (3) i Cg)mq tat i
T R I [ R OO\

z
o7 1/2
Lot .\ [
+<ZVAC<V>mq + | AL . (C19)

The errors of the observables can be obtained as in equations (C.5) to (C.14) with
the corresponding correlation functions.
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C.2 Tables of the tree level HQET parameters

Wkin * Thq

f#, =0.5 0, =1.0 fL=1.5
z 6=1.0 0, = 1.5 0, = 0.5
4 0.36556825(6) 0.34831285(3) 0.35509612(5)
8 0.43257614(8) 0.42500505(8) 0.42784421(8)
12 0.4557813(3) 0.4517860(4) 0.4532843(3)
16 0.467216(2) 0.464790(2) 0.465700(2)
20 0.47399(1) 0.47237(1) 0.47298(1)
24 0.47848(4) 0.47732(4) 0.47776(4)
28 0.4817(1) 0.4809(1) 0.4812(1)
32 0.4844(4) 0.4837(4) 0.4839(4)
64 0.498(5) 0.498(5) 0.498(5)

Table C.1: Continuum limit results for wy, at tree level.

(1) =

€A " Mg
61 =0.5 01 =1.0 01 =15
Z 92 =1.0 92 =1.5 92 =0.5

4

8

12
16
20
24
28
32
64

-0.6543665(2)
-0.5965653(3)
-0.567092(1)
-0.55118(7)
-0.54133(3)
-0.5346(1)
-0.5300(5)
-0.527(1)
-0.52(1)

-0.6969177(2)
-0.6402569(4)
-0.601238(2)
-0.578434(9)
-0.56385(4)
-0.5538(1)
-0.5466(4)
-0.541(1)
-0.52(2)

-0.6775476(2)
-0.620371(4)
-0.58569(1)
-0.566027(8)
-0.55360(4)
-0.5451(1)
-0.5390(4)
-0.535(1)
-0.52(1)

Table C.2: Continuum limit results for ¢

(1)
A

at tree level.
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(2)

ey Mg
6, =0.5 6, =0.5 0,=1.0
0n = 0.5 0p =1.0 0, = 0.5
Z 9{1 =1.0 9{1 =1.5 0, =1.5
4 -1.0025023(8) -1.028164(1) -0.7796(2)
8 -0.800364(1)  -0.930200(2) -0.7099(2)
12 -0.707375(5)  -0.827761(8) -0.6559(2)
16 -0.65773(3) -0.76130(4) -0.6228(2)
20 -0.6271(1) -0.7164(2) -0.6011(2)
24 -0.6065(4) -0.6845(7) -0.5858(4)
28 -0.591(1) -0.661(2) -0.575(1)
32 -0.581(5) -0.643(7) -0.566(4)
64 -0.55(5) -0.58(8) -0.54(4)
Table C.3: Continuum limit results for cg) at tree level.
HQET
In Z\
z 6=0.5 0=1.0 =15

4 0.00842120(2) 0.02339116(7) 0.0333164(1)
8 0.00263566(2) 0.00687239(6) 0.0079446(1)
12 0.00123573(2) 0.0031576(3)  0.0033582(4)
16 0.000710(1)  0.001799(1)  0.001838(2)
20 0.000457(4)  0.001156(5)  0.001154(6)
24 0.00031(1) 0.00079(2) 0.00078(2)
28 0.00019(4) 0.00055(5) 0.00054(6)
32 0.0001(1) 0.0003(1) 0.0003(2)

64 -0.00015(9)  -0.00001(25)  0.00007(46)

Table C.4: Continuum limit results for In ZEQET at tree level. For z = 64 I used the
last 15 lattices for the continuum limit extrapolation.
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C.2 Tables of the tree level HQE'T parameters

In Z5tat

z =05 6=1.0 6=15

4 -0.04935870(1) -0.17476900(4) -0.3328310(7)
8 -0.02370240(2) -0.08345580(4) -0.1589580(6)
12 -0.0154555(2)  -0.0540861(2)  -0.1024130(3)
16 -0.011457(1)  -0.039929(1)  -0.075264(1)
20 -0.009103(4)  -0.031630(5)  -0.059426(5)
24 -0.00756(1) -0.02619(2) -0.04908(2)
28 -0.00649(4) -0.02237(5) -0.04182(5)
32 -0.0058(1) -0.0196(1) -0.0365(2)
64 0.00005(5) 0.00006(6) 0.00006(6)

Table C.5: Continuum limit results for In Zf;fat at tree level. For z = 64 I used the
last 15 lattices for the continuum limit extrapolation.

3) -

Cp™ Mg

01 =0.5 6, =1.0 01 =15
z 69=1.0 0, =1.5 0> = 0.5
4 -0.0337595(3) 0.0216039(3) -0.0003084(3)
8 0.2181728(5)  0.2185915(4) 0.2184276(4)
12 0.312890(2)  0.305841(1)  0.308631(2)
16 0.360427(9)  0.35237(1)  0.35556(1)
20 0.38883(4)  0.38105(7)  0.38413(5)
24 0.40769(2)  0.4005(2)  0.4033(2)
28 0.4212(5) 0.4145(6) 0.4172(6)
32 0.431(2) 0.425(2) 0.428(2)
64 0.47(2) 0.47(2) 0.47(2)

Table C.6: Continuum limit results for ¢,

(3) at tree level.
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(4)

cy g

61 =0.5 61 =1.0 01 =15
z 05=1.0 0 = 1.5 0, = 0.5
4 0.8425237(5) 0.74269443(5)  0.7822060(5)
8 0.9566813(8) 0.9387427(8)  0.9458444(8)
12 0.980624(3) 0.979234(3) 0.979772(3)
16 0.98008(2)  0.99225(2)  0.99099(2)
20 0.99303(7)  0.99763(8) 0.99581(8)
24 0.9952(3) 1.0002(3) 0.9982(3)
28 0.9967(9) 1.0017(9) 0.9997(9)
32 0.9981(3) 1.003(3) 1.001(3)
64 1.00(3) 1.01(3) 1.00(3)

Table C.7: Continuum limit results for cl(f) at tree level. For z = 64 I used the last
45 lattices for the continuum limit extrapolation.

(5)

O

6, =0.5 0 =1.0 0, =1.5

0p=1.0 0n, =0.5 On, =0.5
z 0,=15 0, =1.5 0;, =1.0
4 0.41797852(3) 0.5070717(3) 0.5731924(3)
8 0.4101258(5) 0.4901318(5) 0.5432664(5)
12 0.424391(2)  0.488243(2)  0.528081(2)
16 0.43676(1) 0.48907(1) 0.52057(1)
20 0.44611(5) 0.49023(5)  0.51619(5)
24 0.4532(2) 0.4913(2) 0.5134(2)
28 0.4588(6) 0.4923(6)  0.5114(6)
32 0.463(1) 0.493(2) 0.510(2)
64 0.49(2) 0.50(2) 0.51(2)

Table C.8: Continuum limit results for cff) at tree level. For 2z = 64 I used the last
28 lattices for the continuum limit extrapolation.
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Cap, "M

6, =0.5 6 =1.0 0 =15

0 =1.0 0h =0.5 0h =0.5
Z 9{1:1.5 9;1:15 9;1:1.0
4 -1.839959(1) -0.9790563(8) -0.8994113(7)
8 -1.167297(1) -0.940228(1) -0.887626(1)
12 -1.071434(4) -0.945054(4) -0.905741(4)
16 -1.03962(2) -0.95265(3) -0.92151(2)
20 -1.0252(1) -0.9591(1) -0.9334(1)
24 -1.0175(4) -0.9642(4) -0.9423(4)
28 -1.013(1) -0.968(1) -0.949(1)
32 -1.011(4) -0.972(4) -0.955(4)
64 -1.003(4) -0.98(4) -0.97(4)

Table C.9: Continuum limit results for ¢ A

(6)

at tree level. For z = 64 I used the last

22 lattices for the continuum limit extrapolation.

In Z 2FT

z 6=05 0 =10 9=15

4 0.1613271(3) 0.1762989(3) 0.2027507(4)
8  0.0526762(2) 0.0569133(3) 0.0630299(4)
12 0.0249970(4) 0.0269194(5) 0.0294803(6)
16 0.014455(3)  0.015544(3)  0.016941(4)
20 0.00939(1)  0.01009(1)  0.01097(1)
24 0.00657(3)  0.00706(4)  0.00766(4)
28 0.00483(9)  0.0052(1) 0.0056(1)
32 0.0036(3) 0.0039(3) 0.0042(3)
64 0.0006(11)  0.0007(13)  0.0007(16)

Table C.10: Continuum limit results for In ZESET at tree level.

119



Appendix C Numerical results

120

In Z32t

z 0=05 0 =10 0=15

4 -0.3038610(1) -0.3662650(1) -0.4579340(1)
8 -0.1433480(1) -0.1717160(1) -0.2153740(1)
12 -0.0931618(3) -0.110893(3)  -0.1383350(3)
16 -0.0689775(1) -0.081766(1)  -0.101554(1)
20 -0.054761(5)  -0.064732(5)  -0.08014(6)
24 -0.04541(2)  -0.05357(2)  -0.06617(2)
28 -0.03882(5)  -0.04572(5)  -0.05637(6)
32 -0.0340(2) -0.03997(2)  -0.0492(2)
64 -0.01701(6)  -0.01989(6)  -0.02431(6)

Table C.11: Continuum limit results for In Zi“:t at tree level.

(1)

ey’ Mg
61 =0.5 01 =1.0 01 =1.5
z 09=1.0 0, =15 6, = 0.5

4

8

12
16
20
24
28
32
64

0.8762832(4)
0.7385085(6)
0.667734(2)

0.62865(1)
0.60420(2)
0.5875(2
0.5756(7
0.5677(2
0.54(3)

1
2
)
)
)

0.8347205(4)
0.7468982(7)
0.680238(3)
0.64027(1)
0.61444(7)
0.5966(2)
0.5836(8)
0.574(2)
0.54(3)

0.8511706(4)
0.7435794(6)
0.675276(3)
0.63566(1)
0.61039(6)
0.5930(2)
0.5804(7)
0.571(2)
0.54(3)

(1)

Table C.12: Continuum limit results for ¢y’ at tree level.



C.2 Tables of the tree level HQE'T parameters

(2)

ey’ Mg
0, =0.5 0, =0.5 0,=1.0
0, = 0.5 0, =1.0 0n = 0.5
z 0 =10 0 =15 0 =15

4 0.7336588(6) 1.421981(1)  0.5610778(6)
8 0.5486209(8) 0.7571710(9) 0.5301029(9)
12 0.518642(3)  0.647043(3)  0.520664(3)
16 0.50928(2)  0.60286(2)  0.51589(2)
20 0.50530(7)  0.57910(8)  0.51296(9)
24 0.5033(3) 0.5643(3) 0.5110(3)

8) 1)

28 0.5023( 0.5543(9) 0.5010(
32 0.502(3) 0.547(3) 0.509(3)
64 0.51(3) 0.53(3) 0.51(4)

Table C.13: Continuum limit results for cg ) at tree level.

HQET
In ZVO

z 6=05 0=1.0 =15

4 0.1613271(2) 0.1762989(3) 0.2027507(3)
8 0.0526762(2) 0.0569133(2) 0.0630299(2)

12 0.0249970(5) 0.0269194(5) 0.0294803(6)
16 0.014455(2)  0.015544(3)  0.016941(3)
20 0.009389(8)  0.010088(9)  0.01097(1)

24 0.00657(2)  0.00706(3)  0.00766(3)

28 0.00483(7)  0.00519(8)  0.0056(

1)
32 0.0036(2) 0.0039(2) 0.0042(3)
64 0.0009(9) 0.001(1) 0.001(1)

Table C.14: Continuum limit results for In Z\I}(?ET at tree level. For z = 64 I used

the last 15 lattices for the continuum limit extrapolation.
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Table C.15: Continuum limit results for In Z%}j‘t at tree level. For z = 64 I used the

122

In Z3g
z 0=05 =10 9=15
4 -0.3038610(6) -0.36626500(8) -0.4579340(1)
8 -0.1433480(5) -0.17171600(6) -0.21537400(8)
12 -0.0931618(3) -0.1108930(2)  -0.1383350(3)
16 -0.068978(1) -0.081766(1)  -0.101554(2)
20 -0.054761(5)  -0.064732(5)  -0.080143(6)
24 -0.04541(2)  -0.05357(2) -0.06617(2)
28 -0.03882(5)  -0.04572(540)  -0.05637(6)
32 -0.0340(2) -0.0400(2) -0.0492(2)
64 -0.01701(6)  -0.01989(6) -0.02431(6)

last 15 lattices for the continuum limit extrapolation.

(3)

ey’ Mg

01 =0.5 01 =1.0 01 =15
z B02=1.0 O =1.5 6o =0.5
4 0.30685691(7) 0.2515114(1) 0.27559450(9)
8 0.4029903(1)  0.3657687(1) 0.3819653(1)
12 0.4358646(4)  0.4093880(6) 0.4209094(5)
16 0.452210(3)  0.431788(4)  0.440675(3)
20 0.46196(1)  0.44536(1)  0.45259(2)
24 0.46844(5)  0.45448(6)  0.46055(6)
28 0.4731(2) 0.4611(2) 0.4663(2)
32 0.4768(5) 0.4662(7)  0.4708(6)
64 0.494(6) 0.489(8) 0.491(7)

Table C.16: Continuum limit results for oy

3)

at tree level.



C.2 Tables of the tree level HQE'T parameters

(4)

oy Mg

#1 =0.5 01 =1.0 61 =15
z 0,=1.0 0, =1.5 f#, = 0.5
4 -0.8867710(4) -0.9144693(5) -0.9018590(4)
8 -0.9613954(6) -1.0167051(8) -0.9915286(7)
12 -0.977529(2)  -1.025460(3)  -1.003639(3)
16 -0.98434(1)  -1.02459(2)  -1.00626(1)
20 -0.98807(7)  -1.02235(9)  -1.00674(8)
24 -0.9905(2)  -1.0202(3)  -1.0066(3)
28 -0.9922(8)  -1.018(1) -1.0065(9)
32 -0.994(2) S1.017(3) -1.007(3)
64 -1.00(2) “1.01(3) ~1.00(3)

Table C.17: Continuum limit results for cs;l ) at tree level. For 2 = 64 T used the last
40 lattices for the continuum limit extrapolation.

5) -

Cy " Mg

6, =0.5 6,=1.0 6p=1.5

0, =1.0 0, = 0.5 Oh =0.5
z 0 =15 0 =15 0, =10
4 -0.4287803(8) 0.0541141(4) 0.2360660(2)
8 -0.047947(1) 0.253984(5) 0.3658552(2)
12 0.121362(5)  0.333501(2)  0.4113223(9)
16 0.21175(3)  0.37454(1)  0.433935(6)
20 0.2675(1) 0.39945(6)  0.44741(3)
24 0.3053(5) 0.4162(2)  0.4564(1)
28 0.333(2) 0.4282(7)  0.4628(4)
32 0.353(5) 0.437(2) 0.468(1)
64 0.43(7) 0.47(3) 0.49(1)

Table C.18: Continuum limit results for ¢y,

(5) at tree level.
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(6)

ey Mg

0 =0.5 6=1.0 0 =1.5

O =1.0 0, =0.5 O0p = 0.5
z 0 =15 0 =15  0.=10
4 -0.251135(4) 0.820080(3) 1.167135(3)
8  -0.747630(6) 0.041778(4) 0.308730(4)
12 -0.87575(2)  -0.28934(2) -0.08921(2)
16 -0.9251(1)  -0.4627(1)  -0.3042(1)
20 -0.9492(4)  -0.5685(5)  -0.4377(5)
24 -0.9620(2)  -0.640(2)  -0.5285(2)
28 -0.972(8)  -0.691(6)  -0.594(6)
32 -0.98(2) 0.73(2) L0.64(2)
64 -1.0(3) -0.8(2) -0.8(2)

Table C.19: Continuum limit results for Cy

(6)

at tree level. For 2 = 64 and the combi-

nations (1.0,0.5,1.5) and (1.5,0.5,1.0) I used the last 40 lattices for the

continuum limit extrapolation.

In ZH1QET

z 6=05 0 =1.0 9=15

4 0.00770240(1) 0.02267275(5) 0.03329674(8)
8 0.00221097(1) 0.00644784(3) 0.00898783(6)
12 0.0009998(2)  0.0029216(2)  0.0040528(2)
16 0.0005638(9)  0.0016524(9)  0.002296(1)
20 0.000358(4)  0.001057(4)  0.001473(4)
24 0.00024(1) 0.00072(1) 0.00102(1)
28 0.00014(4) 0.00050(4) 0.00071(5)
32 0.0001(1) 0.0003(1) 0.0005(1)
64 -0.00022(8)  -0.0002(2) -0.0003(4)

Table C.20: Continuum limit results for In Zy

HQET

at tree level. For z = 64 I used

the last 15 lattices for the continuum limit extrapolation.
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In Z5tat

z =05 6 =1.0 0=15

4 0.00869723(1)  0.02608480(1) 0.03960090(2)
8 0.00585441(8)  0.0189434(1)  0.03207610(9)
12 0.00423805(15) 0.0140275(1)  0.0245735(1)
16 0.0033032(9)  0.0110474(8)  0.0196550(8)
20 0.002700(4) 0.009088(4)  0.016312(3)
24 0.00227(1) 0.00770(1) 0.01391(1)
28 0.00194(4) 0.00666(4) 0.01210(4)
32 0.0016(1) 0.0058(1) 0.0106(1)
64 0.00067(5) 0.00283(6) 0.00538(5)

Table C.21: Continuum limit results for In Z\S}at at tree level. For z = 64 I used the
last 15 lattices for the continuum limit extrapolation.
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