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Introduction

Standard Model of particle physics
Years of theoretical studies and experimental research have come to the conclusion
that the universe is constructed of a specific number of elementary building blocks,
which are governed by four fundamental forces. These perceptions provide a deep in-
sight in the structure of the micro cosmos and help to achieve a better understanding
of the construction and coherence of the matter. The Standard Model (SM) com-
bines the fundamental particles and three of the forces to a theory, which explains
most of the experimental results and predictions successfully so far.

The SM includes matter and interaction particles. The matter particles build two

u c t

d s b

e µ τ

νe νµ ντ

g

γ

Z0

W±

quarks

leptones

carrier
particles

I II III
generations

Higgs

Figure 0.1: Particles in the Standard Model.

groups: 6 quarks and 6 leptones, which split up into 3 generations, see figure (0.1).
The quarks form the particle family of the hadrones, which can be a combination of
three or two quarks. Three quarks are the constituents of baryons, e.g. the neutron
and proton, whereas mesons consist of a quark anti-quark pair. The leptones, i.e.
neutrinos or the electron, with the quarks are assumed to be elementary and are
the constituents of the matter that surrounds us. The elementary particles can be
classified by the fundamental forces. There are four fundamental interactions, which
bind the matter: gravitational force, electromagnetic force, strong and weak forces.
They differ in range and strength as one can see in table (0.1).
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Introduction

force range strength mediators participants
in m (mass in GeV/c2)

strong 10−15 αS ≈ 1 8 gluons (0) quarks and gluons

weak 10−18 αW ≈ 10−5 W±, Z0 boson (80,91) quarks and leptones

electrom. ∞ α ≈ 1
137 photon (0) el. charged particles

gravity ∞ ≈ 10−39 graviton (0) all particles

Table 0.1: Four fundamental forces in physics.

To the forces belong associated carrier particles. They describe the interaction of
the matter particles with each other by an exchange of mediators by which a dis-
crete amount of energy is transferred. The interaction particles are gluons for the
strong force, W and Z bosons for the weak force and photons for the electromagnetic
force. For gravity a particle called graviton is assumed only theoretically. The first
three interactions are explained by the SM whereas the gravitational force cannot be
included in the theory successfully. The theory of relativity can explain the macro
world but cannot be combined with the quantum theory yet. However in the low
energy regime of particle physics the effects of gravity are so insignificant, that they
can be ignored.
A further essential constituent of the SM is the Higgs particle. Although the Higgs

particle remains illusive and is yet to be discovered, it is one possibility to provide
mass to the other particles. This feature of the SM can be explained by the Higgs
mechanism. It explains how the gauge bosons and matter particles in the SM obtain
their masses. Therefore currently there is a global endeavor to proof the tangible ex-
istence of the Higgs particle. For example in the unified electroweak interaction the
W± and Z bosons are related by the Higgs mechanism to a Higgs field. It interacts
with itself and leads to a spontaneous symmetry breaking which finally gives three
gauge bosons their masses.
A local gauge theory, here the Yang-Mills theory, furnish a unified specification of

the three forces based on symmetries. The gauge symmetry group of the SM is the
product of the gauge symmetry groups of each three forces

SU(3)c × SU(2)w ×U(1)Y (0.1)

The gauge symmetry group constitutes the characteristics of the forces. The carrier
particles are called gauge quanta and are bosons with spin 1.

Quantum Chromodynamics
The theory of the strong interaction is called Quantum Chromodynamics, or short
QCD, and is a non-abelian gauge theory under the gauge group SU(3). The theory
describes the interaction between the quarks governed by 8 gluons. In nature Nf = 6
quarks are known, which are distinguished by their quantum numbers and masses.
The six quarks are up, down, strange, charm, bottom and top, f = u, d, s, c, b, t,
and their characteristics are tabulated in (0.2). The particles affected by the strong
coupling require an additional charge to preserve the Pauli principle in the QCD.
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Introduction

Therefore quarks and gluons have a colour charge, which occurs in red, green and
blue. The colour charge is the origin of the name of the theory.
The QCD is determined by the strong coupling constant αS and the quark masses.

quark flavour charge Q mass
(in e) (in MeV)

u up Iz = 1
2 2/3 1.5 - 3.3

d down Iz = −1
2 −1/3 3.5 - 6.0

c charm C = 1 2/3 1270+70
−110

s strange S = −1 −1/3 105+25
−35

t top T = 1 2/3 ≈ 17130

b bottom B = −1 −1/3 4200+170
−70

Table 0.2: Properties of the six quark flavours. The given quantum numbers are:
electric charge Q, isospin I, charmness C, strangeness S, topness T, bot-
tomness B. The values are taken from the Particle Data Group [1].

A characteristic property of αS is its behaviour in the low and high energy regime.
Due to this it has acquired the name running coupling. For high energies, i.e. short
distances, the running coupling decreases. The quarks behave like free particles,
which is called asymptotic freedom. The reason for this is the self interaction of
the gluons. In the low energy regime, which corresponds to the hadron physic,
the coupling constant is large and the quarks are captured inside hadrons. This
is called Confinement. The question arises how it is possible to combine the high
energy physic of QCD with the observed properties of hadrons in the low energy
regime, where perturbation theory is possible? A solution can be found in the non-
perturbative method to transfer the QCD to a finite space-time lattice. With the
discretization of the QCD the low energy regime can be explored by Monte Carlo
simulations. The dimension of the lattice QCD is governed by the lattice spacing
a and the lattice extent L. The finite lattice spacing a entails an automatically
regularized continuum theory. In this case the lattice spacing complies with the
condition of a regulator and prevents singularities to occur. The inverse of the
lattice spacing imposes a cutoff proportional to 1/a to all momenta. Therefore the
theory is automatically regularized and ultra violet divergences, which normally are
encountered are avoided.
An advantage of the lattice discretization is that the QCD can be analysed by

numerical simulations. The finer the lattice resolution a/L is selected the more
accurate the approach to the continuum QCD in the limit a→ 0 will be. Certainly
the evaluation of the calculations is restricted to the computer power. The mass
of a considered particle on the lattice has the same proportionality as the cutoff.
To simulate an acceptable propagation of a quark on the lattice, the cutoff has to
be much larger than the quarks mass. With todays numerical capabilities it is not
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possible to simulate the b-quark on the lattice. The restriction 1 � amb would
increase the resolution L/a that a correct propagation of the b-quark on the lattice
is not possible. The discussion of a heavy quark demands an effective theory, which
describes the theory of QCD correctly within its scope.

Heavy Quark Effective Theory
In a system with one heavy and one light quark, the light quark is regarded to be
relativistic and the heavy quark to be nearly static. The strategy of the Heavy Quark
Effective Theory (HQET) is that the observables of QCD are expanded in the inverse
of the heavy quark mass 1/mb. To obtain useful results for QCD from the effective
theory, the two theories have to be connected. This step is called matching. The
expansion coefficients are the parameters of the effective theory and can be obtained
by a non-perturbative matching. In this work a full set of the parameters of HQET
are determined at tree level. I will consider heavy-light axial and vector currents
inside a finite volume, the Schrödinger Functional, and discuss the perturbative
expansion of the appropriate correlation functions.

My study is a preliminary of the non-perturbative matching programme of QCD
and HQET at order 1/m. The parameters of HQET are essential for example when
studying semileptonic decays as i.e. B → π and B → ρ at next-to-leading order in
HQET. One has to introduce potentially suitable observables in order to perform the
matching and from which the parameters can be extracted. I examine the observables
to ascertain if they provide satisfactory information about the parameters and if
they reproduce the classical values. The tree level behaviour is a prerequisite of
the non-perturbative calculations. Thus if my complete set of tree level matching
observables work out, they will also be well suited as observables in a fully non-
perturbative matching calculation. From my results of the tree level coefficients it
should be possible to infer the behaviour of the expansion coefficients in the heavy
quark mass at O(1/mb). Furthermore indications of the corrections at order 1/m2

can be extracted.

In chapter 1 I will introduce the HQET first in the continuum and then transfer
the theory to the lattice. I intend to include a finite volume scheme, the Schrödinger
Functional scheme, to carry out my calculations. In chapter 2 I will add the 1/m
corrections to the latter discussed static approximation. I will specify the parameters
of the effective theory in chapter 3 and show the principle of a non-perturbative
matching. Furthermore the observables needed to perform the matching will be
illustrated. In chapter 4 I plan to reveal the perturbative expansion of the correlation
functions and complete the tree level results. Finally in chapter 5 the results will be
presented and discussed. I will finish my work with a conclusion and summary of
the tree level results.
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1 Heavy Quark Effective Theory

Heavy Quark Effective Theory has its main application in B-Physics. From decays of
B-mesons, one can determine the parameters of the Standard Model, especially the
CKM matrix elements, which have hadronic contributions one wants to understand
with high precision. Latest experiments in B-Physics are BELLE, BarBar and LHCb.

HQET is an effective theory of QCD in the low energy regime to describe hadronic
systems with one heavy quark. The theory describes an effective theory of QCD on
the lattice with one heavy quark flavour ψh. The theory containing Nf − 1 light
quarks and one heavy quark can be formulated as an asymptotic expansion of the
QCD-Lagrangian and observables in the inverse heavy quark mass m. This refers to
the works of Eichten and Hill [2, 3, 4]. The scale of low energy QCD ranges from
the mass of the pion mπ ≈ 140MeV over mD = 2GeV to mB = 5GeV. To obtain
a good continuum limit a → 0 of the lattice discretized observables the ultra violet
cutoff ΛUV = 1

a has to be large compared to the physical energy scale. Furthermore
the infrared cutoff ΛIR = 1

L , arising by the limitation of the lattice extent, has to be
much smaller than the QCD scale.
One than faces the scale problem of lattice QCD in the low energy regime to fulfill

the restrictions

ΛIR =
1

L
� mπ, . . . ,mD,mB �

1

a
= ΛUV. (1.1)

The challenge is now to simulate the b-quark on the lattice in such a way that Monte
Carlo (MC) evaluations are meaningful. In an O(a) improved theory one obtains
with the mass of the c-quark an amount of lattice points about L/a ≈ 60 . . . 120.
In particular the simualtion of the b-quark on the lattice would increase the lattice
extent L/a by a factor 4.
The expansion of the Lagrangian and the observables in 1/m enables the cutoff

a−1 to be much bigger than the mass of the bottom quark. This solves the problem
of the scale hierarchy, because cutoff effects are much more feasible. The heavy quark
can be considered as static in the limit m → ∞. Thus the static quark field theory
is a local renormalizable quantum field theory [3, 5].

The following chapter first gives the definition of the continuum HQET, with its
action, heavy quark propagator and symmetries. Then I outline the HQET expansion
of the discretized theory, first in the static approximation and afterwards in chapter
2, I include the 1/m corrections. Furthermore I consider a renormalization scheme
in a finite volume, the Schrödinger Functional. According to my calculations it gives
appropriate formulations of the QCD [6].
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1 Heavy Quark Effective Theory

1.1 Effective theory in the continuum

The first deliberations of the effective theory of QCD was done by Eichten and Hill
[3]. In order to measure matrix elements containing the B-meson decay constant
the matrix element fb1, one has to extract the dependence of the heavy quark mass
analytically. The heavy quark mass is considered to be static in the limit mb = m→
∞, thus the b-quark is at rest in the rest-frame of the system and does not propagate
in space.

In this work I consider B-mesons with one heavy and one light quark. The effective
Lagrangian describes the dynamics of the light quark whereas the heavy quark just
presents a colour source. In leading order in 1/m the field theory is called the static
approximation but one can add O((1/m)n) corrections to the observables in a series
expansion.
To distinguish between the two flavours I will label the light quark fields with

an index l: ψl(x), ψl(x) and the heavy quark fields with a h in the static case:
ψh(x), ψh(x) and a b in the relativistic case: ψb(x), ψb(x).

Lagrangian

One possible way to derive the classical effective Lagrangian is to decouple the com-
ponents of the quark and anti-quark by the Fouldy Wouthuysen-Tani (FTW) trans-
formations which is performed in [7]. The derivation is done order by order in 1/m
to obtain an asymptotic expansion of QCD. The classical HQET Lagrangian up to
next-to-leading order is

L = L stat
h +

1

2m
L

(1)
h + L stat

h̄ +
1

2m
L

(1)

h̄ +O(
1

m2
). (1.2)

The static Lagrangians for the quark ψ(x) and anti-quark fields ψh̄(x) are

L stat
h = ψh(x)(D0 +m)ψh(x), (1.3)

L stat
h̄ = ψh̄(x)(−D0 +m)ψh̄(x), (1.4)

whereas the quark field propagates in forward time direction

P+ψh(x) = ψh, ψhP+ = ψh, (1.5)

and the anti-quark field propagates backwards in time

P−ψh̄(x) = ψh̄(x), ψh̄(x)P− = ψh̄(x). (1.6)

The projection operator is defined as P± = 1
2(1 ± γ0). This property includes that

the quark fields only have two degrees of freedom per space-time point. The other
two of the spinor fields can be set to zero, because of the condition, that P± projects

1single hadronic parameter, parameterizing the bound state dynamics of this decay

6



1.1 Effective theory in the continuum

onto orthogonal subspaces, P+P− = 0.
The 1/m Lagrangian is split into two parts

L
(1)
h = −(Okin +Ospin), (1.7)

Okin = ψh(x)D2ψh(x), (1.8)

Ospin = ψh(x)σB(x)ψh(x), (1.9)

σk =
1

2
εijkσijk, Bk = i

1

2
εijkFij . (1.10)

The kinetic energy from the heavy quarks residual motion is described by the observ-
able Okin, where the chromomagnetic interaction with the gluon fields is described
by Ospin. The field strength tensor Fµν is defined by the vector potential

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (1.11)

with the gauge fields Aµ(x) = AaµT
a and the the generator of the SU(3) colour group

T a. σk are the pauli matrices, which one can find in appendix A.

Propagator

In the static approximation the continuum propagator is discussed at zero velocity.
The Green function Gh(x, y) of the static Dirac operator with the gauge field Aµ(x)

(∂x0 +A0(x) +m)Gh(x, y) = δ(x− y)P+ (1.12)

provides the continuum propagator

Gh(x, y) = θ(x0 − y0)δ(x− y) exp {−m(x0 − y0)}×

P exp

{
−
∫ y0

x0

dz0A0(z0,x)

}
P+. (1.13)

The anti-quark propagator is derived in the same way. The delta function δ(x− y)
denotes that the heavy quark is static in space and the heaviside function θ(x0− y0)
together with the projection P+ present forward time propagation. P is the path
ordering product of the gauge fields Aµ. The mass of the bottom quark appears in
the propagator in the explicit factor

exp {−m(x0 − y0)} (1.14)

for every gauge field. It is possible to remove the mass from the effective Lagrangian
by introducing an addend ε in the Lagrangian

L stat
h = ψh(x)(D0 + ε)ψh(x), (1.15)

with the limit ε → 0+, to reveal the appropriate propagation in time. Thus the
heavy mass appears in the energies of the quarks

EQCD
h/h̄ = Estat

h/h̄ +m (1.16)

with m ≥ 0. This provides a shift of the energies to the sector of the Hilbert space
containing only one heavy quark.

7



1 Heavy Quark Effective Theory

Symmetries

In the static approximation the Lagrangians (1.3) and (1.4) only contain local com-
posite operators with mass dimension d ≤ 4. The effective field theory is renormal-
izable by a finite number of counter terms. These counter terms are constrained by
the symmetry conditions of the theory.

Flavour symmetry
The theory is invariant under flavour symmetry transformations [8]. If one assumes
F to be the number of heavy quarks, one can add a flavour index to the fields

ψh → ψh = (ψh1 , ..., ψhF )T , ψh → ψh = (ψh1 , ..., ψhF ). (1.17)

Therefore one obtains the symmetry

ψh(x)→ V ψh(x), ψh(x)→ ψh(x)V †, V ∈ SU(F ). (1.18)

In the large mass limit the symmetry emerges independent of how the limit is taken.

Spin symmetry
For each field exist two spin components, but L has no spin dependent interaction.
The fermions are 4-component spinors, but have two zero entries. SU(2) rotations
are expressed through spin matrices σk

σk =
1

2
εijkσij ≡

(
σk 0
0 σk

)
. (1.19)

The spin rotation is transformed by

ψh(x)→ eiαkσkψh(x), ψh(x)→ ψh(x)e−iαkσk , (1.20)

which act on each flavour component of the fields. The phases αk are real parameters.

Local Flavour-number symmetry
The static Lagrangian does not contain spatial derivatives. This provides a local
symmetry through

ψh(x)→ eiη(x)ψh(x), ψh(x)→ ψh(x)e−iη(x), (1.21)

with a local phase η(x).

Renormalization

For an effective field theory, in which the Lagrangian is made up from local fields,
there is an unproven rule of renormalization. The effective theory is renormalizable
if the mass dimension of the fields in the Lagrangian does not exceed the space-
time dimension d [8]. Thus the ultra violet divergences can be absorbed by adding
a complete set of local composite fields. These counter terms have to share the

8



1.2 Lattice HQET in the static approximation

symmetry of the theory and the mass dimension has to be smaller than 5. With
[ψh] = 3

2 only fermion fields with up to one derivative are possible. To preserve the
local field invariance, no spatial derivatives are required. The static Lagrangian can
be written as

Lh(x) = c1O1(x) + c2O2(x), (1.22)

O1(x) = ψh(x)ψh(x), O2(x) = ψhD0ψh. (1.23)

The coefficient c2 = 1 only fixes the unphysical field normalization and c1 = δm is
the additive mass renormalization. The mass renormalization is possible because for
a static quark it exists no chiral symmetry to forbid additive mass renormalization.
All divergences can be absorbed in δm, which has the mass dimension [δm] = 1.
Further QCD renormalization of coupling and light quark mass is necessary (see
1.2.2). One can write the energies of all states as

EQCD
h,h̄ = Estat

h,h̄

∣∣∣
δm=0

+mbare (1.24)

mbare = δm+m, (1.25)

with finite m, mbare and δm, which is called the residual mass. They compensate
the linear divergences of the static theory.

1.2 Lattice HQET in the static approximation

The standard formulation of the Lattice-QCD is given in [9] and [10]. The euclidean
space-time R4 is replaced by a four dimensional hyper cube with lattice spacing a.
The derivatives are defined as finite differences (A.8), whereas one has to distinguish
between forward and backward derivatives. Furthermore the integrals are replaced
by finite summations. The fermion fields ψ(x) and ψ(x) are defined at the lattice
points and carry Dirac-, colour- and flavour indices.

The gauge fields Aaµ are replaced by the SU(3) matrices U(x, µ) for each lattice
point and direction µ = 0, . . . , 3. Thereby (x, µ) = b is an ordered pair from one
lattice point x to the next neighbour x+ aµ̂. This pair is called link and represents
the connection of two neighbouring lattice points. The parallel transporter U(x, µ) =
Uµ(x) is called link variable.
The parallel transporter of an arbitrary path on the lattice C = bn ◦ . . . ◦ b1 is

defined by the the product of link variables

U(C) = U(bn) · . . . · U(b1) ≡
∏
b∈C

U(b). (1.26)

The curve of the smallest closed oriented path on the lattice is called plaquette
p = (x;µ, ν), see figure (1.1). The amount of all link variables build the gauge lattice
field.
The connection of the continuum gauge fields and the link variables is

Uµ(x) = eigaT
aAaµ (1.27)

9



1 Heavy Quark Effective Theory

ν

µ

a

U−µ = Uµ(y − aµ̂)†

Uµ(y)

y − aµ̂ y y + aµ̂

x x+ aµ̂

x+ aµ̂+ aν̂x+ aν̂

Uµ(x)

Uν(x+ aµ̂)

Uµ(x+ aν̂)†

Uν(x)†

Figure 1.1: Illustration of the lattice definitions.

with the generators T a of the Lie-algebra of the SU(N). In the case of the SU(3) the
generators are the N2− 1 = 8 Gell-Mann matrices λa. The fermion and gauge fields
have the following behaviour under local gauge transformations Λ(x) ∈ SU(N)

ψ(x)→ Λ(x)ψ(x), Uµ(x)→ Λ(x)Uµ(x)Λ(x+ aµ̂)−1. (1.28)

Lagrangian

To provide the discretized formulation of the HQET observables one has to transcribe
the continuum observables to the lattice. The discretization of the quark propagator
induces new poles, which can be seen as new quarks, named doublers. To avoid
the doublers, Wilson [11] induced an additional term in the Dirac operator. The
Wilson term causes that fermion modes with pµ = 0 vanish and modes with the
lattice momenta pµ = π

a provide a contribution of 2
a . This contribution acts like

an additional mass term. In the continuum limit the mass of the doublers become
very heavy and they decouple from the theory. The unwanted poles vanish in the
continuum limit and only the physical poles remain. Adopting the Dirac operator
on the lattice takes the following form

D =
3∑

µ=0

γµ[
1

2
(∇∗µ +∇µ)−a

2
∇∗µ∇µ︸ ︷︷ ︸

Wilson term

] (1.29)

10



1.2 Lattice HQET in the static approximation

with the forward and backward gauge derivative on the lattice

∇µψ(x) =
1

a
[Uµ(x)ψ(x+ aµ̂)− ψ(x)], (1.30)

∇∗µψ(x) =
1

a
[ψ(x− aµ̂)− Uµ(x− aµ̂)−1ψ(x− aµ̂)]. (1.31)

To obtain the lattice Lagrangian one has to discretize (1.3), thus D0ψh. The time
component of the Wilson Dirac operator is

D0γ0 →
1

2
[(∇0 +∇∗0)γ0 − a∇∗0∇0] , (1.32)

and the quark and anti-quark fields satisfy

P+ψh(x) = ψh(x), P−ψh̄ = ψh̄. (1.33)

Therewith one obtains

D0ψh(x) = D0 γ0P+︸ ︷︷ ︸
P+

ψh(x)→ 1

2
[(∇0 +∇∗0)γ0 − a∇∗0∇0]ψh(x)

=
1

2a

{[
U0(x)ψh(x+ a0̂)− U0(x− a0̂)−1ψh(x− a0̂)

]
γ0

−
[
U0(x)ψh(x+ a0̂)− 2ψh(x) + U0(x− a0̂)−1ψh(x− a0̂)

]}
=

1

a

[
ψh(x)− U0(x− a0̂)−1ψh(x− a0̂)

]
= ∇∗0ψh(x) (1.34)

and in total analogy for the anti-quark

D0ψh̄(x) = ∇0ψh̄. (1.35)

With these replacements it is possible to write down the static Lagrangian for heavy
quark and anti-quark fields, which was first introduced by Eichten and Hill [3]. For
appropriate calculation a specific normalization factor is included

Lh =
1

1 + aδm
ψh(x) (∇∗0 + δm)ψh(x), (1.36)

Lh̄ =
1

1 + aδm
ψh̄(x) (−∇0 + δm)ψh̄(x). (1.37)

The forward and backward propagation for the quark and anti-quark fields is se-
lected in the forward and backward derivatives in the Lagrangian. The local mass
counter term δm ∝ 1

a appears due to the mixing of the kinetic and mass term in
the static Lagrangian under renormalization. The lattice action reads in the static
approximation

Sh = a4 1

1 + aδm

∑
x

ψh(x) (∇∗0 + δm)ψh(x) (1.38)

and it preserves all the continuum symmetries.

11



1 Heavy Quark Effective Theory

Quark Propagator

The static propagator can be obtained from the Green function

1

1 + aδm
(∇∗0 + δm)Gh(x, y) = δ(x− y)P+ ≡

1

a4

∏
µ

δxµ/aδyµ/aP+. (1.39)

In analogy to the continuum expression the propagator is proportional to δ(x− y).
One can choose the ansatz

Gh(x, y) = g(n0, k0;x)δ(x− y)P+ (1.40)

with x0 = an0, y0 = ak0 and g(n0, k0;x). This yields the recursion

g(n0, k0;x) = θ(n0 − k0)
1

(1 + aδm)−(n0−k0)
P(y, x; 0)†. (1.41)

P(y, x; 0) is the parallel transporter in the fundamental representation from y to x
along a time-like path. One has

P(x, x; 0) = 1 and P(x, y + a0̂; 0) = P(x, y; 0)U0(y). (1.42)

All in all the static propagator then reads

Gh(x, y) = θ(x0 − y0)δ(x− y) exp
{
−δ̂m(x0 − y0)

}
P(y, x; 0)†P+ (1.43)

with δ̂m = 1
a ln(1 + aδm). The mass counter term δm introduces an energy shift of

EQCD
h,h̄ = Estat

h,h̄

∣∣∣
δm=0

+mbare (1.44)

mbare = δ̂m+m (1.45)

which applies to energies of systems with one heavy quark or anti-quark.

Symmetries

All the continuum symmetries of the static theory are preserved on the lattice. Espe-
cially the U(2F ) spin-flavour symmetry and the local flavour-number conservation.
The transformations on the lattice in the static approximation can be obtained by
replacing the continuum form with the lattice regularized fields. HQET symmetries
are defined in terms of transformations of the heavy quark fields and the light quark
fields do not change.

1.2.1 O(a) improvement

Once one has computed observables from data of numerical simulations, they further
depend on the lattice spacing a. To obtain physical quantities without a relation to

12



1.2 Lattice HQET in the static approximation

the finite cutoff, the continuum limit has to be taken, yielding a well-defined and
unique value after the approach of a → 0. The behaviour of how the continuum
limit is achieved is dictated by the renormalization group equations (see appendix A
4). They describe how the parameters of the theory act under a change of the scale,
which is in our case the lattice spacing a.
If the considered observable O is a dimensionless quantity, the expectation value

of the lattice regularized observable is

〈O〉lattice = 〈O〉continuum +O(an). (1.46)

The cutoff effects of O(an), where n depends on the discretization of the QCD-
Lagrangian. The quantity is determined for different lattice spacings a, to achieve
the continuum limit by an extrapolation. The procedure to reduce the leading order
cutoff effects in the operators and Lagrangian is called improvement. The idea of
improvement is to reduce or even eliminate the O(an) terms in the observables by
adding appropriate combinations of operators with coefficients, which are chosen to
reduce or eliminate the lattice effects. I want to refer to the O(a) improvement of
Symanzik in the following.

Symanziks programme of O(a) improvement

The discretization of the Dirac operator requires the Wilson term (1.29) to avoid
additional poles in the quark propagator. The disadvantage of the Wilson term is
that it increases the lattice artifacts from O(a2) to O(a). Therefore the O(a) terms
in the Lagrangian and observables have to be eliminated to obtain a meaningful
continuum limit approach. A process was proposed by Symanzik [12, 13], the O(a)
Symanzik improvement. It is an effective continuum theory which describes the
Wilson lattice action with finite spacing a and its approach to the continuum limit.
The idea is that one can reduce the discretization errors by adding higher dimensional
operators to the lattice action and composite fields. The expansion coefficient of the
theory is the lattice spacing a. In the case of the static theory the effective action
for the static quark is thus given by

Seff = S0 + aS1 + a2S2 + . . . , Sk =

∫
d4xLk(x), (1.47)

with the static continuum Lagrangian L0(x) = L stat
h (x). Lk are local operators of

dimension k + 4, which are built from products of gluon and quark fields.
To achieve the O(a) improvement one has to find all operators of dimension 5,

which have the same symmetry as the lattice theory

L1(x) =

5∑
i=3

ciOi(x). (1.48)
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1 Heavy Quark Effective Theory

L1 will contain additional derivatives or powers of the quark mass ml, to have d = 5.
Possible operators are

O3(x) = ψhD0D0ψh, (1.49)

O4(x) = mlψhD0ψh, (1.50)

O5(x) = m2
l ψhψh. (1.51)

With the use of the equation of motion D0ψh = 0, the operators O3 and O4 can be
canceled and the resulting operator in O(a) is O5. The effective action in Symanziks
theory is

Seff =

∫
d4x

(
L stat

h (x) + ac5m
2
l ψhψh + . . .

)
(1.52)

and it induces a redefinition of the mass counter term δm, which depends therefore
on ml. I remark here that one has automatic on-shell O(a) improvement for the
static action, because almost in all applications the mass counter term δm can be
canceled in the relation between the physical observables [8].

1.2.2 Renormalization

The bare parameters of the theory receive a renormalization. That provides the
following renormalized coupling and quark mass in the unimproved theory

g̃2
R = g2

0Zg(g
2
0, aµ), (1.53)

m̃R = mqZm(g2
0, aµ). (1.54)

Thereby µ is the renormalization scheme. The Wilson term in the lattice fermion
action breaks the chiral symmetry in the lattice regularized theory. Consequently in
the O(a) improved theory an additive renormalization constant for the coupling and
quark mass is demanded [14]

g2
R = g̃2

0Zg(g̃
2
0, aµ), (1.55)

mR = m̃qZm(g̃2
0, aµ) (1.56)

with the parameters

g̃2
0 = g2

0(1 + bg(g
2
0)amq), (1.57)

m̃q = mq(1 + bm(g2
0)amq). (1.58)

The mass mq denotes the substracted mass of the quarks mq = m0 −mc, to restore
the chiral symmetry on the lattice. The coefficients bg and bm depend on the coupling
g2

0 and have to be tuned to reduce the O(a) lattice artifacts. The coefficient bm is
discussed in the quenched approximation in [15]

bm(g2
0) =

(
−0.5− 0.09623g2

0

)
· 1− 0.6905g2

0 + 0.0584g4
0

1− 0.6905g2
0

. (1.59)
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1.3 HQET and the Schrödinger Functional

and the perturbative expansion of the renormalization constant is given in [14]

Zg/m(g̃2
0, aµ) = 1 + Z

(1)
g/m(aµ)g̃2

0 + Z
(2)
g/m(aµ)g̃4

0 + . . . . (1.60)

The perturbative expansion of the coupling constant and the quark mass can be
determined in the minimal substraction scheme. The expansion coefficients are mass-
independent and the renormalization constants at given order in the g2

0 expansion
are polynomials in ln(aµ). The perturbative expansion leads to [16]

g2
0 = g2

R +O(g4
R), (1.61)

m0 = m
(0)
0 + g2

Rm
(1)
0 +O(g4

R). (1.62)

At tree level the renormalized mass is given by

m
(0)
R = m

(0)
0 (1− am

(0)
0

2
), (1.63)

where I used the tree level values for bm = −0.5 and Zm = 1. This provides a tree
level mass of

m
(0)
0 =

1

a

(
1−

√
1− 2am

(0)
R

)
. (1.64)

Later I introduce the masses of the quarks through the quantity z = m̃qL. For the
light quarks I employ z = 0 and for the heavy quarks I utilize different values for z
to obtain a z dependence of HQET quantities.

1.3 HQET and the Schrödinger Functional

Numerical simulations require a discrete version of QCD in a finite volume. The
easiest lattice formulation implicate periodic boundary conditions for the fields in
space and time direction. If one considers periodic boundary conditions in three
space dimensions and one fixed boundary value in the fourth dimension, finite volume
boundary effects occur. A particular finite volume scheme is called the Schrödinger
Functional (SF) [6].

In my thesis I use the advantage of the SF, that correlation functions, which are
defined in this finite scheme, can be determined effectively. From these correlation
functions new observables can be built, which are also relevant to B-Physics, e.g. to
calculate the B-meson decay constant or mass.

1.3.1 Definition

The definition of the SF in the continuum Yang-Mills theory is given by specific
boundary conditions and the euclidean partition function. The space-time manifold
of the SF takes the shape of a finite cylinder with volume L3 × T . The extent in
time direction is T and the extent in all three space directions is L.

15
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x0 = 0

x0 = T

L3

C

C ′

Figure 1.2: Illustration of the SF as a cylinder topology.

In time direction one has Dirichlet boundary conditions for the vector potential

Ak(x) =

{
CΛ
k (x) at x0 = 0,

C ′k(x) at x0 = L,
(1.65)

where C,C ′ are classical gauge potentials. The gauge transformation obeys

CΛ
k (x) = Λ(x)Ck(x)Λ(x)−1 + Λ(x)∂kΛ(x)−1, Λ ∈ SU(N). (1.66)

Furthermore the SF has periodic boundary conditions in space for the gauge fields

Ak(x+ Lk̂) = Ak(x), Λ(x + Lk̂) = Λ(x). (1.67)

An illustration of the SF manifold in 3 dimensions as a cylinder topology is shown
in figure (1.2). These boundary conditions and the partition function define the SF

Z[C ′, C] ≡
∫

D[Λ]

∫
D[A] e−SG[A], (1.68)

SG[A] = − 1

2g2
0

∫
d4x tr {FµνFµν}, (1.69)

D[A] =
∏
x,µ,a

dAaµ(x), D[Λ] =
∏
x

dΛ(x) (1.70)

where dΛ(x) is the Haar measure of SU(N). An important property of the SF is the
gauge invariance of the partition function regarding to the boundary field C

Z[C ′Ω, CΩ] = Z[C ′, C], Ω ∈ SU(N). (1.71)

Relevance of a renormalization scheme in a finite volume

Numerical calculations of a physical value, e.g. the running coupling, which depends
on an energy scale µ, has to fulfill several conditions. To apply perturbation theory,
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1.3 HQET and the Schrödinger Functional

calculations have to be possible in the high energy regime to connect it to other
schemes. In lattice QCD the restrictions of the observables are given by the lattice
spacing a and the finite lattice extent L. On the one hand the lattice cutoff has to be
much larger than the energy scale. This implies, that the lattice has to be very fine,
with a small a. On the other hand the lattice extent L has to be large compared to
the confinement scale, to avoid finite size effects. All in all the energy scale µ has to
satisfy the inequation

L� 1

Λ
∼ 1

0.4GeV
� 1

µ
∼ 1

10GeV
� a. (1.72)

Here the energy scales range the low and high energy regimes.
With present computer simulations it is not possible to fulfill the restrictions.

Lattice resolutions are required, which cannot be achieved with todays computer
capabilities. The clue to the puzzle is to consider the artifacts, which are produced
by the finite volume, as observables [17]. The enregy scale and the lattice extent are
connected that

µ =
1

L
. (1.73)

Thus calculations of the running coupling can be achieved in several steps, by in-
creasing µ by 100% or reducing L by 50%. With the finite-size scaling technique it
is possible to study the scale dependence of the observables [17]. Therefore in each
step, no substantial differences of the energy occur and the continuum limit can be
achieved. Hence the SF scheme is an intermediate renormalization scheme to relate
the low and high energy regime of QCD. The SF renders a gap in the spectrum of
the Dirac operator which enables the quark mass to be set to zero. Thus the SF is
a mass independent renormalization scheme with simplified renormalization group
invariants.

1.3.2 Discretization of the SF

An adoption of the lattice regularized theory within the SF scheme is possible, con-
sidering that the continuum limit a→ 0 has to be well defined and unique.
In the latter sections I discussed the SF pure Yang-Mills theory. To describe the

full strong interaction I have to introduce fermionic degrees of freedom to the theory,
which was first considered by Sint [18, 19]. In the following section light quark fields
are discussed. The boundary fields of the pure gauge theory C,C ′ are joined by the
boundary fields of the fermions and anti-fermions ρ, ρ′, ρ̄ and ρ̄′. ρ(x) and ρ̄(x)
are the boundary quark fields in the SF at x0 = 0, whereas ρ′(x) and ρ̄′(x) are the
boundary quark fields at x0 = T .

Gauge action

The gauge invariance of the gauge action has to be preserved on the lattice. A gauge
invariant quantity is constituted by the trace of a product of links along a closed
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path. Following Wilson [11] the gauge action in the SF is

SG[U ] =
1

g2
0

∑
p

ω(p)tr {1− U(p)} . (1.74)

The sum runs over all oriented plaquettes p on the lattice. The weight factors are
given by [6]

ω(p) =

{
1 plaquette in the bulk,
1
2 plaquette at the boundary x0 = 0, T.

(1.75)

Fermion action

The fermion action on the lattice [20] is

SF[U,ψ, ψ] = a4
∑

0<xµ<L

ψ(x)(D +m0)ψ(x) (1.76)

with the bare quark mass m0. D is given by the Wilson Dirac operator (1.29). The
disadvantage of the Wilson term is that it breaks the chiral symmetry and increases
discretization errors from O(a2) to O(a). Concerning the restoration of the chiral
symmetry on the lattice an additive and multiplicative renormalization constant of
the quark mass is needed. This was discussed in 1.2.2.

O(a) improvement

Adding counter terms proportional to a to the lattice action reduces the O(a) dis-
cretization effects. This is possible because they vanish in the continuum limit. In
the usual lattice regularized QCD with periodic boundary conditions in spatial and
time direction only one counter term is needed to improve the fermionic action. It
was defined by Sheikholeslami and Wohlert [21]

SSW[U,ψ, ψ] = a5
∑
x

cSWψ(x)
i

4
σµνF̂µνψ(x). (1.77)

The field strength tensor on the lattice is a sum of plaquettes

F̂µν =
1

8a2
(Qµν(x)−Qνµ(x)) , (1.78)

Qµν = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)−1

+ Uν(x)Uµ(x− aµ̂+ aν̂)−1Uν(x− aµ̂)−1Uµ(x− aµ̂)

+ Uµ(x− aµ̂)−1Uν(x− aµ̂− aν̂)−1Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+ Uν(x− aν̂)−1Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)Uµ(x)−1. (1.79)

F̂µν is also called the clover leaf representation in correspondence to the look of the
plaquettes, see figure (1.3).
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ν

µ

x

Figure 1.3: Illustration of the field strength tensor as a clover leaf. The different
coloured plaquettes correspond to the 4 terms in (1.79).

In [22] the improvement coefficient was discussed non-perturbatively in the quenched
approximation

cSW =
1− 0.656g2

0 − 0.152g4
0 − 0.054g6

0

1− 0.922g2
0

, 0 ≤ g0 ≤ 1. (1.80)

In the SF scheme the boundary fields in time direction have to respect Dirichlet
boundary conditions, thus to improve the gauge action one can alter the weight
factor (1.75) to

ω(p) =


ct(g0) time plaquette related to the boundary
1
2cs(g0) spatial plaquette at the boundary x0 = 0, T

1 else
. (1.81)

The coefficients in space cs and time ct have to be chosen correctly in order to
compensate the boundary effects. To improve the fermion action Lüscher et. al. [14]
considered the counter terms

SF,b = a4
∑
x
{( c̃s − 1)[Os(x)−O′s(x)] + (c̃t − 1)[Ot(x)−O′t(x)]}, (1.82)

with c̃t = c̃t(g0), c̃s = c̃s(g0) and

Os(x) =
1

2
ρ(x)γk(∇∗k +∇k)ρ(x), (1.83)

O′s(x) =
1

2
ρ′(x)γk(∇∗k +∇k)ρ′(x), (1.84)

Ot(x) =
1

2

[
ψ(x)(P−∇0 + P+

←−
∇∗0)ψ(x)

]
x0=a

, (1.85)

O′t(x) =
1

2

[
ψ(x)(P+∇0 + P−

←−
∇∗0)ψ(x)

]
x0=T−a

. (1.86)
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1.3.3 Classical quark propagation

The lattice Dirac operator was given in (1.29). Due to the appearance of O(a)
discretization effects one has to add a counter term to the Dirac operator of O(a)

δD = δDV + δDb (1.87)

which is a sum of a volume and a boundary term

δDVψ(x) = cSWa
i

4
σµνF̂µνψ(x), (1.88)

δDbψ(x) = (c̃t − 1)
1

a

{
δx0,a[ψ(x)− U0(x− a0̂)−1P+ψ(x− a0̂)]

+δx0,T−a[ψ(x)− U0(x)−1P−ψ(x+ a0̂)]
}
. (1.89)

In the bulk of the SF the quark propagator is defined through the Green function

(D + δD +m0)S(x, y) =
1

a4
δx,y, x0 ∈ (0, T ), (1.90)

whereas at the boundaries it has to fulfill

P+S(x, y)|x0=0 = P−S(x, y)|x0=T = 0. (1.91)

Furthermore the quark propagator satisfies the hermiticity property

γ5S(y, x)γ5 = S(x, y)†. (1.92)

The classical solution of the lattice Dirac operator in the SF with 0 < x0 < T can
be obtained from

(D + δD +m0)ψcl(x) = 0. (1.93)

At the boundaries x0 = 0 and x0 = T , the classical quark field obeys

P+ψcl(x)|x0=0 = ρ(x), P−ψcl(x)|x0=T = ρ′(x). (1.94)

The solution of (1.93) is therefore

ψcl(x) = a3
∑
y
c̃t

(
S(x, y)U(y − a0̂, 0)−1ρ(y)

∣∣
y0=a

+S(x, y)U(y, 0)ρ′(y)
∣∣
y0=T−a

)
. (1.95)

One finds the expression for the anti-quark in total analogy by using the adjoint
expression.

1.3.4 Heavy and light quarks on the SF

In the HQET the static and relativistic quark fields have to be considered separately
in the SF scheme. Accepting that static fermions do not propagate in space, they
differ from the light quark fields in their boundary behaviour and their corresponding
action.
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1.3 HQET and the Schrödinger Functional

Light quarks

The relativistic quarks are periodic up to a phase

ψl(x+ Lk̂) = eiθkψl(x), ψl(x+ Lk̂) = e−iθkψl(x), (1.96)

with the phase angles θk, where k = 1, . . . 3, which are real parameters. The phase
is introduced due to practical reasons in numerical calculations. With the additional
phase, small eigenvalues of the fermion matrix are prevented, thus they provide an
easy inversion of the fermion matrix [23]. The connection of the angles and the
momentum of the fermions on the lattice is

pk =
2πlk
L

+
θk
L
, lk ∈ Z. (1.97)

In total equivalence it is possible to include the phase into the spatial components
of the covariant derivative

Dµ = δµ +Aµ + i
θµ
L

(1.98)

with θ0 = 0. This provides periodic fermion fields. I use for the integers lk = 0,
therefore the lattice momenta in space dimensions are linked with the periodicity
angles via p = 1

L(θx, θy, θz). If one uses, in a system with one heavy and one light
quark, e.g. for the axial current A0(x) = ψl(x)γ0γ5ψb(x), same periodicity angles
~θl = ~θb, the momentum of the quark is compensated by the opposite momentum
of the anti-quark. Therefore considering a bilinear system with ~θl = ~θb entails zero
momentum of the system.
The Dirac operator is an operator of first order, thus the equation of motion derived

from the light quark action is a differential equation of first order. Therefore only
half of the fermionic field components can be fixed at the boundaries x0 = 0, T , to
obtain a unique solution of the Dirac equation. Boundary conditions for the light
quarks provide explicit boundary functions

P+ψl(x)|x0=0 = ρl(x), P−ψl(x)|x0=L = ρ′l(x), (1.99)

ψl(x)P−
∣∣
x0=0

= ρl(x), ψl(x)P+

∣∣
x0=L

= ρ′l(x). (1.100)

Finally the light quark action in the SF is [18]

Sl[U,ψl, ψl] = a4
∑
x

ψl(x)(D +m0)ψl(x) (1.101)

with the Wilson Dirac operator D and the boundary conditions

ψl(x) = 0 if x0 < 0 or x0 > T (1.102)

and
P−ψl(x)|x0=0 = P+ψl(x)|x0=T = 0. (1.103)
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Static quarks

With the condition

P+ψh(x) = ψh(x), ψh(x)P− = ψh(x) (1.104)

and the fact that static quarks do not propagate in space, no spatial boundary
conditions are needed. In time direction the boundary fields are defined as

ψh(x)|x0=0 = ρh(x), ψh(x)
∣∣
x0=T

= ρ′h(x). (1.105)

Finally the static quark action can be written as [20]

Sh[U,ψh, ψh] = a4
∑
x

ψh(x)∇∗0ψh(x) (1.106)

with the boundary conditions

ψh(x) = 0 if x0 < 0 or x0 ≥ T. (1.107)

Schrödinger Functional action in HQET

The complete action with one heavy and one light quark in the static approximation
is

S[U,ψl, ψl, ψh, ψh] = SG[U ] + Sl[U,ψl, ψl] + Sh[U,ψh, ψh]. (1.108)

The SF in the continuum is defined through the partition function

Z[C ′, ρ′l, ρ
′
l, ρ
′
h;C, ρl, ρl, ρh]

=

∫
D[A]D[ψl]D[ψl]D[ψh]D[ψh] eS[A,ψl,ψl,ψh,ψh]. (1.109)

The expectation value of an operator O is determined for vanishing boundary fields
to obtain simple renormalization properties

〈O〉 =

{
1

Z

∫
D[A]D[ψl]D[ψl]D[ψh]D[ψh]OeS[A,ψl,ψl,ψh,ψh]

}
ρ′l=ρ

′
l=

ρl=ρl=
ρ′h=ρh=0

(1.110)

The operator can contain light and heavy quark fields through the sources

ζl(x) =
δ

δρ̄l(x)
, ζ̄l(x) = − δ

δρl(x)
, (1.111)

ζ ′l(x) =
δ

δρ̄′l(x)
, ζ̄ ′l(x) = − δ

δρ′l(x)
, (1.112)

ζ ′h(x) =
δ

δρ̄′h(x)
, ζ̄h(x) = − δ

δρh(x)
. (1.113)
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1.3 HQET and the Schrödinger Functional

1.3.5 Correlation functions and their renormalization

Correlation functions in the SF are expectation values of products of observables.
They are ideal to be considered in this context, because they are proportional to
the probability amplitude of quark propagation in the SF. Two-point SF correlation
functions in the static approximation from boundary-to-bulk in the pseudo-scalar
and vector channel are [24]

f statA (x0, ~θl, ~θh) = −a
6

2

∑
y,z

〈
Astat

0 (x) ζ̄h(y)γ5ζl(z)
〉
, (1.114)

kstatV (x0, ~θl, ~θh) = −a
6

6

∑
y,z,k

〈
V stat
k (x) ζ̄h(y)γkζl(z)

〉
, (1.115)

kstatV11
(x0, ~θl, ~θh) = −a

6

2

∑
y,z

〈
V stat

1 (x) ζ̄h(y)γ1ζl(z)
〉
, (1.116)

with the static axial and vector current

Astat
µ (x) = ψl(x)γµγ5ψh(x), (1.117)

V stat
µ (x) = ψl(x)γµψh(x). (1.118)

kstatV (x0, ~θl, ~θh) is a correlator between the space component of the vector current
in the bulk of the SF and a vector boundary source ζ̄h(y)γkζl(z) at the surface at
x0 = 0. It describes the propagation of a quark anti-quark pair from the surface
x0 = 0 to the space-time point x, where they annihilate each other.
Including the time component of the vector current, I introduce the correlation

function

kstatV0
(x0, ~θl, ~θh) = i

a6

6

∑
y,z,k

〈
V stat

0 (x) ζ̄h(y)γkζl(z)
〉
. (1.119)

To consider the space components of the axial current I write down the correlators

f statAk (x0, ~θl, ~θh) = i
a6

6

∑
y,z,k

〈
Astat
k (x) ζ̄h(y)γ5ζl(z)

〉
, (1.120)

f statAV21
(x0, ~θl, ~θh) = i

a6

2

∑
y,z

〈
Astat

2 (x) ζ̄h(y)γ1ζl(z)
〉
. (1.121)

Furthermore I consider the SF correlation functions from boundary-to-boundary

kstat1 (~θl, ~θh) = − a
12

6L6

∑
u,v,y,z,k

〈
ζ̄ ′l(u)γkζ

′
h(v) ζ̄h(y)γkζl(z)

〉
, (1.122)

f stat1 (~θl, ~θh) = − a
12

2L6

∑
u,v,y,z

〈
ζ̄ ′l(u)γ5ζ

′
h(v) ζ̄h(y)γ5ζl(z)

〉
. (1.123)

with two boundary sources at x0 = 0 and x0 = T .
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1 Heavy Quark Effective Theory

x0 = 0

x0 = T

L3

ζl ζ̄h

V stat
k (x)

x0 = 0

x0 = T

L3

ζl ζ̄h

ζ̄ ′l ζ ′h

boundary-to-bulk correlation

function kstatV (x0, ~θl, ~θh)

boundary-to-boundary correlation

function kstat1 (~θl, ~θh)

Figure 1.4: Schrödinger Functional correlation functions in the vector channel. The
straight lines symbolize the static quark and the wavy lines denote the
light quarks. The left correlation function has the space component of
the vector current V stat

k (x) as an insertion. The quark anti-quark pair is
created at point x0 = 0 and annihilate each other at the insertion point
of the vector current. I also consider the first space component V1. The
right correlation function contains vector boundary fields at the surfaces
x0 = 0 and x0 = T .

In the relativistic case one has to replace the index for the heavy quark by a b:
h→ b and the axial and vector currents have the O(a) improved form

(AI)µ = ψlγµγ5ψb + acA∂̃µψlγ5ψb, (1.124)

(VI)µ = ψlγµψb + acV∂̃µψliσµνψb. (1.125)

The improvement coefficients cA was determined non-perturbatively by Lüscher et
al. in [22] in the quenched approximation and is given by

cA = −0.00756g2
0 ·

1− 0.748g2
0

1− 0.977g2
0

, 0 ≤ g0 ≤ 1. (1.126)

The improvement coefficient of the vector current cV is discussed perturbatively in
[16]. Non-perturbative results are shown in the work of Guagnelli and Sommer in
[25].
The renormalization of the correlation functions is straightforward, i.e. for vanish-

ing light quark mass [16]. One needs a multiplicative renormalization constant for
the current and boundary quark fields and an additional improvement coefficient for
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1.3 HQET and the Schrödinger Functional

the heavy quark mass

[fA]R(x0, ~θl, ~θb) = ZA(1 +
1

2
bAamq,b)Z2

ζ (1 + bζamq,b)fA(x0, ~θl, ~θb), (1.127)

[kV]R(x0, ~θl, ~θb) = ZV(1 +
1

2
bVamq,b)Z2

ζ (1 + bζamq,b)kV(x0, ~θl, ~θb), (1.128)

[f1]R(~θl, ~θb) = Z4
ζ (1 + bζamq,b)2f1(~θl, ~θb), (1.129)

[k1]R(~θl, ~θb) = Z4
ζ (1 + bζamq,b)2k1(~θl, ~θb). (1.130)

The renormalization coefficients are given by [26]

ZA(g0) =
1− 0.8496g2

0 + 0.0610g4
0

1− 0.7332g2
0

, (1.131)

ZV(g0) =
1− 0.7663g2

0 + 0.0488g4
0

1− 0.6369g2
0

(1.132)

and the values for the improvement coefficients are known from [16] and [26]

bA(g0) = 1 + 0.1522g2
0, (1.133)

bV(g0) =
1− 0.6518g2

0 − 0.1226g4
0

1− 0.8467g2
0

. (1.134)

All coefficients are defined in the quenched approximation for values of the bare
gauge coupling 0 ≤ g0 ≤ 1. Besides the O(a) improved axial and vector currents can
be renormalized by those means

(AR)µ = ZA(1 + bAamq,b) (AI)µ , (1.135)

(VR)µ = ZV(1 + bVamq,b) (VI)µ . (1.136)
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2 Including 1/m corrections

In the latter chapter I discussed the effective theory in the static approximation. To
perform the matching of HQET parameters at order 1/m the corrections of O(1/m)
have to be included in the theory.
In this chapter I directly work in the lattice regularized theory. To find the de-

scretized expressions one can transcribe the continuum observables (see section 1.1)
to the lattice.

2.1 Lagrangian and expectation values

Additionally to the leading order expression of (1.36) one has to add the 1/m cor-
rections. This provides the lattice action in HQET beyond the static approximation

SHQET = a4
∑
x

(
L stat

h (x) +
n∑
k=1

L (k)(x)

)
, (2.1)

L (k)(x) =
∑
i

ω
(k)
i L

(k)
i (x). (2.2)

The HQET Lagrangians L (k) are of order 1/mk and the static Lagrangian reads
L stat

h = ψh(x)(∇∗0+δm)ψh(x). The coefficients δm, ωi(g0,m) have to be determined
from the matching condition. They are the bare parameters of the effective theory.
In next-to-leading order in 1/m the HQET Lagrangian reads

L
(1)
h = − (ωkinOkin + ωspinOspin) (2.3)

with the O(1/m) operators Okin,Ospin as in (1.8),(1.9) only with discretized tran-
scriptions

DkDk → ∇∗k∇k, Fkl → F̂kl, (2.4)

where F̂kl is the clover leaf representation defined in (1.78). The normalization is
chosen with the result that the classical values of the coefficients are ωkin = ωspin =

1
2mb

. The problem of the effective theory is that the path integral with the weight

PNRQCD ∝ exp

{
−a4

∑
x

(
Llight(x) + L stat

h (x) + L
(1)
h

)}
(2.5)

is not renormalizable since the terms consist of composite fields of dimension 5. In
perturbation theory new divergences will occur in each order therefore an infinite
number of counter terms have to be added to the observables and composite fields.
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2 Including 1/m corrections

In this case the continuum limit of the lattice QCD does not exist.
One possibility to avoid this problem is to expand the weight in 1/m and counting

the terms proportional to ωkin = ωspin = O(1/m). This is possible if the HQET
expansion only reproduces the next-to-leading order expansion of the observables.
One obtains for the path integral weight

PHQET ≡ exp

{
−a4

∑
x

(
Llight(x) + L stat

h (x)
)}{

1− a4
∑
x

L
(1/m)
h (x)

}
, (2.6)

which is now renormalizable.
In order to compute SF correlation functions in the effective theory I need expec-

tation values in HQET. Including O(1/m) the expectation value of an observable O
is defined as

〈O〉 = 〈O〉stat + ωkina
4
∑
x

〈OOkin(x)〉stat + ωspina
4
∑
x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin 〈O〉kin + ωspin 〈O〉spin (2.7)

with the path integral average

〈O〉stat =
1

Z

∫
fields
O exp

{
−a4

∑
x

(
Llight(x) + L stat

h (x)
)}

. (2.8)

2.2 Renormalized HQET heavy-light currents

In order to consider matrix elements and correlation functions composite fields are
required, for example the axial and vector current. In order to eliminate the O(a)
effects of the static heavy-light currents, correction terms have to be added. The
Symanzik O(a) improvement can be applied to the currents in a similar way as to
the action as it was done in section 1.2.1. For a detailed discussion I want to refer
to the work of M. Kurth and R. Sommer in [20]. The O(a) improved currents in the
static approximation are(

Astat
I
)

0
= Astat

0 + acstatA ψlγiγ5
1

2
(
←−
∇ i +

←−
∇∗i )ψh, (2.9)(

V stat
I
)

0
= V stat

0 + acstatV ψlγi
1

2
(
←−
∇ i +

←−
∇∗i )ψh, (2.10)

whereas the coefficients cstatA and cstatV depend on the coupling g0 and are independent
of the relativistic quark mass mq. The renormalization of the static axial and vector
current demand a multiplicative constant Zstat

X , X = A,V, which depend on the
renormalization scale and the bare coupling. The improved and renormalized version
of the heavy-light currents therefore is(

Astat
R
)

0
= Zstat

A (g0, aµ)(1 + bstatA amq)
(
Astat
I
)

0
, (2.11)(

V stat
R
)

0
= Zstat

V (g0, aµ)(1 + bstatV amq)
(
V stat
I
)

0
. (2.12)
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2.2 Renormalized HQET heavy-light currents

The space components of the axial and vector current are not discussed here, because
they can be related to the time component by spin symmetry.

To find the 1/m corrections in the HQET expansion one has to find all dimension
four operators with the right flavor structure and the right transformation under
spatial lattice rotations and parity. The time component of the axial current in the
HQET expansion is

AHQET
0 (x) = ZHQET

A [Astat
0 (x) +

2∑
i=1

c
(i)
A A

(i)
0 (x)], (2.13)

A
(1)
0 (x) = ψl(x)

1

2
γ5γi(∇S

i −
←−
∇S
i )ψh(x), (2.14)

A
(2)
0 (x) = −1

2
∂̃iA

stat
i (x) (2.15)

with the symmetric derivatives

∂̃i =
1

2
(∂i + ∂∗i ) ,

←−
∇S
i =

1

2

(←−
∇ i +

←−
∇∗i
)
, ∇S

i =
1

2
(∇i +∇∗i ) . (2.16)

For the spatial components one obtains

AHQET
k (x) = ZHQET

A [Astat
k (x) +

6∑
i=3

c
(i)
A A

(i)
k (x)], (2.17)

A
(3)
k (x) = ψl(x)

1

2
(∇S

i −
←−
∇S
i )γiγ5γkψh(x), (2.18)

A
(4)
k (x) = ψl(x)

1

2
(∇S

k −
←−
∇S
k)γ5ψh(x), (2.19)

A
(5)
k (x) =

1

2
∂̃i(ψl(x)γiγ5γkψh(x)), (2.20)

A
(6)
k (x) =

1

2
∂̃kA

stat
0 (x). (2.21)

The vector current can be obtained by the corresponding expansion only dropping
the γ5 and replacing c(i)

A with c(i)
V and ZHQET

A with ZHQET
V

V HQET
0 (x) = ZHQET

V [V stat
0 (x) +

2∑
i=1

c
(i)
V V

(i)
0 (x)], (2.22)

V HQET
k (x) = ZHQET

V [V stat
k (x) +

6∑
i=3

c
(i)
V V

(i)
k (x)], (2.23)

V
(1)

0 (x) = ψl(x)
1

2
γi(∇S

i −
←−
∇S
i )ψh(x), (2.24)

V
(2)

0 (x) = −1

2
∂̃iV

stat
i (x), (2.25)

V
(3)
k (x) = ψl(x)

1

2
(∇S

i −
←−
∇S
i )γiγkψh(x), (2.26)

V
(4)
k (x) = ψl(x)

1

2
(∇S

k −
←−
∇S
k)ψh(x), (2.27)
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2 Including 1/m corrections

V
(5)
k (x) =

1

2
∂̃i(ψl(x)γiγkψh(x)), (2.28)

V
(6)
k (x) =

1

2
∂̃kV

stat
0 (x). (2.29)

Transformation to a new basis

The HQET expansion of the time component of the heavy-light axial current was
given in (2.13). For zero space-time momentum i.e. ~θl = ~θh, the contribution A(2)

0

vanishes. Following [27] I transform to a new basis to consider all 1/m corrections.
In this basis I can express A(1)

0 and A(2)
0 as terms with derivatives only acting on the

heavy or light quark fields

A
(1)
0 =

1

2
(ψl(x)γ5γi∇S

i ψh(x)︸ ︷︷ ︸
=δhA0

−ψl(x)γ5γi
←−
∇S
i ψh(x)︸ ︷︷ ︸

=δA0

)

=
1

2
(δhA0 − δA0), (2.30)

A
(2)
0 =

1

2
(ψl(x)γ5γi∇S

i ψh(x) + ψl(x)γ5γi
←−
∇S
i ψh(x))

=
1

2
(δhA0 + δA0). (2.31)

This transformation leads to new coefficients, with the following correspondence at
tree level

cδA =
1

2
c

(2)
A −

1

2
c

(1)
A , (2.32)

cδhA =
1

2
c

(1)
A +

1

2
c

(2)
A . (2.33)

In a similar way I transform the space components of the axial currents (2.20) and
(2.21) to

A
(5)
k (x) =

1

2

[
ψl(x)(∇S

i +
←−
∇S
i )γiγ5γkψh(x)

]
, (2.34)

A
(6)
k (x) = −1

2

[
ψl(x)(∇S

k +
←−
∇S
k)γ5ψh(x)

]
. (2.35)

The expressions of the vector currents (2.25), (2.28) and (2.29) with the new basis
are

V
(2)

0 (x) =
1

2

[
ψl(x)(∇S

i +
←−
∇S
i )γiψh(x)

]
, (2.36)

V
(5)
k (x) =

1

2

[
ψl(x)(∇S

i +
←−
∇S
i )γiγkψh(x)

]
, (2.37)

V
(6)
k (x) =

1

2

[
ψl(x)(∇S

k +
←−
∇S
k)ψh(x)

]
. (2.38)

I must bear in mind that I only get a ~θh dependence if a spatial derivative is acting
on a heavy quark field. Furthermore the static correlation functions only depend on
~θl, because the heavy quark propagator is replaced in the static approximation by
the projection P+ (see section 4.4.1).
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2.3 Heavy-light correlation functions and their renormalization in next-to-leading order

2.3 Heavy-light correlation functions and their
renormalization in next-to-leading order

The HQET expansion in 1/m of the correlation functions is straightforward

[fA]R =ZHQET
A ZζhZζe

−mbarex0×{
f statA +

2∑
i=1

c
(i)
A f statA(i) + ωkinf

kin
A + ωspinf

spin
A

}
, (2.39)

[fAk ]R =ZHQET
Ak ZζhZζe

−mbarex0×{
f statAk +

6∑
i=3

c
(i)
A f stat

A(i)
k

+ ωkinf
kin
Ak + ωspinf

spin
Ak

}
, (2.40)

[fAV21 ]R =ZHQET
Ak ZζhZζe

−mbarex0×{
f statAV21

+

6∑
i=3

c
(i)
A f stat

AV(i)
21

+ ωkinf
kin
AV21

+ ωspinf
spin
AV21

}
, (2.41)

[kV]R =ZHQET
V ZζhZζe

−mbarex0×{
kstatV +

6∑
i=3

c
(i)
V kstatV(i) + ωkink

kin
V + ωspink

spin
V

}
, (2.42)

[kV11 ]R =ZHQET
V ZζhZζe

−mbarex0×{
kstatV11

+
6∑
i=3

c
(i)
V kstat

V(i)
11

+ ωkink
kin
V11

+ ωspink
spin
V11

}
, (2.43)

[kV0 ]R =ZHQET
V0

ZζhZζe
−mbarex0×{

kstatV0
+

2∑
i=1

c
(i)
V kstat

V(i)
0

+ ωkink
kin
V0

+ ωspink
spin
V0

}
, (2.44)

[f1]R =Z2
ζh
Z2
ζ e
−mbareT

{
f stat1 + ωkinf

kin
1 + ωspinf

spin
1

}
, (2.45)

[k1]R =Z2
ζh
Z2
ζ e
−mbareT

{
kstat1 + ωkink

kin
1 + ωspink

spin
1

}
. (2.46)

The factor e−mbarex0 alternatively e−mbareT corresponds to the energy shift between
QCD and HQET. The correlation functions, containing the kinetic and spin term,
have the form

fkinA (x0, ~θl, ~θh) = −a
10

2

∑
y,z,u

〈
Astat

0 (x) ζ̄h(y)γ5ζl(z)Okin(u)
〉
, (2.47)

f spinA (x0, ~θl, ~θh) = −a
10

2

∑
y,z,u

〈
Astat

0 (x) ζ̄h(y)γ5ζl(z)Ospin(u)
〉
. (2.48)

The corresponding ones for the vector correlation functions are similar. Due to the
fact that I also have a 1/m expansion of the currents I obtain additional terms in
fA,fAk ,fAV21 , kV and kV11 , which contain the 1/m corrections of the currents. For
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2 Including 1/m corrections

the axial correlation functions they have the form

f statA(i)(x0, ~θl, ~θh) = −a
6

2

∑
y,z

〈
A

(i)
0 (x) ζ̄h(y)γ5ζl(z)

〉
(2.49)

and for the other correlation functions, they can be obtained in a similar way. At tree
level I can exploit some useful relations between the correlation functions [28], due
to the spin symmetry of the lattice action. The relations valid for isotropic angles
are

fkinA = 6
x0

a2

(
cos(a

θh
L

)− 1

)
f statA (2.50)

kkinV = 6
x0

a2

(
cos(a

θh
L

)− 1

)
kstatV , (2.51)

and

fkin1 = 6
T − a
a2

(
cos(a

θh
L

)− 1

)
f stat1 , (2.52)

kkin1 = 6
T − a
a2

(
cos(a

θh
L

)− 1

)
kstat1 . (2.53)

The further relations are valid for any θ combinations

f1 = k1, (2.54)
f stat1 = kstat1 , (2.55)
kstatV = −f statA = kstatV11

, (2.56)
kstatV(i) = −f statA(i−1)/2 = kstat

V(i)
11

, i = 3, 5 (2.57)

kstatV(i) = −1

3
f statA(i−1)/2 , i = 4, 6, (2.58)

kkinV = −fkinA = kkinV11
, (2.59)

kspinV =
1

3
f spinA , (2.60)

kkin1 = fkin1 , (2.61)

f spin1 = −3kspin1 , (2.62)

f spinA = 3kspinV , (2.63)

f spinA = f spin1 = 0 (2.64)

the last equation is valid for vanishing background fields only. From now on all corre-
lation functions have the renormalized and improved form if not otherwise specified.
I will drop the subscription I and R for a better readability.

32



3 Parameters of HQET

In the introduction I mentioned that the HQET and the QCD need to be linked to
successfully achieve conclusions of the effective theory. A non-perturbative strategy
to determine the HQET parameters is the matching, which was first considered by
Heitger and Sommer [29, 30].

3.1 Matching of QCD and HQET

To obtain the matching condition between the HQET and the QCD there is on the
one hand the observables, e.g. dimensionless renormalized correlation functions or
energies, of HQET ΦHQET and on the other the QCD observables ΦQCD. The NHQET
unknown parameters are determined from the equation

ΦHQET
k (m, a) = ΦQCD

k (m), k = 1, . . . , NHQET. (3.1)

On the QCD side one assumes the continuum limit has already been taken, whereas
on the HQET side one have a dependence in a. The bare parameters of the theory are
defined at the lattice spacing a. Further the HQET observables have an explicit mass
dependence in the parameters. The determination of ΦQCD

k is difficult, because the
cutoff effects of O((amb)2) are large, which appear by simulating the b-quark on the
lattice. The remedy for this problem is to apply a finite volume with accessible small
lattice spacings. In this way one uses the SF boundary conditions. A definition of
the QCD observables on a finite volume provides much smaller lattice spacings, thus
a well-defined and unique continuum limit can be achieved. With a lattice extent of
L = L1 ≈ 0.4fm it is known from tests of HQET [24] that it provides 1

z = 1
LMb

≈ 1
10

and an accurate expansion in 1/m. Mb is the renormalization group invariant (RGI)
quarkmass, which is defined in appendix A. The matching condition yields

ΦHQET
k (L1,Mb, a) = ΦQCD

k (L1,Mb), k = 1, . . . , NHQET. (3.2)

The HQET observables require a fine resolution of the lattice, otherwise the O(a)
effects have a strong influence on the calculations. Therefore in the effective theory
larger physical volumes are required.

Step-Scaling

With the matching condition the parameters are defined for any value of the lattice
spacing. With an extent of L1 ≈ 0.4fm rather small lattice spacings are achieved
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3 Parameters of HQET

from a ≈ 0.02fm to a ≈ 0.05fm. Although one needs larger volumes to determine
the physical mass spectrum or matrix elements. To bridge the gap between lower
and higher volumes one makes use of a well-defined procedure [17] by establishing
the step-scaling functions

ΦHQET
k (sL,M, a) = σk

{[
ΦHQET
j (L,M, a), j = 1, . . . , NHQET

]}
, (3.3)

with k = 1, . . . , NHQET. Usually one uses the scaling s = 2 ⇒ L → 2L. The step-
scaling functions σk are dimensionless and relate observables in two different volumes
with L and sL. Furthermore the step-scaling functions have a dependence on the

a

L
L1 L2 L∞

Match
ing

ΦQCD
k

1/m� a

ΦHQET
k

1/m� L

=

(L1,Mb, a)

(L2,Mb, 2a)

a→ 0

σ

rescaling

Figure 3.1: The matching procedure and the step-scaling method to connect the once
determined HQET parameters to physically large volumes.

lattice quantities a and L. The dependence is described by the lattice step-scaling
function Σ(u, aL). To obtain the continuum observable σ(u) one has to determine
the lattice step-scaling functions for several values of a/L and extrapolate the data
to the continuum limit

σ(s, u) = lim
a→0

Σ(s, u,
a

L
)
∣∣∣
ḡ2(L)=u

. (3.4)

Similar step-scaling functions are applied on the HQET side of the matching equation
frequently until the extent of the lattice reaches the infinte-volume region, which is
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3.2 HQET parameters

about L∞ ≈ 2fm. The continuum limit of the HQET observables is extrapolated in
each step. The strategy is shown in figure (3.1).
I have to note here, that my calculations are at first order perturbation theory,

thus I obtain tree level results. I will perform the matching in the continuum limit.
On this account I do not apply the step-scaling method.

3.2 HQET parameters

In [28] a non-perturbative determination of the parameters of the HQET-Lagrangian
and of the time component of the heavy-light axial-vector current was performed.
The computation of the parameters was accomplished in the quenched approxima-
tion and the results show a qualitative agreement with perturbation theory.
A first step to extend the work is to determine the parameters of the lattice

HQET heavy-light currents at tree level, including the space components of the ax-
ial and vector current to obtain further 1/m-coefficients. To obtain the full set of
1/m-coefficients the currents are inserted in the SF correlation functions with zero
momentum, e.g. ~θh = ~θl and with non-zero momentum, e.g. ~θh 6= ~θl. Furthermore I
use unisotropic angles to obtain sensitivity to individual insertions of the currents.
The bare parameters of the effective theory ωkin, ωspin, Z

HQET
A,V , cHQET

A,V , together
with the energy shift mbare are sufficient to absorb all divergences in the effective
theory up to O(1/m). A complete set of all HQET parameters up to next-to-leading
order are tabulated in (3.1). An ideal determination of the HQET coefficients would
be in the non-perturbative way, but tree level results give a first impression of the
behaviour of the parameters in 1/z. Furthermore they are an indicator of the mag-
nitude of the corrections 1/z2. My aim is to study the tree level coefficients as
functions in 1/z, where z = Lm̃q. This is achieved by performing the matching in
the continuum limit.
The classical values of the coefficients should agree with the tree level results. The

classical values are summarized in table (3.1)

classical values of HQET parameters

ωkin ωspin c
(1)
A c

(2)
A c

(1)
V c

(2)
V ZHQET

A(k)
ZHQET
V(0)

1
2mb

1
2mb

− 1
2mb

− 1
2mb

1
2mb

1
2mb

1 1

c
(3)
A c

(4)
A c

(5)
A c

(6)
A c

(3)
V c

(4)
V c

(5)
V c

(6)
V

1
2mb

1
mb

1
2mb

− 1
mb

1
2mb

− 1
mb

1
2mb

− 1
mb

Table 3.1
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3 Parameters of HQET

3.3 Matching observables

In this section observables are required for the determination of the HQET pa-
rameters. They are built from SF correlation functions with suitable renormalized
combinations. The quantities depend on the lattice resolution a/L and in particular
they are universal, e.g. the continuum limit does exist. Furthermore the observables
depend on the periodicity angles of the light and the heavy quark ~θl and ~θh. In pre-
vious calculations [28] isotropic and equal angles for the light and the heavy quark
~θl = ~θh were chosen. Besides the parameters of the action and of the time compo-
nent of the axial current were discussed in the non-perturbative studies. I extend
the non-perturbative calculations and include a further current, the vector current.
Furthermore to obtain sensitivity to further HQET parameters I require ~θl 6= ~θh for
some observables. By my choice of observables I orientated myself on the quantities,
which were used in the non-perturbative studies. I expect that, with the use of the
observables at tree level the classical values of the parameters can be reproduced.

I introduce the observables concerning the axial correlation functions. Using
isotropic periodicity angles for the light and heavy quark with θl = θh = θ the
following QCD observables were introduced in [28]. However the quantities are de-
fined by the periodicity angles of the light and the heavy quark and thus depend on
~θl and ~θh. For a better readability I write for the observables depending on θ, which
is to be interpreted as depending on ~θl and ~θh.

R1 =
1

4
(ln(f1(θ1)k1(θ1)3)− ln(f1(θ2)k1(θ2)3))

∣∣∣∣
(T=L

2
)

(3.5)

RA = ln

(
fA(x0, θ1)

fA(x0, θ2)

)∣∣∣∣
(x0=T

2
,T=L)

(3.6)

ζA = ln

(
−fA(x0, θ)√

f1(θ)

)∣∣∣∣∣
(x0=T

2
,T=L)

(3.7)

The corresponding observables in the 1/m expansion are deduced from the HQET
expansion directly. The static quantities are

Rstat
1 = ln

(
f stat1 (θ1)

f stat1 (θ2)

)∣∣∣∣
(T=L

2
)

, (3.8)

Rstat
A = ln

(
f statA (x0, θ1)

f statA (x0, θ2)

)∣∣∣∣
(x0=T

2
,T=L)

, (3.9)

ζstatA = ln

(
−f statA (x0, θ)√

f stat1 (θ)

)∣∣∣∣∣
(x0=T

2
,T=L)

, (3.10)
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3.3 Matching observables

and the observables in O(1/m) can be written as

Rkin
1 =

(
fkin1 (θ1)

f stat1 (θ1)
− fkin1 (θ2)

f stat1 (θ2)

)∣∣∣∣
(T=L

2
)

, (3.11)

Rkin
A =

(
fkinA (x0, θ1)

f statA (x0, θ1)
−
fkinA (x0, θ2)

f statA (x0, θ2)

)∣∣∣∣
(x0=T

2
,T=L)

, (3.12)

Rstat
A(i) =

(
f stat
A(i)(x0, θ1)

f statA (x0, θ1)
−
f stat
A(i)(x0, θ2)

f statA (x0, θ2)

)∣∣∣∣∣
(x0=T

2
,T=L)

, (3.13)

Ψkin
A =

(
fkinA (x0, θ)

f statA (x0, θ)
− 1

2

fkin1 (θ)

f stat1 (θ)

)∣∣∣∣
(x0=T

2
,T=L)

, (3.14)

ρstatA(i) =

(
f stat
A(i)(x0, θ)

f statA (x0, θ)

)∣∣∣∣∣
(x0=T

2
,T=L)

. (3.15)

The observables for the space components of the axial current and the vector match-
ing are defined analogous. One just has to replace the index A with a Ak, V or V0

and use the corresponding correlation function and their normalization.

Time component of the axial current

In [28, 29] the quantities for the determination of ωkin, c
(1)
A and lnZHQET

A were
introduced for isotropic angles. Different combinations of angles are denoted by θ1

and θ2 in this case. To determine c(2)
A a new quantity Φ4,A is introduced with ~θl 6= ~θh.

For the determination of the coefficients one uses

Φ1,A = R1 −Rstat
1

= ωkinR
kin
1 , (3.16)

Φ2,A = RA −Rstat
A

= c
(1)
A Rstat

A(1) + ωkinR
kin
A , (3.17)

Φ3,A = ζA

= lnZHQET
A + ζstatA + c

(1)
A ρstatA(1) + ωkinΨkin

A , (3.18)

Φ4,A = RA(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h)

= ωkinR
kin
A (T/2, ~θl = ~θ′l,

~θh, ~θ
′
h)

+ c
(1)
A Rstat

A(1)(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h) + c

(2)
A Rstat

A(2)(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h). (3.19)

In the setup with vanishing background field there is no sensitivity to ωspin, because
the corresponding correlation functions f spinA and f spin1 are zero, see eq. (2.64).
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3 Parameters of HQET

Time component of the vector current

Analogous to the observables of the time component of the axial current I use the
observables (3.17), (3.18) and (3.19) for the matching of the time component of the
vector current. I can extract the HQET coefficients from the matching equations

Φ1,V0 = RV0 −Rstat
V0

= c
(1)
V Rstat

V0
(1) + ωkinR

kin
V0
, (3.20)

Φ2,V0 = ζV0

= lnZHQET
V0

+ ζstatV0
+ c

(1)
V ρstat

V(1)
0

+ ωkinΨkin
V0
, (3.21)

Φ3,V0 = RV0(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h)

= ωkinR
kin
V0

(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h)

+ c
(1)
V Rstat

V(1)
0

(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h) + c

(2)
V Rstat

V(2)
0

(T/2, ~θl = ~θ′l,
~θh, ~θ

′
h). (3.22)

The observables (3.20) and (3.21) are applied with equal and isotropic θ angles for the
light and the heavy quark respectively. The matching equation (3.22) has sensitivity
to the coefficients ωkin, c

(1)
V and c

(2)
V by using ~θl 6= ~θh, recall that only then the

observable Rstat
V(2)

0

does not vanish.

Space components of the vector current

For the matching of the space components of the vector current I introduce new
observables depending in kV and k1. With ~θl = ~θh I choose the observables

Φ1,V = ζV = ln

kV(T/2, ~θl = ~θh = ~θ)√
k1(~θl = ~θh = ~θ)


= lnZHQET

V + ζstatV + ωkin Ψkin
V +

4∑
i=3

c
(i)
V ρ

(i)
V , (3.23)

Φ2,V = RV = ln

(
kV(T/2, ~θl = ~θh = ~θ)

kV(T 2, ~θ′l = ~θ′h = ~θ′)

)

= Rstat
V + ωkinR

kin
V +

4∑
i=3

c
(i)
V Rstat

V(i) . (3.24)

The two quantities are sensitive to the parameters ωkin, c
(3)
V and c(4)

V , whereas (3.23)
also has sensitivity to the renormalization constant ZHQET

V . The coefficients c(5)
V

and c(6)
V do not contribute because at zero-momentum the insertions V (5)

k and V (6)
k

vanish.
Further observables thus will be determined with different angles for the light and
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3.3 Matching observables

the heavy quark. A natural choice which provides further sensitivity to c(5)
V and c(6)

V
would be

Φ3,V = ln

(
kV(T/2, ~θl, ~θh)

kV(T/2, ~θ′l,
~θ′h)

)
= Rstat

V (T/2, ~θl, ~θ
′
l,
~θh, ~θ

′
h) + ωkinR

kin
V (T/2, ~θl, ~θ

′
l,
~θh, ~θ

′
h)

+
6∑
i=3

c
(i)
V Rstat

V(i)(T/2, ~θl, ~θ
′
l,
~θh, ~θ

′
h). (3.25)

To obtain all the five parameters two more observables are needed. Let me remark
at this point that to handle on all 1/m-coefficients I introduce a further correlation
function kV11 . The contribution from V

(4)
k is proportional to θ2

l,x at tree level for

large L/a [31]. If one uses θl,x = 0 the correlator kV11 has no sensitivity to c(4)
V . At

tree level possible choices would be

Φ4,V = ln

(
kV11(T/2, ~θl = ~θh, θl,x = 0)

kV11(T/2, ~θ′l = ~θ′h, θ
′
l,x = 0)

)
, (3.26)

Φ5,V = ln

(
kV11(T/2, ~θl, ~θh, θl,x = θh,x = 0)

kV11(T/2, ~θ′l,
~θ′h, θl,x = θ′h,x = 0)

)
. (3.27)

where as Φ4,V is sensitive to ωkin, c
(3)
V at tree level and Φ5,V has sensitivity to ωkin, c

(3)
V

and c(5)
V .

The HQET expansions of the two observables are analogous to (3.25).

Space components of the axial current

The observables for the matching of the space components of the axial current should
be imposed in the same way as for the space components of the vector current. With
~θl = ~θh I choose the observables

Φ1,Ak = ζAk = ln

fAk(T/2, ~θl = ~θh = ~θ)√
f1(~θl = ~θh = ~θ)


= lnZHQET

Ak + ζstatAk + ωkin Ψkin
Ak +

4∑
i=3

c
(i)
A ρ

(i)
Ak , (3.28)

Φ2,Ak = RAk = ln

(
fAk(T/2, ~θl = ~θh = ~θ)

fAk(T 2, ~θ′l = ~θ′h = ~θ′)

)

= Rstat
Ak + ωkinR

kin
Ak +

4∑
i=3

c
(i)
A Rstat

A(i)
k

. (3.29)
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and with ~θl 6= ~θh I use

Φ3,Ak = ln

(
fAk(T/2, ~θl, ~θh)

fAk(T/2, ~θ′l,
~θ′h)

)
= Rstat

Ak (T/2, ~θl, ~θ
′
l,
~θh, ~θ

′
h) + ωkinR

kin
Ak (T/2, ~θl, ~θ

′
l,
~θh, ~θ

′
h)

+
6∑
i=3

c
(i)
A Rstat

A(i)
k

(T/2, ~θl, ~θ
′
l,
~θh, ~θ

′
h). (3.30)

To obtain all the five parameters two more observables are needed and I introduce
the quantity fAV21 from (1.121). The correlation function has no sensitivity to the
insertions A(4)

k and A(6)
k at tree level. Therefore possible choices are

Φ4,Ak = ln

(
fAV21(T/2, ~θl = ~θh)

fAV21(T/2, ~θ′l = ~θ′h)

)
, (3.31)

Φ5,Ak = ln

(
fAV21(T/2, ~θl, ~θh)

fAV21(T/2, ~θ′l,
~θ′h)

)
. (3.32)

These observables are sensitive to ωkin, c
(3)
A and c(5)

A , whereas (3.31) has no sensitivity
to c(5)

A when ~θl = ~θh.
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4 Perturbative expansion of the heavy-light
correlation functions

The perturbative expansion of the correlation functions follows [32] and [33]. At
first I will present the integration over the quark and anti-quark fields. Furthermore
some definitions are introduced to accomplish the perturbative expansion of the
SF correlation functions. Next in 4.3 the perturbative expansion of the relativistic
correlation functions is exposed in detail and tree level results are shown. Finally
the analogous expansion of the static correlation functions and the 1/m-corrections
are presented.

4.1 Quark functional intergal

Expectation values of observables in the quark functional framework are of interest.
One can write them as

〈O〉 = 〈[O]F〉G (4.1)

with [. . .]F the expectation value generated with the fermionic action1

SF[U,ψb, ψb, ψl, ψl] = Sl[U,ψl, ψl] + Sb[U,ψb, ψb] (4.2)

and the expectation value 〈. . .〉G calculated with the effective gauge field action

Seff[U ] = SG[U ]− tr {ln(D + δD +m0)} . (4.3)

One can write the generating functional by using the source fields ηl, η̄l, ηb, and η̄b
for the quark fields

ZF[ρ̄′l, ρ
′
l; ρ̄l, ρl; ρ̄

′
b, ρb;U ] =∫

D[ψl]D[ψl]D[ψb]D[ψb] exp
{
−SF[U,ψb, ψb, ψl, ψl]

+ a4
∑
x

[
ψl(x)ηl(x) + η̄l(x)ψl(x)

]
+ a4

∑
x

[
ψb(x)ηb(x) + η̄b(x)ψb(x)

]
} . (4.4)

After substituting the quark fields with derivatives of the sources

ψl(x)→ δ

δη̄l(x)
, ψl(x)→ − δ

δηl(x)
, (4.5)

ψb(x)→ δ

δη̄b(x)
, ψb(x)→ − δ

δηb(x)
(4.6)

1The gauge field U has to be fixed
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4 Perturbative expansion of the heavy-light correlation functions

I can write the fermionic expectation value as

[O]F =

{
1

ZF
OZF

}
ρ̄′l=...=ηb=0

. (4.7)

I can write the quark fields as a sum of the classical values and of fluctuation fields,

ψl(x) = ψl,cl(x) + χl(x), ψl(x) = ψl,cl(x) + χ̄l(x), (4.8)

ψb(x) = ψb,cl(x) + χb(x), ψb(x) = ψb,cl(x) + χ̄b(x), (4.9)

which have to be zero at x0 = 0 and x0 = T , to fulfill the SF boundary conditions.
The fermion action can be split into a sum of an action depending on the classic
values for the quark fields and an action depending on the fluctuation fields. I use
the specific boundary condition of the SF and the equation of motion in the bulk for
the light and heavy quark fields,

SF[U,ψl, ψl, ψb, ψb] = SF[U,ψl,cl, ψl,cl, ψb,cl, ψb,cl] + SF[U, χ̄l, χl, χ̄b, χb]. (4.10)

Thereby the generating functional provides, including a change of the integration
variable from ψ to χ

lnZF = lnZF|ρ̄′l=...=ηb=0 − SF[U,ψl,cl, ψl,cl, ψb,cl, ψb,cl]

+ a8
∑
x,y

η̄l(x)Sl(x, y)ηl(y) + a4
∑
x

[
η̄l(x)ψl,cl(x) + ψl,cl(x)ηl(x)

]
+ a8

∑
x,y

η̄b(x)Sb(x, y)ηb(y) + a4
∑
x

[
η̄b(x)ψb,cl(x) + ψb,cl(x)ηb(x)

]
, (4.11)

where I distinguish between Sl, the light quark propagator and Sb, the heavy quark
propagator. From [32] one knows that the improved action receives boundary con-
tributions

SF,impr[U,ψcl, ψcl] =

a3
∑
x

{
1

2
ac̃s
[
ρ̄(x)γk(∇∗k +∇k)ρ(x) + ρ̄′(x)γk(∇∗k +∇k)ρ′(x)

]
−c̃t

[
ρ̄(x)U(x− a0̂, 0)ψcl(x)

∣∣
x0=a

+ ρ̄′(x)U(x, 0)−1ψcl(x)
∣∣
x0=T−a

]}
, (4.12)

which is valid for light and heavy quarks. The action of a bilinear system consisting
of a light and a heavy quark would be the sum of the light quark action and the heavy
quark action, as one can see in (4.2). The two-point functions can be determined
by differentiating the generating functional (4.11) with respect to the source fields.
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4.2 Tree level quark propagator

This results in [32][
ψ(x)ψ(y)

]
F = S(x, y), (4.13)[

ψ(x)ζ̄(y)
]
F = c̃tS(x, y)P+U(y − a0̂, 0)−1P+

∣∣
x0=a

, (4.14)[
ψ(x)ζ̄ ′(y)

]
F = c̃tS(x, y)P+U(y, 0)−1P−

∣∣
x0=T−a , (4.15)[

ζ(x)ψ(y)
]
F = c̃tP+U(x− a0̂, 0)S(x, y)

∣∣
x0=a

, (4.16)[
ζ ′(x)ψ(y)

]
F = c̃tP+U(x, 0)−1S(x, y)

∣∣
x0=T−a , (4.17)[

ζ(x)ζ̄(y)
]
F = c̃tP−U(x− a0̂, 0)S(x, y)U(y − a0̂, 0)−1P+

∣∣
x0=y0=a

− 1

2
c̃sP−γk(∇∗k +∇k)a−2δxy, (4.18)[

ζ(x)ζ̄ ′(y)
]
F = c̃2

tP+U(x− a0̂, 0) S(x, y) U(y, 0)−1P−
∣∣
x0=a,y0=T−a , (4.19)[

ζ ′(x)ζ̄(y)
]
F = c̃2

tP+U(x, 0)−1 S(x, y) U(y − a0̂, 0)−1P−
∣∣
x0=T−a,y0=a

, (4.20)[
ζ ′(x)ζ̄ ′(y)

]
F = c̃2

tP+U(x, 0)−1 S(x, y) U(y, 0)−1P−
∣∣
x0=a,y0=T−a

− 1

2
c̃sP+γk(∇∗k +∇k)a−2δxy. (4.21)

The Wick contractions are valid for heavy and light fermion fields.

4.2 Tree level quark propagator

For simplicity some definitions are needed to evaluate SF tree level correlation func-
tions. The periodicity angles lead to a shift of the lattice momenta

pk =
2πnk
L

, −π
a
< pk <

π

a
(4.22)

by

p+
µ = pµ +

θµ
L
. (4.23)

I use the abbreviation for any momentum qµ

q̊µ =
1

a
sin(aqµ), (4.24)

q̂µ =
2

a
sin(aqµ/2). (4.25)

One now can define an effective mass for the light quark field

M(q) = m0 +
1

2
aq̂2. (4.26)

The tree level solution of the free lattice Dirac equation can be written as

ψ
(0)
l,cl = u1e

ipx (4.27)

and only considering states with positive energy, i.e. Im p0 ≥ 0, provides

p0 = p+
0 = iω(p+)mod 2π/a (4.28)
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4 Perturbative expansion of the heavy-light correlation functions

with

sinh
(a

2
ω(q)

)
=
a

2

[
q̊2 + (m0 + 1

2aq̂
2)2

1 + a(m0 + 1
2aq̂

2)

]1/2

. (4.29)

The tree level propagator for the light quark can be obtained from

(D +m0)S
(0)
l (x, y)

∣∣∣
g0=0

= δ(x− y) (4.30)

with the boundary conditions

S
(0)
l (x, y)

∣∣∣
x0=0

= S
(0)
l (x, y)

∣∣∣
y0=0

=

S
(0)
l (x, y)

∣∣∣
x0=T

= S
(0)
l (x, y)

∣∣∣
y0=T

= 0. (4.31)

The Fourier transform is defined as

S̃
(0)
l (x0, y0;p) = a3

∑
x
e−ip(x−y)S

(0)
l (x, y). (4.32)

For m0 = 0 and p+ = 0 the tree level propagator has the form

S̃
(0)
l (x0, y0;p) =


P+ if x0 > y0,

P− if x0 < y0,

1 if x0 = y0.

(4.33)

For all other cases the tree level expression is written in appendix B.
The classical solution for the free Wilson Dirac equation for a ≤ x0 ≤ T can be

written as

ψ
(0)
l,cl = a3

∑
y

(
S

(0)
l (x, y)ρl(y)

∣∣∣
y0=a

+ S
(0)
l (x, y)ρ′l(y)

∣∣∣
y0=T−a

)
. (4.34)

4.3 Perturbative expansion of the relativistic correlation
functions

In this section I consider the perturbative expansion of the QCD correlation functions
fA, f1 and kV in detail. The expansion of k1, kV0 , kV11 and fAk , fAV21 is done
analogously.
With the heavy-light axial and vector current the SF correlation functions read

fA(x0, ~θl, ~θb) = −a
6

2

∑
y,z

〈
ψl(x)γ0γ5ψb(x) ζ̄b(y)γ5ζl(z)

〉
, (4.35)

kV(x0, ~θl, ~θb) = −a
6

6

∑
y,z.k

〈
ψl(x)γkψb(x) ζ̄b(y)γkζl(z)

〉
, (4.36)

f1(~θl, ~θb) = − a
12

2L6

∑
u,v,y,z

〈
ζ̄ ′l(u)γ5ζ

′
b(v) ζ̄b(y)γ5ζl(z)

〉
. (4.37)
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4.3 Perturbative expansion of the relativistic correlation functions

Applying Wick’s theorem [34] provides the following formulations for fA, kV and f1

fA(x0, ~θl, ~θb) =
a6

2

∑
y,z

〈
tr
{

[ζl(z)ψl(x)]Fγ0γ5[ψb(x)ζ̄b(y)]Fγ5

}〉
G (4.38)

kV(x0, ~θl, ~θb) =
a6

6

∑
y,z,k

〈
tr
{

[ζl(z)ψl(x)]Fγk[ψb(x)ζ̄b(y)]Fγk
}〉

G , (4.39)

f1(~θl, ~θb) =
a12

2L6

∑
u,v,y,z

〈
tr
{

[ζl(z)ζ̄ ′l(u)]Fγ5[ζ ′b(v)ζ̄b(y)]γ5

}〉
G . (4.40)

The trace runs over Dirac and colour indices. The hermiticity property of the quark
propagator (1.92) can be utilized for the contractions in the following way

γ5[ζl(z)ψl(x)]Fγ5 = [ψl(x)ζ̄l(z)]†F, (4.41)

γ5[ζl(z)ζ̄ ′l(u)]Fγ5 = [ζ ′l(u)ζ̄l(z)]†F. (4.42)

Furthermore I use the relation of the Dirac matrices in the chiral representation (A.5)
and I obtain

fA(x0, ~θl, ~θb) = −a
6

2

∑
y,z

〈
tr
{

[ψl(x)ζ̄l(z)]†Fγ0[ψb(x)ζ̄b(y)]F

}〉
G
, (4.43)

kV(x0, ~θl, ~θb) =
a6

6

∑
y,z,k

〈
tr
{
γ5[ψl(x)ζ̄l(z)]†Fγ5γk[ψb(x)ζ̄b(y)]Fγk

}〉
G
, (4.44)

f1(~θl, ~θb) =
a12

2L6

∑
u,v,y,z

〈
tr
{

[ζ ′l(u)ζ̄l(z)]†F[ζ ′b(v)ζ̄b(y)]
}〉

G
. (4.45)

I can write the contractions as derivatives of the classical fields with respect to the
source fields [

ψ(x)ζ̄(y)
]
F =

δψcl(x)

δρ(y)
. (4.46)

This is valid for heavy and light quarks. It provides the expressions for the SF
heavy-light correlation functions

fA(x0, ~θl, ~θb) = −a
6

2

∑
y,z

〈
tr

{(
δψl,cl(x)

δρl(z)

)†
γ0

(
δψb,cl(x)

δρb(y)

)}〉
G

, (4.47)

kV(x0, ~θl, ~θb) =
a6

6

∑
y,z

〈
tr

{
γ5

(
δψl,cl(x)

δρl(z)

)†
γ5γk

(
δψb,cl(x)

δρb(y)

)
γk

}〉
G

. (4.48)

It is appropriate to define matrices for the heavy and the light quarks and as corre-
spondingly for the boundary fields as in [22]. The matrix H(x) describes the quark
propagator from boundary at time 0 to the point x in the interior of the space-time
volume,

H(x) = a3
∑
y

δψcl(x)

δρ(y)
. (4.49)
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4 Perturbative expansion of the heavy-light correlation functions

Furthermore one finds in [20] the matrices for the relativistic heavy and light quark,
which present the quark propagator from the boundary at time 0 to the boundary
at time T

K = c̃t
a3

L3

∑
x
P+U(x, 0)−1H(x) |x0=T−a . (4.50)

With the use of the expressions for the quark fields I can write the heavy-light
correlation functions as

fA(x0, ~θl, ~θb) = −1

2

〈
tr
{
Hl(x)†γ0Hb(x)

}〉
G
, (4.51)

kV(x0, ~θl, ~θb) =
1

6

〈
tr
{
γ5Hl(x)†γ5γkHb(x)γk

}〉
G
, (4.52)

f1(~θl, ~θb) =
1

2

〈
tr
{
K†lKb

}〉
G
. (4.53)

Finally the perturbative expansion can be deduced by expanding the correlation
functions and the matrices in the coupling g0

fA(x0) = f
(0)
A (x0) + g2

0f
(1)
A (x0) +O(g4

0), (4.54)

kV(x0) = k
(0)
V (x0) + g2

0k
(1)
V (x0) +O(g4

0), (4.55)

f1 = f
(0)
1 + g2

0f
(1)
1 +O(g4

0), (4.56)

with the matrix expansions

Hl(x) = H
(0)
l (x) + g0H

(1)
l (x) + g2

0H
(2)
l (x) +O(g3

0), (4.57)

Hb(x) = H
(0)
b (x) + g0H

(1)
b (x) + g2

0H
(2)
b (x) +O(g3

0), (4.58)

Kl(x) = K
(0)
l + g0K

(1)
l + g2

0K
(2)
l +O(g3

0), (4.59)

Kb(x) = K
(0)
b + g0K

(1)
b + g2

0K
(2)
b +O(g3

0). (4.60)

4.3.1 Tree level expressions

I have to consider the matrix H(x) at tree level. The matrix is defined as the
derivative of the quark fields with respect to the corresponding boundary source

H(0)(x) = a3
∑
y

δψ
(0)
cl (x)

δρ(y)
. (4.61)

With (B.3) to (B.5) one obtains after some calculations for the tree level propagator
for p = 0

H(0)(x) =
1

R(p+)

{
(M(p+)− ip̊+

0 − iγkp̊
+
k )e−ω(p+)x0

− (M(p+) + ip̊+
0 − iγkp̊

+
k )e−ω(p+)(2T−x0)

}
P+. (4.62)

46



4.4 Perturbative expansion of the the correlation functions in the static approximation

The tree level propagator does not depend on the space components of a point but
on the time component. Therefore I can introduce the function

χ(x0) = H(0)(x). (4.63)

Moreover the tree level results for the K matrices can be written as

K(0) = P+χ(T − a). (4.64)

In QCD I have the correlation functions with two relativistic quarks labeled with 1
and 2, for the light and the heavy quark. They have the bare masses m0,1 and m0,2

and zero momentum p = 0.
All in all I get the QCD two-point correlation functions at tree level

f
(0)
A (x0, ~θl, ~θb) = −1

2

〈
tr
{
χ1(x0)†γ0χ2(x0)

}〉
G
, (4.65)

k
(0)
V (x0, ~θl, ~θb) =

1

6

〈
tr
{
γ5χ1(x0)†γ5γkχ2(x0)γk

}〉
G
, (4.66)

f
(0)
1 (~θl, ~θb) =

1

2

〈
tr
{
χ1(T − a)†P+χ2(T − a)

}〉
G
. (4.67)

4.4 Perturbative expansion of the the correlation
functions in the static approximation

The boundary-to-bulk correlation functions in the static approximation for the pseudo-
scalar and vector channel are

f statA (x0, ~θl, ~θh) = −a
6

2

∑
y,z

〈
Astat

0 (x) ζ̄h(y)γ5ζl(z)
〉
, (4.68)

kstatV (x0, ~θl, ~θh) = −a
6

6

∑
y,z,k

〈
V stat
k (x) ζ̄h(y)γkζl(z)

〉
. (4.69)

The computation is associated with the one in the relativistic case. I apply Wick’s
theorem and make use of the hermiticity property and the representation through
the boundary fields

γ5[ζ(z)ψ(x)]Fγ5 =
[
ψ(x)ζ̄(z)

]†
F

=

(
δψcl(x)

δρ(z)

)†
. (4.70)

It is convenient for the calculations to introduce the heavy and light quark matrices
as for the relativistic quarks (4.49). Thus one defines

Hl(x) = a3
∑
y

δψl,cl(x)

δρl(y)
, (4.71)

Hh(x) = a3
∑
y

δψh,cl(x)

δρh(y)
. (4.72)
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4 Perturbative expansion of the heavy-light correlation functions

Furthermore the matrices for the heavy and light quarks, which present the quark
propagator from the boundary at time 0 to the boundary at time T are [33]

Kl = c̃t
a3

L3

∑
x
P+U(x, 0)−1Hl(x) |x0=T−a , (4.73)

Kh =
a3

L3

∑
x
P+U(x, 0)−1Hh(x) |x0=T−a . (4.74)

The correlation functions f statA and kstatV can be written with the use of the matrices
(4.71) and (4.72)

f statA (x0, ~θl, ~θh) = −1

2

〈
tr
{
Hl(x)†γ0Hh(x)

}〉
G
, (4.75)

kstatV (x0, ~θl, ~θh) =
1

6

〈
tr
{
γkγ5Hl(x)†γ5γkHh(x)

}〉
G
. (4.76)

In analogy to f statA (x0) I get for the boundary-to-boundary correlation function

f stat1 (θ) =
1

2

〈
tr
{
Kl(x)†Kh(x)

}〉
G
. (4.77)

The perturbative expansion of the correlations functions is straightforward

f statA (x0) = f
stat(0)
A (x0) + g2

0f
stat(1)
A (x0) +O(g4

0), (4.78)

kstatV (x0) = k
stat(0)
V (x0) + g2

0k
stat(1)
V (x0) +O(g4

0), (4.79)

f stat1 = f
stat(0)
1 + g2

0f
stat(1)
1 +O(g4

0) (4.80)

4.4.1 Tree level expressions

In the static case the tree level expression for the matrix (4.72), setting δm = 0 is

χh(x0) = H
(0)
h (x) = P+ (4.81)

and for the light quark mass I just add an index l to (4.63). The tree level results
for the K matrices in the static case are

K
(0)
l = P+χl(T − a), K

(0)
h = P+. (4.82)

This leads to the tree level formulations for the static correlation functions

f
stat (0)
A (x0, ~θl) = −1

2

〈
tr
{
χl(x0)†P+

}〉
G
, (4.83)

k
stat (0)
V (x0, ~θl) =

1

6

〈
tr
{
γkγ5 χl(x0)†γ5γk P+

}〉
G

(4.84)

and

f
stat (0)
1 (~θl) =

1

2

〈
tr
{
χl(T − a)†P+

}〉
G
, (4.85)

k
stat (0)
1 (~θl) =

1

6

〈
tr
{
γkγ5χl(T − a)†P+γ5γkP+

}〉
G
. (4.86)
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4.5 Next-to-leading order in 1/m

4.5 Next-to-leading order in 1/m

To determine the coefficients of O(1/m) I have to compute the 1/m corrections of
the heavy light correlation functions. I will present the perturbative expansion and
tree level results of the 1/m corrections of the axial correlation functions. For the
vector correlation functions I refer to to appendix B.
In section 2.2 the currents f statδhA(x0, ~θl, ~θh) and f statδA (x0, ~θl) were introduced to ob-

tain sensitivity to all O(1/m) terms in the HQET expansion. With the relation at
tree level

f statA(1)(x0, ~θl, ~θh) =
1

2

(
f statδhA(x0, ~θl, ~θh)− f statδA (x0, ~θl)

)
, (4.87)

f statA(2)(x0, ~θl, ~θh) =
1

2

(
f statδhA(x0, ~θl, ~θh) + f statδA (x0, ~θl)

)
(4.88)

the correlation functions f stat
A(1) and f stat

A(2) , which are used for the observables, i.e. in
(3.19), can be obtained.

Perturbative expansion of f stat
δhA (x0, ~θl, ~θh)

The correlation function is given by

f statδhA(x0, ~θl, ~θh) = −a
6

2

∑
y,z

〈
δhA0(x) ζ̄h(y)γ5ζl(z)

〉
, (4.89)

with the insertion
δhA0(x) = ψl(x)γ5γi∇Si ψh(x). (4.90)

Making use of Wick’s theorem yields

f statδhA =
a6

2

∑
y,z

〈
tr
{
γ5[ζl(z)ψl(x)]Fγ5γi[∇Si ψh(x)ζ̄h(y)]F

}〉
G

=
a6

2

∑
y,z

〈
tr
{

[ψl(x)ζ̄l(z)]†Fγi[∇
S
i ψh(x)ζ̄h(y)]F

}〉
G

=
a3

2

∑
y

〈
tr
{
Hl(x)†γi[∇Si ψh(x)ζ̄h(y)]F

}〉
G
. (4.91)

Furthermore I applied the previous steps as the hermiticity condition (1.92) and the
introduction of the quark matrix (4.71). It remains to evaluate the second Wick
contraction

[∇Si ψh(x)ζ̄h(y)]F . (4.92)

At first I calculate the covariant derivative acting on the heavy quark field

∇Si ψh(x) =
1

2a

[
λh,iUi(x)ψh(x+ aî)− λ−1

h,iUi(x− aî)
−1ψh(x− aî)

]
. (4.93)
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4 Perturbative expansion of the heavy-light correlation functions

The phases λh,i = exp{ia θh,iL } depend on the heavy quark angles. Thus I can deduce
for the contraction

[∇Si ψh(x)ζ̄h(y)]F

=
1

2a

{
λh,iUi(x)[ψh(x+ aî)ζh(y)]F − λ−1

h,iUi(x− aî)
−1[ψh(x− aî)ζh(y)]F

}
=

1

2a

{
λh,iUi(x)

(
δψh,cl(x+ aî)

δρh(y)

)
−

λ−1
h,iUi(x− aî)

−1

(
ψh,cl(x− aî)
δρh(y)

)}
. (4.94)

Hence the correlation function at tree level can be written as

f
stat (0)
δhA

=
1

2

〈
tr
{
H

(0)
l (x)†γi

1

2a

[
λh,iH

(0)
h (x+ aî)− λ−1

h,iH
(0)
h (x− aî)

]}〉
G

(4.95)

where I used the definition of the quark matrices (4.72). With the tree level heavy
quark matrices (4.81) I obtain

f
stat (0)
δhA =

1

2

〈
tr
{
χl(x0)†γi

1

2a
P+

[
λh,i − λ−1

h,i

]}〉
G

=
i

2a

∑
i

sin(a
θh,i
L

)
〈
tr
{
χl(x0)†γiP+

}〉
G

(4.96)

Perturbative expansion of f stat
δA (x0, ~θl)

The correlation function is given by

f statδA (x0, ~θl) = −a
6

2

∑
y,z

〈
δA0(x) ζ̄h(y)γ5ζl(z)

〉
, (4.97)

and has only a ~θl dependence, because the operator

δA0(x) = ψl(x)γ5γi
←−
∇S
i ψh(x) (4.98)

contains derivatives acting on the light quark fields. Making use of Wick’s theorem
yields

f statδA =
a6

2

∑
y,z

〈
tr
{
γ5[ζl(z)ψl(x)

←−
∇S
i ]Fγ5γi[ψh(x)ζ̄h(y)]F

}〉
G

=
a3

2

∑
z

〈
tr
{

[∇Si ψl(x)ζ̄l(z)]†FγiHh(x)
}〉

G
. (4.99)
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4.5 Next-to-leading order in 1/m

I calculate the symmetric derivative acting on the light quark field at first and after-
wards I replace the boundary fields by the source fields

[∇Si ψl(x)ζ̄l(z)]F

=

[
1

2a

(
λl,iUi(x)ψl(x+ aî)− λ−1

l,i Ui(x− aî)
−1ψl(x− aî)

)
ζ̄l(z)

]
F

. (4.100)

At tree level this expression reduces to

λl,i
2a

[
ψ

(0)
l (x+ aî)ζ̄l(z)

]
F
−
λ−1
l,i

2a

[
ψ

(0)
l (x− aî)ζ̄l(z)

]
F

=
λl,i
2a

δψ(0)
l,cl(x+ aî)

δρl(z)

− λl,i
−1

2a

δψ(0)
l,cl(x− aî)
δρl(z)

 . (4.101)

It emerges for the tree level correlation function

f
stat (0)
δA =

1

2

〈
tr

{[
λ−1
l,i

2a
H

(0)
l (x+ aî)† −

λl,i
2a
H

(0)
l (x− aî)†

]
γiH

(0)
h (x)

}〉
G

=
1

2

〈
tr

{[
λ−1
l,i

2a
χl(x0)† −

λl,i
2a
χl(x0)†

]
γiH

(0)
h (x)

}〉
G

(4.102)

and I make use of the light quark matrices (4.71) at tree level

f
stat (0)
δA =

1

4a

〈
tr
{
χl(x0)†

[
λ−1
l,i − λl,i

]
γiH

(0)
h (x)

}〉
G

= − i

2a

∑
i

sin(a
θl,i
L

)
〈
tr
{
χl(x0)†γiP+

}〉
G
. (4.103)

If I assume equal periodicity angles in all space directions θh,i = θh and θl,i = θl, I
obtain the following tree level formulation

f
stat (0)
δhA = −

sin(a θhL )

sin(a θlL )
f
stat (0)
δA . (4.104)

Finally the tree level results for the 1/m correlation functions in the axial channel
are

f
stat (0)

A(1) (x0, ~θl, ~θh)

=
i

4a

∑
i

(
sin(a

θh,i
L

) + sin(a
θl,i
L

)

) 〈
tr
{
χl(x0)†γiP+

}〉
G
, (4.105)

and

f
stat (0)

A(2) (x0, ~θl, ~θh)

=
i

4a

∑
i

(
sin(a

θh,i
L

)− sin(a
θl,i
L

)

) 〈
tr
{
χl(x0)†γiP+

}〉
G
. (4.106)
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5 Tree level matching

The matching of the QCD and HQET observables constructed from the axial and
vector correlation functions is discussed at tree level. I show the behaviour of the
parameters of the effective theory for the time and space components of the currents
in 1/z. The results indicate a trend of the 1/z2 corrections of the coefficients. In the
case of a non-perturbative matching one defines the quantity z = LM , where M is
the RGI quark mass and L is the extent of the matching volume. With this definition
the scale of the bottom and charm quark mass can be specified. To set my values in
correspondence to the simulations with the ALPHA collaboration1 I choose for the
matching volume L1 ≈ 0.5fm and the quenched RGI quark mass for the charm quark
Mc = 1.60(2)MeV [35] and for the bottom quark Mb = 6.758(86)MeV [36]. That
implies a bottom scale of 1/zb = 0.058(5) and a charm scale of 1/zc = 0.247(126).
To study the coefficients as a function of 1/z I determine equations for z = m̃qL =

4, 8, 12, 16, 20, 24, 28, 32, 64 and different θ combinations. In the following chapter
I illustrate my calculations for a full set of HQET parameters at tree level. The
charm and bottom scale are presented by grey dashed lines. In the discussion of
the results in 5.4, a linear and quadratic fit of the determined tree level values are
shown, to ascertain the behaviour of the coefficients in O(1/z2) and higher orders.
The quadratic fit is performed with all values for z = 4, . . . , 64. The linear fit of
the results is performed with the values for z = 16, 20, 24, 28, 32 and 64. This region
overlaps with the scale of the b-quark mass. Since the non-perturbative matching
is performed in the region of the b-quark mass, a linear behaviour of the tree level
results would indicate that higher order corrections in 1/z can be neglected.

5.1 Continuums extrapolation

To obtain the desired continuum limit of the observables I have to apply an extrap-
olation of the data to a/L → 0. The continuum extrapolation is governed by a fit
function, which produces the best developing of the numerical data. From [37] I infer
the fit routine for my problem to be the Linear Least Squares Function. An optimal
set of parameters {ak} is imposed and governs the fit function. The parameters are
constituted by the Merit function

χ2 =
N∑
i=1

(
yi −

∑M
k=1 akXk(xi)

σi

)2

. (5.1)

1http://www-zeuthen.desy.de/alpha/
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5 Tree level matching

This function describes the difference of the data point yi from the value of f(xi) =∑M
k=1 akXk(xi), which are weighted with measurement errors σi. To obtain the

optimal fitroutine in this case can be considered by minimizing (5.1). It is essential
to evaluate the matrix equation

M∑
j=1

αkjaj = βk (5.2)

with

αkj =
N∑
i=1

Xj(xi)Xk(xi)

σ2
i

, (5.3)

βk =
N∑
i=1

yiXk(xi)

σi
. (5.4)

For the continuum extrapolation of the observables I choose the fit function

f(a/L) = a1(a/L)4 + a2(a/L)3 + a3(a/L)2 + a4 (5.5)

containing no linear term due to O(a) improvement of the observables.
The continuum limit of the observables can be computed by extrapolating data

from L/a = 84, . . . , 256, although for z = 64 only the finest resolutions are con-
sidered. Discretization effects occur with z = 64 and consequently a meaningful
continuum limit extrapolation is not feasible. Thus one has to extrapolate the data
from lattices so that χ2/dof ≈ 0.52. This restriction provides an acceptable contin-
uum limit. If not otherwise specified I use the last 50 lattice points. The errors of
the observables are determined by error propagation. I refer to appendix C for more
details.

5.2 Axial Matching

5.2.1 ωkin

I can extract ωkin from the relation (3.16) up to O( 1
m2 ). I use the matching at

T = L/2 and for isotropic and equal angles θh = θl = θ I obtain

R1 −Rstat
1

Rkin
1

= ωkin +O(
1

m2
). (5.6)

The observables are given as ratios of correlation functions. For a detailed definition
of the observables I want to refer to 3.3. With the tree level relations (2.52) and
(2.54) the observables yield

R1 = ln

(
f1(θ1)

f1(θ2)

)
, (5.7)

Rkin
1 =

6

a2
(T − a)

(
cos(a

θ1

L
)− cos(a

θ2

L
)

)
. (5.8)

2dof means degrees of freedom
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Figure 5.1: Tree level results for the determination of ωkin for different θ combina-
tions.

In this case only R1 depends on the heavy quark mass. The other observables are
determined in the static approximation.
Regarding that the classical value for ωkin is 1

2mb
, I consider ωkin ·m̃q, with m̃q = z/L

z(R1 −Rstat
1 )cl

(LRkin
1 )cl

=
1

2
+O(

1

z
). (5.9)

From this equation one expects that ωkin · z/L is a linear function in 1
z with the

approach to 1
2 for 1

z → 0.
The continuum limit of L ·Rkin

1 can be extracted analytically

L ·Rkin
1 = L · 6

a2

(
L

2
− a
)(

cos(a
θ1

L
)− cos(a

θ2

L
)

)
=

(
3
L2

a2
− 6

L

a

)(
1− 1

2

a2θ2
1

L2
− 1 +

1

2

a2θ2
2

L2

)
=

(
3

2
− 3

a

L

)(
θ2

2 − θ2
1

)
a/L→0−→ 3

2

(
θ2

2 − θ2
1

)
. (5.10)

In figure (5.1) the results for (θ1, θ2) = (0.5, 1.0), (1.0, 1.5) and (1.5, 0.5) are shown.
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5.2.2 c
(1)
A
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Figure 5.2: Tree level results for the determination of c(1)
A for different θ combinations.

I used the results from ωkin for the associated θ combination.

I can extract c(1)
A from the relation (3.17) up to O( 1

m2 ). If I demand zero momen-
tum, I do not get sensitivity to c(2)

A , because the correlation function f stat
A(2) is zero for

~θh = ~θl. I use the matching equation at T = L, x0 = T/2 and isotropic angles. c(1)
A

can be determined from
RA −Rstat

A − ωkinRkin
A

Rstat
A(1)

= c
(1)
A . (5.11)

At tree level I obtain for the kinetic observable

Rkin
A =

6

a2
x0

(
cos(a

θ1

L
)− cos(a

θ2

L
)

)
. (5.12)

The classical value of c(1)
A is − 1

2mb
. To show the z dependence of c(1)

A it is a possibility

to plot c(1)
A · m̃q. Multiplying (5.11) with m̃q = z/L provides

z
[(
RA −Rstat

A
)
cl − ωkin

(
Rkin
A
)
cl

](
LRstat

A(1)

)
cl

= −1

2
+O(1/z). (5.13)

The continuum limit of LRkin
A can be again extracted analytically to L · Rkin

A
a/L→0−→

3
2

(
θ2

2h − θ2
1h
)
. The previously determined values of ωkin · m̃q are included in the
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5.2 Axial Matching

determination. In figure (5.2) the coefficient is plotted for the combinations (θ1, θ2) =
(0.5, 1.0), (1.0, 1.5) and (1.5, 0.5).
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Figure 5.3: Tree level results for the determination of c(2)
A for different θ combinations.

I used the results for the coefficients ωkin and c
(1)
A for the combination

(θ1, θ2) = (0.5, 1.0).

5.2.3 c
(2)
A

The coefficient c(2)
A can be extracted from eq. (3.19) with x0 = T/2 and T = L. If

one uses different periodicity angles for the light and the heavy quark one obtains
sensitivity to c(2)

A

RA − ωkinRkin
A − c

(1)
A Rstat

A(1)

Rstat
A(2)

= c
(2)
A . (5.14)

I employ the observables for isotropic θ combinations (θl, θ1h, θ2h) = (0.5, 0.5, 1.0),
(0.5, 1.0, 1.5) and (1.0, 0.5, 1.5), with the use of θ1l = θ2l = θl. With the previously
determined values of c(1)

A and ωkin for (θ1, θ2) = (0.5, 1.0) I can extract c(2)
A · m̃q by

z
[
(RA)cl − ωkin

(
Rkin
A
)
cl − c

(1)
A

(
Rstat
A(1)

)
cl

]
(
LRstat

A(2)

)
cl

= −1

2
+O(1/z). (5.15)
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5 Tree level matching

In figure (5.3) the 1/z dependence of c(2)
A is shown.

5.2.4 lnZHQET
A and lnZstat

A

The renormalization coefficient ZHQET
A can be extracted from eq. (3.18). With

x0 = T/2 and T = L and isotropic angles for ~θh = ~θl = ~θ I obtain(
ζA − ζstatA

)
cl − c

(1)
A

(
ρ

(1)
A

)
cl
− ωkin

(
Ψkin

A
)
cl = lnZHQET

A . (5.16)

At tree level the continuum limit of LΨkin
A is 0. With equal periodicity angles for the

light and the heavy quark (5.16) has only sensitivity to the 1/m -coefficient c(1)
A . In

figure (5.4) the coefficient lnZHQET
A is presented for θ = 0.5, 1.0 and 1.5. The static

quantity lnZstat
A can be obtained by dropping the term proportional to c(1)

A in (5.16).
The dependence of 1/z is shown in figure (5.4).

5.2.5 c
(3)
A

The coefficient can be extracted from equation (3.31) by(
RAV21 −Rstat

AV21

)
cl − ωkin

(
Rkin
AV21

)
cl(

Rstat
AV(3)

21

)
cl

= c
(3)
A . (5.17)

I use equal periodicity angles for the light and the heavy quark, ~θ1l = ~θ1h = ~θ1 and
~θ2l = ~θ2h = ~θ2. At tree level the axial correlation function fAV21 has no sensitivity
to c(4)

A . The continuum limit of LRkin
AV21

can be determined analytically to

LRkin
AV21

a/L→0−→ 3

2

(
θ2

2 − θ2
1

)
. (5.18)

I employ the results of ωkin for (θ1, θ2) = (0.5, 1.0) and determine the values of the
coefficient c(3)

A · m̃q for (θ1, θ2) = (0.5, 1.0), (1.0, 1.5) and (1.5, 0.5). They are shown
in figure (5.5).

5.2.6 c
(4)
A

The coefficient can be extracted from equation (3.29) by(
RAk −Rstat

Ak

)
cl
− ωkin

(
Rkin
Ak

)
cl
− c(3)

A

(
Rstat
A(3)
k

)
cl(

Rstat
A(4)
k

)
cl

= c
(4)
A . (5.19)
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Figure 5.4: Tree level results of the HQET (top) and static (bottom) renormalization
constant for different θ combinations. I used the results of the coefficient
c

(1)
A for the combination (θ1, θ2) = (0.5, 1.0).
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Figure 5.5: Tree level results for the determination of c(3)
A for different θ combinations.

I employ equal periodicity angles for the light and the heavy quark, ~θ1l = ~θ1h = ~θ1

and ~θ2l = ~θ2h = ~θ2 and use isotropic angles. The continuum limit of LRkin
Ak at tree

level is
LRkin

Ak
a/L→0−→ 3

2

(
θ2

2 − θ2
1

)
. (5.20)

I use the results of ωkin and c(3)
A for (θ1, θ2) = (0.5, 1.0) and determine the values of

the coefficient c(4)
A · m̃q for (θ1, θ2) = (0.5, 1.0), (1.0, 1.5) and (1.5, 0.5). In figure (5.6)

the behaviour in 1/z is presented.

5.2.7 c
(5)
A

The coefficient can be extracted from equation (3.31) by

(RAV21)cl − ωkin
(
Rkin
AV21

)
cl − c

(3)
A

(
Rstat
AV(3)

21

)
cl(

Rstat
AV(5)

21

)
cl

= c
(5)
A (5.21)

by using unequal periodicity angles for the light and the heavy quark, ~θ1l 6= ~θ1h and
~θ2l 6= ~θ2h. Furthermore with the use of ~θ1l = ~θ2l = ~θl the static observable Rstat

AV21
is

zero. At tree level the correlation function fAV21 has no sensitivity to the O(1/m)
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Figure 5.6: Tree level results for the determination of c(4)
A for different θ combinations.

coefficients c(4)
A and c(6)

A , thus I only obtain a dependence on c(3)
A and c(5)

A . I determine
the coefficient c(5)

A for the combinations (θl, θ1h, θ2h) = (0.5, 1.0, 1.5), (1.0, 0.5, 1.5)

and (1.5, 0.5, 1.0) by including the values of ωkin and c(3)
A for (θ1, θ2) = (0.5, 1.0). In

figure (5.7) the behaviour in 1/z is shown.

5.2.8 c
(6)
A

The coefficient can be extracted from equation (3.30) by

c
(6)
A =

(RAk)cl − ωkin
(
Rkin
Ak

)
cl
− c(3)

A

(
Rstat
A(3)
k

)
cl(

Rstat
A(6)
k

)
cl

−
c

(4)
A

(
Rstat
A(4)
k

)
cl

+ c
(5)
A

(
Rstat
A(5)
k

)
cl(

Rstat
A(6)
k

)
cl

(5.22)

by using unequal periodicity angles for the light and the heavy quark, ~θ1l 6= ~θ1h
and ~θ2l 6= ~θ2h. Furthermore with the use of ~θ1l = ~θ2l = ~θl the static observable
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Figure 5.7: Tree level results for the determination of c(5)
A for different θ combinations.

is again zero. I determine the coefficient c(6)
A for the combinations (θl, θ1h, θ2h) =

(0.5, 1.0, 1.5), (1.0, 0.5, 1.5) and (1.5, 0.5, 1.0). I employ the results of ωkin, c
(3)
A and

c
(4)
A for (θ1, θ2) = (0.5, 1.0) and the results of c(5)

A for (θl, θ1h, θ2h) = (0.5, 1.0, 1.5).
The 1/z dependence of c(6)

A is shown in figure (5.8).

5.2.9 lnZHQET
Ak and lnZstat

Ak

The renormalization coefficients can be extracted with T = L and x0 = T/2 from
equation (3.28) by

(
ζAk − ζ

stat
Ak

)
cl − c

(3)
A

(
ρstat
A(3)
k

)
cl
− c(4)

A

(
ρstat
A(4)
k

)
cl
− ωkin

(
Ψkin

Ak

)
cl = lnZHQET

Ak (5.23)

with the use of isotropic angles and ~θl = ~θh = ~θ. In the continuum limit the tree
level result of LΨkin

A is zero, thus there is only sensitivity to the O(1/m) coefficients
c

(3)
A and c

(4)
A . I employ the values of c(3)

A and c
(4)
A from (θ1, θ2) = (0.5, 1.0). The

renormalization constants in HQET and in the static approximation are determined
for the angles θ = 0.5, 1.0 and 1.5 and shown in figure (5.9).
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Figure 5.8: Tree level results for the determination of c(6)
A for different θ combinations.

For a better readability are the observables from (5.22) replaced with an
O.

5.3 Vector Matching

The determination of the coefficients obtained by the vector matching is analogous
to the determination in the axial-vector channel.

5.3.1 c
(1)
V

The coefficient can be extracted from equation (3.20) by(
RV0 −Rstat

V0

)
cl − ωkin

(
Rkin
V0

)
cl(

Rstat
V(1)

0

)
cl

= c
(1)
V (5.24)

using isotropic angles for the light and the heavy quark, (θ1, θ2) = (0.5, 1.0), (1.0, 1.5)
and (1.5, 0.5). The tree level continuum limit of LRkin

V0
can be obtained analytically

and I employ the tree level results of ωkin for (θ1, θ2) = (0.5, 1.0). The 1/z dependence
of c(1)

V is shown in figure (5.10).
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Figure 5.9: Tree level results of the HQET (top) and static (bottom) renormalization
constant for different θ combinations.
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Figure 5.10: Tree level results for the determination of c(1)
V for different θ combina-

tions.

5.3.2 c
(2)
V

The coefficient can be extracted from equation (3.22) by

(RV0)cl − ωkin
(
Rkin
V0

)
cl − c

(1)
V0

(
Rstat
V(1)

0

)
cl(

Rstat
V(2)

0

)
cl

= c
(2)
V (5.25)

using isotropic but different angles for the light and the heavy quarks (θl, θ1h, θ2h) =
(0.5, 0.5, 1.0), (0.5, 1.0, 1.5) and (1.0, 0.5, 1.5). Furthermore I demand θ1l = θ2l = θl

and obtain Rstat
V0

= 0. I employ the tree level results of ωkin and c(1)
V for (θ1, θ2) =

(0.5, 1.0). The 1/z dependence of c(2)
V is shown in figure (5.11).
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Figure 5.11: Tree-level results for the determination of c(2)
V for different θ combina-

tions.

5.3.3 lnZHQET
V0

and lnZstat
V0

The renormalization coefficients can be extracted with T = L and x0 = T/2 from
equation (3.21) by

(
ζV0 − ζstatV0

)
cl − c

(1)
V0

(
ρstat
V(1)

0

)
cl
− ωkin

(
Ψkin

V0

)
cl = lnZHQET

V0
(5.26)

with the use of isotropic angles and ~θl = ~θh. In the continuum limit the tree level
result of LΨkin

V0
is zero, thus there is only sensitivity to the O(1/m) coefficient c(1)

V .
I employ the values of c(1)

V from (θ1, θ2) = (0.5, 1.0). The renormalization constants
are determined for the angles θ = 0.5, 1.0 and 1.5 and their behaviour in 1/z is shown
in figure (5.12).
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Figure 5.12: Tree level results of the HQET and static renormalization constant for
different θ combinations. I used the results for the coefficient c(1)

A for
the combination (θ1, θ2) = (0.5, 1.0).
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Figure 5.13: Tree level results for the determination of c(3)
V for different θ combina-

tions.

5.3.4 c
(3)
V

The coefficient can be extracted from equation (3.26) by

(
RV11 −Rstat

V11

)
cl − ωkin

(
Rkin
V11

)
cl(

Rstat
V(3)

11

)
cl

= c
(3)
V . (5.27)

I use equal periodicity angles for the light and the heavy quark, ~θ1l = ~θ1h = ~θ1 and
~θ2l = ~θ2h = ~θ2, however to obatin no sensitivity to c(4)

V I demand θ1,x = θ2,x = 0.
The continuum limit of LRkin

V11
can be determined analytically to

LRkin
V11

a/L→0−→ 1

2

(
θ2

2,y + θ2
2,z − θ2

1,y − θ2
1,z

)
. (5.28)

I employ the results of ωkin for (θ1, θ2) = (0.5, 1.0) and determine the values of the
coefficient c(3)

V · m̃q for (θ1, θ2) = (0.5, 1.0), (1.0, 1.5) and (1.5, 0.5). In this case θi,
for i = 1, 2, only label the y and z component of the angles, with θi,y = θi,z = θi.
The results are shown in figure (5.13).
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Figure 5.14: Tree level results for the determination of c(4)
V for different θ combina-

tions.

5.3.5 c
(4)
V

The coefficient can be extracted from equation (3.24) by

(
RV −Rstat

V
)
cl − ωkin

(
Rkin
V
)
cl − c

(3)
V

(
Rstat
V(3)

)
cl(

Rstat
V(4)

)
cl

= c
(4)
V . (5.29)

I use equal periodicity angles for the light and the heavy quark, ~θ1l = ~θ1h = ~θ1 and
~θ2l = ~θ2h = ~θ2. In comparison to the determination of c(3)

V I demand θi,x 6= 0 and

I use isotropic angles. The continuum limit of LRkin
V at tree level is LRkin

V
a/L→0−→

3
2

(
θ2

2 − θ2
1

)
. I use the results of ωkin and c(3)

V for (θ1, θ2) = (0.5, 1.0) and determine
the values of the coefficients c(4)

V · m̃q for (θ1, θ2) = (0.5, 1.0), (1.0, 1.5) and (1.5, 0.5).
In figure (5.14) the tree level results for c(4)

V are shown for different θ combinations.
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Figure 5.15: Tree level results for the determination of c(5)
V for different θ combina-

tions.

5.3.6 c
(5)
V

The coefficient can be extracted from equation (3.27) by

(RV11)cl − ωkin
(
Rkin
V11

)
cl − c

(3)
V

(
Rstat
V(3)

11

)
cl(

Rstat
V(5)

11

)
cl

= c
(5)
V (5.30)

by using unequal periodicity angles for the light and the heavy quark, ~θ1l 6= ~θ1h
and ~θ2l 6= ~θ2h. Furthermore with the use of ~θ1l = ~θ2l = ~θl the static observable
Rstat
V11

is zero. Regarding to the determination of c(3)
V , I demand the x components

of the angles to be zero, θl,x = θ1h,x = θ2h,x = 0, to cancel the terms propor-
tional to c(4)

V . I determine the coefficient c(5)
V for the combinations (θl, θ1h, θ2h) =

(0.5, 1.0, 1.5), (1.0, 0.5, 1.5) and (1.5, 0.5, 1.0). In this notation the y and z compo-
nent of the appropriate angles are equal. The tree level expression of

(
LRkin

V11

)
cl is

1
2

(
θ2

2h,y + θ2
2h,z − θ2

1h,y − θ2
1h,z

)
. I employ the results of ωkin and c(3)

V for (θ1, θ2) =

(0.5, 1.0). The behaviour of c(5)
V in 1/z is shown in figure (5.15).
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Figure 5.16: Tree level results for the determination of c(6)
V for different θ combina-

tions.

5.3.7 c
(6)
V

The coefficient can be extracted from equation (3.25) by

c
(6)
V =

(RV)cl − ωkin
(
Rkin
V
)
cl − c

(3)
V

(
Rstat
V(3)

)
cl(

Rstat
V(6)

)
cl

−
c

(4)
V

(
Rstat
V(4)

)
cl

+ c
(5)
V

(
Rstat
V(5)

)
cl(

Rstat
V(6)

)
cl

(5.31)

by using unequal periodicity angles for the light and the heavy quark, ~θ1l 6= ~θ1h
and ~θ2l 6= ~θ2h. Furthermore with the use of ~θ1l = ~θ2l = ~θl the static observable
Rstat
V is zero. I determine the coefficient c(6)

V for the combinations (θl, θ1h, θ2h) =
(0.5, 1.0, 1.5), (1.0, 0.5, 1.5) and (1.5, 0.5, 1.0). The tree level expression of

(
LRkin

V
)
cl

is 3
2

(
θ2

2h − θ2
1h
)
. I employ the results of ωkin, c

(3)
V and c(4)

V for (θ1, θ2) = (0.5, 1.0) and
the results of c(5)

V for (θl, θ1h, θ2h) = (0.5, 1.0, 1.5). In figure (5.16) the 1/z dependence
of c(6)

V is shown.
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5.3.8 lnZHQET
V and lnZstat

V

The renormalization coefficients can be extracted with T = L and x0 = T/2 from
equation (3.23) by(

ζV − ζstatV
)
cl − c

(3)
V

(
ρstatV(3)

)
cl
− c(4)

V

(
ρstatV(4)

)
cl
− ωkin

(
Ψkin

V
)
cl = lnZHQET

V (5.32)

with the use of isotropic angles and ~θl = ~θh. In the continuum limit the tree level
result of LΨkin

V is zero, thus there is only sensitivity to the 1/m-coefficients c(3)
V and

c
(4)
V . I employ the values of c(3)

V and c
(4)
V from (θ1, θ2) = (0.5, 1.0). The renormal-

ization constants in HQET and in the static approximation are determined for the
angles θ = 0.5, 1.0 and 1.5. and shown in figure (5.17).
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5.4 Discussion of the tree level HQET parameters

One can see from figures (5.1) to (5.17), that the coefficients arrive at the classical
continuum values for 1/z → 0. The classical values are displayed in table (3.1).
For a discussion of the behaviour of the coefficients in the region of the heavy

quark mass, I include a linear and quadratic fit of the coefficients in the plots, see
figures (5.18) to (5.30). For large z the quark mass lattice corrections increase and
the discretization effects implicate large errorbars, i.e. for z = 64. The tree level
result tables are presented in appendix C.
For a discussion of the effective higher order coefficients I include plots, which

show the behaviour of z× (coeff.− classical value) in 1/z. To obtain a feasible linear
fit through the points in the region of small 1/z, I exclude the points for z = 4
and z = 8. For small 1/z the higher order corrections are expected to be small and
there the fits must be asymptotically more and more sensitive to the leading order
correction. The effective coefficients are shown in figures (5.18) to (5.30).
At first sight the coefficients show a linear behaviour in the region of the b-quark

mass. This is also confirmed by the linear fits through the data, which show that a
good linear approximation can be achieved. Although for c(4)

A , c(5)
A and c(4)

V in figures
(5.22), (5.23) and (5.28) small deviations from the linear fits to the data can be seen,
especially for the green values, which correspond to the θ combination concerning
the largest heavy quark angles. The quadratic fits show a good approximation of the
data in the whole region for all coefficients. Besides in (5.24) and (5.26) the quadratic
fits of the coefficients c(6)

A and c
(2)
V corresponding to the combination (0.5, 1.0, 1.5)

show deviations to the data in the region of the b-quark mass. Here the linear fits
show a more accurate behaviour of the points.
The slopes of the fit functions show a influence of the heavy quark angles. The

values of the slopes increases with increasing θh. In figures (5.18), (5.19), (5.21) and
(5.25), (5.27) the slopes increase from (0.5, 1.0) over (1.5, 0.5) to (1.0, 1.5). In the
case of c(4)

A the slopes of the linear fits of the different θ combinations do not show
the same behaviour. Here the data points with the most sensitivity to the angles
are from (0.5, 1.0). Concerning the coefficient c(2)

A in figure (5.20) the value of the
slopes increase with (1.0, 0.5, 1.5) over (0.5, 0.5, 1.0) to (0.5, 1.0, 1.5), where the last
two numbers give the components of two different heavy quark angles. In this case
the conclusion, that the slope for the largest heavy quark angles shows the most
sensitivity, is verified, as in the cases of c(5)

A , c(3)
V and c(5)

V . This is not the case for
the HQET parameter c(6)

V in (5.30), where the θ combination (1.5, 0.5, 1.0) has the
largest slope. In figure (5.23) one can see a change in the signs of the slopes for
c

(5)
A . For the red points (1.5, 0.5, 1.0) one has a positive slope and the behaviour of
the data is nearly linear in 1/z, where as the quadratic or higher order terms occur
with higher heavy quark angles. The slopes of the fit functions for the combinations
(1.0, 0.5, 1.5) and (0.5, 1.0, 1.5) are negative and the largest slope is the one with the
largest heavy quark angles. A similar behaviour shows the coefficient c(4)

V in figure
(5.28).
In the figures (5.18) to (5.30) the effective O(1/z2) coefficients can be estimated

from the y-intercept of the linear fits in the lower graphs. With an accurate linear
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fit of the data points for large z one obtains an indication of the leading order
corrections. In all figures a feasible fit through the data points for small 1/z is
possible, whereas the points for z = 64 do not contribute very much due of the large
errorsbars. To get an idea of the magnitude of the leading order corrections, the
values of the y-intercept are tabulated in (5.1) and (5.2).

The behaviour of the axial and vector renormalization constants at tree level is il-
lustrated in (5.31) to (5.34). The HQET quantities, which are shown at the top of the
figures show a quadratic behaviour in 1/z. In the range of [−0.0003(4), 0.0333164(1)]
the behaviours of the values of lnZHQET

A and lnZHQET
V are very similar. They have

a higher sensitivity to the angles, where as the quantities lnZHQET
Ak and lnZHQET

V0

show more sensitivity to 1/z. The behaviour of lnZHQET
Ak and lnZHQET

V0
are almost

identically and in the range of [0.001(1), 0.2027507(4)] they are of the same order.
For the static quantities lnZstat

A , lnZstat
Ak and lnZstat

V0
the quadratic fits coincide with

the values. The linear fits in the region of the bottom quark mass describes the
behaviour of the data accurately. This is not the case in figure (5.34) for lnZstat

V .
The 1/z2 effects have a great impact on the behaviour, especially for θ = 1.5, how-
ever a linear approximation in the region of the bottom quark mass is possible. Just
as concluded in the latter discussion of the HQET coefficients, the renormalization
constants show an increasing sensitivity to 1/z when the angles are increased. When
comparing the HQET coefficients to HQET renormalization constants one can see,
that the coefficients are nearly linear in 1/z in the b-quark mass region, whereas
the constants show a rather quadratically behaviour. The 1/z corrections of the
HQET coefficients are small compared to the 1/z corrections of the constants. This
can be explained by the fact that the coefficients are of O(1/z) at leading order
themselves, so that their corrections are of absolute order O(1/z2) only, whereas the
HQET renormalization constants receive O(1/z) corrections to their leading order
behaviour.
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Figure 5.18: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
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Figure 5.20: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.

78



5.4 Discussion of the tree level HQET parameters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

z[
(R

A
V

21
 -

R
A

V
21

st
at

) c
l- 

ω
ki

n 
(R

A
V

21

ki
n ) c

l]/
(L

R
A

V
21

(3
) ) c

l

1/z

Linear and quadratic fit of cA
(3) 

linear fit (θ1, θ2) = (0.5,1.0)
quadratic fit (θ1, θ2) = (0.5,1.0)

linear fit (θ1, θ2) = (1.0,1.5)
quadratic fit (θ1, θ2) = (1.0,1.5)

linear fit (θ1, θ2) = (1.5,0.5)
quadratic fit (θ1, θ2) = (1.5,0.5)

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

 0  0.05  0.1  0.15  0.2  0.25  0.3

z*
(c

A
(3

)  m~
q 

- 
0.

5)

1/z

cA
(3): effective coefficients of O(1/z2) and higher 

(θ1, θ2)= (0.5,1.0)
(θ1, θ2)= (1.0,1.5)
(θ1, θ2)= (1.5,0.5)
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Figure 5.22: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.
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of the HQET parameters (bottom). The linear fit is performed for the
values z = 12, 16, 20, 24, 28, 32, 64.

83



5 Tree level matching

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.05  0.1  0.15  0.2  0.25  0.3

z[
(R

V
0) c

l -
 ω

ki
n(

R
V

0ki
n ) c

l- 
c V

(1
)  (

R
V

0(1
) ) c

l ]
/ (

LR
V

0(2
) ) c

l

1/z

Linear and quadratic fit of cV
(2) 

linear fit (θl, θh, θh‘)= (0.5,0.5,1.0)
quadratic fit (θl, θh, θh‘)= (0.5,0.5,1.0)

linear fit (θl, θh, θh‘)= (0.5,1.0,1.5)
quadratic fit (θl, θh, θh‘)= (0.5,1.0,1.5)

linear fit (θl, θh, θh‘)= (1.0,0.5,1.5)
quadratic fit (θl, θh, θh‘)= (1.0,0.5,1.5)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

z*
(c

V
(2

)  m~
q 

- 
0.

5)

1/z

cV
(2): effective coefficients of O(1/z2) and higher

(θl, θh, θh‘)= (0.5,0.5,1.0)
(θl, θh, θh‘)= (0.5,1.0,1.5)
(θl, θh, θh‘)= (1.0,0.5,1.5)

Figure 5.26: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
of the HQET parameters (bottom). The linear fit is performed for the
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values z = 12, 16, 20, 24, 28, 32, 64.
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Figure 5.30: Linear and quadratic fit of the HQET parameters (top). The linear fit
only considers the data for z = 16, 20, 24, 28, 32, 64. Effective coefficients
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values z = 12, 16, 20, 24, 28, 32, 64.
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Figure 5.31: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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Figure 5.32: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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Figure 5.33: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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Figure 5.34: Linear and quadratic fit of the renormalization coefficient at HQET
(top) and in the static approximation (bottom). The linear fit only
considers the data for z = 16, 20, 24, 28, 32, 64.
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Summary

In this work I determined a full set of HQET parameters at tree level only using
two-point correlation functions. From the parameters and renormalization constants
determined from the axial and vector matching a dependence in 1/z can be inferred.
I evaluated the parameters of table (3.1) up to order 1/m2. All my continuum limit
results approach the desired classically expected values. The behaviour of the coeffi-
cients was discussed in 1/z for different combinations of the angles for the light and
the heavy quarks ~θl, ~θh.
To summarize my results I present in tables (5.1) and (5.2) the effects in O(1/z)

and O(1/z2). Furthermore the θ combinations, which show the most dependence
on higher orders in 1/z are included. The magnitude of the effective coefficients of
the O(1/z2) terms can be concluded from the y-intercept of the graphs in the lower
figures of (5.18) to (5.30).
I conclude from the results that the sensitivity to 1/z increases with higher angles

of the heavy quark ~θh for the most coefficients. I illustrated the behaviour of c(i)
X m̃q

in my graphs, where X = A, V and i = 1, . . . , 6, and I included fits to reveal the
best approximated behaviour of the tree level coefficients in the region of the b-quark
mass. A linear fit through the data points provides a satisfying approach. Therefore
an feasible quadratically behaviour in 1/z in the region of the bottom quark mass of
the coefficients can be concluded.

θ combination with the
HQET O(1/z) O(1/z2) in smallest and largest
parameter the range of sensitivity to 1/z

ωkin 0.5 [−0.5174(6),−0.5000(1)] (0.5, 1.0), (1.0, 1.5)

c
(1)
A -0.5 [−1.3748(7),−0.5161(2)] (0.5, 1.0), (1.0, 1.5)

c
(2)
A -0.5 [−4.9247(2),−2.2469(8)] (1.0, 0.5, 1.5), (0.5, 1.0, 1.5)

c
(3)
A 0.5 [−2.4583(8),−2.1962(8)] (0.5, 1.0), (1.0, 1.5)

c
(4)
A 1.0 [−0.0012(3), 0.2523(5)] (1.0, 1.5), (0.5, 1.0)

c
(5)
A 0.5 [−1.3260(9), 0.3053(2)] (1.0, 0.5, 1.5), (0.5, 1.0, 1.5)

c
(6)
A -1.0 [0.034(2), 1.634(7)] (1.0, 0.5, 1.5), (0.5, 1.0, 1.5)

Table 5.1: O(1/z) contributions of the axial HQET parameters.
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Summary

θ combination with the
HQET O(1/z) O(1/z2) in smallest and largest
parameter the range of sensitivity to 1/z

c
(1)
V 0.5 [2.1950(6), 2.488(1)] (0.5, 1.0), (1.0, 1.5)

c
(2)
V 0.5 [−0.077(1), 1.291(3)] (0.5, 0.5, 1.0), (0.5, 1.0, 1.5)

c
(3)
V 0.5 [−1.1033(4),−0.7495(3)] (0.5, 1.0), (1.0, 1.5)

c
(4)
V -1.0 [−0.6574(4), 0.1929(3)] (1.5, 0.5), (1.5, 0.5)

c
(5)
V 0.5 [−4.816(1),−1.0356(4)] (1.5, 0.5, 1.0), (0.5, 1.0, 1.5)

c
(6)
V -1.0 [0.321(2), 11.739(3)] (0.5, 1.0, 1.5), (1.5, 0.5, 1.0)

Table 5.2: O(1/z) contributions of the vector HQET parameters.

Furthermore the renormalization constants lnZX, where X = A,Ak, V, V0, in HQET
and in the static approximation are considered. One can see the reduction of higher
1/z contributions in going from lnZHQET

X to lnZstat
X for X = A,Ak and V0. Only the

renormalization constant lnZstat
V reveals comparatively larger O(1/z2) corrections.

Previous calculations of matching parameters included in the action and time
component of the axial current were performed in [28]. The parameters have an
application in the non-perturbative determination of the b-quark mass, the hadronic
decay constant and enable the mass splitting. Further main quantities in the CKM
physics are form factors of semileptonic decays. These parameters can be extracted
from three-point correlation functions involving the space components of the vector
current. To get sensitivity to these parameters in the HQET expansion one can
choose three-point correlation functions, which are inspired by semi-leptonic decays

B → πlν, B → ρlν. (5.33)

For example correlation functions, which have a pseudo-scalar or vector current
at the boundaries and the spatial component of the improved QCD vector current
(V I

bu)µ = ψ̄uγµψb + acV∂̃µψ̄uiσµνψb in the bulk:

fV(x0) ∝
∑

u,v,y,z,k

〈
ζ̄ ′d(u)γ5ζ

′
u(v)

(
V I
bu
)
k

(x)ζ̄b(y)γ5ζd(z)
〉
, (5.34)

hV(x0) ∝
∑

u,v,y,z,k,i

〈
ζ̄ ′d(u)γiζ

′
u(v)

(
V I
bu
)
k

(x)ζ̄b(y)γ5ζd(z)
〉
. (5.35)

These three-point functions correspond to the transitions and it would be possible
to include them in the calculations of the HQET parameters. This consideration can
be a perspective for future work. Tree level QCD values already exist [38]. Although
with two-point correlation functions a higher numerical precision of the coefficients is
expected in the non-perturbative determination, it would be interesting to compare
the two-point results with the results of the three-point correlation functions.
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x0 = 0

x0 = T

L3

ζd ζ̄b

ζ̄ ′d ζ ′u

Vk(x) = ψuγkψb

Figure 5.35: Three-point Schrödinger Functional fV correlation function with
pseudo-scalar boundary fields.

One could consider to carry on with this work by including the 1-loop calcu-
lations, or even directly start with the non-perturbative matching including order
1/m-corrections.

The tree level study is a guidance to the non-perturbative calculations. With the
successful matching at tree level at hand, one now is in the position to extend the
non-perturbative programme by the observables introduced in 3.3. Those observables
were introduced based on the already existing observables involving the time compo-
nent of the axial current. They are chosen to provide useful information about the
HQET parameters. A further essential current, the vector current, was introduced
to make the set of coefficients complete. The expectation that the matching of the
tree level observables provide the classically expected parameters in the continuum,
was confirmed.
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Appendix A

Notations

A.1 Index conventions

In this work, the Greek letters µ, ν, . . . label the space-time components and run from
0 to 3. Latin indices k, l, . . . run from 1 to 3 and represent the space components
of spatial vectors. The unit vectors are marked with a hat, µ̂, k̂, . . .. Bold printed
letters represent a vector with three spatial components. The N2 − 1 generators of
the gauge group SU(N) are indicated by a, b, . . .. I used the Einstein convention in
my work implying summation over repeated indices.

A.2 Dirac matrices

I used the chiral representation for the Dirac matrices

γµ =

(
0 eµ
e†µ 0

)
, (A.1)

where the 2× 2-matrices eµ are

e0 = −1, ek = −iσk. (A.2)

The Pauli matrices σk are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.3)

In this representation the Dirac matrices have the following properties

γµ = γ†µ, {γµ, γν} = γµγν − γνγµ = 2δµν (A.4)

One can define the γ5 matrix as γ5 = γ0γ1γ2γ3 and it has the features

γ5 = γ†5, γ2
5 = 1, {γ5, γµ} = 0. (A.5)

The hermitian σ matrices are defined through

σµν =
i

2
[γµ, γν ] (A.6)
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and explicitly

σ0k =

(
σk 0
0 −σk

)
, σij = iεijk

(
σk 0
0 σk

)
= εijkσk. (A.7)

A.3 Lattice conventions

The forward and backward derivatives on the lattice acting on colour singlet functions
are

∂µψ(x) = 1
a [ψ(x+ aµ̂)− ψ(x)],

∂∗µψ(x) = 1
a [ψ(x)− ψ(x− aµ̂)],

(A.8)

and acting on the left

ψ(x)
←−
∂ µ = 1

a [ψ(x+ aµ̂)− ψ(x)],

ψ(x)
←−
∂ ∗µ = 1

a [ψ(x)− ψ(x− aµ̂)].
(A.9)

The gauge covariant derivatives in the SF acting on a quark field are

∇µψ(x) = 1
a [λµUµ(x)ψ(x+ aµ̂) + ψ(x)],

∇∗µψ(x) = 1
a [ψ(x)− λ−1

µ Uµ(x− aµ̂)−1ψ(x− aµ̂)],
(A.10)

with the constant phase factor

λµ = eiaθµ/L, θ0 = 0, −π < θk ≤ π. (A.11)

They act on the left as

ψ(x)
←−
∇µ = 1

a [ψ(x+ aµ̂)Uµ(x)−1λ−1
µ + ψ(x)],

ψ(x)
←−
∇∗µ = 1

a [ψ(x)− ψ(x− aµ̂)Uµ(x− aµ̂)λµ].
(A.12)

The lattice version of the δ functions are

δ(xµ) =
1

a
δxµ0, δ(x) =

3∏
k=1

δ(xk), δ(x) =

3∏
µ=0

δ(xµ) (A.13)

and for the Heaviside functions

θ(xµ) = 1 for xµ ≥ 0,

θ(xµ) = 0 otherwise.
(A.14)
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A.4 Renormalization group functions

The renormalization group (RG) functions

µ ∂ḡ∂µ = β(ḡ),

µ
m̄
∂m̄
∂µ = τ(ḡ),

µ
Φ
∂Φ
∂µ = γ(ḡ),

(A.15)

are defined in terms of the running coupling ḡ, the running quark mass m̄ and
a matrix element of a composite field Φ. The perturbative expansion of the RG
functions is

β(ḡ) ∼ −ḡ3{b0 + b1ḡ
2 + . . .},

τ(ḡ) ∼ −ḡ2{d0 + d1ḡ
2 + . . .},

γ(ḡ) ∼ −ḡ2{γ0 + γ1ḡ
2 + . . .}.

(A.16)

The coefficients b0 = 1
(4π)2

(11 − 2
3Nf ), b1 = 1

(4π)2
(103 − 38

3 Nf ) and d0 = 8
(4π)2

are
independent of the renormalization scale. The RG invariants are defined by the
integration constants of the solution of the RG equations as

Λ = µ(b0ḡ
2)−b1/(2b

2
0)e−1/(2b0ḡ2) exp

{
−
∫ ḡ

0 dx
[

1
β(x) + 1

b0x3
− b1

b20x

]}
,

M = m̄(2b0ḡ
2)−d1/(2b0) exp

{
−
∫ ḡ

0 dx
[
τ(x)
β(x) −

d0
b0x

]}
,

ΦRGI = Φ(2b0ḡ
2)−γ0/(2b0) exp

{
−
∫ ḡ

0 dx
[
γ(x)
β(x) −

γ0
b0x

]}
,

(A.17)

whereas ḡ, m̄ and Φ depend on the renormalization scheme µ.
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Tree level calculations for the correlation
functions

B.1 The tree level quark propagator

The tree level quark propagator can be obtained from [32]. For simplicity I use the
abbreviations

A(q) = 1 + a(m0 +
1

2
aq̂2) (B.1)

and

R(q) = M(q)
(

1− e−2ω(q)T
)
− iq̊0

(
1 + e−2ω(q)T

)
. (B.2)

I obtain for x0 > y0

S̃
(0)
l (x0, y0;p) = −

(
2i p̊+

0 A(p+)R(p+)
)−1

(B.3)

×
{

(M(p+)− iγµp̊+
µ ) (M(p+)− ip̊+

0 ) e−ω(p+)(x0−y0)

+ (M(p+) + iγ0p̊
+
0 − iγkp̊

+
k ) (M(p+) + ip̊+

0 ) e−ω(p+)(2T−x0+y0)

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k − γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)(x0+y0)

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k + γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)(2T−x0−y0)

}
and for x0 < y0

S̃
(0)
l (x0, y0;p) = −

(
2i p̊+

0 A(p+)R(p+)
)−1

(B.4)

×
{

(M(p+) + iγ0p̊
+
0 − iγkp̊

+
k ) (M(p+)− ip̊+

0 ) e−ω(p+)(y0−x0)

+ (M(p+)− iγµp̊+
µ ) (M(p+) + ip̊+

0 ) e−ω(p+)(2T−y0+x0)

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k − γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)(y0+x0)

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k + γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)(2T−y0−x0)

}
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while for x0 = y0 I obtain

S̃
(0)
l (x0, y0;p) =

1

A(p+)
P− −

(
2i p̊+

0 A(p+)R(p+)
)−1

(B.5)

×
{

(M(p+)− iγµp̊+
µ ) (M(p+)− ip̊+

0 )

+ (M(p+) + iγ0p̊
+
0 − iγkp̊

+
k ) (M(p+) + ip̊+

0 ) e−ω(p+)2T

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k − γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)2x0

− (M2(p+) + (p̊+
0 )2 − iγkM(p+)p̊+

k + γ0γkp̊
+
0 p̊

+
k ) e−ω(p+)(2T−2x0)

}
.

B.2 Perturbative expansion of the correlation functions

I present the tree level calculation of the the correlation functions including the time
component of the vector current as well as the space components. The tree level
results for kV11 can be obtained by using k = 1 and changing the normalisation.
Furthermore the tree level results for the correlation functions concerning the space
components of the axial current are shown. The tree level results for fAV21 are
determined in the same way, thus I only give the results. The calculations follow the
structure in chapter 4.

B.2.1 Tree level results for kV0 and kstat
V0

The correlation function is given by

kV0 = i
a6

6

∑
y,z,k

〈
V0(x) ζ̄b(y)γkζl(z)

〉
(B.6)

with V0(x) = ψl(x)γ0ψb(x) at x0 = T/2. Applying Wick’s theorem and the heavy
and light quark matrices (4.49) provides

kV0 = −ia
6

6

∑
y,z,k

〈
tr
{
γk[ζl(z)ψl(x)]Fγ0[ψb(x)ζ̄b(y)]F

}〉
G

= −ia
6

6

∑
y,z,k

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5γ0[ψb(x)ζ̄b(y)]F

}〉
G

= − i
6

∑
k

〈
tr
{
γkγ5Hl(x)†γ5γ0Hb(x)

}〉
G
. (B.7)

With the tree level expressions for the heavy and light quark matrices I obtain for
the QCD correlation function

k
(0)
V0

= − i
6

∑
k

〈
tr
{
γkγ5χl(x0)†γ5γ0χb(x0)

}〉
G

(B.8)
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and for the static correlation function

k
stat (0)
V0

= − i
6

∑
k

〈
tr
{
γkγ5χl(x0)†γ5P+

}〉
G
. (B.9)

B.2.2 Tree level results for kstat
V(1)

0

and kstat
V(2)

0

The correlation functions are given by

kstat
V(1)

0

= i
a6

6

∑
y,z,k

〈
V

(1)
0 (x) ζ̄h(y)γkζl(z)

〉
, (B.10)

kstat
V(2)

0

= i
a6

6

∑
y,z,k

〈
V

(2)
0 (x) ζ̄h(y)γkζl(z)

〉
(B.11)

with

V
(1)

0 (x) = ψl(x)1
2(∇S

i −
←−
∇S
i )γiψh(x)

V
(2)

0 (x) = ψl(x)1
2(∇S

i +
←−
∇S
i )γiψh(x)

at x0 = T/2. (B.12)

Applying Wick’s theorem yields

kstat
V(1)

0

= −ia
6

12

∑
y,z,k

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5γi[∇iψh(x)ζ̄h(y)]F

}〉
G

+ i
a6

12

∑
y,z,k

〈
tr
{
γkγ5[∇iψl(x)ζ̄l(z)]†Fγ5γi[ψh(x)ζ̄h(y)]F

}〉
G

(B.13)

and

kstat
V(2)

0

= −ia
6

12

∑
y,z,k

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5γi[∇iψh(x)ζ̄h(y)]F

}〉
G

− ia
6

12

∑
y,z,k

〈
tr
{
γkγ5[∇iψl(x)ζ̄l(z)]†Fγ5γi[ψh(x)ζ̄h(y)]F

}〉
G
. (B.14)

The contractions [ψl(x)ζ̄l(z)]F and [ψh(x)ζ̄h(y)]F can be expressed through the quark
matrices. Whereas the contractions, containing covariant gauge derivatives, are at
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tree level

[∇iψh(x)ζ̄h(y)]F =
1

2a

(
λh,i − λ−1

h,i

)δψ(0)
h,cl(x0)

δρh(y)


=
i

a
sin(a

θh,i
L

)

δψ(0)
h,cl(x0)

δρh(y)

 (B.15)

[∇iψl(x)ζ̄l(z)]F =
1

2a

(
λl,i − λ−1

l,i

)δψ(0)
l,cl(x0)

δρh(z)


=
i

a
sin(a

θl,i
L

)

δψ(0)
l,cl(x0)

δρl(z)

 . (B.16)

From this I obtain the tree level correlation functions

k
stat (0)

V(1)
0

(x0, ~θl, ~θh)

=
1

12a

∑
k,i

(
sin(a

θh,i
L

) + sin(a
θl,i
L

)

) 〈
tr
{
γkγ5χl(x0)†γ5γiP+

}〉
G

(B.17)

and

k
stat (0)

V(2)
0

(x0, ~θl, ~θh)

=
1

12a

∑
k,i

(
sin(a

θh,i
L

)− sin(a
θl,i
L

)

) 〈
tr
{
γkγ5χl(x0)†γ5γiP+

}〉
G
. (B.18)

B.2.3 Tree level results for kstat
V(3) and kstat

V(4)

The correlation functions are given by

kstatV(3) = −a
6

6

∑
y,z,k,i

〈
V

(3)
k (x) ζ̄h(y)γkζl(z)

〉
, (B.19)

kstatV(4) = −a
6

6

∑
y,z,k

〈
V

(4)
k (x) ζ̄h(y)γkζl(z)

〉
(B.20)

with

V
(3)
k (x) = ψl(x)1

2(∇S
i −
←−
∇S
i )γiγkψh(x)

V
(4)
k (x) = ψl(x)1

2(∇S
k −
←−
∇S
k)ψh(x)

at x0 = T/2. (B.21)

Applying Wick’s theorem I obtain the contractions

kstatV(3) =
a6

12

∑
y,z,k,i

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5γiγk[∇S

i ψh(x)ζ̄l(y)]F

}〉
G

− a6

12

∑
y,z,k,i

〈
tr
{
γkγ5[∇S

i ψl(x)ζ̄l(z)]†Fγ5γiγk[ψh(x)ζ̄h(y)]F

}〉
G
. (B.22)
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and

kstatV(4) =
a6

12

∑
y,z,k

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5[∇S

kψh(x)ζ̄l(y)]F

}〉
G

− a6

12

∑
y,z,k

〈
tr
{
γkγ5[∇S

kψl(x)ζ̄l(z)]†Fγ5[ψh(x)ζ̄h(y)]F

}〉
G
. (B.23)

At tree level the correlation functions provide with (B.15) and (B.16)

k
stat (0)

V(3) (x0, ~θl, ~θh)

=
i

12a

∑
i,k

(
sin(a

θh,i
L

) + sin(a
θl,i
L

)

)〈
tr
{
γkγ5χ

†
l (x0)γ5γiγkP+

}〉
G

(B.24)

and

k
stat (0)

V(4) (x0, ~θl, ~θh)

=
i

12a

∑
k

(
sin(a

θh,k
L

) + sin(a
θl,k
L

)

)〈
tr
{
γkγ5χ

†
l (x0)γ5P+

}〉
G
. (B.25)

B.2.4 Tree level results for kstat
V(5) and kstat

V(6)

The correlation functions are given by

kstatV(5) = −a
6

6

∑
y,z,k,i

〈
V

(5)
k (x) ζ̄h(y)γkζl(z)

〉
, (B.26)

kstatV(6) = −a
6

6

∑
y,z,k

〈
V

(6)
k (x) ζ̄h(y)γkζl(z)

〉
(B.27)

with

V
(5)
k (x) = ψl(x)1

2(∇S
i +
←−
∇S
i )γiγkψh(x)

V
(6)
k (x) = ψl(x)1

2(∇S
k +
←−
∇S
k)ψh(x)

at x0 = T/2. (B.28)

Applying Wick’s theorem I obtain the contractions

kstatV(5) =
a6

12

∑
y,z,k

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5γiγk[∇S

i ψh(x)ζ̄l(y)]F

}〉
G

+
a6

12

∑
y,z,k,i

〈
tr
{
γkγ5[∇S

i ψl(x)ζ̄l(z)]†Fγ5γiγk[ψh(x)ζ̄h(y)]F

}〉
G
. (B.29)

and

kstatV(6) =
a6

12

∑
y,z,k,i

〈
tr
{
γkγ5[ψl(x)ζ̄l(z)]†Fγ5[∇S

kψh(x)ζ̄l(y)]F

}〉
G

+
a6

12

∑
y,z,k

〈
tr
{
γkγ5[∇S

kψl(x)ζ̄l(z)]†Fγ5[ψh(x)ζ̄h(y)]F

}〉
G
. (B.30)
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At tree level the correlation functions provide with (B.15) and (B.16)

k
stat (0)

V(5) (x0, ~θl, ~θh)

=
i

12a

∑
i,k

(
sin(a

θh,i
L

)− sin(a
θl,i
L

)

)〈
tr
{
γkγ5χ

†
l (x0)γ5γiγkP+

}〉
G

(B.31)

and

k
stat (0)

V(6) (x0, ~θl, ~θh)

=
i

12a

∑
k

(
sin(a

θh,k
L

)− sin(a
θl,k
L

)

)〈
tr
{
γkγ5χ

†
l (x0)γ5P+

}〉
G
. (B.32)

B.2.5 Tree level results for fAk and f stat
Ak

The correlation function is given by

fAk = i
a6

6

∑
y,z,k

〈
Ak(x) ζ̄b(y)γ5ζl(z)

〉
(B.33)

with Ak(x) = ψl(x)γkγ5ψb(x) at x0 = T/2. Applying Wick’s theorem and the heavy
and light quark matrices (4.49) provides

fAk = −ia
6

6

∑
y,z,k

〈
tr
{
γ5[ζl(z)ψl(x)]Fγkγ5[ψb(x)ζ̄b(y)]F

}〉
G

= i
a6

6

∑
y,z,k

〈
tr
{

[ψl(x)ζ̄l(z)]†Fγk[ψb(x)ζ̄b(y)]F

}〉
G

=
i

6

∑
k

〈
tr
{
Hl(x)†γkHb(x)

}〉
G
. (B.34)

With the tree level expressions for the heavy and light quark matrices I obtain for
the QCD correlation function

f
(0)
Ak =

i

6

∑
k

〈
tr
{
χl(x0)†γkχb(x0)

}〉
G

(B.35)

and for the static correlation function

f
stat (0)
Ak =

i

6

∑
k

〈
tr
{
χl(x0)†γkP+

}〉
G
. (B.36)
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B.2.6 Tree level results for f stat
A(3)
k

and f stat
A(4)
k

The correlation functions are given by

f stat
A(3)
k

= i
a6

6

∑
y,z,k,i

〈
A

(3)
k (x) ζ̄h(y)γ5ζl(z)

〉
, (B.37)

f stat
A(4)
k

= i
a6

6

∑
y,z,k

〈
A

(4)
k (x) ζ̄h(y)γ5ζl(z)

〉
(B.38)

with

A
(3)
k (x) = ψl(x)1

2(∇S
i −
←−
∇S
i )γiγ5γkψh(x)

A
(4)
k (x) = ψl(x)1

2(∇S
k −
←−
∇S
k)γ5ψh(x)

at x0 = T/2. (B.39)

Applying Wick’s theorem I obtain the contractions

f stat
A(3)
k

=− ia
6

12

∑
y,z,k,i

〈
tr
{
γ5[ζl(z)ψl(x)]Fγiγ5γk[∇S

i ψh(x)ζ̄l(y)]F
}〉

G

+ i
a6

12

∑
y,z,k,i

〈
tr
{
γ5[ζl(z)ψl(x)

←−
∇S
i ]Fγiγ5γk[ψh(x)ζ̄h(y)]F

}〉
G
. (B.40)

and

f stat
A(4)
k

=− ia
6

12

∑
y,z,k

〈
tr
{
γ5[ζl(z)ψl(x)]Fγ5[∇S

kψh(x)ζ̄l(y)]F
}〉

G

+ i
a6

12

∑
y,z,k

〈
tr
{
γ5[ζl(z)ψl(x)

←−
∇S
k]Fγ5[ψh(x)ζ̄h(y)]F

}〉
G
. (B.41)

At tree level the correlation functions provide with the hermiticity property (1.92)
and (B.15) and (B.16)

f
stat (0)

A(3)
k

(x0, ~θl, ~θh)

= − 1

12a

∑
i,k

(
sin(a

θh,i
L

) + sin(a
θl,i
L

)

)〈
tr
{
χ†l (x0)γiγkP+

}〉
G

(B.42)

and

f
stat (0)

A(4)
k

(x0, ~θl, ~θh)

=
1

12a

∑
k

(
sin(a

θh,k
L

) + sin(a
θl,k
L

)

)〈
tr
{
χ†l (x0)P+

}〉
G
. (B.43)
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Appendix B Tree level calculations for the correlation functions

B.2.7 Tree level results for f stat
A(5)
k

and f stat
A(6)
k

The correlation functions are given by

f stat
A(5)
k

= i
a6

6

∑
y,z,k,i

〈
A

(5)
k (x) ζ̄h(y)γ5ζl(z)

〉
, (B.44)

f stat
A(6)
k

= i
a6

6

∑
y,z,k

〈
A

(6)
k (x) ζ̄h(y)γ5ζl(z)

〉
(B.45)

with

A
(5)
k (x) = ψl(x)1

2(∇S
i +
←−
∇S
i )γiγ5γkψh(x)

A
(6)
k (x) = −ψl(x)1

2(∇S
k +
←−
∇S
k)γ5ψh(x)

at x0 = T/2. (B.46)

Applying Wick’s theorem I obtain the contractions

f stat
A(5)
k

= i
a6

12

∑
y,z,k,i

〈
tr
{

[ψl(x)ζ̄l(z)]†Fγiγk[∇
S
i ψh(x)ζ̄l(y)]F

}〉
G

+ i
a6

12

∑
y,z,k,i

〈
tr
{

[∇S
i ψl(x)ζ̄l(z)]†Fγiγk[ψh(x)ζ̄h(y)]F

}〉
G
. (B.47)

and

f stat
A(6)
k

= i
a6

12

∑
y,z,k

〈
tr
{

[ψl(x)ζ̄l(z)]†F[∇S
kψh(x)ζ̄l(y)]F

}〉
G

+ i
a6

12

∑
y,z,k

〈
tr
{

[∇S
kψl(x)ζ̄l(z)]†F[ψh(x)ζ̄h(y)]F

}〉
G
. (B.48)

At tree level the correlation functions provide with (B.15) and (B.16)

f
stat (0)

A(5)
k

(x0, ~θl, ~θh)

= − 1

12a

∑
i,k

(
sin(a

θh,i
L

)− sin(a
θl,i
L

)

)〈
tr
{
χ†l (x0)γiγkP+

}〉
G
. (B.49)

and

f
stat (0)

A(6)
k

(x0, ~θl, ~θh)

= − 1

12a

∑
k

(
sin(a

θh,k
L

)− sin(a
θl,k
L

)

)〈
tr
{
χ†l (x0)P+

}〉
G
. (B.50)

B.2.8 Tree level results for fAV21 and f stat
AV21

The correlation function is given by

fAV21 = i
a6

2

∑
y,z

〈
A2(x) ζ̄b(y)γ1ζ(z)

〉
(B.51)
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B.2 Perturbative expansion of the correlation functions

With the same calculation as for fAk only with a different γ structure I obtain

f
(0)
AV21

=
i

2

〈
tr
{
γ1γ5χl(x0)†γ2χb(x0)

}〉
G

(B.52)

and for the static correlation function

f
stat (0)
AV21

=
i

2

〈
tr
{
γ1γ5χl(x0)†γ2P+

}〉
G
. (B.53)

B.2.9 Tree level results for f stat
AV(3)

21

to f stat
AV(6)

21

The tree level results of the correlation functions can be obtained similarly to the
above calculations. I only present the results.

f
stat (0)

AV(3)
21

= −1

4

∑
i

(
sin(a

θh,i
L

) + sin(a
θl,i
L

)

)〈
tr
{
γ1γ5χl(x0)†γiγ2P+

}〉
G

(B.54)

f
stat (0)

AV(4)
21

=
1

4

(
sin(a

θh,y
L

) + sin(a
θl,y
L

)

)〈
tr
{
γ1γ5χl(x0)†P+

}〉
G

(B.55)

f
stat (0)

AV(5)
21

= −1

4

∑
i

(
sin(a

θh,i
L

)− sin(a
θl,i
L

)

)〈
tr
{
γ1γ5χl(x0)†γiγ2P+

}〉
G

(B.56)

f
stat (0)

AV(6)
21

= −1

4

(
sin(a

θh,y
L

)− sin(a
θl,y
L

)

)〈
tr
{
γ1γ5χl(x0)†P+

}〉
G

(B.57)
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Appendix C

Numerical results

C.1 Determination of the uncertainty of the HQET
parameters

Since the expressions are analytically known at tree level, but need to be evaluated
numerically, there is no statistical error, only machine precision. I assume an error of
all correlations functions of O(10−8). The errors of the observables are determined by
error propagation. For the errors of the continuum limit I extrapolate the data from
L/a = 170, . . . , 256 1 and obtain the error by the difference to the continuum limit
values of the coefficients. The continuum limit of all observables was taken and is
not mentioned in the formula. For a better readability I label different combinations
of the angels by θ1 and θ2 and omit other arguments of the correlation functions.
The uncertainty of the kinetic quantity is zero because it was determined analytically
and only depends on the angles in the continuum limit and not on the correlation
functions anymore.

∆ωkinm̃q =
z

(LRkin
1 )

∆(R1 −Rstat
1 ) (C.1)

∆c
(1)
A m̃q =

( z

LRstat
A(1)

∆(RA −Rstat
A )

)2

+

(
LRkin

A
LRstat

A(1)

∆ωkinm̃q

)2

+

(
c

(1)
A m̃q

LRstat
A(1)

∆(LRstat
A(1))

)2
1/2

(C.2)

∆c
(2)
A m̃q =

( z

LRstat
A(2)

∆RA

)2

+

(
LRkin

A
LRstat

A(2)

∆ωkinm̃q

)2

+

(
LRstat

A(1)

LRstat
A(2)

∆c
(1)
A m̃q

)2

+

(
c

(1)
A m̃q

LRstat
A(2)

∆(LRstat
A(1))

)2

+

(
c

(2)
A m̃q

LRstat
A(2)

∆(LRstat
A(2))

)2
1/2

(C.3)

1for z = 64 only the finest lattices are considered, that means half of the lattices which are used
for the continuum limit extrapolation.
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Appendix C Numerical results

∆ lnZHQET
A =

[
(∆ζA)2 + (∆ζstatA )2

+

(
Lρstat

A(1)

z
∆c

(1)
A m̃q

)2

+

(
c

(1)
A m̃q

z
∆LρstatA(1)

)2
1/2

. (C.4)

The errors of the observables are given by the error propagation of the correlation
functions:

∆(R1 −Rstat
1 ) =

√
(∆R1)2 + (∆Rstat

1 )2, (C.5)

∆R1 =

√(
∆f1(θ1)

f1(θ1)

)2

+

(
∆f1(θ2)

f1(θ2)

)2

, (C.6)

∆Rstat
1 =

√(
∆f stat1 (θ1)

f stat1 (θ1)

)2

+

(
∆f stat1 (θ2)

f stat1 (θ2)

)2

, (C.7)

∆(RA −Rstat
A ) =

√
(∆RA)2 + (∆Rstat

A )2, (C.8)

∆RA =

√(
∆fA(θ1)

fA(θ1)

)2

+

(
∆fA(θ2)

fA(θ2)

)2

, (C.9)

∆Rstat
A =

√(
∆f statA (θ1)

f statA (θ1)

)2

+

(
∆f statA (θ2)

f statA (θ2)

)2

(C.10)

and

∆Rstat
A(1) =

(∆f stat
A(1)(θ1)

f statA (θ1)

)2

+

(
∆f stat

A(1)(θ2)

f statA (θ2)

)2

+

(
f stat
A(1)(θ1)

f statA (θ1)
∆f statA (θ1)

)2

+

(
f stat
A(1)(θ2)

f statA (θ2)
∆f statA (θ2)

)2
2

. (C.11)

The error of Rstat
A(2) can be obtained analogous to (C.11).

∆ζA =

√(
∆fA
fA

)2

+

(
1

2

∆f1

f1

)2

, (C.12)

∆ζstatA =

√(
∆f statA
f statA

)2

+

(
1

2

∆f stat1

f stat1

)2

(C.13)

and

∆ρstatA(1) =

√√√√(∆f stat
A(1)

f statA

)2

+

(
f stat
A(1)

(f statA )2
∆f statA

)2

. (C.14)

For the time component of the vector current the uncertainties are determined in
the same way by replacing the axial correlation functions with the vector correlation
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C.1 Determination of the uncertainty of the HQET parameters

functions.
The uncertainties of the HQET parameters from the matching of the space com-

ponent of the vector current can be obtained by the following formula:

∆c
(3)
V m̃q =

 z

LRstat
V(3)

11
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2

+
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11

∆(LRstat
V(3)

11
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, (C.15)
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∆ lnZHQET
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Lρstat
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z
∆c

(3)
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+
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c
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z
∆(LρstatV(3))
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. (C.19)

The errors of the observables can be obtained as in equations (C.5) to (C.14) with
the corresponding correlation functions.
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C.2 Tables of the tree level HQET parameters

C.2 Tables of the tree level HQET parameters

ωkin · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 0.36556825(6) 0.34881285(3) 0.35509612(5)
8 0.43257614(8) 0.42500505(8) 0.42784421(8)
12 0.4557813(3) 0.4517860(4) 0.4532843(3)
16 0.467216(2) 0.464790(2) 0.465700(2)
20 0.47399(1) 0.47237(1) 0.47298(1)
24 0.47848(4) 0.47732(4) 0.47776(4)
28 0.4817(1) 0.4809(1) 0.4812(1)
32 0.4844(4) 0.4837(4) 0.4839(4)
64 0.498(5) 0.498(5) 0.498(5)

Table C.1: Continuum limit results for ωkin at tree level.

c
(1)
A · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 -0.6543665(2) -0.6969177(2) -0.6775476(2)
8 -0.5965653(3) -0.6402569(4) -0.620371(4)
12 -0.567092(1) -0.601238(2) -0.58569(1)
16 -0.55118(7) -0.578434(9) -0.566027(8)
20 -0.54133(3) -0.56385(4) -0.55360(4)
24 -0.5346(1) -0.5538(1) -0.5451(1)
28 -0.5300(5) -0.5466(4) -0.5390(4)
32 -0.527(1) -0.541(1) -0.535(1)
64 -0.52(1) -0.52(2) -0.52(1)

Table C.2: Continuum limit results for c(1)
A at tree level.
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Appendix C Numerical results

c
(2)
A · m̃q

θl = 0.5 θl = 0.5 θl = 1.0
θh = 0.5 θh = 1.0 θh = 0.5

z θ′h = 1.0 θ′h = 1.5 θ′h = 1.5

4 -1.0025023(8) -1.028164(1) -0.7796(2)
8 -0.800364(1) -0.930200(2) -0.7099(2)
12 -0.707375(5) -0.827761(8) -0.6559(2)
16 -0.65773(3) -0.76130(4) -0.6228(2)
20 -0.6271(1) -0.7164(2) -0.6011(2)
24 -0.6065(4) -0.6845(7) -0.5858(4)
28 -0.591(1) -0.661(2) -0.575(1)
32 -0.581(5) -0.643(7) -0.566(4)
64 -0.55(5) -0.58(8) -0.54(4)

Table C.3: Continuum limit results for c(2)
A at tree level.

lnZHQET
A

z θ = 0.5 θ = 1.0 θ = 1.5

4 0.00842120(2) 0.02339116(7) 0.0333164(1)
8 0.00263566(2) 0.00687239(6) 0.0079446(1)
12 0.00123573(2) 0.0031576(3) 0.0033582(4)
16 0.000710(1) 0.001799(1) 0.001838(2)
20 0.000457(4) 0.001156(5) 0.001154(6)
24 0.00031(1) 0.00079(2) 0.00078(2)
28 0.00019(4) 0.00055(5) 0.00054(6)
32 0.0001(1) 0.0003(1) 0.0003(2)
64 -0.00015(9) -0.00001(25) 0.00007(46)

Table C.4: Continuum limit results for lnZHQET
A at tree level. For z = 64 I used the

last 15 lattices for the continuum limit extrapolation.
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C.2 Tables of the tree level HQET parameters

lnZstat
A

z θ = 0.5 θ = 1.0 θ = 1.5

4 -0.04935870(1) -0.17476900(4) -0.3328310(7)
8 -0.02370240(2) -0.08345580(4) -0.1589580(6)
12 -0.0154555(2) -0.0540861(2) -0.1024130(3)
16 -0.011457(1) -0.039929(1) -0.075264(1)
20 -0.009103(4) -0.031630(5) -0.059426(5)
24 -0.00756(1) -0.02619(2) -0.04908(2)
28 -0.00649(4) -0.02237(5) -0.04182(5)
32 -0.0058(1) -0.0196(1) -0.0365(2)
64 0.00005(5) 0.00006(6) 0.00006(6)

Table C.5: Continuum limit results for lnZstat
A at tree level. For z = 64 I used the

last 15 lattices for the continuum limit extrapolation.

c
(3)
A · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 -0.0337595(3) 0.0216039(3) -0.0003084(3)
8 0.2181728(5) 0.2185915(4) 0.2184276(4)
12 0.312890(2) 0.305841(1) 0.308631(2)
16 0.360427(9) 0.35237(1) 0.35556(1)
20 0.38883(4) 0.38105(7) 0.38413(5)
24 0.40769(2) 0.4005(2) 0.4033(2)
28 0.4212(5) 0.4145(6) 0.4172(6)
32 0.431(2) 0.425(2) 0.428(2)
64 0.47(2) 0.47(2) 0.47(2)

Table C.6: Continuum limit results for c(3)
A at tree level.
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c
(4)
A · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 0.8425237(5) 0.74269443(5) 0.7822060(5)
8 0.9566813(8) 0.9387427(8) 0.9458444(8)
12 0.980624(3) 0.979234(3) 0.979772(3)
16 0.98908(2) 0.99225(2) 0.99099(2)
20 0.99303(7) 0.99763(8) 0.99581(8)
24 0.9952(3) 1.0002(3) 0.9982(3)
28 0.9967(9) 1.0017(9) 0.9997(9)
32 0.9981(3) 1.003(3) 1.001(3)
64 1.00(3) 1.01(3) 1.00(3)

Table C.7: Continuum limit results for c(4)
A at tree level. For z = 64 I used the last

45 lattices for the continuum limit extrapolation.

c
(5)
A · m̃q

θl = 0.5 θl = 1.0 θl = 1.5
θh = 1.0 θh = 0.5 θh = 0.5

z θ′h = 1.5 θ′h = 1.5 θ′h = 1.0

4 0.41797852(3) 0.5070717(3) 0.5731924(3)
8 0.4101258(5) 0.4901318(5) 0.5432664(5)
12 0.424391(2) 0.488243(2) 0.528081(2)
16 0.43676(1) 0.48907(1) 0.52057(1)
20 0.44611(5) 0.49023(5) 0.51619(5)
24 0.4532(2) 0.4913(2) 0.5134(2)
28 0.4588(6) 0.4923(6) 0.5114(6)
32 0.463(1) 0.493(2) 0.510(2)
64 0.49(2) 0.50(2) 0.51(2)

Table C.8: Continuum limit results for c(5)
A at tree level. For z = 64 I used the last

28 lattices for the continuum limit extrapolation.
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C.2 Tables of the tree level HQET parameters

c
(6)
Ak · m̃q

θl = 0.5 θl = 1.0 θl = 1.5
θh = 1.0 θh = 0.5 θh = 0.5

z θ′h = 1.5 θ′h = 1.5 θ′h = 1.0

4 -1.839959(1) -0.9790563(8) -0.8994113(7)
8 -1.167297(1) -0.940228(1) -0.887626(1)
12 -1.071434(4) -0.945054(4) -0.905741(4)
16 -1.03962(2) -0.95265(3) -0.92151(2)
20 -1.0252(1) -0.9591(1) -0.9334(1)
24 -1.0175(4) -0.9642(4) -0.9423(4)
28 -1.013(1) -0.968(1) -0.949(1)
32 -1.011(4) -0.972(4) -0.955(4)
64 -1.003(4) -0.98(4) -0.97(4)

Table C.9: Continuum limit results for c(6)
Ak at tree level. For z = 64 I used the last

22 lattices for the continuum limit extrapolation.

lnZHQET
Ak

z θ = 0.5 θ = 1.0 θ = 1.5

4 0.1613271(3) 0.1762989(3) 0.2027507(4)
8 0.0526762(2) 0.0569133(3) 0.0630299(4)
12 0.0249970(4) 0.0269194(5) 0.0294803(6)
16 0.014455(3) 0.015544(3) 0.016941(4)
20 0.00939(1) 0.01009(1) 0.01097(1)
24 0.00657(3) 0.00706(4) 0.00766(4)
28 0.00483(9) 0.0052(1) 0.0056(1)
32 0.0036(3) 0.0039(3) 0.0042(3)
64 0.0006(11) 0.0007(13) 0.0007(16)

Table C.10: Continuum limit results for lnZHQET
Ak at tree level.
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Appendix C Numerical results

lnZstat
Ak

z θ = 0.5 θ = 1.0 θ = 1.5

4 -0.3038610(1) -0.3662650(1) -0.4579340(1)
8 -0.1433480(1) -0.1717160(1) -0.2153740(1)
12 -0.0931618(3) -0.110893(3) -0.1383350(3)
16 -0.0689775(1) -0.081766(1) -0.101554(1)
20 -0.054761(5) -0.064732(5) -0.08014(6)
24 -0.04541(2) -0.05357(2) -0.06617(2)
28 -0.03882(5) -0.04572(5) -0.05637(6)
32 -0.0340(2) -0.03997(2) -0.0492(2)
64 -0.01701(6) -0.01989(6) -0.02431(6)

Table C.11: Continuum limit results for lnZstat
Ak at tree level.

c
(1)
V · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 0.8762832(4) 0.8347205(4) 0.8511706(4)
8 0.7385085(6) 0.7468982(7) 0.7435794(6)
12 0.667734(2) 0.680238(3) 0.675276(3)
16 0.62865(1) 0.64027(1) 0.63566(1)
20 0.60420(2) 0.61444(7) 0.61039(6)
24 0.5875(2) 0.5966(2) 0.5930(2)
28 0.5756(7) 0.5836(8) 0.5804(7)
32 0.5677(2) 0.574(2) 0.571(2)
64 0.54(3) 0.54(3) 0.54(3)

Table C.12: Continuum limit results for c(1)
V at tree level.
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C.2 Tables of the tree level HQET parameters

c
(2)
V · m̃q

θl = 0.5 θl = 0.5 θl = 1.0
θh = 0.5 θh = 1.0 θh = 0.5

z θ′h = 1.0 θ′h = 1.5 θ′h = 1.5

4 0.7336588(6) 1.421981(1) 0.5610778(6)
8 0.5486209(8) 0.7571710(9) 0.5301029(9)
12 0.518642(3) 0.647043(3) 0.520664(3)
16 0.50928(2) 0.60286(2) 0.51589(2)
20 0.50530(7) 0.57910(8) 0.51296(9)
24 0.5033(3) 0.5643(3) 0.5110(3)
28 0.5023(8) 0.5543(9) 0.5010(1)
32 0.502(3) 0.547(3) 0.509(3)
64 0.51(3) 0.53(3) 0.51(4)

Table C.13: Continuum limit results for c(2)
V at tree level.

lnZHQET
V0

z θ = 0.5 θ = 1.0 θ = 1.5

4 0.1613271(2) 0.1762989(3) 0.2027507(3)
8 0.0526762(2) 0.0569133(2) 0.0630299(2)
12 0.0249970(5) 0.0269194(5) 0.0294803(6)
16 0.014455(2) 0.015544(3) 0.016941(3)
20 0.009389(8) 0.010088(9) 0.01097(1)
24 0.00657(2) 0.00706(3) 0.00766(3)
28 0.00483(7) 0.00519(8) 0.0056(1)
32 0.0036(2) 0.0039(2) 0.0042(3)
64 0.0009(9) 0.001(1) 0.001(1)

Table C.14: Continuum limit results for lnZHQET
V0

at tree level. For z = 64 I used
the last 15 lattices for the continuum limit extrapolation.
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Appendix C Numerical results

lnZstat
V0

z θ = 0.5 θ = 1.0 θ = 1.5

4 -0.3038610(6) -0.36626500(8) -0.4579340(1)
8 -0.1433480(5) -0.17171600(6) -0.21537400(8)
12 -0.0931618(3) -0.1108930(2) -0.1383350(3)
16 -0.068978(1) -0.081766(1) -0.101554(2)
20 -0.054761(5) -0.064732(5) -0.080143(6)
24 -0.04541(2) -0.05357(2) -0.06617(2)
28 -0.03882(5) -0.04572(540) -0.05637(6)
32 -0.0340(2) -0.0400(2) -0.0492(2)
64 -0.01701(6) -0.01989(6) -0.02431(6)

Table C.15: Continuum limit results for lnZstat
V0

at tree level. For z = 64 I used the
last 15 lattices for the continuum limit extrapolation.

c
(3)
V · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 0.30685691(7) 0.2515114(1) 0.27559450(9)
8 0.4029903(1) 0.3657687(1) 0.3819653(1)
12 0.4358646(4) 0.4093880(6) 0.4209094(5)
16 0.452210(3) 0.431788(4) 0.440675(3)
20 0.46196(1) 0.44536(1) 0.45259(2)
24 0.46844(5) 0.45448(6) 0.46055(6)
28 0.4731(2) 0.4611(2) 0.4663(2)
32 0.4768(5) 0.4662(7) 0.4708(6)
64 0.494(6) 0.489(8) 0.491(7)

Table C.16: Continuum limit results for c(3)
V at tree level.
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C.2 Tables of the tree level HQET parameters

c
(4)
V · m̃q

θ1 = 0.5 θ1 = 1.0 θ1 = 1.5
z θ2 = 1.0 θ2 = 1.5 θ2 = 0.5

4 -0.8867710(4) -0.9144693(5) -0.9018590(4)
8 -0.9613954(6) -1.0167051(8) -0.9915286(7)
12 -0.977529(2) -1.025460(3) -1.003639(3)
16 -0.98434(1) -1.02459(2) -1.00626(1)
20 -0.98807(7) -1.02235(9) -1.00674(8)
24 -0.9905(2) -1.0202(3) -1.0066(3)
28 -0.9922(8) -1.018(1) -1.0065(9)
32 -0.994(2) -1.017(3) -1.007(3)
64 -1.00(2) -1.01(3) -1.00(3)

Table C.17: Continuum limit results for c(4)
V at tree level. For z = 64 I used the last

40 lattices for the continuum limit extrapolation.

c
(5)
V · m̃q

θl = 0.5 θl = 1.0 θl = 1.5
θh = 1.0 θh = 0.5 θh = 0.5

z θ′h = 1.5 θ′h = 1.5 θ′h = 1.0

4 -0.4287803(8) 0.0541141(4) 0.2360660(2)
8 -0.047947(1) 0.253984(5) 0.3658552(2)
12 0.121362(5) 0.333501(2) 0.4113223(9)
16 0.21175(3) 0.37454(1) 0.433935(6)
20 0.2675(1) 0.39945(6) 0.44741(3)
24 0.3053(5) 0.4162(2) 0.4564(1)
28 0.333(2) 0.4282(7) 0.4628(4)
32 0.353(5) 0.437(2) 0.468(1)
64 0.43(7) 0.47(3) 0.49(1)

Table C.18: Continuum limit results for c(5)
V at tree level.
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Appendix C Numerical results

c
(6)
V · m̃q

θl = 0.5 θl = 1.0 θl = 1.5
θh = 1.0 θh = 0.5 θh = 0.5

z θ′h = 1.5 θ′h = 1.5 θ′h = 1.0

4 -0.251135(4) 0.820080(3) 1.167135(3)
8 -0.747630(6) 0.041778(4) 0.308730(4)
12 -0.87575(2) -0.28934(2) -0.08921(2)
16 -0.9251(1) -0.4627(1) -0.3042(1)
20 -0.9492(4) -0.5685(5) -0.4377(5)
24 -0.9629(2) -0.640(2) -0.5285(2)
28 -0.972(8) -0.691(6) -0.594(6)
32 -0.98(2) -0.73(2) -0.64(2)
64 -1.0(3) -0.8(2) -0.8(2)

Table C.19: Continuum limit results for c(6)
V at tree level. For z = 64 and the combi-

nations (1.0, 0.5, 1.5) and (1.5, 0.5, 1.0) I used the last 40 lattices for the
continuum limit extrapolation.

lnZHQET
V

z θ = 0.5 θ = 1.0 θ = 1.5

4 0.00770240(1) 0.02267275(5) 0.03329674(8)
8 0.00221097(1) 0.00644784(3) 0.00898783(6)
12 0.0009998(2) 0.0029216(2) 0.0040528(2)
16 0.0005638(9) 0.0016524(9) 0.002296(1)
20 0.000358(4) 0.001057(4) 0.001473(4)
24 0.00024(1) 0.00072(1) 0.00102(1)
28 0.00014(4) 0.00050(4) 0.00071(5)
32 0.0001(1) 0.0003(1) 0.0005(1)
64 -0.00022(8) -0.0002(2) -0.0003(4)

Table C.20: Continuum limit results for lnZHQET
V at tree level. For z = 64 I used

the last 15 lattices for the continuum limit extrapolation.
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C.2 Tables of the tree level HQET parameters

lnZstat
V

z θ = 0.5 θ = 1.0 θ = 1.5

4 0.00869723(1) 0.02608480(1) 0.03960090(2)
8 0.00585441(8) 0.0189434(1) 0.03207610(9)
12 0.00423805(15) 0.0140275(1) 0.0245735(1)
16 0.0033032(9) 0.0110474(8) 0.0196550(8)
20 0.002700(4) 0.009088(4) 0.016312(3)
24 0.00227(1) 0.00770(1) 0.01391(1)
28 0.00194(4) 0.00666(4) 0.01210(4)
32 0.0016(1) 0.0058(1) 0.0106(1)
64 0.00067(5) 0.00283(6) 0.00538(5)

Table C.21: Continuum limit results for lnZstat
V at tree level. For z = 64 I used the

last 15 lattices for the continuum limit extrapolation.
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