N=1 SU(2) SYM Theory on the Lattice with Light

Dynamical Wilson Gluinos

Kamel Demmouche

Institut für Theoretische Physik - WWU Münster.

In collaboration with:

F. Farchioni, A. Ferling, I. Montvay, G. Münster, E.E. Scholz, J. Wuilloud

Münster, March 27th 2008

N=1 SU(2) SYM Theory on the Lattice with Light

Dynamical Wilson Gluinos

Kamel Demmouche

Institut für Theoretische Physik - WWU Münster.

In collaboration with:

F. Farchioni, A. Ferling, I. Montvay, G. Münster, E.E. Scholz, J. Wuilloud

Münster, March 27th 2008

Outline:

- Intro & Low energy features of N=1 SYM in the continuum
- N=1 SYM on the Lattice
- Numerical results & SYM Spectrum
- Summary & Conclusion

Motivations for SUSY

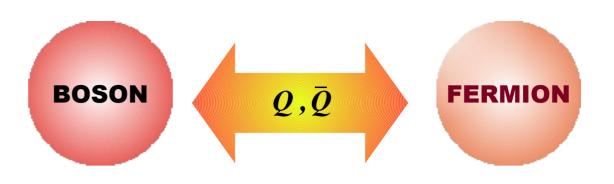
- Stabilization of the hierarchy problem in SM
- In SM $SU(3)_c \times SU(2)_L \times U(1)_y$ EW and Strong couplings do not match
- Discovery of SUSY in LHC is an "indirect" discovery of the Higgs boson
- SUSY is a necessary ingredient in String Theory
- What is the dark matter made of ? LSP (light susy particle)
- **.**..

Motivations for SUSY

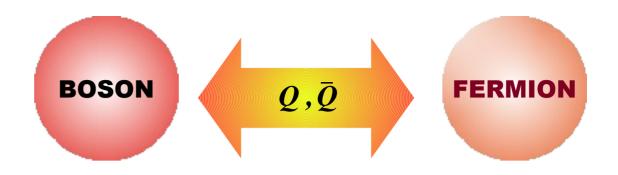
- Stabilization of the hierarchy problem in SM
- In SM $SU(3)_c \times SU(2)_L \times U(1)_y$ EW and Strong couplings do not match
- Discovery of SUSY in LHC is an "indirect" discovery of the Higgs boson
- SUSY is a necessary ingredient in String Theory
- What is the dark matter made of ? LSP (light susy particle)
- **.** . . .

-->> the goal of this study <<-Investigation of *low-energy* dynamics of strongly
coupled SUSY gauge theories

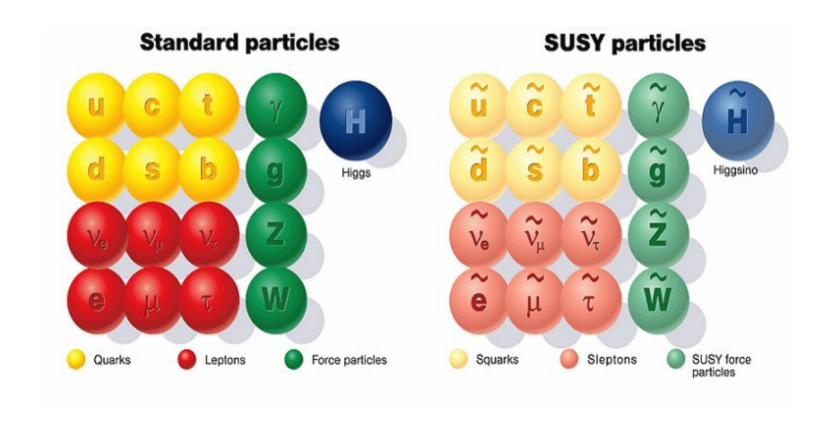
SUSY is fascinating!



SUSY is fascinating!

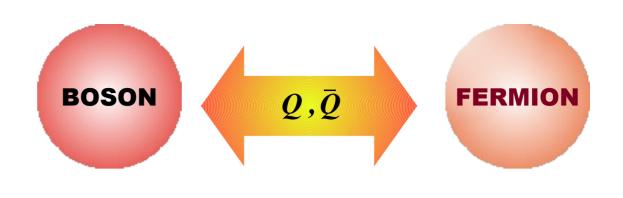


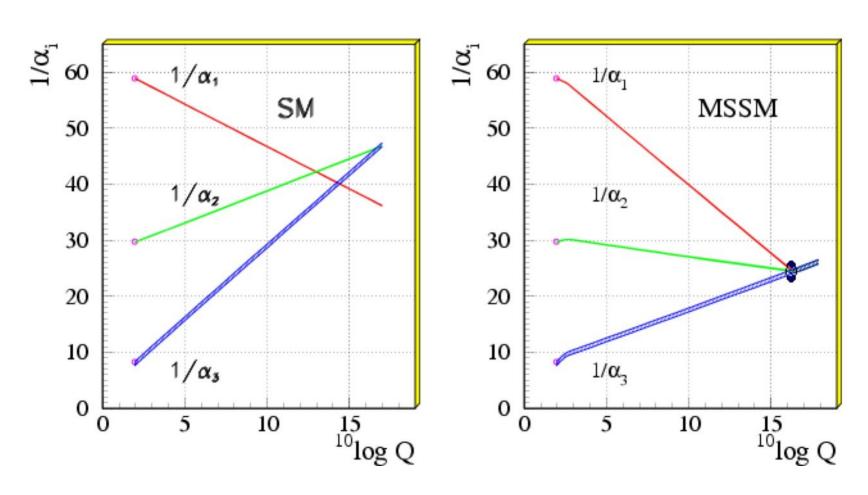
SUSY world:



Unification!

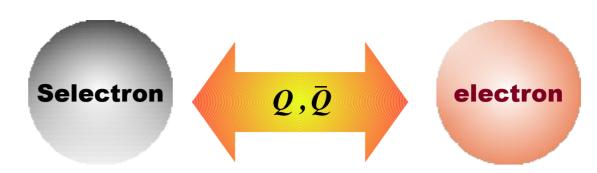
Running gauge Couplings:





[Particle Data Group]

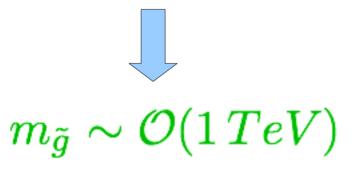
SUSY breaking!

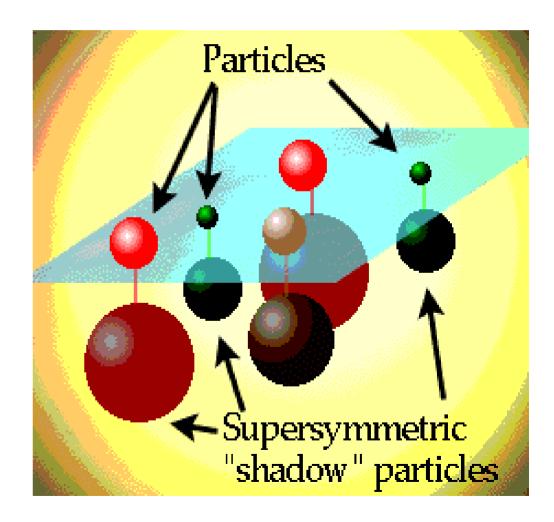


Is SUSY a symmetry of the nature?

$$m_{\tilde{e}}
eq m_e$$

SUSY must be broken -> soft breaking





N=1 SUSY Yang-Mills with SU(N_x) gauge group

$$\mathcal{L}_{SYM} = -\frac{1}{4} F^a_{\mu\nu}(x) F^{a\mu\nu}(x) + \frac{i}{2} \bar{\lambda}^a(x) \gamma^\mu \mathcal{D}_\mu \lambda^a(x) - \frac{m_{\tilde{g}}}{2} \bar{\lambda}^a \lambda^a$$

$$A^a_\mu(x) \Longleftrightarrow \lambda^a(x)$$

g

Soft breaking term

Equivalence to
One flavor QCD
At large N_c

$$a \in \{1, \dots, N_c^2 - 1\}$$
 Adjoint representation $\lambda^a(x)$: Majorana spinor field $N_f = 1/2$

 $F^a_{\mu\nu}(x)$: Field strength tensor

 \mathcal{D}_{μ} : Covariant derivative

Presence of anomalous global chiral symmetry: $U(1)_{\lambda} \Longleftrightarrow R ext{-}symmetry$

lacksquare Spontaneous discrete chiral symmetry breaking: $~Z_{2N_c}
ightarrow Z_2$

Low energy features of N=1 SYM

Confinement ____ Colorless bound states

(perturbation theory cannot be applied!)

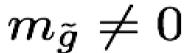
 χ_H Spin-1/2
Gluino-Glue

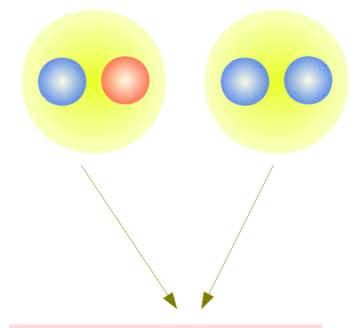
a- η' / a- f_0 Spin-0 Gluino-Gluino

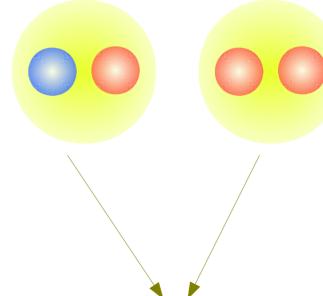
 χ_L Spin-1/2 Gluino-Glue

0++ / 0-+

Spin-0
Glue-Glue





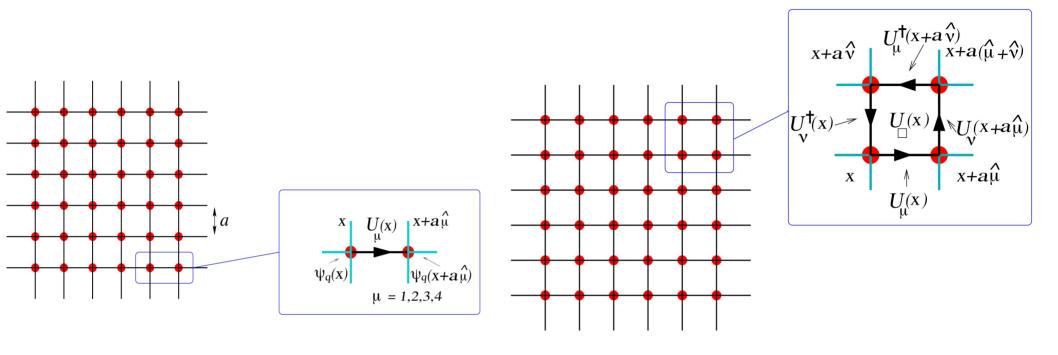


 $m_{\tilde{q}} = 0$

Higher supermultiplet

Lower supermultiplet

Non-perturbative methods, Lattice regularization



a: lattice spacing

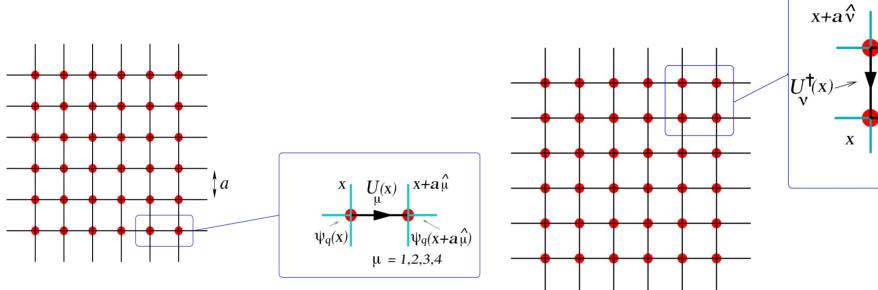
x: lattice site

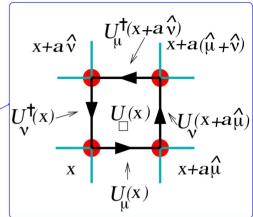
 $U_{\mu}(x)$: gauge fields (links)

 $\psi(x)$: fermion fields

Lattice volume: $L \times L \times L \times T$

Non-perturbative methods, Lattice regularization





a: lattice spacing

x: lattice site

 $U_{\mu}(x)$: gauge fields (links)

 $\psi(x)$: fermion fields

Lattice volume: $L \times L \times L \times T$

Problems !!

 $\{Q,ar{Q}\} \sim P_{\mu}$

- -> No infinitesimal translations
- SUSY is broken by space-time discretization
- -> Naive discretization of SYM action leads to The doubling problem: no balance between Fermionic and bosonic degrees of freedom

Lattice action

$$S_{lattice} = S_g + S_{\tilde{g}} \stackrel{a \to 0}{\to} S_{SYM} + \mathcal{O}(a)$$

$$S_g^W = \frac{2N_c}{g_0^2} \sum_{r} \sum_{\mu\nu} \left[1 - \frac{1}{N_c} \text{ReTr} U_{\mu\nu} \right]$$

Alternatives: Improved actions
Rectangular Wilson loops

$$S_{\tilde{g}}^{W} = a^{4} \sum_{x} \frac{1}{4a} \sum_{\mu=\pm 1}^{\pm 4} \left[\mathbf{r} \bar{\lambda}_{x}^{a} \lambda_{x}^{a} - \bar{\lambda}_{x+a\hat{\mu}}^{a} (\mathbf{r} + \gamma_{\mu}) V_{\mu}^{ab}(x) \lambda^{b}(x) \right]$$

$$= -\frac{1}{2} \sum_{xy} a^4 \bar{\lambda}_y Q_{yx} \lambda_x$$

$$+\frac{m_0}{2}\bar{\lambda}_x^a\lambda_x^a$$

Relevant operator

SUSY and chiral limit

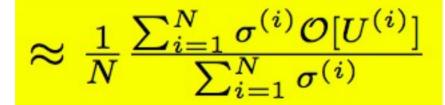
[Curci & Veneziano 87]

Path integral (euclidean):

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int [\mathcal{D}U] \mathcal{O}[U] \sigma e^{-S_g(U) + \frac{1}{2} \ln[\det Q]}$$

Importance Sampling (Monte Carlo)

$$\{U^{(i)}, i=1...N\}$$



Problems !!

- Finite a (lattice spacing) effects: O(a)improvements --> $O(a^2)$
- Finite volume effects L
- Small dynamical fermion mass --> slowing down

Polynomial approximation

$$|\det(Q)|^{1/2} = \{\det(Q^{\dagger}Q)\}^{1/4}$$

$$\simeq \frac{1}{\det P_{n_1}^{(1)}(Q^{\dagger}Q)}$$

Algorithms:

•TSMB
•TS-PHMC

[Montvay 96]

[Montvay & Scholz 05]

$$m_u = 5 \,\,\mathrm{MeV}$$
 $m_s = 175 \,\,\mathrm{MeV}$ $m_{gluino} = 115 - 126 \,\,\mathrm{MeV}$

Observables

Update

- Extremal eigenvalues
- Autocorrelation-times
- Wilson loops, Polyakov loops
- Physical scale r_0 =0.5 fm
- Static quark potential

Analysis

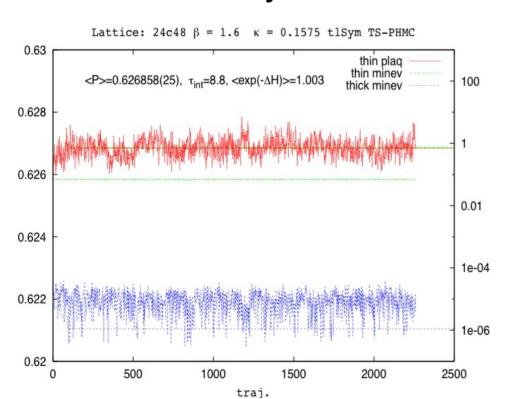
- Correction factors
- Pfaffian sign
- Correlation functions

Observables

Update

- Extremal eigenvalues
- Autocorrelation-times
- Wilson loops, Polyakov loops
- Physical scale r_0 =0.5 fm
- Static quark potential

Run history

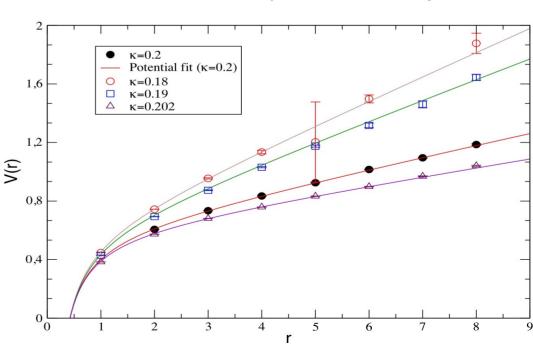


Analysis

- Correction factors
- Pfaffian sign
- Correlation functions

Static quark potential

Lattice: $16^3.32 \beta=1.6$ PHMC-tlsym



Mass determination

- Construct interpolating operators:
- Smearing techniques: Jacobi/APE (variational method)
- Time-slice correlation functions
- Effective mass plateaux: t-range
- Fitting function
- Error from jackknife/linearization
- X² correlated fit
- Choose t-range to minimize X²

spin:0,1/2 bound states: $\mathcal{O}_{J^{PC}}$

$$S_t = \frac{1}{\sqrt{V_s}} \sum_{\vec{x}} \mathcal{O}[U](\vec{x}, t)$$

$$C(\Delta t) = \langle S_t S_{t+\Delta t} \rangle - \langle S_t \rangle \langle S_{t+\Delta t} \rangle$$

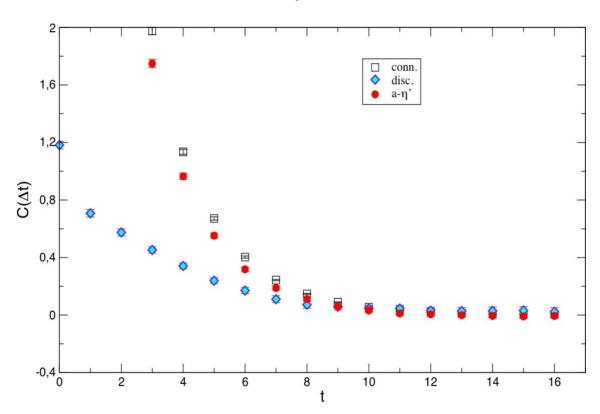
$$am_{\text{eff}} = \log \frac{C(t)}{C(t+1)}$$

$$C(t) \to a_0^2 + \sum_{n=1}^{\infty} a_n^2 e^{-E_n t} \pm a_n^2 e^{-E_n (T-t)}$$

$$m = E_1$$

Correlators

Lattice: $16^3.32 \beta=1.6 \kappa=0.2 \text{ TS-PHMC}$



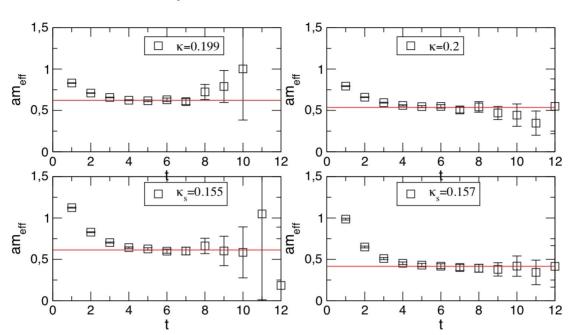
Connected (a-π)

Disconnected SET / IVST

Bound states masses

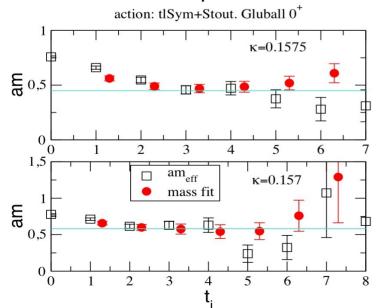
a-η'

Spin-0 Pseudo-scalar Adjoint meson a-n'



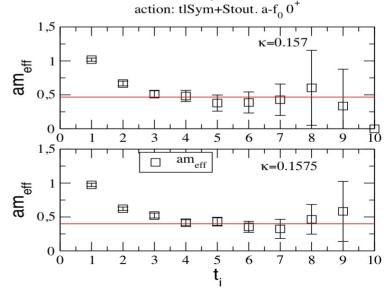
Spin-0 Scalar Adjoint meson a-f₀

Lattice: $24^3.48 \beta=1.6$ TS-PHMC



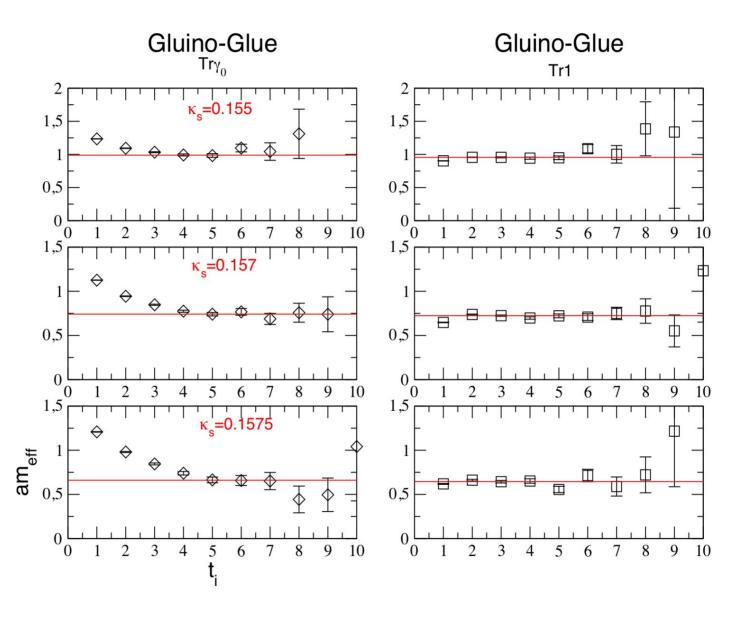
Spin-0 Scalar glueball

Lattice: $24^3.48 \beta=1.6$ TS-PHMC



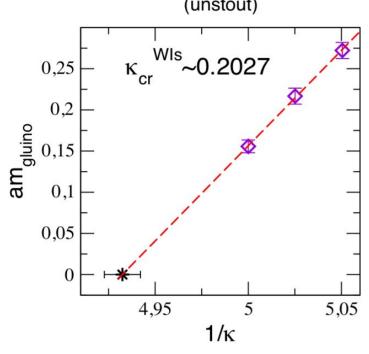
Bound states masses

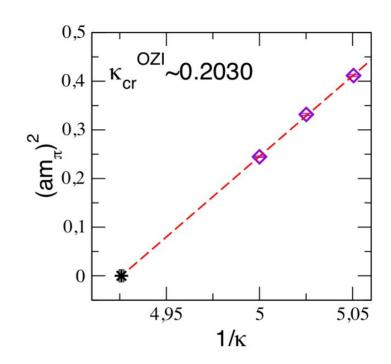
Spin-1/2
Gluino-Glue



Chiral ~ SUSY limit

Lattice: $24^3.48 \beta=1.6$ TS-PHMC (unstout)





SUSY Ward-Identities

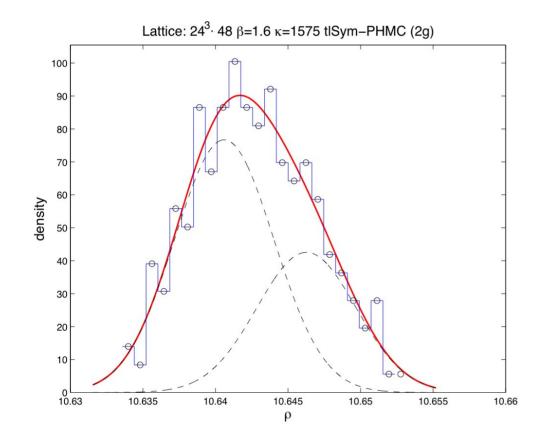
(renormalized gluino mass)

$$am_{\tilde{g}}Z_S = rac{1}{2}\left(rac{1}{\kappa} - rac{1}{\kappa_{cr}}
ight)$$

$$(am_{\pi})^2 \simeq A \left(\frac{1}{\kappa} - \frac{1}{\kappa_{cr}}\right)$$

 κ_{cr} : Critical hopping parameter.

Chiral transition



Spontaneous discrete chiral symmetry breaking

$$Z_4 \longrightarrow Z_2$$

Two vacua:

$$\langle \bar{\lambda}\lambda \rangle_+ > 0 \; ; \; \langle \bar{\lambda}\lambda \rangle_- < 0$$

At zero gluino mass

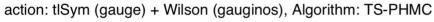
Renormalized condensate:

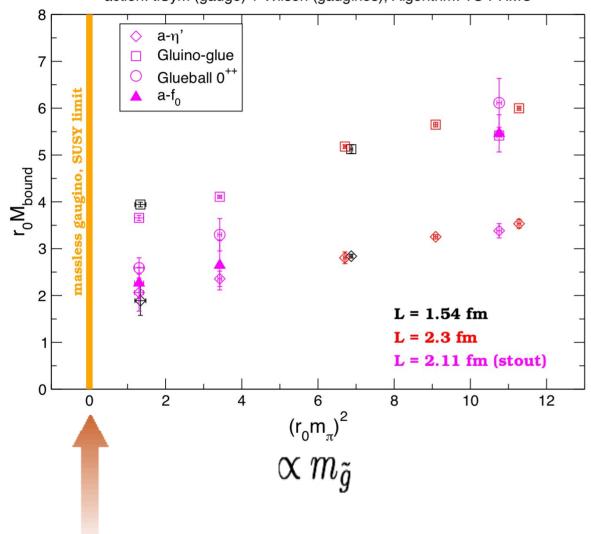
$$\langle \bar{\lambda} \lambda \rangle_{R(\mu)} = Z(a\mu)[\langle \bar{\lambda} \lambda \rangle - b_0(a\mu)]$$

First order phase transition

Bound states spectrum

Spectrum of SU(2) Super-Yang-Mills on the Lattice





• Lattice simulation $16^3.32$ and $24^3.48$, $a \sim 0.1$ fm

$$m_{a-\pi} \sim 460 \text{ MeV}$$

Gluino-Glue

$$m_{\tilde{q}q} = 1580 \text{ MeV}$$

Gluino-Gluino

$$m_{\tilde{g}\tilde{g}} = 760 \text{ MeV}$$

Possible mixing in the Scalar channel ($f_0 - 0^+$)

SUSY + O(a) effects

Summary & outlook

- The first quantitative results of low-energy spectrum of SU(2) SYM
- \bigcirc Large physical volume L > 2 fm (required for spectrum studies)
- Finite size effects under control
- Higher statistics for analysis were collected
- Efficient algorithm for dynamical simulations: TS-PHMC
- Small gluino mass m ~ 126 MeV
- Is Gluino-Gluino and Gluino-Glue mass splitting an O(a) effect!?
- Answer: extrapolation to continuum limit
- Next: apply recent QCD methods of spectroscopy to SYM

Summary & outlook

- The first quantitative results of low-energy spectrum of SU(2) SYM
- \bigcirc Large physical volume L > 2 fm (required for spectrum studies)
- Finite size effects under control
- Higher statistics for analysis were collected
- Efficient algorithm for dynamical simulations: TS-PHMC
- Small gluino mass m ~ 126 MeV
- Is Gluino-Gluino and Gluino-Glue mass splitting an O(a) effect!?

THANK YOU!

- Answer: extrapolation to continuum limit
- Next: apply recent QCD methods of s