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1 EINFÜHRUNG

1 Einführung

In dieser Bachelorarbeit wird die quantenmechanische Energieaufspaltung zwischen
dem Grundzustand und dem ersten angeregten Zustand in eindimensionalen sym-
metrischen Doppelmuldenpotentialen untersucht. Die Energieaufspaltung, also die
Differenz der Eigenenergien dieser beiden Zustände, ist sehr gering und Gegenstand
aktueller Forschung. Sie bietet unter anderem die Grundlage für den Amoniakma-
ser (siehe [3]). Dort wird ausgenutzt, dass das Ammoniakmolekül energetisch dicht
beieinander liegende Zustände besitzt und durch den Tunneleffekt zwischen ihnen
wechseln kann. Da die Energieaufspaltung eng mit dem Tunneleffekt verknüpft ist,
findet sich in der Methodik der euklidischen Pfadintegrale ein Zugang, sie systema-
tisch näherungsweise zu berechnen.

Um die Güte einer Näherung einschätzen zu können, ist man auf die Kenntnis
der exakten Lösung angewiesen. Aus diesem Grund wird in dieser Arbeit als Beispiel
für ein Doppelmuldenpotential ein Rechteckpotential, genauer gesagt ein unendlich
tiefer Potentialtopf, in dessen Mitte ein rechteckiger Potentialwall mit einer bestimm-
ten Höhe dafür sorgt, dass zwei Mulden entstehen, betrachtet. Dieses quantenme-
chanische System lässt sich mit der üblichen Methode durch Lösen der stationären
Schrödingergleichung exakt berechnen. Das Ergebnis kann anschließend mit der Nä-
herung der Pfadintegralmethode verglichen und eventuelle Abweichungen diskutiert
werden. Wegen der Unstetigkeiten des Potentials muss damit gerechnet werden, dass
die Näherungsmethode ab einer bestimmten Genauigkeit versagt. Ob dies wirklich
der Fall ist, wird diese Arbeit zeigen. In jedem Fall kann die Pfadintegralmethode
aber ein tieferes physikalisches Verständnis der Energieaufspaltung liefern, da sich
führende Terme mit bekannten Formeln aus der Theorie des quantenmechanischen
Tunnelns identifizieren lassen. Das folgende Kapitel gibt eine Einführung in Doppel-
muldenpotentiale. Danach wird die Pfadintegralmethode eingeführt, mit deren Hilfe
sich eine Näherungsformel für die Energieaufspaltung ermitteln lässt.

1.1 Grundlegendes zu Doppelmuldenpotentialen

Abbildung 1: Schematische Darstellung ei-
nes Doppelmuldenpotentials

Die folgenden grundlegenden Eigen-
schaften symmetrsicher Doppelmulden-
potentiale sind in [3] nachzulesen. Ein
symmetrisches Doppelmuldenpotential,
wie es schematisch in Abbildung 1 dar-
gestellt ist, besitzt stationäre Eigenzu-
stände, die entweder symmetrisch oder
antisymmetrisch sind. Der Grundzu-
stand |0〉 und der erste angeregte Zu-
stand |1〉 sind in Abbildung 2 skizziert.
Die Eigenenergien E0 und E1 sind unge-
fähr so groß wie die Energie des Grund-
zustands der einzelnen Mulde, durch die
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1.2 Das Pfadintegral 1 EINFÜHRUNG

(a) Grundzustand |0〉 (b) Erster angeregter
Zustand |1〉

(c) |L〉 = 1√
2
(|0〉 − |1〉) (d) |R〉 = 1√

2
(|0〉+ |1〉)

Abbildung 2: Schematische Darstellung

endliche Barriere allerdings nicht exakt gleich. Durch Superposition der beiden Zu-
stände findet man Zustände, bei denen sich das Teilchen hauptsächlich in einer
der beiden Mulden aufhält (siehe Abbildung 2 (c) und (d)). Die Energiedifferenz
∆E = E1−E0 hängt offensichtlich mit dem Übergangsmatrixelement zwischen den
Zuständen |L〉 und |R〉 zusammen

∆E = −2〈R|H|L〉, (1)

wobei H der Hamiltonoperator des Systems ist. Hier wird zum ersten mal der Zusam-
menhang zwischen Energieaufspaltung und Tunneleffekt deutlich. ∆E wird in dieser
Arbeit mit einer Näherungsmethode berechnet, die auf dem quantenmechanischen
Pfadintegral beruht. Das nötige Rüstzeug soll in den nächsten Kapiteln eingeführt
werden.

1.2 Das Pfadintegral

Die in diesem Kapitel gewählte Einführung des Pfadintegrals ist [3] entnommen.
Dort findet sich auch eine explizite Herleitung. ~ ist im Gegensatz zur Darstellung
in [3] nicht gleich 1 gesetzt. Das Pfadintegral erlaubt, die Übergangswahrschein-
lichkeit eines Teilchens, das sich zu einem bestimmten Zeitpunkt t = 0 am Ort y
befindet (Zustand |y〉), zum Zeitpunkt t an den Ort x (Zustand |x〉) zu gelangen,
zu berechnen. Nach der Schrödingergleichung ist die Übergangsamplitude mit Hilfe
des Zeitentwicklungsoperators U(t) = e−

i
~Ht durch den Ausdruck 〈x|U(t)|y〉 formal

gegeben. Die Übergangswahrscheinlichkeit ist das Betragsquadrat hiervon. Die Idee
bei der Entwicklung des Pfadintegrals ist, dass alle möglichen Wege x(t) mit den
Randbedingungen x(0) = y und x(t) = x zur Übergangswahrscheinlichkeit beitra-
gen. Man teilt das Zeitintervall in kleine Abschnitte ε = t/N und schreibt für den
Ort zum Zeitpunkt r · ε einfach x(tr). Es gilt nun folgender Zusammenhang:

〈x|e−
i
~Ht|y〉 =

∫
Dx e

i
~S[x] (2)

2



1.2 Das Pfadintegral 1 EINFÜHRUNG

Auf der rechten Seite steht das Pfadintegral. In der Exponentialfunktion im Inte-
grand findet sich die klassische Wirkung als Funktional des Weges x:

S[x] =

∫ t

0

(m
2
ẋ2(t′)− V (x(t′))

)
dt′ (3)

Der Ausdruck
∫
Dx ist als unendlichdimensionale Integration zu verstehen:∫

Dx = lim
N→∞

(
m

2πi~ε
)
N
2 dx(t1) · ... · dx(tN−1) (4)

Das bedeutet, dass über jeden Weg, der die Randbedingungen erfüllt, integriert wird.
Die Grenzwertbildung ist erst nach der Integration durchzuführen. Im Gegensatz zur
Formulierung mit der Schrödingergleichung tauchen im Pfadintegral keine Operato-
ren mehr auf. Dafür muss ein unendlichdimensionales Integral gelöst werden.
Von besonderer Bedeutung ist allerdings die physikalische Interpretation. Für die
Übergangswahrscheinlichkeit liefert jeder mögliche Weg einen Beitrag. Der Weg, der
klassisch die Newtonsche Bewegungsgleichung erfüllt, und die Wege, die nur leicht
von dem klassischen Weg abweichen, haben in semiklassischen Fällen den größten
Beitrag, da die Wirkung für den klassischen Weg stationär ist. Wege, die weit vom
klassischen Weg abweichen, sorgen für Oszillationen in der Exponentialfunktion, so
dass ihre Beiträge sich für semiklassische Fälle approximativ aufheben.

1.2.1 Das Euklidische Pfadintegral

Durch Übergang zu einer imaginären Zeit τ = it wird aus dem eben vorgestellten
Pfadintegral das euklidische Pfadintegral:

〈x|e−
1
~Hτ |y〉 =

∫
Dx e−

1
~SE [x] (5)

SE ist die euklidische Wirkung

SE[x] =

∫ τ

0

(m
2
ẋ2(τ ′) + V (x(τ ′))

)
dτ ′ (6)

und geht durch die Transformation SE[x] = −iS
∣∣
t=−iτ aus der klassischen Wirkung

hervor. Das euklidische Pfadintegral hat ganz allgemein den Vorteil, dass es reell
ist. Die Beiträge mit großer Abweichung vom klassischen Weg werden exponentiell
gedämpft und nicht mehr durch die Oszillation einer komplexen Phase unterdrückt.
Speziell erweist sich das euklidische Pfadintegral als günstiger, wenn man Tunnel-
effekte betrachtet. Durch das quantenmechanische Tunneln können Teilchen an Or-
te gelangen, die nach klassischer Physik verboten sind. Zum Beispiel könnte ein
Teilchen die Potentialbarriere im Doppelmuldenpotential überwinden, obwohl seine
Energie kleiner als die Höhe der Barriere ist. Ein klassischer Weg x(t), der diesen
Prozess beschreibt, kann allerdings nicht gefunden werden. Schaut man sich aber
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1.2 Das Pfadintegral 1 EINFÜHRUNG

die Bewegungsgleichung im euklidischen Raum an, die ganz analog zum Raum mit
normaler Zeit t als Funktionalableitung der Wirkung nach dem Weg definiert ist

δSE
δx(τ)

= 0 ⇒ mẍ(τ) =
dV

dx
, (7)

fällt das im Vergleich zur normalen Newtonschen Bewegungsgleichung unterschied-
liche Vorzeichen vor der Ableitung des Potentials auf. Der Energiesatz wird zu:

m

2
ẋ2(τ)− V (x(τ)) = EE (8)

EE ist eine Konstante, die als euklidische Energie bezeichnet wird. Anschaulich
bedeutet das nichts anderes, als dass sich das Teilchen in dem umgedrehten Potential
−V (x) bewegt. In [5] wird dieses Phänomen prägnant folgendermaßen ausgedrückt:

”
...in the euclidean dynamics the potential is turned upside down and

what ist forbidden in Minkowsi space is suddenly allowed in the euclidean
region!“ (aus Kapitel 21:

”
Tunneling by Path Integrals: Well, well!“)

Aus einem Doppelmuldenpotential wird dadurch zum Beispiel ein Potential mit zwei
Maxima, die durch eine Mulde getrennt sind. Der Weg durch die Potentialbarrie-
re wird zu einem Weg durch eine Mulde. Den Weg xc(τ), der (7) erfüllt, und bei
dem sich das Teilchen zu Beginn auf dem einen und zum Schluss auf dem anderen
Maximum befindet, nennt man ”Kink-Lösung” oder ”instanton”. Dieser Weg spielt
bei der im nächsten Schritt vorgestellten semiklassischen Näherung zur Berechnung
eines euklidischen Pfadintegrals im Zusammenhang mit Tunneleffekten eine zentrale
Rolle, da für ihn der Weg gefunden ist, bei dem die euklidische Wirkung stationär
ist, obwohl klassisch gesehen ein Teilchen diesen Weg gar nicht nehmen kann. Der
Kink kann nach (8) durch

τ − τ0 =

√
m

2

∫ xc

0

1√
V (x)

dx (9)

berechnet werden, weil durch die Randbedingungen EE = 0 ist. Der Kink ist bis auf
eine Konstante τ0, die den Nulldurchgang bestimmt, festgelegt. Die selbe Gleichung
mit einem Minuszeichen vor dem Integral auf der rechten Seite liefert als Lösung
den sogenannten anti-instanton, die sich nur um das Vorzeichen vom instanton un-
terscheidet und dementsprechend einem Weg von der rechten in die linke Mulde
entspricht.

1.2.2 Semiklassische Näherung

Wir haben gesehen, dass das Pfadintegral über alle Wege, die den gleichen Anfangs-
und den gleichen Endpunkt haben, integriert werden muss. Dementsprechend ist
es unendlichdimensional und so in den meisten Fällen nicht lösbar. Um das eukli-
dische Pfadintegral näherungsweise zu lösen, kann man sich einer semiklassischen
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1.2 Das Pfadintegral 1 EINFÜHRUNG

Näherung bedienen, die darin besteht, nur den Weg xc(τ) und relativ kleine Abwei-
chungen y(τ) von diesem Weg bis zur quadratischen Ordnung zu berücksichtigen.
Wir werden sehen, dass sich das Pfadintegral so auf Gauß-Integrale zurückführen
lässt. Betrachten wir dazu die euklidische Wirkung SE[x] mit x(τ) = xc(τ) + y(τ)
und den Randbedingungen y(−T

2
) = y(T

2
) = 0, wobei −T

2
der Startzeitpunkt ist,

und T
2

der Zeitpunkt, bei dem das Teilchen den Endpunkt erreicht:

SE[x] =

∫ T
2

−T
2

dτ{m
2

(ẋc + ẏ)2 + V (xc + y)}

=

∫ T
2

−T
2

dτ{m
2

(ẋ2c + ẏ2 + 2ẋcẏ) + V (xc) + V ′(xc) · y +
1

2
V ′′(xc) · y2}+ ...

=

∫ T
2

−T
2

dτ{m
2
ẋ2c + V (xc) +mẋcẏ + V ′(xc)y +

1

2
(mẏẏ + V ′′(xc)yy)}+ ...

=

∫ T
2

−T
2

dτ{m
2
ẋ2c + V (xc) + (−mẍc + V ′(xc))y +

1

2
(mẏẏ + V ′′(xc)yy)}+ ...

Die ersten beiden Terme im Integrand bilden die euklidische Wirkung SE[xc] für
den Weg xc. Bei dem folgenden Term wurde die zeitliche Ableitung von y durch
partielle Integration auf ẋc abgewälzt. Dadurch finden wir einen Term proportional
zu y, der verschwindet, weil xc die euklidische Bewegungsgleichung (7) erfüllt. Den
letzten Term schreiben wir durch partielle Integration folgendermaßen um:

1

2

∫ T
2

−T
2

dτ{mẏẏ + V ′′(xc)yy} =
1

2

∫ T
2

−T
2

dτ{−ymÿ + yV ′′(xc)y} =
1

2

∫ T
2

−T
2

yMy dτ

M ist ein Operator und wirkt auf die Funktion y(τ), die hinter ihm steht:

M = −m d2

dτ 2
+ V ′′(xc(τ)) (10)

Die euklidische Wirkung setzt sich demnach aus einem Beitrag von xc(τ) und einem
Beitrag der Variationen y(τ) zusammen:

SE[x] = SE[xc] +
1

2

∫ T
2

−T
2

yMy dτ (11)

M besitzt eine vollständige und orthonormale Basis aus Eigenfunktionen yn, so dass
gilt:

Myn(τ) = mny(τ)

∫ T
2

−T
2

yn(τ)yn′(τ) = δnn′ mn: Eigenwerte (12)

Entwickeln wir y nach dieser Basis finden wir:

1

2

∫ T
2

−T
2

yMy dτ =
1

2

∫ T
2

−T
2

∞∑
n′=1

cn′yn′(τ)
(
M

∞∑
n=1

cnyn(τ)
)
dτ =

1

2

∞∑
n=1

mnc
2
n(τ)
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1.3 Näherungsformel für Energieaufspaltung 1 EINFÜHRUNG

Für das euklidische Pfadintegral bedeutet das Folgendes:∫
Dx e−

1
~SE [x] = e−

1
~SE [xc]

∫
Dy e−

1
~

1
2

∑∞
n=1mnc

2
n

Die Integrationen über die unendlich vielen Variationen y(τ) können durch die Ko-
effizienten cn ausgerückt werden:

Dy = J
∞∏
n=1

dcn

J ist eine unbekannte Konstante, über die wir an dieser Stelle keine genaueren
Angaben machen können. Wir können jetzt aber endlich die Integration ausführen,
da wir bei einem Produkt von Gauß-Integralen angelangt sind. Als Ergebnis halten
wir fest: ∫

Dx e−
1
~SE [x] = Ne−

1
~SE [xc](detM)−

1
2 (13)

Der Faktor N beinhaltet die Konstante J und die übrigen Konstanten, die durch die
Integration auftreten. Mit detM ist das Produkt der Eigenwerte mn des Operators
M gemeint. Einige Probleme, die bei der Berechnung der Determinante auftreten,
werden später genauer diskutiert, wenn wir die Berechnung der Energieaufspaltung
im Doppelmuldenpotential betrachten. Unter anderem müssen wir das Problem be-
sprechen, dass einer der Eigenwerte 0 ist, so dass die gesamte Determinante ver-
schwinden würde (siehe dazu auch [1] oder [2]). Wir werden eine Formel nach Cole-
man kennen lernen, die die Bestimmung der Eigenwerte umgeht. Die Einführung
dieser Formel folgt im Kapitel 3.2.

1.3 Näherungsformel für Energieaufspaltung

Das Ziel dieser Arbeit ist, die Anwendbarkeit einer Näherungsformel für die Ener-
gieaufspaltung der untersten beiden Zustände in einem symmetrischen Doppelmul-
denpotential, die auf der Pfadintegralmethode basiert, bei dem rechteckförmigen
Doppelmuldenpotential zu untersuchen. Die Näherungsformel findet sich in [3]:

∆E ≈ 2

∫
Dx e−

1
~SE [x] (14)

Das Integrationsmaß kann sich an dieser Stelle noch um konstante dimensionsbehaf-
tete Faktoren von dem aus (4) unterscheiden. Da wir aber ohnehin noch auf einen
unbekannten Normierungsfaktor zurückgreifen müssen werden, soll uns das an dieser
Stelle nicht weiter stören. Das Pfadintegral geht dabei über alle Wege, die folgende
Randbedingungen erfüllen:

x(−T
2

) = −a x(
T

2
) = a (15)
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1.3 Näherungsformel für Energieaufspaltung 1 EINFÜHRUNG

−a und a sind die Orte, an denen das Potential seine Minima hat. Anschließend
bildet man den Grenzwert T →∞. Eine Begründung dieser Formel findet sich zum
Beispiel in [5]. Grundlage ist das Übergangsmatrixelement aus (1).
Aus dem vorigen Kapitel (siehe Gleichung (13)) wissen wir, wie das Pfadintegral in
semiklassischer Näherung zu berechnen ist:

∆E = 2~ · e−
1
~SE [xc] · (detM)−

1
2 ·N (16)

Der Normierungsfaktor N unterscheidet sich leicht von dem aus (13), weil ein Faktor
~ eingefügt wurde. Das ist unproblematisch, da N noch nicht näher definiert ist, und
erleichtert an späterer Stelle die Einführung einer weiteren Näherung. Der Weg xc(τ)
ist die Kink-Lösung. Um den ersten Term exp (−1

~SE[xc]) zu berechnen, ist es jedoch
noch nicht nötig, die genaue Gestalt des Kinks zu kennen. Da wir nämlich wissen,
dass xc(τ) in der linken Mulde bei x = −a startet und gerade so viel Energie hat, die
rechte Mulde bei x = a zu erreichen, ist die euklidische Energie EE aus Gleichung
(8) null:

m

2
ẋc

2(τ)− V (xc(τ)) = 0

Deswegen ist die Wirkung für den Kink wie folgt gegeben:

SE[xc] =

∫
dτ {m

2
ẋ2c + V (xc)} =

∫
dτ mẋ2c =

∫ a

−a
dxc mẋc =

∫ a

−a
dx
√

2mV (x)

Die Näherungsformel für die Energieaufspaltung halten wir schließlich in folgender
Form fest:

∆E = 2~Ke−
1
~
∫ a
−a dx
√

2mV (x) mit: K = N · (detM)−
1
2 (17)

Interessanterweise taucht an dieser Stelle der Gamow-Faktor auf, der die Wahr-
scheinlichkeit angibt, dass ein Teilchen mit Energie EE = 0 die Potentialbarriere
zwischen −a und a durchtunnelt. Zur Gültigkeit der Näherungsformel gibt [3] an,
dass die Formel anwendbar ist,

”
...wenn ∆E hinreichend klein, bzw. SE[xc] hinrei-

chend groß ist.“ (Kapitel 23.2.6:
”
Beispiel: Energieaufspaltung“)
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2 DAS RECHTECKPOTENTIAL

2 Das Rechteckpotential

Um ein exakt lösbares Doppelmuldenpotential zu erhalten, wird in dieser Arbeit ein
kastenförmiges Potential V (x) betrachtet, dass folgende Form hat:

V (x) =


∞ |x| ≥ a+ b

0 a < |x| < a+ b

V0 −a ≤ x ≤ a

(18)

Das Potential ist durch die Breite des Potentialwalls 2a und der Potentialmulden

Abbildung 3: Rechteckpotential V (x) für a = 1, b = 2 und V0 = 1

b sowie der Höhe des Potentialwalls V0 vollständig charakterisiert. Ein Spezialfall,
der später detailliert diskutiert wird, ist der Übergang zu einem unendlich schmalen
und unendlich großen Potentialwall (a→ 0, V0 →∞ und a ·V0 = const.).

2.1 Exakte Lösung

Das Potential ist zeitunabhängig, so dass die Wellenfunktionen ϕ(x) aus der statio-
nären Schrödingergleichung

Hϕ(x) = Eϕ(x) (19)

ermittelt werden können, also Eigenfunktionen zum Hamiltonoperator

H = − ~2

2m

d2

dx2
+ V (x) (20)

8



2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

sind. Interessant sind die Zustände mit Energien, die kleiner als die Höhe des Poten-
tialwalls sind (0 < E < V0). Aufgrund der Symmetrie des Potentials V (x) = V (−x),
sind die Wellenfunktionen entweder symmetrisch oder antisymmetrisch:

ϕ(x) = ϕ(−x) oder ϕ(x) = −ϕ(−x) (21)

Wegen der Unstetigkeiten des Potentials wird die Schrödingergleichung abschnitts-
weise gelöst:

• Bereich I: −(a+ b) < x < −a

• Bereich II: −a ≤ x ≤ a

• Bereich III: a < x < a+ b

Die Form der Wellenfunktion wird für die Bereiche einzeln ermittelt. Außerhalb
der drei Bereiche ist das Potential unendlich groß, so dass die Wellenfunktion dort
verschwindet.

Bereich I: Das Potential ist null. Die Schrödingergleichung nimmt folgende Form
an:

− ~2

2m

d2

dx2
ϕ(x)I = EϕI(x) (22)

Die Lösung ist bekanntlich:

ϕI(x) = A sin (kx) +B cos (kx) mit: k :=
1

~
√

2mE > 0 (23)

Bereich II: Das Potential ist konstant V (x) = V0. Es ergibt sich:

− ~2

2m

d2

dx2
ϕ(x)II + V0ϕ

II(x) = EϕII(x) (24)

⇒ ϕII(x) = Ceqx +De−qx mit: q :=
1

~
√

2m(V0 − E) (25)

Bereich III: Es ist analog zum Bereich I:

ϕIII(x) = F sin (kx) +G cos (kx) (26)

Die Integrationskonstanten A, B, C, D, F und G sind noch zu bestimmen. Da
hier die Ausnutzung der Symmetrien die Rechnung verkürzt, wird nun zwischen den
symmetrischen und den antisymmetrischen Zuständen unterschieden.

9



2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

2.1.1 Symmetrische Zustände

Durch die Symmetrie ϕ(x) = ϕ(−x) ergeben sich die folgenden beiden Bedingungen
für die eben aufgestellten Funktionen:

a) ϕI(x) = ϕIII(−x) b) ϕII(x) = ϕII(−x) (27)

Aus a) folgt:

A sin (kx) +B cos (kx) = −F sin (kx) +G cos (kx)

(A+ F ) sin (kx) + (B −G) cos (kx) = 0

⇒ A = −F und B = G

Für die Wellenfunktion aus (26) bedeutet das:

ϕIII(x) = −A sin (kx) +B cos (kx) (28)

Aus b) folgt:

Ceqx +De−qx = Ce−qx +Deqx

(C −D)eqx + (D − C)e−qx = 0

⇒ C = D

Im Bereich II haben wir also eine Kosinus Hyperbolicus-förmige Wellenfunktion:

ϕII(x) = 2C cosh (qx) (29)

Drei der sechs gesuchten Konstanten konnten damit bereits eliminiert werden. Für
die beiden nächsten benutzen wir die Stetigkeit der Wellenfunktion an den Stellen,
an denen das Potential unstetig ist:

c) ϕI(−(a+ b)) = 0 d) ϕI(−a) = ϕII(−a) (30)

Aus c) folgt:

A sin (−k(a+ b)) +B cos (−k(a+ b)) = 0

B = A tan (k(a+ b))

Aus d) folgt:

A(sin (−ka) + tan (k(a+ b)) cos (−ka)) = 2C cosh (−qa)

A(tan (k(a+ b)) cos (ka)− sin (ka)) = 2C cosh (qa)

C = A
tan (k(a+ b)) cos (ka)− sin (ka)

2 cosh (qa)

Die Wellenfunktion ist nun bis auf die Normierung bestimmt:

ϕI(x) = A(sin (kx) + tan (k(a+ b)) cos (kx)) (31)

10



2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

ϕII(x) = A
tan (k(a+ b)) cos (ka)− sin (ka)

cosh (qa)
cosh (qx) (32)

ϕIII(x) = −A(sin (kx)− tan (k(a+ b)) cos (kx)) (33)

Ohne die genaue Rechnung sei noch der Normierungsfaktor A angegeben, den man
aus der Normierungsbedingung

∫∞
∞ |ϕ(x)|2dx = 1 erhält:

A =
[
b+

1

2k
(sin (2ka)− sin (2k(a+ b))) +

2

k
tan (k(a+ b))(sin2 (ka)− sin2 (k(a+ b)))

+ tan2 (k(a+ b))b+
1

2k
tan2 (k(a+ b))(sin (2k(a+ b))− sin (2ka))

+
(tan (k(a+ b)) cos (ka)− sin (ka)

cosh (qa)

)2
(a+

1

2q
sinh (2qa))

]− 1
2

Viel wichtiger ist die Bestimmungsgleichung für die erlaubten Werte von k bzw. die
erlaubten Energieniveaus. Dazu nutzen wir die Stetigkeit der ersten Ableitung der
Wellenfunktion an der Stelle x = −a. Das ist erlaubt, da der Sprung des Potentials
von endlicher Höhe ist. Es muss gelten:

d

dx
ϕI(x)

∣∣
x=−a =

d

dx
ϕII(x)

∣∣
x=−a (34)

⇒ Ak(cos (kx)− tan (k(a+ b)) sin (kx))
∣∣
x=−a =

Aq(
tan (k(a+ b)) cos (ka)− sin (ka)

cosh (qa)
sinh (qx))

∣∣
x=−a

k(cos (ka) + tan (k(a+ b)) sin (ka)) = q
sin (ka)− tan (k(a+ b)) cos (ka)

cosh (qa)
sinh (qa)

k
cos (ka) + tan (k(a+ b)) sin (ka)

sin (ka)− tan (k(a+ b)) cos (ka)
= q tanh (qa)

Im Prinzip ist das die gesuchte Bestimmungsgleichung für k, wenn man bedenkt,
dass q nach Definition (25) direkt mit k zusammenhängt:

q =

√
2mV0
~2
− k2 (35)

Der Bruch auf der rechten Seite lässt sich mit Hilfe der Additionstheoreme für Sinus
und Kosinus aber noch vereinfachen:

cos (ka) + sin (k(a+b))
cos (k(a+b))

sin (ka)

sin (ka)− sin (k(a+b))
cos (k(a+b))

cos (ka)
=

cos (ka) cos (k(a+ b)) + sin (ka) sin (k(a+ b))

sin (ka) cos (k(a+ b))− sin (k(a+ b)) cos (ka)

=
cos (ka− k(a+ b))

sin (ka− k(a+ b))
= − cot (kb)

Wir halten schließlich folgendes wichtiges Ergebnis fest:

−k · cot (kb) = q · tanh (qa) (36)
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2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

Tabelle 1: Kleinste Lösungen k von
Gl. (36) und zugehörige Energien für
m = 1, ~ = 1, a = 1, b = 2, V0 = 8

Index k E

0 1,39279160 0,96993422
2 2,75942277 3,80720702
4 3,96182647 7,84803447

Die Bestimmungsgleichung (36) ist eine
transzendente Gleichung, kann dement-
sprechend analytisch nicht nach k aufge-
löst werden. Nummerisch sind die Lösun-
gen allerdings beliebig genau berechenbar.
In Tabelle 1 sind die niedrigsten drei Lö-
sungen dieser Gleichung zusammen mit der
zugehörigen Energie für ein Potential mit
V0 = 8 aufgetragen. Die Indizes sind 0, 2 und 4, weil die ungeraden Indizes für die
antisymmetrischen Zustände aufgehoben werden. Die Energie aller Zustände ist klei-
ner als V0. Klassisch besteht demnach keine Möglichkeit, das Teilchen im Bereich des
Potentialwalls zu detektieren. Quantenmechanisch hat es dort eine endliche Aufent-
haltswahrscheinlichkeit, wie in Abbildung 4 zu erkennen ist. Dort sind die drei Wel-
lenfunktionen aufgetragen. Man sieht, wie die Aufenthaltswahrscheinlichkeit |ϕ(x)|2
mit zunehmender Energie im klassisch verbotenen Bereich größer wird. Außerdem
ist zu erkennen, dass die Anzahl der Nulldurchgänge der Wellenfunktionen gerade
so groß wie der Abzählindex der Zustände ist.

Abbildung 4: Den in Tabelle 1 aufgetragenen Energien zugehörige Wellenfunktionen

12



2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

2.1.2 Antisymmetrische Zustände

Die Berechnung der antisymmetrischen Zustände ist bis auf die Symmetriebedingung
ϕ(x) = −ϕ(−x) analog zu vorhin. Wir starten mit den Darstellungen (23), (25) und
(26). Aus

a) ϕI(x) = −ϕIII(−x) b) ϕII(x) = −ϕII(−x) (37)

folgern wir diesmal:

a) A sin (kx) +B cos (kx) = −F sin (−kx)−G cos (−kx)

A sin (kx) +B cos (kx) = F sin (kx)−G cos (kx)

(A− F ) sin (kx) + (B +G) cos (kx) = 0

⇒ A = F und B = −G

Demnach ist nach (26):

ϕIII0 (x) = A sin (kx)−B cos (kx) (38)

b) Ceqx +De−qx = −Ce−qx −Deqx

(C +D)eqx + (D + C)e−qx = 0

⇒ C = −D

Im Bereich II finden wir nach (25) den Sinus Hyperbolicus:

ϕII(x) = 2C sinh (qx) (39)

Die Stetigkeitsbedingungen (30) gelten weiterhin.
Aus c) folgt:

A sin (−k(a+ b)) +B cos (−k(a+ b)) = 0

B = A tan (k(a+ b))

Aus d) folgt:

A(sin (−ka) + tan (k(a+ b)) cos (−ka)) = 2C sinh (−qa)

A(tan (k(a+ b)) cos (ka)− sin (ka)) = −2C sinh (qa)

C = A
sin (ka)− tan (k(a+ b)) cos (ka)

2 sinh (qa)

Es ist also:
ϕI(x) = A(sin (kx) + tan (k(a+ b)) cos (kx)) (40)

ϕII(x) = A
sin (ka)− tan (k(a+ b)) cos (ka)

sinh (qa)
sinh (qx) (41)

ϕIII(x) = A(sin (kx)− tan (k(a+ b)) cos (kx)) (42)

13



2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

Der Vollständigkeit halber sei der Normierungsfaktor angegeben:

A =
[
b+

1

2k
(sin (2ka)− sin (2k(a+ b))) +

2

k
tan (k(a+ b))(sin2 (ka)− sin2 (k(a+ b)))

+ tan2 (k(a+ b))b+
1

2k
tan2 (k(a+ b))(sin (2k(a+ b))− sin (2ka))

+
(sin (ka)− tan (k(a+ b)) cos (ka)

sinh (qa)

)2
(−a+

1

2q
sinh (2qa))

]− 1
2

Wichtig ist aber erneut die Bestimmungsgleichung für die erlaubten k. Sie folgt aus
(34):

⇒ Ak(cos (kx)− tan (k(a+ b)) sin (kx))
∣∣
x=−a =

Aq(
sin (ka)− tan (k(a+ b)) cos (ka)

sinh (qa)
cosh (qx))

∣∣
x=−a

k(cos (ka) + tan (k(a+ b)) sin (ka)) = q
sin (ka)− tan (k(a+ b)) cos (ka)

sinh (qa)
cosh (qa)

k
cos (ka) + tan (k(a+ b)) sin (ka)

sin (ka)− tan (k(a+ b)) cos (ka)
= q

1

tanh (qa)

Auf der linken Seite steht das Gleiche, wie bei der Berechnung der Bestimmungs-
gleichung für den symmetrischen Fall (36) auftaucht. Auf der rechten Seite steht
diesmal allerdings das Inverse des Tangens Hyperbolicus:

−k · cot (kb) = q · coth (qa) (43)

Tabelle 2: Kleinste Lösungen k von
Gl. (43) und zugehörige Energien für
m = 1, ~ = 1, a = 1, b = 2, V0 = 8

Index k E

1 1,39311045 0,97037836
3 2,76202979 3,81440428
5 4,03665440 8,14728939

Die niedrigsten drei Lösungen der Bestim-
mungsgleichung sind in Tabelle 2 darge-
stellt, nummeriert diesmal mit ungeraden
Indizes. Die Abbildung 5 zeigt die zugehö-
rigen Wellenfunktionen. Im Gegensatz zu
den symmetrischen Zuständen verschwin-
det die Wellenfunktion und damit die Auf-
enthaltswahrscheinlichkeit bei x = 0 gänz-
lich. Die Indizierung wird verständlich, wenn man die Energien der antisymmetrisch-
en Zustände mit denen der symmetrischen aus Tabelle 1 vergleicht. Der Zustand ϕ1

liegt energetisch zwischen den Zuständen ϕ0 und ϕ2, der Zustand ϕ3 zwischen ϕ2

und ϕ4, usw. Außerdem entspricht die Indizierung genau wie bei den symmetrischen
Zuständen der Anzahl der Nulldurchgänge der Wellenfunktionen. Angemerkt sei,
dass der Zustand ϕ5 energetisch über V0 liegt und wegen Gleichung (25) die Wel-
lenfunktion im Potentialwall wie in den anderen Bereichen die Form einer ebenen
Welle hat, da q imaginär wird.
Vergleicht man Tabelle 2 mit Tabelle 1, fällt auf, dass der Abstand der Energien zwi-
schen einem antisymmetrischen Zustand und dem darunter liegenden symmetrischen
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2.1 Exakte Lösung 2 DAS RECHTECKPOTENTIAL

Abbildung 5: Den in Tabelle 2 aufgetragenen Energien zugehörige Wellenfunktionen

Zustand gering ist, wie man es bei einem Doppelmuldenpotential erwartet. Insbeson-
dere beschäftigt sich diese Arbeit mit der Energieaufspaltung ∆E = E1 −E0 (siehe
Kapitel 1.1). Ihre Abhängigkeiten von den Potentialparametern werden im folgen-
den Kapitel genau untersucht, um die in der Einführung gemachten Behauptungen
über die grundlegenden Eigenschaften symmetrischer Doppelmuldenpotentiale zu
verifizieren.
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

2.2 Energieaufspaltung

Abbildung 6: Eigenenergien der vier nied-
rigsten Zustände gegen V0 (m = 1, ~ = 1,
a = 1, b = 2)

Bei symmetrischen Doppelmuldenpo-
tentialen mit endlich hoher Barriere er-
warten wir eine Energieaufspaltung zwi-
schen den symmetrischen und antisym-
metrischen Zuständen. Durch Lösen der
stationären Schrödingergleichung kön-
nen wir diese Aufspaltung beim Recht-
eckpotential mit Hilfe der Gleichungen
(36) und (43) beliebig genau berechnen.
In diesem Kapitel wird das Verhalten
der Energieaufspaltung genauer unter-
sucht. Schauen wir uns an, was passiert,
wenn die Höhe der Potentialbarriere V0
größer wird. In Abbildung 6 ist die Ener-
gie der ersten vier Zustände in Abhän-
gigkeit von der Höhe der Potentialbar-
riere V0 aufgetragen. Man erkennt, wie
die Energieaufspaltung zwischen E0 und
E1 bzw. zwischen E2 und E3 mit grö-
ßer werdendem V0 immer geringer wird.
Beachtet man, dass die Aufspaltung eng
mit dem Tunneleffekt zusammenhängt,
ist dieses Verhalten nicht verwunderlich, schließlich wird die Tunnelwahrscheinlich-
keit durch die Barriere mit zunehmender Höhe geringer. In Abbildung 7 ist die Ener-
gieaufspaltung zwischen Grundzustand und erstem angeregten Zustand ∆E gegen
V0 aufgetragen. Im rechten Bild ist ∆E logarithmisch gegen die Wurzel aus der Bar-
rierenhöhe

√
V0 abgebildet. Dort ist ein weitestgehend lineare Zusammenhang zu

erkennen. Nur für sehr kleine V0 erkennt man eine leichte Krümmung in der Kurve.
Das deutet darauf hin, dass näherungsweise

∆E ∼ e−C ·
√
V0 C=const. (44)

ist. Wir werden sehen, ob sich dieses Verhalten mit der Pfadintegralmethode erklären
lässt. Zu aller erst schauen wir uns aber an, was mit der Energieaufspaltung passiert,
wenn wir den semiklassischen Fall betrachten, also dass gilt:

8mV0a
2

~2
� 1 (45)

Wie dieser Term genau zu Stande kommt, wird sich in der späteren Berechnung der
Energieaufspaltung mit Hilfe der Pfadintegralmethode zeigen. Vorweg sei erwähnt,
dass er sich aus der Bedingung ergibt, dass SE[xc] groß wird. Betrachten wir zuerst,
was für diesen Fall aus der Bestimmungsgleichung (36) bei symmetrischen Zuständen
wird. Auf der rechten Seite steht der Tangens Hyperbolicus. Sein Argument wird
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

(a) Linear (b) Logarithmisch

Abbildung 7: Energieaufspaltung ∆E gegen V0 bzw.
√
V0 (m = 1, ~ = 1, a = 1,

b = 2)

nach (45) sehr groß. Drückt man tanhx durch die Exponentialfunktion aus, erhält
man durch eine Taylor-Entwicklung

tanhx =
1− e−2x

1 + e−2x
≈ 1− 2 · e−2x,

da e−2x sehr klein wird. Gleichung (36) wird damit zu:

−k · cot (kb) ≈
√

2mV0
~2
− k2 · (1− 2 exp (−2

√
2mV0a2

~2
− k2a2))

−k · cot (kb) ≈
√

2mV0
~2
− k2 · (1− 2 exp (−

√
8mV0a2

~2
)) da

8mV0a
2

~2
� k2a2

−k · cot (kb) ≈
√

2mV0
~2
· (1− 2 exp (−

√
8mV0a2

~2
)) da

2mV0
~2

� k2

Man erkennt, dass die rechte Seite der Gleichung sehr groß wird. Dementsprechend
muss auf der linken Seite der Gleichung der Ausdruck cot (kb) groß werden. Das
passiert, wenn das Argument von unten gegen ein Vielfaches von π geht. Deswegen
schreiben wir k = ks = πj

b
+ δkjs mit einer ganzen Zahl j und |δkjs| � 1. Zu

beachten ist, dass j hier nicht mit der Indizierung der Zustände aus den vorigen
Kapiteln identisch ist. Wiederum durch Taylor-Entwicklung ergibt sich:

cot (ksb) = cot (πj + δkjsb) ≈
1

δkjsb

Einsetzen liefert einen Ausdruck für δkjs:

−(
πj

b
+ δkjs)

1

δkjsb
=

√
2mV0
~2
· (1− 2 exp (−

√
8mV0a2

~2
))
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

πj

δkjsb2
=

√
2mV0
~2

(2 exp (−
√

8mV0a2

~2
)− 1)− 1

b

δkjs =
πj

b2
[√2mV0

~2
(2 exp (−

√
8mV0a2

~2
)− 1)− 1

b

]−1
(46)

Eine völlig analoge Rechnung für antisymmetrische Zustände liefert aus Gleichung
(43) mit k = ka = πj

b
+ δkja:

δkja =
πj

b2
[√2mV0

~2
(−2 exp (−

√
8mV0a2

~2
)− 1)− 1

b

]−1
(47)

Jetzt sind wir in der Lage, die Energieaufspaltung zu berechnen, wobei die quadra-
tischen Terme von δkjs und δkja vernachlässigt werden:

∆E =
~2

2m
(k2a − k2s) ≈

~2πj
mb

(δkja − δkjs) (48)

Um die Rechnung zu verkürzen, definieren wir:

A ≡ 2

√
2mV0
~2

exp (−
√

8mV0a2

~2
) B ≡ −

√
2mV0
~2
− 1

b

⇒ δkjs =
πj

b2
· 1

A+B
δkja =

πj

b2
· 1

B − A
(49)

Einsetzen von (49) in (48) führt auf:

∆E ≈ ~2π2j2

mb3
· ( 1

B − A
− 1

B + A
)

∆E ≈ ~2π2j2

mb3
· 2A

B2 − A2

∆E ≈ ~2π2j2

mb3
·

2 · 2
√

2mV0
~2 exp (−

√
8mV0a2

~2 )

2mV0
~2 +

√
8mV0
~2b2 + 1

b2
− 8mV0

~2 exp (−2
√

8mV0a2

~2 )

Im Nenner des zweiten Bruches ist der Term 2mV0/~2 dominierend, so dass wir die
restlichen Terme vernachlässigen. Damit erhalten wir folgendes kompaktes Ergebnis
für die Energieaufspaltung des ersten symmetrischen und ersten antisymmetrischen
Zustands (j = 1):

∆E = 2~K̃ · e−
√

8mV0a
2

~2 mit: K̃ =
π2~2

2mb3

√
8

V0m
(50)

Wir sehen, dass sich unser Ergebnis aus (44) bestätigt. Die Energieaufspaltung
nimmt exponentiell mit

√
V0 ab. Der Vorfaktor C kann abgelesen werden:

C =

√
8ma2

~2
(51)
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

(a) Linear (b) Logarithmisch

Abbildung 8: Energieaufspaltung ∆E gegen V0 bzw.
√
V0 (m = 1, ~ = 1, a = 1,

b = 2)

In Abbildung 8 ist das Ergebnis aus Gleichung (50) und die exakte Energieaufspal-
tung gegen die Barrierenhöhe V0 aufgetragen. Man erkennt deutlich, wie sich bei
größer werdendem V0 beide Kurven annähern. Das geschieht so rasch, dass ab Wer-
ten von ungefähr V0 > 5 die beiden Kurven bei linearer Auftragung gar nicht mehr
unterscheidbar sind.
Überraschenderweise können wir im Vorfaktor K̃ die Energie EPT

0 des Grundzustan-
des des unendlich tiefen Potentialtopfs der Breite b finden:

K̃ = EPT
0 ·

√
8

V0mb2
mit: EPT

0 =
π2~2

2mb2
(52)
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2.3 Grenzfall: δ-förmiges Potential 2 DAS RECHTECKPOTENTIAL

2.3 Grenzfall: δ-förmiges Potential

Ein interessanter Spezialfall eines Doppelmuldenpotentials, der in diesem Unterka-
pitel betrachtet wird, ist der Übergang zu einem deltafunktionsartigen Potential.
Dazu muss beim Rechteckpotential folgender Grenzwert gebildet werden:

a→ 0 V0 →∞ 2aV0 ≡ D = const. (53)

Es soll an dieser Stelle erwähnt sein, dass dieser Grenzfall nicht dem semiklassischen
Grenzfall entspricht, in dem wir gute Ergebnisse durch die Näherungsmethode er-
warten. Dafür muss der Term

8mV0a
2

~2
� 1 (54)

sein. Hier ist aber:
8mV0a

2

~2
=

4mD

~2
a→ 0 (55)

Das Potential hat nach der Grenzwertbildung folgende Gestalt:

V (x) =

{
∞ |x| ≥ b

D · δ(x) |x| < b
(56)

Taucht die Deltafunktion in einem Potential auf, muss man sich Gedanken über die
Stetigkeit der Wellenfunktion und ihrer Ableitung an dieser Stelle machen. Dazu
integriert man die stationäre Schrödingergleichung über ein kleines Intervall [−ε, ε]
um die Stelle x = 0. Anschließend lässt man ε gegen 0 gehen.

− ~2

2m

∫ ε

−ε

d2ϕ(x)

dx2
dx+

∫ ε

−ε
Dδ(x)ϕ(x)dx = E

∫ ε

−ε
ϕ(x)dx

Wegen der Normierbarkeit der Wellenfunktion muss die rechte Seite der Gleichung
verschwinden, da ϕ(x) in dem betrachteten Intervall nicht divergieren kann. Auf der
linken Seite können wir die Integration durchführen:

− ~2

2m

(dϕ(x)

dx

∣∣
x=ε
− dϕ(x)

dx

∣∣
x=−ε

)
+Dϕ(0) = 0

Lässt man nun ε gegen 0 gehen, kann man die beiden Terme, die die Ableitung der
Wellenfunktion enthalten, mit der rechtsseitigen bzw. linksseitigen Ableitung an der
Stelle 0 identifizieren:

− ~2

2m

(
ϕ′(x)

∣∣
x↘0
− ϕ′(x)

∣∣
x↗0

)
+Dϕ(0) = 0 (57)

Man kann an dieser Gleichung erkennen, dass die Ableitung der Wellenfunktion
unstetig an der Stelle x = 0 ist, wenn die Wellenfunktion dort nicht gleich 0 ist. Da
wegen der Normierbarkeit ϕ(0) aber nicht unendlich groß sein kann, ist der Sprung
der Ableitung auch nur endlich groß, so dass die Wellenfunktion stetig sein muss.
Mit diesem Wissen können wir die Schrödingergleichung lösen. Dazu teilen wir den
Abschnitt, in dem die Wellenfunktion nicht verschwindet, wieder in Bereiche auf:
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2.3 Grenzfall: δ-förmiges Potential 2 DAS RECHTECKPOTENTIAL

• Bereich I: −b ≤ x < 0

• Bereich II: 0 < x ≤ b

In beiden Bereichen ist das Potential null. Die Lösung hierfür kennen wir:

Bereich I: ϕ(x)I = A sin (kx) +B cos (kx) (58)

Bereich II: ϕ(x)II = C sin (kx) +D cos (kx) (59)

2.3.1 Symmetrische Zustände

Machen wir uns zuerst wieder die Symmetrie zunutze: ϕI(x) = ϕII(−x)

⇒ A sin (kx) +B cos (kx) = −C sin (kx) +D cos (kx)

(A+ C) sin (kx) + (B −D) cos (kx) = 0

⇒ A = −C und B = D

An der Stelle x = −b muss die Wellenfunktion verschwinden:

A sin (−kb) +B cos (−kb) = 0

B = A tan (kb)

Nun kennen wir die Wellenfunktion:

ϕ(x)I = A(sin (kx) + tan (kb) cos (kx)) (60)

ϕ(x)II = −A(sin (kx)− tan (kb) cos (kx)) (61)

Die Normierung ergibt:

A = [b− 2

k
tan (kb) sin2 (kb)− 1

2k
sin (2kb) + b · tan2 (kb) +

1

2k
tan2 (kb) sin (2kb)]−

1
2

Beim Rechteckpotential haben wir die Stetigkeit der Ableitung der Wellenfunktion
ausgenutzt, um die erlaubten k zu finden. Jetzt benutzen wir die Unstetigkeit der
Ableitung und Gleichung (57). Dazu identifizieren wir:

ϕ′(x)
∣∣
x↘0

=
dϕII(x)

dx

∣∣
x=0

= −Ak und ϕ′(x)
∣∣
x↗0

=
dϕI(x)

dx

∣∣
x=0

= Ak (62)

Mit ϕ(0) = A tan (kb) folgt:

− ~2

2m
(−Ak − Ak) +DA tan (kb) = 0

~2

m
k +D tan (kb) = 0
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k · cot (kb) = −Dm
~2

(63)

Die Richtigkeit dieser Gleichung können wir mit den Ergebnissen von vorhin veri-
fizieren. Sie muss aus Gleichung (36) hervorgehen, wenn man den Limes aus (53)
durchführt. Dazu betrachten wir die rechte Seite der Gleichung (36) und benutzen
die Reihenentwicklung tanh(x) = x+O(x3):

q · tanh (qa) =

√
2mV0
~2
− k2 · tanh (

√
2mV0
~2
− k2a) =√

2mV0
~2
− k2 · tanh (

√
mDa

~2
− k2a2) =√

2mV0
~2
− k2 ·

√
mDa

~2
− k2a2 +O(a

3
2 ) =√

2mV0
~2
− k2 ·

√
mDa

~2
+O(a) =√

m2D2

~4
− k2mD

~2
a+O(a) =

Dm

~2
+O(

√
a)→ Dm

~2

⇒ −k · cot (kb) =
Dm

~2
analog zu Gleichung (63)!

In Abbildung 9 ist die Aufenthaltswahrscheinlichkeit des Grundzustands des δ-
Potentials für b = 3 und D = 8 eingezeichnet. Man erkennt den Knick der Funktion
am Ort des δ-Peaks. Außerdem sind die Aufenthaltswahrscheinlichkeiten der fünf
Grundzustände des Rechteckpotentials bei unterschiedlicher Potentialwallbreite a
und -höhe V0 eingezeichnet, wobei das Produkt D = 2aV0 = 8 und die Breite
a+ b = 3 konstant gehalten ist. Man erkennt, dass je schmaler und höher der Poten-
tialwall wird, der Grundzustand des Rechteckpotentials sich dem des δ-Potentials
immer weiter annähert. Für V0 wurden folgende fünf Werte verwendet: 3, 4, 8, 16,
32. Außerdem wurde der Einfachheit halber bei der Berechnung der Zustände ~ und
die Masse m gleich 1 gesetzt.

2.3.2 Antisymmetrische Zustände

Betrachten wir nun die antisymmetrischen Wellenfunktionen. Die selbe Rechnung
wie im vorigen Kapitel nur mit der Symmetriebedingung ϕ(x) = −ϕ(x) führt auf
folgende Wellenfunktion:

ϕ(x)I = A(sin (kx) + tan (kb) cos (kx)) (64)

ϕ(x)II = A(sin (kx)− tan (kb) cos (kx)) (65)

Betrachten wir Gleichung (57) und setzen

ϕ′(x)
∣∣
x↘0

=
dϕII(x)

dx

∣∣
x=0

= Ak und ϕ′(x)
∣∣
x↗0

=
dϕI(x)

dx

∣∣
x=0

= Ak (66)
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2.3 Grenzfall: δ-förmiges Potential 2 DAS RECHTECKPOTENTIAL

Abbildung 9: Annäherung des Grundzustandes des Rechteckpotentials an den des
δ-Potentials

ein:

− ~2

2m
(Ak − Ak) +Dϕ(0) = 0

ϕ(0) = 0⇒ A tan (kb) = 0

Die Bestimmungsgleichung für k ist also einfach:

tan (kb) = 0 (67)

Deren Lösung können wir ausnahmsweise mal direkt hinschreiben: k = πn
b

, wobei n
eine ganze Zahl sein muss. Die Lösung k = 0 ist allerdings physikalisch nicht sinnvoll,
da dann die gesamte Wellenfunktion verschwindet. Die Wellenfunktion ist nach (67)
einfach

ϕ(x) = A · sin (kx) mit: A =

√
1

b
(68)

und entspricht damit den antisymmetrischen Zuständen des unendlich tiefen Po-
tentailtopfs der Breite 2b. Schließlich machen wir noch den Konsistenzcheck und
überprüfen, ob (67) aus (43) hervorgeht:

q · coth (qa) =

√
2mV0
~2
− k2 · 1

tanh (
√

mDa
~2 − k2a2)

=

√
2mV0
~2
− k2 · 1√

mDa
~2 +O(a)

=
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√
2mV0
~2
·
√

~2
mDa

+O(a−
1
2 ) =

1

a
+O(a−

1
2 )→∞

⇒ −k · cot (kb)→∞⇒ 1

k
tan (kb) = 0

⇒ tan (kb) = 0 analog zu Gleichung (67)!

In Abbildung 10 ist die Aufenthaltswahrscheinlichkeit des energetisch niedrigsten
antisymmetrischen Zustands für b = 3 und D = 8 eingezeichnet. Die Wahrschein-
lichkeit, das Teilchen am Ort des δ-Peaks zu finden, ist hier null. Wie bei dem
Grundzustand ist zu erkennen, wie sich der energetisch niedrigste antisymmetrische
Zustand des Rechteckpotentials an den des δ-Potentials anschmiegt, wenn der Po-
tentialwall schmaler und höher gemacht wird. Die gewählten Werte für V0 sind hier:
2, 4, 8, 16, 32. Außerdem ist erneut ~ = 1 und m = 1. Zu guter Letzt schauen
wir uns noch die Energien der untersten vier Zustände bei Variation von D = 2aV0
an. Abbildung 11 zeigt die Energie bei Erhöhung von D. Die Energie der antisym-
metrischen Zustände ist nach (67) völlig unabhängig von D, so dass E1 und E3

konstant sind. Die Energie der symmetrischen Zustände steigt hingegen mit D und
nähert sich der Energie des nächst höheren antisymmetrischen Zustands.

Abbildung 10: Annäherung des untersten antisymmetrischen Zustands des Recht-
eckpotentials an den des δ-Potentials
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2.3 Grenzfall: δ-förmiges Potential 2 DAS RECHTECKPOTENTIAL

Abbildung 11: Eigenenergien der vier niedrigsten Zustände gegen V0 (m = 1, ~ = 1,
b = 2)
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3 NÄHERUNGSMETHODE

3 Näherungsmethode

Das Rechteckpotential wurde in den vorigen Kapiteln mit Hilfe der Schrödingerglei-
chung untersucht. Insbesondere haben wir die Energieaufspaltung exakt berechnet,
wissen also, was wir von der Näherungsmethode erwarten sollten. In diesem Ka-
pitel wird die Pfadintegralmethode auf das reckteckförmige Doppelmuldenpotential
angewendet. Bei der Berechnung der Determinante des Operators M wird sich zei-
gen, dass wir Probleme mit den Unstetigkeiten des Potentials bekommen werden.
Deswegen muss das rechteckförmige Potential zuvor durch geeignete quadratische
Funktionen an den betreffenden Stellen stetig differenzierbar approximiert werden.
Zuerst beginnen wir jedoch mit der weitaus einfacheren Berechnung des führenden
Terms der Näherungsformel.

3.1 Führender Term: Gamow-Faktor

Der führende Term der Näherungsformel (17) ist der Gamow-Faktor:

e−
1
~SE [xc] = e−

1
~
∫ a
−a

√
2mV (x) dx (69)

Prinzipiell besteht für das rechteckförmige Potential hier das Problem, dass die Mul-
den keinen ausgezeichneten Punkt besitzen, an dem das Potential das Minimum
annimmt, da die Mulden aus einem Bereich der Breite b bestehen, in dem V (x)=0
ist. Für die Berechnung von (69) ist es aber sinnvoll, den Muldenort an die Ränder
der Potentialbarriere −a und a zu legen, da bei der Kink-Lösung die euklidische
Energie EE null ist. Das bedeutet, dass das Teilchen in dem Potential vor dem Ort
−a bzw. hinter a keine Geschwindigkeit hat. Die Vorstellung ist also, dass sich das
Teilchen eine Zeit lang am linken Barrierenrand bei −a befindet, zu einem beliebi-
gen Zeitpunkt die Barriere durchtunnelt und sich anschließend für immer am rechten
Barrierenrand bei a aufhält. Für das Integral

∫ a
−a

√
2mV (x) dx ist es ohnehin un-

erheblich, wo genau im Muldenbereich das Teilchen startet, weil das Potential erst
im Intervall −a ≤ x ≤ a ungleich null ist. Das Integral zu lösen, ist trivial. Das
Potential ist im Intervall konstant: V (x) = V0∫ a

−a

√
2mV (x)dx =

√
2mV0

∫ a

−a
dx =

√
2mV0 · 2a =

√
8mV0a2

Wir finden für die Energieaufspaltung:

∆E = 2~K · e−
√

8mV0a
2

~2 (70)

3.2 Vorfaktor K

Der Vorfaktor K wird in dieser Arbeit mit einer Formel nach Coleman berechnet,
wie sie zum Beispiel in [1] oder in [4] zu finden ist. Diese Einführung richtet sich
nach der Darstellung aus dem Buch von Coleman [1]. Halten wir zunächst noch
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3.2 Vorfaktor K 3 NÄHERUNGSMETHODE

einmal fest, was genau zu berechnen ist. K beinhaltet die Beiträge des euklidischen
Pfadintegrals, die durch die Variation des Weges um den Kink, als Lösung der eu-
klidischen Bewegungsgleichung, entstehen. In Kapitel 1.2.2 wurde gezeigt, dass sich
diese Beiträge durch die Determinante eines Operators M quantifizieren lassen. Die
Determinante ist das Produkt der Eigenwerte der Eigenwertgleichung (12). M wirkt
auf die Funktionen y(τ), die im Unendlichen verschwinden müssen, da über alle We-
ge x(τ) = xc(τ) + y(τ) integriert wurde, wobei der Kink xc(τ) nach Voraussetzung
die Randbedingung der Näherungsformel (15) bereits erfüllt. Die bei der Berechnung
verwendete Formel besagt nun, dass gilt:

K = N · (detM)−
1
2 =

√
Sc

2π~ ·m

(
det′M

detM0

)− 1
2

(71)

Mit det′M ist das Produkt der Eigenwerte von M bis auf den Eigenwert 0 gemeint.
M0 ist ein von M abgeleiteter Operator und hat folgende Form:

M0 = −m d2

dτ 2
+mω2 (72)

ω ist durch die Krümmung des Doppelmuldenpotentials an den Muldenorten defi-
niert:

mω2 = V ′′(−a) = V ′′(a) (73)

Sc ist die euklidische Wirkung der Kink-Lösung.
Im Gegensatz zu [1] ist hier m und ω nicht gleich 1 gesetzt, so dass sich einige
Ausdrücke leicht unterscheiden. Die Herleitung dieser Formel, kann und soll im
Rahmen dieser Bachelorarbeit nicht gänzlich reproduziert werden. Auf die wesentli-
chen Aspekte wird an dieser Stelle aber kurz eingegangen. Betrachten wir zunächst
das schon mal angesprochene Problem der Nullmode y0(τ), also der Eigenfunktion
von M mit Eigenwert 0, die dazu führt, dass das Pfadintegral aus Gleichung (13)
ohne einen unendlich kleinen Normierungsfaktor N divergieren würde. Außerdem
verschwände die Determinante von M gänzlich. Die erste Frage ist nun, ob die-
se Nullmode überhaupt existiert. Das lässt sich zeigen, wenn man die euklidische
Bewegungsgleichung (7) einmal nach τ differenziert:

m
d3

dτ 3
xc(τ) =

∂V ′(xc)

∂xc

dxc
dτ

−m d2

dτ 2
ẋc(τ) + V ′′(xc)ẋc(τ) = 0

Mẋc(τ) = 0

ẋc erfüllt die nötigen Randbedingungen der Eigenwertgleichung, da xc asymptotisch
gegen die Muldenorte konvergiert. Die Nullmode entspricht also bis auf Normierung
der Geschwindigkeitsfunktion des Kinks im euklidischen Raum. Die Normierung
ergibt unter Berücksichtigung von (8) mit EE = 0:∫ ∞

−∞
ẋ2c(τ)dτ =

Sc
m

⇒ y0(τ) =

√
m

Sc
ẋc(τ) (74)
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Die Nullmode existiert und es gilt die eben erwähnten Probleme zu berücksichtigen.
Coleman zeigt, dass man in der Determinante den Eigenwert 0 weglassen kann, wenn
man stattdessen den Faktor

√
Sc/(2π~m) zu K multipliziert.

Negative Eigenwerte können nicht auftreten. Coleman zeigt das dadurch, dass
”
...die

Eigenfunktion eines eindimensionalen Schrödingeroperators mit dem niedrigsten Ei-
genwert keine Moden besitzt“ (aus [1], Kapitel: 7.2.2:

”
The double well and instan-

tons“, Übersetzung vom Verfasser). Da ẋc(τ) keine Nullstellen hat, sondern nur in
den Grenzen gegen 0 konvergiert, ist der zugehörige Eigenwert 0 der niedrigste Ei-
genwert im Eigenwertspektrum.
Als nächstes eliminiert Coleman den Normierungsfaktor N , in dem er sich ein Po-
tential mit nur einer Mulde anschaut. Der Weg, der betrachtet wird, ist der, bei dem
das Teilchen zu allen Zeiten in der Mulde ruht. Es ist also xc = 0 und aus V ′′(xc)
wird eine Konstante. Fasst man das Doppelmuldenpotential als Potential mit zwei
Einzelmulden bei x = ±a auf, gelangt man zur Konstante ω. Durch einen Vergleich
zwischen Einzelmulden- und Doppelmuldenpotential kann Coleman die Normierung
durch die Determinante des Operators M0 ausdrücken. Es muss lediglich mit der
Wurzel aus der Determinante von M0 multipliziert werden.
Um nun den Ausdruck

det′M

detM0

(75)

zu berechnen, bedient sich Coleman der Gefand-Yaglam-Methode zur Berechnung
der Determinante eines Differentialoperators und entwickelte die Coleman-Affleck-
Methode, mit deren Hilfe (75) näherungsweise berechnet werden kann. Es gilt:

det′M

detM0

=
1

mω

1

2(
√

(m/Sc)A)2
=

Sc
2m2ωA2

(76)

Die Konstante A ist durch die erste Ableitung des Kinks nach τ definiert:

y0(τ) =

√
m

Sc
ẋc(τ)→

√
m

Sc
Ae−ω|τ | für τ → ±∞ (77)

Damit vereinfacht sich die Formel (71) zu:

K =

√
mω

π~
A (78)

Zur Qualität dieser Näherungsformel können wir an dieser Stelle keine exakten An-
gaben machen. Ihre Untersuchung am Beispiel des rechteckförmigen Doppelmulden-
potentials ist eben deshalb der Gegenstand dieser Arbeit. Für stetig differenzierbare
Potentiale (zum Beispiel das Potential V (x) ∼ (x2 − a2)2, wie es in Abbildung 1 zu
sehen ist) liefert die Methode aber sehr gute Resultate (siehe zum Beispiel [2]). Man
kann vermuten, dass das rechteckförmige Potential durch seine Unstetigkeiten für
Probleme sorgt. Der Operator M enthält die zweite Ableitung des Potentials. An
dieser Stelle würden also Ableitungen der δ-Funktion auftauchen. Um das zu ver-
meiden, wird das Potential zuerst regularisiert, wir sorgen also durch eine geeignete
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Approximation dafür, dass es stetig differenzierbar wird. Anschließend berechnen
wir für diese Approximation die Kink-Lösung und damit den Vorfaktor K. Ganz am
Ende bilden wir den Grenzwert, bei dem sich die Approximation des Potentials an
die rechteckige Form des ursprünglichen Potentials anschmiegt, und schauen, was
sich für K ergibt. An dieser Stelle werden wir sehen, ob die Methode nach Coleman
für das Rechteckpotential ein gutes Ergebnis liefert. Bis dahin müssen wir aber noch
ein bisschen rechnen.

3.2.1 Potential anpassen

Das Potential soll an den Orten x = −a und x = a stetig differenzierbar sein. Da-
zu approximieren wir unser Rechteckpotential in den Intervallen [−a,−a + 2ε] und
[a − 2ε, a] durch quadratische Funktionen. Im Grenzwert ε → 0 soll das ursprüng-
liche Rechteckpotential reproduziert werden können. Die quadratischen Funktionen
sollen die Bedingung erfüllen, dass an den Rändern der Intervalle die Steigung ver-
schwindet, so dass zwischen den Intervallen das Potential als konstant angenommen
werden kann. Dazu teilen wir die Potentialbarriere in fünf Abschnitte ein (siehe dazu
auch Abbildung 12):

• Bereich I: −a ≤ x ≤ −a+ ε

• Bereich II: −a+ ε ≤ x ≤ −a+ 2ε

• Bereich III: −a+ 2ε ≤ x ≤ a− 2ε

• Bereich IV: a− 2ε ≤ x ≤ a− ε

• Bereich V: a− ε ≤ x ≤ a

Bereich I: Das Potential ist eine nach oben geöffnete Parabel, die um a nach links
verschoben ist:

V I(x) =
V0
2ε2

(x+ a)2 (79)

Der Vorfaktor sorgt dafür, dass V I(−a+ ε) = V0/2 ist.
Bereich II: Hier ist das Potential eine nach unten geöffnete Parabel, die um −a+2ε
nach links und um V0 nach oben verschoben ist:

V II(x) = − V0
2ε2

(x+ (a− 2ε))2 + V0 (80)

Durch den Vorfaktor gilt V II(−a + ε) = V0/2. Automatisch ist die Ableitung an
dieser Stelle stetig.
Bereich III: Das Potential ist in diesem Bereich konstant.

V III(x) = V0 (81)

Da die Parabel aus Bereich II ihren Scheitelpunkt bei −a + 2ε hat, verschwindet
dort ihre Ableitung, so dass wir durch eine konstante Funktion im Bereich III nicht
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Abbildung 12: Approximation des umgedrehten Potentials −V (x) für ε = 0, 25 mit
V0 = 1, a = 1 und b = 2)

die Stetigkeit der Ableitung verletzen.
Bereiche IV und V: Das Potential ergibt sich hier analog zu den Bereichen I und
II, nur dass die Parabeln nach rechts verschoben sind:

V IV (x) = − V0
2ε2

(x− (a− 2ε))2 + V0 (82)

V V (x) =
V0
2ε2

(x− a)2 (83)

In Abbildung 12 ist der approximierte Potentialwall aufgezeichnet. Er steht auf dem
Kopf, um anzudeuten, dass wir uns im euklidischen Raum befinden, in dem sich ein
Teilchen bekanntlich durch das Potential −V (x) bewegt (siehe Kapitel 1.2.1). Geht
ε → 0, werden die Bereiche I, II, IV und V immer schmaler, die Parabeln werden
steiler und die Approximation nähert sich der rechteckigen Form des ursprünglichen
Potentials an.

3.2.2 Kink-Lösung (Instanton)

In diesem Kapitel wird nun der Kink für die Approximation aus dem vorigen Kapitel
berechnet. Weil diese abschnittsweise definiert ist, muss der Kink für alle Abschnitte
einzeln gefunden werden. Anschließend werden wir die einzelnen Lösungen stetig an-
einander fügen. Die Stetigkeit der Ableitung des Kinks ist dann automatisch erfüllt.
Prinzipiell ergibt sich der Kink aus Gleichung (9). In dieser Formel steckt allerdings
die Randbedingung xc(τ0) = 0. Der Nulldurchgang findet bei unserem Potential im
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Bereich III statt. Das heißt, dass nur dort die Randbedingung in dieser Form benutzt
werden kann. Um den Kink in den anderen Bereichen zu berechnen, werten wir die
Differentialgleichung (9) dort zu erst ohne Randbedingung aus. Das führt dazu, dass
eine Integrationskonstante auftritt, die im Nachhinein durch Stetigkeitsbedingungen
durch τ0 ausgedrückt wird.

Bereich I: Zu lösen ist die Differentialgleichung:∫
dτ =

√
m

2

∫
1√
V (x)

dx (84)

In diesem Bereich ist V (x) = V I(x). Wegen −a < x ≤ −a+ ε ist x+ a > 0.

⇒ τ =

√
mε2

V0

∫
1

x+ a
dx+ C√

V0
mε2

τ = ln (x+ a) + C ′

x+ a = exp (

√
V0
mε2

(τ − C ′′))

Mit τ I0 = C ′′, um anzudeuten, dass die Integrationskonstante die Freiheit beinhaltet,
den Kink beliebig auf der τ -Achse zu verschieben, finden wir schließlich:

xI(τ) = exp (

√
V0
mε2

(τ − τ I0 ))− a (85)

Bereich II: Es ist V (x) = V II(x).

⇒ τ =

√
m

2V0

∫
1√

1− 1
2ε2

(x+ a− 2ε)2
dx+ C

Substitution: z =
1√
2ε

(x+ a− 2ε)⇒ dx =
√

2ε dz

⇒ τ =

√
mε2

V0

∫
1√

1− z2
dz + C

τ =

√
mε2

V0
arcsin z + C ′

arcsin (
1√
2ε

(x+ a− 2ε)) =

√
V0
mε2

(τ − C ′′′)

Nun schreiben wir analog τ II0 = C ′′′ und es ist:

xII(τ) =
√

2ε · sin (

√
V0
mε2

(τ − τ II0 ))− a+ 2ε (86)
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Bereich III: Wie eben erläutert gilt hier die Randbedingung xc(τ0) = 0. Das
Potential V (x) = V III(x) ist konstant, die Lösung der Gleichung (9) ist trivial:

xIII(τ) =

√
2V0
m

(τ − τ0) (87)

Bereich IV: Das Potential ist V (x) = V IV (x). Die Berechnung des Kinks verläuft
bis auf die Substitution

z =
1√
2ε

(x− a+ 2ε)

vollkommen analog zu der von Bereich II. Die Lösung ist:

xIV (τ) =
√

2ε · sin (

√
V0
mε2

(τ − τ IV0 )) + a− 2ε (88)

Bereich V: Es ist V (x) = V V (x):

⇒ τ =

√
mε2

V0

∫
1√

(x− a)2
dx+ C

Wegen a− ε ≤ x < a⇒ x− a < 0

⇒ τ =

√
mε2

V0

∫
1

a− x
dx+ C

τ = −

√
mε2

V0
ln |x− a|+ C ′

ln (a− x) = −
√

V0
mε2

(τ − C ′′)

Schließlich setzen wir τV0 = C ′′ und finden:

xV (τ) = − exp (−
√

V0
mε2

(τ − τV0 )) + a (89)

Erfreulicherweise erfüllt der Kink nach (85) und (89) die geforderten Randbedin-
gungen x(−∞) = −a und x(∞) = a. Im nächsten Schritt drücken wir τ I0 , τ

II
0 , τ

IV
0

und τV0 durch τ0 aus und bestimmen die Grenzen der verschiedenen Bereiche in Ab-
hängigkeit von τ .
Wir starten in der Mitte. Im Bereich III gilt (87) solange, bis das Teilchen den unte-
ren Rand x = −a+ 2ε oder den oberen Rand x = a− 2ε erreicht hat. Das geschieht

zu den Zeitpunkten τ = τ0−
√

m
2V0

(a−2ε) bzw. τ = τ0+
√

m
2V0

(a−2ε). Wir schreiben

abkürzend:

xc(τ) = xIII(τ) für τ0 − τ1 ≤ τ ≤ τ0 + τ1 mit τ1 =

√
m

2V0
(a− 2ε) (90)
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Als nächstes kann τ II0 durch τ0 ausgedrückt werden, wenn man die Stetigkeitsbedin-
gung xII(τ0 − τ1) = −a+ 2ε ausnutzt:

⇒ −a+ 2ε+
√

2ε · sin (

√
V0
mε2

(τ0 − τ1 − τ II0 )) = −a+ 2ε

sin (

√
V0
mε2

(τ0 − τ1 − τ II0 )) = 0

τ II0 = τ0 − τ1
Wir arbeiten uns weiter vor, in dem wir den Zeitpunkt bestimmen, an dem xII(τ) =
−a+ ε erreicht ist:

⇒ −a+ 2ε+
√

2ε · sin (

√
V0
mε3

(τ − τ0 + τ1)) = −a+ ε

sin (

√
V0
mε2

(τ − τ0 + τ1)) = − 1√
2√

V0
mε2

(τ − τ0 + τ1) = −π
4

τ = τ0 − τ1 −

√
mε2

V0

π

4

Für den Kink gilt also:

xc(τ) = xII(τ) für τ0 − τ1 − τ2 ≤ τ ≤ τ0 − τ1 mit τ2 =

√
mε2

V0

π

4
(91)

Der nächste Schritt ist die Bestimmung von τ I0 durch die Stetigkeitsbedingung
xI(τ0 − τ1 − τ2) = −a+ ε:

exp (

√
V0
mε2

(τ0 − τ1 − τ2 − τ I0 ))− a = −a+ ε√
V0
mε2

(τ0 − τ1 − τ2 − τ I0 ) = ln (ε)

τ I0 = τ0 − τ1 − τ2 −

√
mε2

V0
ln (ε)

Dass im Logarithmus eine dimensionsbehaftete Größe steht, ist unproblematisch,
weil der Term im Exponenten steht. Man kann nach (85) schreiben:

xI(τ) = ε · exp (

√
V0
mε2

(τ − τ0 + τ1 + τ2))− a (92)

Eine untere Grenze in der Dimension τ existiert für den Bereich I nicht, da sich die
Lösung asymptotisch −a nähert:

xc(τ) = xII(τ) für −∞ < τ ≤ τ0 − τ1 − τ2 (93)
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Wir haben uns jetzt zum linken Rand des Kinks vorgearbeitet. Nun ist die rechte
Seite an der Reihe. Wie bereits gesehen ist xIII(τ0 + τ1) = a − 2ε. Die Forderung
der Stetigkeit xIV (τ0 + τ1) = a− 2ε erlaubt wiederum die Berechnung von τ IV0 :

⇒ a− 2ε+
√

2ε · sin (

√
V0
mε2

(τ0 + τ1 − τ IV0 )) = a− 2ε

sin (

√
V0
mε3

(τ0 + τ1 − τ IV0 )) = 0

τ IV0 = τ0 + τ1

Der Zeitpunkt, an dem xV I(τ) = a− 2ε gilt, ist:

⇒ a− ε+
√

2ε · sin (

√
V0
mε2

(τ − τ0 − τ1)) = a− ε

sin (

√
V0
mε2

(τ − τ0 − τ1)) =
1√
2√

V0
mε2

(τ − τ0 − τ1) =
π

4

τ = τ0 + τ1 +

√
mε2

V0

π

4

Mit der Definition von τ2 lässt sich schreiben:

xc(τ) = xIV (τ) für τ0 + τ1 ≤ τ ≤ τ0 + τ1 + τ2 (94)

Abschließend folgt die Bestimmung von τV0 aus der Stetigkeitsbedingung
xV (τ0 + τ1 + τ2) = a− ε:

⇒ − exp (−
√

V0
mε2

(τ0 + τ1 + τ2 − τV0 )) + a = a− ε

−
√

V0
mε2

(τ0 + τ1 + τ2 − τV0 ) = ln (ε)

τV0 = τ0 + τ1 + τ2 +

√
mε2

V0
ln (ε)

Analog zur Vorgehensweise im Bereich I schreiben wir (89) um:

xV (τ) = −ε · exp (−
√

V0
mε2

(τ − τ0 − τ1 − τ2)) + a (95)

Außerdem haben wir die Grenzen des Bereichs V in der Dimension von τ gefunden:

xc(τ) = xV (τ) für τ0 + τ1 + τ2 ≤ τ <∞ (96)
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Die Kink-Lösung für das Potential ist nun vollständig berechnet worden. Die Lösung
besitzt nur noch den freien Parameter τ0, der Ausdruck der Freiheit einer beliebigen
zeitlichen Verschiebung ist, und ist ansonsten vollkommen durch die Potentialpara-
meter V0, a, ε und durch die Masse m des Teilchens bestimmt.

xc(τ) =



ε · exp (
√

V0
mε2

(τ − τ0 + τ1 + τ2))− a −∞ < τ ≤ τ0 − τ1 − τ2
√

2ε · sin (
√

V0
mε2

(τ − τ0 + τ1))− a+ 2ε τ0 − τ1 − τ2 < τ ≤ τ0 − τ1√
2V0
m
· (τ − τ0) τ0 − τ1 ≤ τ < τ0 + τ1

√
2ε · sin (

√
V0
mε2

(τ − τ0 − τ1)) + a− 2ε τ0 + τ1 ≤ τ < τ0 + τ1 + τ2

−ε · exp (−
√

V0
mε2

(τ − τ0 − τ1 − τ2)) + a τ0 + τ1 + τ2 ≤ τ <∞

(97)

mit: τ1 =

√
m

2V0
(a− 2ε) und τ2 =

√
mε2

V0

π

4

In Abbildung 13 ist die Kink-Lösung graphisch dargestellt. Das Teilchen verläuft von
der rechten zur linken Mulde, wie wir gefordert hatten. Im ursprünglichen Rechteck-
potential erwarten wir für die Kink-Lösung nach (8) eine konstante Geschwindigkeit
zwischen den Mulden. Im oberen Bild erkennt man, dass sich dieses Verhalten repro-
duzieren lässt, wenn ε klein wird. Das lässt sich auch an der Formel (97) erkennen. Da
τ2 ∼ ε ist, werden die Bereiche II und IV immer schmaler, in denen die gleichförmige
Bewegung nicht eingehalten wird. Außerdem geschieht die asymptotische Annähe-
rung an die Mulden in diesem Fall rascher. Für größere Werte von ε ist der Kink am
Rand der Potentialbarriere gekrümmt und das Grenzverhalten verlangsamt.

Im unteren Bild ist die Kink-Lösung für unterschiedliche Höhen der Potentialbar-
riere V0 gezeichnet. Je höher V0 ist, desto größer ist die Geschwindigkeit zwischen den
Mulden, so dass das Teilchen die Barriere schneller überbrückt. Für sehr große V0
springt das Teilchen nahezu instantan von einer in die andere Mulde. Die Trajektorie
wird zu einem Knick, was zu der Bezeichnung Kink führte.
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3.2 Vorfaktor K 3 NÄHERUNGSMETHODE

(a) Kink bei Verkleinerung von ε (V0 = 1)

(b) Kink bei Vergrößerung von V0 (ε = 0, 25)

Abbildung 13: Kinklösung (m = 1, a = 1)
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Nun haben wir alles zusammen, um den Vorfaktor K zu berechnen. Eine Voraus-
setzung der Näherungsformel ist, dass der Nulldurchgang von xc(τ) zur Zeit τ = 0
geschieht, so dass im Folgenden τ0 = 0 ist. Nach (77) benötigen wir die Ableitung
des Kink an den Grenzen τ → ±∞. Wählen wir die obere Grenze, finden wir:

ẋc = −ε(−
√

V0
mε2

) exp (−
√

V0
mε2

(τ − τ1 − τ2))

ẋc =

√
V0
m

exp (

√
V0
mε2

(τ1 + τ2)) exp (−
√

V0
mε2

τ)

Nach (73) ist

ω =

√
1

m

d2

dx2
V V (x)

∣∣
x=a

=

√
1

m

d2

dx2
V0
2ε2

(x− a)2
∣∣
x=a

=

√
V0
mε2

, (98)

so dass sich ẋc(τ) im betrachteten Grenzfall wie nach (77) gefordert folgendermaßen
schreiben lässt:

ẋc(τ) = A · e−ωτ mit: A =

√
V0
m
· exp (

√
V0
mε2

(τ1 + τ2)) (99)

Mit Hilfe der Definitionen von τ1 und τ2 (siehe (97)) ergibt sich:

A =

√
V0
m
· exp (

a− 2ε√
2ε

+
π

4
) (100)

Nach (78) können wir nun den Vorfaktor berechnen:

K =

√
m

π~
( V0
mε2

) 1
4

√
V0
m

e
π
4 e

a−2ε√
2ε

K =

(
V 3
0

π2~2mε2

) 1
4

e
π
4 e

a√
2ε
−
√
2

(101)

Damit ist der Vorfaktor für die Approximation gefunden. Der Vorfaktor für das
rechteckförmige Potential sollte sich im Grenzwert ε → 0 ergeben. ε taucht im
Nenner des vorderen Terms und im Exponenten der Exponentialfunktion auf. Für
den Grenzwert divergiert der Vorfaktor:

lim
ε→0

K =∞ (102)

Demnach müssten wir eine unendlich große Energieaufspaltung ∆E erwarten. Dieses
Ergebnis entspricht nicht den exakten Ergebnissen aus Kapitel 2.
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3.2.3 Was läuft schief?

Fragen wir uns abschließend, woran es liegt, dass wir keinen korrekten Wert für
K erhalten haben. Dazu betrachten wir die Näherungsformel (50), die wir aus der
exakten Lösung im semiklassischen Grenzfall hergeleitet haben. Der Vorfaktor ist
dort

K̃ =
π2~2

2mb3

√
8

V0m
= K̃(b)

und somit explizit von b abhängig. b ist die Breite der Mulden des Rechteckpoten-
tials. Das K, das man aus der Pfadintegralmethode erhält, hängt hingegen nur von
dem Kink ab. Der Kink ist ein Weg zwischen den Mulden von x = −a nach x = a.
Dort spielt der Parameter b überhaupt keine Rolle.
Grundlegend müssen wir bei der Nachbetrachtung der Näherungsmethode feststel-
len, dass sie überhaupt keinen Unterschied zwischen verschiedenen Potentialen macht,
solange nur die Barriere zwischen den Mulden identisch ist. Implizit geht die Metho-
de sogar davon aus, dass das Krümmungsverhalten abseits der Mulden beibehalten
wird. Schauen wir uns dazu die Abbildung 14 an. Dort ist das rechteckförmige Po-

Abbildung 14: Ursprüngliches Potential und die Approximation mit hypothetischen
Verlauf außerhalb der Barriere gestrichelt (a = 1, b = 2, V0 = 1 und ε = 0, 3)

tential zusammen mit der quadratischen Approximation eingezeichnet. Zusätzlich ist
diesmal mit der gestrichelten Linie der Verlauf der Approximation gekennzeichnet,
den die Näherungsmethode erwartet. Sie geht davon aus, dass sich das Potential für
x < −a und x > a parabelförmig fortsetzt. Im Bereich der Mulde fänden wir dann
das Potential des harmonischen Oszillators.
Man darf an dieser Stelle allerdings nicht davon ausgehen, dass der Vorfaktor aus
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(101) für die Approximation im Limes ε→∞ die korrekte Lösung ist. Für die Nähe-
rungsformel ist entscheidend, dass sich die ersten beiden Zustände des Doppelmul-
denpotentials energetisch unterhalb der Barriere befinden. Da wir wissen, dass ihre
Energien E0 und E1 ungefähr so groß sind, wie die des Grundzustands der einzelnen
Mulde, welche für die Approximation nichts anderes als die Grundzustandsenergie
des harmonischen Oszillators ist, können wir sie mit

E0/1 ≈
1

2
~ω (103)

abschätzen. Für ε � 1 wird nach (98) ω sehr groß, so dass E0 und E1 die Poten-
tialbarriere energetisch übersteigen werden. Die Näherungsmethode ist dann nicht
mehr anwendbar.
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4 Zusammenfassung

In dieser Bachelorarbeit ist die Energieaufspaltung der untersten beiden Zustände
eines symmetrischen Doppelmuldenpotentials die zentrale Größe. Sie wurde am Bei-
spiel eines rechteckförmigen Doppelmuldenpotentials zunächst exakt mit Hilfe der
stationären Schrödingergleichung berechnet. Anschließend wurde versucht, die Ener-
gieaufspaltung mit einer Näherungsmethode, die auf dem euklidischen Pfadintegral
beruht, zu berechnen.

Die Resultate der exakten Rechnung entsprechen den grundlegenden Eigenschaf-
ten symmetrischer Doppelmuldenpotentiale (siehe Kapitel 1.1). Die Energieaufspal-
tung ∆E ist klein gegenüber der Eigenenergien E0 und E1 und sinkt exponentiell,
wenn die Höhe der Potentialbarriere zwischen den Mulden größer wird. Mit Hilfe
einer Grenzwertbetrachtung konnte aus der exakten Lösung für die Eigenenergien
die Näherungsformel (50) für die Energieaufspaltung gefunden werden. Der Grenz-
wert bestand in der Bedingung, dass die euklidische Wirkung der Kink-Lösung groß
wird, was nach [3] der semiklassische Bereich ist, in dem gute Ergebnisse von der
später durchgeführten Pfadintegralmethode erwartet wurden. Die gefundene Nähe-
rungsformel lieferte einen führenden exponentiellen Term mit dem Negativen der
euklidischen Wirkung des Kinks im Exponenten, was dem Gamow-Faktor für einen
Tunnelprozess eines Teilchens von der linken in die rechte Mulde entspricht, und
einen Vorfaktor K̃, in dem die Grundzustandsenergie des unendlich tiefen Potential-
topfs auftauchte. Die Frage an dieser Stelle war, ob man mit der Pfadintegralmethode
dieses Ergebnis reproduzieren kann.

Davor wurde aber noch ein weiterer Grenzfall betrachtet, in dem als Potential-
barriere ein δ-Peak benutzt wurde. Die Symmetrie des Recheckpotentials wurde so
nicht gebrochen, so dass bei der Berechnung der Wellenfunktionen und Eigenenergien
weiterhin zwischen symmmetrischen und antisymmetrischen Zuständen unterschie-
den werden konnte. Die symmetrischen Wellenfunktionen zeigen am Ort des δ-Peaks
einen Knick. Die antisymmetrischen Wellenfunktionen haben die selbe Form wie die
antisymmetrischen Zustände in einem unendlich tiefen Potentialtopf. Ihre Bestim-
mungsgleichungen für die erlaubten k (63) und (67) konnten verifiziert werden, indem
die Bestimmungsgleichungen (36) und (43) für die Zustände im Rechteckpotential
in dem Grenzfall (53) ausgewertet wurden.

Schließlich wurde versucht, die Näherungsmethode für die Energieaufspaltung
auf das rechteckförmige Doppelmuldenpotential anzuwenden. Bei dem zu lösenden
Pfadintegral beschränkt man sich auf den Kink, dessen euklidische Wirkung den
Hauptbeitrag liefert, und einer Variation von ihm bis zur quadratischen Ordnung.
Ersteres führte auf den exponentiellen Term, dessen Auftreten nach dem semiklassi-
schen Grenzwert der exakten Lösung erwartet wurde. Die Berechnung der Beiträge
der Fluktuationen wurde nach [1] ausgeführt, in der Hoffnung, auch den Vorfaktor K̃
reproduzieren zu können. An dieser Stelle hat die Näherungsmethode leider versagt.
Es konnte zwar für eine quadratische Approximation des rechteckförmigen Potenti-
als ein Vorfaktor K berechnet werden, der jedoch in dem Grenzwert, in dem sich
die Approximation der rechteckigen Form des ursprünglichen Potentials annähert,
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divergiert. Die Gründe hierfür konnten darin gefunden werden, dass die Näherungs-
methode an dieser Stelle nicht zwischen Potentialen unterscheidet, die zwar zwischen
den Mulden identisch sind, aber außerhalb dieses Bereichs völlig unterschiedlich ver-
laufen.

Als Ergebnis der Bachelorarbeit kann festgehalten werden, dass die Pfadintegral-
methode in erster Näherung den führenden exponentiellen Term liefert, was schon
eine sehr gute Näherung für die Energieaufspaltung ist, aber bei der Berechnung des
Vorfaktors K im vorliegenden Speziallfall eines rechteckförmigen Doppelmuldenpo-
tentials scheitert und zu keiner Verbesserung der Näherungsformel führt.
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Für Rechnungen und zum Erstellen der Graphiken wurde folgendes Programm ver-
wendet:

• Waterloo Maple Inc.: Maple, Version 14.0
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