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1 EINFUHRUNG

1 Einfiihrung

In dieser Bachelorarbeit wird die quantenmechanische Energieaufspaltung zwischen
dem Grundzustand und dem ersten angeregten Zustand in eindimensionalen sym-
metrischen Doppelmuldenpotentialen untersucht. Die Energieaufspaltung, also die
Differenz der Eigenenergien dieser beiden Zusténde, ist sehr gering und Gegenstand
aktueller Forschung. Sie bietet unter anderem die Grundlage fiir den Amoniakma-
ser (siehe [3]). Dort wird ausgenutzt, dass das Ammoniakmolekiil energetisch dicht
beieinander liegende Zusténde besitzt und durch den Tunneleffekt zwischen ihnen
wechseln kann. Da die Energieaufspaltung eng mit dem Tunneleffekt verkniipft ist,
findet sich in der Methodik der euklidischen Pfadintegrale ein Zugang, sie systema-
tisch ndherungsweise zu berechnen.

Um die Giite einer Naherung einschétzen zu kénnen, ist man auf die Kenntnis
der exakten Losung angewiesen. Aus diesem Grund wird in dieser Arbeit als Beispiel
fiir ein Doppelmuldenpotential ein Rechteckpotential, genauer gesagt ein unendlich
tiefer Potentialtopf, in dessen Mitte ein rechteckiger Potentialwall mit einer bestimm-
ten Hohe dafiir sorgt, dass zwei Mulden entstehen, betrachtet. Dieses quantenme-
chanische System lédsst sich mit der iiblichen Methode durch Losen der stationéren
Schrodingergleichung exakt berechnen. Das Ergebnis kann anschlieBend mit der Na-
herung der Pfadintegralmethode verglichen und eventuelle Abweichungen diskutiert
werden. Wegen der Unstetigkeiten des Potentials muss damit gerechnet werden, dass
die Naherungsmethode ab einer bestimmten Genauigkeit versagt. Ob dies wirklich
der Fall ist, wird diese Arbeit zeigen. In jedem Fall kann die Pfadintegralmethode
aber ein tieferes physikalisches Verstdndnis der Energieaufspaltung liefern, da sich
fithrende Terme mit bekannten Formeln aus der Theorie des quantenmechanischen
Tunnelns identifizieren lassen. Das folgende Kapitel gibt eine Einfithrung in Doppel-
muldenpotentiale. Danach wird die Pfadintegralmethode eingefiihrt, mit deren Hilfe
sich eine Naherungsformel fiir die Energieaufspaltung ermitteln lésst.

1.1 Grundlegendes zu Doppelmuldenpotentialen

Die folgenden grundlegenden FKEigen-
schaften symmetrsicher Doppelmulden-
potentiale sind in [3] nachzulesen. Ein
symmetrisches Doppelmuldenpotential,
wie es schematisch in Abbildung 1 dar-
gestellt ist, besitzt stationire Eigenzu-
stinde, die entweder symmetrisch oder
antisymmetrisch sind. Der Grundzu-
stand |0) und der erste angeregte Zu-
stand |1) sind in Abbildung 2 skizziert. *

Die Eigenenergien Ey und E; sind unge-

fihr so groB wie die Energie des Grund- Abbildung 1: Schematische Darstellung ei-
zustands der einzelnen Mulde, durch die nes Doppelmuldenpotentials
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x x x

(a) Grundzustand |0) (b) grster dz‘m>geregter (c) |L) = %(\O) — 1)) (d) |R) = %(\0) + (1))
ustand |1

Abbildung 2: Schematische Darstellung

endliche Barriere allerdings nicht exakt gleich. Durch Superposition der beiden Zu-
stinde findet man Zusténde, bei denen sich das Teilchen hauptséchlich in einer
der beiden Mulden aufhélt (sieche Abbildung 2 (c¢) und (d)). Die Energiedifferenz
AE = E, — E, héngt offensichtlich mit dem Ubergangsmatrixelement zwischen den
Zusténden |L) und |R) zusammen

AE = —2(R|H|L), (1)

wobei H der Hamiltonoperator des Systems ist. Hier wird zum ersten mal der Zusam-
menhang zwischen Energieaufspaltung und Tunneleffekt deutlich. AE wird in dieser
Arbeit mit einer Naherungsmethode berechnet, die auf dem quantenmechanischen
Pfadintegral beruht. Das nétige Riistzeug soll in den néchsten Kapiteln eingefiihrt
werden.

1.2 Das Pfadintegral

Die in diesem Kapitel gewéhlte Einfithrung des Pfadintegrals ist [3] entnommen.
Dort findet sich auch eine explizite Herleitung. & ist im Gegensatz zur Darstellung
in [3] nicht gleich 1 gesetzt. Das Pfadintegral erlaubt, die Ubergangswahrschein-
lichkeit eines Teilchens, das sich zu einem bestimmten Zeitpunkt ¢ = 0 am Ort y
befindet (Zustand |y)), zum Zeitpunkt ¢ an den Ort = (Zustand |z)) zu gelangen,
zu berechnen. Nach der Schrodingergleichung ist die Ubergangsamplitude mit Hilfe
des Zeitentwicklungsoperators U(t) = e~ #* durch den Ausdruck (z|U(t)|y) formal
gegeben. Die Ubergangswahrscheinlichkeit ist das Betragsquadrat hiervon. Die Idee
bei der Entwicklung des Pfadintegrals ist, dass alle moglichen Wege x(t) mit den
Randbedingungen x(0) = y und z(t) = 2 zur Ubergangswahrscheinlichkeit beitra-
gen. Man teilt das Zeitintervall in kleine Abschnitte ¢ = ¢/N und schreibt fiir den
Ort zum Zeitpunkt r - ¢ einfach z(¢,). Es gilt nun folgender Zusammenhang:

(zle™ 1) = / D ohSE 2)
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Auf der rechten Seite steht das Pfadintegral. In der Exponentialfunktion im Inte-
grand findet sich die klassische Wirkung als Funktional des Weges x:

Sle] = /0 (BLi(t) ~ V(a(t)) 3)

Der Ausdruck [ Dz ist als unendlichdimensionale Integration zu verstehen:

m N
/Dx = T () dr(t) - (i) (4)
Das bedeutet, dass iiber jeden Weg, der die Randbedingungen erfiillt, integriert wird.
Die Grenzwertbildung ist erst nach der Integration durchzufiithren. Im Gegensatz zur
Formulierung mit der Schrédingergleichung tauchen im Pfadintegral keine Operato-
ren mehr auf. Dafiir muss ein unendlichdimensionales Integral gelost werden.

Von besonderer Bedeutung ist allerdings die physikalische Interpretation. Fiir die
Ubergangswahrscheinlichkeit liefert jeder mogliche Weg einen Beitrag. Der Weg, der
klassisch die Newtonsche Bewegungsgleichung erfiillt, und die Wege, die nur leicht
von dem klassischen Weg abweichen, haben in semiklassischen Féllen den grofiten
Beitrag, da die Wirkung fiir den klassischen Weg stationér ist. Wege, die weit vom
klassischen Weg abweichen, sorgen fiir Oszillationen in der Exponentialfunktion, so
dass ihre Beitrage sich fiir semiklassische Fille approximativ aufheben.

1.2.1 Das Euklidische Pfadintegral

Durch Ubergang zu einer imaginiren Zeit 7 = it wird aus dem eben vorgestellten
Pfadintegral das euklidische Pfadintegral:

(aleH7y) = [ Da e-hsrt 5)

S ist die euklidische Wirkung
! m 220 / /
Sglz] = i (53: () + V(z(r )))dT (6)

und geht durch die Transformation Sg[z] = —iS] .. aus der klassischen Wirkung
hervor. Das euklidische Pfadintegral hat ganz allgemein den Vorteil, dass es reell
ist. Die Beitrige mit grofler Abweichung vom klassischen Weg werden exponentiell
gedampft und nicht mehr durch die Oszillation einer komplexen Phase unterdriickt.
Speziell erweist sich das euklidische Pfadintegral als giinstiger, wenn man Tunnel-
effekte betrachtet. Durch das quantenmechanische Tunneln kénnen Teilchen an Or-
te gelangen, die nach klassischer Physik verboten sind. Zum Beispiel kénnte ein
Teilchen die Potentialbarriere im Doppelmuldenpotential iiberwinden, obwohl seine
Energie kleiner als die Hohe der Barriere ist. Ein klassischer Weg x(t), der diesen
Prozess beschreibt, kann allerdings nicht gefunden werden. Schaut man sich aber
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die Bewegungsgleichung im euklidischen Raum an, die ganz analog zum Raum mit
normaler Zeit ¢ als Funktionalableitung der Wirkung nach dem Weg definiert ist

0Sy oy _dV

=

fallt das im Vergleich zur normalen Newtonschen Bewegungsgleichung unterschied-
liche Vorzeichen vor der Ableitung des Potentials auf. Der Energiesatz wird zu:

m.
S #(7) = V(a(7)) = Ep (8)
Er ist eine Konstante, die als euklidische Energie bezeichnet wird. Anschaulich
bedeutet das nichts anderes, als dass sich das Teilchen in dem umgedrehten Potential
—V (z) bewegt. In [5] wird dieses Phdnomen prégnant folgendermafien ausgedriickt:

,»---in the euclidean dynamics the potential is turned upside down and
what ist forbidden in Minkowsi space is suddenly allowed in the euclidean
region!“ (aus Kapitel 21: Tunneling by Path Integrals: Well, well!*)

Aus einem Doppelmuldenpotential wird dadurch zum Beispiel ein Potential mit zwei
Maxima, die durch eine Mulde getrennt sind. Der Weg durch die Potentialbarrie-
re wird zu einem Weg durch eine Mulde. Den Weg x.(7), der (7) erfiillt, und bei
dem sich das Teilchen zu Beginn auf dem einen und zum Schluss auf dem anderen
Maximum befindet, nennt man "Kink-Losung” oder "instanton”. Dieser Weg spielt
bei der im nédchsten Schritt vorgestellten semiklassischen Naherung zur Berechnung
eines euklidischen Pfadintegrals im Zusammenhang mit Tunneleffekten eine zentrale
Rolle, da fiir ihn der Weg gefunden ist, bei dem die euklidische Wirkung stationér
ist, obwohl klassisch gesehen ein Teilchen diesen Weg gar nicht nehmen kann. Der

Kink kann nach (8) durch
m [* 1
T—To=+/— dx 9
TV /0 V(o) ©)

berechnet werden, weil durch die Randbedingungen Er = 0 ist. Der Kink ist bis auf
eine Konstante 7y, die den Nulldurchgang bestimmt, festgelegt. Die selbe Gleichung
mit einem Minuszeichen vor dem Integral auf der rechten Seite liefert als Losung
den sogenannten anti-instanton, die sich nur um das Vorzeichen vom instanton un-
terscheidet und dementsprechend einem Weg von der rechten in die linke Mulde
entspricht.

1.2.2 Semiklassische Niherung

Wir haben gesehen, dass das Pfadintegral iiber alle Wege, die den gleichen Anfangs-
und den gleichen Endpunkt haben, integriert werden muss. Dementsprechend ist
es unendlichdimensional und so in den meisten Féllen nicht losbar. Um das eukli-
dische Pfadintegral ndherungsweise zu losen, kann man sich einer semiklassischen

4



1.2 Das Pfadintegral 1 EINFUHRUNG

Néherung bedienen, die darin besteht, nur den Weg x.(7) und relativ kleine Abwei-
chungen y(7) von diesem Weg bis zur quadratischen Ordnung zu beriicksichtigen.
Wir werden sehen, dass sich das Pfadintegral so auf Gauf-Integrale zuriickfiihren
lasst. Betrachten wir dazu die euklidische Wirkung Sg[x] mit x(7) = z.(7) + y(7)
und den Randbedingungen y(—%) = y(%) = 0, wobei —Z der Startzeitpunkt ist,
und % der Zeitpunkt, bei dem das Teilchen den Endpunkt erreicht:

Spla] = /_ dr{y (e + )+ V(z +9))

V[N ol

3 1
= / dT{%(fE? + 07+ 289) + Vize) + V'(2e) -y + §V”($c) STa

LN

2 1
= / dT{%i‘? + V(xe) + macy + V/(L;)y + §(myy + V"(:Ec)yy)} +

N ol

N

- /T dT{%ig + V(we) + (—mie + V' (2))y + %(myy + V7 (@e)yy)} + -

N

Die ersten beiden Terme im Integrand bilden die euklidische Wirkung Sglz.] fiir
den Weg x.. Bei dem folgenden Term wurde die zeitliche Ableitung von y durch
partielle Integration auf . abgewélzt. Dadurch finden wir einen Term proportional
zu y, der verschwindet, weil z. die euklidische Bewegungsgleichung (7) erfiillt. Den
letzten Term schreiben wir durch partielle Integration folgendermafien um:

T T T
1 [z 1 [z 1 [z
5 [ artmii vy =5 [ dr{-ymi oV @) =5 [y ar

Sl
Sl

M ist ein Operator und wirkt auf die Funktion y(7), die hinter ihm steht:

2

M = —mw + V”(CCC<T)> (10)

Die euklidische Wirkung setzt sich demnach aus einem Beitrag von z.(7) und einem
Beitrag der Variationen y(7) zusammen:

Sple] = Sulzd +

T
2/2 yMy dr (11)

!

M besitzt eine vollstindige und orthonormale Basis aus Eigenfunktionen y,,, so dass
gilt:

S

My, (1) = muy(T) /2 Yn (7)Y (T) = Oy m,: Eigenwerte (12)

r
2

Entwickeln wir ¢y nach dieser Basis finden wir:

T T o0 [e’e) [e’e]
1 [2 1 [= 1
5 / ; yMy dr = 5/, Z Cor Y (T) (Mchyn(T))dT =5 Zmnci(T)
-2 T2 n/=1 n=1 n=1
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Fiir das euklidische Pfadintegral bedeutet das Folgendes:
/Dl’ e_%SE[x} = e_%sE[xC] /Dy e_%% el m"C%

Die Integrationen iiber die unendlich vielen Variationen y(7) kénnen durch die Ko-
effizienten ¢, ausgeriickt werden:

Dy :Jﬁdcn

n=1

J ist eine unbekannte Konstante, iiber die wir an dieser Stelle keine genaueren
Angaben machen konnen. Wir konnen jetzt aber endlich die Integration ausfiihren,
da wir bei einem Produkt von GauB-Integralen angelangt sind. Als Ergebnis halten
wir fest:

/ D ¢ 1580 = Nem#57lwel (det M)~ (13)

Der Faktor N beinhaltet die Konstante J und die iibrigen Konstanten, die durch die
Integration auftreten. Mit det M ist das Produkt der Eigenwerte m,, des Operators
M gemeint. Einige Probleme, die bei der Berechnung der Determinante auftreten,
werden spater genauer diskutiert, wenn wir die Berechnung der Energieaufspaltung
im Doppelmuldenpotential betrachten. Unter anderem miissen wir das Problem be-
sprechen, dass einer der Eigenwerte 0 ist, so dass die gesamte Determinante ver-
schwinden wiirde (siehe dazu auch [1] oder [2]). Wir werden eine Formel nach Cole-
man kennen lernen, die die Bestimmung der Eigenwerte umgeht. Die Einfiihrung
dieser Formel folgt im Kapitel 3.2.

1.3 N&aherungsformel fiir Energieaufspaltung

Das Ziel dieser Arbeit ist, die Anwendbarkeit einer Naherungsformel fiir die Ener-
gieaufspaltung der untersten beiden Zusténde in einem symmetrischen Doppelmul-
denpotential, die auf der Pfadintegralmethode basiert, bei dem rechteckférmigen
Doppelmuldenpotential zu untersuchen. Die Néherungsformel findet sich in [3]:

AFE =~ 2/2):,; e~ Sl (14)

Das Integrationsmafl kann sich an dieser Stelle noch um konstante dimensionsbehaf-
tete Faktoren von dem aus (4) unterscheiden. Da wir aber ohnehin noch auf einen
unbekannten Normierungsfaktor zuriickgreifen miissen werden, soll uns das an dieser
Stelle nicht weiter storen. Das Pfadintegral geht dabei iiber alle Wege, die folgende
Randbedingungen erfiillen:

)=a (15)
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—a und a sind die Orte, an denen das Potential seine Minima hat. Anschlieffend
bildet man den Grenzwert T" — oo. Eine Begriindung dieser Formel findet sich zum
Beispiel in [5]. Grundlage ist das Ubergangsmatrixelement aus (1).

Aus dem vorigen Kapitel (siehe Gleichung (13)) wissen wir, wie das Pfadintegral in
semiklassischer Ndherung zu berechnen ist:

AE = 2h-e #5eld  (det M)™2 - N (16)

Der Normierungsfaktor N unterscheidet sich leicht von dem aus (13), weil ein Faktor
h eingefiigt wurde. Das ist unproblematisch, da N noch nicht nédher definiert ist, und
erleichtert an spéterer Stelle die Einfithrung einer weiteren Naherung. Der Weg z.(T)
ist die Kink-Losung. Um den ersten Term exp (—3Sg[z.]) zu berechnen, ist es jedoch
noch nicht nétig, die genaue Gestalt des Kinks zu kennen. Da wir ndmlich wissen,
dass z.(7) in der linken Mulde bei z = —a startet und gerade so viel Energie hat, die
rechte Mulde bei # = a zu erreichen, ist die euklidische Energie Er aus Gleichung
(8) null:

5:1502(7') —V(z.(1)) =0

Deswegen ist die Wirkung fiir den Kink wie folgt gegeben:

Sglzr.] = /dT {%xz +V(z.)} = /dT mi? :/ dx. mi, :/ dx \/2mV (x)

Die Néherungsformel fiir die Energieaufspaltung halten wir schliefflich in folgender
Form fest:

AE = 2hKe #1242V @ i | — N (det M) (17)

Interessanterweise taucht an dieser Stelle der Gamow-Faktor auf, der die Wahr-
scheinlichkeit angibt, dass ein Teilchen mit Energie Fr = 0 die Potentialbarriere
zwischen —a und a durchtunnelt. Zur Giiltigkeit der Néherungsformel gibt [3] an,
dass die Formel anwendbar ist, ,,...wenn AE hinreichend klein, bzw. Sg|x.] hinrei-
chend grof ist.“ (Kapitel 23.2.6: ,Beispiel: Energieaufspaltung®)



2 DAS RECHTECKPOTENTIAL

2 Das Rechteckpotential

Um ein exakt 1osbares Doppelmuldenpotential zu erhalten, wird in dieser Arbeit ein
kastenformiges Potential V' (x) betrachtet, dass folgende Form hat:

oo |z|>a+b
V() =<0 a<l|z|<a+b (18)
Vo —a<zx<a
Das Potential ist durch die Breite des Potentialwalls 2a und der Potentialmulden

2.5

0.5 D ] | ——_—

Abbildung 3: Rechteckpotential V(z) fira =1, b=2und Vj =1

b sowie der Hohe des Potentialwalls 1} vollspéndig charakterisiert. Ein Spezialfall,
der spater detailliert diskutiert wird, ist der Ubergang zu einem unendlich schmalen
und unendlich groflen Potentialwall (a — 0, Vj — oo und a - V) = const.).

2.1 Exakte Losung

Das Potential ist zeitunabhéngig, so dass die Wellenfunktionen ¢(z) aus der statio-
nédren Schrodingergleichung
Hop(x) = Ep(z) (19)

ermittelt werden kénnen, also Eigenfunktionen zum Hamiltonoperator

n* d?
H=——"— 2
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sind. Interessant sind die Zustéinde mit Energien, die kleiner als die Hohe des Poten-
tialwalls sind (0 < E' < V). Aufgrund der Symmetrie des Potentials V(z) = V(—x),
sind die Wellenfunktionen entweder symmetrisch oder antisymmetrisch:

pr) = p(=z)  oder  ¢(r)=—p(-x) (21)

Wegen der Unstetigkeiten des Potentials wird die Schrédingergleichung abschnitts-
weise gelost:

e Bereich I: —(a+0) <z < —a
e Bereich II: —a <z <a
e BereichIIl: a <z <a+b

Die Form der Wellenfunktion wird fiir die Bereiche einzeln ermittelt. Auflerhalb
der drei Bereiche ist das Potential unendlich grof}, so dass die Wellenfunktion dort
verschwindet.

Bereich I: Das Potential ist null. Die Schrodingergleichung nimmt folgende Form
an:

B o) = Bl (2) (22)
Die Losung ist bekanntlich:
1
¢! (1) = Asin (kx) + Bcos (kx) mit: k 1= EV 2mE >0 (23)

Bereich II: Das Potential ist konstant V' (z) = V4. Es ergibt sich:

B
“omda?”

1
= p'l(z) = Ce®™ + De %"  mit: q := ﬁ\/2m(Vo —FE) (25)

Bereich III: Es ist analog zum Bereich I:

(@) + Vop'! (z) = By (z) (24)

o' (z) = Fsin (kx) + G cos (kx) (26)

Die Integrationskonstanten A, B, C', D, F' und G sind noch zu bestimmen. Da
hier die Ausnutzung der Symmetrien die Rechnung verkiirzt, wird nun zwischen den
symmetrischen und den antisymmetrischen Zustédnden unterschieden.
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2.1.1 Symmetrische Zustinde

Durch die Symmetrie ¢(x) = ¢(—x) ergeben sich die folgenden beiden Bedingungen
fiir die eben aufgestellten Funktionen:

a) o' (z) = " (=z)  b)"(z) =" (—x) (27)

Aus a) folgt:

Asin (kx) + B cos (kx) = —F'sin (kx) + G cos (kx)
(A+ F)sin (kx) + (B — G) cos (kx) =0
= A=—-F und B=G

Fiir die Wellenfunktion aus (26) bedeutet das:
o (z) = —Asin (kz) 4 B cos (kx) (28)
Aus b) folgt:

Ce? + De ™ = (e % 4 Det®
(C—=D)e 4+ (D—-Cle =0
=(C=D

Im Bereich IT haben wir also eine Kosinus Hyperbolicus-formige Wellenfunktion:
¢! (x) = 2C cosh (qx) (29)

Drei der sechs gesuchten Konstanten konnten damit bereits eliminiert werden. Fiir
die beiden néchsten benutzen wir die Stetigkeit der Wellenfunktion an den Stellen,
an denen das Potential unstetig ist:

) ¢'(=(a+0)=0 d)¢'(-a)=¢"(~a) (30)
Aus c¢) folgt:

Asin (—k(a+b)) + Beos(—k(a+b)) =0
B = Atan (k(a + b))
Aus d) folgt:
A(sin (—ka) + tan (k(a + b)) cos (—ka)) = 2C cosh (—qa)
A(tan (k(a + b)) cos (ka) — sin (ka)) = 2C cosh (qa)

_ tan(k(a + b)) cos (ka) — sin (ka)
=4 2 cosh (qa)

Die Wellenfunktion ist nun bis auf die Normierung bestimmt:

¢ () = A(sin (k) + tan (k(a + b)) cos (kx)) (31)

10
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1, jtan(k(a+0b))cos (ka) — sin (ka)
o) =4 cosh (qa)

o (z) = —A(sin (kz) — tan (k(a + b)) cos (kx)) (33)
Ohne die genaue Rechnung sei noch der Normierungsfaktor A angegeben, den man
aus der Normierungsbedingung [ |¢(z)|?da = 1 erhélt:

cosh (qz) (32)

A=[b+ i(sin (2ka) — sin (2k(a + b))) + %tan (k(a 4+ b))(sin? (ka) — sin? (k(a + b)))

+ tan? (k(a + )b+ i tan? (k(a + b)) (sin (2k(a + b)) — sin (2ka))
N (tan (k(a + b)) cos (ka) — sin (ka)

cosh (qa)
Viel wichtiger ist die Bestimmungsgleichung fiir die erlaubten Werte von k£ bzw. die
erlaubten Energieniveaus. Dazu nutzen wir die Stetigkeit der ersten Ableitung der
Wellenfunktion an der Stelle z = —a. Das ist erlaubt, da der Sprung des Potentials
von endlicher Hohe ist. Es muss gelten:

d d

P @l = e @, (34)

)2(a + 2%] sinh (2qa))] 3

—a

tan (k(a + b)) cos (ka) — sin (ka)

= Ak(cos (kx) — tan (k(a + b)) sin (kx)) |I: =

Aq( cosh (qa) sinh (qx))|x:_a
k(cos (ka) + tan (k(a + b)) sin (ka)) = qSin (ka) = tir;s(}lf((zc:)— b)) cos (a) sinh (qa)
cos (ka) + tan (k(a + b)) sin (ka) _ gtanh (qa)

sin (ka) — tan (k(a + b)) cos (ka)

Im Prinzip ist das die gesuchte Bestimmungsgleichung fiir £, wenn man bedenkt,
dass ¢ nach Definition (25) direkt mit k& zusammenhéngt:

2
g= 1k (35)

Der Bruch auf der rechten Seite lasst sich mit Hilfe der Additionstheoreme fiir Sinus

und Kosinus aber noch vereinfachen:
cos (ka) + % sin (ka) _cos (ka) cos (k(a + b)) + sin (ka) sin (k(a + b))
sin (ka) — % cos (ka)  sin(ka)cos (k(a + b)) — sin (k(a + b)) cos (ka)
cos (ka — k(a + b))
snha —kat b)) L)
Wir halten schlieSlich folgendes wichtiges Ergebnis fest:

—k - cot (kb) = q - tanh (qa) (36)

11



2.1 Exakte Losung 2 DAS RECHTECKPOTENTIAL

Die Bestimmungsgleichung (36) ist eine Tabelle 1: Kleinste Losungen k& von
transzendente Gleichung, kann dement- Gl (36) und zugehorige Energien fiir
sprechend analytisch nicht nach k aufge- m=1,h=1,a=1,b=2,V, =38

16st werden. Nummerisch sind die Losun- ’ Index \ k ‘ E ‘
gen allerdings beliebig genau berechenbar. 0 1,39279160 | 0,96993422
In Tabelle 1 sind die niedrigsten drei Lo- 2 2,75942277 | 3,80720702
sungen dieser Gleichung zusammen mit der 4 3,96182647 | 7,84803447

zugehorigen Energie fiir ein Potential mit

Vo = 8 aufgetragen. Die Indizes sind 0, 2 und 4, weil die ungeraden Indizes fiir die
antisymmetrischen Zustédnde aufgehoben werden. Die Energie aller Zusténde ist klei-
ner als V{. Klassisch besteht demnach keine Méglichkeit, das Teilchen im Bereich des
Potentialwalls zu detektieren. Quantenmechanisch hat es dort eine endliche Aufent-
haltswahrscheinlichkeit, wie in Abbildung 4 zu erkennen ist. Dort sind die drei Wel-
lenfunktionen aufgetragen. Man sieht, wie die Aufenthaltswahrscheinlichkeit |¢(z)|?
mit zunehmender Energie im klassisch verbotenen Bereich gréfler wird. Auflerdem
ist zu erkennen, dass die Anzahl der Nulldurchgéinge der Wellenfunktionen gerade
so grof} wie der Abzéihlindex der Zusténde ist.

Lo

— B P —Py

Abbildung 4: Den in Tabelle 1 aufgetragenen Energien zugehorige Wellenfunktionen

12



2.1 Exakte Losung 2 DAS RECHTECKPOTENTIAL

2.1.2 Antisymmetrische Zustinde

Die Berechnung der antisymmetrischen Zusténde ist bis auf die Symmetriebedingung
o(x) = —p(—x) analog zu vorhin. Wir starten mit den Darstellungen (23), (25) und
(26). Aus

a) pl(z) = —¢"(=2)  b) " (z) = —p"(~2) (37)
folgern wir diesmal:
a) Asin (kz) + Bcos (kx) = —F'sin (—kx) — G cos (—kx)
Asin (kx) + B cos (kx) = Fsin (kx) — G cos (kx)
(A — F)sin(kx) + (B+ G)cos (kz) =0
=A=F und B=-G

Demnach ist nach (26):

o (z) = Asin (kz) — B cos (kx) (38)
b) Ce? + De % = —Ce % — De¥*
(C+ D)+ (D+Ce =0
=C=-D

Im Bereich II finden wir nach (25) den Sinus Hyperbolicus:
¢! (x) = 2C sinh (q2) (39)

Die Stetigkeitsbedingungen (30) gelten weiterhin.
Aus c¢) folgt:

Asin (—k(a+ b)) + Beos(—k(a+ b)) =0
B = Atan (k(a + b))

Aus d) folgt:

A(sin (—ka) + tan (k(a + b)) cos (—ka)) = 2C sinh (—qa)
A(tan (k(a + b)) cos (ka) — sin (ka)) = —2C'sinh (qa)
. sin(ka) — tan (k(a + b)) cos (ka)

=4 2sinh (qa)
Es ist also:
¢ () = A(sin (k) + tan (k(a + b)) cos (kx)) (40)
1, 4sin(ka) —tan (k(a + b)) cos (ka) sinh (aa
o1 () = A i b (gz) (41)
o (z) = A(sin (kz) — tan (k(a + b)) cos (kz)) (42)

13



2.1 Exakte Losung 2 DAS RECHTECKPOTENTIAL

Der Vollstéandigkeit halber sei der Normierungsfaktor angegeben:

A=[b+ i(sin (2ka) — sin (2k(a + b))) + %tan (k(a + b))(sin? (ka) — sin? (k(a + b)))

+tan? (k(a + b))b + — tan? (k(a + b))(sin (2k(a + b)) — sin (2ka))

2k
+

sin (ka) — tan (k(a + b)) cos (ka)
sinh (ga)

Wichtig ist aber erneut die Bestimmungsgleichung fiir die erlaubten k. Sie folgt aus

(34):

)2(—a + 2%] sinh (2qa))] ~:

= Ak(cos (kz) — tan (k(a + b)) sin (km))‘x:_a -
Aq(sm (ka) — tan (k(a + b)) cos (ka)

cosh (qx)) ‘x: .

sinh (qa) -
k(cos (ka) + tan (k(a + b)) sin (ka)) = qsm (ka) = ti?lf:ga—; b)) cos (ka) cosh (qa)
cos (ka) 4 tan (k(a 4 b)) sin (ka) 1

sin (ka) — tan (k(a + b)) cos (ka) Ttanh (ga)

Auf der linken Seite steht das Gleiche, wie bei der Berechnung der Bestimmungs-
gleichung fiir den symmetrischen Fall (36) auftaucht. Auf der rechten Seite steht
diesmal allerdings das Inverse des Tangens Hyperbolicus:

—k - cot (kb) = q- coth (qa) (43)

Die niedrigsten drei Losungen der Bestim- Tabelle 2: Kleinste Losungen £k von
mungsgleichung sind in Tabelle 2 darge- Gl. (43) und zugehorige Energien fiir
stellt, nummeriert diesmal mit ungeraden m=1 h=1,a=1,b=2, V=8

Indizes. Die Abbildung 5 zeigt die zugehd- | Index | k \ E |
rigen Wellenfunktionen. Im Gegensatz zu 1 1,39311045 | 0,97037836
den symmetrischen Zustédnden verschwin- 3 2,76202979 | 3,81440428
det die Wellenfunktion und damit die Auf- 5 403665440 | 8,14728939

enthaltswahrscheinlichkeit bei x = 0 génz-
lich. Die Indizierung wird verstandlich, wenn man die Energien der antisymmetrisch-
en Zustdnde mit denen der symmetrischen aus Tabelle 1 vergleicht. Der Zustand ¢
liegt energetisch zwischen den Zustédnden ¢y und o, der Zustand @3 zwischen o
und 4, usw. Auflerdem entspricht die Indizierung genau wie bei den symmetrischen
Zustanden der Anzahl der Nulldurchgéinge der Wellenfunktionen. Angemerkt sei,
dass der Zustand @5 energetisch iiber V4 liegt und wegen Gleichung (25) die Wel-
lenfunktion im Potentialwall wie in den anderen Bereichen die Form einer ebenen
Welle hat, da ¢ imaginir wird.

Vergleicht man Tabelle 2 mit Tabelle 1, féllt auf, dass der Abstand der Energien zwi-
schen einem antisymmetrischen Zustand und dem darunter liegenden symmetrischen

14



2.1 Exakte Losung 2 DAS RECHTECKPOTENTIAL

w4

— O — Py — P
Abbildung 5: Den in Tabelle 2 aufgetragenen Energien zugehorige Wellenfunktionen

Zustand gering ist, wie man es bei einem Doppelmuldenpotential erwartet. Insbeson-
dere beschiftigt sich diese Arbeit mit der Energieaufspaltung AE = F; — Ej (siehe
Kapitel 1.1). Thre Abhéngigkeiten von den Potentialparametern werden im folgen-
den Kapitel genau untersucht, um die in der Einfiihrung gemachten Behauptungen
iiber die grundlegenden Eigenschaften symmetrischer Doppelmuldenpotentiale zu
verifizieren.

15



2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

2.2 Energieaufspaltung

Bei symmetrischen Doppelmuldenpo-
tentialen mit endlich hoher Barriere er-
warten wir eine Energieaufspaltung zwi-
schen den symmetrischen und antisym-
metrischen Zustdnden. Durch Losen der
stationdren Schrédingergleichung kon-
nen wir diese Aufspaltung beim Recht-
eckpotential mit Hilfe der Gleichungen
(36) und (43) beliebig genau berechnen.
In diesem Kapitel wird das Verhalten
der Energieaufspaltung genauer unter-
sucht. Schauen wir uns an, was passiert,
wenn die Hohe der Potentialbarriere Vj R
groBer wird. In Abbildung 6 ist die Ener- //
gie der ersten vier Zustdnde in Abhén-

gigkeit von der Hohe der Potentialbar- v
riere Vj aufgetragen. Man erkennt, wie —#,— —E,— &)
die Energieaufspaltung zwischen Ey und E
Ey bzw. zwischen E; und E3 mit gro-
Ber werdendem V[, immer geringer wird.
Beachtet man, dass die Aufspaltung eng
mit dem Tunneleffekt zusammenhéangt,
ist dieses Verhalten nicht verwunderlich, schliellich wird die Tunnelwahrscheinlich-
keit durch die Barriere mit zunehmender Hohe geringer. In Abbildung 7 ist die Ener-
gieaufspaltung zwischen Grundzustand und erstem angeregten Zustand AE gegen
Vo aufgetragen. Im rechten Bild ist AF logarithmisch gegen die Wurzel aus der Bar-
rierenhohe /V abgebildet. Dort ist ein weitestgehend lineare Zusammenhang zu
erkennen. Nur fiir sehr kleine Vj erkennt man eine leichte Kriimmung in der Kurve.
Das deutet darauf hin, dass ndherungsweise

Abbildung 6: Eigenenergien der vier nied-
rigsten Zustiande gegen Vo (m =1, h=1,
a=1,0=2)

AE ~e ¢V C'=const. (44)

ist. Wir werden sehen, ob sich dieses Verhalten mit der Pfadintegralmethode erkléren
ldsst. Zu aller erst schauen wir uns aber an, was mit der Energieaufspaltung passiert,
wenn wir den semiklassischen Fall betrachten, also dass gilt:

SmVya?

72
Wie dieser Term genau zu Stande kommt, wird sich in der spéateren Berechnung der
Energieaufspaltung mit Hilfe der Pfadintegralmethode zeigen. Vorweg sei erwahnt,
dass er sich aus der Bedingung ergibt, dass Sg|x.] grol wird. Betrachten wir zuerst,

was fiir diesen Fall aus der Bestimmungsgleichung (36) bei symmetrischen Zusténden
wird. Auf der rechten Seite steht der Tangens Hyperbolicus. Sein Argument wird

> 1 (45)
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

012+

0.10

008 — 001+

AE AE
0.06
004 —
0.001
0.

0.2

T T T T T T T T T 1 ! T T T !

1 2 3 4 5 6 7 3 s 10 ! LS 2 25 3

vy VA
(a) Linear (b) Logarithmisch

Abbildung 7: Energicaufspaltung AE gegen Vo bzw. Vo (m =1, h =1, a = 1,
b=2)

nach (45) sehr grofl. Driickt man tanh z durch die Exponentialfunktion aus, erhalt
man durch eine Taylor-Entwicklung
_ e—2x )
tanhe = ———~1—-2-¢
anhr = 77— e,

da e™? sehr klein wird. Gleichung (36) wird damit zu:

2 2mVpa?
—k- cot (kb) ~ 1/ ﬂ;;/o—kQ-(l—QeXp(—2\/ m;fa — k2a2))

2mVj 8mVya? SmVya?

—k - cot (kb) =~ T k2 (1 —2exp(— T)) da 2 > k*a?
2mV, 8mVya? 2mW
—k - cot (kb) ~ 2 0. (1—2exp( hzo )) da 72 0> k2

Man erkennt, dass die rechte Seite der Gleichung sehr groff wird. Dementsprechend
muss auf der linken Seite der Gleichung der Ausdruck cot (kb) grofi werden. Das
passiert, wenn das Argument von unten gegen ein Vielfaches von 7 geht. Deswegen
schreiben wir k& = k, = % + 0kjs mit einer ganzen Zahl j und |0k;s| < 1. Zu
beachten ist, dass j hier nicht mit der Indizierung der Zusténde aus den vorigen
Kapiteln identisch ist. Wiederum durch Taylor-Entwicklung ergibt sich:

cot (ksb) = cot (mj + 6k;sb) ~

0k;sb
Einsetzen liefert einen Ausdruck fiir dk;,:
J 1 2mVy 8mVpa?
— (=2 + 6k;, = (1= 2exp (—y) —2
( b + J )6k7]3b h2 ( exp( h2 ))

17



2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

] 2mVj ImVpa? 1
= ) OTYOT Yy 1y 2
Sir e Gy )= oy

i [2mVg 8mVya? 1,21
e = T2 [y 22 2ep () 1) - ]

Eine vollig analoge Rechnung fiir antisymmetrische Zusténde liefert aus Gleichung
(43) mit k =k, = 7 + 0kjq:

(46)

i [2mVy 8mVpa? 1,21
(Skja:b_Q[ h2 72 )_1)_5]

Jetzt sind wir in der Lage, die Energieaufspaltung zu berechnen, wobei die quadra-
tischen Terme von 0k;s; und 0k;, vernachlissigt werden:

(47)

(—2exp (—

2
AE = n — (k2 — k?) ~

2m

h2mj
2 (0kjq — Okjs) (48)

Um die Rechnung zu verkiirzen, definieren wir:

_ /QmVO /8mV0a2) B=_ 2mVO_1
- h? - h? b

] 1 mj 1
M”:§“A+B %= B4 (49)

Einsetzen von (49) in (48) fuhrt auf:

R2r22 1 1
AE~ mb3 '(B—A_ B+A>
R2r2i2 24
AE~ mb3 B2 — A?

N hzﬁzja 2.2 2mV° exp (—4/ 8"1%#&2)
o QmVo 8mVy _ smW 9, /8mVaa?
+ h2b2 + hQ eXp ( TL—2)

Im Nenner des zweiten Bruches ist der Term 2mV;/h? dominierend, so dass wir die
restlichen Terme vernachléssigen. Damit erhalten wir folgendes kompaktes Ergebnis
fiir die Energieaufspaltung des ersten symmetrischen und ersten antisymmetrischen
Zustands (j = 1):

~ _ 8mV20a2 5 7T2h2 8
AFE = 2hK - n it: K = \/5— 20
his-e o 2mb3 \ Vom (50)

Wir sehen, dass sich unser Ergebnis aus (44) bestétigt. Die Energieaufspaltung
nimmt exponentiell mit 1/V} ab. Der Vorfaktor C' kann abgelesen werden:

8ma?

h?

C = (51)
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2.2 Energieaufspaltung 2 DAS RECHTECKPOTENTIAL

AE o AE
005
10°f

; ‘ ‘ ‘ ‘ .

H 10 15 20 23 0 —
v, e

— Exakt — Niherung — Exakt — Néherung
(a) Linear (b) Logarithmisch

Abbildung 8: Energicaufspaltung AE gegen Vo bzw. Vo (m =1, h =1, a = 1,
b=2)

In Abbildung 8 ist das Ergebnis aus Gleichung (50) und die exakte Energieaufspal-
tung gegen die Barrierenhohe Vj aufgetragen. Man erkennt deutlich, wie sich bei
grofler werdendem Vj beide Kurven annéhern. Das geschieht so rasch, dass ab Wer-
ten von ungefihr V5 > 5 die beiden Kurven bei linearer Auftragung gar nicht mehr
unterscheidbar sind.

Uberraschenderweise kénnen wir im Vorfaktor K die Energie EF'” des Grundzustan-
des des unendlich tiefen Potentialtopfs der Breite b finden:

(52)
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2.3 Grenzfall: )-formiges Potential 2 DAS RECHTECKPOTENTIAL

2.3 Grenzfall: )-féormiges Potential

Ein interessanter Spezialfall eines Doppelmuldenpotentials, der in diesem Unterka-
pitel betrachtet wird, ist der Ubergang zu einem deltafunktionsartigen Potential.
Dazu muss beim Rechteckpotential folgender Grenzwert gebildet werden:

a—0 Vo — o0 2aVy = D = const. (53)

Es soll an dieser Stelle erwéhnt sein, dass dieser Grenzfall nicht dem semiklassischen
Grenzfall entspricht, in dem wir gute Ergebnisse durch die Néherungsmethode er-

warten. Dafiir muss der Term
8SmVya?®

hZ

> 1 (54)

sein. Hier ist aber:
8SmVya?  4mD

P —0 (55)
Das Potential hat nach der Grenzwertbildung folgende Gestalt:
>b
V) ={% e (56)
D-§(z) |x|<b

Taucht die Deltafunktion in einem Potential auf, muss man sich Gedanken iiber die
Stetigkeit der Wellenfunktion und ihrer Ableitung an dieser Stelle machen. Dazu
integriert man die stationére Schrodingergleichung iiber ein kleines Intervall [—¢, €]
um die Stelle x = 0. Anschlieflend lédsst man e gegen 0 gehen.

h2 €
“om | de d +/ Dé(z)p(z)dx = /gp(x)dx

—&

Wegen der Normierbarkeit der Wellenfunktion muss die rechte Seite der Gleichung
verschwinden, da ¢(x) in dem betrachteten Intervall nicht divergieren kann. Auf der
linken Seite konnen wir die Integration durchfiihren:

_ﬁ_Q(dw(x)‘ _dyp(z)
2m " dx 'T=¢ dx

Lasst man nun € gegen 0 gehen, kann man die beiden Terme, die die Ableitung der
Wellenfunktion enthalten, mit der rechtsseitigen bzw. linksseitigen Ableitung an der
Stelle 0 identifizieren:

l,_.) T Dp(0) =0

5 (@)~ F @), ) + Dp(0) =0 (57)

Man kann an dieser Gleichung erkennen, dass die Ableitung der Wellenfunktion
unstetig an der Stelle z = 0 ist, wenn die Wellenfunktion dort nicht gleich 0 ist. Da
wegen der Normierbarkeit ¢(0) aber nicht unendlich grof sein kann, ist der Sprung
der Ableitung auch nur endlich grof}, so dass die Wellenfunktion stetig sein muss.
Mit diesem Wissen konnen wir die Schrédingergleichung l6sen. Dazu teilen wir den
Abschnitt, in dem die Wellenfunktion nicht verschwindet, wieder in Bereiche auf:
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2.3 Grenzfall: )-formiges Potential 2 DAS RECHTECKPOTENTIAL

e BereichI: -6 <2 <0
e Bereich II: 0 < 2 <b

In beiden Bereichen ist das Potential null. Die Losung hierfiir kennen wir:
Bereich I: o(x)! = Asin (kx) + B cos (kz) (58)
Bereich II: ¢(x)" = C'sin (kz) + D cos (k) (59)

2.3.1 Symmetrische Zustinde

Machen wir uns zuerst wieder die Symmetrie zunutze: ¢! (z) = ¢! (—x)

= Asin (kx) + Bcos (kz) = —C'sin (kx) + D cos (kx)
(A+ C)sin (kx) + (B — D) cos (kx) =0
=A=-C ud B=D

An der Stelle z = —b muss die Wellenfunktion verschwinden:

Asin (—kb) + B cos (—kb) =0

B = Atan (kb)
Nun kennen wir die Wellenfunktion:
o(z)! = A(sin (kz) + tan (kb) cos (kx)) (60)
()" = —A(sin (kz) — tan (kb) cos (kz)) (61)
Die Normierung ergibt:
2 .9 1 . 2 1 2 . _1
A=1[b— z tan (kb) sin® (kb) — o Sin (2kb) + b- tan” (kb) + DY tan® (kb) sin (2kb)] 2

Beim Rechteckpotential haben wir die Stetigkeit der Ableitung der Wellenfunktion
ausgenutzt, um die erlaubten k zu finden. Jetzt benutzen wir die Unstetigkeit der
Ableitung und Gleichung (57). Dazu identifizieren wir:

dp' (x)
gpl ('r) ‘m\j) - dx |

I
=—-Ak und ¢'(z)| dp ()

=0

0 dx ‘x:() = Ak (62)

Mit ¢(0) = Atan (kb) folgt:
h2
—%(—Ak — Ak) + DAtan (kb) =0

2

h
~k+ Dtan (kb) =0
m
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2.3 Grenzfall: )-formiges Potential 2 DAS RECHTECKPOTENTIAL

Dm
h2
Die Richtigkeit dieser Gleichung kénnen wir mit den Ergebnissen von vorhin veri-
fizieren. Sie muss aus Gleichung (36) hervorgehen, wenn man den Limes aus (53)
durchfiihrt. Dazu betrachten Wir die rechte Seite der Gleichung (36) und benutzen
die Reihenentwicklung tanh(x) =z + O(x

2mV0

k- cot (kb) = — (63)

k2 - tanh ( vao

— k%a) =

2 D
\| —5— mVo - tanh ( met k2a?) =

2 D
\/ mVO —kQ.\/mh2a —k2a2—|—(’)(a%) =

q - tanh (qa)

72
2mV mDa
\/ hQO—kQ- 72 + O(a) =
m2D?  E2mD
e o=
Dm Dm

D
= —k- cot (kb) = h_gn analog zu Gleichung (63)!

In Abbildung 9 ist die Aufenthaltswahrscheinlichkeit des Grundzustands des -
Potentials fiir b = 3 und D = 8 eingezeichnet. Man erkennt den Knick der Funktion
am Ort des 0-Peaks. Auflerdem sind die Aufenthaltswahrscheinlichkeiten der fiinf
Grundzustiande des Rechteckpotentials bei unterschiedlicher Potentialwallbreite a
und -hohe Vj eingezeichnet, wobei das Produkt D = 2aV, = 8 und die Breite
a+b = 3 konstant gehalten ist. Man erkennt, dass je schmaler und héher der Poten-
tialwall wird, der Grundzustand des Rechteckpotentials sich dem des d-Potentials
immer weiter anndhert. Fiir Vy wurden folgende fiinf Werte verwendet: 3, 4, 8, 16,
32. AuBlerdem wurde der Einfachheit halber bei der Berechnung der Zusténde A und
die Masse m gleich 1 gesetzt.

2.3.2 Antisymmetrische Zustinde

Betrachten wir nun die antisymmetrischen Wellenfunktionen. Die selbe Rechnung

wie im vorigen Kapitel nur mit der Symmetriebedingung ¢(x) = —¢(x) fihrt auf
folgende Wellenfunktion:
¢(z)! = A(sin (kz) + tan (kb) cos (kx)) (64)
o(x)" = A(sin (kx) — tan (kb) cos (kx)) (65)
Betrachten wir Gleichung (57) und setzen
‘Pl(@‘x\o - d@;;(lﬂ) oo = Ak und 90/(x)’mfo - d@;x(l”) oo = Ak (66)
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Abbildung 9: Ann#herung des Grundzustandes des Rechteckpotentials an den des
0-Potentials

ein:
h2
_Z_(Ak Ak) 4+ Dp(0) =0
©(0) =0 = Atan (kb) =0

Die Bestimmungsgleichung fiir k ist also einfach:

tan (kb) =0 (67)

Deren Losung kénnen wir ausnahmsweise mal direkt hinschreiben: k = %*, wobei n
eine ganze Zahl sein muss. Die Losung k£ = 0 ist allerdings physikalisch nlcht sinnvoll,
da dann die gesamte Wellenfunktion verschwindet. Die Wellenfunktion ist nach (67)
einfach

o(x) = A- sin (kx) mit: A = \/% (68)

und entspricht damit den antisymmetrischen Zusténden des unendlich tiefen Po-
tentailtopfs der Breite 2b. Schliefilich machen wir noch den Konsistenzcheck und
tiberpriifen, ob (67) aus (43) hervorgeht:

q- coth (qa) = 4/ 27;;‘/0 k2 - L =
tanh (y/22% — k%a?)
\/W
mDa 4 O )

23
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ZmVO _1
\/ mDa +0(a"2) =

——|—(’)(a %)—>oo

1
= —k- cot(kb)—>oo:>ztan(kb):0

= tan (kb) = 0 analog zu Gleichung (67)!

In Abbildung 10 ist die Aufenthaltswahrscheinlichkeit des energetisch niedrigsten
antisymmetrischen Zustands fiir b = 3 und D = 8 eingezeichnet. Die Wahrschein-
lichkeit, das Teilchen am Ort des J-Peaks zu finden, ist hier null. Wie bei dem
Grundzustand ist zu erkennen, wie sich der energetisch niedrigste antisymmetrische
Zustand des Rechteckpotentials an den des d-Potentials anschmiegt, wenn der Po-
tentialwall schmaler und héher gemacht wird. Die gewédhlten Werte fiir V4 sind hier:
2, 4, 8, 16, 32. Auflerdem ist erneut h = 1 und m = 1. Zu guter Letzt schauen
wir uns noch die Energien der untersten vier Zustdnde bei Variation von D = 2al}
an. Abbildung 11 zeigt die Energie bei Erhohung von D. Die Energie der antisym-
metrischen Zustdnde ist nach (67) vollig unabhéngig von D, so dass E; und FEj
konstant sind. Die Energie der symmetrischen Zustéande steigt hingegen mit D und
nahert sich der Energie des néchst hoheren antisymmetrischen Zustands.

[ T I T I T T I T I T 1
-3 -1 -1 i] 1 2 3

X

|— Rechteckpotential — Delta—Potential|

Abbildung 10: Anndherung des untersten antisymmetrischen Zustands des Recht-
eckpotentials an den des d-Potentials
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2.3 Grenzfall: )-formiges Potential 2 DAS RECHTECKPOTENTIAL

T T T T T T T T T T T T T T T T T T T T T T T T T ]
10 20 30 40 50 60

D
_Eo _El —5 _Ea

Abbildung 11: Eigenenergien der vier niedrigsten Zusténde gegen Vo (m =1, A= 1,
b=2)
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3 NAHERUNGSMETHODE

3 Naherungsmethode

Das Rechteckpotential wurde in den vorigen Kapiteln mit Hilfe der Schrédingerglei-
chung untersucht. Insbesondere haben wir die Energieaufspaltung exakt berechnet,
wissen also, was wir von der Naherungsmethode erwarten sollten. In diesem Ka-
pitel wird die Pfadintegralmethode auf das reckteckférmige Doppelmuldenpotential
angewendet. Bei der Berechnung der Determinante des Operators M wird sich zei-
gen, dass wir Probleme mit den Unstetigkeiten des Potentials bekommen werden.
Deswegen muss das rechteckférmige Potential zuvor durch geeignete quadratische
Funktionen an den betreffenden Stellen stetig differenzierbar approximiert werden.
Zuerst beginnen wir jedoch mit der weitaus einfacheren Berechnung des fithrenden
Terms der Naherungsformel.

3.1 Fiihrender Term: Gamow-Faktor

Der fithrende Term der Naherungsformel (17) ist der Gamow-Faktor:
e—%SE[xC] _ e—%ffa \/2mV (z) dz (69)

Prinzipiell besteht fiir das rechteckférmige Potential hier das Problem, dass die Mul-
den keinen ausgezeichneten Punkt besitzen, an dem das Potential das Minimum
annimmt, da die Mulden aus einem Bereich der Breite b bestehen, in dem V' (z)=0
ist. Fiir die Berechnung von (69) ist es aber sinnvoll, den Muldenort an die Rander
der Potentialbarriere —a und a zu legen, da bei der Kink-Loésung die euklidische
Energie Fr null ist. Das bedeutet, dass das Teilchen in dem Potential vor dem Ort
—a bzw. hinter a keine Geschwindigkeit hat. Die Vorstellung ist also, dass sich das
Teilchen eine Zeit lang am linken Barrierenrand bei —a befindet, zu einem beliebi-
gen Zeitpunkt die Barriere durchtunnelt und sich anschliefend fiir immer am rechten
Barrierenrand bei a authilt. Fiir das Integral ffa V/2mV (z) dx ist es ohnehin un-
erheblich, wo genau im Muldenbereich das Teilchen startet, weil das Potential erst
im Intervall —a < x < a ungleich null ist. Das Integral zu 16sen, ist trivial. Das
Potential ist im Intervall konstant: V' (z) = V}

/ V2mV (z)dx = \/2mV, dx = /2mV}y - 2a = /8mVjya?

Wir finden fiir die Energieaufspaltung:

87nVOa2

AE =2hK e V7 (70)

3.2 Vorfaktor K

Der Vorfaktor K wird in dieser Arbeit mit einer Formel nach Coleman berechnet,
wie sie zum Beispiel in [1] oder in [4] zu finden ist. Diese Einfiihrung richtet sich
nach der Darstellung aus dem Buch von Coleman [1]. Halten wir zunéchst noch
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3.2 Vorfaktor K 3 NAHERUNGSMETHODE

einmal fest, was genau zu berechnen ist. K beinhaltet die Beitrage des euklidischen
Pfadintegrals, die durch die Variation des Weges um den Kink, als Losung der eu-
klidischen Bewegungsgleichung, entstehen. In Kapitel 1.2.2 wurde gezeigt, dass sich
diese Beitrdge durch die Determinante eines Operators M quantifizieren lassen. Die
Determinante ist das Produkt der Eigenwerte der Eigenwertgleichung (12). M wirkt
auf die Funktionen y(7), die im Unendlichen verschwinden miissen, da tiber alle We-
ge (1) = z.(7) + y(7) integriert wurde, wobei der Kink z.(7) nach Voraussetzung
die Randbedingung der Néherungsformel (15) bereits erfiillt. Die bei der Berechnung
verwendete Formel besagt nun, dass gilt:

S, [det! M\ 2
= 1
2rh-m (det MO) (1)

Nl

K =N (det M)~

Mit det’ M ist das Produkt der Eigenwerte von M bis auf den Eigenwert 0 gemeint.
My ist ein von M abgeleiteter Operator und hat folgende Form:
d?

_ 2
My = —mos + mw (72)

w ist durch die Kriimmung des Doppelmuldenpotentials an den Muldenorten defi-
niert:

mw? =V"(—a) = V"(a) (73)
S, ist die euklidische Wirkung der Kink-Losung.
Im Gegensatz zu [1] ist hier m und w nicht gleich 1 gesetzt, so dass sich einige
Ausdriicke leicht unterscheiden. Die Herleitung dieser Formel, kann und soll im
Rahmen dieser Bachelorarbeit nicht gédnzlich reproduziert werden. Auf die wesentli-
chen Aspekte wird an dieser Stelle aber kurz eingegangen. Betrachten wir zunéchst
das schon mal angesprochene Problem der Nullmode yo(7), also der Eigenfunktion
von M mit Eigenwert 0, die dazu fiihrt, dass das Pfadintegral aus Gleichung (13)
ohne einen unendlich kleinen Normierungsfaktor N divergieren wiirde. Aulerdem
verschwinde die Determinante von M génzlich. Die erste Frage ist nun, ob die-
se Nullmode iiberhaupt existiert. Das lasst sich zeigen, wenn man die euklidische
Bewegungsgleichung (7) einmal nach 7 differenziert:

d? oV'(x.) dzx,

mo g tel(T) = ox dr

dr3
d2 . // .
—m—=1.(7) + V"' (x.)2:(T) = 0
dr?

Mi.(t) =0
z. erfiillt die nétigen Randbedingungen der Eigenwertgleichung, da z. asymptotisch
gegen die Muldenorte konvergiert. Die Nullmode entspricht also bis auf Normierung

der Geschwindigkeitsfunktion des Kinks im euklidischen Raum. Die Normierung
ergibt unter Beriicksichtigung von (8) mit EFr = 0:

[ #mar =2 5w =\ [gad) (74)
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Die Nullmode existiert und es gilt die eben erwéhnten Probleme zu beriicksichtigen.
Coleman zeigt, dass man in der Determinante den Eigenwert 0 weglassen kann, wenn
man stattdessen den Faktor \/S./(2whm) zu K multipliziert.
Negative Eigenwerte kénnen nicht auftreten. Coleman zeigt das dadurch, dass ,,...die
Eigenfunktion eines eindimensionalen Schrodingeroperators mit dem niedrigsten Ei-
genwert keine Moden besitzt (aus [1], Kapitel: 7.2.2:  The double well and instan-
tons*, Ubersetzung vom Verfasser). Da i.(7) keine Nullstellen hat, sondern nur in
den Grenzen gegen 0 konvergiert, ist der zugehorige Eigenwert 0 der niedrigste Ei-
genwert im Eigenwertspektrum.
Als néchstes eliminiert Coleman den Normierungsfaktor NV, in dem er sich ein Po-
tential mit nur einer Mulde anschaut. Der Weg, der betrachtet wird, ist der, bei dem
das Teilchen zu allen Zeiten in der Mulde ruht. Es ist also z. = 0 und aus V" (x,)
wird eine Konstante. Fasst man das Doppelmuldenpotential als Potential mit zwei
Einzelmulden bei x = +a auf, gelangt man zur Konstante w. Durch einen Vergleich
zwischen Einzelmulden- und Doppelmuldenpotential kann Coleman die Normierung
durch die Determinante des Operators M, ausdriicken. Es muss lediglich mit der
Wurzel aus der Determinante von My multipliziert werden.
Um nun den Ausdruck

det’ M

det MO

zu berechnen, bedient sich Coleman der Gefand-Yaglam-Methode zur Berechnung
der Determinante eines Differentialoperators und entwickelte die Coleman-Affleck-
Methode, mit deren Hilfe (75) n&dherungsweise berechnet werden kann. Es gilt:

(75)

det' M 1 1 S
det My  mw2(y/(m/S,)A)?2  2mPwA?

Die Konstante A ist durch die erste Ableitung des Kinks nach 7 definiert:

Yo(T) = |4 /%a’cc(ﬂ — 4 /%Ae_‘"“| fir 7 — o0 (77)

Damit vereinfacht sich die Formel (71) zu:

(76)

mw

K= ,/=
7h

A (78)
Zur Qualitét dieser Naherungsformel kénnen wir an dieser Stelle keine exakten An-
gaben machen. Ihre Untersuchung am Beispiel des rechteckférmigen Doppelmulden-
potentials ist eben deshalb der Gegenstand dieser Arbeit. Fiir stetig differenzierbare
Potentiale (zum Beispiel das Potential V(x) ~ (22 — a?)?, wie es in Abbildung 1 zu
sehen ist) liefert die Methode aber sehr gute Resultate (siehe zum Beispiel [2]). Man
kann vermuten, dass das rechteckférmige Potential durch seine Unstetigkeiten fiir
Probleme sorgt. Der Operator M enthélt die zweite Ableitung des Potentials. An
dieser Stelle wiirden also Ableitungen der J-Funktion auftauchen. Um das zu ver-
meiden, wird das Potential zuerst regularisiert, wir sorgen also durch eine geeignete
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Approximation dafiir, dass es stetig differenzierbar wird. Anschliefend berechnen
wir fiir diese Approximation die Kink-Losung und damit den Vorfaktor K. Ganz am
Ende bilden wir den Grenzwert, bei dem sich die Approximation des Potentials an
die rechteckige Form des urspriinglichen Potentials anschmiegt, und schauen, was
sich fiir K ergibt. An dieser Stelle werden wir sehen, ob die Methode nach Coleman
fiir das Rechteckpotential ein gutes Ergebnis liefert. Bis dahin miissen wir aber noch
ein bisschen rechnen.

3.2.1 Potential anpassen

Das Potential soll an den Orten x = —a und x = a stetig differenzierbar sein. Da-
zu approximieren wir unser Rechteckpotential in den Intervallen [—a, —a + 2] und
[a — 2¢, a] durch quadratische Funktionen. Im Grenzwert ¢ — 0 soll das urspriing-
liche Rechteckpotential reproduziert werden kénnen. Die quadratischen Funktionen
sollen die Bedingung erfiillen, dass an den Rédndern der Intervalle die Steigung ver-
schwindet, so dass zwischen den Intervallen das Potential als konstant angenommen
werden kann. Dazu teilen wir die Potentialbarriere in fiinf Abschnitte ein (siehe dazu
auch Abbildung 12):

Bereich I: —a<zx < —-a+¢

Bereich II: —a+ e <z < —a+ 2¢

Bereich III: —a+2e <z <a-—2¢

Bereich IV:a - 2e <z <a-—c¢
e Bereich V:ia—e¢<z<a

Bereich I: Das Potential ist eine nach oben gedffnete Parabel, die um a nach links
verschoben ist:

Vi(z) = oo+ a) (79)

Der Vorfaktor sorgt dafiir, dass VI(—a +¢) = V,/2 ist.
Bereich II: Hier ist das Potential eine nach unten getffnete Parabel, die um —a+2¢
nach links und um V4 nach oben verschoben ist:

Vi) = —5 (o + (0~ 22) + Vo (80)

Durch den Vorfaktor gilt VI(—a + €) = V;/2. Automatisch ist die Ableitung an
dieser Stelle stetig.
Bereich III: Das Potential ist in diesem Bereich konstant.

VI (z) =V (81)

Da die Parabel aus Bereich II ihren Scheitelpunkt bei —a + 2¢ hat, verschwindet
dort ihre Ableitung, so dass wir durch eine konstante Funktion im Bereich III nicht
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‘— Bereich I— Bereich IT Bereich IIT — Bereich IV — Bereich V‘

Abbildung 12: Approximation des umgedrehten Potentials —V (z) fiir ¢ = 0,25 mit
Vo=1,a=1und b=2)

die Stetigkeit der Ableitung verletzen.
Bereiche IV und V: Das Potential ergibt sich hier analog zu den Bereichen I und
II, nur dass die Parabeln nach rechts verschoben sind:

VIV () _21;(95 ~(a—29)) + Vi (82)
VV(z) = 21602(37 —a)? (83)

In Abbildung 12 ist der approximierte Potentialwall aufgezeichnet. Er steht auf dem
Kopf, um anzudeuten, dass wir uns im euklidischen Raum befinden, in dem sich ein
Teilchen bekanntlich durch das Potential —V (z) bewegt (siehe Kapitel 1.2.1). Geht
e — 0, werden die Bereiche I, II, IV und V immer schmaler, die Parabeln werden
steiler und die Approximation néhert sich der rechteckigen Form des urspriinglichen
Potentials an.

3.2.2 Kink-Losung (Instanton)

In diesem Kapitel wird nun der Kink fiir die Approximation aus dem vorigen Kapitel
berechnet. Weil diese abschnittsweise definiert ist, muss der Kink fiir alle Abschnitte
einzeln gefunden werden. Anschlieend werden wir die einzelnen Losungen stetig an-
einander fiigen. Die Stetigkeit der Ableitung des Kinks ist dann automatisch erfiillt.
Prinzipiell ergibt sich der Kink aus Gleichung (9). In dieser Formel steckt allerdings
die Randbedingung z.(79) = 0. Der Nulldurchgang findet bei unserem Potential im
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3.2 Vorfaktor K 3 NAHERUNGSMETHODE

Bereich 1T statt. Das heifit, dass nur dort die Randbedingung in dieser Form benutzt
werden kann. Um den Kink in den anderen Bereichen zu berechnen, werten wir die
Differentialgleichung (9) dort zu erst ohne Randbedingung aus. Das fiithrt dazu, dass
eine Integrationskonstante auftritt, die im Nachhinein durch Stetigkeitsbedingungen
durch 7y ausgedriickt wird.

Bereich I: Zu l6sen ist die Differentialgleichung:

/m:ﬁ/ﬁ(m (84)

In diesem Bereich ist V(z) = ). Wegen —a <z < —a+cist z+a>0.
| me?
= T = / dx +C
VO T+ a
—27 (x+a)+C
me

1%
r+a=exp(4/ mgz(T —-C")

Mit 7§ = C”, um anzudeuten, dass die Integrationskonstante die Freiheit beinhaltet,
den Kink beliebig auf der 7-Achse zu verschieben, finden wir schliefSlich:

v'(1) =exp(\/ — (T — 1)) —a (85)

Bereich II: Esist V(z) = VI (x).

N e/ / dz +C
\/1 L(z+a— 2¢)?

52

Substitution: z = (z+a—2) = dr =2 dz

dz+C
\/ i /\/7
T = HTOMC81HZ+C/

E(T _ C///)

me?

arcsin (——(z +a — 2¢)) =

\/_5

Nun schreiben wir analog 707 = C"” und es ist:

(1) = Ve - Sm(”w‘g (1 —7h) —a+ 2 (86)
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Bereich III: Wie eben erliutert gilt hier die Randbedingung x.(19) = 0. Das
Potential V (z) = VI (z) ist konstant, die Losung der Gleichung (9) ist trivial:

2Vq
() = FO(T — 7o) (87)
Bereich IV: Das Potential ist V(z) = V!V (z). Die Berechnung des Kinks verliuft

bis auf die Substitution 1
z2=—(x—a+2e)

V2e

vollkommen analog zu der von Bereich II. Die Losung ist:
1%
2™V (1) = V2e - sin ( %(T—Tév))—l—a—Qé (88)
m

Bereich V: Esist V(z) = VV(2):

= m52/ L e
T:
Vo V(x —a)?

Wegena —e<zr<a=x—a<0

[ 2
Vo a—
me? Injz —a|+C’
T = — _— —
Vo
‘/0 1
ln(a—x):—\/m—ég(T—C’)

Schliefllich setzen wir 7§ = C” und finden:

2 () = — e () (7)) +a (59)

Erfreulicherweise erfiillt der Kink nach (85) und (89) die geforderten Randbedin-
gungen z(—o00) = —a und x(0c0) = a. Im nichsten Schritt driicken wir 7, 707, 7V
und 73" durch 7 aus und bestimmen die Grenzen der verschiedenen Bereiche in Ab-
héngigkeit von 7.

Wir starten in der Mitte. Im Bereich I1I gilt (87) solange, bis das Teilchen den unte-

ren Rand x = —a + 2¢ oder den oberen Rand z = a — 2¢ erreicht hat. Das geschieht
zu den Zeitpunkten 7 = 79—, /51~ (a—2¢) bzw. 7 = 19+, / 57-(a—2¢). Wir schreiben
abkiirzend:

zo(r)=a(r) firro—7m <7<m+7T mith =, /%(a — 2¢) (90)
0
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Als niichstes kann 7! durch 7y ausgedriickt werden, wenn man die Stetigkeitsbedin-

gung z'l(1y — 1) = —a + 2¢ ausnutzt:

7
= —a+2 412 sin(\/%(m—ﬁ—nf])):—a+25
m

) [V
sin ( m_;(TO -7 —TOH)) =0

i =r—-n

Wir arbeiten uns weiter vor, in dem wir den Zeitpunkt bestimmen, an dem z//(7) =
—a + ¢ erreicht ist:

7
:>—a+25—|—\/§5-sin(\/—03(7—70+71)):—a—|—5
me

sin (\/ngz(T —T+T1)) = —

=g -

T
m—;(T—To—i‘Tl) = —
me?
T=Tp—T1 —\|] ——
0= T1 Vo 4
Fiir den Kink gilt also:
Ir . . me?
r(r)=a"'(1) firrnp—m—n<7<17p—-7T mitmn= A (91)
0

Der niichste Schritt ist die Bestimmung von 7 durch die Stetigkeitsbedingung
rl(rg—1—n)=—-a+e

%
eXP(\/—mgg(To—ﬁ—ﬁ—Té))—a= —a+e¢
[ Vi
m—;(m—ﬁ —7'2—7'01) =In ()

Dass im Logarithmus eine dimensionsbehaftete Groéfle steht, ist unproblematisch,
weil der Term im Exponenten steht. Man kann nach (85) schreiben:

xl(T):g.exp(\/mLzQ(T—To—i—ﬁ—i—TQ))—a (92)

Eine untere Grenze in der Dimension 7 existiert fiir den Bereich I nicht, da sich die
Losung asymptotisch —a néhert:

r(T) =2 (1) fir —co<T<H—T1 — T (93)
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Wir haben uns jetzt zum linken Rand des Kinks vorgearbeitet. Nun ist die rechte

Seite an der Reihe. Wie bereits gesehen ist /(75 + 1) = a — 2¢. Die Forderung

der Stetigkeit 2!V (79 + 71) = a — 2¢ erlaubt wiederum die Berechnung von 7{V:

1%
=a—2+2- sin(\/—02(70+71—70“/)):a—25
me

. IV
sin ( m—gg(To +n—1") =0

v
To =To+T1

Der Zeitpunkt, an dem 2V (7) = a — 2¢ gilt, ist:

%
:a—s—k\/ﬁs-sin(\/—oz(T—To—Tl)):a—s
me
) %

Sln(\/—mzz(T—To—Tl)) =

Vo

m€2(T_TO_T1) -
+ 71+ _m527r
T = Tq T -
o Vo 4

r(r)=2V(r) firnp+n<t<M+7+n (94)

=g

Mit der Definition von 75 lésst sich schreiben:

AbschlieBend folgt die Bestimmung von 75" aus der Stetigkeitsbedingung
V(rg+1+ ) =a—c¢c

%
:>—exp(—\/m—;(To%—Trl—Tg—Tg/))~|—a:a—5

i V)= (o)

— —(7’0+7’1+7'2—T0
v me2
To =To+ T+ T+ 1/ ——1In(e)
Vo

me?
Analog zur Vorgehensweise im Bereich I schreiben wir (89) um:

V(1) = —e- exp (— mL;(T—To—ﬁ—ﬁ))‘i‘a (95)

Auflerdem haben wir die Grenzen des Bereichs V in der Dimension von 7 gefunden:

ze(T) = xV(T) firmp+n+n<17<o0 (96)
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Die Kink-Losung fiir das Potential ist nun vollstédndig berechnet worden. Die Lésung
besitzt nur noch den freien Parameter 7y, der Ausdruck der Freiheit einer beliebigen
zeitlichen Verschiebung ist, und ist ansonsten vollkommen durch die Potentialpara-
meter Vj, a, € und durch die Masse m des Teilchens bestimmt.

4
g-exp( Yo (T—T0+71+7))—a —00<T< Ty —T] — T2

meZ
V2 - sin (
me
To(T) = \/%'(T—To) To—T1 <T<Tp+7n

ﬂs-sin( Yo (t—m—m))+a—2 T+n<7<T+7T+7

me2

o (r—m+ 7)) —a+2 m-T-T"<T<TH—-7

\—5~exp( \/ 7 Vo S(r—m—T—m)+a T+ +1<T <00
(97)
m me2
it: 7, = _9 drm =, 2T
mit: 7 QVO(a g) und 7 7

In Abbildung 13 ist die Kink-Losung graphisch dargestellt. Das Teilchen verlauft von
der rechten zur linken Mulde, wie wir gefordert hatten. Im urspriinglichen Rechteck-
potential erwarten wir fiir die Kink-Losung nach (8) eine konstante Geschwindigkeit
zwischen den Mulden. Im oberen Bild erkennt man, dass sich dieses Verhalten repro-
duzieren lasst, wenn ¢ klein wird. Das lésst sich auch an der Formel (97) erkennen. Da
Ty ~ ¢ ist, werden die Bereiche IT und IV immer schmaler, in denen die gleichférmige
Bewegung nicht eingehalten wird. Aulerdem geschieht die asymptotische Annéhe-
rung an die Mulden in diesem Fall rascher. Fiir grofiere Werte von ¢ ist der Kink am
Rand der Potentialbarriere gekriimmt und das Grenzverhalten verlangsamt.

Im unteren Bild ist die Kink-Losung fiir unterschiedliche Héhen der Potentialbar-
riere Vj gezeichnet. Je hoher V) ist, desto grofer ist die Geschwindigkeit zwischen den
Mulden, so dass das Teilchen die Barriere schneller iiberbriickt. Fiir sehr grofie V
springt das Teilchen nahezu instantan von einer in die andere Mulde. Die Trajektorie
wird zu einem Knick, was zu der Bezeichnung Kink fiihrte.
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05 -

-05 4

-1

|——e=05—e=025

£=0125— £=0.0623]|

(a) Kink bei Verkleinerung von ¢ (Vy = 1)

05

-1

‘ V=1—7,=2

VD=4—VD=8‘

(b) Kink bei Vergrofierung von Vy (e = 0, 25)

Abbildung 13: Kinklésung (m =1, a
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Nun haben wir alles zusammen, um den Vorfaktor K zu berechnen. Eine Voraus-
setzung der Naherungsformel ist, dass der Nulldurchgang von z.(7) zur Zeit 7 = 0
geschieht, so dass im Folgenden 75 = 0 ist. Nach (77) bendtigen wir die Ableitung
des Kink an den Grenzen 7 — 4+oc0. Wéhlen wir die obere Grenze, finden wir:

. [ Vo [ Vo

Te = —e(— @) exp (— @(T — 71— T2))

. Vo Vo | Vo
Te = Eexp( m—€2(7'1 +7'2))€Xp (— m_&TQT)

1 d? 1 d?
W= _d_VV@)‘x:a: _d_ﬁ(w_amx:a:

m dx? m dx? 2e?

Nach (73) ist

Vo

me2’

(98)

so dass sich #.(7) im betrachteten Grenzfall wie nach (77) gefordert folgendermafien
schreiben ldsst:

Fo(r) = A0 mit: A= \/% . exp (\/%(ﬁ + 7)) (99)

Mit Hilfe der Definitionen von 7y und 7 (siche (97)) ergibt sich:

Vo a—2e w
A:[—- + — 100
e (T ) (100)

Nach (78) kénnen wir nun den Vorfaktor berechnen:

m ‘/0 1 ‘/0 T a=—2¢
K = —(—= )%/ — V2e
\ Wh(m52) V m646
Vi i E NG
K=\ Garama ) o™ (101)

Damit ist der Vorfaktor fiir die Approximation gefunden. Der Vorfaktor fiir das
rechteckformige Potential sollte sich im Grenzwert ¢ — 0 ergeben. £ taucht im
Nenner des vorderen Terms und im Exponenten der Exponentialfunktion auf. Fiir
den Grenzwert divergiert der Vorfaktor:

lim K = oo (102)

e—0

Demnach miissten wir eine unendlich grofie Energieaufspaltung AE erwarten. Dieses
Ergebnis entspricht nicht den exakten Ergebnissen aus Kapitel 2.
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3.2.3 Was lauft schief?

Fragen wir uns abschlieBend, woran es liegt, dass wir keinen korrekten Wert fiir
K erhalten haben. Dazu betrachten wir die Néherungsformel (50), die wir aus der
exakten Losung im semiklassischen Grenzfall hergeleitet haben. Der Vorfaktor ist
dort 252 <

T .

Comb3\ Vom K(®)

und somit explizit von b abhéngig. b ist die Breite der Mulden des Rechteckpoten-
tials. Das K, das man aus der Pfadintegralmethode erhélt, hdangt hingegen nur von
dem Kink ab. Der Kink ist ein Weg zwischen den Mulden von x = —a nach x = a.
Dort spielt der Parameter b iiberhaupt keine Rolle.
Grundlegend miissen wir bei der Nachbetrachtung der Naherungsmethode feststel-
len, dass sie iiberhaupt keinen Unterschied zwischen verschiedenen Potentialen macht,
solange nur die Barriere zwischen den Mulden identisch ist. Implizit geht die Metho-
de sogar davon aus, dass das Kriimmungsverhalten abseits der Mulden beibehalten
wird. Schauen wir uns dazu die Abbildung 14 an. Dort ist das rechteckférmige Po-

1 25

\ 05 - /

-4 -3 -2 -1 0 1 2 3 4

‘— Rechteckfdrmig — Approximation|

Abbildung 14: Urspriingliches Potential und die Approximation mit hypothetischen
Verlauf aulerhalb der Barriere gestrichelt (a =1, b=2, Vy =1 und € = 0, 3)

tential zusammen mit der quadratischen Approximation eingezeichnet. Zusétzlich ist
diesmal mit der gestrichelten Linie der Verlauf der Approximation gekennzeichnet,
den die Naherungsmethode erwartet. Sie geht davon aus, dass sich das Potential fiir
r < —a und z > a parabelférmig fortsetzt. Im Bereich der Mulde fdnden wir dann
das Potential des harmonischen Oszillators.

Man darf an dieser Stelle allerdings nicht davon ausgehen, dass der Vorfaktor aus
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(101) fiir die Approximation im Limes ¢ — oo die korrekte Losung ist. Fiir die Néhe-
rungsformel ist entscheidend, dass sich die ersten beiden Zustéinde des Doppelmul-
denpotentials energetisch unterhalb der Barriere befinden. Da wir wissen, dass ihre
Energien Ey und E; ungefihr so grof} sind, wie die des Grundzustands der einzelnen
Mulde, welche fiir die Approximation nichts anderes als die Grundzustandsenergie
des harmonischen Oszillators ist, konnen wir sie mit

1
Bop = 5he (103)
abschétzen. Fiir ¢ < 1 wird nach (98) w sehr grof}, so dass Fy und E; die Poten-

tialbarriere energetisch iibersteigen werden. Die Nidherungsmethode ist dann nicht
mehr anwendbar.
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4 Zusammenfassung

In dieser Bachelorarbeit ist die Energieaufspaltung der untersten beiden Zustidnde
eines symmetrischen Doppelmuldenpotentials die zentrale Grofle. Sie wurde am Bei-
spiel eines rechteckférmigen Doppelmuldenpotentials zunéchst exakt mit Hilfe der
stationdren Schrodingergleichung berechnet. Anschlielend wurde versucht, die Ener-
gieaufspaltung mit einer Naherungsmethode, die auf dem euklidischen Pfadintegral
beruht, zu berechnen.

Die Resultate der exakten Rechnung entsprechen den grundlegenden Eigenschaf-
ten symmetrischer Doppelmuldenpotentiale (siehe Kapitel 1.1). Die Energieaufspal-
tung AFE ist klein gegeniiber der Eigenenergien Ey und F; und sinkt exponentiell,
wenn die Hohe der Potentialbarriere zwischen den Mulden gréfler wird. Mit Hilfe
einer Grenzwertbetrachtung konnte aus der exakten Losung fiir die Eigenenergien
die Naherungsformel (50) fiir die Energieaufspaltung gefunden werden. Der Grenz-
wert bestand in der Bedingung, dass die euklidische Wirkung der Kink-Losung grofl
wird, was nach [3] der semiklassische Bereich ist, in dem gute Ergebnisse von der
spater durchgefithrten Pfadintegralmethode erwartet wurden. Die gefundene Néhe-
rungsformel lieferte einen fithrenden exponentiellen Term mit dem Negativen der
euklidischen Wirkung des Kinks im Exponenten, was dem Gamow-Faktor fiir einen
Tunnelprozess eines Teilchens von der linken in die rechte Mulde entspricht, und
einen Vorfaktor K, in dem die Grundzustandsenergie des unendlich tiefen Potential-
topfs auftauchte. Die Frage an dieser Stelle war, ob man mit der Pfadintegralmethode
dieses Ergebnis reproduzieren kann.

Davor wurde aber noch ein weiterer Grenzfall betrachtet, in dem als Potential-
barriere ein §-Peak benutzt wurde. Die Symmetrie des Recheckpotentials wurde so
nicht gebrochen, so dass bei der Berechnung der Wellenfunktionen und Eigenenergien
weiterhin zwischen symmmetrischen und antisymmetrischen Zustdnden unterschie-
den werden konnte. Die symmetrischen Wellenfunktionen zeigen am Ort des d-Peaks
einen Knick. Die antisymmetrischen Wellenfunktionen haben die selbe Form wie die
antisymmetrischen Zustédnde in einem unendlich tiefen Potentialtopf. IThre Bestim-
mungsgleichungen fiir die erlaubten & (63) und (67) konnten verifiziert werden, indem
die Bestimmungsgleichungen (36) und (43) fir die Zustdnde im Rechteckpotential
in dem Grenzfall (53) ausgewertet wurden.

Schliellich wurde versucht, die Ndherungsmethode fiir die Energieaufspaltung
auf das rechteckformige Doppelmuldenpotential anzuwenden. Bei dem zu lésenden
Pfadintegral beschrinkt man sich auf den Kink, dessen euklidische Wirkung den
Hauptbeitrag liefert, und einer Variation von ihm bis zur quadratischen Ordnung.
Ersteres fiithrte auf den exponentiellen Term, dessen Auftreten nach dem semiklassi-
schen Grenzwert der exakten Losung erwartet wurde. Die Berechnung der Beitréige
der Fluktuationen wurde nach [1] ausgefiihrt, in der Hoffnung, auch den Vorfaktor K
reproduzieren zu konnen. An dieser Stelle hat die Ndherungsmethode leider versagt.
Es konnte zwar fiir eine quadratische Approximation des rechteckférmigen Potenti-
als ein Vorfaktor K berechnet werden, der jedoch in dem Grenzwert, in dem sich
die Approximation der rechteckigen Form des urspriinglichen Potentials annéhert,
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divergiert. Die Griinde hierfiir konnten darin gefunden werden, dass die Ndaherungs-
methode an dieser Stelle nicht zwischen Potentialen unterscheidet, die zwar zwischen
den Mulden identisch sind, aber aulerhalb dieses Bereichs véllig unterschiedlich ver-
laufen.

Als Ergebnis der Bachelorarbeit kann festgehalten werden, dass die Pfadintegral-
methode in erster Naherung den fithrenden exponentiellen Term liefert, was schon
eine sehr gute Ndherung fiir die Energieaufspaltung ist, aber bei der Berechnung des
Vorfaktors K im vorliegenden Speziallfall eines rechteckférmigen Doppelmuldenpo-
tentials scheitert und zu keiner Verbesserung der Naherungsformel fiihrt.
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Fiir Rechnungen und zum Erstellen der Graphiken wurde folgendes Programm ver-
wendet:

e Waterloo Maple Inc.: Maple, Version 14.0
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