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0.1 Introduction & Outline

An isolated system of two interacting bodies has been a fundamental model in many fields
of physics. In classical mechanics it is completely integrable for some special types of in-
teractions and gives for example rise to the understanding of the motion of planets around
the sun. In quantum mechanics it is the two body hydrogen atomwhose theoretical investi-
gation has been the key to understand bound states and it was the starting point to approach
even more complicated systems like molecules and crystals.Eventually unbound relativis-
tic two body scattering processes could be investigated which lead to the standard model of
particle physics.

All those theories describe the physics in a given flat background spacetime – the
Minkowski spacetime (or the Euclidean space plus time as itslow velocity approximation).
In the general theory of relativity, published by Einstein in 1915, the curvature of spacetime
(gravity) itself takes part in the dynamics because it is coupled to the energy and momen-
tum density of all other physical fields (gravity) inboth directions: spacetime tells the fields
how to propagate and the fields tell spacetime how to curve. Hence black holes which are
singularities in the curvature surrounded by horizons are not bodiesin the usual sense; their
dynamics are rather those of a continuous non linear medium.Nevertheless one calls the
binary black hole system thetwo body problem of general relativityalthough it is not a
very good name.Bodiesin other theories can be characterized by their individual energies,
linear and angular momenta and in special cases one can formulate conservation laws for
them which simplifies the integration of the orbits of the bodies. This cannot be done for
black holes with the exceptions of infinite separations, if they are very close or if there are
Killing fields on the horizons due to a newly developed formalism that assigns energies and
momenta to horizons quasi-locally [6]. Notions of energy etc. in general only exist for the
whole spacetime, not quasi-locally. So it is very difficult to distinguish between the indi-
vidual black holes and further gravitational waves and the analysis of the dynamics of a
black hole system is very complicated. Only for some highly symmetric and simple cases
the curvature spacetime can be integrated analytically, otherwise approximation methods or
numerics have to be applied.

To simplify the analysis one considersvacuum systemsthat neglect the influence of all
physical fields except for curvature of spacetime itself.

Investigating and hopefully eventually understanding thetwo body system of general
relativity is not only of fundamental theoretical but also of astrophysical interest. Mergers
of two black holes are assumed to be one of the strongest and thus most promising sources
of gravitational waves which could be detected with (near) future gravitational wave de-
tectors, e.g. GEO600, LIGO and VIRGO [3]. Observations suggest that binary black hole
systems are quite frequent in the observable universe, someof them as final products of star
evolution, others as super massive objects in the centers ofgalaxies. However, it is expected
that there are many binary black hole systems mostly in circular orbit around each other,
slowly getting closer and closer due to the loss of angular momentum (gravitational waves).
The wave forms measured by terrestrial detectors should contain some characteristics of the
binary black hole system like masses, distances and orbitalperiods. How the wave forms
encode this information can in principle be answered by fullnumerical binary black hole
simulations.

In numerical relativity one wants to solve the binary black hole problem as an initial
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0.1. Introduction & Outline

value problem. Einstein’s equations do not only govern the evolution with time but addi-
tionally put certain constraints on the initial data. Theseconstraint equations are mathemat-
ically complicated and their character depends very much onthe choice of the free part of
the initial data. In the current approaches to construct initial data this free part does not only
involve the two physical degrees of freedom of gravity but additional gauge degrees. This
problem will remain until one is able to find a procedure to identify the physical degrees in
general; without this one needs many very different initial data sets to find at least qualita-
tive characteristics, obtain systematic comparisons and interpret the physical content of the
constructed data. In this Diploma Thesis I try a new approachto construct binary black hole
initial data.

In the first part of the thesis I give a brief introduction to differential geometry, general
relativity, the general relativistic initial value problem and the currently most important ap-
proaches to the binary black hole initial data problem. In the second part I describe Bishop’s
ansatz to construct black hole initial data after having introduced Kerr-Schild metrics in gen-
eral. Then I describe my new idea to construct the free part ofthese Kerr-Schild initial data,
which was worked out only in limited cases before, and discuss the problems with the as-
sociated Kerr-Schild constraint equations, problems which are not mentioned in Bishop’s
original paper. Then I follow two directions to make use of the Kerr-Schild approach. On
the one hand this is the linear regime in part three where I apply my ansatz to a specific
binary black hole system in first order perturbation theory and discuss evolution of these
data, waveforms, masses, apparent horizons etc. Eventually this will lead to a publication
together with Edward Seidel and Peter Diener. On the other hand in part four I describe a
modification of this Kerr-Schild ansatz invented by Bishop which solves some of the obsta-
cles. With Nigel Bishop I applied it to a special perturbation of the Schwarzschild metric,
obtained numerical solutions of the constraint equations and was able to prove that these
data are not conformally flat. This part of the work has already been published by Bishop,
Michael Koppitz and me. In the last part I summarize and conclude.

9



Chapter 1

Differential Geometry and General
Relativity

1.1 Riemannian Geometry

This section is a very brief and not complete summary of differential geometry. More details
can be found e.g. in [52].

I will use Greek indicesµ, ν, . . . running from 0, . . . , n−1 for ann-dimensional manifold
using the Einstein summation convention. The signature of the metric will be assumed to
be (−,+, . . . ,+). Sometimes tensorial objects will be referred to by theirabstractname
printed in boldface or if there is no risk of confusion by the components with respect to
some coordinate basis.

A differentiable manifold M is a topological space which is locally homeomorphic
to Rn (giving rise to local coordinate maps) and has a differentiable structure. Each point
p ∈ M is equipped with atangent vector spaceTp(M) and an associatedcotangent space
T∗p(M) which aren-dimensional vector spaces. With the tensor product it is possible addi-
tionally to definetensor spacesin each point ofM.

A tangent vector defined inTp(M) for all p ∈ U ⊂ M is called atangent vector field,
the same for covectors and tensors. To compare the vector field in different points ofM one
must define a transport from the vector space in one point to the vector space in another
point. Assume there is a family of curvesγ : [a, b] → M and a one-parameter family of
diffeomorphismsΘt : M → M mapping the pointγ(t) to γ(t = 0) with the tangent vector
V = dγ/dt. TheLie derivative is defined as

LVU = lim
t→0

(Θt)∗U(t) − U(0)
t

where (Θt)∗ is thepush-forward. It turns out that in a coordinate basis this can be written
as

(LVU)µ = Uµ
,νV

ν − Vµ
,νU

ν

for an arbitrary vector fieldU where a comma represents the partial derivative with respect
to the associated coordinate direction. The Lie derivativebehaves like a vector field.

Another way of comparing the vector spaces in each point is touse alinear connection
which is a linear mapΓ : Tp(M) → Tq(M). In terms of this thecovariant derivative is

10



1.2. General Theory of Relativity

defined as
Uµ

;ν = Uµ
,ν + Γ

µ
ρνU

ν.

The connection coefficientsΓµρν are calledChristoffel symbols in case of a coordinate
basis.

On the manifold we may define ametric tensor field gµν which is a non-degenerate
bilinear mapTp(M)×Tp(M)→ R, the inverse metricgµν is a bilinear mapT∗p(M)×T∗p(M)→
R. The metric can also be regarded as a one-one mapTp(M)→ T∗p(M), i.e. for each tangent
vector field it uniquely defines an associated covector field.The metric gives rise to a scalar
product, although it is not necessarily positive definite e.g. in the case of the Lorentzian
spacetime manifold.

If the linear connection above is supposed to define aparallel transportone has to postu-
late thatgµν;ρ = 0 because this ensures that lengths and relative angles of vectors transported
with vanishing covariant derivative along a curve are unchanged. Such a connection is re-
ferred to as beingmetric. If one additionally assumes that the connection istorsion free,
i.e.Γµρν = Γ

µ
νρ then one obtains

Γ
µ
νρ =

1
2

gµσ
(

gνσ,ρ + gσρ,ν − gνρ,σ
)

. (1.1)

On curved manifolds one finds that second covariant derivatives do not necessarily com-
mute but on uncurved ones they do. This defines theRiemann tensor(also called curvature
tensor) which can then be expressed in terms of the Christoffel symbols. This expression is
not important for this work, but can be found in [52]. To formulate the general relativistic
field equations, see below, we only need its first contraction, theRicci tensor

Rµν = Γ
α
µν,α − Γαµα,ν + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα. (1.2)

1.2 General Theory of Relativity

The general theory of relativity (GR) is a generalization ofspecial relativity by considering
spacetime as an in general curved pseudo-Riemannian 4-dimensional manifold; the metric
is of Lorentzian signature (−,+,+,+). In this document the following physical units will be
used

c = 1 G = 1

with c the velocity of light andG the Newtonian gravity constant.
A dynamical curvature leads to a variation in the physical distance between two events

and the shortest curve between them, the geodesic, is not necessarily a straight line – as it
is in Minkowski space in Cartesian coordinates – even if there are no forces. This effect
is interpreted as gravity. So force free particles take the shortest curves – geodesics – in
spacetime

uµ;νu
ν = 0

with uµ the 4-velocity of a particle; gravity is thus not a force. In asmall neighborhood of
an event in spacetime, curvature can be neglected and coordinates can be chosen such that
a force free particle propagates on a straight world line. Hence special relativity is valid in
small – but only in small – regions of spacetime.

11



Chapter 1. Differential Geometry and General Relativity

Curvesxµ(τ) with tangent vector fieldVµ = dxµ/dτ are called
timelike gµνVµVν < 0

null gµνVµVν = 0
spacelike gµνVµVν > 0

Particles with mass bigger than zero travel on timelike curves whereas massless particles
like photons follow null curves. Points connected by timelike or null curves are called
causally connected.

On the other hand all masses and energies create curvature locally satisfyingEinstein’s
field equations

Gµν = 8πTµν (1.3)

with Gµν theEinstein tensor

Gµν = Rµν −
1
2

gµνR

and
R= gµνRµν

theRicci scalar. Tµν is calledenergy-momentum tensor. It describes the energy densities
and momentum fluxes of all physical fields (other than gravity), e.g. swarms of particles,
fluids, electromagnetic fields etc. Because for this document it will be assumed that there
are no fields in spacetime, i.e. vacuum, the energy momentum tensor is not be described
here, see for instance [37].

1.3 Surfaces and Horizons

1.3.1 Hypersurfaces

Classification Let againM be an-dimensional differentiable manifold with a metricg
of Lorentzian signature (−,+, . . . ,+). A hypersurface [26] is a submanifoldΣ with an
embeddingΘ : Σ→ M . Theinduced metric of Σ is the pull-backΘ∗g.

There exists a form (a covariant vector field)n ∈ T∗q(M), called normal form ofΣ, and
an associated tangent vector fieldNµ = gµνnν such that

g(N,Θ∗X) = 0 ∀X ∈ Tp(Σ).

Σ is a (n−1)-dimensional hypersurface. It is called atimelike hypersurface if n is spacelike,
a spacelike hypersurfaceif n is timelike and anull hypersurface if n is null. In [26] it is
shown that the induced metric of a spacelike hypersurface ispositive definite (Riemannian),
of a timelike one is Lorentzian (also called pseudo-Riemannian) and of a null hypersurface
is degenerated. This means that on a spacelike hypersurfacethere exists the usual notion
of positive definitelengths. On null hypersurfaces the normalNµ is actually tangent to the
hypersurface.

Induced metric of spacelike Hypersurfaces Let M be 4-dimensional andΣ spacelike.
In each pointq ∈ Θ(Σ) one can find a basis of the tangent space, e.g. (N,E1,E2,E3) with
E1,E2,E3 ∈ Θ∗Tp(Σ). N is timelike andE1, E2 andE3 are spacelike and without loss of
generality orthonormalized. Assume normalizationgµνNµNν = −1. As it is always the case
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1.3. Surfaces and Horizons

the metric can also be represented in terms of a basis tetrad and not in terms of a coordinate
basis (notation from and more about the tetrad formalism e.g. in [16]), here

(g(µ)(ν)) =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





.

This can also be written in the following way, again with respect to a coordinate basis

gµν = −nµnν + E1
µE

1
ν + E2

µE2
ν + E3

µE
3
ν .

Then the induced metric ofΘ(Σ) is

γµν = E1
µE1

ν + E2
µE2

ν + E3
µE3

ν = gµν + nµnν.

Raising one index withgµν gives

γ
µ
ν = δ

µ
ν + Nµnν (1.4)

which is a projection operator onto the tangent space ofΘ(Σ). EspeciallyγµνN
ν = 0.

In the following if there is no risk of confusion, I will not distinguish betweenΘ(Σ) and
Σ anymore, the same for the associated local vector spaces. This makes sense becauseΘ is
an embedding.

Covariant Derivative BecauseΣ is a differentiable manifold on its own, one can also
define a covariant derivativeDµ on it using the same formalism as before. In contrast the
covariant derivative onM will be written either with a semicolon or as∇µ. ForV ∈ T∗p(Σ)
one finds

DµVν = γ
ρ
µγ

σ
ν∇ρVσ.

Extrinsic Curvature To describe the geometry of the embedded hypersurfaceΣ, the in-
duced metric related to the geometry from theintrinsic point of viewis not sufficient for the
general relativistic initial value problem, but also not insimpler situations. For instance the
2-cylinder embedded intoR3 is flat in terms of the induced metric. But from theextrinsic
point of viewit is curved because its normal vector changes its directionfrom point to point.
Hence one defines theextrinsic curvature (or second fundamental form) of a hypersurface
as

Kµν = −Dµnν.

The extrinsic curvature is symmetric, for the position of a hypersurface is determined
by the roots of a functionf : M → R with nµ = (d f)µ. Then

Kµν = −DµDν f = −DνDµ f

using the fact that covariant derivatives of a scalar function always commute. The symmetry
implies that

Kµν = −D(µnν) = −
1
2
Lnγµν (1.5)
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Chapter 1. Differential Geometry and General Relativity

where the notation as in eq. (1.7) andKilling’s relation [52] has been used.
The trace of the extrinsic curvatureK, which is defined with respect toγµν,

K := −γµνDµnν = −γµν∇µnν (1.6)

is theΣ-divergence of the normal vector field. In adapted coordinates of the space-time-
split, see section 2.2.3, it becomes obvious thatγµν is a three-by-three tensor with only
spatialcomponents andK is themean curvature of Σ. In general a surface with extremal
volume has vanishing mean curvature, thus hypersurfaces with K = 0 are calledmaximal
slices.

1.3.2 Spacelike 2-Surfaces

The intersectionS of two unequal null hypersurfaces in a 4-dimensional manifold M is
called aspacelike 2-surface, i.e. it has two non-vanishing linearly independent null normals
n1, n2. Assume the normalizationgµνn1µn2ν = −1. Then as above

gµν = −2(n1(µn2ν)) + E1
µE1

ν + E2
µE

2
ν

using the usual short notation

n1(µn2ν) :=
1
2

(n1µn2ν + n1νn2µ). (1.7)

The induced metric ofS

qµν = E1
µE

1
ν + E2

µE2
ν = gµν + 2(n1(µn2ν))

is positive definite.

1.3.3 Trapped Surfaces and Apparent Horizons

As S is always embedded into a spacelike hypersurfaceΣ which in turn is embedded into
M, either the pull-back ofn1 to Σ or the pull-back ofn2 to Σ is an outgoing normal ofS
with respect toΣ, the other one an ingoing normal. One defines theoutgoing and ingoing
divergence(in analogy with the trace of the extrinsic curvature of a spacelike hypersurface
eq. (1.6)) of a spacelike 2-surfaceS as

Θ1 :=
1
2

qµνn1µ;ν, Θ2 :=
1
2

qµνn2µ;ν.

respectively. IfΘ1 < 0 andΘ2 < 0 thenΣ is called atrapped surface. If the divergence
of the outgoing null normal vanishes (i.e.S is as above a surface of extremal volume, a
minimal surface) and that of the ingoing one is negative thenΣ is amarginally trapped
surface. If S onΣ is the outermost marginally trapped surface it is anapparent horizon.

If again we assume coordinates adapted to the space-time-split, see section 2.2.3, the
outgoing normal ofS with γi j nin j = 1 has to fulfill the following equation [54]

Din
i − Ki j n

in j + K = 0 (1.8)
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1.4. Black holes and Horizons

on a given spatial hypersurfaceΣwith Latin spatial indices running from 1 to 3. There exists
a function f : Σ → R such thatS = {p ∈ Σ| f (p) = 0}. Then eq. (1.8) is an elliptic equation
for f and can be used to numerically find marginally trapped surfaces on each spacelike
hypersurface during an evolution [49].

(Marginally) trapped surfaces are of great importance not only from the numerical point
of view. They also define a local concept of horizons and find anapplication in the singu-
larity theorems of Penrose and Hawking [26].

1.4 Black holes and Horizons

Stationary isolated black hole solutions of Einstein’s field equations eq. (1.3) in vacuum
Tµν = 0 were found by Schwarzschild (static, spherically symmetric) and Kerr (station-
ary, axisymmetric), see [16]. Solutions of the coupled Maxwell-Einstein equations lead
to charged black holes. Because a macroscopic body, especially a star after gravitational
collapse, should have zero net charge, we will only considerblack holes without an electro-
magnetic field. Historically the Schwarzschild solution was the first solution of Einstein’s
field equations found. It represents a non-rotating black hole and is the unique spherical
symmetric solution due to Birkhoff’s Theorem. The Kerr solution is axisymmetric, sta-
tionary and algebraically special which was the way it was found by Kerr [28]. In case of
axisymmetry there is no uniqueness theorem but there is a conjecture by Penrose that even-
tually all gravitational collapses settle down to the Kerr metric. This is one of the arguments
which lead Penrose to the so-calledPenrose inequality[40].

In general non stationary spacetimes one needs a generalized definition of black holes.
Both the Schwarzschild and the Kerr metric possess a horizonwhich sucks all lightso
indeed they areblack from a point of view of an observer at infinity. In general dynamic
situations black holes are hence defined by the existence of such horizons.

An important horizon concept is the apparent horizon definedin Section 1.3.3. It repre-
sents a spacelike 2-surface having an outgoing null normal with vanishing divergence. As
was stated above it can be found on each spacelike hypersurface (if it exists) by means of
eq. (1.8). Singularity theorems state that the existence ofa trapped surface on one space-
like hypersurface leads to a singularity on a future spacelike hypersurface under certain
conditions [26].

Another (more famous) notion of a horizon is theevent horizon. It is defined as the
border of that region of spacetimeM that is causally connected with null infinityJ+. This
means that light rays originating from outside the event horizon can reachJ+ and from
inside cannot. Hawking [26] was able to show that the volume of an event horizon always
increases to the future. To find the intersection of the eventhorizon and a spacelike hyper-
surface one needs the metric of the full spacetime in principle up toJ+ and follow light rays
to see if they can reachJ+. Recently more sophisticated techniques to find event horizons
were developed and applied [20].

One can show that apparent horizons always lie inside (or in the stationary case coincide
with) the intersection of an event horizon with a given spacelike hypersurface. Hence the
first ones can be considered as a stronger indicators of an gravitational collapse. As an
example, a (marginally) trapped 2-surface can be thought ofas a closed constant phase
surface of an electromagnetic wave at a given instant of timewhich was sent outwards but
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Chapter 1. Differential Geometry and General Relativity

nevertheless immediately (marginally) shrinks. Having the same picture in mind in the case
of a spatial section of an event horizon then it means that theelectromagnetic wave is able
to propagate outwards some finite distance and then collapses, never reachingJ+.
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Chapter 2

The General Relativistic Initial Value
Problem

2.1 Initial Value Problems in Physics

A dynamical system given in terms of a system of partial differential equations can be
treated as aninitial value problem which is a special form of theCauchy problem [27].
Therefore one has to choose an initial surfaceΣ0 together withinitial data (also called
Cauchy data) which describe the initial state of the system completely. For theinitial value
problem wheretime is the evolution parameter,Σ0 is necessarily spacelike. IfΣ0 is suffi-
cient to determine the data one the whole spacetime by means of evolution equationsit is
called aCauchy surface. In this chapter I will not discuss the mathematics of the Cauchy
problem which can be found in [27], but rather the physics.

Following [55] the simplest initial value problem in physics is that of classical mechan-
ics. In the Hamiltonian formulation the data describing thestate of the system at a given
time (i.e. on a given Cauchy surface) are the generalized positions and the conjugate mo-
menta of the bodies. There may be constraints for the data, e.g. a gas which is confined
to a box, but there are no furtherprinciple constraints on the possible states of the system.
The equations of motion which guide the evolution of the system with time are Hamilton’s
equations.

Equivalent is the Lagrangian formulation. The state of the system is described by gen-
eralized positions and their first time derivatives of each body. One can also say that one has
to know the position of each body in the system at a timet = t0 and att = t0+dt. Hence one
also calls the Lagrangian formulationthin sandwich initial value problem because data
has to be specified on two very close hypersurfaces. The equations of motion which govern
the evolution are the Lagrange equations.

Another equivalent approach is to define an action functionS =
∫ t1
t0

Ldt. The principle
of least action (Hamilton’s principle ) states that a systems evolves such that the action is
extremal. Here like in the thin sandwich approach the state of the system is given by the
generalized positions of each body at the timest0 andt1. In the limit t1 = t0+ dt we recover
the thin sandwich approach.

An example of a theory withfundamentalconstraints on the data and gauge freedoms
is the following formulation of electrodynamics in Minkowski space. The problem can be
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Chapter 2. The General Relativistic Initial Value Problem

simplified by looking at vacuum electrodynamic fieldsρ = j i = 0. At the initial timet0, i.e.
the initial Cauchy surfaceΣ0, let the data beE, φ,A whereE is the electric field,φ is the
scalar potential andA is the vector potential. The constraint

divE = 0

must be satisfied for all points inΣ0. The evolution equations are

∂tE = ∆A − grad divA Maxwell eq.

∂tA = −E − gradφ Definition of the potentials.

There is no evolution forφ until one fixes the residual gauge freedom. For example one can
choose the Lorentz gauge

0 = ∂µA
µ = ∂tφ − divA.

So in principle one can integrate from one spacelike hypersurface to the next. The constraint
propagates due to the evolution equations, i.e.

∂tdivE = 0.

2.2 The Initial Value Problem in General Relativity

2.2.1 Foliation

Let M be the spacetime manifold together with the metricgµν. General relativistic equations
are invariant under general coordinate transformations (diffeomorphisms). So one is free to
choose a one parameter family of spacelike hypersurfaces

Σt′ := {p ∈ M4|t(p) = t′}

with a functiont : M → R. This means that (dt)µ is timelike. Such a differentiable global
time function exists if and only if the spacetime is stably causal [52]. Define

nµ = −α(dt)µ

with the lapse functionα such that

gµνnµnν = −1.

Furthermore we define another timelike vector fieldt by

tµ(dt)µ = 1

so that in general it can be written as

tµ = αnµ + βµ

with theshift vector field β tangent to the slice

βµnµ = 0

andnµ = gµνnν.
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2.2. The Initial Value Problem in General Relativity

2.2.2 Gauß-Codacci-equations

The in- and extrinsic geometric quantities of a spacelike hypersurfaceΣ are directly con-
nected with the geometry of the embedding spacetimeM. This is what theGauß-Codacci-
equations[26] state

γ
µ′
µγ

ν′
νγ

ρ′
ργ

σ′
σ

4Rµ′ν′ρ′σ′ =
3Rµνρσ + KρµKσν − KσµKρν

γ
µ′
µγ

ν′
νγ

ρ′
ρn

σ 4Rµ′ν′ρ′σ = DνKµρ − DµKνρ (2.1)

γ
µ′
µn

νγ
ρ′
ρn

σ 4Rµ′νρ′σ = LnKµν +
1
α

DµDνα + KµρK
ρ
ν.

All other contractions vanish.

2.2.3 Adapted coordinates

For practical purposes it is convenient to introduce coordinates which are adapted to the
foliation. One chooses the parametert of the family of the spacelike hypersurfacesΣt as the
time coordinate and uses arbitrary coordinatesxi independent oft with i = 1, 2, 3 as spatial
coordinates on eachΣt.

Then
(nµ) = (−α, 0, 0, 0).

From tµ∇µt = 1 we gettµ = (1, ti) and as a special choice of coordinates we set

(tµ) = (1, 0, 0, 0).

Fromnµβµ = 0 we obtain
(βµ) = (0, βi).

The projection operator eq. (1.4) has the property

γ
µ

i = δ
µ

i + nin
µ = δ

µ

i

and the induced metric is
γi j = gi j .

Fromnµ = gµνnν it is obtained that

(gµν) =





−α2 + β2 β1 β2 β3

β1 γ11 γ12 γ13

β2 γ21 γ22 γ23

β3 γ31 γ32 γ33





. (2.2)

The inverse metric tensor is

(gµν) =




− 1
α2

β1

α2
β2

α2
β3

α2

β1

α2 γ11− β1β1

α2 γ12− β1β2

α2 γ13− β1β3

α2

β2

α2 γ21− β2β1

α2 γ22− β2β2

α2 γ23− β2β3

α2

β3

α2 γ31− β3β1

α2 γ32− β3β2

α2 γ33− β3β3

α2





(2.3)
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Chapter 2. The General Relativistic Initial Value Problem

which follows most easily fromnµ = gµνnν. There we used

βi := γi jβ
j , β2 := γi jβ

iβ j .

Hence the line element can be written as

ds2 = −α2dt2 + γi j

(

dxi + βidt
) (

dxj + β jdt
)

.

On a givenΣt, i.e.dt = 0, it is thus confirmed that the metric is fully given byγi j . Hence it is
also called thespatial metric or simply3-metric. The meaning of the shift vector becomes
clear from Fig. 2.1. If an observer travels from coordinate position (t, xi) to (t + dt, xi ),

αnµdttµdt

βµdt

xi

xi

Σt

Σt+dt

Figure 2.1: Meaning of the shift vectorβ

his spatial position changes byβidt with respect to an observer traveling alongnµ. That is
where the name of the shift vector comes from. If he travels from (t, xi) to (t + dt, xi − βidt),
i.e. alongnµ (so dxi = −βidt), it takes the proper timeαdt which clarifies the meaning of
the lapse function.

The extrinsic curvature eq. (1.5) becomes (linearity of theLie derivative)

Kik = −
1
2

(

L 1
α

tγik − L 1
α
βγik

)

and one can show that this is

Kik =
1

2α

(

Lβγik − ∂tγik

)

. (2.4)

2.2.4 3+1-Decomposition of the Vacuum Einstein Equations

By means of the Gauß-Codacci-equations eq. (2.1), it is possible to construct the 3+1-
decomposition of the Ricci tensor and thus of the vacuum Einstein’s field equations eq. (1.3).

We assume adapted coordinates as described in the last section. From the equation
4G00 = 4R00 = 0 and4G0i = 4R0i = 0 respectively we get four equations
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2.3. Variational Principle and ADM-Energy

• Hamiltonian constraint:
3R+ K2 − K ikKik = 0 (2.5)

• Momentum constraints:
D j

(

K i j − γi j K
)

= 0 (2.6)

which are constraints on the data on a spacelike hypersurface because they only contain
first time-derivatives. From4Ri j = 0 one obtains six evolution equations for the extrinsic
curvature

∂tKik = LβKik − DiDkα (2.7)

+ α
(
3Rik + KKik − 2Ki j K

j
k

)

and from eq. (2.4) additionally six evolution equations forthe 3-metric

∂tγik = Lβγik − 2αKik. (2.8)

The evolution equations allow to integrate the data from oneslice to the next in time. In
eq. (2.5) to (2.8) all indices are lowered and raised withγik.

Thus for the general relativistic Cauchy problem we can takeγik, Kik, α andβi as the
data. On the initial hypersurfaceΣ0 these data have to fulfill the four constraint equations
eq. (2.5) and eq. (2.6). Then eq. (2.7) and eq. (2.8) can be used to integrateγik and Kik

to Σdt. OnΣdt theBianchi Identities [52] guaranty that the constraints are fulfilled again,
i.e. like in electrodynamics the constraints propagate [55]. But Einstein equations do not
evolveα andβi; as in electrodynamics we have to invent furthergauge conditionsfor these
quantities. The simplest would begeodesic gauge

α = 1, βi = 0

which turns out to be a bad choice in practice. In general we must chooseα = α(t, xi) and
β = β(t, xi) to obtain the complete data on all slices.

It is not obvious from the beginning what the physical content of a data set is. It is
mostly not clear how and if at all the curvature of spacetime changes if specific components
of γi j or Ki j are varied. This is the case because in the twelve componentsof a data set
there are not only the two physical degrees of freedom but further gauge degrees: on each
slice there is the freedom of arbitrary spatial coordinate transformations and the choice of a
foliation.

2.3 Variational Principle and ADM-Energy

In [19] and more detailed in [52] they show that Einstein’s field equations (especially in the
case of vacuum) can be derived using a variational principleby means of the Lagrangian
density

LG =
√−gR

whereg is the determinant of the spacetime metricgµν. With this and the Euler equations,
Einstein’s vacuum field equations can be obtained straight forwardly.
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Chapter 2. The General Relativistic Initial Value Problem

The 3+1-split obtained in Section 2.2.4 can now be derived by meansof the Hamiltonian
formalism. After having chosen a foliation of spacetime, with the Gauß-Codacci equations
eq. (2.1) the dynamical relevant part of the Lagrange density is

LG =
√
γα(3R+ K2 − K ikKik)

with the dynamical variablesγi j , ∂tγi j , α andβi . As usual one can show that total divergence
terms can be discarded because they lead to integrals over the boundaries of the considered
spacetime region with Gauß’s Theorem and converge to zero for boundaries at infinity if
there is a certain fall-off rate, see [52] for deeper discussion. The conjugate momentum of
γi j turns out to be

πi j =
∂LG

∂(∂tγi j )
=
√
γ(K i j − Kγi j ),

the conjugate momenta ofα andβi vanish identically. Then the Hamiltonian density is
given by

HG = π
i j∂tγi j − LG.

The canonical equations are equivalent to the evolution equations (2.7) and (2.8)

γ̇i j =
∂HG

∂πi j
and π̇i j = −∂HG

∂γi j

and the variations ofHG with respect toα andβi lead to the constraint equations (2.5) and
(2.6) respectively. For the dynamical fieldsγi j (xi , t) andπi j (xi , t) as solution of the evolu-
tion equations, it turns out thatHG vanishes identically and thus cannot be interpreted as an
energy density of spacetime. In [19] they point out that the main reason for this difference
to other dynamical theories in physics are the second spatial partial derivatives of the dy-
namical variables in the Lagrange density which can be eliminated by partial integration if
the fields vanish outside some finite domain. This is not the case in gravity and for the total
integrated energy the following surface integral is left

E = lim
r→∞

∮

α
√
γ γi j

(

γik, j − γi j,k

)

dSk (2.9)

in asymptotically flat Cartesian Minkowski coordinates. Itis easy to check that it is equal to
the mass of an isolated source, e.g. a Schwarzschild black hole. Moreover the total energy
is a conserved quantity of evolution. There is no notion of total energy in spacetimes which
are not asymptotically flat.

In [38] they found the same result for the energy of spacetimebut used the linearized
field equations in the asymptotically flat region far away from the sources to change the
volume integral of the total energy into a surface integral in analogy with Minkowski elec-
trodynamics. To honor the authors of this article, one callsE theADM-energy. They were
also able to define ADM-momentum and ADM-spin analogously.
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Chapter 3

Black Hole Initial Data

The aim of this diploma thesis is the construction of black hole initial data for the general
relativistic initial value problem. This chapter gives a brief overview of existing methods
and solutions of this problem, more details and further references are given in [17].

3.1 Basic aspects

Above it was described how to set up the initial value problemin general relativity. To
summarize, we have to choose a foliation of spacetime where the spacelike hypersurfaces
are labeled by a time functiont. So there is a unique identification of the initial spacelike
hypersurfaceΣ0 on which we want to give initial data. On allΣt one picks adapted coordi-
nates, i.e. spacelike coordinates independent of time. As initial data we give the 3-metric
γi j and the extrinsic curvatureKi j fulfilling the constraint equations (2.5) and (2.6) onΣ0.

As was described before, the first problem arises already at this point beside the formal
difficulty of the constraint equations: It is not clear which of the twelve components ofγi j

andKi j are to be specified freely and which are to be taken as solutions of the constraint
equations to obtain physically relevant initial data sets.The mathematically elegantYork-
Lichnerowicz conformal decompositiondescribed in the next section gives a recipe for
this and has been used more or less for all black hole initial data types currently existing.
Bishop [10] introduced a different method which will be used in this thesis and will be
described in Part II.

In principle all initial data sets where trapped surfaces orapparent horizons exist at
given positions and one can show asymptotical flatness arevalid black hole initial data sets.
In analogy with multiple body problems in other physical theories, one additionally wants
to control the physical parameters of eachbody, e.g. masses, momenta and spins. In general
relativity this is not possible in general as was mentioned before because there is no clear
definition of quasi-local properties of spacetime. But at least one wants some approximated
control if the black holes are separated some finite coordinate distance and exact control
if the separation is infinite. In the case of black holes thereis the hope that the dynamical
horizon framework [6] can guide a way out of this dilemma because at least if there are
Killing fields present on the horizons, one can give a meaningto energies and spins of
horizons quasi-locally. But it seems to take some time untilthese ideas are accepted in the
numerical relativity community.
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Chapter 3. Black Hole Initial Data

In practical numerical computations, the black holes must be set not too far away from
each other because of the limited grid space in the computer memory and not too close
because otherwise one misses the interesting non-linear dynamical phase. But this means
that in general one does not have full control over the physics of the initial data sets one
wants to construct. Especially it is an unsolved question how artificial an initial data set
is compared to astrophysically realistic scenarios. One believes that in anastrophysically
relevantspacetime there are stationary black holes orbiting each other in a large orbit, losing
energy by weak gravitational waves, getting closer and finally plunging to form a Kerr black
hole. Initial data sets in numerical relativity are supposed to model this systemsomewhere
in the middleof the evolution for the reasons given above. If it is not possible to find such
initial data sets there is little hope that the computed gravitational waveforms are related to
those that will be measured by the gravitational wave detectors.

3.2 York-Lichnerowicz Conformal Decomposition

As was described before the conformal decomposition is a mathematically elegant way of
choosing the free part of the initial data and obtaining the rest from the constraint equations.
It will only be described very briefly here because I will not use it for this thesis. Further
details are in [55] and [17].

The basic idea is to write the 3-metric as

γi j = ψ
4γi j (3.1)

with theconformal metric (also calledbackground metric) γi j and theconformal factor
ψ. The constraints can be expressed by means of conformal quantities alone; for example
the Hamiltonian constraint eq. (2.5) becomes

∆ψ − 1
8
ψR− 1

8
ψ5K2 +

1
8
ψ5Ki j K

i j = 0 (3.2)

where quantities with a bar mean quantities defined by the conformal metric. This is a
quasi-linear elliptic equation forψ if Ki j is a known function on the initial slice, e.g. in the
case of time-symmetry, see below. So if one chooses the conformal metric as the free part
of the initial data one obtains an equation which can be solved as a boundary value problem
for the conformal factorψ. In more general situations one must find an additional conformal
decomposition of the extrinsic curvature, see [17].

3.3 Conformally flat black hole initial data

The most simple non-trivial ansatz forγi j is the Euclidean 3-metric

γi j = diag(1, 1, 1)

in Cartesian coordinatesand this ansatz has been used in most existing initial data sets up
to now. Initial data with this property are calledconformally flat .
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3.3. Conformally flat black hole initial data

3.3.1 Time-symmetric black hole initial data

The trivial solution of the momentum constraints att = 0 is Ki j = 0, time-symmetry. Then
one is left with the Laplace equation forψ for which existence and uniqueness of solutions
were proved for von-Neumann and Dirichlet boundary conditions [27]. The spherically
symmetric solution on the domainR3 − {0} with ψ→ 1 for r → ∞ is

ψ(r) = 1+
M
2r
.

Hence the physical induced metricγik of the initial slice can be computed using eq. (3.1)
and with Kik = 0 and additional choices of the gauge functions the full Cauchy data on
the initial slice is known. It is thet = 0-slice of the Schwarzschild solution in isotropic
coordinates [17] and the line element of the induced metric can be written as

ds2
3 =

(

1+
M
2r

)4 (

dr2 + r2dθ2 + r2 sin2 θdφ2
)

. (3.3)

Such slices – sometimes calls isotropic slices – are isometric under the transformation

r →
(m

2

)2 1
r

which is a reflection on the 2-spherer = m/2, calledthroat or Einstein-Rosen bridge[21].
Fig. 3.1 shows the embedding diagram of eq. (3.3) holdingφ fixed. So isotropic slices is are

Figure 3.1: Isometric embedding of eq. (3.3) withdφ = 0 intoR3, taken from [15]

not simply connected and consist of two isometric asymptotically flat ends forr → ∞ and
r → 0.

Because Laplace’s equation is linear and homogeneous

ψ(r) =
N∑

i=1

(

1+
Mi

2|r − r i |

)

25



Chapter 3. Black Hole Initial Data

is a solution of eq. (3.2) forKik = 0 on the domainR3−{r1, . . . , rn} and one obtains multiple
black hole initial data, calledBrill-Lindquist-data [15]. Multiple Brill-Lindquist black
holes have the property that each black hole has a throat, i.e. the metric gets asymptotically
flat in the limit r → r i , but there is no isometry on each of theN + 1 parts (if there are
N black holes). Misner [37] constructed time-symmetric datawhich only consist of two
isometric asymptotically flat pieces.

Hence, what may seem surprising at the beginning, conformally flat slices with their
mathematical simplicity are adapted to black holes, at least in the case of time-symmetry.

3.3.2 Maximal Initial Data

One wants to go beyond time-symmetry and chooses maximal slices (Section 1.3.1), i.e.
K = 0, with conformally flat 3-metrics. One is left with an elliptic equation forψ eq. (3.2)
and the momentum constraints which are linear in the conformal extrinsic curvature without
anyψ-terms, see [17]. Bowen and York [12] found an explicit solution of the momentum
constraints for the conformal extrinsic curvature in termsof parameters which reduce to
the associated ADM-quantities for large separations. Due to the linearity of the momentum
constraints these solutions forKi j can be superposed analogously to Misner data and one
obtains the same topology, specifying isometry conditionsat the throats of each black hole
as boundary conditions.

Those spherical boundaries are complicated to implement numerically. Puncture data
(found by Brandt, Brügmann [13]) use the same solution of the conformal momentum con-
straint, but a simpler superposition of the solutions forKi j , eventually constructing data with
the same topology as the Brill-Lindquist ones. Due to the so calledpuncture trickto solve
the Hamiltonian constraint eq. (3.2), i.e. separating singular parts of the conformal factor
from regular ones, one is left on the one hand with a regular elliptic equation and on the
other hand one does not need a boundary condition at the punctures at all – where the whole
asymptotically flat end of each black hole is compactified.

3.3.3 Problems

Up to now conformally flat black hole initial data sets are those which are used most inten-
sively for black hole evolutions. But there are a lot of problems. Conformally flat initial
data work quite well in the time-symmetric case where for large separations each black hole
becomes Schwarzschild. But [17] it turns out that isolated black holes with non-vanishing
Bowen-York spin are not stationary. Following a conjectureby Penrose gravitational col-
lapse eventually leads to a Kerr black hole. If this is true Bowen-York initial data cannot
represent black holes arising from an isolated gravitational collapse and are thus not astro-
physically realistic. Further more Garat and Price [23] showed that – at least under certain
assumptions – there exist no conformally flat slices of the Kerr metric. So one states that
black holes with a Bowen-York spin have an artificial gravitational wave content. It is not
known if it is significant or maybe leaves the computational grid quickly. Nevertheless, sys-
tematic comparisons can only be done if several initial datasets exist with similar features
but very different ways of construction.
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3.4 Other approaches

Since conformal flatness of black hole initial slices does not seem to be applicable to general
situations people invented other approaches.

An important first step was in [14] where a not conformally flatslice of the Kerr metric
was superposed with a Brill wave according to the York-Lichnerowicz conformal decom-
position. These data were evolved and analyzed.

Furthermore there are Post-Newtonian methods that treat the black holes as point parti-
cles taking post-Newtonian corrections to the Newtonian gravitational potential and orbits
into account [50]. It was shown that there are deviations from conformal flatness already in
second post-Newtonian order, see e.g. [18]. The post-Newtonian approximation is certainly
valid if the holes are far separated, that is in the early phase of a binary inspiral, but breaks
down for close orbits.

Another class of initial data leading to not conformally flatdata naturally is based on
Kerr-Schild metrics and is the topic of this diploma thesis.The construction procedure
introduced in this thesis is a generalization of an ansatz invented by Bishop et al. [10]. It
uses an alternative approach to the standard York-Lichnerowicz conformal decomposition
(Section 3.2) to hopefully obtain significantly different data than the currently mostly used
ones and learn about black hole initial data sets in general by systematic comparisons. That
is why I decided to not work on Matzner’s Kerr-Schild approach [36] which constructs
Kerr-Schild initial data by means of the conformal decomposition.
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Part II

Kerr-Schild Initial Data for Black
Holes
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Chapter 4

Kerr-Schild metrics

4.1 Definition

Let M be a differentiable manifold. In 1962, Trautmann [51] considered metrics of the type

gµν = ηµν − 2Vlµlν (4.1)

with a null vector fieldlµ =: gµνlµ, i.e.

lµlµ = gµνl
µlν = 0, (4.2)

a scalar functionV andηµν the metric of (flat) Minkowski space. Metrics of the type (4.1)
are calledKerr-Schild metrics and in this chapter we will explore its algebraic, geometric
and physical properties. More details can be found in [31] and [25]. In the next chapter
this knowledge will be used to construct black hole initial data. If g is given then one can
choose coordinates with respect tog on M such that e.g.

(ηµν) = diag(−1, 1, 1, 1)

which will be called (Cartesian)Kerr-Schild coordinates (t, x, y, z) (or sloppily Carte-
sian coordinates). In later applications we will often use spherical Kerr-Schild coordinates
(t, r, θ, φ) where (ηµν) = diag(−1, 1, r2, r2 sin2 θ).

Kerr-Schild metrics are adapted to black hole physics because the Kerr solution of Ein-
stein’s vacuum equations (Section 4.4) can be brought to theKerr-Schild form and Kerr-
Schild metrics are invariant under Lorentz boosts. Furthermore they have nice algebraic
and geometric features.

4.2 Algebraic Features of Kerr-Schild Metrics

In [31] they list the following relations which I have checked by straight forward computa-
tions. First it is

lµ = gµνl
ν = ηµνl

ν, (4.3)

which implies that
0 = lµlµ = gµνl

µlν = ηµνl
µlν (4.4)
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Chapter 4. Kerr-Schild metrics

so that indices oflµ can be raised and lowered by both metrics with the same resultand it is
a null vector field with respect to both. Furthermore we have

gµν = (η−1)µν + 2Vlµlν

wheregµν is the inverse tensor ofgµν and (η−1)µν is the inverse tensor ofηµν, i.e.

(η−1)µνηνρ = δ
µ
ρ.

From this one finds
detg = detη (4.5)

so in Cartesian Kerr-Schild coordinates the determinant is−1. These relations are helpful
for algebraic calculations, for instance computing the Kerr-Schild Ricci tensor. One the one
hand many terms drop out becauselµ is a null vector field, on the other hand it isΓµνµ = 0
due to eq. (4.5) in the case of Cartesian Kerr-Schild coordinates.

4.3 Geometry of the null vector fieldlµ

As before let (M, gµν) be a spacetime with a Kerr-Schild metricgµν with Cartesian Kerr-
Schild coordinatesxµ. Relative angles and lengths of the tangents vectors of the coordi-
nate lines in each points are given byg. Let (M̃, ηµν) be Minkowski space in Cartesian
Minkowski coordinates ˜xµ, i.e. the coordinates are defined byη in the same way.

On M̃ introduce a vector field̃lµ such that onM̃ with respect to ˜xµ it has the same
components as the Kerr-Schild null vector fieldlµ on M with respect toxµ.

It can be shown by simple algebra that for the 4-accelerationof lµ one gets

aµ = lµ;νl
ν = l̃µ,ν l̃

ν

where a semicolon represents the covariant derivative withrespect togµν and a comma that
with respect toηµν which in these coordinates reduces to a partial derivative.A vector field
is called geodesic ifaµ = 0. Thuslµ is geodesic inM if and only if l̃µ is geodesic inM̃. The
divergenceis

Θ :=
1
2

lµ;µ =
1
2

l̃µ,µ,

twist

ω2 :=
1
2

l[µ;ν] l
µ;ν =

1
2

l̃[µ,ν] l̃
µ,ν

andshear

σ2 :=
1
2

l(µ;ν)l
µ;ν − Θ2 =

1
2

l̃(µ,ν)l̃
µ,ν − Θ2

where the last equality only holds iflµ is geodesic; for the meaning of these geometric
quantities see [52]. In summary the geometry oflµ in M is very closely related to the
geometry of̃lµ in M̃. This fact will be used later for the construction of Kerr-Schild initial
data. If there is no risk of confusion I will writelµ instead of̃lµ and speak oflµ in M andlµ
in M̃ respectively.
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4.4. Kerr solution

The relations above hold without any field equations. If the Kerr-Schild metric addi-
tionally fulfills the vacuum Einstein equationsRµν = 0 it can be shown thatlµ is geodesic,
shear free and it is a double degenerate principal null congruence of the Weyl tensor, i.e.

Cµνρ[σlτ] l
νlρ = 0

in agreement with the Goldberg-Sachs-Theorem [31]. This implies that spacetimes with
Kerr-Schild metrics fulfilling Einstein’s vacuum equations are of Petrov Type II or Petrov
Type D.

4.4 Kerr solution

Kerr-Schild metrics are interesting for black hole physicsbecause the Kerr solution can be
brought to this form by means of a coordinate transformation. The Kerr solution represents
a stationary rotating black hole and is – following a conjecture by Penrose – believed to be
the final state of any gravitational collapse.

In ingoing Kerr-Schild coordinates (see [37], Exercise 33.8) it is

gµν = ηµν − 2Vlµlν

with the (flat) Minkowski metric

(ηµν) = diag(−1, 1, 1, 1),

the scalar function

V = − MR3

R4 + a2z2
, (4.6)

the Kerr-Schild null vector field

(lµ) =
(

−1,−Rx+ ay

R2 + a2
,−Ry− ax

R2 + a2
,− z

R

)

(4.7)

using the radial functions

R=

√

1
2

(

ρ2 − a2 +

√
(
ρ2 − a2)2

+ 4a2z2

)

(4.8)

and

ρ =

√

x2 + y2 + z2.

In fact, R is the Boyer-Lindquist radial coordinate. The Kerr solution in Boyer-Lindquist
coordinates can be found in [37].

4.5 Kerr-Schild Slices

Use again the notation:i = 1, 2, 3 spatial components, 0 time component of a tensor.
A Kerr-Schild slice is a 3-dimensional hypersurface defined by constant Kerr-Schild

time. Using the normalizationl0 = 1 it is spacelike as long as

gµν(dt)µ(dt)ν = g00 = −1+ 2V(l0)2 = −1+ 2V < 0
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Chapter 4. Kerr-Schild metrics

which is the case ifV < 1/2 (fulfilled for instance in eq. (4.6)).
In the case of the Schwarzschild metric the relation of Kerr-Schild slices and slices of

constant Schwarzschild time can be demonstrated in the Kruskal diagram, see [38] (Chapter
31) and Fig. 4.1. Slices of constant Schwarzschild time are straight lines through the origin

–0.5

0.5

1

1.5

2

2.5

3

–0.5 0.5 1 1.5 2 2.5 3

Figure 4.1: Kerr-Schild and Schwarzschild slicings of Schwarzschild metric in Kruskal
Coordinates

of the Kruskal coordinate frame, i.e. they avoid the singularity whereas Kerr-Schild slices
hit the singularity. The latter ones do not have two asymptotically flat ends as for instance
maximal slices (Section 3.3.2). So a Kerr-Schild ansatz does not allow to cover the whole
black hole manifold but rather itsastrophysically relevantpart associated with gravitational
collapse [37].

The induced metric on a Kerr-Schild slice is (eq. (2.2))

γik = gik = dik − 2Vli lk, (4.9)

where in Cartesian Kerr-Schild coordinatesxi

(dik) = diag(1, 1, 1)

is the Euclidean metric. If one defines

l̃ i := (d−1)i j l j

with (d−1)i j the inverse tensor ofdi j one obtains for the inverse tensor ofγik

(γ−1)i j = (d−1)i j +
2V

1− 2V
l̃ i l̃ j .

When we set
l̄ i := (γ−1)i j l j
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4.5. Kerr-Schild Slices

then we find

l̄ i =
1

1− 2V
l̃ i

and (assuming again thatl0 = 1)

l̄ i l i =
1

1− 2V
, l̃ i l i = 1. (4.10)

From eq. (2.3) it follows for the lapse

g00 = − 1
α2

⇔ α =
1

√
1− 2V

(4.11)

which is always well defined ifV < 1/2, i.e. the Kerr-Schild slice is spacelike, see above.
From the same equation one infers that

g0i =
βi

α2
⇔ βi =

2V
1− 2V

l i (4.12)

where again
l i = giµlµ.

Eq. (2.8) can then be used to compute the extrinsic curvatureKik on the Kerr-Schild
slice; the result is in [39] for instance.
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Chapter 5

Kerr-Schild Initial data

5.1 Basic Idea

In Chapter 3 important examples of multiple black hole initial data were discussed. Here I
describe an ansatz leading to a significantly different type of initial data. It was created by
Bishop et al. [10] and was generalized by Moreno et al. [39]. Iinvented a modification to
construct the free part of the initial data for general multiple black hole systems and worked
it out in this thesis.

Suppose we have a 4-dim. manifold (M, gµν) representing multiple black holes which
can be covered with a single coordinate map. Ignoring possible problems with that, it is
clear that it is too restrictive to assume thatgµν is of the Kerr-Schild type for all times.
Instead Bishop et al. in [10] made the following ansatz for the metric and coordinates

gµν(t, x
i) = ηµν(x

i) − 2V(t, xi)lµ(t, x
i)lν(t, x

i)
︸                                    ︷︷                                    ︸

Kerr-Schild part

+t2
∞∑

s=0

ts j(s)µν (x
i) (5.1)

with j(0)
µν (xi) , 0. This implies that the spacelike hypersurfaceΣ0 defined as thet = 0-

surface – the initial slice – is a Kerr-Schild slice (Section4.5) and the Cauchy data on it, i.e.
both the induced 3-metricγik and the extrinsic curvatureKik, are determined by the Kerr-
Schild part ofgµν alone. This is the case because the metric eq. (5.1) deviatesin second
order oft. Thus there are noj-terms in the constraint equations onΣ0 and we are left with a
Kerr-Schild initial data problem, (hopefully) benefiting from those algebraic simplifications
and nice geometric and physical properties described in Section 4.2. Consequently as soon
as the data and coordinates on the initial slice are fixed, theinitial lapse and shift are also
determined by this ansatz. Anyway, because these are only gauge functions one is free to
choose anything else.

It is not clear ifΣ0 is a Cauchy surface, i.e. if the data onΣ0 determines the data in the
whole spacetimeM uniquely. It is even unknown ifM is globally hyperbolic, i.e. if this
spacetime admits a Cauchy surface at all. It is a further assumption thatΣ0 is a Cauchy
surface otherwise it is of no or limited meaning to look for initial data onΣ0. For further
discussions on that see [52].

Following [10] the idea is to specify the Kerr-Schild null vector field lµ at t = 0 as the
free part of the initial data because there is hope that it is sufficient alone to determine the
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5.2. Coordinates and Auxiliary Spaces

physics ofΣ0 a priori in some sense. These are two free functions because on the one hand
one has the freedom to normalizelµ such thatl0 = 1 and on the other hand there is the null
conditionηµνlµlν = 0 or equivalently

di j l
i l j = 1. (5.2)

The constraint equations then turn out to be sufficient in principle to computeV, ∂tlµ and
∂tV so thatγik andKik on Σ0 can be obtained (Section 4.5). This is true because there are
only four unknown functionsV, ∂tV and two components of∂tl i because∂tl0 = 0 and

di j l
i∂tl

j = 0, (5.3)

where eq. (5.2) was used and because in adapted coordinates the Euclidean metricdi j is
always time independent.

In all initial data construction procedures there is the further freedom of how to choose
boundary conditions for the constraint equations, see below, and hence the same free part
of the initial data – herelµ – can lead to different initial data eventually.

5.2 Coordinates and Auxiliary Spaces

There exists a conceptional problem not only with this specific Kerr-Schild ansatz which is
to be discussed now.

When one wants to construct initial data on an initial sliceΣ0 (not limited to Kerr-
Schild slices at the moment) one has to specify free parts of the initial data and has to use
the constraint equations to obtain the rest. This free part consists of components of tensor
fields – in my case the Kerr-Schild null vector fieldlµ – which are defined with respect to
some coordinatesxµ. But these coordinates onΣ0 are undefined until the induced metric
γik on Σ0 is known. The metricγik in turn is not known until the full initial data problem
is solved. So in summary, independently of the actual construction procedure, the free part
of the initial data is always given in ameaninglessway at the beginning; not before the full
initial data problem is solved one can check if the ansatz makes sense.

So how to deal with this dilemma? For example in the description of puncture data
[13] they talk of “a problem inR3” and mean that they take the three spatial coordinates
which will later cover the initial slice in the black hole manifold as a triple of numbers
in the auxiliary spaceR3 without physical meaning at the beginning. For the Kerr-Schild
ansatz there is a similar way. As was described in Sec. 4.3 theKerr-Schild null vector field
has analogous geometric properties in the Kerr-Schild spacetime (M, gµν) and in Minkowski
spacetime (̃M, ηµν). For the ansatz eq. (5.1) this correspondence only holds onthe initial
slicesΣ0 in M andΣ̃0 in M̃ respectively (and maybe for some very small timest ≪ 1). So
to prescribe the free part of the Kerr-Schild initial data wegive lµ on the 3-manifold̃Σ0 ⊂ M̃
with coordinatesxi with respect to the induced metric (dik) = diag(1, 1, 1). The reason why
we stay in the 4-dimensional picture and talk ofΣ̃0 in Minkowski space and not simply
of R3 as in [13] is that we want to give a 4-dimensional construction procedure forlµ, see
below. Oncelµ is given onΣ̃0 with the metricdik one solves the constraint equations to
obtainγik andKik and interprets the spatial part of the Minkowski coordinates as the spatial
part of the Kerr-Schild coordinates onΣ0 defined byγik.
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Chapter 5. Kerr-Schild Initial data

5.3 Further Remark

It is clear that in eq. (5.1) it would not be desirable to let the metric deviate from the initial
Kerr-Schild form too fast, i.e. witht, because then in the constraint equations we would
also havej-terms. But for a multiple black hole metric it is also not good to let it deviate
too slow, for example witht3. This would imply that the full Einstein equations att = 0
would be fulfilled by the Kerr-Schild part of the metric aloneand as described in Section
4.3, the Weyl tensor belonging to that metric would be of Petrov-Type II/D. Solµ would be
a geodesic shear free double degenerate principal null direction att = 0 which would be too
restrictive for general black hole systems.

5.4 Construction of the Kerr-Schild null vector field lµ

As was described before, we want to constructlµ first onΣ̃0, the initial slice in the auxiliary
Minkowski space, as the free part of an black hole initial data set. Of course there is no
unique way to do this; in principle the only restriction is that eventually one must be able to
prove existence of trapped surfaces or apparent horizons onΣ0 and asymptotical flatness.

The null fieldlµ should be constructed by means of parametersmi, Pi, Si which should
at least converge to the associated ADM-quantities mass, momentum and spin (Section 2.3)
of the i-th black hole respectively if the coordinate separations go to infinity. In this limit
we want that a region around each black hole inΣ0 has the same geometry as the initial
Kerr-Schild slice of a single Kerr black hole modulo global coordinate shifts, rotations and
Lorentz boosts.

In [10] this was done for unboosted (Pi = 0) non-spinning (Si = 0) black holes; in [39]
this was generalized for unboosted spinning black holes. Inthis thesis I generalize (or better
said modify) their ansatz and implicitly fix the spin-spin-interaction function which in [39]
was introduced only in the close limit.

5.4.1 The new Idea

My procedure is motivated by Lind and Newman [35] who discovered an analogy of prin-
cipal null vector fields of algebraically special metrics with eigenvector fields of associated
Maxwell tensors in Minkowski space. To describe this analogy would be beyond the scope
of this document. After straight forward but lengthy computations done with Mathemat-
ica, I additionally found that the Kerr-Schild null vector field of the Kerr metric (spin in
z-direction) in Cartesian coordinates with (x1, x2, x3) = (x, y, z) eq. (4.7) can be obtained as
an eigenvector of the matrix

(Fµ
ν) =





0 x y z
x 0 −a 0
y a 0 0
z 0 0 0





(5.4)

associated with the eigenvalue−1/R. This tensor in Minkowski space can be interpreted
as being proportional to the electromagnetic field tensor ofa spinning charge at rest in
Cartesian Minkowski coordinates (although not a magnetic dipole), see [33]. So in addition
to [35] this result shows a deep connection between black hole physics and Minkowski
electrodynamics.
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5.4. Construction of the Kerr-Schild null vector fieldlµ

The electromagnetic field tensor (5.4) is not the only one forwhich the eigenvalue equa-
tion

Fµ
νl
ν = λlµ

is solved by the null fieldlµ of the Kerr metric. I made the following more general ansatz

(Fµ
ν) =





0 x y z
x 0 Bz −By

y −Bz 0 Bx

z By −Bx 0





where the componentsBx, By andBz are related to themagnetic fieldassociated with the
spin of the black hole. Then I put the Kerr null vector field (4.7) into the eigenvalue equation.
With additional requirementBx sinφ = By cosφ due to symmetry (φ is the azimuthal angle
associated with thez-axis), it turns out that there is only (5.4) and the eigenvalue is−1/R.

Hence to constructlµ on Σ̃0, I use Minkowski electrodynamics as a model problem in
the following way.

5.4.2 The new procedure

Assume we want the initial data set to representn black holes with initial coordinate po-
sitions r i = (xi , yi , zi), mass parametersmi, momentum parametersPi = (Pi

x,P
i
y,P

i
z) and

spin parametersSi = (ai
x, a

i
y, a

i
z)mi. By thecoordinate position of a black holeI mean the

coordinate position of that point oñΣ0 where the divergence oflµ becomes infinite. Now, in
analogy with the single Kerr black hole case, set for each black hole onΣ̃0 the electromag-
netic field tensor of a moving spinning charge of type eq. (5.4). This means the following.

First introduce a coordinate frame in Minkowski space (t′, x′, y′, z′) in which one of the
charges (associated with one of the black holes) at initial position (t′0, 0, 0, 0) is at rest with
the electromagnetic field tensor

(F̃ i µ′

ν′) :=





0 x′ y′ z′

x′ 0 −ai
z
′

ai
y
′

y′ ai
z
′ 0 −ai

x
′

z′ −ai
y
′ ai

x
′ 0





, (5.5)

the coupling factorQ/r′3 in electrodynamics will be discussed below.
Now change to a coordinate frame in which the charge has velocity v. So one has to

apply a Lorentz transformation and the Lorentz matrix is [33] (here as an example for a
boost inz-direction; this can be easily generalized by spatial coordinate rotations)

(Λ(v)µν) =





Γ(v) 0 0 vΓ(v)
0 1 0 0
0 0 1 0

vΓ(v) 0 0 Γ(v)





(5.6)

with

Γ =
1

√
1− v2

.
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Chapter 5. Kerr-Schild Initial data

In this frame the electromagnetic field tensor of the charge is (standard matrix multiplica-
tion)

F i := Λ(P) · F̃ i · Λ−1(P) (5.7)

with

v =
P

√
M2 + P2

(5.8)

and the inverse Lorentz matrix
Λ−1(P) = Λ(−P).

In Minkowski spaceM̃ the coordinate quadruple (position vector) transforms as atangent
vector under Lorentz transformation, so att = 0 (which does not implyt′0 = 0!)

x = x′, y = y′, z= Γz′. (5.9)

Finally in this coordinate frame, where the charge is boosted with a momentumP, we
shift the frame to put the charge on its initial position, i.e.

x→ x− x0, y→ y− y0, z→ z− z0.

Electromagnetism is our model problem in Minkowski space; charges represent black
holes onΣ̃0. Now I propose to superpose the black holes, i.e. the associated electromagnetic
field tensors, in the following way. I set the total electromagnetic field tensor to be

F :=
n∑

i=1

mi

ρk
i

F i (5.10)

with the Euclidean separation

ρ2
i = d(r ′ − r ′i , r

′ − r ′i )

measured in the coordinate frame where theith charge is at rest.k = 3 is in full analogy
with Minkowski electrodynamics and will be used later because in the case of non-boosted
and non-spinning black holes it reduces to Bishop’s initialdata [10] (Section 5.6).

Higherk correspond to black holes which are more and more undistorted in a neighbor-
hood of their positions (in the meaning described above) because the superposition func-
tions of the other black holes tend to zero faster and faster.This is whyk can be called
shielding parameter. For anyk this ansatz for the superposition has the property that two
non-boosted black holes with opposite angular momenta on the same coordinate position
reduce to a single Schwarzschild black hole. This is not the case if for example one uses the
Boyer-Lindquist radial coordinateReq. (4.8) instead ofρ.

I stated before that to obtainlµ in the case of a single Kerr black hole one can solve
the eigenvalue problem of eq. (5.4) and takelµ as the eigenvector associated with the nega-
tive real eigenvalue (corresponding toingoingKerr-Schild coordinates). I propose to do the
same in the multiple black hole case. Hence after one has computed the total electromag-
netic field tensor as described before one can takelµ from the equation

Fµ
νl
ν = λlµ (5.11)
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5.5. Eigenvalue Problem ofF

whereλ is the associated eigenvalue. Existence and uniqueness of solutions of this equation
for real and negativeλ will be discussed in Section 5.5.

If lµ on Σ̃0 in Minkowski space is constructed this way then it is automatically null with
respect toηµν becauseFµν = ηµρF

ρ
ν is antisymmetric, hence

ηµνl
µlν =

1
λ
ηµνF

µ
ρl
ρlν =

1
λ

Fνρl
ρlν = 0.

Assume now thatlµ on Σ̃0 is constructed this way and the metric is given by eq. (5.1)
with the still unknown functionV. Thenlµ is also null with respect togµν at t = 0 in Σ0 due
to eq. (4.4), i.e.

gµνl
µlν = 0.

So lµ is automatically consistent with the Kerr-Schild assumptions.

5.5 Eigenvalue Problem ofF

I want to discuss the eigenvalue problem of the antisymmetric tensorFµν and assume that
(ηµν) = diag(−1, 1, 1, 1). One can write in general

(Fµ
ν) =





0 Φ1 Φ2 Φ3

Φ1 0 Φ4 Φ5

Φ2 −Φ4 0 Φ6

Φ3 −Φ5 −Φ6 0





whereΦ1, . . . ,Φ6 are arbitrary smooth functions in Minkowski space. The eigenvalues are
the roots of the characteristic polynomial, i.e.

det(F − λ id) = 0.

Introducing

A := −Φ2
1 − Φ2

2 − Φ2
3 + Φ

2
4 + Φ

2
5 + Φ

2
6

B1 := Φ3Φ4, B2 := Φ2Φ5, B3 := Φ1Φ6

B := B1 − B2 + B3

one can check (e.g. with Mathematica) that the roots of the characteristic polynomial can
be written as

λ = ±
√

−A
2
± 1

2

√

A2 + 4B2.

So there are two and only two (except for single points) real eigenvalues and only one which
is negative. I choose

λ = −
√

−A
2
+

1
2

√

A2 + 4B2

because in analogy with eq. (5.4) this corresponds toingoingKerr-Schild coordinates.
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The corresponding associated normalized (l0 = 1) eigenvector is (obtained with Mathe-
matica)

(lµ) =

(

1,
λ2Φ1 + BΦ6 + λ (Φ2Φ4 + Φ3Φ5)

λ
(

λ2 + Φ4
2 + Φ5

2 + Φ6
2
) ,

λ2Φ2 − BΦ5 + λ (Φ3Φ6 − Φ1Φ4)

λ
(

λ2 + Φ4
2 + Φ5

2 + Φ6
2
) , (5.12)

λ2Φ3 + BΦ4 − λ (Φ1Φ5 + Φ2Φ6)

λ
(

λ2 + Φ4
2 + Φ5

2 + Φ6
2
)

)

Note that because of the normalizationl0 = 1 there are singular points if

λ
(

λ2 + Φ4
2 + Φ5

2 + Φ6
2
)

= 0.

Nevertheless, this normalization is assumed here because the constraint equations become
simpler and because one can compare to Bishop’s original approach, see the following
section. For the future one might want to work with the regularized version of eq. (5.12)
which is only singular at the positions of the black holes.

5.6 Compare to Bishop’s Construction

In [10] Bishop et al. invented a different construction oflµ, the free part of the initial data.
Nevertheless, in the case of non spinning non boosted black holes and for a special choice
of the shielding parameter the same results are obtained.

They constructl i (the spatial part oflµ) as the normalized gradient of a potential

l i = C∇iΦ

in the case of vanishing angular momentum with

Φ =
∑

i

mi

ρi
.

My construction procedure in this case leads to a total electromagnetic field tensor

(Fµ
ν) =





0 Φ1 Φ2 Φ3

Φ1 0 0 0
Φ2 0 0 0
Φ3 0 0 0





.

Using the general formula forlµ eq. (5.12) we get for the spatial part

(l i) =
1
λ

(Φ1,Φ2,Φ3)

with

λ = −
√

Φ2
1 + Φ

2
2 + Φ

2
3.
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5.7. Physical Implications

We have from the construction procedure

Φ1 =
∑

i

mi

ρk
i

(x− xi)

Φ2 =
∑

i

mi

ρk
i

(y− yi)

Φ3 =
∑

i

mi

ρk
i

(z− zi).

So my construction leads to the samelµ as in Bishop if the shielding parameter isk = 3.
Later on I will considerk = 3 exclusively.

5.7 Physical Implications

5.7.1 Limit of infinite Coordinate Separations

Let ρ be the typical coordinate separation of the black holes position (in the sense described
above) andd = α ρ the radius of a coordinate sphereK̃ ⊂ Σ̃0 around one black hole position
with α ≪ 1. Look at the limitρ → ∞ now. The coupling functions of all other black
holes in the superposition eq. (5.10) converge to zero inK̃. They fall off faster the higher
the shielding parameterk is. So in this limit the total generating tensor iñK is that of a
single black hole (5.4)1. So inK̃ the Kerr-Schild null vector fieldlµ is that of a single Kerr
black hole1. In K̃ it is thus possible to find a solution of the constraint equations which,
interpreted onΣ0, is the data of the initial Kerr-Schild slice of a single Kerrblack hole1 and
hence the coordinates are standard single black hole Kerr-Schild coordinates.

Let us callK that region inΣ0 associated with the regioñK in Σ̃0. In the limit ρ → ∞,
the proper diameter ofK is infinite because the metric there is that of a single black1 hole
and soK is asymptotically flat. Hence the notions of ADM-masses, -momenta and -spins
on K are well defined.

In this limit the spin-parameter used in the construction oflµ is the ADM-spin per unit
mass because it is the spin parameter of a single Kerr black hole1. If the momentum pa-
rameter is zero then the metric reduces to a Kerr black hole with ADM-momentum zero
(possibly times shifts and rotations of the coordinates). Because by construction the ADM-
momentumP, defined in the asymptotically flat region ofK with Minkowski coordinates,
transforms under Lorentz transformation as the Lorentz momentum parameter for a given
ADM-mass, the ADM-momentum per unit mass equals the momentum parameter per unit
mass in this limit. Only the ADM-mass itself is not fixed by theconstruction procedure of
lµ alone because we use the specific superposition eq. (5.10). Writing mi = αi M with M
the total ADM-mass the eigenvalue equation eq. (5.11) can bedivided by M which only
changes the size (but not the sign) of the eigenvalue. So onlythe relations of the mass pa-
rameters, i.e. theαis, influence the null vector field by construction. The ADM-mass is one
of the further freedoms hidden in the constraint equations and is determined by fixing the
boundary conditions with which they are solved.

1possibly additional coordinate transformations as coordinate shifts, rotations or Lorentz boosts must be
applied
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Chapter 5. Kerr-Schild Initial data

5.7.2 Apparent Horizons

In Bishop’s original paper [10] it is discussed that surfaces orthogonal to the spatial part
of the Kerr-Schild null vector fieldl i with V = −1/2 are marginally trapped ifl i is sur-
face forming. This is the case described in Section 5.6; moregenerally from Frobenius’s
Theorem [52] the surface forming condition is

l[i l j,k] = 0.

They argue thatlµ is the ingoing normal to such a surface andkµ = 2tµ − (1 + 2V)lµ is the
outgoing one and find for the outgoing divergence

Θout = −(1+ 2V)Θin.

SoΘout = 0 if V = −1/2. Nevertheless the argument does not seem to be good becausekµ
is only an outgoing null normal of the surface ifV > −1/2. So exactly in the case when
we have a marginally trapped surface, i.e. 1+ 2V = 0, we havekµ = 2tµ and it is not an
outgoing normal.

In [46] they claim that they have checked the marginally trapped surface condition
eq. (1.8) and came to the same result as Bishop.

Currently no generalization exists for not surface formingl i .
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Chapter 6

Constraint Equations

6.1 Derivation of Kerr-Schild Constraint Equations

Ansatz eq. (5.1) implies that the data and the constraints onthe initial hypersurfaceΣ0 are
fully determined by the Kerr-Schild part of the metric because the componentsG0

0 andG0
i

of the Einstein tensor do not contain second time-derivatives. So the Einstein tensor defined
by metric (5.1) does not containj-matrices and one can compute the constraint equation at
t = 0 considering only the Kerr-Schild part.

In [10] they derived the Kerr-Schild constraint equations in Cartesian Kerr-Schild co-
ordinates. I reproduced the computations with Mathematicausing the tensor package EinS
[29]. This package allows to obtain tensor expression keeping terms together by means of
Einstein’s summation convention. Standard Mathematica itself is only able to compute the
expression and fully evaluate it in terms of all tensor components which is much longer. But
to check the computations done with EinS, I compared the resulting equations with those
obtained by standard Mathematica which was eventually successful.

The constraint equations were computed from the definition of the Einstein tensorG0
0 =

0 andG0
i = 0 directly and not using eq. (2.5) and (2.6). Here is the Hamiltonian constraint

0 = − V,ii + l i l jV,i j

+ 2
(

2Vl̇ i + (1+ 2V)ai + l i l j, j

)

V,i + 2V2l̇ i,i (6.1)

+ V2(l̇ i l̇ i − aiai) + 2V(1+ V)ai,i + V(l i,i l j, j − l i, j l j,i),

the momentum constraintG0
i l i = 0

0 =V,ii − l i l jV,i j

+
(

(1− 4V)l̇ i − (1+ 4V)ai − l i l j, j

)

V,i + V(1− 2V)l̇ i,i (6.2)

+ 2V2aiai − V(1+ 2V)ai,i − V(1− 2V)ai l̇ i + V̇li ,i + Vli, j(l j,i − l i, j)
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Chapter 6. Constraint Equations

and the momentum constraintsG0
izi = 0

0 = − l iV,i j zj

+
([

l̇ j l i − l i, j + 2l j,i
]

V,i − l i,iV, j + Vli l̇ j,i − V̇, j
)

zj (6.3)

+
(

V̇aj + V(l j,ii − l i,i j ) + Vl̇ j l i,i + 2V2ai(l i, j − l j,i)

+ 2V2l̇ i l i, j + V(1− 2V)l̇ i l j,i

)

zj .

To write down these equations I use Einstein’s summation convention for repeated indices
with the simplified notationl i = l i . This is very convenient when dealing with computer
algebra but can be dangerous when one wants to change to otherthan Cartesian coordinates.
The vectorz on Σ̃0 is orthogonal tol with respect to the Euclidean metric (i.e. the induced
metric ofΣ̃0), so

l izi = 0.

One has to choose two linearly independentz because eq. (6.3) represents two equations. I
also introduce

l̇ i := ∂tl i and V̇ := ∂tV

and
a j := l j,i l i .

Beside the normalizationl i l i = 1 the following identities are used

l̇ i l i = l i, j l i = 0, l i l̇ i, j = −l̇ i l i, j , l i l j l̇ i, j = −ai l̇ i ,

l j l j,kk = −l j,kl j,k, lkl j,kl = a j,l − lk,l l j,k.

The unknown functions to be solved for areV, V̇ and two (linear combinations of the)
components oḟl i , obtaining the third component by means of eq. (5.3).

6.2 Schwarzschild Solution

As a first check of the correctness of the constraint equations, I want to derive the Schwarz-
schild solution, see Section 4.4 fora = 0. In this case we have

l = −r̂, ai = 0, l̇ i = 0, V̇ = 0

with r̂ the radial unit vector and one can assumeV = V(r) with r =
√

x2 + y2 + z2 due to
symmetry. Here are the equations to be solved

0 = − V,ii + l i l jV,i j + 2l i l j, jV,i + V(l i,i l j, j − l i, j l j,i )

0 =V,ii − l i l jV,i j − l iV,i l j, j + Vli, j(l j,i − l i, j)

0 = − l iV,i j zj +
(

−V, j l i,i − V,i l i, j + 2V,i l j,i

)

zj +
(

Vl j,ii − Vli,i j
)

zj .

Becausel i is curl free we havel i, j = l j,i and the sum of the first two equations gives

l i l j, jV,i + V(l i,i l j, j − l i, j l j,i ) = 0.
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6.3. Analysis for Surface Formingl i

We have

− ∂
∂x

x
r
= − r − x2/r

r2
= − r2 − x2

r3
,

hence

l j, j = −
2
r
.

Further on, it is

l i, j l j,i = a j, j − l i l j,i j = −l i l j, ji = l i∂i

(

2
r

)

.

In this simple casel i∂i = −∂r so we obtain

2
r

V,r + V

(

4
r2
− 2

r2

)

= 0

⇒ V,r = −
1
r

V ⇒ V(r) =
C
r
.

C is an integration constant. By comparison with the Newtonian limit, we must setC =
−M. Of course one has to check that this solution fulfills all three constraint equations
individually. In fact this is the case; computations are straight forward and were done with
Mathematica.

6.3 Analysis for Surface Formingl i

6.3.1 Basics

In this section I assume thatl i is surface forming, i.e. there exists aC3-functionΦ : R3→ R
such that

l i = C∇iΦ(x, y, z) with C =
1

√

di j (∇iΦ)(∇ jΦ)

and the smoothness condition∇iΦ , (0, 0, 0) everywhere. If this is the case the general
condition in Frobenius’s Theorem [52]

l[i l j,k] = 0

is fulfilled. Physically for example consider a Kerr-Schildblack hole initial data set with
vanishing momentum and spin parameters (Section 5.6) and

Φ(x, y, z) =
∑

i

mi

|r − r i |
.

6.3.2 Solutions of the Constraints

Existence

The York-Lichnerowicz conformal decomposition describedin Section 3.2 results in elliptic
constraint equations. Elliptic equations are normally solved as boundary value problems and
one can show that the Cauchy problem is ill-posed [27]. Surprisingly and in contrast to that,
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Chapter 6. Constraint Equations

the Kerr-Schild constraint equations in the case of surfaceforming l i represent a Cauchy
problem; they are not elliptic.

The Cauchy problem [27] consists of finding a surfaceS (in this case embedded into
Σ̃0 and giving appropriate data onS such that all derivatives of the solution onS can be
computed. Then – for a real analytic surface and real analytic data – there exists a local real
analytic solution of the constraint equations by means of the Cauchy-Kowalevski Theorem.
Such a surfaceS is callednon-characteristic. A real function is calledreal analytic if it
has a local power series expansion.

To talk about solutions of the system of equations (6.1) to (6.3) it is convenient to change
to adapted coordinates.l i is orthogonal to the surfaceS given byΦ(x, y, z) = const. Due to
the smoothness conditionl i , 0 everywhere, we can find an explicit representation ofS in
terms of two parametersσ andτ locally

x = φ1(σ, τ), y = φ2(σ, τ), z= φ3(σ, τ).

σ andτ are regular local coordinates onS, so one can define the tangent vectors ˆσ = ∂/∂σ
and τ̂ = ∂/∂τ which form a local basis of the tangent space ofS in any point. Conse-
quently (l, σ̂, τ̂) is a basis of the tangent space ofΣ̃0 in each point of the embedding ofS
with di j l iσ̂ j = di j l i τ̂ j = 0. Hence locally one can introduce coordinates (ρ, σ, τ) in a neigh-
borhood of a point on the embedding ofS with l = ∂/∂ρ. With this, σ̂ andτ̂ are the natural
choices for the twoz in eq. (6.3). Furthermore, becausel̇ is orthogonal tol we can write

l̇ = l̇ττ̂ + l̇σσ̂

and it is natural to chooseu = (V, V̇, l̇σ, l̇τ) as the unknown functions to be solved for. Note
that lτ andlσ are the contravariant components ofl̇ with respect to the basis (l, σ̂, τ̂).

To transform the system (6.1) to (6.3) to the coordinates (ρ, σ, τ), we proceed the fol-
lowing way. First, one writes the equations again in covariant form, i.e. one distinguishes
between covariant and contravariant components. This is trivial in Cartesian coordinates for
we are free to choose which of the factors in a contraction to write with upper and which to
write with lower indices. Consider the second order term of eq. (6.1)

V,ii − l i l jV,i j =
(

di j − l i l j
)

∂i∂ jV = qi j∂i∂ jV

with qi j the induced metric ofS. To transform the coordinates one substitutes partial deriva-
tives by covariant derivatives (tensors!)

V,ii − l i l jV,i j = qabDaDbV = qab(∂a∂bV − Γc
ba∂cV)

with a, b = ρ, σ, τ andΓc
ba the Christoffel symbols associated with the coordinates (ρ, σ, τ)

which are known functions onS. Note thatqab = 0 if a = ρ or b = ρ, so the first term only
consists of derivatives tangent toS. The induced metricqab is a known function onS. In
the same equation we also have to look at this term

l̇ i,i = l̇a;a = l̇a,a + Γ
a
bal̇

b.

Here, there are also only derivatives tangent toS becausėl has no components orthogonal
to S. The second order term of eq. (6.3) is

l izjVi, j = (l iV,i), jzj − l i, jV,izj .

46



6.3. Analysis for Surface Formingl i

Here we can use the fact that by definitionl iV,i = V,ρ andzj∂ j is either∂σ or ∂ρ. The second
term is canceled by another term in eq. (6.3). Also look at

2l j,iV,izj = 2dik l j,iV,kz
j = 2dablc;aV;bzc = 2dablc;aV,bzc

from eq. (6.3) andlc;a is again a known function onS. Finally

l i l̇ j,izj = lal̇b;azb = lal̇b,azb + laΓb
cal̇

czb = la(l̇bzb),a − lal̇bzb,a + laΓb
cal̇

czb.

Now we can write the system of equations in the following form
∑

a,b=ρ,σ,τ

Aab∂a∂bu+
∑

a=ρ,σ,τ

Ba∂au+C = 0 (6.4)

with Ai j andBi 4× 4-matrices for alla, b = ρ, σ, τ andC a 4-vector. We find

Aab =





−qab 0 0 0
qab 0 0 0
−δa

ρδ
b
σ 0 0 0

−δa
ρδ

b
τ 0 0 0





and

Ba =





2
(

2Vl̇a + (1+ 2V)aa + l j, jδ
a
ρ

)

+ qcbΓa
bc 0 2V2δa

σ 2V2δa
τ

(1− 4V)l̇a − (1+ 4V)aa − l j, jδ
a
ρ − qcbΓa

bc 0 V(1− 2V)δa
σ V(1− 2V)δa

τ

l̇σδa
ρ + 2dablc;bσ̂

c − l i,iδa
σ −δa

σ Vδa
ρ 0

l̇τδa
ρ + 2dablc;bτ̂

c − l i,iδa
τ −δa

τ 0 Vδa
ρ





.

Note thata has only components tangential toS. The lower order termsC are of no interest
for this analysis.

OnS one gives the following data which is assumed to be real analytic in the following

V = v(σ, τ)

l̇σ = λ1(σ, τ)

l̇τ = λ2(σ, τ).

So allσ andτ derivatives of the unknown functionsV, l̇σ and l̇τ on S can be computed.
Hence from the first equation we knowV,ρ onS as long as 2l j, j+qcbΓ

ρ

bc , 0. The differential
part of the second equation is completely determined. Hencewe getV̇ onS explicitly from
the lower order part as long asl i,i , 0. From the third equation one obtainsl̇σ,ρ and from the
fourth l̇τ,ρ on S if V , 0 (i.e. v , 0) becauseV,ρσ andV,ρτ have already been determined.
Consequently all higher derivatives of the unknown functions onS can be constructed.
Now the Cauchy-Kowalevski Theorem guarantees existence ofa unique analytic solution
in a neighborhood of all points ofS as long as the conditions above are satisfied.

The existence of local solutions might not be very meaningful physically. To see that
consider the example of the Schwarzschild solution withρ = r so l = −∂/∂ρ (result: V =
−M/r). With the Cauchy dataV = −1/2, l̇σ = l̇τ = 0 on the surfaceS given byr = 2M one
obtains besidėV = 0 the derivatives onS

∂n

∂rn V = (−1)n+1n!
M

rn+1

∣
∣
∣
∣
∣
r=2M

,
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all other derivatives vanish. The analytical solution given by the Taylor series

V =
∞∑

k=0

1
k!

(

∂k

∂rk
V(r)

)

r=2M
(r − 2M)k = −1

2

∞∑

k=0

(−1)k
( r
2M
− 1

)k

converges only for 0< r < 4M (geometric series). Nevertheless the solutionV = −M/r
exists for allr > 0.

A proof of well-posedness, i.e. existence, uniqueness and continuous dependence of the
solution on the Cauchy data, for the Cauchy problem of the system of Kerr-Schild con-
straints by means of the Cauchy-Kowalevski Theorem is only possible among the analytic
solutions. This means that one can be sure that there is exactly one local analytic solution
of the constraints which also depends analytically on the Cauchy data if the requirements
above are met: 2l j, j + qcbΓ

ρ

bc , 0, V , 0 andl i,i , 0 on S. But the Cauchy-Kowalevski
Theorem is not a sufficient tool for the general case so there is no general proof ofwell-
posedness.

Numerical Algorithm

Above I described how to construct all derivatives of the solution onS from given Cauchy
data. Hence there is the following algorithm to solve the system of constraints numerically.
With the first derivatives with respect toρ obtained from the system of constraints as above
one can integrate outwards (or inwards) for a distanceδρ (outwards meansδρ < 0) along
the normal of the surface, namelyl i . After this integration step one has the data on another
surfaceS′ which is a bit bigger (or smaller) thanS. FromS′ one can proceed the same way
and so on. To increase the order of accuracy for a given step-width δρ it is possible to use
higher derivatives computed from the system of constraintsas well.

I have not implemented this algorithm because it is useless for numerics, see the fol-
lowing section.

6.3.3 Black hole Boundary Conditions and Problems

At a first glance the algorithm which was just described seemsto be quite promising. It
is even easily possible to guarantee existence of horizons by choosing Cauchy dataV =
−1/2 on the initial surfaceS (Section 5.7.2). But, one has no control of the asymptotical
behavior of the solution. Especially there was no way found to ensure in general that given
Cauchy data onS leads to asymptotical flatness which is indeed a crucial ingredient of
physical initial data. Only in the linear regime, see below,this can be done analytically. But
even then, small numerical errors in the data would excite asymptotically non-flat “modes”
which would be exponentially growing and after some finite distance dominate the solution.
Hence, due to this instability, the algorithm is useless fornumerics.

N. Bishop experimented with this algorithm and said in a private discussion that it pro-
duces singular solutions at infinity in nearly all non-trivial cases he tried.

The biggest class of initial data described at the beginningof this thesis use York’s
conformal decomposition. There, one has to deal with elliptic equations and the Cauchy
problem of elliptic equations is ill-posed [27], so one tries to solve it as a boundary value
problem. If the system of Kerr-Schild constraint equationswas solvable as a boundary
value problem then one would have control over both the existence of horizons and the
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6.3. Analysis for Surface Formingl i

asymptotical decay of the solution and one would have a better algorithm for numerics.
Although for non-linear elliptic partial differential equations there is no general way of
proving existence of solutions, whereas in the case of the Kerr-Schild equations this is
quite simple (although only locally), from a practical point of view one prefers to have
no solutions in some cases than a system of equations with non-controllable solutions. In
my thesis I did not try to find a well-posed boundary value algorithm for the Kerr-Schild
constraint equations but rather worked out a modification ofthe Kerr-Schild ansatz leading
to elliptic constraints (Part IV of this thesis). Furthermore I spend some time in investigating
the linear regime where one has analytical control over the constraint equations (Part III).
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Part III

The Linear Regime
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Chapter 7

Black Hole Perturbation Theory

7.1 Motivation

In black hole perturbation theory the nature and dynamics ofsmall deviations from a given
background metric are investigated, neglecting all terms of higher order in the metric pertur-
bations. In this document it will be assumed that the background metric is the Schwarzschild
metric. Below I will describe that one can find a function defined uniquely by the pertur-
bations – the Zerilli and Regge-Wheeler function, respectively – whose evolution equation
is linear and strictly hyperbolic, which depends only on thebackground coordinates and
is gauge-independent. Thus this function gives thephysical contentof weak gravitational
waves; there is no need to ask if maybe the metric deviations are only associated with a
change in the coordinate gauge.

Black hole perturbation theory of a Schwarzschild background is considered here be-
cause in the Kerr-Schild framework it turns out to be possible to obtain physically interest-
ing analytic solutions of the constraint equations which otherwise would be very difficult to
tackle even numerically. The strict hyperbolicity of the linear – in this case one dimensional
– evolution equations makes it possible to set proper boundary conditions for the evolution
and compute the gravitational radiation accurately and reliably with a numerical code.

Furthermore small perturbations of a Schwarzschild black hole arise quite naturally in
black hole physics if the total angular momentum vanishes (or is infinitesimally small). For
example, black holes might be so close initially that they already have a common horizon.
The black holes might also be very far away from each other that one is only perturbed a
little bit by the other one. These examples are interesting models for the beginning and the
final stages of black holes spiraling in from far apart as wellas important testbeds for full
non-linear numerical codes.

Another motivation to investigate the linear regime is its historical importance for nu-
merical relativity. The perturbation theory of a Schwarzschild background was developed
for Schwarzschild background coordinates by Regge and Wheeler [44] in 1957 and Zer-
illi [56]. Using their formalism, a system of two very close black holes – treated as a
weak perturbation of a single black hole – was first considered in [42] using perturbation
theory. A little later [5] two equal mass Misner black holes were evolved with a full nu-
merical code and they found agreement with perturbation theory if the separation parameter
is small enough. A more comprehensive comparison between perturbation theory and full
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non-linear numerical codes for distorted black holes was given in [4]. Perturbation theory
of second order was worked out in [24] but will not be used in this thesis. In 2001 the
perturbation theory was generalized for general coordinates by Sarbach et al. [45]. I will
apply their formalism to Kerr-Schild initial data constructed in the way described before.

Teukolsky [48] developed a formalism of the perturbation ofany vacuum Petrov-Type
D background; especially of the Kerr metric. From a certain point of view this formalism
would have been better adapted to Kerr-Schild initial data but is left for future work.

7.2 Perturbation theory

In [45], a formalism was developed for first order perturbations of a Schwarzschild back-
ground which will be explained here only very briefly.

The coordinates of the Schwarzschild background metric areassumed to be adapted to
spherical symmetry, i.e. the background metric can be written as

g = ḡabdxa ⊗ dxb + r2(xa)ĝABdxA ⊗ dxB

where bold quantities are abstract, i.e. not written out in acertain coordinate frame,dxa and
dxA are coordinate differentials with respect to the pseudo-Riemannian manifoldM̄ and
the standard metric of the 2-sphereS2 respectively, i.e. the total background manifold is
M = M̄ × S2. The perturbed metric is written asg+ δg with so small perturbationδg that
only first order terms are important.

Following Regge-Wheeler and Zerilli the metric perturbationsδg can be expanded into
tensor spherical harmonics; given by thequantum numbers land m. It is beyond the
scope of this document to describe them in further detail, but it is important that they are or-
thonormalized with respect to some scalar product (see [56]) and complete in analogy with
the well-known (scalar) spherical harmonics. Besides the quantum numbersl andm, the
tensor spherical harmonics are classified by their behaviorunder parity transformation: the
even parity ones which transform as (−1)l andodd parity oneswhich transform as (−1)l+1.
From the physical point of view odd parity perturbation are associated with infinitesimal ro-
tations. Hence by means of this expansion, one can define amode for each choice of the
quantum numbersl andmand parity uniquely in terms of some functions, vector and tensor
fields onM̄.

7.3 Regge-Wheeler and Zerilli Equation

In the odd and even case forl ≥ 2 one can construct a quantity – theRegge-Wheeler- or
Zerilli-function respectively – which does not change under infinitesimal oddand respec-
tively even gauge transformations and fulfills a simple evolution equation

Ψ̈ − c1Ψ̇
′ − c2Ψ

′′ − c3Ψ̇ − c4Ψ
′ + α2VΨ = 0 (7.1)

with (in Kerr-Schild coordinates)

c1 =
4 M

r + 2 M
c2 =

r − 2 M
r + 2 M

c3 = −
2 M

r (r + 2 M)
c4 =

2 M
r (r + 2 M)

,
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the background lapse function

α =

√

r
r + 2 M

and theRegge-Wheeler-andZerilli-potential respectively

VRW =
−6 M + l (1+ l) r

r3

VZ =
36M2 (2 M + r λ) + r2 λ2 (6 M + r (2+ λ))

r3 (6 M + r λ)2

definingλ := (l − 1)(l + 2). A dot denotes derivatives with respect tot and a prime with
respect tor.

It turns out that in the casesl = 0, 1 there are no dynamical modes. For even parity
a monopole model = 0 leads to an infinitesimal change in mass of the background. The
dipole model = 1 for odd parity introduces an infinitesimal angular momentum. The even
l = 1 and oddl = 0 modes are purely gauge.

It is also shown how to compute the energy radiated to null infinity by gravitational
waves. In Kerr-Schild coordinates it is

E =
1

16π
lim
r→∞

∫ ∞

0
dt

∑

l,m

(

|Ψ̇odd
lm |

2 + |Ψ̇even
lm |

2
)

. (7.2)

7.4 Characteristic Analysis and Well-Posedness

One wants to use eq. (7.1) to write a code which evolves Kerr-Schild initial data which can
be regarded as a distorted Schwarzschild black hole. In numerical computations one always
introduces artificialnoisedue to round-off errors and other approximations that can cause
quickly growing modes and an eventual crash of the numericalcode.

There is a wide range of dangers for a stable numerical code. The reason for this can
be on the one hand the numerical method, on the other hand alsothe equation itself. For
example for the parabolic heat equation one can show on the analytical level that little de-
viations in the initial data grow more than exponentially when integrating backward in time
[32] which one callsill-posedness. In contrast to this one calls a Cauchy problemwell-
posedif for given initial data a unique solution exists and if it depends on the initial data
continuously. For linear equations with fixed coefficients, for example the wave equation,
well-posedness implies that such deviations may grow not stronger than exponentially for
all times [32]. This is a result which one obtains by means of the theory of Fourier trans-
formations. If the coefficients are varying one also finds well-posedness but only up to a
finite time [32]. Of course even exponential growth, which isallowed for a well-posed
Cauchy problem, may kill a numerical code. So from the point of view of stable numerics,
well-posedness of a Cauchy problem is rather necessary thansufficient.

Look again at eq. (7.1) but assume for a moment that it is a general quasi-linear equation,
i.e. the coefficients are arbitrary butc1 andc2 only dependent on the first derivatives ofu, u
itself andr andt. In [27] such a second order quasi-linear equation is definedashyperbolic
if it has two independent non-vanishingcharacteristicswhich is equivalent to the fact that
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Chapter 7. Black Hole Perturbation Theory

the determinant of the coefficients of theprinciple part is strictly negative

det

(

1 −c1/2
−c1/2 −c2

)

= −1
4

(c2
1 + 4c2) < 0. (7.3)

By definingπ = Ψ̇ andφ = Ψ′ one obtains an equivalent system of first order partial differ-
ential equations. In [32] it is shown that this first order system is well-posed if the coefficient
matrix of the spatial derivatives has a complete set of real eigenvectors. In the computations
of [45] in Section V it is derived that the hyperbolicity condition (7.3) is equivalent to this
well-posedness condition. So eq. (7.1) is a well-posed hyperbolic partial differential equa-
tion if condition eq. (7.3) is fulfilled and one calls itstrictly hyperbolic [32]. In the latter
reference it is also shown that the initial-boundary-valueproblem, i.e. for finite computa-
tional domains with some boundary conditions, is well-posed if all characteristics leave the
domain.

Going back now to the specific case of the Regge-Wheeler equation eq. (7.1) in Kerr-
Schild coordinates. The hyperbolicity condition eq. (7.3)reads

c2
1 + 4c2 =

4 r2

(2 M + r)2
> 0

so it is in fact strictly hyperbolic.
The characteristics – also calledmodes– of eq. (7.1) are curves given by [27]

dr±

dt
= −1

2

(

c1 ±
√

c2
1 + 4c2

)

= −2M ± r
2M + r

.

Hence outside the background horizonr > 2M there is one outgoing mode with speed
(r−2M)/(2M+ r) and an ingoing one with speed 1 (speed of light); inside the event horizon
r < 2M both modes are going inwards. On these characteristic curves,Ψ± := Ψ(r±(t), t)
evolves as follows

dΨ±

dt
= Ψ′

dr±

dt
+ Ψ̇ (7.4)

which is (dΨ+
dt

dΨ−

dt

)

=

(dr+
dt 1

dr−

dt 1

) (

Ψ′

Ψ̇

)

.

This can be inverted
(

Ψ′

Ψ̇

)

=
1

dr+
dt −

dr−
dt

(

1 −1
−dr−

dt
dr+
dt

) (dΨ+
dt

dΨ−
dt

)

= − r + 2M
2r

(

1 −1
− r−2M

r+2M −1

) (dΨ+

dt
dΨ−
dt

)

. (7.5)

This gives rise to simple and consistent boundary conditions. We want that at the boundaries
of the computational domain there are only modes that leave the domain; modes, that are
defined by the data on the domain. Because both modes leave thedomain automatically
when the inner boundary is placed inside the background horizon (r < 2M) we do not
have to specify extra boundary conditions there (excision). At the outer boundary which
is usually placed far away from the black hole horizon we set as a boundary condition
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7.4. Characteristic Analysis and Well-Posedness

dΨ+/dt = const. If the constant vanishes than there is no ingoing mode but this condition is
not necessarily consistent with the initial data which willbe found analytically for allr > 0.
So as the outer boundary condition, I compute the ingoing mode of the initial data at the
outer boundary and leave it constant during evolution.
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Chapter 8

Numerical Evolution

8.1 Kerr-Schild Initial Data

Assume we have found initial data using the construction procedure in Chapter 5 which
can be considered as a weakly distorted Schwarzschild blackhole. In Chapter 9 it will
be shown by an example that this is indeed possible. Then we can use eq. (7.1) to evolve
the data forward (or backward) in time and compute the radiated gravitational waveforms
(the Regge-Wheeler or Zerilli function) and energy according to eq. (7.2). Before we are
able to do this we have to convert the initial data in terms oflµ, V and the time derivatives
to perturbations of the Kerr-Schild-Schwarzschild background metric and from that to the
Regge-Wheeler and Zerilli function, respectively, and their time derivatives for a givenl
andmand parity [45]. In Kerr-Schild coordinates this leads to long expressions and I used a
Mathematica script to do the computations. As soon as one hasconverted the initial data in
terms oflµ, V and the time derivatives to initial data for the Regge-Wheeler-Zerilli function,
one can use a numerical code to evolve the data by means of eq. (7.1).

8.2 Numerical Implementation of the Evolution Equation

Evolution Equations I implement eq. (7.1) in Fortran-90 in the following way. First one
converts it to a first order system definingπ = Ψ̇ andφ = Ψ′ which leads to





π̇

φ̇

Ψ̇




=





c1 c2 0
1 0 0
0 0 0









π′

φ′

Ψ′




+





c3 c4 −α2V
0 0 0
1 0 0









π

φ

Ψ




. (8.1)

Hence there are three evolution equations for three variablesπ, φ andΨ.

Discretization I introduce a spatial one-dimensional grid ofN points starting at the inner
boundaryr IB within the background horizon and ending at the outer boundary rOB far away
from the black hole. The values of the functions at theith grid point are denoted asπi, φi

andΨi . As it turns out [45], to approximate the differential operators by finite differences
of second order accuracy leads to a stable code only if one adds additional dissipation terms
(see also [32]). Hence I decided to use fourth order finite differencing in space (coefficients
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8.2. Numerical Implementation of the Evolution Equation

obtained straight forwardly with Mathematica)

(∂r fi)∆r =
1
12

fi−2 −
2
3

fi−1 +
2
3

fi+1 −
1
12

fi+2 +O(∆r5) (8.2)

for a grid function f and a fourth order Runge-Kutta scheme in time [41] with the time
discretization parameter∆t.

A necessary condition for stability is that theCourant-Friedrich-Levy parameter

λ =
∆t
∆r

< 1.

In [43] one finds more about stability of such methods.
At the boundaries where eq. (8.2) cannot be applied, I use extrapolation to obtain data

on two grid points beyond each of the boundaries. On the left hand side this is

fi = 5 fi+1 − 10fi+2 + 10fi+3 − 5 fi+4 + fi+5 +O(dr5)

and on the right hand side

fi = 5 fi−1 − 10fi−2 + 10fi−3 − 5 fi−4 + fi−5 +O(dr5).

So after extrapolation eq. (8.2) can be used on the whole computational domain.

Boundary conditions Eq. (7.4) and (7.5) give a one-one correspondence between the
grid functions and the two characteristics in each point of the grid. At the outer boundary
outside the background horizon where the ingoing mode is notdefined by the data on the
computational domain (except if it stays constantly equal to the initial ingoing mode there)
it is thus possible during an evolution to compute the modes from the extrapolated data, set
the ingoing mode to the initial one and recompute the data. Sothis implements anoutgoing
radiation boundary . At the inner boundary it was shown in Section 7.4 that both modes
leave the computational domain automatically so both of them are determined by the data.
This means that there is no need to put any boundary conditionhere.

Radiated Energy The energy radiated to null-infinity is computed by means of eq. (7.2).
In principal the integral must be evaluated atr → ∞ and for an infinite amount of time.
In practicer needs only to be so large that the metric ispractically flat and one only needs
to integrate long enough that the gravitational waves have already passed the point of the
extraction.

The Program The program reads initial data from a text file generated by Mathematica.
With an ASCII parameter file the following parameters can be controlled:

• MassM of the background metric

• Angular momentum quantum numberl

• A boolean parameter choosing odd- or even parity (to use the Regge-Wheeler or the
Zerilli potential in eq. (7.1))
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Chapter 8. Numerical Evolution

• Positionrrad of the extraction of the radiated energy

• Courant-Friedrich-Levy factorλ

• Time when the evolution is to be stopped

• Additional control of the output

To actually confirm fourth order convergence of the numerical code the program has the
capability to run the evolutions obtained with three different resolutions. First, the program
takes the resolution determined by the initial data ASCII file. Second, it doubles the grid
spacing in space and in time (leaving the Courant-Friedrich-Levy factor constant), i.e. using
only every second point in the initial data ASCII file. Third it doubles the grid spacing again.
The three different resolutions are put into three different output files. If there is 4th order
convergence then at each time step

16|ΨHR − ΨMR| = |ΨMR− ΨLR| (8.3)

which can then be checked easily with Gnuplot [2]. HereΨHR denotes the result of the high,
ΨMR of the medium andΨLR of the low resolution run.

8.3 Code Tests

I set the background massm= 1 and only look for al = 2 even parity mode. As initial data
for the Zerilli function I chose a Gaussian

Ψ(r) = e−(r−30)2/4

and the first time-derivative
Ψ̇(r) = 0.

The inner boundary is set tor = 1.8 and the outer boundary tor = 50 with a grid size of
∆r = 0.01 (of the highest resolution run). The evolution runs untilt = 30 with a Courant-
Friedrich-Levy factor of 0.5. Fig. 8.1 on the next page shows the Zerilli function at different
times.

A crucial question is if the code shows fourth order convergence. As was said before it
runs three times with the same initial data but coarsening the computational grid in each run
by a factor of two. If the convergence is correct, eq. (8.3) holds for the results of the three
runs. This is shown in Fig. 8.2 and Fig. 8.3 on page 60 for two different times. The plots
confirm that there is fourth order convergence except when the pulse hits the outer boundary.
The reason for this is not fully understood. One way out of this problem at the moment is
to only trust the evolution in regions causally disconnected from the outer boundary.

Although physically meaningless, for these initial data the program extracted the ra-
diated energy atr = 30. For the high resolution it is 0.144721465, for the medium one
0.144721468 and for the low one 0.144721520. This is fourth order converging.

The next test for the program was to show that it can reproducethe results in [46] for the
close limit of the unboosted black holes without angular momentum, but it turned out that
this was not possible. This problem was solved by a personal discussion with the authors
M. Tiglio and O. Sarbach from which I learned that they had an error in their code which
they used for the paper. After correcting it, now our codes obtain the same results. My
computations are described in Chapter 9 which includes the unboosted caseΠ = 0.
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Figure 8.1: Gauß Initial Data: Waveforms at different times,l = 2, even parity
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Figure 8.2: Gauß Initial Data: Convergence att = 12, l = 2, even parity
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Figure 8.3: Gauß Initial Data: Convergence att = 18, l = 2, even parity
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Chapter 9

Application: Boosted Schwarzschild
like Close Limit

9.1 Initial Data

In [10] analytical initial data for two very close black holes without boosts and spins were
found. In [46] these data were evolved and the gravitationalenergy was computed. With
my general framework to construct Kerr-Schild initial datait becomes possible to generalize
this simple black hole system for additional boosts.

Consider the following setup for the binary black hole system (Fig. 9.1)

• Mass parametersM1, M2 (M := M1 + M2)

• Coordinate positions (0, 0, ǫM2), (0, 0,−ǫM1)

• Momentum parametersP(0, sinχ, cosχ), −P(0, sinχ, cosχ)

• Vanishing spin parameters

y

z

M1M2

P

−P

χ

χ

ǫM

Figure 9.1: Boosted Close Limit Setup

In the following analysis I assume thatΠ ≪ 1 andǫ ≪ 1 with Π := P/M. The partly
lengthy computations were done with Mathematica.
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Chapter 9. Application: Boosted Schwarzschild like Close Limit

9.1.1 Electromagnetic Field Tensor

The totalelectromagnetic field tensoris constructed following Section 5.4 with the spin
parameters set to zero and the additional generalization that the boosts can show in other
directions than thez-axis. With

R(χ) =





1 0 0 0
0 1 0 0
0 0 cosχ sinχ
0 0 − sinχ cosχ





the Lorentz matrix in our case is

Λ(P, χ) = R(χ) · Λ(P) · R−1(χ).

The individual electromagnetic field tensors are superposed as in eq. (5.10) using a
shielding parameterk = 3.

9.1.2 Kerr-Schild Null Vector Field

By means of eq. (5.12) the normalized Kerr-Schild null vector field, i.e. the eigenvector
of the total electromagnetic field tensor associated with the only negative eigenvalue, is
obtained. It will be printed here in spherical Kerr-Schild coordinates, i.e. in coordinates
(r, θ, φ) where the induced metric ofΣ̃0 is (di j ) = diag(1, r2, r2 sin2 θ).

To lowest order inǫ andΠ the spatial part oflµ is

l = l(S S) + ǫΠA11(r)
(
S1,1

odd(θ, φ) − S1,−1
odd (θ, φ)

︸                       ︷︷                       ︸

=:R1,1
odd(θ,φ)

)

+ ǫΠA21(r)
(
S2,1

even(θ, φ) + S2,−1
even(θ, φ)

︸                        ︷︷                        ︸

=:I2,1
even(θ,φ)

)

+
(
ǫ2 Aǫ20(r) + ǫΠAΠ20(r)

)
S20

even(θ, φ).

with

Aǫ20(r) =

√

π

5
12M2µ

r
, AΠ20(r) = −

√

π

5
12M cosχ,

A21(r) = −3i

√

6π
5

M sinχ, A11(r) =

√

2π
3

M sinχ

using

µ :=
M1M2

M2
.

Note that there is the symmetry of the simultaneous transformationsχ→ π+χ andΠ→ −Π
as is expected from Fig. 9.1.
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Sl,m(θ, φ) are standard vector spherical harmonics [45]. In Kerr-Schild spherical coor-
dinates they are

Sl,m
even(θ, φ) = dYl,m(θ, φ)

=





0
m Yl,m(θ, φ) cotθ +

√
l (l + 1) −m(m+ 1) Yl,m+1(θ, φ)e−i φ

i m Yl,m(θ, φ)





and

Sl,m
odd(θ, φ) = ∗dYl,m(θ, φ)

=





0
−i m Yl,m(θ, φ) cscθ

m Yl,m(θ, φ) cosθ +
√

l (l + 1) −m(m+ 1) Yl,m+1(θ, φ)e−i φ sinθ





where * is theHodge-Operator associated with the metric onS2 [45].
This is a perturbation of Schwarzschild Kerr-Schild null vector field to lowest order

in ǫ andΠ. If the black holes are sitting on top of each other (ǫ = 0), l reduces to the
Schwarzschild onel(S S) = −(1, 0, 0) for all values ofΠ. This means that there is no change
of the total background linear momentum. Note [46] that the expansion inǫ andΠ makes
no sense ifr < r0 ∼ ǫM.

Now I try to find solutions of the constraint equations in terms of the same modes.
Afterwards the physical meaning of the modes will be discussed.

9.1.3 Solution of the Kerr-Schild Constraint Equations

Derivation of the Kerr-Schild Constraint Equations

Eq. (6.1) to (6.3) are the Kerr-Schild constraint equationsin Cartesian Kerr-Schild coordi-
nates. I rederived them in spherical Kerr-Schild coordinates to make use of the symmetries
in our problem. I applied the same Mathematica code which before successfully derived the
Cartesian ones above. For an additional check I also used theRG-TC-package [11]1.

Separation Ansatz

The unknown functions which we have to solve for areV(r, θ, φ), V̇(r, θ, φ) and l̇ i(r, θ, φ) at
t = 0. All the following computations are very long and only the results are printed. They
were done using Mathematica.

1Website given in the reference was not active when I finished this thesis, alternative address:
http://library.wolfram.com/infocenter/MathSource/4484/
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Chapter 9. Application: Boosted Schwarzschild like Close Limit

To separate the constraint equations (Section 6.1) the following ansatz is made

V(r, θ, φ) = −M
r
+ ǫ Π vΠ11(r)

(

Y1,1(θ, φ) − Y1,−1(θ, φ)
)

sinχ (9.1)

+ i ǫ Π vΠ21(r)
(

Y2,−1(θ, φ) + Y2,1(θ, φ)
)

sinχ

+
(

ǫ2 µ vǫ20(r) + ǫ Π vΠ20(r)
)

Y2,0(θ, φ),

l̇(r, θ, φ) = ǫ Π lΠ11(r) R1,1
odd(θ, φ) sinχ (9.2)

+ i ǫ Π lΠ21(r) I2,1
even(θ, φ) sinχ

+
(

ǫ2 µ lǫ20(r) + ǫ Π lΠ20(r)
)

S2,0
even(θ, φ),

V̇(r, θ, φ) = ǫ Π ṽΠ11(r)
(

Y1,1(θ, φ) − Y1,−1(θ, φ)
)

sinχ (9.3)

+ i ǫ Π ṽΠ21(r)
(

Y2,−1(θ, φ) + Y2,1(θ, φ)
)

sinχ

+
(

ǫ2 µ ṽǫ20(r) + ǫ Π ṽΠ20(r)
)

Y2,0(θ, φ).

Reducing the Number of Unknown Functions

The constraint equations lead to the following relations. For simplicity one introduces the
mass scaled radial coordinatex := r/M.

The unknown radial functions for the odd (1,1)-mode are given by

vΠ11(x) = 0, ṽΠ11(x) = 0, lΠ11(x) =
C
x
, (9.4)

with an arbitrary constantC.
In the even 21-sector the constraints allow to express the three unknown functions in

terms ofvΠ21(r), eventually obtaining one ordinary differential equation for it (see next sec-
tion)

ṽΠ21(x) =
3
√

30π + 10x2(1+ 2 x)vΠ21(x) + 5x3(2+ x)vΠ21
′
(x)

10x3
, (9.5)

lΠ21(x) =
x2

6

(

4vΠ21(x) + x vΠ21
′
(x)

)

. (9.6)

As long asvΠ21(x) is invariant under the simultaneous transformationsχ→ π + χ, Π→ −Π,
the 21-mode is also invariant.

In the even (2,0)-sector there are two sets of functions, onerelated toǫΠ

ṽΠ20(x) =
12
√

5π cosχ + 10x2(1+ 2x) vΠ20(x) + 5x3(2+ x)vΠ20
′
(x)

10x3
, (9.7)

lΠ20(x) =
x2

6

(

4vΠ20(x) + x vΠ20
′
(x)

)

(9.8)

and one related toǫ2

ṽǫ20(x) =
12
√

5π(x− 1)+ 10x3(1+ 2x)vǫ20(x) + 5 x4(2+ x)vǫ20
′(x)

10x4
, (9.9)

lǫ20(x) =
12
√

5π(x− 1)+ 20x4 vǫ20(x) + 5 x5 vǫ20
′(x)

30x2
. (9.10)
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If one wants the 21-mode to be invariant underχ → π + χ andΠ → −Π then one has to
require thatvΠ20(x)→ −vΠ20(x), see below.

Solving the Remaining Equations

With these last relations there are only three unknown functions leftvΠ21(x), vΠ20(x) andvǫ20(x).
Each of them fulfills an ordinary linear differential equation and it is possible to find analytic
solutions which lead to asymptotic flatness of the total metric.

Even 21-Mode vΠ21(r) has to satisfy the following second order linear inhomogeneous
ordinary differential equation

−3

√

6π
5
− 6 x2 vΠ21(x) + 5 x4 vΠ21

′
(x) + x5 vΠ21

′′
(x) = 0. (9.11)

A particular solution is

vΠ21(x) = −
√

π

30
3− 2 x+ x2

x2
.

When the homogeneous equation

−6 x2 vΠ21(x) + 5 x4 vΠ21
′
(x) + x5 vΠ21

′′
(x) = 0

is transformed the following way

vΠ21(x) =
u(x)

x2

and afterwards

z=

√

24
x

it reduces to
z2u′′(z) + zu′(z) − (16+ z2)u(z) = 0

which is themodified Bessel equation2 for n = 4 and is solved by themodified Bessel
functions. So the general solution of eq. (9.11) is

vΠ21(x) = −
√

π

30
3− 2 x+ x2

x2
+

C1
21 I4

(√

24
x

)

x2
+

C2
21 K4

(√

24
x

)

x2
(9.12)

with two arbitrary coefficientsC1
21 andC2

21. One of them will be fixed later by the additional
requirement of asymptotic flatness.

2see for example http://mathworld.wolfram.com/ModifiedBesselDifferentialEquation.html
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Even 20-Mode We find the general solutions ofvΠ20(x) andvǫ20(x) in a very similar way.
The first functionvΠ20(x) has to fulfill

−12

√

π

5
cosχ − 6 x2 vΠ20(x) + 5 x4 vΠ20

′
(x) + x5 vΠ20

′′
(x) = 0

with the general solution

vΠ20(x) = −2

√

π

5
3− 2 x+ x2

3 x2
cosχ +

C1
Π

I4

(√

24
x

)

x2
+

C2
Π

K4

(√

24
x

)

x2
. (9.13)

For vǫ20(x) we have to solve

−12

√

π

5

(

3− 2
x

)

− 6 x2 vǫ20(x) + 5 x4 vǫ20
′(x) + x5 vǫ20

′′(x) = 0

and obtain

vǫ20(x) = −4

√

π

5
3+ 3 x− 2 x2 + x3

3 x3
+

C1
ǫ I4

(√

24
x

)

x2
+

C2
ǫ K4

(√

24
x

)

x2
. (9.14)

9.1.4 Asymptotic Flatness

For the initial data to be physically relevant one requires thatgµν and its first time derivative
are initially asymptotically flat, i.e. it converges to the Minkowski metric forr → ∞. For
this it is sufficient to show that all radial functions, which we have just obtained, converge
to zero in this limit. This is not the case for arbitrary choices of the free parameters because
limz→0 K4(z) = ∞.

Even 21-mode

Usingz= 1/x, the Taylor expansion ofvΠ21(1/z) atz→ 0 is

vΠ21(1/z) =





C2
21

12
−

√

π

30



 +





−C2
21

6
+

√

2π
15



 z+





C2
21

4
−

√

3π
10



 z2 −
C2

21 z3

2

+





3C1
21

2
+ 576C2

21





25
12 − 2γ

768
+

log(2)− log(2
√

6)− log(z)
2

384








z4 + . . . .

Because limz→0 zn logz= 0 we obtain the right limit if

C2
21 = 12

√

π

30
. (9.15)

Hence to leading order (z4 logz goes faster to zero thanz3) we have

vΠ21(x)
x→∞−−−−→ −

√

6π
5

1

x3
.

Because of this we find that both ˜vΠ21(x) and lΠ21(x) go to zero forx → ∞, by looking at
eq. (9.5) and (9.6).
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Even 20-mode

The same can be done for the remaining modes. The requirementof asymptotically flatness
leads to

C2
Π = 8

√

π

5
cosχ (9.16)

and

C2
ǫ = 16

√

π

5
. (9.17)

9.1.5 Final Solution

Eventually we have the following solutions of the constraint equations, using ansatz eq. (9.1)
to (9.3). From eq. (9.12) and the asymptotic flatness requirement eq. (9.15) one gets

vΠ21(x) = −
√

π

30
3− 2 x+ x2

x2
+ 2(8γ + K3)

√

π

5

I4

(√

24
x

)

x2
(9.18)

+ 2

√

6π
5

K4

(√

24
x

)

x2
,

where there is the additional definition

C1
21 =: 2 (8γ + K3)

√

π

5

for consistency with the different definition of the Bessel functions used in [46] andγ is the
Euler number. The other unknown functions in this sector can be obtained from eq. (9.5)
and eq. (9.6).

In the same manner I computed

vǫ20(x) = − 4

√

π

5

(

3+ 3 x− 2 x2 + x3
)

3 x3
+ 2 (8γ + K1)

√

π

5

I4

(√

24
x

)

x2
(9.19)

+ 16

√

π

5

K4

(√

24
x

)

x2

and

vΠ20(x) =

√

π

5
2
x2

[

(8γ + K2) I4





√

24
x



 (9.20)

− 3− 2 x+ x2

3
+ 4 K4





√

24
x





]

cosχ.

where I defined

C1
Π =: 2 (8γ + K2)

√

π

5
cosχ

because with this the 20-mode has the desired transformation behavior forχ → π + χ and
Π→ −Π.

For the odd 11-mode there is onlylΠ11 which is not necessarily vanishing, see eq. (9.4).
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9.1.6 Regge-Wheeler-Zerilli Function

For each of the modes withl ≥ 2 one can compute the initial Regge-Wheeler-Zerilli function
and its first time-derivative [45]. Then one uses the Regge-Wheeler-Zerilli equation eq. (7.1)
to evolve that data, compute waveforms and the radiated energy by means of eq. (7.2). The
(1, 1)-mode is not dynamical and there exists no Regge-Wheeler-Zerilli function.

One obtains with the help of Mathematica

Ψ21(x) = i ǫ Π
3
√

30π + 5 x2 vΠ21(x)

15(3+ 2 x)
sinχ (9.21)

and

Ψ̇21(x) = i ǫ Π
3
√

30π + 10x2(1− 2x) vΠ21(x) + 5 x3 (2− x)vΠ21
′
(x)

30x (3+ 2 x)
sinχ. (9.22)

The 20-mode is

Ψ20(x) = ǫ2 µ
−12
√

5π + 5 x3 vǫ20(x)

15x (3+ 2 x)
+ ǫ Π

12
√

5π x cosχ + 5 x3 vΠ20(x)

15x (3+ 2 x)

and

Ψ̇20(x) = − ǫ2 µ
12
√

5π(x− 1)− 10x3(1− 2x) vǫ20(x) − 5 x4(2− x) vǫ20
′(x)

30x2 (3+ 2 x)
(9.23)

+ ǫ Π
12
√

5π x cosχ + 10x3 (1− 2x)vΠ20(x) + 5 x4 (2− x)vΠ20
′
(x)

30x2 (3+ 2 x)
.

Because the Regge-Wheeler functions are gauge-independent, the free parameterK1,
K2 andK3 cannot be just gauge-parameters but must have an impact on the physics of the
initial data.

9.2 Results & Interpretation

9.2.1 Modes

We have found a solution of the constraint equations in termsof three modes: odd-(1,1),
even-(2,1) and even-(2,0). With the help of [45], even without evolutions this gives rise to
physical interpretations.

First there is no even monopole mode. This means that to lowest order in the perturba-
tion parameters the total ADM-mass isM.

Second there is a non-vanishing odd dipole mode ifχ , 0 , Π. So the ADM-angular
momentum is not zero but infinitesimally small. When one compares the metric att = 0,
switching of the other modes, with the Kerr-metric with spinin x-direction in spherical
Kerr-Schild coordinates, i.e. those coordinates described in Section 4.4 with the additional
transformation that brings (ηµν) = diag(−1, 1, 1, 1) to (ηµν) = diag(−1, 1, r2, r2 sin2 θ), one
finds to first order in the spin-parametera that

a =
1
2

MǫΠ sinχ.
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In special relativity two particles with initial coordinate positions as the black holes above
and momenta have angular momentum

L = −M2ǫΠ sinχ.

The different sign shows that there is a distinction between a systemwith angular mo-
mentum on a fixed background spacetime and a system of fixed observers on arotating
spacetime.

Third there are two dynamical, i.e. gravitational wave modes: even 20- and 21-mode.
The first is present even if there is no angular momentum involved. This implies that it does
not carry angular momentum but only energy to null infinity. The 21-mode is only present
if there is angular momentum in the spacetime which implies that it not only carries energy
but also angular momentum to null infinity.

9.2.2 Apparent Horizon

Coordinate Position

From Section 5.7.2 we know that one can find marginally trapped surfaces as surfaces or-
thogonal tol i with V = −1

2 if l i is surface forming. In our black hole system this is the case if
χ = 0 which I checked with the Frobenius conditionl[i l j,k] = 0 with Mathematica. Because
our initial data is only a lowest order perturbation of the Schwarzschild metric wherex = 2
defines such a surface one can proceed the following way. One wants to solve the equation

V(2+ ∆x) = −1
2

to first order in∆x. Let η be the amplitude of the perturbation (in our case it has to be
substituted byǫ2 andǫΠ, respectively) andf (x, θ, φ) be the perturbation ofV. Then I write

−1
2
= VS S(2+ ∆x) + η f (2+ ∆x, θ, φ)

= −1
2
+ ∂xVS S(2)∆x+ η f (2, θ, φ) + η∆x∂x f (2, θ, φ).

The last term is now ignored because it is of second order. Then it follows with ∂xVS S(2) =
1/4

∆x = −4η f (2, θ, φ)

or finally
xAH(θ, φ) = 2(1− 2η f (2, θ, φ)). (9.24)

Due to eq. (9.1) forχ = 0 it is

xAH(θ, φ) = 2
[

1− 2
(

ǫ2 µ vǫ20(2)+ ǫ Π vΠ20(2)
)

Y2,0(θ, φ)
]

= 2− 1
2

√

5
π

(

ǫ2 µ vǫ20(2)+ ǫ Π vΠ20(2)
)

(3 cos2 θ − 1). (9.25)

This means thatK1 andK2 fix the initial coordinate position of the apparent horizon.
The shape of the apparent horizon in coordinate space is thatof an ellipsoid, i.e. the

sectionφ = constis an ellipse (Fig. 9.2 on the following page). An ellipse is the set of points
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r1 r2r

θ

b
a

e

y

z

Figure 9.2: Ellipse

such that the sum of the distances from two foci are twice the major semiaxisr1 + r2 = 2a.
If the center of the ellipse is at the coordinate origin and the semiaxes are aligned with the
coordinate axes it fulfills the equation

z2

b2
+

y2

a2
= 1

whereb is the minor semiaxis. The linear eccentricity is the distant e of the center to one
of the foci, the numerical eccentricityη = e/a. There is the relationa2 = b2 + e2 and in
spherical coordinates we obtain

r = a

√

a2 − e2

a2 − e2 sin2 θ
.

If e≪ a then this becomes to first order

r = a− e2

2a
cos2 θ.

Comparing this with eq. (9.25) we get

a = 2+
1
2

√

5
π

(

ǫ2 µ vǫ20(2)+ ǫ Π vΠ20(2)
)

and

e2 = 6

√

5
π

(

ǫ2 µ vǫ20(2)+ ǫ Π vΠ20(2)
)

ignoring higher order terms. To see how these values depend on the free parameters (e.g. in
the caseΠ = 0)

vǫ20(2) = 0.477+ 0.264K1.
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Area

The horizon area is an important physical quantity. There isthe general – but unproven –
Penrose inequality

MADM ≥
√

A
16π

for the ADM-mass with the equal sign if and only if the geometry is diffeomorphic to
Schwarzschild [40]. If this inequality holds then in my casethe area of the horizon on the
initial slice can only be decreased or unchanged by the lowest order perturbation parameters
in ǫ andΠ because it was already found that the ADM-mass is constant.

The area of an embedded 2-submanifoldS is defined as

A =
∫ ∫

dλdσ
√

detq(λ, σ). (9.26)

λ and ρ are coordinates with coordinates lines tangent to the 2-surface, q is its induced
metric.

Because we only have to deal with the spacelike sliceΣ0 at the moment and thus do not
need to care about its embedding into the full spacetimeM, all indices are raised/lowered
with γi j in this section for convenience, e.g. in contrast to Section4.5 on page 31

l i := γi j l j

(and notl̄ i) and I will write γi j instead of (γ−1)i j . Then the induced metric ofS is

qi j = γi j − (1− 2V)l i l j = di j − l i l j .

using eq. (4.10).
qi

j = γ
ikqk j = δ

i
j − (1− 2V)l i l j

is the projection operator onto the (co)tangent space ofS.
Now I define the following coordinate basis for the tangent vector space in each point

of Σ0
(

∂

∂ρ

)i

:= −l i ,

(

∂

∂λ

)i

:= qi
j

(

∂

∂θ

) j

,

(

∂

∂σ

)i

:= qi
j

(

∂

∂φ

) j

.

With this λ andσ are coordinates onS. If V is a tangent vector field with the components
V̄a associated with the coordinates (ρ, λ, σ) andVa associated with the coordinates (r, θ, φ)
then

Va = Ja
bV̄b

where the Jacobi matrix is

(Ja
b) =





−lr qr
θ

qr
φ

−lθ qθ
θ

qθ
φ

−lφ qφ
θ

qφ
φ





.

The components of cotangent vectorsωa transform like

ω̄a = Jb
aωb

so
q̄ab = Jc

aJd
bqcd.
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A computation with Mathematica shows that

q̄ab =





0 0 0
0 r2 0
0 0 r2 sin2 θ




+ . . .

to lowest non-vanishing order in the perturbation parameters, so in eq. (9.26) we have to
use the standard determinant onS2, namelyr4 sin2 θ. Furthermore we have

dλdσ = J̄λaJ̄σbdxadxb,

whereJ̄b
a fulfills

J̄c
bJb

a = δ
c
a.

There is a first orderdrdθ, a first orderdrdφ and a zeroth orderdθdφ term. Becausedr itself
is of first order expressed in terms ofdθ anddφ using eq. (9.24) there is only

dλdσ = dθdφ + . . . .

Hence the area of the apparent horizon is 16πM2 as in the unperturbed case to lowest order
in perturbation theory.

9.2.3 Energy Formula

The radiated energy can be computed by means of eq. (7.2). Forthe 21-mode, the initial
time-derivative of the Zerilli function is given by eq. (9.22) together with eq. (9.18). This
can be written as

−iΨ̇21(r) = ǫΠ[ f (r) + K3g(r)] sinχ,

where f andg are some functions. Because of the linearity of the Regge-Wheeler-Equation
(7.1) the total radiated energy will be of the form

E21 = Mǫ2Π2
(

D21
1 + K3D21

2 + K2
3D21

3

)

sin2χ, (9.27)

whereD21
1 to D21

3 represent integrals over time and space which have to be evaluated nu-
merically by means of the Regge-Wheeler code described in Section 8.2.

The same argument holds for the 20-mode, but it is more complicated, look at eq. (9.23)
with eq. (9.20) and (9.19). The initial time-derivative of the Zerilli function can be written
as

Ψ̇20(r) = ǫ
2µ[ f1(r) + K1 f2(r)] + ǫΠ[ f3(r) + K2 f4(r)] cosχ

for some functionsf1 to f4. Then the energy dependence on the parameters is

E20 = M

[

ǫ4µ2
(

D20
1 + D20

2 K1 + D20
3 K2

1

)

(9.28)

+ ǫ3Πµ
(

D20
4 + K1D20

5 + K2D20
6 + K1K2D20

7

)

cosχ

+ ǫ2Π2
(

D20
8 + D20

9 K2 + D20
10K2

2

)

cos2χ

]

.
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9.2.4 Numerical Evolution

Test Run & Convergence

First one would like to see how the code, which was described and tested in Section 8.2,
performs with these initial data. Fig. 9.3 showsΨ20 for ǫ = 1, Π = 0.4, K1 = K2 = 0
andχ = 0. The inner boundary is atx = 1.8, the outer boundary atx = 400.0, there is a
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t=0
t=120
t=200
t=280
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Ψ
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Figure 9.3: Zerilli-function at different times:K1 = K2 = 0,Π = 0.4, χ = 0

spatial resolution of∆x = 0.01 and a CFL-factor of 0.5. The program was run until a time
of 250M.

In Fig. 9.4 on the next page I show a convergence plot att = 120M. According to
eq. (8.3) the two curves should sit on top of each other if there is fourth order convergence.
First one notes that the difference of the RW-Zerilli-function for the three different resolu-
tions is of the order 10−7 so the expected errors are relatively small. Second there actually is
fourth order convergence (or a bit less) all the way from the inner boundary up tox ≈ 200.
Looking again at Fig. 9.3 one sees that this point corresponds to a region of the tail of the
pulse where the curve flattens out. An interpretation for this point being problematic is that
there might be little errors in the propagation speeds of thepulses for the three resolutions so
phase errors might be significant there. Again like in the Gaussian test case in Section 8.2 I
lose fourth order convergence within a zone propagating to the left from the outer boundary
with the speed of light. In Fig. 9.5 on page 75 it is confirmed that this zone corresponds to
first order convergence.

So if one wants fourth order convergence in the radiated energy, the point of energy
extraction has to be causally disconnected from the outer boundary. In my case I chose
xextr = 100 which stays in the fourth order regime even after an evolution time of 250M.
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Figure 9.4: Convergence:t = 120M, K1 = K2 = 0,Π = 0.4, χ = 0

Energy Formula

Coefficients By means of this code the thirteen coefficients in eq. (9.28) and (9.27) are
to be determined. Because of the linearity of the evolution equation this can be done in (at
least) thirteen runs with different parameters. I start with the 20-mode. The runs were done
with the same resolutions as above withM = 1, ǫ = 1, µ = 1 andχ = 0. The radiated
energy was extracted atx = 100 after integrating over a run time of 250M. In the same
way described before I observed fourth order convergence both in the waveforms and in the
energy for all runs. The difference in the energies for the three resolutions in each run was
smaller than 0.1%; that is why I chose numbers with three digits. The following table shows
the results

Π K1 K2 E20

0 0 0 2.65 · 10−4

0 100 0 3.33 · 10−3

0 −100 0 7.72 · 10−3

0.9 0 0 4.19 · 10−3

−0.9 0 0 9.10 · 10−3

0.9 100 0 1.62 · 10−2

−0.9 100 0 2.34 · 10−2

0.9 0 100 1.46 · 10−2

0.9 0 −100 2.34 · 10−3

0.9 10 10 5.67 · 10−3

Solving the system of equations for the unknown coefficients with Mathematica, I obtain
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Figure 9.5: Convergence:t = 120M, K1 = K2 = 0,Π = 0.4, χ = 0

D20
1 2.65 · 10−4

D20
2 −2.20 · 10−5

D20
3 5.26 · 10−7

D20
4 −2.73 · 10−3

D20
5 9.94 · 10−5

D20
6 −2.16 · 10−5

D20
7 1.07 · 10−6

D20
8 7.88 · 10−3

D20
9 9.97 · 10−5

D20
10 5.28 · 10−7

For the 21-mode there are only three coefficients to be determined. Thus three runs are
sufficient withΠ = 1.0

K3 E21

0 3.16 · 10−3

100 1.49 · 10−2

−100 1.97 · 10−3

So we have

D21
1 3.16 · 10−3

D21
2 6.47 · 10−5

D21
3 5.28 · 10−7

Minima of Energy To understand the physical meaning of the free parameters and maybe
be able to find initial data sets with a minimal amount ofartificial gravitational waves, one
wants to find out in what cases an extremal amount of energy is radiated. From the first
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derivative with respect toΠ of eq. (9.28) one finds that there exists a momentumΠmin

which extremizes the energy of the 20-mode

Π20
min = −

ǫµ

cosχ

D20
4 + D20

5 K1 +
(

D20
6 + D20

7 K1

)

K2

2
(

D20
8 + K2

(

D20
9 + D20

10 K2

)) .

The second derivative with respect toΠ gives 2ǫ2(D20
8 + D20

9 K2 + D20
10K2

2) cos2χ which is
positive∀K2, 0 ≤ χ < π/2 andǫ > 0 because it is positive forK2 = 0 (D20

8 > 0) and has
no real roots. In Fig. 9.6 the energy curve is plotted forK1 = K3 = 0. The 21-mode is
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Figure 9.6: Energy vs.Π for K1 = K3 = 0

minimized byΠ = 0, see eq. (9.27).
One can also ask the question if for a givenΠ the energy can be minimized by a special

choice ofK1, K2 andK3. For the 21-mode there is a minimum at

K3 = −
D21

2

2D21
3

= −61.3.

For the 20-mode there is no pair (K1,K2) which minimizes the energy except forΠ = 0 (see
[46]) because it turns out that the Hesse matrix is indefinite.

Quasi-Normal Ringing Due to lack of time I did not investigate the so called quasi-
normal ringing. In [30] one can find a good overview. In general, small perturbations of
a Schwarzschild black hole lead to a characteristic radiation and the frequency spectrum is
closely related to the mass of the black hole. For the quasi-normal ringing of the close limit
of two Misner black holes, see [42] and [7]. Comparing their results to Fig. 9.3 on page 73
it is very convincing that quasi-normal ringing is also present in my data.
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9.3 Conclusions

This chapter has shown that it is possible to find analytic solutions of the linearized con-
straint equations with apparent horizons and asymptoticalflatness. One is able to obtain
Zerilli functions and evolve them, computing waveforms andthe amounts of radiated en-
ergy.

In [7] similar things were done for boostedMisnerblack holes and the waveforms with
the quasi-normal ringing dominating after some time look very similar to mine.

Initial data of black holes at some finite distance were evolved e.g. in [5]. For late times
their waveforms are expected to be similar to those obtainedwith the close-limit approx-
imation, which is in fact the case. After some time the quasi-normal ringing is dominant
in the close-limit approximation as well as in the full non-linear approach. Nevertheless,
at early times, it is possible that the close-limit approximation is veryartificial in terms of
gravitational waves entering or leaving the domain. The analysis in this thesis and in the
papers cited before is not conclusive in this point. On the one hand I looked for minima of
the outgoing radiation and it turns out that there is no such pair (K1,K2) for eachǫ andΠ
except forΠ = 0 that minimizes it as was discussed above. The same should bedone for
ingoing radiation or alternatively one could evolve backwards in time, but I had to leave this
out. On the other hand, I found the surprising result as in [7]that for each (K1,K2) one can
find aΠ leading to minimal energy radiation.

Of course initial data constructed as described in this thesis in the binary black hole
close limit should not be considered as astrophysically relevant and thus one should not try
to interpret too much. But on the one hand one can learn what can arise in binary black
hole initial data sets in general and on the other hand they can serve as testbeds for full
non-linear numerical codes. In contrast to that the far limits – which I do not discuss here –
are physically relevant because they describe the weak interaction of black holes far away
from each other where one has a lot of understanding by means of post-Newtonian theory.

9.4 Other Black Hole Systems

The boosted Schwarzschild like close limit was not the only black hole system which I
considered. I chose it as an example to show what can be done with the new construction
procedure of black hole initial data in the linear regime andbecause it was the first simple
generalization of [46].

Another interesting system which I looked into is the binaryKerr like close limit where
two black holes with opposite spin parameters are very closeto each other so that the back-
ground metric is still the Schwarzschild one. It will be especially interesting to compare it to
[39] where it was already discussed by means of a different construction of the Kerr-Schild
null vector field.

Also the binary Schwarzschild far limit will be worth to consider on the one hand to
compare it to post-Newtonian techniques and on the other hand to go one step beyond
Section 5.7.1 where thehard limit of infinite separations was discussed.

Furthermore one can look at the particle limit, i.e. the limit where one black hole has a
very small mass compared to the other. This could be comparedto work by Zerilli [56] and
to recent work by Bishop [9].

77



Part IV

Bishop’s Modification of the
Kerr-Schild Ansatz [8]
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Chapter 10

Modification of the Kerr-Schild
Ansatz

The Kerr-Schild form of a metric is physically and mathematically nice as was pointed
out before. Especially important is the fact that the Kerr metric can be brought to the Kerr-
Schild form by a coordinate transformation (see Section 4.4) and I found a new procedure to
construct the free part of the superposition of two Kerr likeblack holes in these coordinates
described in Part II. One wants to modify this ansatz to avoidthe problems with the Kerr-
Schild constraint equations described in Chapter 6. To modify the ansatz we follow a similar
route as in the original Kerr-Schild approach; we bring the Schwarzschild metric to a certain
form very similar to the Kerr-Schild one to eventuallysuperposetwo Schwarzschild black
holes in those new coordinates.

10.1 New coordinates for the Schwarzschild metric

Consider the Schwarzschild metric in isotropic coordinates eq. (3.3) so that the induced
metric on at = const-sliceΣ is

ds2 =

(

1+
m
2r̄

)4 (

dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2
)

and the extrinsic curvatureKi j = 0. By means of the coordinate transformation onΣ

(

1+
m
2r̄

)2
dr̄ = dr, (10.1)

we obtain

γi j =
di j − 2Vli l j

1− 2V
, (10.2)

with di j the Euclidean (flat) 3-metric,l = er the unit radial vector field and

V(r) =
1
2

(

1−
(

1+
m
2r̄

)−4 r2

r̄2

)

, (10.3)

where from eq. (10.1)

r = r̄ +mln
2r̄
m
− m2

4r̄
+

m
2
. (10.4)
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Chapter 10. Modification of the Kerr-Schild Ansatz

The integration constant in this last equation has been chosen such that the event horizon is
located atr = r̄ = m/2. On the event horizon we haveV = 15/32.

Although the 3-metric is conformally related to a Kerr-Schild metric one has to keep in
mind that the slicing is very different than the Kerr-Schild slicing: here the initial slice is an
isotropic slice so it has the topology as described in Chapter 3 with Fig. 3.1.

10.2 Multiple Black Holes

Now, for the case of multiple time-symmetric (Ki j = 0) Schwarzschild like black hole initial
data we can – in analogy with the Kerr-Schild ansatz in the special case described in Section
5.6 – introduce a potentialΦ(r ) and takel i as its normalized (Euclidean) gradient, i.e.

l = C∇Φ

with C such that
di j l i l j = 1.

The potentialΦ is chosen as

Φ =
∑

i

mi

|r − r i |
.

The momentum constraints vanish identically and the Hamiltonian constraint can then
be solved for the unknown functionV. This is a so significantly different decomposition of
the free and of the constrained part of the initial data than the York-Lichnerowicz conformal
decomposition (Section 3.2) that there is hope that it mightlead to very different data and
one can learn much from systematic comparisons.

10.3 Constraint Equations

As a first step we only want to construct initial data with axial symmetry and – as was
pointed out before – with time-symmetry. With the ansatz just described the momentum
constraints vanish identically and the Hamiltonian constraint becomes a single quasi-linear
partial differential equation for the only unknown functionV(r, θ) in spherical coordinates
defined by

(di j ) = diag(1, r2, r2 sin2 θ),

namely

c20V,rr + c11V,rθ + c02V,θθ + c1010
(

V,r
)2
+ c1001V,rV,θ

+ c0101
(
V,θ

)2
+ c10V,r + c01V,θ + c0V = 0. (10.5)

80



10.4. Boundary conditions

The coefficients have been computed with both Mathematica and Maple and are functions
of r, θ, V,Φ and higher derivatives ofΦ. The coefficients of the principal part are

c20 = −2
(1− 2V) Φ,θ2 + 2 r2Φ,r

2

(1− 2V)
(

Φ,θ
2 + r2Φ,r

2
)

c11 = −4
(1+ 2V) Φ,θΦ,r

(1− 2V)
(

Φ,θ
2 + r2Φ,r

2
)

c02 = −2
2Φ,θ2 + r2 (1− 2V) Φ,r2

r2 (1− 2V)
(

Φ,θ
2 + r2Φ,r

2
)

so that the determinant of the principal part [27] is

∆ = c20c02−
1
4

c2
11 =

8

r2 (1− 2V(r, θ))
.

This means that the equation is elliptic ifV < 1/2 everywhere.

10.4 Boundary conditions

Because eq. (10.5) is elliptic it is now possible to control the solutions (if they exist) by
means of proper boundary conditions; compare to what was said in Chapter 6.

Around each black hole (the inner boundary) we can set the minimal surface condition
(1.8). Because we are on a time-symmetric initial sliceKi j = 0, it reduces to

0 = (er )
i
;i = Γ

i
ri = ∂r

(

ln
√

detγ
)

for a coordinates sphere. With

√

detγ =
r2 sinθ

1− 2V(r, θ, φ)

we obtain the inner boundary condition

∂r
r2 sinθ

1− 2V(r, θ, φ)

∣
∣
∣
∣
∣
∣
r=r IB

= 0. (10.6)

The outer boundary can be assumed to be placed far away from the black holes so that
the metricpractically reduces to the single black hole one. Hence we can make use of the
asymptotic behavior of the single SchwarzschildVS eq. (10.3)

lim
r→∞

VS(r) =
m
2r

(

1− 2 ln
2r
m

)

.

In the binary black hole case there is a point in between wherel i is not defined because
∇Φ = 0 there. To avoid a singularity (even if it is maybe only a coordinate singularity) we
have to postulate thatV = 0 there. To avoid numerical problems one is probably forced to
use an excision region around this point and put meaningful data on its surface. This has
to be further investigated in the future; more comments on the binary black hole problem
below.
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Chapter 11

Perturbation of the Schwarzschild
Metric

11.1 Ansatz

As a first step in [8] we explored the caseΦ = 1/r of a single Schwarzschild black hole with
m= 1. We have already seen that its horizon is located atr = 1/2 with V(1/2) = 15/32. In
this case we can use a simpler inner boundary condition than eq. (10.6) namely

V

(

r =
1
2
, θ

)

=
15
32
+ ǫ Pn(cosθ) (11.1)

to perturb the black hole with then-th Legendre polynomialPn. In principle the size ofǫ is
only limited by the fact that to preserve ellipticity of eq. (10.5) we have to set

|ǫ| < 1
32
.

On the outer boundaryr = rOB we setV(r, θ) to its unperturbed Schwarzschild value
eq. (10.3) which makes physical sense for some largerOB, in principlerOB→ ∞.

11.2 Linearized Analysis

For smallǫ we can neglect all terms of orderǫ2. This linearized approach serves as a testbed
for the full non-linear numerical computations below and toobtain an analytical expression
of the York tensor. It turns out that the ansatz

V (r, θ) = VS(r) + ǫ W(r)Pn(cosθ) (11.2)

separates the linearized Hamiltonian constraint because the angular part of the equation is
equal to that of the Laplace equation in spherical coordinates. To first order inǫ, I found
that one is left with an ordinary differential equation forW(r)

d1W′′(r) + d2W′(r) + d3W(r) = 0 (11.3)
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11.3. York Tensor

where the coefficients are computed with Mathematica and Maple

d1 = − r2 (1− 2VS(r))2,

d2 =r (1− 2VS(r))
(

3− 6VS(r) + 7 r V ′S(r)
)

,

d3 =1− n(n+ 1)
2

+ (3n(n+ 1)− 8) VS(r) − 2 (3n(n+ 1)− 10) VS(r)2

+ 4 (n(n+ 1)− 4) VS(r)3 + 7 r2 V′S(r)2
.

The fact, that the Schwarzschild solutionVS(r) eq. (10.3) itself is a solution of the Hamil-
tonian constraint, has been used in the derivation of eq. (11.3).

It seems to be difficult to find analytic solutions of eq. (11.3). That is why I used
Mathematica to solve it numerically. Because eq. (10.4) cannot be solved for ¯r analytically
andVS(r) is given in terms of ¯r, the whole equation was transformed to the ¯r-coordinate
using eq. (10.4) analytically. Then it was solved numerically with Mathematica respecting
the boundary conditions described above, explicitly

W(r̄ =
1
2

) = 1, W(r̄ = r̄OB) = 0

with r̄OB the arbitrary position of the outer boundary. To be explicitI set rOB = 10.0 and
produced the plots Fig. 11.1 for the first three Legendre Polynomials in terms ofr.
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Figure 11.1: Solutions of the linearized Hamiltonian Constraint

11.3 York Tensor

In Chapter 3, I pointed out that there are problems with conformally flat black hole initial
data. The motivation for these new data described in this part of the thesis was to obtain
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Chapter 11. Perturbation of the Schwarzschild Metric

new non-conformally flat data sets which might give new insights into binary black hole
physics.

If the York tensor [22, 53]

Yi jk = Ri j ;k − Rik; j +
1
4

(R, jgik − R,kgi j ) (11.4)

does not vanish identically, then the initial slice is not conformally flat. It is sufficient to
show that at least one component at one point of the first orderYork tensor is not zero. With
Mathematica I found that

Yrr θ =
2− n(n+ 1)

4 r2
W(r)P′n(cosθ) +O(ǫ2)

using the fact thatPn fulfills the Legendre differential equation. So it is proven that these
data are not conformally flat ifn > 1.

11.4 Non-Linear Numerical Computations

11.4.1 Implementation

Here I solve the full non-linear Hamiltonian constraint eq.(10.5) numerically in the per-
turbed Schwarzschild caseΦ = 1/r applying the boundary conditions eq. (11.1),

V(r, θ)|r=rOB
= VS(r)

with VS(r) given by eq. (10.3) and due to symmetry

∂V
∂n

∣
∣
∣
∣
∣
θ=0,π

= 0

wheren is normal to theθ = 0, π-surfaces.
I did the computations with second order finite differencing with the Cactus-Computational-

Toolkit [1] and the TAT-Jacobi elliptic solver [47] which isan implementation of theJacobi
Method [34]. To solve (non-linear) elliptic partial differential equations

Elliptic Operator(V)= 0

using the Jacobi method one first gives an initial guess for the unknown functionV chosen
to be as close as possible to an actual solution of the elliptic equation. The program com-
putes the left side of the equation which in general leads to agrid function, the so called
residual, which is not zero everywhere. Then the program adds this residual (multiplied
by an arbitrary but adapted factor) to the initial guess point-wise leading to a knew grid
functionV and after applying the elliptic operator again to a new residual grid function. If
one continues like this, one effectively evolvesV according to the equation

Elliptic Operator(V)=
∂V
∂t

with an artificial timet. In many cases this parabolic equation converges to a steadystate
with ∂V/∂t = 0 which is a solution of the original elliptic equation. Thusthe Jacobi method
is a very simple realization of arelaxation method.
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11.4. Non-Linear Numerical Computations

For simplicity I implemented theθ-boundary conditions atθ = 0+ η, π − η with η ≪ 1
and of the order of magnitude of the accuracy up to which eq. (10.5) is to be solved. This
is necessary because atθ = 0, π there are coordinate singularities and it is – beside other
techniques – also a common procedure to avoid numerical problems at the singular points
for instance of the Laplace equation in spherical coordinates.

Because the Hamiltonian constraint is a non-linear elliptic partial differential equation
the choice of the initial guess forV(r, θ) is crucial. A simple andworking initial guess turns
out to be the unperturbed Schwarzschild solutionVS eq. (10.3) plus a perturbation in terms
of the nth Legendre polynomial whose amplitude decreases linearlyfrom the inner to the
outerr-boundary consistent with the boundary conditions above.

To actually computeVS(r) for the initial guess numerically, eq. (10.4) was solved for r̄
by a numerical integration of eq. (10.1) which was then substituted into eq. (10.3).

The convergence of TAT-Jacobi is very slow mainly due to dominant non-linear terms in
eq. (10.5) close tor = 1/2. So I first run the elliptic solver with the residual multiplied by 1−
2V, which is small near the horizon. This gives the solver the opportunity to get an accurate
solution everywhere else, before in a second run, it solves the original equation without the
factor. By means of this technique the convergence speed wasincreased significantly.

Results

Let us consider the casen = 2 which is the lowest Legendre polynomial leading to non-
conformally flat data. I setrOB = 10 andǫ = 0.005 for three different resolutions inr- and
θ-direction.

Nr Nθ ∆r ∆θ final resid. of eq. (10.5)
low 97 33 0.098 0.095 4.0 · 10−7

medium 193 65 0.049 0.048 1.0 · 10−7

high 385 129 0.025 0.024 2.5 · 10−8

With final residualI mean the residual of eq. (10.5) after the elliptic solver has finished.
Fig. 11.2 on the following page shows the three plots together with the solution of the
linearized Hamiltonian constraint. The three numerical plots show the differenceV(r, θ) −
VS(r) normalized to unity atr = 1/2 for θ = 0.59. The graphs suggest second order
convergence which is confirmed by Fig. 11.3.

Nevertheless, it is obvious that the linearized solution isnot the limit of infinite reso-
lution. We have shown that our numerics show the right convergence, but it must still be
understood why the linearized solution deviates so much from the numerical ones, although
ǫ = 0.005 ≪ 1. The answer is that higher order terms get large close to thehorizon.
With Mathematica one is able to substitute the linearized solution back into the non-linear
equation and see how well it is fulfilled. Although the linearized Hamiltonian constraint
eq. (11.3) is satisfied up to an error of 10−6, the error in the full non-linear equation is much
bigger, Fig. 11.4 on page 87. Nevertheless, we see the correct second order behavior be-
cause the error decreases by a factor of 100 ifǫ is smaller by a factor of 10, i.e.ǫ = 0.0005.
This gives us a measure of how smallǫ should be in order to obtain an accurate linearized
solution.
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11.4. Non-Linear Numerical Computations
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Chapter 12

Future Work on the Modified
Kerr-Schild Approach

In this part of the thesis I have described a modification of the Kerr-Schild ansatz (intro-
duced in Part II of this thesis) for multiple Schwarzschild like black holes in the case of
time-symmetry (Ki j = 0) using in analogy with the Kerr-Schild ansatz a normalizedsurface
forming vector fieldl i . The only non-vanishing constraint equation is the Hamiltonian con-
straint which has been worked out in the case of axisymmetry and turns out to be elliptic if
the only unknown functionV < 1/2. Then a specific perturbation of a single Schwarzschild
black hole was investigated by linearizing the constraint equation on the one hand and by
finding numerical solutions of the full non-linear constraint on the other hand. I have con-
firmed second order convergence of the numerical code and thenature of the deviation from
the linearized solutions. Furthermore I argued that the initial data of this specific perturba-
tion of Schwarzschild is not conformally flat.

Everything that was done up to now has to be considered as a first step which is needed
to show that the procedure works in principle. The next stepswill be first to evolve the
initial data of the perturbed Schwarzschild black hole, measure the waveforms and radiated
gravitational waves and especially to compare with the results of perturbed conformally
flat Schwarzschild black holes; work is in progress. Second the binary Schwarzschild like
black hole problem will be tackled. The basic problem for this has already been mentioned:
the singularity ofl i between the black holes. With a little luck one can simply putthat
point between two grid points and obtains convergence of theelliptic solver without further
effort. But it is more likely that one has to place an excision region around that point with
meaningful data on its surface. Then there is the problem to find a working initial guess for
the elliptic solver. When the black holes are far away from each other it might be sufficient to
superpose two isolated black solutions linearly for this, but this may lead to problems at the
singular point. Furthermore for the equal mass black hole case there is a symmetry surface
right between the black holes where a symmetry boundary condition has to be applied when
solving the Hamiltonian constraint. But in spherical coordinates this boundary is curved
which is difficult to implement numerically. This will make it necessary to use sophisticated
interpolation techniques but fortunately these have already been implemented into Cactus.
If a solution for the binary black hole problem can be obtained it should be compared with
conformally flat initial data in terms of radiated gravitational energies and waveforms.
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Part V

Final Summary & Conclusions
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In this thesis I worked on Bishop’s way [10] of constructing multiple black hole initial
data because I was motivated to obtain very different initial data sets than those using the
standard conformal decomposition (Chapter 3).

Because the construction of the free part of the initial datahad only been worked out
for certain cases, I invented a new general procedure (Chapter 5.4) and applied it. But the
Kerr-Schild constraint equations turned out to be problematic what had not been pointed
out in [10], basically because this system of partial differential equations is not elliptic; it is
a Cauchy problem in space, so there is no control over the outer (or the inner) boundary be-
havior of the solutions. Explicitly this means that it is possible (at least if the spatial part of
lµ is surface forming) to guarantee existence of apparent horizons, but one cannot be sure to
obtain asymptotically flat solutions. Nevertheless, in thelinear regime (Part III), i.e. when
solutions are considered which are only a little perturbation of the Schwarzschild metric,
one has analytical control and one can find explicit solutions of the linearized constraints
with the right asymptotical behavior. As a special example Iconsidered a system of two
very close black holes with vanishing spin-parameter whichare infinitesimally boosted in
an arbitrary direction. This is a model for the late stages ofa binary black hole coalescence.
Although I could not draw the conclusion that the Kerr-Schild close-limit initial data are an
astrophysically relevant model because it was not conclusive how muchartificial gravita-
tional radiation is on the initial slice, by evolving the data one could see the characteristic
quasi-normal ringing already found by [42] and [7] before inthe case of Misner black holes.

In the linear regime, many more interesting systems can be studied which I had to skip
due to lack of time; suggestions are given in Section 9.4.

Beyond the linear regime, the Kerr-Schild ansatz has to be modified to make it useful
for numerical relativity. One possible way is described in Part IV and leads to an elliptic
Hamiltonian constraint in the case of time- and axisymmetry. As a first step it was applied
for a special perturbation of a Schwarzschild black hole andone could show that these data
are not conformally flat. Work is in progress to evolve these data and compare to other
perturbations of the Schwarzschild metric. Furthermore, Iam working on the binary black
hole problem in this framework. Problematic are the singular point of l i and the curved
symmetry boundary, see above.

The modification above is not the only possible one. One can also think of constructing
a Kerr-Schild metric as the conformal metric and then use thestandard conformal decom-
position. This would lead to elliptic constraints and naturally to not conformally flat data.
Because up to now we are only able to control the Kerr-Schild constraint equations in the
linear regime, one possibility would be to use the analytic solution of the far-limit approxi-
mation which has to be worked out, i.e. two very far separatedblack holes. Such a conformal
metric would be a solution of the constraints alone if the separation is big enough and the
conformal factor would be close to one everywhere; it would act as a correction factor when
the black holes are closer. A similar procedure has been usedin [50] for post-Newtonian
initial data.

In summary, there are a number of options to make use of the Kerr-Schild ansatz. But
before one can do systematic comparisons and say which initial data set is better in a certain
situation than another, one has to obtain a binary black holesolution. After having finished
this thesis these kind of conclusions cannot be drawn yet.
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