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0.1 Introduction & Outline

An isolated system of two interacting bodies has been a fued#al model in many fields

of physics. In classical mechanics it is completely intetgdor some special types of in-
teractions and gives for example rise to the understanditigeamotion of planets around

the sun. In quantum mechanics it is the two body hydrogen athose theoretical investi-

gation has been the key to understand bound states and ihevatatting point to approach
even more complicated systems like molecules and crydtatsntually unbound relativis-

tic two body scattering processes could be investigatediwlead to the standard model of
particle physics.

All those theories describe the physics in a given flat bamkgd spacetime — the
Minkowski spacetime (or the Euclidean space plus time dewts/elocity approximation).
In the general theory of relativity, published by EinstairlB15, the curvature of spacetime
(gravity) itself takes part in the dynamics because it ispbed to the energy and momen-
tum density of all other physical fields (gravity) lith directions spacetime tells the fields
how to propagate and the fields tell spacetime how to curvexcelblack holes which are
singularities in the curvature surrounded by horizons atéadiesin the usual sense; their
dynamics are rather those of a continuous non linear medNevertheless one calls the
binary black hole system thvo body problem of general relativiglthough it is not a
very good nameBodiesin other theories can be characterized by their individuargies,
linear and angular momenta and in special cases one canlfdemaonservation laws for
them which simplifies the integration of the orbits of the iesd This cannot be done for
black holes with the exceptions of infinite separationshéfytare very close or if there are
Killing fields on the horizons due to a newly developed forisralthat assigns energies and
momenta to horizons quasi-locally [6]. Notions of energy. @t general only exist for the
whole spacetime, not quasi-locally. So it is veryfidult to distinguish between the indi-
vidual black holes and further gravitational waves and thalysis of the dynamics of a
black hole system is very complicated. Only for some higlgijmmetric and simple cases
the curvature spacetime can be integrated analyticaligratise approximation methods or
numerics have to be applied.

To simplify the analysis one consideracuum systentfat neglect the influence of all
physical fields except for curvature of spacetime itself.

Investigating and hopefully eventually understanding tthe body system of general
relativity is not only of fundamental theoretical but aldoastrophysical interest. Mergers
of two black holes are assumed to be one of the strongest aadrtbst promising sources
of gravitational waves which could be detected with (neatyie gravitational wave de-
tectors, e.g. GEO600, LIGO and VIRGO [3]. Observations ssgthat binary black hole
systems are quite frequent in the observable universe, ebthem as final products of star
evolution, others as super massive objects in the centgiaafies. However, it is expected
that there are many binary black hole systems mostly in keiraarbit around each other,
slowly getting closer and closer due to the loss of angulanerdum (gravitational waves).
The wave forms measured by terrestrial detectors shoulgicosome characteristics of the
binary black hole system like masses, distances and ogastadds. How the wave forms
encode this information can in principle be answered byrulinerical binary black hole
simulations.

In numerical relativity one wants to solve the binary blackehproblem as an initial



0.1. Introduction & Outline

value problem. Einstein’s equations do not only govern tr@ution with time but addi-
tionally put certain constraints on the initial data. Thegestraint equations are mathemat-
ically complicated and their character depends very muctiherthoice of the free part of
the initial data. In the current approaches to construtitirdata this free part does not only
involve the two physical degrees of freedom of gravity budiadnal gauge degrees. This
problem will remain until one is able to find a procedure taniify the physical degrees in
general; without this one needs many verffatient initial data sets to find at least qualita-
tive characteristics, obtain systematic comparisons iatedgret the physical content of the
constructed data. In this Diploma Thesis | try a new apprdéadonstruct binary black hole
initial data.

In the first part of the thesis | give a brief introduction tdéfeliential geometry, general
relativity, the general relativistic initial value proloteand the currently most important ap-
proaches to the binary black hole initial data problem. ingcond part | describe Bishop'’s
ansatz to construct black hole initial data after havingpeiiced Kerr-Schild metrics in gen-
eral. Then | describe my new idea to construct the free pahesfe Kerr-Schild initial data,
which was worked out only in limited cases before, and dis¢he problems with the as-
sociated Kerr-Schild constraint equations, problems whie not mentioned in Bishop’s
original paper. Then | follow two directions to make use af #err-Schild approach. On
the one hand this is the linear regime in part three where lyapy ansatz to a specific
binary black hole system in first order perturbation theamg discuss evolution of these
data, waveforms, masses, apparent horizons etc. Eventhallwill lead to a publication
together with Edward Seidel and Peter Diener. On the othed hapart four | describe a
modification of this Kerr-Schild ansatz invented by Bishdpieh solves some of the obsta-
cles. With Nigel Bishop | applied it to a special perturbatmf the Schwarzschild metric,
obtained numerical solutions of the constraint equationswas able to prove that these
data are not conformally flat. This part of the work has alyelaglen published by Bishop,
Michael Koppitz and me. In the last part | summarize and amfel



Chapter 1

Differential Geometry and General
Relativity

1.1 Riemannian Geometry

This section is a very brief and not complete summary fiédential geometry. More details
can be found e.g. in [52].

| will use Greek indiceg, v, . .. running from Q. . ., n— 1 for ann-dimensional manifold
using the Einstein summation convention. The signaturéefetric will be assumed to
be ,+,...,+). Sometimes tensorial objects will be referred to by tladistract name
printed in boldface or if there is no risk of confusion by th@rponents with respect to
some coordinate basis.

A differentiable manifold M is a topological space which is locally homeomorphic
to R" (giving rise to local coordinate maps) and has féedentiable structure. Each point
p € M is equipped with @angent vector spaceTl ,(M) and an associatembtangent space
Tp(M) which aren-dimensional vector spaces. With the tensor product it gsibte addi-
tionally to definetensor spacesn each point ofM.

A tangent vector defined ily(M) for all p € U c M is called atangent vector field,
the same for covectors and tensors. To compare the vectbirfidifferent points oM one
must define a transport from the vector space in one pointea/éictor space in another
point. Assume there is a family of curves: [a,b] — M and a one-parameter family of
diffeomorphism®; : M — M mapping the poiny(t) to y(t = 0) with the tangent vector
V = dy/dt. TheLie derivative is defined as
£y =y GLVO -UO)

—0 t

where ©y)* is thepush-forward. It turns out that in a coordinate basis this can be written
as
(LyU = ULV = VAUY

for an arbitrary vector fieldd where a comma represents the partial derivative with réspec
to the associated coordinate direction. The Lie derivdi®eaves like a vector field.

Another way of comparing the vector spaces in each pointuséodinear connection
which is a linear mag” : Tp(M) — T¢(M). In terms of this thecovariant derivative is

10



1.2. General Theory of Relativity

defined as
Uh = Uh + T4, U

The connection cdicientsI,, are calledChristoffel symbolsin case of a coordinate
basis.

On the manifold we may define raetric tensor field g,, which is a non-degenerate

bilinear mapr p(M)xTp(M) — R, the inverse metrig"” is a bilinear mafg ;(M)xT5(M) —
R. The metric can also be regarded as a one-oneTpeyl) — T5(M), i.e. for each tangent
vector field it uniquely defines an associated covector fiEftd metric gives rise to a scalar
product, although it is not necessarily positive definitg dn the case of the Lorentzian
spacetime manifold.

If the linear connection above is supposed to defiparallel transportone has to postu-
late thatg,,.,, = 0 because this ensures that lengths and relative anglestofsé¢ransported
with vanishing covariant derivative along a curve are ungeal. Such a connection is re-
ferred to as beingnetric. If one additionally assumes that the connectiotorsion free,
i.e.I",, =", then one obtains

Fﬂvp = %g;w' (gvo;p + Qopy — gvp,(r) . (11)

On curved manifolds one finds that second covariant devestio not necessarily com-
mute but on uncurved ones they do. This definefRiieenann tensor(also called curvature
tensor) which can then be expressed in terms of the CHigssymbols. This expression is
not important for this work, but can be found in [52]. To forlaile the general relativistic
field equations, see below, we only need its first contractlmmRicci tensor

Rivy =T =Ty + D% = T% T 1.2)

1.2 General Theory of Relativity

The general theory of relativity (GR) is a generalizatiorspécial relativity by considering
spacetime as an in general curved pseudo-Riemannian fsiiom@l manifold; the metric
is of Lorentzian signature( +, +, +). In this document the following physical units will be
used

c=1 G=1

with c the velocity of light ands the Newtonian gravity constant.

A dynamical curvature leads to a variation in the physicatatice between two events
and the shortest curve between them, the geodesic, is nessady a straight line — as it
is in Minkowski space in Cartesian coordinates — even ifdhame no forces. Thisfiect
is interpreted as gravity. So force free particles take tiwtest curves — geodesics — in
spacetime

wu =0

with W the 4-velocity of a particle; gravity is thus not a force. Israall neighborhood of
an event in spacetime, curvature can be neglected and natedican be chosen such that
a force free particle propagates on a straight world linendéespecial relativity is valid in
small — but only in small — regions of spacetime.

11



Chapter 1. Diterential Geometry and General Relativity

Curvesx*(r) with tangent vector field/* = d¥*/dr are called
timelike g, V*V¥ <0
null 9w VFVY =0
spacelike g,,V*V” >0
Particles with mass bigger than zero travel on timelike esrwhereas massless particles
like photons follow null curves. Points connected by tirkelior null curves are called
causally connected
On the other hand all masses and energies create curvataily leatisfyingEinstein’s
field equations
Gy = 81T, (1.3)

with G, the Einstein tensor
1
Gyv = R[lV - EgﬂvR

and

R= guVRﬂv
theRicci scalar. T,, is calledenergy-momentum tensor It describes the energy densities
and momentum fluxes of all physical fields (other than grawityg. swarms of particles,
fluids, electromagnetic fields etc. Because for this doctntevill be assumed that there

are no fields in spacetime, i.e. vacuum, the energy momergnsot is not be described
here, see for instance [37].

1.3 Surfaces and Horizons

1.3.1 Hypersurfaces

Classification Let againM be an-dimensional dierentiable manifold with a metrig
of Lorentzian signature—,+,...,+). A hypersurface [26] is a submanifoldz with an
embedding® : £ — M . Theinduced metric of X is the pull-back®.qg.

There exists a form (a covariant vector fietdg T4(M), called normal form of, and
an associated tangent vector fi&ld = g*”n, such that

gIN,@*X) =0 VX € Ty(Z).

Yis a (—1)-dimensional hypersurface. Itis calletraelike hypersurfaceif n is spacelike,
aspacelike hypersurfacdf n is timelike and anull hypersurface if nis null. In [26] it is
shown that the induced metric of a spacelike hypersurfapesiive definite (Riemannian),
of a timelike one is Lorentzian (also called pseudo-Rienarnand of a null hypersurface
is degenerated. This means that on a spacelike hypersuhfaee exists the usual notion
of positive definitdengths On null hypersurfaces the normidt is actually tangent to the
hypersurface.

Induced metric of spacelike Hypersurfaces Let M be 4-dimensional anl spacelike.
In each pointg € ®(X) one can find a basis of the tangent space, &lge{, E2, E3) with
EL E% E3 € @ Tp(Z). N is timelike andE?, E2 andE® are spacelike and without loss of
generality orthonormalized. Assume normalizatippN#“N” = —1. As it is always the case

12



1.3. Surfaces and Horizons

the metric can also be represented in terms of a basis tettada in terms of a coordinate
basis (notation from and more about the tetrad formalismie [d.6]), here

-1 00
0 100
Q) = 0o 0 1 o
0 0O

This can also be written in the following way, again with respto a coordinate basis
Qur = —NuN, + ELE; + EZEZ + ESES.
Then the induced metric @(X) is
Yo = ESEy + EZEZ + ESES = gy + NN,
Raising one index witlg,, gives
Y, =6 + Nn, (1.4)

which is a projection operator onto the tangent spad@(@). Especiallyy’,N” = 0.

In the following if there is no risk of confusion, | will not giinguish betwee®(X) and
¥ anymore, the same for the associated local vector spacesmblkes sense becaudas
an embedding.

Covariant Derivative Because is a diferentiable manifold on its own, one can also
define a covariant derivativ®,, on it using the same formalism as before. In contrast the
covariant derivative o will be written either with a semicolon or &g,. ForV € Ty(Z)

one finds

DuVy = Yy V Ve

Extrinsic Curvature To describe the geometry of the embedded hypersuBfatiee in-
duced metric related to the geometry from thiginsic point of viewis not suficient for the
general relativistic initial value problem, but also nosimpler situations. For instance the
2-cylinder embedded int@3 is flat in terms of the induced metric. But from thgtrinsic
point of viewit is curved because its normal vector changes its diret@mn point to point.
Hence one defines thextrinsic curvature (or second fundamental form) of a hypersurface
as

Ky = —=Dun,.

The extrinsic curvature is symmetric, for the position ofypérsurface is determined
by the roots of a functiorf : M — R with n, = (df),. Then

K,y = -D,D,f = —D,D, f

using the fact that covariant derivatives of a scalar fumcéilways commute. The symmetry
implies that

1
K,uv = _D(,unv) = _ELnvi (1.5)

13



Chapter 1. Diterential Geometry and General Relativity

where the notation as in eq. (1.7) akiling’s relation [52] has been used.
The trace of the extrinsic curvatukg which is defined with respect to,,,

K:=—"D,n, = —""V,n, (1.6)

is the Z-divergence of the normal vector field. In adapted coordinatf the space-time-
split, see section 2.2.3, it becomes obvious #iétis a three-by-three tensor with only
spatialcomponents anH{ is themean curvature of . In general a surface with extremal
volume has vanishing mean curvature, thus hypersurfadgbskivi= 0 are callednaximal
slices

1.3.2 Spacelike 2-Surfaces

The intersectiorS of two unequal null hypersurfaces in a 4-dimensional maahitd is
called aspacelike 2-surfacei.e. it has two non-vanishing linearly independent nulimals
Ny, N2. Assume the normalizatiogt’ny, Ny, = —1. Then as above

Qur = —2(MuNey) + ELE; + EZEZ

using the usual short notation

1
My = E(nlﬂnzv + Ny, Nyy,). (1.7)
The induced metric o6
Quv = ELEy + EZEZ = gy + 2(M1uN2y))

is positive definite.

1.3.3 Trapped Surfaces and Apparent Horizons

As S is always embedded into a spacelike hypersurfagéhich in turn is embedded into
M, either the pull-back oh; to X or the pull-back of, to X is an outgoing normal of
with respect t&, the other one an ingoing normal. One definesabgoing and ingoing
divergence(in analogy with the trace of the extrinsic curvature of acgtiie hypersurface
eg. (1.6)) of a spacelike 2-surfaBeas

1 1
0= Eq‘”nlﬂ;v, 0, = Eq‘”nzﬂ;v.

respectively. 1f®; < 0 and®, < 0 thenX is called atrapped surface If the divergence
of the outgoing null normal vanishes (i.8.is as above a surface of extremal volume, a
minimal surface) and that of the ingoing one is negative tieis a marginally trapped
surface If S onZX is the outermost marginally trapped surface it isspparent horizon.

If again we assume coordinates adapted to the space-tilihesse section 2.2.3, the
outgoing normal ofs with v;; n'nl = 1 has to fulfill the following equation [54]

Din' — Kijn'n) + K =0 (1.8)

14



1.4. Black holes and Horizons

on a given spatial hypersurfaZawith Latin spatial indices running from 1 to 3. There exists
a functionf : ¥ — R such thatS = {p € Z|f(p) = 0}. Then eq. (1.8) is an elliptic equation
for f and can be used to numerically find marginally trapped sesfam each spacelike
hypersurface during an evolution [49].

(Marginally) trapped surfaces are of great importance nbt fsom the numerical point
of view. They also define a local concept of horizons and findgplication in the singu-
larity theorems of Penrose and Hawking [26].

1.4 Black holes and Horizons

Stationary isolated black hole solutions of Einstein’sdfiefjuations eq. (1.3) in vacuum
T, = 0 were found by Schwarzschild (static, spherically symioeaind Kerr (station-
ary, axisymmetric), see [16]. Solutions of the coupled Makinstein equations lead
to charged black holes. Because a macroscopic body, ekbpecitar after gravitational
collapse, should have zero net charge, we will only conditierk holes without an electro-
magnetic field. Historically the Schwarzschild solutionsihe first solution of Einstein’s
field equations found. It represents a non-rotating bladk had is the unique spherical
symmetric solution due to Birktiis Theorem. The Kerr solution is axisymmetric, sta-
tionary and algebraically special which was the way it wasmtbby Kerr [28]. In case of
axisymmetry there is no uniqueness theorem but there isjaatare by Penrose that even-
tually all gravitational collapses settle down to the Kestrit. This is one of the arguments
which lead Penrose to the so-callednrose inequality[40].

In general non stationary spacetimes one needs a gendrdgfiaition of black holes.
Both the Schwarzschild and the Kerr metric possess a homduoh sucks all lightso
indeed they arblack from a point of view of an observer at infinity. In general dymia
situations black holes are hence defined by the existenagcbfteorizons.

An important horizon concept is the apparent horizon definékction 1.3.3. It repre-
sents a spacelike 2-surface having an outgoing null nornitalwanishing divergence. As
was stated above it can be found on each spacelike hyparsyifat exists) by means of
eg. (1.8). Singularity theorems state that the existenaetodpped surface on one space-
like hypersurface leads to a singularity on a future spkedhypersurface under certain
conditions [26].

Another (more famous) notion of a horizon is teeent horizon It is defined as the
border of that region of spacetinM that is causally connected with null infinitg*. This
means that light rays originating from outside the eventzoor can reachy* and from
inside cannot. Hawking [26] was able to show that the volurfn@ncevent horizon always
increases to the future. To find the intersection of the ekierizon and a spacelike hyper-
surface one needs the metric of the full spacetime in pri@cip to. 7" and follow light rays
to see if they can reacli*. Recently more sophisticated techniques to find event biasiz
were developed and applied [20].

One can show that apparent horizons always lie inside (tieistiationary case coincide
with) the intersection of an event horizon with a given sfikeehypersurface. Hence the
first ones can be considered as a stronger indicators of aftagi@nal collapse. As an
example, a (marginally) trapped 2-surface can be thouglatsad closed constant phase
surface of an electromagnetic wave at a given instant of titnieh was sent outwards but

15



Chapter 1. Diterential Geometry and General Relativity

nevertheless immediately (marginally) shrinks. Havingglme picture in mind in the case
of a spatial section of an event horizon then it means thagldetromagnetic wave is able
to propagate outwards some finite distance and then coflapseer reaching’™.

16



Chapter 2

The General Relativistic Initial Value
Problem

2.1 |Initial Value Problems in Physics

A dynamical system given in terms of a system of partidgfedential equations can be
treated as amitial value problem which is a special form of th€auchy problem [27].
Therefore one has to choose an initial surfagetogether withinitial data (also called
Cauchy data) which describe the initial state of the systempietely. For thenitial value
problem wheretime is the evolution parameteX is necessarily spacelike. I is sufi-
cient to determine the data one the whole spacetime by méawolition equationsit is
called aCauchy surface In this chapter | will not discuss the mathematics of the cbgu
problem which can be found in [27], but rather the physics.

Following [55] the simplest initial value problem in physiis that of classical mechan-
ics. In the Hamiltonian formulation the data describing stete of the system at a given
time (i.e. on a given Cauchy surface) are the generalizeiigs and the conjugate mo-
menta of the bodies. There may be constraints for the dajaaegas which is confined
to a box, but there are no furthprinciple constraints on the possible states of the system.
The equations of motion which guide the evolution of the eystvith time are Hamilton’s
eqguations.

Equivalent is the Lagrangian formulation. The state of ystem is described by gen-
eralized positions and their first time derivatives of eastiypo One can also say that one has
to know the position of each body in the system at a timdp and att = to+ dt. Hence one
also calls the Lagrangian formulatidhin sandwich initial value problem because data
has to be specified on two very close hypersurfaces. Theiegsatf motion which govern
the evolution are the Lagrange equations.

Another equivalent approach is to define an action func8cn f Ldt. The principle
of least action ldlamilton’s principle ) states that a systems evolves such that the action is
extremal. Here like in the thin sandwich approach the stateeosystem is given by the
generalized positions of each body at the tirgesndt;. In the limitt; = ty + dt we recover
the thin sandwich approach.

An example of a theory witfundamentakonstraints on the data and gauge freedoms
is the following formulation of electrodynamics in Minkokisspace. The problem can be
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Chapter 2. The General Relativistic Initial Value Problem

simplified by looking at vacuum electrodynamic fiejds: j' = 0. At the initial timety, i.e.
the initial Cauchy surfacgy, let the data bé&, ¢, A whereE is the electric fieldg is the
scalar potential and is the vector potential. The constraint

divE =0
must be satisfied for all points Ey. The evolution equations are

OE = AA — grad dVA  Maxwell eq.
oA = —E —gradp Definition of the potentials

There is no evolution fog until one fixes the residual gauge freedom. For example ome ca
choose the Lorentz gauge
0=9,A' = 0t — divA.

Soin principle one can integrate from one spacelike hyptse to the next. The constraint
propagates due to the evolution equations, i.e.

odive = 0.

2.2 The Initial Value Problem in General Relativity

2.2.1 Foliation

Let M be the spacetime manifold together with the medic General relativistic equations
are invariant under general coordinate transformatioiffe@@morphisms). So one is free to
choose a one parameter family of spacelike hypersurfaces

Ty == {p e Mylt(p) = t'}

with a functiont : M — R. This means thatdf), is timelike. Such a dierentiable global
time function exists if and only if the spacetime is stablusal [52]. Define

n, = —a(dt),
with thelapse functiona such that
gnn, = -1
Furthermore we define another timelike vector fiehy
t“(dp), =1
so that in general it can be written as
t = ot + p
with the shift vector field 8 tangent to the slice
p'n, =0
andn* = g'n,.

18



2.2. The Initial Value Problem in General Relativity

2.2.2 Gaul3-Codacci-equations

The in- and extrinsic geometric quantities of a spacelikpehngurfacez are directly con-
nected with the geometry of the embedding spacetimd his is what theGauR3-Codacci-
equations[26] state
')/lp'yv\,/)/opyo(—)’- 4R/1’v’p’0" = 3R;1vp(r + Kp/l Ko-v - K(ry va
7}1/17%7‘0/)”0 4R#’V’p’(f = DyKyp — DuKyp (2.1)
7 ’ 1
YY" Ruype = LKy + EDﬂDya + K, KA,

All other contractions vanish.

2.2.3 Adapted coordinates

For practical purposes it is convenient to introduce cowdis which are adapted to the
foliation. One chooses the parametef the family of the spacelike hypersurfacgsas the
time coordinate and uses arbitrary coordinateésdependent of with i = 1,2, 3 as spatial
coordinates on each.
Then
(n,) = (-2,0,0,0).

Fromt*V,t = 1 we gett* = (1, t') and as a special choice of coordinates we set

(t*) = (1,0,0,0).
Fromn,s* = 0 we obtain '

#) =(.p).
The projection operator eq. (1.4) has the property
Yi=d'+nn =4
and the induced metric is
Yii = Yij-
Fromn, = g,,n" itis obtained that
—a®+p2 1 B2 B3
B1 Y11 Y12 Y13 2.2)

B2 Yo1 Y22 v23|’
B3 Y31 Y32 V33

(g/tv) =

The inverse metric tensor is

g") =
A e 12l g 13l g
2 7 42 Y 42 Y o2 (2.3)
B L p1_ BB 22 BB 23 A '
o2 VT VT g VT e
e A A AL
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Chapter 2. The General Relativistic Initial Value Problem

which follows most easily fronm* = g*”n,. There we used
Bi=yiBl. B i=vipB.
Hence the line element can be written as
ds’ = —a?dt® + y;j (dx + B'dt) (dxX + pldt).

On agiveryy, i.e.dt = 0, itis thus confirmed that the metric is fully given By. Hence itis
also called thespatial metric or simply3-metric. The meaning of the shift vector becomes
clear from Fig. 2.1. If an observer travels from coordinatsifion ¢, x') to (t + dt, x'),

X pHdt

anfdt

Figure 2.1: Meaning of the shift vectgr

his spatial position changes jg{dt with respect to an observer traveling alamg That is
where the name of the shift vector comes from. If he travelsift, ) to (t + dt, X —8'dt),
i.e. alongr¥ (sodx = —@dt), it takes the proper timedt which clarifies the meaning of
the lapse function.

The extrinsic curvature eq. (1.5) becomes (linearity ofltleederivative)

1
Kik = =3 (L%O’ik - L%g)’ik)
and one can show that this is
1
Kik = >~ (Lavik - dvik) - (2.4)

2.2.4 3+1-Decomposition of the Vacuum Einstein Equations

By means of the GauR3-Codacci-equations eq. (2.1), it isilpes® construct the 81-
decomposition of the Ricci tensor and thus of the vacuumtg&iim's field equations eq. (1.3).

We assume adapted coordinates as described in the laginse&iom the equation
4G9 = 4R00 = 0 and*GY = “RY = 0 respectively we get four equations
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2.3. Variational Principle and ADM-Energy

o Hamiltonian constraint: _
SR+ K?2-K*Ki =0 (2.5)

¢ Momentum constraints: - -
Dj (K" -y1K)=0 (2.6)

which are constraints on the data on a spacelike hypersulfacause they only contain
first time-derivatives. FromR! = 0 one obtains six evolution equations for the extrinsic
curvature

0Kk = LsKik — DiDya (2.7)
+ a(gRik + KKik - 2Kij KJk)
and from eq. (2.4) additionally six evolution equationstfug 3-metric
Ovyik = Lpyik — 2aKik. (2.8)

The evolution equations allow to integrate the data from glite to the next in time. In
eg. (2.5) to (2.8) all indices are lowered and raised with

Thus for the general relativistic Cauchy problem we can takeKi, @ andg' as the
data. On the initial hypersurfacg these data have to fulfill the four constraint equations
eg. (2.5) and eq. (2.6). Then eq. (2.7) and eq. (2.8) can ke tosmtegratey and Kix
to Z4:. OnXgy: the Bianchi Identities [52] guaranty that the constraints are fulfilled again,
i.e. like in electrodynamics the constraints propagatd. [But Einstein equations do not
evolvea andg'; as in electrodynamics we have to invent furtgauge conditionsfor these
quantities. The simplest would lgeodesic gauge

a=1, ﬂi:0

which turns out to be a bad choice in practice. In general wstithooser = «f(t, X) and
B = B(t, X) to obtain the complete data on all slices.

It is not obvious from the beginning what the physical cohteha data set is. It is
mostly not clear how and if at all the curvature of spacetimenges if specific components
of yjj or Kj; are varied. This is the case because in the twelve compooéatsiata set
there are not only the two physical degrees of freedom bthduigauge degrees: on each
slice there is the freedom of arbitrary spatial coordinesagformations and the choice of a
foliation.

2.3 Variational Principle and ADM-Energy

In [19] and more detailed in [52] they show that Einstein’sffiequations (especially in the
case of vacuum) can be derived using a variational prindgleneans of the Lagrangian
density

L = V-0R
whereg is the determinant of the spacetime megj¢. With this and the Euler equations,
Einstein’s vacuum field equations can be obtained straagiterdly.
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Chapter 2. The General Relativistic Initial Value Problem

The 3+1-split obtained in Section 2.2.4 can now be derived by meétie Hamiltonian
formalism. After having chosen a foliation of spacetimethvthe Gaul3-Codacci equations
eg. (2.1) the dynamical relevant part of the Lagrange deissit

Le = Vya(CR+ K?Z — K*Ky)

with the dynamical variableg;, dvyij, @ andg;. As usual one can show that total divergence
terms can be discarded because they lead to integrals @/botimdaries of the considered
spacetime region with Gaul¥'s Theorem and converge to zerboiendaries at infinity if
there is a certain fall{d rate, see [52] for deeper discussion. The conjugate mommeotu
¥ij turns out to be

- 4Ls - -
ij — - Kil — Ky,
9(0ryij) 'L )
the conjugate momenta af ands' vanish identically. Then the Hamiltonian density is
given by B
Hg = n'ovyij — Lo.

The canonical equations are equivalent to the evolutiomtians (2.7) and (2.8)

: OH,

Yij = aleB and 7 = —Wij

and the variations ofg with respect tar andg; lead to the constraint equations (2.5) and
(2.6) respectively. For the dynamical fielglg(x',t) andr'/(xX,t) as solution of the evolu-
tion equations, it turns out tha{s vanishes identically and thus cannot be interpreted as an
energy density of spacetime. In [19] they point out that tlarmmeason for this dierence

to other dynamical theories in physics are the second $peatitial derivatives of the dy-
namical variables in the Lagrange density which can be phted by partial integration if
the fields vanish outside some finite domain. This is not tise @agravity and for the total
integrated energy the following surface integral is left

E= r“_rﬂogga\/%’” (vikj = ijx) dS¥ (2.9)

in asymptotically flat Cartesian Minkowski coordinatesisléasy to check that it is equal to
the mass of an isolated source, e.g. a Schwarzschild bldek Mworeover the total energy
is a conserved quantity of evolution. There is no notion tdltenergy in spacetimes which
are not asymptotically flat.

In [38] they found the same result for the energy of spacetimteused the linearized
field equations in the asymptotically flat region far awaynirthe sources to change the
volume integral of the total energy into a surface integnadmalogy with Minkowski elec-
trodynamics. To honor the authors of this article, one dallee ADM-energy. They were
also able to define ADM-momentum and ADM-spin analogously.
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Chapter 3

Black Hole Initial Data

The aim of this diploma thesis is the construction of blaclehnitial data for the general
relativistic initial value problem. This chapter gives agbroverview of existing methods
and solutions of this problem, more details and furtherregfees are given in [17].

3.1 Basic aspects

Above it was described how to set up the initial value problangeneral relativity. To
summarize, we have to choose a foliation of spacetime wierspacelike hypersurfaces
are labeled by a time function So there is a unigue identification of the initial spacelike
hypersurfacey on which we want to give initial data. On all one picks adapted coordi-
nates, i.e. spacelike coordinates independent of time nitialidata we give the 3-metric
¥ij and the extrinsic curvatung;; fulfilling the constraint equations (2.5) and (2.6) b»

As was described before, the first problem arises alreadysapoint beside the formal
difficulty of the constraint equations: It is not clear which af tivelve components of;;
andK;; are to be specified freely and which are to be taken as sotutbthe constraint
eguations to obtain physically relevant initial data sd@tse mathematically elegaiork-
Lichnerowicz conformal decompositiondescribed in the next section gives a recipe for
this and has been used more or less for all black hole inititd types currently existing.
Bishop [10] introduced a flierent method which will be used in this thesis and will be
described in Part II.

In principle all initial data sets where trapped surfacesgparent horizons exist at
given positions and one can show asymptotical flatnesgadiceblack hole initial data sets.
In analogy with multiple body problems in other physicaldties, one additionally wants
to control the physical parameters of edduy, e.g. masses, momenta and spins. In general
relativity this is not possible in general as was mentionefbfe because there is no clear
definition of quasi-local properties of spacetime. But asteone wants some approximated
control if the black holes are separated some finite cootgidastance and exact control
if the separation is infinite. In the case of black holes thigthe hope that the dynamical
horizon framework [6] can guide a way out of this dilemma hmseaat least if there are
Killing fields present on the horizons, one can give a meamingnergies and spins of
horizons quasi-locally. But it seems to take some time uinéise ideas are accepted in the
numerical relativity community.
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Chapter 3. Black Hole Initial Data

In practical numerical computations, the black holes mesddt not too far away from
each other because of the limited grid space in the compugenaory and not too close
because otherwise one misses the interesting non-lineemugal phase. But this means
that in general one does not have full control over the plysfcthe initial data sets one
wants to construct. Especially it is an unsolved question Adificial an initial data set
is compared to astrophysically realistic scenarios. Ottie\s that in arastrophysically
relevantspacetime there are stationary black holes orbiting edwdr o1 a large orbit, losing
energy by weak gravitational waves, getting closer andl§idlinging to form a Kerr black
hole. Initial data sets in numerical relativity are supgbs®model this systeraomewhere
in the middleof the evolution for the reasons given above. If it is not fjdegto find such
initial data sets there is little hope that the computed itgional waveforms are related to
those that will be measured by the gravitational wave detect

3.2 York-Lichnerowicz Conformal Decomposition

As was described before the conformal decomposition is aenadtically elegant way of
choosing the free part of the initial data and obtaining #&t from the constraint equations.
It will only be described very briefly here because | will nsut for this thesis. Further
details are in [55] and [17].

The basic idea is to write the 3-metric as

Yij = 91’47”' (3.1)

with the conformal metric (also callecbackground metric) ;; and theconformal factor
. The constraints can be expressed by means of conformalitiggalone; for example
the Hamiltonian constraint eq. (2.5) becomes

— 1= 1 1 .
Ay - ZUR- §¢5K2 + §¢5Kij|<'l =0 (3.2)

where quantities with a bar mean quantities defined by théoomal metric. This is a
quasi-linear elliptic equation fay if Kjj is a known function on the initial slice, e.g. in the
case of time-symmetry, see below. So if one chooses the iwpafanetric as the free part
of the initial data one obtains an equation which can be siadgea boundary value problem
for the conformal factog. In more general situations one must find an additional comdib
decomposition of the extrinsic curvature, see [17].

3.3 Conformally flat black hole initial data
The most simple non-trivial ansatz fgy; is the Euclidean 3-metric
7i; = diag(1 1, 1)

in Cartesian coordinateand this ansatz has been used in most existing initial dédaupe
to now. Initial data with this property are callednformally flat.
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3.3. Conformally flat black hole initial data

3.3.1 Time-symmetric black hole initial data

The trivial solution of the momentum constraintd &t 0 isKj; = 0, time-symmetry. Then
one is left with the Laplace equation ferfor which existence and uniqueness of solutions
were proved for von-Neumann and Dirichlet boundary coodgi[27]. The spherically
symmetric solution on the domalit? — {0} with y — 1 forr — oo is

M
1//(!’) =1+ E

Hence the physical induced metrig of the initial slice can be computed using eq. (3.1)
and withKj = 0 and additional choices of the gauge functions the full Ggwtata on
the initial slice is known. It is thé = O-slice of the Schwarzschild solution in isotropic
coordinates [17] and the line element of the induced megiche written as

d< = (1 + —) (dr? + r2de? + 12 sir? 6dg?) (3.3)
Such slices — sometimes calls isotropic slices — are isienetder the transformation

m\2 1
r—>(2) r

which is a reflection on the 2-sphare- m/2, calledthroat or Einstein-Rosen bridge[21].
Fig. 3.1 shows the embedding diagram of eq. (3.3) holdifiged. So isotropic slices is are

s Sk

~—— rem /2

Figure 3.1: Isometric embedding of eq. (3.3) wikh = 0 into R3, taken from [15]
not simply connected and consist of two isometric asymgadiii flat ends for — « and

r— 0.
Because Laplace’s equation is linear and homogeneous

i( 2|r—r|)
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Chapter 3. Black Hole Initial Data

is a solution of eq. (3.2) foKi = 0 on the domaiR3—{r4,...,r,} and one obtains multiple
black hole initial data, calle®rill-Lindquist-data [15]. Multiple Brill-Lindquist black
holes have the property that each black hole has a throatheenetric gets asymptotically
flat in the limitr — r;, but there is no isometry on each of the+ 1 parts (if there are
N black holes). Misner [37] constructed time-symmetric datdch only consist of two
isometric asymptotically flat pieces.

Hence, what may seem surprising at the beginning, conftyrflat slices with their
mathematical simplicity are adapted to black holes, at ieabe case of time-symmetry.

3.3.2 Maximal Initial Data

One wants to go beyond time-symmetry and chooses maxinealss{Section 1.3.1), i.e.
K = 0, with conformally flat 3-metrics. One is left with an ellipiequation fory eq. (3.2)
and the momentum constraints which are linear in the cordbextrinsic curvature without
anyy-terms, see [17]. Bowen and York [12] found an explicit sotof the momentum
constraints for the conformal extrinsic curvature in temfiggparameters which reduce to
the associated ADM-quantities for large separations. Dubé linearity of the momentum
constraints these solutions fi; can be superposed analogously to Misner data and one
obtains the same topology, specifying isometry conditiainthe throats of each black hole
as boundary conditions.

Those spherical boundaries are complicated to implementernigally. Puncture data
(found by Brandt, Briigmann [13]) use the same solution efdbnformal momentum con-
straint, but a simpler superposition of the solutionskgy eventually constructing data with
the same topology as the Brill-Lindquist ones. Due to theadledpuncture trickto solve
the Hamiltonian constraint eq. (3.2), i.e. separating Wigparts of the conformal factor
from regular ones, one is left on the one hand with a regulgtiel equation and on the
other hand one does not need a boundary condition at theypascit all — where the whole
asymptotically flat end of each black hole is compactified.

3.3.3 Problems

Up to now conformally flat black hole initial data sets aresthevhich are used most inten-
sively for black hole evolutions. But there are a lot of peyhk. Conformally flat initial
data work quite well in the time-symmetric case where fagdeseparations each black hole
becomes Schwarzschild. But [17] it turns out that isolatiedhoholes with non-vanishing
Bowen-York spin are not stationary. Following a conjectbyePenrose gravitational col-
lapse eventually leads to a Kerr black hole. If this is truavBo-York initial data cannot
represent black holes arising from an isolated gravitationllapse and are thus not astro-
physically realistic. Further more Garat and Price [23)veba that — at least under certain
assumptions — there exist no conformally flat slices of the Keetric. So one states that
black holes with a Bowen-York spin have an artificial gravitaal wave content. It is not
known if it is significant or maybe leaves the computatiorrad quickly. Nevertheless, sys-
tematic comparisons can only be done if several initial data exist with similar features
but very diferent ways of construction.

26



3.4. Other approaches

3.4 Other approaches

Since conformal flatness of black hole initial slices dogsseem to be applicable to general
situations people invented other approaches.

An important first step was in [14] where a not conformally e of the Kerr metric
was superposed with a Brill wave according to the York-Litmwicz conformal decom-
position. These data were evolved and analyzed.

Furthermore there are Post-Newtonian methods that tredtlitk holes as point parti-
cles taking post-Newtonian corrections to the Newtoniavigstional potential and orbits
into account [50]. It was shown that there are deviationmfoonformal flatness already in
second post-Newtonian order, see e.g. [18]. The post-Neari@pproximation is certainly
valid if the holes are far separated, that is in the early @luds binary inspiral, but breaks
down for close orbits.

Another class of initial data leading to not conformally fildta naturally is based on
Kerr-Schild metrics and is the topic of this diploma thesEhe construction procedure
introduced in this thesis is a generalization of an ansatnited by Bishop et al. [10]. It
uses an alternative approach to the standard York-Lickwercconformal decomposition
(Section 3.2) to hopefully obtain significantlyfiifirent data than the currently mostly used
ones and learn about black hole initial data sets in gengraystematic comparisons. That
is why | decided to not work on Matzner's Kerr-Schild appiod86] which constructs
Kerr-Schild initial data by means of the conformal deconitimrs.
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Kerr-Schild Initial Data for Black
Holes
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Chapter 4

Kerr-Schild metrics

4.1 Definition

Let M be a diferentiable manifold. In 1962, Trautmann [51] consideredriceof the type
Ou = My — 2V1,1, 4.1)
with a null vector field,, =: g,,I*, i.e.
1“1, = gul*1” =0, 4.2)

a scalar functiorV andz,, the metric of (flat) Minkowski space. Metrics of the type (4.1
are calledKerr-Schild metrics and in this chapter we will explore its algebraic, geometric
and physical properties. More details can be found in [34] @5]. In the next chapter
this knowledge will be used to construct black hole initiatal If g is given then one can
choose coordinates with respecigton M such that e.g.

(M) = diag(-1,1,1,1)

which will be called (CartesianKerr-Schild coordinates (t, Xy, z) (or sloppily Carte-
sian coordinates). In later applications we will often ugkesical Kerr-Schild coordinates
(t,1.6, ¢) where @,,) = diag(-1, 1, r2,r2sir? 6).

Kerr-Schild metrics are adapted to black hole physics beethe Kerr solution of Ein-
stein’s vacuum equations (Section 4.4) can be brought t&énmeSchild form and Kerr-
Schild metrics are invariant under Lorentz boosts. Funtioee they have nice algebraic
and geometric features.

4.2 Algebraic Features of Kerr-Schild Metrics

In [31] they list the following relations which | have checkby straight forward computa-
tions. Firstitis

L, =guw!l” =nul", (4.3)

which implies that
0= I#Iﬂ = gyvlylv = nyvlﬂlv (4.4)
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Chapter 4. Kerr-Schild metrics

so that indices of, can be raised and lowered by both metrics with the same r@sdlit is
a null vector field with respect to both. Furthermore we have

g = (Y 2V
whereg"” is the inverse tensor @j,, and G 1) is the inverse tensor Of, ..
(n_l)#vnvp = 5%-

From this one finds
detg = detn (4.5)

so in Cartesian Kerr-Schild coordinates the determinantlisThese relations are helpful
for algebraic calculations, for instance computing therkSshild Ricci tensor. One the one
hand many terms drop out becaugés a null vector field, on the other hand itITé‘,W =0
due to eg. (4.5) in the case of Cartesian Kerr-Schild coatdm

4.3 Geometry of the null vector fieldl,

As before let U, g,,) be a spacetime with a Kerr-Schild metgg, with Cartesian Kerr-
Schild coordinates¢. Relative angles and lengths of the tangents vectors ofdbediz
nate lines in each points are given gy Let (I\7I,n,w) be Minkowski space in Cartesian
Minkowski coordinates¢”; i.e. the coordinates are defined#in the same way.

On M introduce a vector field, such that onM with respect tox” it has the same
components as the Kerr-Schild null vector figdn M with respect tox.

It can be shown by simple algebra that for the 4-acceleratfdp one gets

_ v _ T v
8 = b l” = T

where a semicolon represents the covariant derivative negthect tay,, and a comma that
with respect toy,, which in these coordinates reduces to a partial derivafiveector field
is called geodesic &, = 0. Thusl, is geodesic irM if and only ifﬂ, is geodesic ifM. The
divergenceis

1
@ZEII;L:—IZ,
twist
2o D = ST
w = 2t = Sl
andshear

1 ) 1~ -
0'2 = §|(ﬂ;y)|y’v — @2 = §|(‘u’y)|“’v — @2

where the last equality only holds lif is geodesic; for the meaning of these geometric
quantities see [52]. In summary the geometryl,ofn M is very closely related to the
geometry oﬂ;l in M. This fact will be used later for the construction of Ker#d initial
data. If there is no risk of confusion I will write, instead of, and speak of, in M andl,,

in M respectively.
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4.4. Kerr solution

The relations above hold without any field equations. If therkSchild metric addi-
tionally fulfills the vacuum Einstein equatiofi, = O it can be shown thd}, is geodesic,
shear free and it is a double degenerate principal null cargre of the Weyl tensor, i.e.

Corplorlag”1? = 0

in agreement with the Goldberg-Sachs-Theorem [31]. Th@ien that spacetimes with
Kerr-Schild metrics fulfilling Einstein’s vacuum equat®are of Petrov Type Il or Petrov
Type D.

4.4 Kerr solution

Kerr-Schild metrics are interesting for black hole phydiesause the Kerr solution can be
brought to this form by means of a coordinate transformatidre Kerr solution represents
a stationary rotating black hole and is — following a conjeetby Penrose — believed to be
the final state of any gravitational collapse.

In ingoing Kerr-Schild coordinates (see [37], ExerciseB3&.is

Ouv = My — 2V,
with the (flat) Minkowski metric
(77;1\/) = dlag(_la 19 1a 1)9

the scalar function

MR3

V=o—o«— 4.6
R4 + a2z’ (4.6)

the Kerr-Schild null vector field

Rx+ay Ry-ax z
| :(_1,_ - ,——) 4.7
() RZ+a2” Re+a?’” R (47
using the radial functions

1

R= \/5 (p2 -aZ+ \/(,o2 —a2)?+ 4a222) (4.8)

and

p=X+y2+ 2

In fact, R is the Boyer-Lindquist radial coordinate. The Kerr solntia Boyer-Lindquist
coordinates can be found in [37].

4.5 Kerr-Schild Slices

Use again the notation:= 1, 2, 3 spatial components, 0 time component of a tensor.
A Kerr-Schild slice is a 3-dimensional hypersurface defined by constant Kemitdbc
time. Using the normalizatiolf = 1 it is spacelike as long as

g (dt),(d), =g =-1+2v(%?=-1+2V <0
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Chapter 4. Kerr-Schild metrics

which is the case ¥/ < 1/2 (fulfilled for instance in eq. (4.6)).

In the case of the Schwarzschild metric the relation of Kaarhild slices and slices of
constant Schwarzschild time can be demonstrated in thekKrdgagram, see [38] (Chapter
31) and Fig. 4.1. Slices of constant Schwarzschild time taaggbt lines through the origin

37

251

1.51

05

05

Figure 4.1: Kerr-Schild and Schwarzschild slicings of Salegchild metric in Kruskal
Coordinates

of the Kruskal coordinate frame, i.e. they avoid the singtylavhereas Kerr-Schild slices
hit the singularity. The latter ones do not have two asynigatly flat ends as for instance
maximal slices (Section 3.3.2). So a Kerr-Schild ansatz ame allow to cover the whole
black hole manifold but rather iestrophysically relevarpart associated with gravitational
collapse [37].

The induced metric on a Kerr-Schild slice is (eq. (2.2))

Yik = Gik = ik — 2Vlily, (4.9)
where in Cartesian Kerr-Schild coordinatés
(dik) = diag(11,1)

is the Euclidean metric. If one defines

M= (bl
with (d-1)! the inverse tensor af; one obtains for the inverse tensor)gf
. . N
-1yij _ d—l 1 Ilj‘
O =@+
When we set _ B
=7
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4.5, Kerr-Schild Slices

then we find
-1
1-2v
and (assuming again thift= 1)
— 1 »
' = T ' = 1. (4.10)
From eq. (2.3) it follows for the lapse
1 1
V-~ o a=—— 4.11
g ” T (4.11)

which is always well defined ¥/ < 1/2, i.e. the Kerr-Schild slice is spacelike, see above.
From the same equation one infers that
. B . 2V
O _ = ﬂl _

= Ty | (4.12)

g

where again _ _
' = g¥l,.
Eq. (2.8) can then be used to compute the extrinsic curvatyren the Kerr-Schild
slice; the result is in [39] for instance.
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Chapter 5

Kerr-Schild Initial data

5.1 Basicldea

In Chapter 3 important examples of multiple black hole @liiata were discussed. Here |
describe an ansatz leading to a significantlijedent type of initial data. It was created by
Bishop et al. [10] and was generalized by Moreno et al. [3%hvénted a modification to
construct the free part of the initial data for general npldtiblack hole systems and worked
it out in this thesis.

Suppose we have a 4-dim. manifolll,(g,,) representing multiple black holes which
can be covered with a single coordinate map. Ignoring plesgitmblems with that, it is
clear that it is too restrictive to assume thgt is of the Kerr-Schild type for all times.
Instead Bishop et al. in [10] made the following ansatz ferrtetric and coordinates

Guv(t, X) = 7 (X) = 2V (E X1 (& X8 X) +2 > £5(K) (5.1)
Kerr-Schild part s=0

with j,(g)(x‘) # 0. This implies that the spacelike hypersurfakedefined as the = O-
surface — the initial slice — is a Kerr-Schild slice (Sect#bf) and the Cauchy data on it, i.e.
both the induced 3-metrigyx and the extrinsic curvaturj,, are determined by the Kerr-
Schild part ofg,, alone. This is the case because the metric eq. (5.1) dewaszxond
order oft. Thus there are ngpterms in the constraint equations Bpand we are left with a
Kerr-Schild initial data problem, (hopefully) benefitingpfn those algebraic simplifications
and nice geometric and physical properties described itiddet.2. Consequently as soon
as the data and coordinates on the initial slice are fixedinitial lapse and shift are also
determined by this ansatz. Anyway, because these are onfjedanctions one is free to
choose anything else.

It is not clear ifXg is a Cauchy surface, i.e. if the data Bspdetermines the data in the
whole spacetimeM uniquely. It is even unknown iM is globally hyperbolic, i.e. if this
spacetime admits a Cauchy surface at all. It is a furthernagian thatX, is a Cauchy
surface otherwise it is of no or limited meaning to look foitial data onXy. For further
discussions on that see [52].

Following [10] the idea is to specify the Kerr-Schild nulloter fieldl, att = 0 as the
free part of the initial data because there is hope that itfiscgent alone to determine the
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5.2. Coordinates and Auxiliary Spaces

physics ofZg a priori in some sense. These are two free functions becaugeemne hand
one has the freedom to normalizesuch that® = 1 and on the other hand there is the null
conditionz,, I*" = 0 or equivalently

dijl'l = 1. (5.2)

The constraint equations then turn out to béisient in principle to comput®/, ¢, and
0V so thatyjx andKjx on Xy can be obtained (Section 4.5). This is true because there are
only four unknown function®, 4;V and two components @kl; because;|° = 0 and

dijl'al) = 0, (5.3)

where eq. (5.2) was used and because in adapted coordihat&utlidean metric; is
always time independent.

In all initial data construction procedures there is théter freedom of how to choose
boundary conditions for the constraint equations, seeNpelad hence the same free part
of the initial data — herg, — can lead to dierent initial data eventually.

5.2 Coordinates and Auxiliary Spaces

There exists a conceptional problem not only with this djpekierr-Schild ansatz which is
to be discussed now.

When one wants to construct initial data on an initial sbge(not limited to Kerr-
Schild slices at the moment) one has to specify free partseoinitial data and has to use
the constraint equations to obtain the rest. This free marsists of components of tensor
fields — in my case the Kerr-Schild null vector fid|o— which are defined with respect to
some coordinates. But these coordinates &y are undefined until the induced metric
Yik 0N Zg is known. The metrig/i in turn is not known until the full initial data problem
is solved. So in summary, independently of the actual coostm procedure, the free part
of the initial data is always given inraeaninglessvay at the beginning; not before the full
initial data problem is solved one can check if the ansatzamaknse.

So how to deal with this dilemma? For example in the desoriptf puncture data
[13] they talk of “a problem ifR®” and mean that they take the three spatial coordinates
which will later cover the initial slice in the black hole nifold as a triple of numbers
in the auxiliary spac®3 without physical meaning at the beginning. For the Kerri8ich
ansatz there is a similar way. As was described in Sec. 4.RaheSchild null vector field
has analogous geometric properties in the Kerr-Schildetprae (M, g,,) and in Minkowski
spacetime I(7I,nw). For the ansatz eq. (5.1) this correspondence only holdbeinitial
slicesZg in M andg in M respectively (and maybe for some very small tires 1). So
to prescribe the free part of the Kerr-Schild initial datagiee |, on the 3-manifolcg c M
with coordinatesd with respect to the induced metridy) = diag(1 1, 1). The reason why
we stay in the 4-dimensional picture and talk3f in Minkowski space and not simply
of R3 as in [13] is that we want to give a 4-dimensional construcpeocedure fot,, see
below. Oncel, is given onX, with the metricdy one solves the constraint equations to
obtainyy andKj and interprets the spatial part of the Minkowski coordiaae the spatial
part of the Kerr-Schild coordinates &g defined byyik.
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Chapter 5. Kerr-Schild Initial data

5.3 Further Remark

Itis clear that in eq. (5.1) it would not be desirable to lat thetric deviate from the initial
Kerr-Schild form too fast, i.e. with, because then in the constraint equations we would
also havej-terms. But for a multiple black hole metric it is also not ddo let it deviate
too slow, for example with®. This would imply that the full Einstein equationstat 0
would be fulfilled by the Kerr-Schild part of the metric aloard as described in Section
4.3, the Weyl tensor belonging to that metric would be of ®effype I/D. Sol, would be

a geodesic shear free double degenerate principal nuttiineatt = 0 which would be too
restrictive for general black hole systems.

5.4 Construction of the Kerr-Schild null vector field |,

As was described before, we want to constiydirst onZy, the initial slice in the auxiliary
Minkowski space, as the free part ohablack hole initial data set. Of course there is no
unigue way to do this; in principle the only restriction istkeventually one must be able to
prove existence of trapped surfaces or apparent horizolg and asymptotical flatness.

The null fieldl,, should be constructed by means of parametgy®;, S which should
at least converge to the associated ADM-quantities massientum and spin (Section 2.3)
of thei-th black hole respectively if the coordinate separatiomsaginfinity. In this limit
we want that a region around each black hol&jnhas the same geometry as the initial
Kerr-Schild slice of a single Kerr black hole modulo globabadinate shifts, rotations and
Lorentz boosts.

In [10] this was done for unbooste®;(= 0) non-spinning § = 0) black holes; in [39]
this was generalized for unboosted spinning black holethisrthesis | generalize (or better
said modify) their ansatz and implicitly fix the spin-spiméraction function which in [39]
was introduced only in the close limit.

5.4.1 The new ldea

My procedure is motivated by Lind and Newman [35] who disecedean analogy of prin-
cipal null vector fields of algebraically special metricglweigenvector fields of associated
Maxwell tensors in Minkowski space. To describe this analyguld be beyond the scope
of this document. After straight forward but lengthy congiittns done with Mathemat-
ica, | additionally found that the Kerr-Schild null vectoelfi of the Kerr metric (spin in
z-direction) in Cartesian coordinates witky(X>, X3) = (X,Y, 2) €. (4.7) can be obtained as
an eigenvector of the matrix

0 x vy 2
iy _|X 0 -a 0
z 0 0 O

associated with the eigenvalad/R. This tensor in Minkowski space can be interpreted
as being proportional to the electromagnetic field tensoa spinning charge at rest in
Cartesian Minkowski coordinates (although not a magnetiold), see [33]. So in addition
to [35] this result shows a deep connection between black pbysics and Minkowski
electrodynamics.
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5.4. Construction of the Kerr-Schild null vector fid|d

The electromagnetic field tensor (5.4) is not the only oneviaich the eigenvalue equa-
tion
FAIY = alt

is solved by the null field, of the Kerr metric. | made the following more general ansatz

0 X y z
uy_|X 0 B, -By
(F V)_ y _BZ 0 BX
z B -Bx O

where the componenBy, By and B, are related to thenagnetic fieldassociated with the
spin of the black hole. Then | put the Kerr null vector field7/(dnto the eigenvalue equation.
With additional requiremeriy sing = By cos¢ due to symmetryd is the azimuthal angle
associated with the-axis), it turns out that there is only (5.4) and the eigemsas—1/R.

Hence to construdi, on o, | use Minkowski electrodynamics as a model problem in
the following way.

5.4.2 The new procedure

Assume we want the initial data set to represeiblack holes with initial coordinate po-
sitionsr; = (X, Yi,z), mass parameters;, momentum parameteR = (P P}, P) and
spin parameter§; = (&, &), a,)m. By thecoordinate position of a black holemean the
coordinate position of that point dty where the divergence 6f becomes infinite. Now, in
analogy with the single Kerr black hole case, set for eactidtmle onX, the electromag-
netic field tensor of a moving spinning charge of type eq.)(5T#is means the following.

First introduce a coordinate frame in Minkowski spattex(, y’, Z) in which one of the
charges (associated with one of the black holes) at inidaltipn ¢, 0,0, 0) is at rest with
the electromagnetic field tensor

wy_|¥ 0 &
F)=]y a0 -a/| (5.5)
z -& & o0

the coupling factoQ/r’2 in electrodynamics will be discussed below.

Now change to a coordinate frame in which the charge has ielac So one has to
apply a Lorentz transformation and the Lorentz matrix ig] [Bfre as an example for a
boost inz-direction; this can be easily generalized by spatial coaté rotations)

'y 0 0 vI(v)
aDI=| o o5 o (5.6)
vii(v) 0 0 TI(V)
with
1
I'= .
1-\2



Chapter 5. Kerr-Schild Initial data

In this frame the electromagnetic field tensor of the chasgstandard matrix multiplica-
tion)

F = A(P)-F'-A™Y(P) (5.7)
with
Ve —0 (5.8)
VMZ 1 P2 '
and the inverse Lorentz matrix
AYP) = A(-P).

In Minkowski spaceM the coordinate quadruple (position vector) transforms tgent
vector under Lorentz transformation, sa at 0 (which does not imply; = 0!)

x=X, y=Yy, z=TIZ. (5.9)

Finally in this coordinate frame, where the charge is babstgh a momentunP, we
shift the frame to put the charge on its initial position, i.e

X—= X=X, Y=Y-Yo. Z—Z-2.

Electromagnetism is our model problem in Minkowski spadesrges represent black
holes onxy. Now | propose to superpose the black holes, i.e. the asedaectromagnetic
field tensors, in the following way. | set the total electrgmatic field tensor to be

n
F = Z
i=1

Fi (5.10)

>3

P
with the Euclidean separation
pZ=d(r’ —rl,r' =rl)

measured in the coordinate frame whereithecharge is at restk = 3 is in full analogy
with Minkowski electrodynamics and will be used later besmin the case of non-boosted
and non-spinning black holes it reduces to Bishop’s indeta [10] (Section 5.6).

Higherk correspond to black holes which are more and more undigtorta neighbor-
hood of their positions (in the meaning described abovealse the superposition func-
tions of the other black holes tend to zero faster and fasthis is whyk can be called
shielding parameter. For anyk this ansatz for the superposition has the property that two
non-boosted black holes with opposite angular momenta @sdime coordinate position
reduce to a single Schwarzschild black hole. This is not #ise @ for example one uses the
Boyer-Lindquist radial coordinat® eq. (4.8) instead gf.

| stated before that to obtaip in the case of a single Kerr black hole one can solve
the eigenvalue problem of eq. (5.4) and tgkas the eigenvector associated with the nega-
tive real eigenvalue (correspondingitgoingKerr-Schild coordinates). | propose to do the
same in the multiple black hole case. Hence after one haswechphe total electromag-
netic field tensor as described before one can tak@m the equation

FAIY = Al (5.11)
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5.5. Eigenvalue Problem &f

wherea is the associated eigenvalue. Existence and uniqueneskitibas of this equation
for real and negativa will be discussed in Section 5.5.

If I on 3o in Minkowski space is constructed this way then it is autacady null with
respect toy,, becausé,, = n,,F”, is antisymmetric, hence

1 1
Mt = S P = JF P = 0

Assume now thal, on % is constructed this way and the metric is given by eq. (5.1)
with the still unknown functiorV/. Thenl, is also null with respect tg,, att = 0in Zo due
to eq. (4.4), i.e.
gu!’l” = 0.

Sol, is automatically consistent with the Kerr-Schild assuimsi

5.5 Eigenvalue Problem of~

| want to discuss the eigenvalue problem of the antisymmétnsorF,, and assume that
(7.v) = diag(=1, 1,1, 1). One can write in general

0 @ @, o3
® 0 @ @
D, -®, 0 @
O3 -5 —-Dg O

(F‘uv) =

where®y, ..., ®g are arbitrary smooth functions in Minkowski space. The eigéues are
the roots of the characteristic polynomial, i.e.

detF — 2id) = 0.
Introducing

Atz -0} - 0% - 03+ 4% + 0 + 02
By = @304, By = Dy05, Bz = D10g
B:= Bl - Bz + Bg

one can check (e.g. with Mathematica) that the roots of tleacheristic polynomial can

be written as
A 1
A== —EiEVA2+4BZ.

So there are two and only two (except for single points) riggre/alues and only one which
is negative. | choose

A 1
A=- —§+§VA2+4BZ

because in analogy with eq. (5.4) this correspondagoing Kerr-Schild coordinates.
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Chapter 5. Kerr-Schild Initial data

The corresponding associated normaliz8d=(1) eigenvector is (obtained with Mathe-
matica)

201 + Bdg + A (Dp Ds + D3 Ds)
A (42 + D42 + 52 + Dg?)
22Dy — BOs + A (D3 Dg — D1 D)
A (A2 + g% + D52 + Dg?)

2 D3+ BDy— A (O D5 + Dy D)

A (42 + D42 + D52 + Og?) )

>

") = (1,

: (5.12)

Note that because of the normalizati@n= 1 there are singular points if
A (2% + 42 + 5% + 06%) = 0.

Nevertheless, this normalization is assumed here bechasmhstraint equations become
simpler and because one can compare to Bishop's originabapp, see the following
section. For the future one might want to work with the regaéa version of eq. (5.12)
which is only singular at the positions of the black holes.

5.6 Compare to Bishop’s Construction

In [10] Bishop et al. invented a fierent construction af,, the free part of the initial data.
Nevertheless, in the case of non spinning non boosted blaleks land for a special choice
of the shielding parameter the same results are obtained.

They construct; (the spatial part of,) as the normalized gradient of a potential

li = CV;®

in the case of vanishing angular momentum with

o=y 2

— pi
My construction procedure in this case leads to a total mlewignetic field tensor
0 & Oy D3
eo-fo s ool
® 0 0 O

Using the general formula fd¥ eq. (5.12) we get for the spatial part

(1) = 2(@1, @5, @)

_ /2 2 2
A=- <I)1+<I)2+<I)3.
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5.7. Physical Implications

We have from the construction procedure

m
0 = ZE(X_XO

m
D, = Z E(Y—yi)

O3 = Z %(Z— z).

So my construction leads to the saipes in Bishop if the shielding parameterkis= 3.
Later on | will considek = 3 exclusively.

5.7 Physical Implications

5.7.1 Limit of infinite Coordinate Separations

Let p be the typical coordinate separation of the black holegipas(in the sense described
above) andl = « p the radius of a coordinate sphéfec £, around one black hole position
with @ <« 1. Look at the limitpo — o now. The coupling functions of all other black
holes in the superposition eq. (5.10) converge to zerd.imMhey fall of faster the higher
the shielding parametdris. So in this limit the total generating tensor Knis that of a
single black hole (5.4) So inK the Kerr-Schild null vector field, is that of a single Kerr
black holé. In K it is thus possible to find a solution of the constraint eaquretiwhich,
interpreted orXo, is the data of the initial Kerr-Schild slice of a single Kbtack holé and
hence the coordinates are standard single black hole KéitdSoordinates.

Let us callK that region inZo associated with the regidf in Zo. In the limitp — oo,
the proper diameter df is infinite because the metric there is that of a single Blacke
and soK is asymptotically flat. Hence the notions of ADM-masses, rmanta and -spins
onK are well defined.

In this limit the spin-parameter used in the constructioty,a the ADM-spin per unit
mass because it is the spin parameter of a single Kerr blaek.hid the momentum pa-
rameter is zero then the metric reduces to a Kerr black hale ADM-momentum zero
(possibly times shifts and rotations of the coordinateg€cdise by construction the ADM-
momentumP, defined in the asymptotically flat region Kf with Minkowski coordinates,
transforms under Lorentz transformation as the Lorentz emdom parameter for a given
ADM-mass, the ADM-momentum per unit mass equals the momeparameter per unit
mass in this limit. Only the ADM-mass itself is not fixed by tbenstruction procedure of
|, alone because we use the specific superposition eq. (5.100nym = a;M with M
the total ADM-mass the eigenvalue equation eq. (5.11) cadivbded by M which only
changes the size (but not the sign) of the eigenvalue. Sotbalyelations of the mass pa-
rameters, i.e. tha;s, influence the null vector field by construction. The ADMs®& one
of the further freedoms hidden in the constraint equationsis determined by fixing the
boundary conditions with which they are solved.

!possibly additional coordinate transformations as coatgi shifts, rotations or Lorentz boosts must be
applied
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Chapter 5. Kerr-Schild Initial data

5.7.2 Apparent Horizons

In Bishop’s original paper [10] it is discussed that surkacethogonal to the spatial part
of the Kerr-Schild null vector field, with V = -1/2 are marginally trapped if is sur-
face forming. This is the case described in Section 5.6; rgererally from Frobenius'’s
Theorem [52] the surface forming condition is

I[ilj,k] =0.

They argue thal, is the ingoing normal to such a surface did= 2t — (1 + 2V)I# is the
outgoing one and find for the outgoing divergence

®0ut = _(1 + 2V)®|n.

S00,t = 0if V = —1/2. Nevertheless the argument does not seem to be good bdgause
is only an outgoing null normal of the surfaceMif > —1/2. So exactly in the case when
we have a marginally trapped surface, i.ex 2V = 0, we havek* = 2t* and it is not an
outgoing normal.

In [46] they claim that they have checked the marginally pesp surface condition
eg. (1.8) and came to the same result as Bishop.

Currently no generalization exists for not surface forming
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Chapter 6

Constraint Equations

6.1 Derivation of Kerr-Schild Constraint Equations

Ansatz eqg. (5.1) implies that the data and the constrainth®@mmitial hypersurfac&, are

fully determined by the Kerr-Schild part of the metric besathe com|oonent§°0 andG(}

of the Einstein tensor do not contain second time-derigatiso the Einstein tensor defined
by metric (5.1) does not containmatrices and one can compute the constraint equation at
t = 0 considering only the Kerr-Schild part.

In [10] they derived the Kerr-Schild constraint equationCartesian Kerr-Schild co-
ordinates. | reproduced the computations with Mathemaistag the tensor package EinS
[29]. This package allows to obtain tensor expression kepparms together by means of
Einstein’s summation convention. Standard Mathematgedfits only able to compute the
expression and fully evaluate it in terms of all tensor congrds which is much longer. But
to check the computations done with EinS, | compared thdtmeglequations with those
obtained by standard Mathematica which was eventuallyesstal.

The constraint equations were computed from the definitiadheoEinstein tenso@o0 =
0 andGOi = 0 directly and not using eqg. (2.5) and (2.6). Here is the Hamikn constraint

0=- V,ii + IinV,ij
+2(2Vi;+ (L + 2V)a + |1 ) Vi + 22 (6.1)
+ VAL - aa) + 2V(1+ V)a; + Vil =il

the momentum constraimoili =0

0 :V,ii - IinV,ij
+ (W= 4V)i; - @+ 4V)a - L) Vi + V(L - V)i (6.2)
+ V2% - V(1+ 2V)a; — V(L - 2V)al, + VI + VI (5 - 1)
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and the momentum constrair@z = 0

O=—|iV,iij
+ ([l =1y + 21V = 1V + VI = V) z (6.3)
+(Vay + V(1 = L) + Vil + 2V - 1)

+ 2V20 + V(- 2V)il )z

To write down these equations | use Einstein’s summationamion for repeated indices
with the simplified notatior' = ;. This is very convenient when dealing with computer
algebra but can be dangerous when one wants to change tdr@hetartesian coordinates.
The vectorz on g is orthogonal td with respect to the Euclidean metric (i.e. the induced
metric ofZo), SO

IiZi =0.

One has to choose two linearly independebtcause eq. (6.3) represents two equations. |
also introduce _ .
li:=dli and V=V

and
aj = Ij,ili-

Beside the normalizatiokl; = 1 the following identities are used

il =1l =0, lilij =l liljlij = —aili,
Ijlj,kkz—lj,klj’k, [ Ijkl aj|—lk|ljk

The unknown functions to be solved for areV and two (linear combinations of the)
components off, obtaining the third component by means of eq. (5.3).
6.2 Schwarzschild Solution

As a first check of the correctness of the constraint equsitiomant to derive the Schwarz-
schild solution, see Section 4.4 far= 0. In this case we have

|=—f,8=01=0V=0

with f the radial unit vector and one can assuvhe: V(r) with r = /x2 +y2 + 2 due to
symmetry. Here are the equations to be solved

O:V" II V|] IVI +V||j(|j|_ Ij)
Becaus; is curl free we havé ; = |;; and the sum of the first two equations gives
II |+V(I||]j I]I],I):O
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We have

hence

Further on, itis

2
il = agy = lilji = =il = 1o (; -

In this simple cas§d; = -9, so we obtain
2 4 2
-V, +V|5-=|=0
r’ (r2 r2)
1 C
= V,I‘ = —FV = V(I’) = ?
C is an integration constant. By comparison with the Newtoriiit, we must setC =
—M. Of course one has to check that this solution fulfills alkthiconstraint equations
individually. In fact this is the case; computations araigtnt forward and were done with
Mathematica.

6.3 Analysis for Surface Formingl;

6.3.1 Basics

In this section | assume thkts surface forming, i.e. there exist€a-function® : R3 - R

such that
1

A /dij (Vid)(VD)

and the smoothness conditiogh® # (0,0, 0) everywhere. If this is the case the general
condition in Frobenius’s Theorem [52]

li = CVi®(x,y,2 with C=

liljg =0
is fulfilled. Physically for example consider a Kerr-Schidthck hole initial data set with

vanishing momentum and spin parameters (Section 5.6) and

m
YD) = )
i |

6.3.2 Solutions of the Constraints
Existence

The York-Lichnerowicz conformal decomposition describe8ection 3.2 results in elliptic
constraint equations. Elliptic equations are normallysdlas boundary value problems and
one can show that the Cauchy problem is ill-posed [27]. Ssinmly and in contrast to that,
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the Kerr-Schild constraint equations in the case of surfaoming |; represent a Cauchy
problem; they are not elliptic.

The Cauchy problem [27] consists of finding a surf&én this case embedded into
o and giving appropriate data @ such that all derivatives of the solution &can be
computed. Then —for a real analytic surface and real analgiia — there exists a local real
analytic solution of the constraint equations by means®f2huchy-Kowalevski Theorem.
Such a surfacé is callednon-characteristic. A real function is calledeal analytic if it
has a local power series expansion.

To talk about solutions of the system of equations (6.1) 18)(6is convenient to change
to adapted coordinatek.is orthogonal to the surface given by®(x, y, 2) = const Due to
the smoothness conditidn# 0 everywhere, we can find an explicit representatio af
terms of two parameteks andt locally

x=¢Yo 1), y=¢*0.1), z=¢%0,7).

o andr are regular local coordinates &) so one can define the tangent veciers 9/d,
andr = d/d, which form a local basis of the tangent spaceSoin any point. Conse-
quently (, &, 7) is a basis of the tangent spaceXfin each point of the embedding &f
with dijl'6-) = djjI't) = 0. Hence locally one can introduce coordinajesr(7) in a neigh-
borhood of a point on the embedding®fwith | = §/dp. With this, ¢ andr are the natural
choices for the twa in eq. (6.3). Furthermore, becauss orthogonal td we can write

=1"T+17C

and it is natural to choose= (V, vV, I"T, iT) as the unknown functions to be solved for. Note
that|” and| are the contravariant components efith respect to the basi$ ¢, 7).

To transform the system (6.1) to (6.3) to the coordinates-(r), we proceed the fol-
lowing way. First, one writes the equations again in covdrfarm, i.e. one distinguishes
between covariant and contravariant components. Thiiwigltin Cartesian coordinates for
we are free to choose which of the factors in a contractionritewvith upper and which to
write with lower indices. Consider the second order termpf(6.1)

Vi = ilVij = (dij - |i|j)(9i6jV = qijaic')jV

with g the induced metric o. To transform the coordinates one substitutes partiavaeri
tives by covariant derivatives (tensors!)

Vi — IinV,iJ' = qabDanV = qab(aaabv - FcbaaCV)

with a,b = p, o, T andI'y , the Christdfel symbols associated with the coordinatesr( 7)
which are known functions 08. Note thatg®® = 0 if a = p or b = p, so the first term only
consists of derivatives tangent $ The induced metric?® is a known function or8. In
the same equation we also have to look at this term

lij =13, =13, + T3 J°.

5

Here, there are also only derivatives tangentoecausé has no components orthogonal
to S. The second order term of eq. (6.3) is

liziVij = (V)),jz - li,jV.iz;.
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Here we can use the fact that by definitipvi; = V, andz;9; is eitherd, or d,,. The second
term is canceled by another term in eq. (6.3). Also look at

2|j,iV’iZj = Zdik|j’iV’ij = Zdab|c;aV;bZC = Zdab|c;aV,bZC
from eq. (6.3) and., is again a known function o8. Finally

al'b
a

%o = |

al'b
a’

liljizj = | b2y + 1P, 0% = 13(1P20) 4 — 131P 20,5 + 122, 1.

Now we can write the system of equations in the following form

> Aoadpu+ Y BBu+C=0 (6.4)

ab=p,0,1 a=p,o,T

with A;; andB; 4 x 4-matrices for alb, b = p, o,  andC a 4-vector. We find

_qab 00
AdD _ ¢ 000
-6362 0 0 0
-632 0 0 0
and
2(2vid+ (L+2v)al +1j;68) + I3, 0 V262 2v252
ga_ |- = (1 +4Vv)a® - 165 - Qra. 0 V(1-2V)&&@ V(1-2V)52 ‘
1763 + 20l p5© - 1; 63 -2 5 0
|T(')‘/"’)l + 2dab|c;b%C —1j;62 —5? 0 V(')‘/"’)1

Note thata has only components tangential3o The lower order term€ are of no interest
for this analysis.
On S one gives the following data which is assumed to be real &natythe following

V =V(o,7)
k:@@ﬂ
I” = (0, 7).

So all ¢ andt derivatives of the unknown functioné, i” andi” on S can be computed.
Hence from the first equation we kndy, onS as long as +qu1"pr # 0. The diferential
part of the second equation is completely determined. HamcgetV on S explicitly from
the lower order part as long &g # 0. From the third equation one obtaiffsand from the
fourth I'fp onSif V # 0 (i.e.v # 0) becausé&/,, andV . have already been determined.
Consequently all higher derivatives of the unknown funtti@nS can be constructed.
Now the Cauchy-Kowalevski Theorem guarantees existeneeurfigue analytic solution
in a neighborhood of all points @& as long as the conditions above are satisfied.

The existence of local solutions might not be very meaningfiysically. To see that
consider the example of the Schwarzschild solution with r sol = —d/dp (result:V =
—M/r). With the Cauchy dat® = -1/2,1 = 1" = 0 on the surfac& given byr = 2M one
obtains besid® = 0 the derivatives 0%

an

M
—V=(-)"n—
orn ( ) rn+l r=oM ’
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Chapter 6. Constraint Equations

all other derivatives vanish. The analytical solution giley the Taylor series

o 1 (oK 1o r k
V= (mv«))r=2M (r - 2M) = -3 kzz(:)(_l)k(m - 1)

converges only for &< r < 4M (geometric series). Nevertheless the solutbs —M/r
exists for allr > 0.

A proof of well-posedness, i.e. existence, uniqueness antintious dependence of the
solution on the Cauchy data, for the Cauchy problem of théesy®f Kerr-Schild con-
straints by means of the Cauchy-Kowalevski Theorem is ooBsiple among the analytic
solutions. This means that one can be sure that there idyexaet local analytic solution
of the constraints which also depends analytically on thecGa data if the requirements
above are met: 12; + qul“”bc # 0,V # 0 andl;; # 0 onS. But the Cauchy-Kowalevski
Theorem is not a dficient tool for the general case so there is no general proofedif
posedness.

Numerical Algorithm

Above | described how to construct all derivatives of theisoh onS from given Cauchy
data. Hence there is the following algorithm to solve theéesysof constraints numerically.
With the first derivatives with respect toobtained from the system of constraints as above
one can integrate outwards (or inwards) for a distaicéoutwards meangp < 0) along
the normal of the surface, namd]y After this integration step one has the data on another
surfaceS’ which is a bit bigger (or smaller) the&®. FromS’ one can proceed the same way
and so on. To increase the order of accuracy for a given sifhrdp it is possible to use
higher derivatives computed from the system of constraiataell.

| have not implemented this algorithm because it is uselessdmerics, see the fol-
lowing section.

6.3.3 Black hole Boundary Conditions and Problems

At a first glance the algorithm which was just described seeni®e quite promising. It
is even easily possible to guarantee existence of horizgrehbosing Cauchy datd =
—1/2 on the initial surfaces (Section 5.7.2). But, one has no control of the asymptotical
behavior of the solution. Especially there was no way founertsure in general that given
Cauchy data ors leads to asymptotical flatness which is indeed a crucialeignt of
physical initial data. Only in the linear regime, see beltiws can be done analytically. But
even then, small numerical errors in the data would excigenpsotically non-flat “modes”
which would be exponentially growing and after some finitgtahce dominate the solution.
Hence, due to this instability, the algorithm is uselessifamerics.

N. Bishop experimented with this algorithm and said in agtevdiscussion that it pro-
duces singular solutions at infinity in nearly all non-tavcases he tried.

The biggest class of initial data described at the beginwinthis thesis use York’s
conformal decomposition. There, one has to deal with @lipjuations and the Cauchy
problem of elliptic equations is ill-posed [27], so one ¢rte solve it as a boundary value
problem. If the system of Kerr-Schild constraint equatiovess solvable as a boundary
value problem then one would have control over both the exigt of horizons and the
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asymptotical decay of the solution and one would have amalgrithm for numerics.
Although for non-linear elliptic partial dierential equations there is no general way of
proving existence of solutions, whereas in the case of the-8ehild equations this is
quite simple (although only locally), from a practical powof view one prefers to have
no solutions in some cases than a system of equations wititordrollable solutions. In
my thesis | did not try to find a well-posed boundary value gtgm for the Kerr-Schild
constraint equations but rather worked out a modificatioimefKerr-Schild ansatz leading
to elliptic constraints (Part IV of this thesis). Furthemadspend some time in investigating
the linear regime where one has analytical control over timstraint equations (Part III).
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Part Il

The Linear Regime
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Chapter 7

Black Hole Perturbation Theory

7.1 Motivation

In black hole perturbation theory the nature and dynamicsadll deviations from a given
background metric are investigated, neglecting all terhigier order in the metric pertur-
bations. In this document it will be assumed that the baakgglonetric is the Schwarzschild
metric. Below | will describe that one can find a function defiruniquely by the pertur-
bations — the Zerilli and Regge-Wheeler function, respebti— whose evolution equation
is linear and strictly hyperbolic, which depends only on Haekground coordinates and
is gauge-independent. Thus this function givesghgsical contenbf weak gravitational
waves; there is no need to ask if maybe the metric deviatiom®mly associated with a
change in the coordinate gauge.

Black hole perturbation theory of a Schwarzschild backgdis considered here be-
cause in the Kerr-Schild framework it turns out to be possiblobtain physically interest-
ing analytic solutions of the constraint equations whidteotvise would be very éicult to
tackle even numerically. The strict hyperbolicity of thedar — in this case one dimensional
— evolution equations makes it possible to set proper boyramditions for the evolution
and compute the gravitational radiation accurately aridlyil with a numerical code.

Furthermore small perturbations of a Schwarzschild blaak hArise quite naturally in
black hole physics if the total angular momentum vanishess(mfinitesimally small). For
example, black holes might be so close initially that thegady have a common horizon.
The black holes might also be very far away from each othdraha is only perturbed a
little bit by the other one. These examples are interestingets for the beginning and the
final stages of black holes spiraling in from far apart as welimportant testbeds for full
non-linear numerical codes.

Another motivation to investigate the linear regime is istdrical importance for nu-
merical relativity. The perturbation theory of a Schwahiktbackground was developed
for Schwarzschild background coordinates by Regge and W&thgkt] in 1957 and Zer-
illi [56]. Using their formalism, a system of two very closdéabk holes — treated as a
weak perturbation of a single black hole — was first consitiéng42] using perturbation
theory. A little later [5] two equal mass Misner black holesrey evolved with a full nu-
merical code and they found agreement with perturbatiooryhiéthe separation parameter
is small enough. A more comprehensive comparison betwertarpation theory and full
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Chapter 7. Black Hole Perturbation Theory

non-linear numerical codes for distorted black holes wasrgin [4]. Perturbation theory
of second order was worked out in [24] but will not be used iis thesis. In 2001 the
perturbation theory was generalized for general coordinbly Sarbach et al. [45]. | will
apply their formalism to Kerr-Schild initial data constted in the way described before.

Teukolsky [48] developed a formalism of the perturbatioran§ vacuum Petrov-Type
D background; especially of the Kerr metric. From a certaimpof view this formalism
would have been better adapted to Kerr-Schild initial datasleft for future work.

7.2 Perturbation theory

In [45], a formalism was developed for first order perturtmasi of a Schwarzschild back-
ground which will be explained here only very briefly.

The coordinates of the Schwarzschild background metri@assamed to be adapted to
spherical symmetry, i.e. the background metric can beewritts

g= gabdxa ® de + rz(Xa)gAdeA ® dXB

where bold quantities are abstract, i.e. not written outderéain coordinate framelx_"’l and
dx” are coordinate dlierentials with respect to the pseudo-Riemannian manitbldnd
the standard metric of the 2-sphe®8 respectively, i.e. the total background manifold is
M = M x S2. The perturbed metric is written @s+ g with so small perturbatiodg that
only first order terms are important.

Following Regge-Wheeler and Zerilli the metric perturbatisg can be expanded into
tensor spherical harmonics given by thequantum numbers andm. It is beyond the
scope of this document to describe them in further detailitisiimportant that they are or-
thonormalized with respect to some scalar product (se@ ] complete in analogy with
the well-known (scalar) spherical harmonics. Besides thentum numbers andm, the
tensor spherical harmonics are classified by their behawider parity transformation: the
even parity ones which transform as-1)' andodd parity oneswhich transform as+1)*1.
From the physical point of view odd parity perturbation assaciated with infinitesimal ro-
tations. Hence by means of this expansion, one can definedz for each choice of the
quantum numbersandmand parity uniquely in terms of some functions, vector amdde
fields onM.

7.3 Regge-Wheeler and Zerilli EQuation

In the odd and even case foe 2 one can construct a quantity — tRegge-Wheeler or
Zerilli-function respectively — which does not change under infinitesimalamtirespec-
tively even gauge transformations and fulfills a simple etioh equation

V-V -V —cg¥ — ¥ +?V¥ =0 (7.1)
with (in Kerr-Schild coordinates)
_4M r-2Mm
Y Y
2™ _2M
C3__r(r+2M) C4_r(r+2M)’
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7.4. Characteristic Analysis and Well-Posedness

the background lapse function
r
r+2Mm

and theRegge-WheelerandZerilli-potential respectively

-6M+1(@Q+Dr
Verw = 3

36M2 2M +r ) +r222 (6M +r (2+ 1))
r3(6M +r 2)?

Vz =

definingA := (I — 1)(I + 2). A dot denotes derivatives with respectttand a prime with
respect ta.

It turns out that in the casds= 0, 1 there are no dynamical modes. For even parity
a monopole modé = 0 leads to an infinitesimal change in mass of the backgroumeg T
dipole modd = 1 for odd parity introduces an infinitesimal angular momentThe even
| = 1 and odd = 0 modes are purely gauge.

It is also shown how to compute the energy radiated to nulhiityfiby gravitational
waves. In Kerr-Schild coordinates it is

_ 1 odd evel
E‘Tcﬂr'ﬂl,f dtZ WPI92 4 pRven2) (7.2)

7.4 Characteristic Analysis and Well-Posedness

One wants to use eq. (7.1) to write a code which evolves Kehit&initial data which can
be regarded as a distorted Schwarzschild black hole. In ncaheomputations one always
introduces artificiahoisedue to round-ff errors and other approximations that can cause
quickly growing modes and an eventual crash of the numecindé.

There is a wide range of dangers for a stable numerical cotle.r8ason for this can
be on the one hand the numerical method, on the other handh&ssguation itself. For
example for the parabolic heat equation one can show on tigtaal level that little de-
viations in the initial data grow more than exponentiallyemhintegrating backward in time
[32] which one callsll-posedness In contrast to this one calls a Cauchy problerell-
posedif for given initial data a unique solution exists and if itmnds on the initial data
continuously. For linear equations with fixed @d@ents, for example the wave equation,
well-posedness implies that such deviations may grow mohger than exponentially for
all times [32]. This is a result which one obtains by meanseftheory of Fourier trans-
formations. If the cofficients are varying one also finds well-posedness but onlyp wp t
finite time [32]. Of course even exponential growth, whichallewed for a well-posed
Cauchy problem, may kill a numerical code. So from the pointi@w of stable numerics,
well-posedness of a Cauchy problem is rather necessarystfarient.

Look again at eq. (7.1) but assume for a moment that it is argegeasi-linear equation,
i.e. the cofficients are arbitrary but; andc, only dependent on the first derivativeswiu
itself andr andt. In [27] such a second order quasi-linear equation is defaségiperbolic
if it has two independent non-vanishiearacteristics which is equivalent to the fact that
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Chapter 7. Black Hole Perturbation Theory

the determinant of the céeients of theprinciple part is strictly negative

(¢ +4cp) < 0. (7.3)

1 —C1/2 __1.
det(—cl/z ¢ )‘ 4

By definingr = ¥ and¢ = ¥’ one obtains an equivalent system of first order parti@edi
ential equations. In [32] itis shown that this first orderteys is well-posed if the cdicient
matrix of the spatial derivatives has a complete set of rigainzectors. In the computations
of [45] in Section V it is derived that the hyperbolicity catidn (7.3) is equivalent to this
well-posedness condition. So eq. (7.1) is a well-posed tghie partial diferential equa-
tion if condition eq. (7.3) is fulfilled and one callsstrictly hyperbolic [32]. In the latter
reference it is also shown that the initial-boundary-vatueblem, i.e. for finite computa-
tional domains with some boundary conditions, is well-gbi$all characteristics leave the
domain.

Going back now to the specific case of the Regge-Wheeler iegued). (7.1) in Kerr-
Schild coordinates. The hyperbolicity condition eq. (fe3ds

4r?

C4d4c)=— >
LT oM +1)2

so itis in fact strictly hyperbolic.
The characteristics — also calletbdes— of eq. (7.1) are curves given by [27]

dr* 1 > 2M +r

R CER LR R o
Hence outside the background horizon- 2M there is one outgoing mode with speed
(r—2M)/(2M +r) and an ingoing one with speed 1 (speed of light); inside vieahorizon

r < 2M both modes are going inwards. On these characteristic guie:= P(r=(t),t)
evolves as follows

dw* ,drs

which is

This can be inverted

<€
1
|_\

1 -1 dy*

dt

drt  dr- (_dL ﬂ) (di)
dt — dt dt dt dt

r+2M( 1 -1)/4
=—-— ( r—2M )(d%t)' (7.5)
2r “rv2M

This gives rise to simple and consistent boundary conditidve want that at the boundaries
of the computational domain there are only modes that lda@eldmain; modes, that are
defined by the data on the domain. Because both modes leadoitiigin automatically
when the inner boundary is placed inside the backgroundztwrg < 2M) we do not
have to specify extra boundary conditions therc{sior). At the outer boundary which
is usually placed far away from the black hole horizon we setdoundary condition
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7.4. Characteristic Analysis and Well-Posedness

d¥*/dt = const If the constant vanishes than there is no ingoing mode mittndition is
not necessarily consistent with the initial data which Wwélfound analytically for alt > 0.
So as the outer boundary condition, | compute the ingoingenaddhe initial data at the
outer boundary and leave it constant during evolution.
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Chapter 8

Numerical Evolution

8.1 Kerr-Schild Initial Data

Assume we have found initial data using the constructiorcgutare in Chapter 5 which
can be considered as a weakly distorted Schwarzschild Irlakk In Chapter 9 it will
be shown by an example that this is indeed possible. Then wesaeq. (7.1) to evolve
the data forward (or backward) in time and compute the radigravitational waveforms
(the Regge-Wheeler or Zerilli function) and energy acawgdio eq. (7.2). Before we are
able to do this we have to convert the initial data in termk, 0¥ and the time derivatives
to perturbations of the Kerr-Schild-Schwarzschild baockimyd metric and from that to the
Regge-Wheeler and Zerilli function, respectively, andrtliene derivatives for a givenh
andmand parity [45]. In Kerr-Schild coordinates this leads tog@xpressions and | used a
Mathematica script to do the computations. As soon as onedra®rted the initial data in
terms ofl,, V and the time derivatives to initial data for the Regge-Wéeegkrilli function,
one can use a numerical code to evolve the data by means af.&). (

8.2 Numerical Implementation of the Evolution Equation

Evolution Equations | implement eq. (7.1) in Fortran-90 in the following way. $tione
converts it to a first order system defining= ¥ and¢ = ¥’ which leads to

7:T c1 C O\ (n C3 C -\ (7
sl=[1 o ofl¢'|+]0 o o ||s] (8.1)
v 0 0 oW 1 0 0 )\¥

Hence there are three evolution equations for three vasably and¥.

Discretization | introduce a spatial one-dimensional gridMfpoints starting at the inner
boundaryr,g within the background horizon and ending at the outer boynidss far away
from the black hole. The values of the functions at ittegrid point are denoted as, ¢;
andW¥;. As it turns out [45], to approximate thefflirential operators by finite flerences
of second order accuracy leads to a stable code only if oreatttitional dissipation terms
(see also [32]). Hence | decided to use fourth order finifiedincing in space (cfients
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8.2. Numerical Implementation of the Evolution Equation

obtained straight forwardly with Mathematica)

1 2 2 1
(0 fi)Ar = 1—2fi—2 -3 fii1 + 3 fiy1 — 1—2fi+2 +O(Ar®) (8.2)

for a grid functionf and a fourth order Runge-Kutta scheme in time [41] with theeti
discretization parameteit.

A necessary condition for stability is that tR®urant-Friedrich-Levy parameter

At
=— <1
A AT <

In [43] one finds more about stability of such methods.

At the boundaries where eq. (8.2) cannot be applied, | usamoiation to obtain data
on two grid points beyond each of the boundaries. On the &ftllside this is

fi = 5fiy1 — 10fis2 + 10fi,3 — 5fiyq + fiys + O(dr?)
and on the right hand side
fi = 5fi_1 — 10fi_» + 10fi_3 — 5f;_s + fi_5 + O(dr>).

So after extrapolation eg. (8.2) can be used on the whole gtatipnal domain.

Boundary conditions Egq. (7.4) and (7.5) give a one-one correspondence between th
grid functions and the two characteristics in each poinhefdrid. At the outer boundary
outside the background horizon where the ingoing mode iglaefihed by the data on the
computational domain (except if it stays constantly eqodhe initial ingoing mode there)

it is thus possible during an evolution to compute the modas the extrapolated data, set
the ingoing mode to the initial one and recompute the datdhiSamplements aoutgoing
radiation boundary. At the inner boundary it was shown in Section 7.4 that botli@so
leave the computational domain automatically so both aithee determined by the data.
This means that there is no need to put any boundary condigom

Radiated Energy The energy radiated to null-infinity is computed by meansmpf(é.2).
In principal the integral must be evaluatedrat> o and for an infinite amount of time.
In practicer needs only to be so large that the metripiactically flat and one only needs
to integrate long enough that the gravitational waves h&eady passed the point of the
extraction.

The Program The program reads initial data from a text file generated byhiklaatica.
With an ASCII parameter file the following parameters can tretiolled:

¢ MassM of the background metric
e Angular momentum quantum numbder
e A boolean parameter choosing odd- or even parity (to use dyg&Wheeler or the

Zerilli potential in eq. (7.1))
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Chapter 8. Numerical Evolution

e Positionr,,q of the extraction of the radiated energy
e Courant-Friedrich-Levy factat
e Time when the evolution is to be stopped

¢ Additional control of the output

To actually confirm fourth order convergence of the numérioale the program has the
capability to run the evolutions obtained with thre&elient resolutions. First, the program
takes the resolution determined by the initial data ASC#H. fiSecond, it doubles the grid
spacing in space and in time (leaving the Courant-Friedriby factor constant), i.e. using
only every second point in the initial data ASCII file. Thitdlbubles the grid spacing again.
The three dierent resolutions are put into thredfdrent output files. If there is 4th order
convergence then at each time step

16¥YHR — ¥mRl = [¥MR — LR (8.3)

which can then be checked easily with Gnuplot [2]. H¥fg; denotes the result of the high,
Yur Oof the medium an®¥ | R of the low resolution run.

8.3 Code Tests

| set the background mass= 1 and only look for d = 2 even parity mode. As initial data
for the Zerilli function | chose a Gaussian

‘I’(r) — e—(r—30)2/4

and the first time-derivative

¥(r) = 0.
The inner boundary is set to= 1.8 and the outer boundary to= 50 with a grid size of
Ar = 0.01 (of the highest resolution run). The evolution runs ungl 30 with a Courant-
Friedrich-Levy factor of (5. Fig. 8.1 on the next page shows the Zerilli function &edent
times.

A crucial question is if the code shows fourth order conveoge As was said before it
runs three times with the same initial data but coarseniagtmputational grid in each run
by a factor of two. If the convergence is correct, eq. (8.3d&dor the results of the three
runs. This is shown in Fig. 8.2 and Fig. 8.3 on page 60 for twWiedint times. The plots
confirm that there is fourth order convergence except wheptise hits the outer boundary.
The reason for this is not fully understood. One way out o fioblem at the moment is
to only trust the evolution in regions causally disconnédtem the outer boundary.

Although physically meaningless, for these initial data grogram extracted the ra-
diated energy at = 30. For the high resolution it is.044721465, for the medium one
0.144721468 and for the low onel@4721520. This is fourth order converging.

The next test for the program was to show that it can reprotheeesults in [46] for the
close limit of the unboosted black holes without angular ranotam, but it turned out that
this was not possible. This problem was solved by a persasalission with the authors
M. Tiglio and O. Sarbach from which | learned that they had @aaren their code which
they used for the paper. After correcting it, now our codesmiobthe same results. My
computations are described in Chapter 9 which includesnbeasted casH = 0.
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1 A tZOY -
| t=12
[ t=18 -
[ =
0.8 - t=24
|
0.6
0.4
0.2 | i
/’ \\
Y ..
-0.2
-0.4
0 5 10 15 20 25 30 35 40 45 50
r

Figure 8.1: GauR Initial Data: Waveforms affdrent times| = 2, even parity
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Figure 8.2: Gaul3 Initial Data: Convergencd at12,| = 2, even parity
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Figure 8.3: Gaul3 Initial Data: Convergencd at18,| = 2, even parity
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Chapter 9

Application: Boosted Schwarzschild
like Close Limit

9.1 Initial Data

In [10] analytical initial data for two very close black heleithout boosts and spins were
found. In [46] these data were evolved and the gravitatiem&rgy was computed. With
my general framework to construct Kerr-Schild initial détaecomes possible to generalize
this simple black hole system for additional boosts.

Consider the following setup for the binary black hole sys{€ig. 9.1)

Mass parametersl;, Mo (M := M1 + M)

Coordinate positions (0, eM>), (0,0, —eM;)

Momentum parametei(0, siny, cosy), —P(0, siny, cosy)

Vanishing spin parameters

Figure 9.1: Boosted Close Limit Setup

In the following analysis | assume thHt <« 1 ande < 1 with IT := P/M. The partly
lengthy computations were done with Mathematica.
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

9.1.1 Electromagnetic Field Tensor

The totalelectromagnetic field tensds constructed following Section 5.4 with the spin
parameters set to zero and the additional generalizatanthle boosts can show in other
directions than the-axis. With

0 0 0
1 0 0
0 cosgy siny
0 -siny cosy

R(x) =

O OO

the Lorentz matrix in our case is

A(P.x) = R(x) - A(P) - R™(x).

The individual electromagnetic field tensors are supemgph@®ein eq. (5.10) using a
shielding parametés = 3.

9.1.2 Kerr-Schild Null Vector Field

By means of eq. (5.12) the normalized Kerr-Schild null vedield, i.e. the eigenvector
of the total electromagnetic field tensor associated wighdhly negative eigenvalue, is
obtained. It will be printed here in spherical Kerr-Schilobedinates, i.e. in coordinates
(r, 6, ¢) where the induced metric & is (dij) = diag(1 r?, r2 sir? 6).

To lowest order ire andI1 the spatial part of, is

| =159 + eIl A1(r) (SLi(6. 4) — St (6. 9))

=Rf0:)
+ €l Az1(r) (SZied6. 8) + Sen(6: 0))
=!15e6.9)
+ (€ ASy(r) + elTAN(r)) S8, ¢).
with
12M?
Aol) = 5 2201 A = - \[F 1M cosy,
5 r 5
 [6 . [on
Ax1(r) = -3i En M siny, Aq1(r) = 3 M siny
using
. MiMp
M= M2

Note that there is the symmetry of the simultaneous transitionsy — 7+ y andIl — —I1
as is expected from Fig. 9.1.
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Sh™(g, ¢) are standard vector spherical harmonics [45]. In Kerril8apherical coor-
dinates they are

SEm{6, ¢) = dY"™(@, ¢)

0
= [m Y-m(g, ¢) cotd + VI(T+ 1) — m(m+ 1) Y-™1(0, g)e ¢]
im Y6, )

and

St (6, ¢) = =dY"™(6, )

0
= [ —im Y6, ¢) csco ]
m Y-™(9, ¢) cost + VI(T+ 1) — m(m+ 1) Y-™1(6, g)e' ¢ sing

where * is theHodge-Operator associated with the metric @? [45].

This is a perturbation of Schwarzschild Kerr-Schild nulttee field to lowest order
in e andII. If the black holes are sitting on top of each other=( 0), | reduces to the
Schwarzschild onéS® = —(1, 0, 0) for all values ofl1. This means that there is no change
of the total background linear momentum. Note [46] that tkga@sion ine andIT makes
no sense if < rg ~ eM.

Now | try to find solutions of the constraint equations in terof the same modes.
Afterwards the physical meaning of the modes will be disedss

9.1.3 Solution of the Kerr-Schild Constraint Equations
Derivation of the Kerr-Schild Constraint Equations

Eq. (6.1) to (6.3) are the Kerr-Schild constraint equation€artesian Kerr-Schild coordi-
nates. | rederived them in spherical Kerr-Schild coor@iadab make use of the symmetries
in our problem. | applied the same Mathematica code whicbrbefuccessfully derived the
Cartesian ones above. For an additional check | also useR@&C-package [11]

Separation Ansatz

The unknown functions which we have to solve for S, 6, ), V(r, 6, ¢) andli(r, 6, ¢) at
t = 0. All the following computations are very long and only tlesults are printed. They
were done using Mathematica.

Website given in the reference was not active when | finishied thesis, alternative address:
httpy/library.wolfram.corfinfocentefMathSourcg484
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

To separate the constraint equations (Section 6.1) thexfisly ansatz is made

V(r,6,4) = —¥ + eIV () (YH1(0. 0) — Y720, ¢)) siny (9.1)
+i eTIVyy(r) (Y270, ¢) + Y21(0. 9)) siny
+ (€2 V() + e TTVR(1)) Y206, ¢),

i(r,6,4) = eI, () R (6, ) siny 9.2)

+ i €T3, () 15766, ¢) siny
+ (€ lI5g(r) + e TTI(r) ) SERAG: 9),

V(r,6,9) = eITA (1) (Y160, ¢) — Y-71(6, 9)) siny (9.3)
+i eI Wy(r) (Y270, ¢) + Y21(0. 9)) siny
+ (€2 uy(r) + e TTT(1)) Y206, ¢).

Reducing the Number of Unknown Functions

The constraint equations lead to the following relationsr $implicity one introduces the
mass scaled radial coordinate= r/M.
The unknown radial functions for the odd (1,1)-mode aremgive

Vi) =0, ¥,(0 =0 1= % (9.4)

with an arbitrary constare.

In the even 21-sector the constraints allow to express ttee thnknown functions in
terms ofvgl(r), eventually obtaining one ordinaryftirential equation for it (see next sec-
tion)

3 V307 + 10X3(L + 2 VL (X) + 532 + VL' (%)

(%) - 9.5)
2
11 (x) = % (4v00 + XV (). 9.6)

As long awg‘l(x) is invariant under the simultaneous transformatipns « + y, IT — —II,
the 21-mode is also invariant.
In the even (2,0)-sector there are two sets of functionsrelaged toell

12 V57 cosy + 10x%(1 + 2x) VI (X) + 5x3(2 + X)VEL' (%)

Uho(X) = % (9.7)

1509 = %2 (4v50(x) + x5 () 9.8)
and one related te?

00 < 12 VBr(x — 1) + 10x3(1 +1 5);)4\/50()() +5x42 + x)vgo’(x)’ 9.9)

.00 = 12 V5r(x — 1) + 20x* v5(X) + 5x° Voo ) (9.10)

30x2
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9.1. Initial Data

If one wants the 21-mode to be invariant unger» n + y andIl — —II then one has to
require that/h(x) — —vi(x), see below.

Solving the Remaining Equations

With these last relations there are only three unknown funsﬂeftvgl(x), vgo(x) andvs(x).
Each of them fulfills an ordinary linearftiérential equation and it is possible to find analytic
solutions which lead to asymptotic flatness of the total imetr

Even 21-Mode Vy,(r) has to satisfy the following second order linear inhomegers
ordinary diferential equation

-3 4 /%’T — 6 X2V (%) + 5X VG (%) + vy, (X) = 0. (9.11)

A particular solution is
0 T 3-2X+x?
1=\ e

When the homogeneous equation
—632 Vi (%) + 5x Vi () + vl () =0

is transformed the following way

u(x
oo = 2
and afterwards
_ %4
N x

it reduces to
2U' @) +zU@) - (16+2)u@ =0

which is themodified Bessel equatiof for n = 4 and is solved by thenodified Bessel
functions. So the general solution of eq. (9.11) is

Chla(y%) ChKa(%)
T 3-2x+x2 “2 4( X 2174 VX
vgl(x):—,/% + + (9.12)

X2 X2 X2

with two arbitrary cofficientsC}, andC3,. One of them will be fixed later by the additional
requirement of asymptotic flatness.

2see for example httgmathworld.wolfram.coModifiedBesselDfferentialEquation.html
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

Even 20-Mode We find the general solutions U?O(x) andvs(x) in a very similar way.
The first functionvgo(x) has to fulfill

-12 \/g cosy — 6X2VE(X) + 5X* VL (%) + X Vi (%) = 0

with the general solution

e () (J
Vi(X) = =2 \/gw cosy + L, s (9.13)

3x2 X2 X2

Forv;,(X) we have to solve

~12 \/g(s - )3() — 63X V5(X) + 55XV (X) + X Ve, (X) = 0

and obtain

Vao(X) =

(9.14)

1 24 2 24
4\/§3+3x—2x2+x3 ) ct |4( 7) ) C? K4(\/;)
9.1.4 Asymptotic Flatness

For the initial data to be physically relevant one requiregd,, and its first time derivative
are initially asymptotically flat, i.e. it converges to thardowski metric forr — co. For
this it is suficient to show that all radial functions, which we have judiaated, converge
to zero in this limit. This is not the case for arbitrary cresiof the free parameters because
lim,_o K4(Z) = 00.

Even 21-mode

Usingz = 1/x, the Taylor expansion ofgl(l/z) atz— 0is

C? T -C? 2 C? 3 c2 z
0oy o] | % 21 2n Za o [37) 2 T
a2 =113 " \3)* |5 V15|t 2 10 2

2 log(@
+ 3G +576C2 -2 , 109(2)~ log(2 Vo) - 7% Pl
211 768 384

Because lim,g Z"logz = 0 we obtain the right limit if

c2 =12, /3—’;. (9.15)

Hence to leading order{logz goes faster to zero thas) we have
X—00 671' 1

\/IZII(X) _— - v

Because of this we find that boty,(x) and};(X) go to zero forx — oo, by looking at
eg. (9.5) and (9.6).
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9.1. Initial Data

Even 20-mode

The same can be done for the remaining modes. The requirerhasymptotically flathess

leads to
Cz=8 \/é cosy (9.16)

C2=16 \/g (9.17)

Eventually we have the following solutions of the constraiquations, using ansatz eq. (9.1)
to (9.3). From eq. (9.12) and the asymptotic flathess reongre eq. (9.15) one gets

24
VIL(x) = — ELX"'XZ+2(8 +K)\/EI4(‘/;)
N R VTR T 2
2
» o K (V%)
5 N

where there is the additional definition

T
CL =12 8y + Ka) \/g

for consistency with the élierent definition of the Bessel functions used in [46] atisl the
Euler number. The other unknown functions in this sector can be obtaineth £q. (9.5)
and eq. (9.6).

In the same manner | computed

_22 43 la( /&
vgo(x):_4\/§(3+3x 2%+ )+2(87+K1)\/§4([)

and

9.1.5 Final Solution

(9.18)

373 ” (9.19)
7 (B)
+16 \/; —
and
Vao(X) = \/éé 8y +K2) I4( 2—)(4] (9.20)

3-2x+ X2 [24
_Z 7" 14K = )
4( x)] COSy

ClL =128y +Ky) \/gcos)(

because with this the 20-mode has the desired transformiagibavior fory — 7 + y and
1 — —II.
For the odd 11-mode there is on& which is not necessarily vanishing, see eq. (9.4).

where | defined
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

9.1.6 Regge-Wheeler-Zerilli Function

For each of the modes with> 2 one can compute the initial Regge-Wheeler-Zerilli fumati
and its first time-derivative [45]. Then one uses the Regdm#ler-Zerilli equation eq. (7.1)
to evolve that data, compute waveforms and the radiatedygigrmeans of eq. (7.2). The
(1, 1)-mode is not dynamical and there exists no Regge-Whe&elgiti function.

One obtains with the help of Mathematica

3 V30m + 5x2 Vi (X)

Yo1(X) =i eIl 153+ 2% (9.22)
and
. 3307+ 10x3(1 - 2X) VL (%) + 53 (2 - xR (%)
Yo (X) =iell 30x 3+ 2%) siny. (9.22)
The 20-mode is
, —12V5r+5x3v5(x) 12 V57 x cosy + 5 x3 Vil (%)
Woo(X) = € u +ell
15x (3+2X) 15x (3+2X)
and
. 12 VBa(x — 1) — 10x3(1 — 2x) V5 (X) — 5XH(2 = X) V5, (X
oo = 20 VBT D) (L-29%50) -5 R =0 (0 g o

30x2 (3+2X)
12 VB x cosy + 10x3 (1 — 2X)VE (%) + 5x* (2 — XV (%)
30x2 (3+2X) '

+ell

Because the Regge-Wheeler functions are gauge-indegernherfree parametek,,
Ko andK3 cannot be just gauge-parameters but must have an impace @hyisics of the
initial data.

9.2 Results & Interpretation

9.2.1 Modes

We have found a solution of the constraint equations in tesfrithree modes: odd-(1,1),
even-(2,1) and even-(2,0). With the help of [45], even witthevolutions this gives rise to
physical interpretations.

First there is no even monopole mode. This means that to tawesr in the perturba-
tion parameters the total ADM-masshé.

Second there is a non-vanishing odd dipole mode # 0 # I1. So the ADM-angular
momentum is not zero but infinitesimally small. When one carap the metric at = 0,
switching of the other modes, with the Kerr-metric with spinx-direction in spherical
Kerr-Schild coordinates, i.e. those coordinates desgnb&ection 4.4 with the additional
transformation that brings,) = diag(-1,1,1,1) to (7,,) = diag(-1, 1,r% r?sir? §), one
finds to first order in the spin-parametethat

1 .
a= EMGHSIH)(.
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9.2. Results & Interpretation

In special relativity two particles with initial coordire@positions as the black holes above
and momenta have angular momentum

L = —M2ellsiny.

The diferent sign shows that there is a distinction between a syst#imangular mo-
mentum on a fixed background spacetime and a system of fixemivaos on aotating
spacetime.

Third there are two dynamical, i.e. gravitational wave nmsdeven 20- and 21-mode.
The first is present even if there is no angular momentumweebl This implies that it does
not carry angular momentum but only energy to null infinitheT21-mode is only present
if there is angular momentum in the spacetime which implias it not only carries energy
but also angular momentum to null infinity.

9.2.2 Apparent Horizon

Coordinate Position

From Section 5.7.2 we know that one can find marginally trdppefaces as surfaces or-
thogonal td; with V = —% if I; is surface forming. In our black hole system this is the chse i
x = 0 which | checked with the Frobenius conditilysh; g = 0 with Mathematica. Because
our initial data is only a lowest order perturbation of thdn®arzschild metric wherg = 2
defines such a surface one can proceed the following way. @néswo solve the equation

V(2 + AX) = —%

to first order inAx. Let  be the amplitude of the perturbation (in our case it has to be
substituted by? andell, respectively) and (x, 6, ¢) be the perturbation of. Then | write

_% — VSS(Z + AX) + T]f(2+ AX,Q, ¢)
_ —% +0xVs s(2)Ax +nf(2,6,) +nAx0xf(2.6,9).

The last term is now ignored because it is of second ordem Tlellows with 9xVs 5(2) =
1/4
Ax=—-4nf(2,0,¢)

or finally
X6, ¢) = 2(1 - 271(2,6, ¢)). (9.24)
Duetoeq. (9.1) fox =0itis

X210, 9) = 2|1 - 2(€? uv5y(2) + e TTV(2)) Y2O(6, 9)]
1 /5
=2- > \/; (62 [ V5(2) + €11 v§0(2)) (3cog6 - 1). (9.25)
This means thak; andKj; fix the initial coordinate position of the apparent horizon.

The shape of the apparent horizon in coordinate space iothat ellipsoid, i.e. the
sectiong = constis an ellipse (Fig. 9.2 on the following page). An ellipsehie tet of points
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

Figure 9.2: Ellipse

such that the sum of the distances from two foci are twice tApnsemiaxig, + rp = 2a.
If the center of the ellipse is at the coordinate origin areldémiaxes are aligned with the
coordinate axes it fulfills the equation

2 ¥,

2

whereb is the minor semiaxis. The linear eccentricity is the dis&af the center to one
of the foci, the numerical eccentricity = e/a. There is the relatio@® = b? + € and in
spherical coordinates we obtain

a2 —e?

r=a | —0—m——H1 .
a2 - 2sint o

If e < athen this becomes to first order

e
r=a- — co<é.
2a

Comparing this with eq. (9.25) we get

a=2+ %\/5(62,1\/;0(2) + €TTvjy(2))
and
e€=6 ; (62 1 V5(2) + eTTVp(2))

ignoring higher order terms. To see how these values depetitedree parameters (e.g. in
the casdl = 0)
V5o(2) = 0.477+ 0.264K;.
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9.2. Results & Interpretation

Area

The horizon area is an important physical quantity. Theteasgeneral — but unproven —

Penrose inequality
[ A
M > A/ —
ADM = 16

for the ADM-mass with the equal sign if and only if the george diffeomorphic to
Schwarzschild [40]. If this inequality holds then in my cdlse area of the horizon on the
initial slice can only be decreased or unchanged by the lowvder perturbation parameters
in € andIT because it was already found that the ADM-mass is constant.

The area of an embedded 2-submanif8lgs defined as

Aszd/ldow/detq(/l,a). (9.26)

A andp are coordinates with coordinates lines tangent to the fa®eirq is its induced
metric.

Because we only have to deal with the spacelike dicat the moment and thus do not
need to care about its embedding into the full spacefilmall indices are raisghbwered
with y;; in this section for convenience, e.g. in contrast to Sectidron page 31

o=yl
(and notl") and 1 will write y'i instead of {~1)i. Then the induced metric & is
Gj = vij — (A - 2V)Iilj = dj - Iil;.
using eq. (4.10).
d; =7y a; =6 - @ -2Vl

is the projection operator onto the (co)tangent spac& of
Now | define the following coordinate basis for the tangentteespace in each point

With this 1 ando are coordinates o8. If V is a tangent vector field with the components
V2 associated with the coordinatgs {, o) andV? associated with the coordinatesd, ¢)
then
—
Ve =3}V

where the Jacobi matrix is
_II’ ql’ qr
0 66 0¢
—|¢ q P q p
The components of cotangent vectarstransform like

(A_)a = Jba(,l)b

SO
qab = JCaJdchd-
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Chapter 9. Application: Boosted Schwarzschild like Clogait.

A computation with Mathematica shows that
0 0 0
Qab =10 r? 0 +...
0 0 r2sir’é

to lowest non-vanishing order in the perturbation parameto in eq. (9.26) we have to
use the standard determinant®# namelyr* sir? 6. Furthermore we have

dado = 34, 35d3@dX,

whereJ®, fulfills B

There is a first ordedrdd, a first ordedrdg and a zeroth ordeifdg term. Becausdr itself
is of first order expressed in termsaf anddg using eq. (9.24) there is only

dado = dode + . ...

Hence the area of the apparent horizon igNI6 as in the unperturbed case to lowest order
in perturbation theory.

9.2.3 Energy Formula

The radiated energy can be computed by means of eq. (7.2th&&1-mode, the initial
time-derivative of the Zerilli function is given by eq. (2Rtogether with eq. (9.18). This
can be written as

—i¥1(r) = elI[f(r) + Kag(r)] siny,

wheref andg are some functions. Because of the linearity of the Reggedl¢h-Equation
(7.1) the total radiated energy will be of the form

Ez1 = Me®IT? (DF" + K3D3" + K3D3!) sir’y, (9.27)

whereDfl to Dgl represent integrals over time and space which have to baatedl nu-
merically by means of the Regge-Wheeler code describeddtidBes. 2.

The same argument holds for the 20-mode, but it is more coatpli, look at eq. (9.23)
with eq. (9.20) and (9.19). The initial time-derivative betZerilli function can be written
as

Wao(r) = €2u[ fa(r) + Kafo(r)] + elT[ f3(r) + Kz fa(r)] cosy

for some functiond; to f4. Then the energy dependence on the parameters is
Ego = M[E“ﬂZ(DfO + DKy + D3°K?) (9.28)
+ MMu(DZ° + K1DZ% + KoDZ° + K1K;D2°) cosy

+ €11%(DZ° + D3°K; + DK3) cos? x]-
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9.2.4 Numerical Evolution
Test Run & Convergence

First one would like to see how the code, which was descrilmettested in Section 8.2,
performs with these initial data. Fig. 9.3 shoWsy fore = 1,11 = 04, K; = K, = 0
andy = 0. The inner boundary is at = 1.8, the outer boundary at = 4000, there is a

0.03

0.02 ” ;
I

0.01

Yoo

-0.01

-0.02

-0.03

50 100 150 200 250 300
X

Figure 9.3: Zerilli-function at dferent timesK; =K, =0,11=04,y =0

spatial resolution oAx = 0.01 and a CFL-factor of 8. The program was run until a time
of 250M.

In Fig. 9.4 on the next page | show a convergence pldt-at120M. According to
eg. (8.3) the two curves should sit on top of each other ifetli®fourth order convergence.
First one notes that theftitrence of the RW-Zerilli-function for the threefidirent resolu-
tions is of the order 10 so the expected errors are relatively small. Second thémallcis
fourth order convergence (or a bit less) all the way from tireei boundary up ta ~ 200.
Looking again at Fig. 9.3 one sees that this point correspémé region of the tail of the
pulse where the curve flattens out. An interpretation fa gwint being problematic is that
there might be little errors in the propagation speeds opthises for the three resolutions so
phase errors might be significant there. Again like in the<S&n test case in Section 8.2 |
lose fourth order convergence within a zone propagatinbddeft from the outer boundary
with the speed of light. In Fig. 9.5 on page 75 it is confirmeat tihis zone corresponds to
first order convergence.

So if one wants fourth order convergence in the radiatedggnéne point of energy
extraction has to be causally disconnected from the outendery. In my case | chose
Xextr = 100 which stays in the fourth order regime even after an éieoldime of 250M.
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Figure 9.4: Convergenceé:= 120M,K; =K, =0,IT=04,y =0

Energy Formula

Codficients By means of this code the thirteen ¢@gents in eq. (9.28) and (9.27) are
to be determined. Because of the linearity of the evolutigmagion this can be done in (at
least) thirteen runs with ffierent parameters. | start with the 20-mode. The runs were don
with the same resolutions as above with= 1,¢ = 1,u = 1 andy = 0. The radiated
energy was extracted at= 100 after integrating over a run time of 280 In the same
way described before | observed fourth order convergentieibohe waveforms and in the
energy for all runs. The ftierence in the energies for the three resolutions in each asn w

smaller than (1%; that is why | chose numbers with three digits. The follogviable shows
the results

I1 K1 K> E2o
0 0 0] 265-107
0 100 0| 3.33-10°3
0 -100 0|772-103
0.9 0 0] 4.19-10°3
-0.9 0 0]9.10-10°3
09 100 0| 1.62-102
-09 100 0| 2.34-102
0.9 0 100| 1.46-102
0.9 0 -100|234-103
0.9 10 10| 5.67-10°3

Solving the system of equations for the unknownfionts with Mathematica, | obtain
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Figure 9.5: Convergencé:= 120M, K; =K, =0,I1=04,xy =0
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For the 21-mode there are only three ffméents to be determined. Thus three runs are

suficient withII = 1.0

K | Ex

0]316-1073
100 | 1.49-1072
-100| 1.97-10°3

So we have

D71 [ 316-10°°
D! | 6.47-107°
Ds! | 5.28-10°7

Minima of Energy  To understand the physical meaning of the free parametdmnagbe
be able to find initial data sets with a minimal amoungdificial gravitational waves, one
wants to find out in what cases an extremal amount of energgdiated. From the first

75



Chapter 9. Application: Boosted Schwarzschild like Clogait.

derivative with respect tél of eq. (9.28) one finds that there exists a momenily,
which extremizes the energy of the 20-mode

o  en DP+DZ Ky + (D% + DXKy) K
min — 20 20 . 120
cosy 2 (D2 +K, (DZ°+ DZKy))

The second derivative with respectliogives 2%(D3° + D3°K; + D79K3) cos’ y which is
positive VK, 0 < y < /2 ande > 0 because it is positive fdf, = 0 (DZ° > 0) and has
no real roots. In Fig. 9.6 the energy curve is plottedar= K3 = 0. The 21-mode is

-0.4 -0.2 0.2 0.4
Figure 9.6: Energy vdl for K; = K3 =0

minimized byIl = 0, see eq. (9.27).
One can also ask the question if for a giiéthe energy can be minimized by a special
choice ofK4, Ko andKs. For the 21-mode there is a minimum at

%l
Kz = _2D§1 =-613.

For the 20-mode there is no paky, K») which minimizes the energy except fidr= 0 (see
[46]) because it turns out that the Hesse matrix is indefinite

Quasi-Normal Ringing Due to lack of time | did not investigate the so called quasi-
normal ringing. In [30] one can find a good overview. In gehesenall perturbations of

a Schwarzschild black hole lead to a characteristic ramiaind the frequency spectrum is
closely related to the mass of the black hole. For the quaisiral ringing of the close limit

of two Misner black holes, see [42] and [7]. Comparing thegults to Fig. 9.3 on page 73
it is very convincing that quasi-normal ringing is also neisin my data.
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9.3 Conclusions

This chapter has shown that it is possible to find analytiatemis of the linearized con-
straint equations with apparent horizons and asymptotigaless. One is able to obtain
Zerilli functions and evolve them, computing waveforms dnel amounts of radiated en-
ergy.

In [7] similar things were done for boostddisner black holes and the waveforms with
the quasi-normal ringing dominating after some time looky\smilar to mine.

Initial data of black holes at some finite distance were exl.g. in [5]. For late times
their waveforms are expected to be similar to those obtaiviidthe close-limit approx-
imation, which is in fact the case. After some time the qusimal ringing is dominant
in the close-limit approximation as well as in the full nandar approach. Nevertheless,
at early times, it is possible that the close-limit approiion is veryartificial in terms of
gravitational waves entering or leaving the domain. Thdyaimin this thesis and in the
papers cited before is not conclusive in this point. On theweind | looked for minima of
the outgoing radiation and it turns out that there is no swaih (K1, K») for eache and Tl
except forlT = 0 that minimizes it as was discussed above. The same shouldrgefor
ingoing radiation or alternatively one could evolve backigan time, but | had to leave this
out. On the other hand, | found the surprising result as in&{ for each K1, K») one can
find all leading to minimal energy radiation.

Of course initial data constructed as described in thisighiesthe binary black hole
close limit should not be considered as astrophysicallgvegit and thus one should not try
to interpret too much. But on the one hand one can learn whatdae in binary black
hole initial data sets in general and on the other hand theyseave as testbeds for full
non-linear numerical codes. In contrast to that the fartimiwhich | do not discuss here —
are physically relevant because they describe the wealaatten of black holes far away
from each other where one has a lot of understanding by mdgmmstNewtonian theory.

9.4 Other Black Hole Systems

The boosted Schwarzschild like close limit was not the oréchk hole system which |
considered. | chose it as an example to show what can be daéheh&inew construction
procedure of black hole initial data in the linear regime Bedause it was the first simple
generalization of [46].

Another interesting system which I looked into is the binggyr like close limit where
two black holes with opposite spin parameters are very d¢tmsach other so that the back-
ground metric is still the Schwarzschild one. It will be esipdly interesting to compare itto
[39] where it was already discussed by means ofledint construction of the Kerr-Schild
null vector field.

Also the binary Schwarzschild far limit will be worth to cadsr on the one hand to
compare it to post-Newtonian techniques and on the othed bamo one step beyond
Section 5.7.1 where theard limit of infinite separations was discussed.

Furthermore one can look at the particle limit, i.e. the timhere one black hole has a
very small mass compared to the other. This could be companedrk by Zerilli [56] and
to recent work by Bishop [9].
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Part IV

Bishop’s Modification of the
Kerr-Schild Ansatz [8]
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Chapter 10

Modification of the Kerr-Schild
Ansatz

The Kerr-Schild form of a metric is physically and matheroally nice as was pointed
out before. Especially important is the fact that the Kertrinean be brought to the Kerr-
Schild form by a coordinate transformation (see Sectiohahd | found a new procedure to
construct the free part of the superposition of two Kerr bkack holes in these coordinates
described in Part Il. One wants to modify this ansatz to atleédproblems with the Kerr-
Schild constraint equations described in Chapter 6. To fptlié ansatz we follow a similar
route as in the original Kerr-Schild approach; we bring thiev@arzschild metric to a certain
form very similar to the Kerr-Schild one to eventuaiyperposawo Schwarzschild black
holes in those new coordinates.

10.1 New coordinates for the Schwarzschild metric

Consider the Schwarzschild metric in isotropic coordigatg. (3.3) so that the induced
metric on a = constsliceX is

d< = (1 + 2mr_)4 (dF? + P2de? + P sir 6dg?)

and the extrinsic curvatur€;; = 0. By means of the coordinate transformation®on

m\2 _
1+ — = 10.1
(+2r)dr dr, (10.2)
we obtain
dij - 2V|i|j
Y = (10.2)
with d;; the Euclidean (flat) 3-metri¢,= & the unit radial vector field and
1 m\—4 r2
Vi =3 (1— (1 ; Z_r_) ﬁ)’ (10.3)
where from eq. (10.1)
_ r m m
r_r+mlnﬁ—4—r_+5. (10.4)
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Chapter 10. Modification of the Kerr-Schild Ansatz

The integration constant in this last equation has beenechsisch that the event horizon is
located ar = r = m/2. On the event horizon we have= 15/32.

Although the 3-metric is conformally related to a Kerr-Sdhmetric one has to keep in
mind that the slicing is very dierent than the Kerr-Schild slicing: here the initial slisean
isotropic slice so it has the topology as described in Chapteth Fig. 3.1.

10.2 Multiple Black Holes

Now, for the case of multiple time-symmetri€;{ = 0) Schwarzschild like black hole initial
data we can —in analogy with the Kerr-Schild ansatz in theigpease described in Section
5.6 — introduce a potentid(r) and takd; as its normalized (Euclidean) gradient, i.e.

| =CV®d

with C such that )
dlil =
The potentiakd is chosen as m
Ir—ril’

The momentum constraints vanish identically and the Hamidin constraint can then
be solved for the unknown functiovi. This is a so significantly fierent decomposition of
the free and of the constrained part of the initial data thanvork-Lichnerowicz conformal
decomposition (Section 3.2) that there is hope that it migdutl to very diferent data and
one can learn much from systematic comparisons.

10.3 Constraint Equations

As a first step we only want to construct initial data with dsdgmmetry and — as was
pointed out before — with time-symmetry. With the ansatz flescribed the momentum
constraints vanish identically and the Hamiltonian caistrbecomes a single quasi-linear
partial diferential equation for the only unknown functidfr, 6) in spherical coordinates
defined by

(dij) = diag(L r?, r*sir? 6),

namely

2
CooVrr + C11Virg + Co2V.gg + C1010(Vr)” + Cr001V.r Vg

+ Co101(V.g)% + C10Vy + Co1Vg + GoV = O. (10.5)
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10.4. Boundary conditions

The codficients have been computed with both Mathematica and Mapl@enfunctions
ofr, 0, V, ® and higher derivatives ab. The codficients of the principal part are

(1-2V) ®g2+2r2d,2

C20=—
(1-2V) (@2 +120,?)
(1+2V) Oy,
Ci1=-4 —
(1-2V) (@2 +120,?)
2042 +12 (1-2V) @2
002:_2 ,0 ( ) I

12 (1-2V) (042 +r2@,?)
so that the determinant of the principal part [27] is

1 8
Zcil T rZ(1-2v(0)

This means that the equation is elliptioif< 1/2 everywhere.

A = Cp0Co2 —

10.4 Boundary conditions

Because eq. (10.5) is elliptic it is now possible to contiad solutions (if they exist) by
means of proper boundary conditions; compare to what wdsrs&hapter 6.

Around each black hole (the inner boundary) we can set thamalrsurface condition
(1.8). Because we are on a time-symmetric initial skge= 0, it reduces to

0=(a); =T'; = (In v/dety)
for a coordinates sphere. With
Jdety - r?sing
1-2V(r,0,9)
we obtain the inner boundary condition

r2sing
"1-2V(r,0,9)

=0. (10.6)
r=rp

The outer boundary can be assumed to be placed far away fehbiabk holes so that
the metricpractically reduces to the single black hole one. Hence we can make uke of t
asymptotic behavior of the single Schwarzschikdeq. (10.3)

. m 2r
rITJOVS(r) = o (1— 2In E)'

In the binary black hole case there is a point in between wihéaot defined because
V@ = 0 there. To avoid a singularity (even if it is maybe only a cioate singularity) we
have to postulate that = 0 there. To avoid humerical problems one is probably forced t
use an excision region around this point and put meaningftd dn its surface. This has
to be further investigated in the future; more comments enbihary black hole problem
below.
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Chapter 11

Perturbation of the Schwarzschild
Metric

11.1 Ansatz

As a first step in [8] we explored the cade= 1/r of a single Schwarzschild black hole with
m = 1. We have already seen that its horizon is located-al/2 with V(1/2) = 15/32. In
this case we can use a simpler inner boundary condition thaf1@.6) namely

1 15
V(r = 5,9) =3 + € Pp(cosb) (11.1)

to perturb the black hole with theth Legendre polynomidP,,. In principle the size o€ is
only limited by the fact that to preserve ellipticity of eG0(5) we have to set

||<i
€ 3

On the outer boundary = rpog we setV(r,6) to its unperturbed Schwarzschild value
eg. (10.3) which makes physical sense for some leggein principlerog — .
11.2 Linearized Analysis

For smalle we can neglect all terms of ordef. This linearized approach serves as a testbed
for the full non-linear numerical computations below analbdain an analytical expression
of the York tensor. It turns out that the ansatz

V (r,8) = Vs(r) + e W(r)Pn(cosh) (11.2)

separates the linearized Hamiltonian constraint becdesarigular part of the equation is
equal to that of the Laplace equation in spherical coordmaifo first order ire, | found
that one is left with an ordinary fierential equation fow(r)

AW (r) + oW/ (r) + dsW(r) = O (11.3)
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11.3. York Tensor

where the cofficients are computed with Mathematica and Maple

dh = —r2(1-2Vs(r))?,
dp =r (1-2Vs(r) (3-6Vs(r) + 7rV4(r)),

. nh(n+1)
d3=1- >

+(3n(n+ 1) - 8) Vs(r) — 2 (3n(n + 1) — 10) Vs(r)?
+4 (n(n+ 1) - 4) Vs(r)® + 7r2V4(r)2.

The fact, that the Schwarzschild solutivig(r) eq. (10.3) itself is a solution of the Hamil-
tonian constraint, has been used in the derivation of eg3)11

It seems to be dicult to find analytic solutions of eq. (11.3). That is why | dse
Mathematica to solve it numerically. Because eq. (10.4hothe solved for analytically
andVs(r) is given in terms ofr, the whole equation was transformed to theoordinate
using eg. (10.4) analytically. Then it was solved numelycaith Mathematica respecting
the boundary conditions described above, explicitly

_ 1 _
W(r:E):l, W(r=rog)=0

with rog the arbitrary position of the outer boundary. To be expligetrog = 10.0 and
produced the plots Fig. 11.1 for the first three Legendre iwotyials in terms of.

7

Wh(r)

Figure 11.1: Solutions of the linearized Hamiltonian Ceeist

11.3 York Tensor

In Chapter 3, | pointed out that there are problems with aonédly flat black hole initial
data. The motivation for these new data described in thisgfahe thesis was to obtain
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Chapter 11. Perturbation of the Schwarzschild Metric

new non-conformally flat data sets which might give new ih&gnto binary black hole
physics.
If the York tensor [22, 53]

1
Yijk = Rijk — Ri;j + Z(R,jgik — Rk3ij) (11.4)

does not vanish identically, then the initial slice is nohfmmally flat. It is suficient to

show that at least one component at one point of the first dfaldértensor is not zero. With

Mathematica | found that

2-n(n+1)
4r2

using the fact thaPy fulfills the Legendre dierential equation. So it is proven that these

data are not conformally flat if > 1.

Yiro = W(r)P/ (cosd) + O(e?)

11.4 Non-Linear Numerical Computations

11.4.1 Implementation

Here | solve the full non-linear Hamiltonian constraint ét0.5) numerically in the per-
turbed Schwarzschild cage= 1/r applying the boundary conditions eq. (11.1),

V(r’ e)lr:ros = VS(r)
with Vs(r) given by eq. (10.3) and due to symmetry

6_V
on 0=0,7

wheren is normal to thed = 0, r-surfaces.

| did the computations with second order finit€diencing with the Cactus-Computational-
Toolkit [1] and the TAT-Jacobi elliptic solver [47] which & implementation of théacobi
Method [34]. To solve (non-linear) elliptic partial fierential equations

Elliptic Operator(V)= 0

using the Jacobi method one first gives an initial guess futiknown functiorV chosen
to be as close as possible to an actual solution of the ellgguation. The program com-
putes the left side of the equation which in general leadsdadafunction, the so called
residual, which is not zero everywhere. Then the program adds thiduals(multiplied
by an arbitrary but adapted factor) to the initial guess pwiise leading to a knew grid
functionV and after applying the elliptic operator again to a new regidyrid function. If
one continues like this, ondfectively evolves/ according to the equation

Elliptic Operator(V)= %_\:

with an artificial timet. In many cases this parabolic equation converges to a sttatly
with 9V /ot = 0 which is a solution of the original elliptic equation. Thhe Jacobi method
is a very simple realization of elaxation method.

84



11.4. Non-Linear Numerical Computations

For simplicity | implemented thé-boundary conditions & = 0+ n,7 —np withp < 1
and of the order of magnitude of the accuracy up to which dy5§lis to be solved. This
is necessary because@at 0, there are coordinate singularities and it is — beside other
techniques — also a common procedure to avoid numericalggnzbat the singular points
for instance of the Laplace equation in spherical coordmat

Because the Hamiltonian constraint is a non-linear etliptirtial diferential equation
the choice of the initial guess fof(r, 9) is crucial. A simple andvorkinginitial guess turns
out to be the unperturbed Schwarzschild solutigreq. (10.3) plus a perturbation in terms
of the nth Legendre polynomial whose amplitude decreases lindaniy the inner to the
outerr-boundary consistent with the boundary conditions above.

To actually comput&/s(r) for the initial guess numerically, eq. (10.4) was solvedrfo
by a numerical integration of eq. (10.1) which was then stutet into eq. (10.3).

The convergence of TAT-Jacobi is very slow mainly due to d@nt non-linear terms in
eg. (10.5) close to = 1/2. So | firstrun the elliptic solver with the residual multga by 1—-
2V, which is small near the horizon. This gives the solver thgootunity to get an accurate
solution everywhere else, before in a second run, it sohestiginal equation without the
factor. By means of this technique the convergence speeihwsmsed significantly.

Results

Let us consider the case= 2 which is the lowest Legendre polynomial leading to non-
conformally flat data. | setpg = 10 ande = 0.005 for three dierent resolutions in- and
f-direction.

N Ng A Ay final resid. of eq. (10.5
low 97 33 0098 Q095 40-1077
medium 193 65 M49 Q048 10- 1077
high 385 129 @25 Q024 25.10°8

With final residuall mean the residual of eq. (10.5) after the elliptic solves finished.
Fig. 11.2 on the following page shows the three plots togetVith the solution of the
linearized Hamiltonian constraint. The three numericatpkhow the diferenceV(r, §) —
Vs(r) normalized to unity at = 1/2 for ¢ = 0.59. The graphs suggest second order
convergence which is confirmed by Fig. 11.3.

Nevertheless, it is obvious that the linearized solutiondsthe limit of infinite reso-
lution. We have shown that our numerics show the right cajergee, but it must still be
understood why the linearized solution deviates so much fiee numerical ones, although
€ = 0.005 <« 1. The answer is that higher order terms get large close tddhieon.
With Mathematica one is able to substitute the linearizddtiem back into the non-linear
equation and see how well it is fulfilled. Although the linead Hamiltonian constraint
eg. (11.3) is satisfied up to an error of #0the error in the full non-linear equation is much
bigger, Fig. 11.4 on page 87. Nevertheless, we see the t@eeond order behavior be-
cause the error decreases by a factor of 1@Qgfsmaller by a factor of 10, i.e. = 0.0005.
This gives us a measure of how smalihould be in order to obtain an accurate linearized
solution.
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4 LS §0I. of Iinea‘rized Ham.‘ —
num. sol. high res. --—---
num. sol. med. res. ------
f num. sol. low res. -
3 %}MXXX%
K X
d X
= 25 ; X
= 3
= ., 1{
1.5 f
1
0.5
0

Figure 11.2: Linearized and full numerical solutions fioe 2, = 0.59

0.0018

fm Y 4*(high Fes. minqs‘med. res.)‘ —
med. res. minus low res. ---x---

0.0016 f x&&

0.0014

0.0012 j &X\%&

0.001 j

0.0008 f

0.0006

0.0004 Z

0.0002 72 "

Figure 11.3: Confirmation of second order convergence ircdisen = 2,0 = 0.59
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11.4. Non-Linear Numerical Computations

0 T T T T
/ epsilon=0.005 ———
epsilon=0.0005 times 100 -------

-0.005

-0.01

-0.015

-0.02
-0.025 /
-0.03 /
-0.035 /

-0.04

-0.045

Figure 11.4: Residuum of eq. (10.5) for the linearized sofut

87



Chapter 12

Future Work on the Modified
Kerr-Schild Approach

In this part of the thesis | have described a modification efKlerr-Schild ansatz (intro-
duced in Part Il of this thesis) for multiple Schwarzschikelblack holes in the case of
time-symmetry Kj; = 0) using in analogy with the Kerr-Schild ansatz a normaligedace
forming vector field;. The only non-vanishing constraint equation is the Hami#io con-
straint which has been worked out in the case of axisymmaeitiytarns out to be elliptic if
the only unknown functiovV < 1/2. Then a specific perturbation of a single Schwarzschild
black hole was investigated by linearizing the constraiptation on the one hand and by
finding numerical solutions of the full non-linear constitadn the other hand. | have con-
firmed second order convergence of the numerical code andhthee of the deviation from
the linearized solutions. Furthermore | argued that thiairdata of this specific perturba-
tion of Schwarzschild is not conformally flat.

Everything that was done up to now has to be considered ag stépswhich is needed
to show that the procedure works in principle. The next steitisbe first to evolve the
initial data of the perturbed Schwarzschild black hole, saeathe waveforms and radiated
gravitational waves and especially to compare with theltesi perturbed conformally
flat Schwarzschild black holes; work is in progress. Secamrdinary Schwarzschild like
black hole problem will be tackled. The basic problem fos tiés already been mentioned:
the singularity ofl; between the black holes. With a little luck one can simply tnait
point between two grid points and obtains convergence oélifgic solver without further
effort. But it is more likely that one has to place an excisiorage@round that point with
meaningful data on its surface. Then there is the problenmtbefiworking initial guess for
the elliptic solver. When the black holes are far away frochezther it might be dficient to
superpose two isolated black solutions linearly for thig,this may lead to problems at the
singular point. Furthermore for the equal mass black haote tlere is a symmetry surface
right between the black holes where a symmetry boundaryittondhas to be applied when
solving the Hamiltonian constraint. But in spherical cooades this boundary is curved
which is dificult to implement numerically. This will make it necessaryise sophisticated
interpolation techniques but fortunately these have dirdseen implemented into Cactus.
If a solution for the binary black hole problem can be obtdiiteshould be compared with
conformally flat initial data in terms of radiated gravitatal energies and waveforms.
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Part V

Final Summary & Conclusions
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In this thesis | worked on Bishop’s way [10] of constructingiltiple black hole initial
data because | was motivated to obtain vefffedént initial data sets than those using the
standard conformal decomposition (Chapter 3).

Because the construction of the free part of the initial detd only been worked out
for certain cases, | invented a new general procedure (Eh&pt) and applied it. But the
Kerr-Schild constraint equations turned out to be probl@nahat had not been pointed
out in [10], basically because this system of partiffiedtiential equations is not elliptic; it is
a Cauchy problem in space, so there is no control over the (artéhe inner) boundary be-
havior of the solutions. Explicitly this means that it is pilde (at least if the spatial part of
|, is surface forming) to guarantee existence of apparenttsi but one cannot be sure to
obtain asymptotically flat solutions. Nevertheless, inlthear regime (Part 1l1), i.e. when
solutions are considered which are only a little pertudratf the Schwarzschild metric,
one has analytical control and one can find explicit sol@iohthe linearized constraints
with the right asymptotical behavior. As a special examptensidered a system of two
very close black holes with vanishing spin-parameter whighinfinitesimally boosted in
an arbitrary direction. This is a model for the late stages lnhary black hole coalescence.
Although | could not draw the conclusion that the Kerr-Salulose-limit initial data are an
astrophysically relevant model because it was not conausow muchartificial gravita-
tional radiation is on the initial slice, by evolving the daine could see the characteristic
quasi-normal ringing already found by [42] and [7] befordtia case of Misner black holes.

In the linear regime, many more interesting systems canuskest which | had to skip
due to lack of time; suggestions are given in Section 9.4.

Beyond the linear regime, the Kerr-Schild ansatz has to bdiflrad to make it useful
for numerical relativity. One possible way is described artRV and leads to an elliptic
Hamiltonian constraint in the case of time- and axisymmeiya first step it was applied
for a special perturbation of a Schwarzschild black hole@melcould show that these data
are not conformally flat. Work is in progress to evolve theatacand compare to other
perturbations of the Schwarzschild metric. Furthermoeemliworking on the binary black
hole problem in this framework. Problematic are the singplaint of |; and the curved
symmetry boundary, see above.

The madification above is not the only possible one. One camthink of constructing
a Kerr-Schild metric as the conformal metric and then usestaedard conformal decom-
position. This would lead to elliptic constraints and natlyrto not conformally flat data.
Because up to now we are only able to control the Kerr-Schiltstraint equations in the
linear regime, one possibility would be to use the analytiatson of the far-limit approxi-
mation which has to be worked out, i.e. two very far separbtack holes. Such a conformal
metric would be a solution of the constraints alone if theasation is big enough and the
conformal factor would be close to one everywhere; it woaks a correction factor when
the black holes are closer. A similar procedure has beening&@] for post-Newtonian
initial data.

In summary, there are a number of options to make use of the3&hild ansatz. But
before one can do systematic comparisons and say whichl iditia set is better in a certain
situation than another, one has to obtain a binary black $algion. After having finished
this thesis these kind of conclusions cannot be drawn yet.
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