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NOMENCLATURE

D¢  Measure of the path integral, page 16

det’ Determinant omitting the zero mode, page 32

AFE  Energy splitting, page 20

erf(x) Gaussian error function, page 43

F Free energy, page 6

0% Euler-Mascheroni constant, page 48

I'(z) T'-function, page 39

G(r) Correlation function, page 18

H[¢p] Hamiltonian of the order parameter field, page 16
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K;(A) Heat kernel of the operator A, page 40
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10} Order parameter, page 12
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Reflection operator, page 20
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¢(z) Riemann zeta-function, page 39

Ca(z) Spectral zeta-function of a heat kernel K;(A), page 40






INTRODUCTION

Interfaces are ubiquitous phenomena in nature, partitioning a system into regions with
disjoined thermodynamic properties like the particle densities in binary-liquid systems
or in liquid-gas transitions. This phase separation prohibits the system to establish a
global equilibrium, so that the interface vanishes, is not sharp, but rather characterised
by a parting region, whose spatial length is indicated by the correlation length. In this
region both phases are coexisting in the equilibrium featuring fluctuations permitting
the exchange of particles or molecules. Therefore, from the view of applied sciences,
interfaces are significant in fields reaching from material sciences to neurophysiology.
But they are also important from the point of view of theoretical physics, because the
universal behaviour of phase transitions can be applied in many fields of physics. In all
physical systems, the geometrical structure as well as the boundary conditions play a role.
The simplest and mostly employed geometrical structure in physics is a square, but it
shows, that changing the geometric structure (to rectangular or circular structures) often
enforces dramatic changes of researched quantities. Obviously, the geometric dependence
of interface fluctuations that shall be investigateded in this thesis is an evident task not
explicitly calculated yet.

Theoretical models for continuous phase transitions in different dimensions have been
proposed for a lot of experimental evidences in particular fields of physics, like the liquid-
vapour transition, the ferromagnetic transition or the superconducting transition offering
new applications because of the universal behaviour of the principal models. The most
promising model for phase transitions set up by elementary physical laws is the Ising
model, where interface fluctuations have been studied since it’s first analytic solution
in two dimensions [Ons44]. However, as in most applications, the physical nature is
characterised by three spatial dimensions. Consequently, the most interesting systems
for investigating interfaces in everyday life are three dimensional, but until now there
is no analytic solution of the Ising model in three dimensions. In contrast, there are
suitable approximate solutions obtained from phenomenological considerations of phase
transitions, like the Landau theory. From the Landau theory, the first profile of an
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interface, the kink profile, could be derived by J.W. Cahn and J.E. Hilliard |[CH58|.
As the Landau theory does not involve interface fluctuations, the Ginzburg-Landau
theory [LG50| has been used for instance by V. Privman and M.E. Fisher [PF83] to offer
an expression proposing the structural behaviour of the correlation length for arbitrary
dimensions. Making use of the structural analogy between statistical mechanics and
quantum field theory, a more accurate calculation in four dimensions by G. Miinster
[Miin89] offered an explicit result in first loop order approximation of the Ginzburg-
Landau theory. Later, the same methods were applied to calculate these expression in
higher orders as well as in the three dimensional setup [Miin90], still restricted on a
quadratic basal area L x L of the underlying box.

Apparently, the use of field theoretical methods has been fruitful for phase transitions.
The analogy between statistical mechanics and quantum field theory is identified by the
Wick rotation as well as by the similar structural behaviour — the scale invariance — of
the statistical mechanical systems and field theories. As the correlation length tends
to diverge near the critical point, where the phase transition takes place, wide range
fluctuations dominate the system. Additionally, in quantum field theory this large-scale
behaviour is identified with massless field theories. Therefore, in this thesis the same
field theoretical methods will be used in order to investigate interface fluctuations in
three dimensions imposing new geometric structures.

Firstly, in chapter |2 the Ising model will be motivated by a microscopic analysis of
elementary physical laws on atomic scales. Moreover, recognising that the behaviour
of macroscopic physical quantities can be observed in the thermodynamic limit, in the
succeeding, a phenomenological theory, the Landau theory will be proposed, motivated
by a mean field approximation near the critical point. Deduced only from macroscopic
symmetry considerations, the Landau theory, the so-called symmetry breaking will be
observed, occurring when the system passes through the critical point. While this theory
does not involve fluctuations, it will be expanded to the Ginzburg-Landau theory. In the
derivation of this theory, the component that is responsible for the geometric dependence
will be identified. Furthermore, the relationship of the parameters used in the Ginzburg-
Landau theory to physical parameters from statistical mechanics and quantum field
theory is examined. The correlation length of a system performing a phase transition is
identified by the energy gap of a particle tunneling from one quantum state to another.
The relationship between statistical theories and quantum field theories will be explained
in the end of the chapter, so that conclusively, a massless field theory is encouraged for
phase transitions by statistical mechanical considerations in this chapter.

Secondly, in chapter [3} this analogy will be used to present a ¢* field theory of phase
transitions that satisfies the boundary conditions on a new geometric structure, e.g.
Ly x Ly x T. Moreover, using the path integral formalism introduced by R.P. Feyn-
man [Fey48|, the above mentioned kink profile established in the 7' direction will be
identified with the most probable path (see figure . Imposing fluctuations around
this classical trajectory, the system can be studied in a Gaussian approximation, result-
ing in determinants. As the massless case is studied, certain divergences are treated with
the method of collective coordinates [GS75| effecting in a ghost contribution, compara-



Figure 1.1.: A three dimensional box. The indicated interface can be seen as density
transition from one liquid to another.

ble to the Faddeev-Popov ghost in quantum field theories. Consequently, this massless
particle is identified with a quasi-particle called instanton in quantum chromo dynamics,
thus the tunneling amplitude for these instantons is calculated in a dilute gas approxi-
mation, described by S. Coleman |Col85]. Finally, this tunneling amplitude delivers an
expression for the energy splitting, so that for the behaviour of the correlation length, a
¢* theory will be achieved.

The arising expression is evaluated in detail in chapter 4] This chapter is more of
technical nature, transforming the involved determinants into integrals applying zeta
regularization techniques. Therefore, the zeta regularization and heat kernel methods,
firstly described and systematically used in theoretical physics by S. Hawking [Haw77]
are introduced in the beginning of the chapter. As a result of these methods, the ex-
pression for the energy splitting will be split off into a normal mode corresponding to
the T direction and a transversal mode corresponding to the Li x Lo plane. As the
calculation of the normal mode is universal for different geometries as long as T is large,
the achieved expressions will be compared to the results obtained by similar methods
in [Miin90,Hop93| in order to identify the part that has to be recalculated imposing other
geometric structures. The transversal mode is identified by the Laplacian introduced by
imposing fluctuations in the derivation of the Ginzburg-Landau theory. Consequently,
the evaluation of the critical fluctuations is reduced to the evaluation of the determinant
of the Laplacian on different geometries.
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Finally, in chapter |5 the determinant of the two dimensional Laplacian is calculated
explicitly for a box with rectangular basal area Ly x Lo. For interface fluctuations, this
determinant has been proposed to relate to the Dedekind eta function in [Mun97]. This
proposal was motivated by calculations of the two dimensional Laplacian in Bosonic
string theories (see e.g. [DFMS97]) that involve conformal field theories. The Dedekind
eta function is recognized to fulfil a certain modular invariance that is also needed in
the rectangular case, because the solution must be invariant under the transformation
Ly/Ly — Lo/ L;. Successively, the solution involving the eta function needs to satisfy the
functional equation f(7) = f(1/7). The calculation of the determinant of the Laplacian
will be done using three different methods. As the calculation is older, known as the
modular discriminant, calculated by D.B. Ray and I.M. Singer [RS73| in mathematics,
applied by C. Itzykson and J.-B. Zuber [IZ86] for the Bosonic string originally known
as the Kronecker limit formula. This method was developed in the 18th century by L.
Kronecker [Sie61]. This thesis will, in the first part of chapter [5, follow this approach.
The second method, using the Sommerfeld-Watson transformation, was motivated by
J. Polchinski [Pol86] for a similar problem. As the calculation in this paper is very
shortly described, this method will be evaluated in detail. In a third method, proposed
by J. Baez in his weekly blog [Bae98alBae98b|, the action of the Bosonic string will be
recalculated as an infinite setup of harmonic oscillators, because of the structural analogy
between the Laplacian and the Klein-Gordon equation for scalar fields. All methods are
therefore expected to give the same solution. Subsequently, the obtained solution will
be inserted for calculating the correlation length and compared with the previous results
for a quadratic setup, investigating the change of the correlation length in the explicit
case of a box with rectangular basal area.
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THEORY OF PHASE TRANSITIONS AND CRITICAL
PHENOMENA

In the introduction, the theory of interfaces was proposed to be a theory of phase transi-
tions. The aim of this thesis is to investigate a theory of interfaces in a cuboid of Volume
V, given a certain geometric structure Ly X Ly X T', see figure [I.1] Interfaces can be seen
as limit behaviour between different phases of a material. The following chapter will
develop the theory of phase transitions basing on theories of phase transitions like the
gas-liquid transition or the ferromagnetic transition known from statistical mechanics.

First basic characteristics of phase transitions will be given and then two main as-
pects of statistical mechanics will be outlined: a microscopic description founded on
the elementary physical laws of the model and a macroscopic description. Therefore, a
three dimensional model can be given by some macroscopic theory adapted only from
symmetry considerations inferred from the macroscopic world. The macroscopic descrip-
tion will be given in a continuous theory, the Ginzburg-Landau theory, which includes
fluctuations around the phase transition as well. In both categories, the microscopic and
the macroscopic models, the correlation length determines these fluctuations. It will be
shown, that there is certain universality between different theories due to the similar
behaviour of the correlation length and therefore a connection of the microscopic and
macroscopic theories will be outlined in the last section of this chapter. Finally the struc-
tural analogy between fluctuations of physical quantities and fluctuations of observables
in quantum field theory (QFT) will be outlined. In this chapter a continuous field theory
of phase transitions is developed.

2.1. Basic characteristics of phase transitions and statistical
mechanics

Phase transitions are characterized by a drastic change of certain macroscopic values
called order parameters in a thermodynamic system when another quantity, the control
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parameter, is varied. According to the value of the order parameters in a thermodynamic
system, the different phases can be discriminated. Heuristically, a thermodynamic phase
transition can be described as a reason of a competition between the internal energy U
and the entropy S of the system [NO11] in the following definition of the free energy

F=U-TS. (2.1)

When the temperature rises, the free energy changes its sign at a certain critical tem-
perature To. A physical interpretation could be, that this last term favours disorder
depending on the value of T, whereas the internal energy favours order [NO11|. Con-
clusively, the value of the external control parameter 7' can be varied to control the
competition between the internal energy and the entropy so that the order parameter,
here determined by the free energy, discriminates between the phases of the system.

The graduate thesis [vdW73] of Johannes Diderik van der Waals is often identified
as the genesis of modern theory of phase transition [Noll4|. It is commonly seen as
the first thermodynamic argumentation because later on, van der Waals formulated his
famous theory of the realistic gas, which mentions a phase transition between phases at
different temperatures. The transition between different phases could be described and
interpreted with the Maxwell construction [vdW12] by a coexistence of the two phases,
which cannot be distinguished. In 1893, van der Waals transferred his work from the
description of two phase systems to interfaces, where he could predict the thickness of a
surface [Row79]. As the van der Waals theory is a continuous theory, interfaces can be
described by a phase transition.

At about the same time, in 1872, Ludwig Boltzmann developed a first statistical
interpretation of an ideal gas following Maxwell’s heuristic construction of the speed
distribution of the gas particles [Bol72]. In 1877, Boltzmann then re-derived the prob-
ability distribution in the framework of statistical mechanics [Bol77] by evaluating the
relationship between the Second Law of Thermodynamics and probability calculus. In
statistical mechanics, the behaviour at a microscopic level is described by classical (or
later quantum physical) laws. In contrast to the macroscopic world, on the microscopic
level observables like the temperature or entropy do not exist. The main argument of
the statistical description is the equal a priori argument:

“By this we mean that the phase point for a given system is just as likely
to be in one region of the phase space as in any other region of the same
extent which corresponds equally well with what knowledge we do have as
to the condition of the system” [Tol50].

This means, that a system can be found with equal probability for any (micro-) state
for an isolated system with a known energy and composition. All these microstates are
equally probable in the system where the thermodynamics limit leads to the measurable
macroscopic observables the thermodynamic limit, i.e. the infinite volume limit N/V =
const. is taken. In other words, the thermodynamic properties of a system can be
determined by the partition function Z, which is the sum over all possible free energies
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weighted with the factor e A%
1
Z=Tre P F= -3 InZ  B=(kT)"L (2.2)

Here H is the Hamiltonian and k ~ 1.381 - 10723 J/K is the Boltzmann constant. This
approach is a very idealized method to regain some properties of physical systems, like
the ideal gas. Under less strict assumptions, when particles can interact and have a small
volume, the van der Waals gas can be constructed out of the framework of statistical
mechanics.

Important for such systems, in which phase transitions occur, is that this is only pos-
sible in systems of infinite volume V. This means, there is an infinite number of degrees
of freedom N. In simple models, where different phases occur, the thermodynamic limit
is taken in each phase. Depending on the value of the control parameter specific ways of
thermodynamic limits are taken. Thus for different phases the value of some properties
of the system, described by the order parameter, depend on the way the thermodynamic
limit is taken |ZJO7|. After the thermodynamic limit is taken, measurable quantities
like the magnetization M, the specific heat C, the magnetic susceptibility x or the
correlation length £ can be calculated. This connects the microscopic theories to the
macroscopic world.

According to Paul Ehrenfest, phase transitions can be classified by considering ther-
modynamic parameters such as volume or temperature. Under this scheme, phase tran-
sitions are labelled by the lowest derivative of the free energy that is discontinuous at
the transition. In the modern classification scheme, phase transitions are divided into
two broad categories [Noll4].

When the first-order derivative in the order parameter shows a discontinuity, these
phase transitions are called first-order phase transitions. When, by contrast, the first-
order derivative is continuous, but the second- or higher-order derivative shows a discon-
tinuity or divergence, these phase transitions are called second-order or continuous phase
transitions. Observing the behaviour around the point, where two or more phases coex-
ist and become indistinguishable, anomalous phenomena appear, because the correlation
length diverges. As this is universal for different models, continuous phase transitions
are often called critical phenomena [NO11], where the behaviour of the order parameters
around the critical point can be described by universal scaling laws.

The most common example for phase transitions is the ferromagnetic transition. A
simple approach, which involves only the symmetry of the spins in the magnetic material,
is the Ising model. More generally, a mean field approximation can be applied to phase
transitions, where the phenomenological Landau theory serves equivalent results as the
Ising model after the thermodynamic limit is taken. All these models have in common,
that they inhibit a phase transition. The critical exponents describe similar behaviour
of the system close to the critical point. In a ferromagnet, the above mentioned physical
quantities can be measured experimentally.
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)

Figure 2.1.: Ising model for interfaces, where the spins are localized at lattice points. In
region A all spin values are uniformly —1, in region B all spin values are +1.
Region C is the transition.
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2.2. Microscopic description of phase transitions

The simplest way to construct an interface is to impose a model, in which microscopic
symmetries are used in order to describe the system. This model is based upon the idea
that in a ferromagnet the magnetic moments of the atoms can have only two opposing
orientations S; € {—1,1},7 = 1,... N and a potential energy exist only between next-
neighbours, which favours a parallel position. An interface can be constructed by this
model by assuming, that in two distinct regions ((A) and (C) in figure these spins
are uniformly orientated. Therefore an interface is established in the region (C) between
(A) and (B), when all spins in (A) are in the opposite orientation to the spins in (B).
The main reason to formulate a continuous theory later is, that there is no analytical
solution of the three dimensional Ising model. In the 1920ies, W. Lenz constructed this
model to explain ferromagnetic transition, which is a transition between an ordered and
a disordered phase in the material. Lenz proposed this model to his student E. Ising as
subject for his graduate thesis. Ising examined the model in one dimension, but there is
also an analytical solution for a two dimensional model.

2.2.1. Ising model

In the Ising model each spin (indexed by ¢ = 1,..., N) in the ferromagnet is localized
on symmetric crystal lattice, like an equidistant chain of spins in one dimension or a
quadratic lattice of spins in two dimensions. The simplest Hamiltonian representing the
spins with the coupling constant J between next-neighbouring spins in presence of an
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external magnetic field h can be written as

H=-J Z Slsj — hZSZ, J > 0. (2.3)
(4,7) i

The brackets indicate that the sum is only taken over nearest neighbouring spins. The
partition function for a free system, where the external magnetic field is switched off
(h =0), is given by

Z=Tre " = ( DS )eﬁJZu,j)Sisj.
S

1==%1 Sny==%1

In one dimension this partition function can be evaluated by taking the sum over N
neighbouring spins (é,7 + 1). The result of Ising [[si25] is

Z = 2N coshV1(B3.7). (2.4)

From the knowledge of the partition function, the free energy per spin can be determined

by (2-2)

F 1 1
F= N Bln (2 cosh(ﬁJ)) .
According to the Ehrenfest classification, the derivatives of the free energy could be
calculated now in order to search for phase transitions. In the introduction the role of
the correlation length for phase transitions was proposed, since the correlation length
diverges as the critical point due to wide range fluctuations. The correlation function

G(r) = (SiSisr)
can be calculated after some basic transformations [NO11|. The result is
G(r) = tanh" (5J).

This indicates some exponential behaviour of the correlation. A value to determine the
fluctuations could be a correlation length, defined as the exponential decreasing of the
correlation function. The correlation length of the one dimensional Ising model can be
given now

1

&= In(tanh(8J)) (25)
In the low temperature limit (8 — oo) the correlation lenght diverges exponentially
¢ ~ exp(2pJ)/2. Since & diverges at the absolute minimum 7" = 0, there is no phase
transition observed, thus there is no spontaneuous magnetisation in the one dimensional
Ising model.

This observation was generalised by Peierl’s, who proved, “that for sufficiently low

temperatures the Ising model in two dimensions shows ferromagnetism and the same
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holds a fortiori also for the three-dimensional model” [Pei36]. This argumentation also
maintains for higher dimensions.

This leads to the need for a solution of the two-dimensional Ising model, which is a
much more ambitious and subtle endeavour. The first solution was given by L. Onsager
in 1944 with the transfer matrix method [Ons44]. His solution for the spontaneous
magnetization M of the two-dimensional Ising model on a quadratic lattice in absence
of an external magnetic field is given by

M= [1—sinh=(28)] " (2.6)

In general, the spontaneous magnetisation is given by

As a discontinuity can be found in the derivatives of the free energy at

27
In(1+ v2)

this temperature is the critical temperature of the two dimensional Ising model.

Onsager’s solution is considered to be “one of the landmarks in theoretical physics’
and was consequently awarded with the Nobel Prize in 1968 [BK95]. In general, phase
transitions occur only in discrete models above dimension one (D > 2) for discrete sym-
metry groups and above dimension two (D > 3) for continuous symmetry groups [Z2J07].
There has yet not been any analytical solution of the three dimensional Ising model,
but the following mean field theory of the Ising model can be evaluated in arbitrary
dimensions.

Sinh(2ﬁJc) =1 < FKIlg= = 2.27J,

)

2.2.2. Mean field theory of the Ising model

Before Onsager presented a solution of the two dimensional Ising model, a different
theory, the mean field (or molecular field theory) was proposed by Pierre-Ernest Weiss in
1907. This theory can be applied to the D-dimensional Ising model for the Hamiltonian
(2.3). The value of a single spin S; can be decomposed in the mean value and their
fluctuations according to

Sj = (Sj) + (55 = (S55))-
The local energy of spin S; then reads

E;,=-5; (JZSj-i-h)

#i
= —Si>_(Sj) +h) — TS > _(S; —(S)))

J J#i

10
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The mean field approximation is the negation of wide range fluctuations
(55— (Sj)) =0

which are set to zero. Then the interaction is restricted on a local field. Only the nearest-
neighbouring spins are taken into account. For the two possible configurations S; = +1
there are two possible energy levels

Ef =—JY (S;)=h and  Ej =J) (S;)+h,
J J

which by the definition of the local magnetisation M = (S;) give
E = F(qgJM+h),

)

where ¢ denotes the number of nearest neighbouring spins. The local energy FE; is the

Figure 2.2.: Two dimensional Ising model with spin S; and the ¢ = 4
nearest neighbouring spins.

energy of the local field at the lattice point 7. In two dimensions, ¢ = 4 spins S; are in
equal distance to the spin S; (see Figure . Thus, the partition function becomes
Z = Tre P = oI MAR) o o=BlaIMFR) — 9 cosh (B(gJ M + h)) . (2.8)
From here on the self-consitent equation
M = tanh (B(¢gJ M + 1)) (2.9)
for the magnetisation is reached, since the magnetisation was also defined as the deriva-

tive of the free energy with respect to the external magnetic field (2.7)). This equation
could be evaluated now in the limit h — 0. As the above equation serves no analytic

11
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expression for M, this expression is now evaluated for small values of M = My, when
B — Bc as the series expansion for M — 0 of the hyperbolic tangent is

1
M = tanh(q(B — fc) M) % ¢J (B = Bco) Mo — (] (B = fo) Mo)® + O(M)
and because the left hand side is also close to zero, it’s value is set to M = 0. Then

3
Mo =+ TG 50 (2.10)

can be found, implying, that the spontaneous magnetisation diverges according to
Mo ~ |8 = Bo| '/ (2.11)

when the critical temperature is reached from below. Obviously, this result is wrong in
one dimension, since in the corresponding Ising model no critical temperature Tc > 0
could be found. The expression indicates, that the critical temperature Sc can be
found in any dimension

ﬁch =1 = TC = %
when ¢ = 2 in one dimension. Therefore, the mean field expansion is qualitatively wrong
in one dimension, but in two dimensions it is qualitatively right, but quantitatively
wrong. Because in higher dimensions, the interactions between more nearest-neighouring
spins become more important, the deviation from the analytical or numerical solution
decreases.

2.3. Phenomenological theories for phase transition

The previous mean field approximation indicated that there could be a continuous de-
scription of phase transition near the critical point. The Landau theory is a phenomeno-
logical description of phase transitions, which is independent from the elementary degrees
of freedom, like the lattice structure or the spins. It will be shown, that the mean field
approximation and the Landau theory, named after L.D. Landau |[Lan37|, are equivalent
to each other near the critical point. Because the mean field approximation neglects
fluctuations, the theory will be expanded to the Ginzburg-Landau theory that includes
wide range interactions as well.

In a phenomenological theory, the thermodynamic potential is written as a function of
an order parameter ¢ only from symmetric considerations. In the ferromagnetic case, the
free energy is chosen as the thermodynamic potential. The free energy then is a function
of the magnetisation, which is the order parameter ¢ = M. In absence of the external
magnetic field, the magnetisation M = (S;) changes its sign under a transformation that
changes the sign of all spins, so the order parameter transforms as

O — —0 as S; — =S, for all 3.

12
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M

Bc B

Figure 2.3.: The ferromagnetic transition, where the red line indicated
the stable branches, whereas the blue line indicates the
unstable branch. Above B¢ there are two branches cor-
responding to a magnetic material, whereas below B¢ no
magnetisation is observed.

This transformation leaves the Hamiltonian of the Ising-model invariant. Furthermore
this transformation represents a global symmetry and the free energy must be an even
function of the magnetisation, so that the invariance of the thermodynamic potential
(the free energy F) is preserved

2.3.1. Landau-Theory

As the rigorous calculation of the Ising model shows that M is small when T is near its
critical value T¢, the free energy of the system can be assumed keeping only the smallest
values in M. By the above argument, that the free energy is invariant under parity
transformation, the free energy expansion with arbitrary parameters o, € R can be
written adl]

F(6) = Fo+ gad” + 1186,

where the smallest orders preserved insure that all relevant symmetries of the microscopic
level are preserved at a coarse-grained level [NO11]. Graphically, the location of the
minima can be understood by the potential theory. A negative factor § < 0 implies
instability for ¢ — +oo because the function decreases infinitely, this parameter is set

Not to be confused with the Boltzmann factor f~! = kT.

13
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F(9)

a>0

Figure 2.4.: Symmetry breaking of the Landau theory where different
signs of « force different fixed points.

B > 0. For the coefficient « there are three possible regions in which F(¢) shows
different behaviour. In figure 2.4] it is shown, that for & = 0 the expansion starts in
fourth order, implying that F(¢) is flat in the origin. For o > 0 the quadratic term
supports the increasing of F(¢) so that the curve is similar to a curve of a second
order function. Interestingly for o < 0, there are two minima and the minimum from
before is inverted to a maximum. In words of potential theory there are two stable fixed
points at F(¢) = F(4v) and one unstable fixed point at F(0) when a < 0, whereas
there is only one stable fixed point at F(0) when o < 0. This dramatic change of the
behaviour of the system in the two different phases is called symmetry-breaking, because
the global behaviour of the system changes. Every particle in the potential approaches
the minimum at F(0) when o > 0 and when a < 0 the particles of the positive site
approach the right minimum while the others approach the left minimum. Therefore,
this global symmetry is broken.
This implies that the critical temperature T can be identified with «

T-Tc

o~ T =

because in the critical point the value of this so-called reduced temperature is t = 0. In
the equilibrium, the free energy depends only on the temperature and on the magnetic

field. This is obtained by minimizing the above equation of the free energy according to
the order parameter. Direct minimisation leads to

ivi,/—(jﬁa vV $=0. (2.12)

: 1,

OF _
e
99 |p=g i
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The second derivative shows that for & < 0 the minimum is approached at ¢ = +v
whereas the maximum is found in F(0).

2.3.2. Ginzburg-Landau theory

The last section showed, that the Landau theory is equivalent to the mean field ap-
proximation near the critical point. Since in the mean field approximation fluctuations
were neglected, there will be no fluctuations in the Landau theory. This theory, the
Ginzburg-Landau theory [LG50], is named after V.L. Ginzburg und L.D. Landau, who
found a phenomenological description of superconductivity in 1950. For this theory V.L.
Ginzburg was awarded with the Nobel Prize in 2003. Here the theory will be formulated
in three (real) space dimensions following [LBB91].

The aim is now to reformulate the Landau theory as a continuous field theory in
three dimensions. Obviously, the Landau theory must be reproduced by the new theory
using an approximation, because the behaviour near the critical point was qualitatively
correctly described by the mean field approximation in three dimensions. In order to
reproduce the Landau theory by means of a Hamiltonian H(¢) depending on a continuous
random variable ¢ with values in ¢ € R, the expectation value (¢) = ¢ = M is fixed,
because the magnetisation of the whole system shall be finite. The invariances under
parity H(¢) = H(—¢) preserve the imposed symmetry, so that the polynomial structure
of the free energy expansion can be used. This means, the equation depends on two
coefficients and the following Hamiltonian is constructed

Loy 1y
H(¢) = 50@ + Iﬁéf) .
The partition function can than be written as

Z =Tre 19 = /d¢e_H(¢),

where the Boltzmann factor is set to 5 = 1 as it is assumed to be constant in the critical
point. The factor $ in the expansion again must be positive, because this integral shall
converge.

The Landau theory can be regained by a saddle point approximation. In this case,
this means replacing the integral by the minimum value ¢ = M of H

Z ~ e H9),
With equation ([2.2), the free energy is given by
- 1 1
F=H(¢p)= 504/\/12 + Eﬁ/\/t“.

Using the saddle point approximation on the Ginzburg-Landau Hamiltonian regains the
Landau Free energy expansion. Thus this procedure will be called Landau approximation.

In order to formulate a theory that involves interactions, a step back is necessary.
These interactions in the Ising model were defined by the interactions between spins, an
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elementary degree of freedom. Generalising the above Hamiltonian to N sites (elemen-
tary degrees of freedom), one imposes periodicity conditions

¢(zi +alN) = ¢(zs),
where a is the lattice spacing. Defining a discretization

¢(xi +a) — ¢(xi)

a

0¢(x;) =

which is the differential quotient and for small a, the derivative with respect to x. Inter-
actions between next-neighbouring spins can be expressed as

3 5 (6 +a) — 6(w))E = 3 (96(2:))°

% %

The Hamiltonian can be postulated in analogy to the free energy expansion
L oo 1.4
Hgr = GZ a¢z + 50@@' + Iﬁ@ )

where ¢; = ¢(x;). Going over to a continuum, when N — oo and a — 0 leads to a
continuous variable x; — x. Furthermore, in three dimensions, the continuous variable
is x — x. This means the order parameter ¢; in the discrete setup is replaced by the
order parameter ¢(x) in three dimensions. In the continuum limit, the Hamiltonian
reads

Hould) = [ @ | 5(Vo00)? + Jad?(x) + 1564

Moreover the integral in the partition function becomes a path integral

N
1 1
Z= /l_lldgbiexp( /d3 [ (Vi) +2a¢§+4!ﬁ¢?]>
1=
= [ Dota) exp(~Her o)), (213
where the square brackets indicate, that Hqr, is a functional of ¢. In the above limit the
measure is a measure of a path integral, which indicates that over all possible configu-

rations d¢; is integrated. In words of quantum field theory, this is the integral over all
possible paths. Introducing a potential V(¢), the Hamiltonian is rewritten

= / d3z B(w)? + V(¢) (2.14)

= [ o)
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2.4. Critical behaviour in field theories

where H[¢] is the Hamiltonian density and the potential

1 1
V(o) = 50“252 + 55&

is used. Considering the minimum of this potential being at ¢ = 4+v = =+ 7760‘ (see

equation ([2.12))), the factor S can be identified by the mean field approximation with
the coupling constant J in (2.10]), so that 5 will be given by a dimensionless coupling
constant g of field theories. The factor o will be identified with a "mass" according to

which will be explained in the next section. Then the potential is

2
V(g) = — 56" + 486"

The value of the potential in the minimum

3 2
$=dv == (2.15)
g
is then given by

2 4 4

N M 2, 9.4_ 3m  3m~

V(o) = TR 15 785

_3ml 9
8 g 4!

In a last step, as the energy integral does not change under addition of a constant factor,

the potential is rewritten in order to ensure that the minima of the potential are zero in
the minima

- - 1

V(@) = V(@) + Lot = —5m?¢ + %¢4 + %v”‘

= (2 —v?)2. (2.16)

In the formulation of this theory, the interactions were defined over a derivative. Since

this derivative will lead to a Laplacian operator, this fact is a first hint, that in the

calculation of the critical fluctuations, the Laplacian will be responsible for the geometric
dependence of these critical fluctuations.

2.4. Critical behaviour in field theories
All studied theories in the last sections showed a certain critical behaviour near the

critical point. This behaviour is characterised by the divergence of the macroscopic
parameters, like the magnetisation.
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The degree of divergence can be described by some power-law, so that an exponent
describes the total behaviour of the system [NO11]. These exponents are called critical
exponents that define a certain degree of divergence in the critical point. Moreover,
the critical exponents of different physical quantities are linked by scaling laws [Kad66,
Wil75]. Experiments confirm these power-law singularities as a function of the control
parameter and its critical value for macroscopic observables, like the susceptibility ¥,
the magnetisation M, the specific heat C or the correlation length £. Using the above
defined reduced temperature, the following critical exponents can be found approaching
the critical temperature [NO11]:

Ot t>0
M~ <0
X~ lt7 t>0
E~t]” t<o.

Here the exponents «, 3,v,1 are the critical exponents. In the one dimensional Ising
model, the correlation length was found to to have the critical exponent v/ = 1, (2.5).
For the mean field theory and also for the Landau theory, the value g = 1/2 was found

in any dimension (2.11)).

2.4.1. The interface tension and the correlation length

The reason for the divergence near the critical point is given by the divergence of the
correlation length. Whereas far away from the critical point interactions play only a role
on microscopic length scales, the divergence of the correlation length £ is related to wide
range thermic fluctuations. Therefore, microscopic details of the system play no role
close to the critical point and physical quantities of different system are universal with
a characteristic large-scale behaviour. Furthermore, the behaviour of systems within a
certain universality class can be identified by the global characteristics like symmetry
and dimension of the system [NO11|. This fact has been used in the last sections, where
the behaviour of the system was just given by a macroscopic value, the order parameter
}.

The correlation function, defined by the covariance of the system, is a measure for
fluctuations around the expectation value of a random variable. It has been used before
in order to evaluate the correlation length of the one dimensional Ising model .
Defining

G(r) := (o(r)9(0))

for a continuous random variable ¢(x), the fluctuations of the continuous theories can
be evaluated. As indicated in section the correlation length can be given as an
exponential function. Indeed, according to the Ornstein-Zernike theory [OZ14], the
correlation function is given by

G(r) ~ e /5.
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2.4. Critical behaviour in field theories

According to this expression the correlation length defines the spatial length of fluctua-
tions. In the literature this correlation length is often called bulk-correlation length.

Another definition of a correlation length that linked to the interface tension is the
longitudinal or tunneling correlation length (see e.g. [PF83])

&1 = Cexp(—oas L Lo) (2.17)

where 0o is the interface tension defined for large systems (L; — oo, Ly — 00). The
interface tension is equivalently given for the Ising model by the free energy. According
to figure the free energy of the system with interface is F_, while the free energy
of the system without an interface is F;. The gap in the free energy then defines the
interface tension

. Foy - F++>
=1 —_— 2.18
oo Lllgloo < BL]_LQ ( )
LQ—)OO

where [ is again the Boltzmann factor. This definition is equivalent to the definition of
an energy gap AFE between the two states. Using the partition function, the following
can be written

1 7.
= Il — In——|.
700 = ( LiLy Z++>

L2~)OO

2.4.2. Quantum fluctuations

In quantum field theories (QFT) fluctuations are known as well. One example is the
Lamb shift, originating from fluctuations of the electron around its mean value in the
hydrogen atom. As a result a shift of the spectral lines by some energy AFE takes place.
In QFT these diverging quantities depend on a large momentum scale, the ultraviolet cut-
off. With the Heisenberg uncertainty principle this means that the divergent quantities
depend on small distance scale in position space. This can be seen analogue to the
continuum description of the Ginzburg-Landau theory above, using a continuous field ¢
as order parameter. In QFT, this cut-off is typical at the scale of atomic distances [PS95].
By understanding the physics at these small scales, the parameters for systems on larger
scales can be determined. Nevertheless, in QFT, the nature of the physics on atomic
scale cannot be determined by elementary physical laws, as all quantities of observables
only have statistical meaning. Large distance physics in QFT involve particles whose
masses are very small in comparison to the cut-off scale. Therefore, it is useful to describe
the statistical theory of critical fluctuation as a quantum field theory of particles with
zero mass m. With the above assumptions, this would mean

g ~m . (2.19)
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Considering a time evolved system with a Hamiltonian H, one finds for the correlation
function [DFMS97|

(¢(r,0)p(r, 7)) = (0|6 (r, o>e—ﬁ%§<r, 0)e’7[0) A
= Z(O]qﬁ(r, 0)e 7 |n) (n|¢(r,0)e"T|0)

=" e EnmET(0]¢(r, 0)|n) |,

For a system with two eigenstates, the ground state and the excited state E,, where
AFE = E, — Ey reads in the limit of large times T

(B(r,0)¢(r, 7)) ~ e AFT (2.20)

In the previously defined statistical theory of phase transitions, two vacuum expectation
values can be found in the broken phase: |+) that corresponds to ¢ = 4v and |-)
corresponding to ¢ = —v. The Hamiltonian H is associated with the quantum mechan-
ical Hamiltonian with the eigenstates |+) and |—). Furthermore, there is a symmetric
ground state |05) with energy F via the symmetry transformation ¢ — —¢ performed
by an operator P and an anti-symmetric ground state |0,), whose energy E, is exactly
AFE higher than F;.

This can be imagined as the transition of a quantum mechanical particle from one
potential well into the other. This energy splitting has been introduced in the last
section, in order to define the interface tension by the free energy of the anti-symmetric
system F_ corresponding to the state |0,) and the symmetric system system F.
corresponding to |0s).

The reflection symmetry can be performed by the reflection operator P whose action
on a state |¢)) = ¢(x) is given by

P(z) = P(-x)

implying for the ground states P¢ = —¢. The commutator [H, P] = 0 vanishes, be-
cause the potential (2.16]) is even under this symmetry. This means, H and P can be
diagonalised simultaneously. The two eigenstates of the reflection operator will be

1
10s) = ﬁ(lﬂ +1-))

1

7 () =1=))-

The linear combination of these states deliver the vacuum expectation values

[0a)

1

V2
1
=) = NG (105) = 10a)) - (2.22)

+) (10s) + 10a)) (2.21)



2.4. Critical behaviour in field theories

Figure 2.5.: Schematic representation of the symmetric (a) and anti-
symmetric (b) state and their linear combinations (c), (d),
motivated by [Minl0].

These states and their linear combinations are shown schematically in figure [2.5] The
symmetric and anti-symmetric state give the demanded symmetry
Pl0s) = [0s), Pl0g) = —0q).

In the path integral formalism, the time evolution ([2.20) can be represented by [Das93|

where H is the Hamiltonian of statistical field theory, associated with the Eu-
clidean action via Wick rotation |[LBB91]. Analogous to the Boltzmann factor, the
Planck constant A is set to A = 1, since the theory is evaluated near the critical point.
The z-direction is identified with the Euclidean time in the field theory. Using this struc-
tural analogy, the transition amplitude can be defined equivalently to the previously
defined partition function of the Ginzburg-Landau theory

Z = (+]e"H7T|-) = /Dgz)e*HW. (2.23)

This is analogous to the transfer matrix of a particle tunneling from the initial state
|—) at time —T'/2 to the final state |+) at time 7'/2. If the quantum field theoretical
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Hamiltonian H can be expanded into a complete set of eigenstates, the left hand side of

(2.23]) with the states (2.21) and (2.22)) give the transition amplitude

<_|_|efI:IT|_> — % (efEaT +040— e*EsT>
= % (e—EaT _ e—(Ea+AE)T)
= %G—EaT (1 _ e—AET) ‘ (2.24)

The mixed states vanish, because in this Hilbert space of symmetric and anti-symmetric
functions, the states |05) and |0,) are orthogonal.

This gives a good connection to derive the tunneling correlation length by the energy
splitting

' =AE. (2.25)

Moreover, the energy gap AF is the mass m of the quantum field, as it is the mass of the
particle in rest. Because the correlation length diverges at the critical point, the theory
of critical phenomena is equivalent to a massless field theory. Therefore, the mass m can
be used as the control parameter deviated from the Landau theory, since the zero value
of that control parameter o was reason for the symmetry-breaking.

22



INTERFACES IN ¢! THEORY

As shown, the Ginzburg-Landau functional serves as a universal approach on phase
transitions as well as on interfaces. In the end of the last chapter, the structural analogy
of statistical mechanics and quantum field theory was outlined. Given a field ¢(x),
the following chapter drafts out the theory in the setup of a quantum field theory and
path integrals, often called statistical field theory [LBB91]. The theory corresponds to
a ¢*-theory in QFT. Therefore, reasonable boundary conditions for the field will be
determined first in order to apply this Hamiltonian to the interface in a cuboid box L1 x
Lo xT, see figure[I.1] This setup will be investigated in the Landau approximation, which
means, the vacuum expectation value and the statistically most probable configuration
of a field ¢g satisfying the demanded boundary conditions will be calculated. This will
lead to a classical solution, the kink-solution, which was first given by J.W. Cahn and J.E.
Hilliard in 1958 [CH58]. Additionally the transition energy of the kink will be derived.
It will be shown, that the system is invariant under translations in z-direction from a
physical point of view because the form and transition energy of the interface shall be
invariant under different positions of the interfaces in the box.

For the field ¢(x) there is no general analytic expression. Therefore, a more suitable
approximation, involving fluctuations will be necessary. One way is to perturb the

Hamiltonian (2.14)

oo = [ @a{5ver+vie) 3.)
LixLoxT
_ /dng[¢] (3.2)
with the ¢* potential
Vig) = 2(6” = v?)* (3.3)

by a small fluctuation 7 around the classical trajectory ¢g. Then a series expansion will
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allow a reconsideration of the path, involving small fluctuations in a Gaussian approxi-
mation. These fluctuations will be identified by a fluctuation operator.

In the last chapter the correlation length was observed corresponding to the energy
splitting between the symmetric and anti-symmetric state. The transition through the
interface will be formulated as the tunneling of a particle from an initial state to a
final state through the potential barrier. Under some quantum field theoretical con-
siderations involving pseudo particles called instantons, this treatment goes back to S.
Coleman [Col85]. The upcoming zero mode will be handled with the method of collective
coordinates, where the translational invariance of the system is used to split off the zero-
mode. The system is translationary invariant from a physical point of view because the
form and transition energy of the interface shall be invariant under different positions
of the interfaces in the box.

Conclusively, this chapter will lead to an expression for the interface energy of the
system, which can be evaluated by methods of zeta-regularization later on.

3.1. Boundary conditions for the interface
The system that is going to be modeled must be restricted by the following constraints:

e There must be at least one interface. This means the energetic more favourable
constant solution of the system must be avoided and the phase transition is en-
forced.

e It must be finite in the plane of the interface, so that the boundary conditions
establish an interface. In the other direction the system must be infinite, so that the
phase transition can take place and the proposed kink solution can be established.

An interface can, as described in the last chapter, only exist in the broken phase of
the Ginzburg-Landau theory where the two potential minima exist. Furthermore, the
geometry must be fixed by the following conditions to enhance the restrictions on the
volumina stated in the previous chapter: one direction must be able to be extended to
infinity, because for finite volumes, symmetry breaking cannot occur, and the further
two dimensions are restricted to a finite spatial volume A = LjLs. To make this clear
the following conventions will be used:

e The site with infinitely extended length will be referred to by the z-coordinate,
with z € R, the length of the site will be named T, while later on the limit 7' — oo
will be taken.

e The finite special volume will be referred to by A = Lq X Lo and it will be described
by the vector & = (z1,22) € R? with 0 < 77 < L1 and 0 < 23 < Lo.

Summarizing these geometric restrictions, a volume of L1 x Ly x T" has been constructed
for a field ¢(x) = ¢(&, 2) = ¢(x1, 2, 2), where T — oo. Moreover, realistic boundary
conditions are demanded.
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Remembering that the Ginzburg-Landau theory is a field theory, a field ¢(x) plays the
role of the order parameter. For this field, the interface, established in (z1, z2)-direction,
takes place in the infinitely large z direction when fixed boundary conditions are used.
This can equally be described by anti periodic boundary conditions

O(Z,2) = —p(Z, 2+ T). (3.4)

The two ground states of the infinite volume system in broken symmetry phase system
can be characterized by a vacuum expectation value v > 0 of the field

& = (£|p(x)|£) = =v. (3.5)

To exclude surface phenomena the boundary conditions in the Z directions are chosen
to be periodic:

(w1, 22,2) = ¢(x1 + L1, 22, 2) = ¢(x1, 22 + Lo, 2). (3.6)

These conditions establish at least one transition between ¢ = —v and ¢ = v. To be
accurately, more than one transitions satisfy these boundary conditions as long as the
number of transitions is odd. However, these transitions will be dominated by the one-
transition setup, because in every interface, a transition of the potential barrier must be
overcome. The energetic most favourable states that are dominated by their statistical
weight, the Boltzmann probability, will establish only one interface. This interface profile
originates due to the most probable or — in words of quantum field theory — due to the
classical path. To begin with, the vacuum expectation value needs to be calculated. This

has been already done in the last chapter (2.15)), resulting in ¢ = +v = + 3%2, and can
be also achieved by minimizing the Hamiltonian in the framework of variational calculus

(see appendix [A.1]).

3.2. The kink solution obtained from Landau approximation

In the Landau approximation, the system contains merely the state of maximum prob-
ability, which is the state of minimum transition energy over the potential barrier. The
interface profile is therefore a field ¢g which minimizes the transition energy, where the
Hamiltonian H[¢(x)] is minimized. Consequently, the variational calculus leads to the
classical Euler-Lagrange equation

dH[¢(x)] 1 2 9,3 M
OO0 gy, S(=2V7¢) + 1200 — 200 =0. (3.7)

[\

The derivative used here is the Fréchet derivative, serving as the functional derivative of
an operator (see e.g. [LBB91,PS95]). Taking the above mentioned boundary conditions
into consideration, which imply the appearance of one or more interfaces that gives

25



INTERFACES IN ¢b* THEORY

Figure 3.1.: The kink profile.

the most probable path through the double well potential, these conditions lead to the
Cahn-Hilliard [CH58| profile

#9(2) = v tanh [’;(z - a)} (3.8)

for one kink (see appendix , where the parameter a € R can be chosen arbitrarily
because it is an integral constant and manifests the position of the profile on the z-axis.
Solutions of the form are called kink solutions. It shows the form presented in figure
B-I] The energy of the transition is an integral over the Hamiltonian density according
to equation , where the explicit profile, the kink-profile is inserted. Since the
integration in z has to be performed over whole R, the arbitrary parameter a can be
eliminated by substitution.

Furthermore, this means, the energy is independent from the position of the kink.
This translational invariance will be used later in detail in order to handle the zero
mode using the method of collective coordinates. Let for now be ¢y = gzbgo), because a
can be chosen arbitrarily.

Changing the sign of the boundary conditions ¢g L= Fv leads to the anti-kink

¢o(z) = —vtanh(mz/2). The energy of one kink thus is calculated by integrating the
Hamiltonian density (see appendix |A.2]) and results in

Hy = H [go(x)] = 2L1L2”j (3.9)
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a z

Figure 3.2.: Localization of the kinetic energy of a kink, obtained in appendix

3.3. Perturbing the Hamiltonian with fluctuations

In quantum field theory, the Euler-Lagrange equation gives the most probable classical
trajectory satisfying the Hamiltonian principle of the least action. Small fluctuations
n(x) are added to the classical trajectory (3.8]) ¢o(x)

$(x) = do(x) +n(x). (3.10)

The Hamiltonian therefore is given by

H[p(x)] = H [¢o(x) +n(x)] .

The Taylor series of the Hamiltonian H [¢] around the kink solution with fluctuations 7
is given by

H[p(x)] = H [do(x) +
H [¢o(x +/d ([ n(x)

3 3fM
by @ e N

The potential has the maximal order O(¢?), thus all functional derivatives of the func-
tional H above the fourth order vanish. As discussed before, the classical trajectory
satisfies the classical Euler Lagrange equation , so the second term in the expan-
sion also vanishes. The contribution of orders above two, the so-called interactions, will

n(x)n(x")+....
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be ignored, as they do not contribute to the Gaussian approximation. This leaves to
evaluate the second order of the expression

6*H [‘b] _ 2 " N o
3o(x)06(x) o - {V -V (¢0)} 6(x = x') = Mgy o). (3.11)
So, the expanded Hamiltonian is
H [go 1) = Ho + 3 (n, Mlgoln). (312

where (-,-) denotes the scalar product, here defined by

(f.9) = [ @2/ (x)g(x)

for square integrable functions f,g : R®> — R. In this case, the operator M|[gpg], de-
fined above, represents the contribution of the fluctuations around the classical solution.
Therefore, it is called fluctuation operator and will be given explicitly later. The corre-
sponding partition function reads

— /D(;Se_HM — o Ho /Dne_%(”’M[%]"). (3.13)

This partition function contains a Gaussian integral. A naive way to evaluate this integral
would be

N
Vdet(M[po))

with a normalizing constant A/ due to the Gaussian integral. The Gaussian integral in
d dimensions is given by

(3.14)

/ dyle=3 i v = (2m)4/2, (3.15)

The partition function in can only be determined this way, when all eigevalues
are strictly positive. Because of the eigenvalue Ay = 0 the Gaussian integral diverges.
In other words, as the determinant is a product over all eigenvalues, the determinant
in delivers a zero value and the partition function diverges. There is a connec-
tion between the previously mentioned translational invariance of the kink and the zero
mode. This will be evaluated in detail in the next section with the method of collective
coordinates.

In order to evaluate the fluctuations, the operator M|¢po] is studied in detail now.
It is specially relevant that the operator possesses explicitly one eigenmode with zero
eigenvalue called zero mode. This zero mode is described by the function ¥y. Observing
the fluctuations again, the same extremal condition delivers the following expression
for the fluctuation operator.
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3.3. Perturbing the Hamiltonian with fluctuations

Varying the extrema of the Hamiltonian by a small fluctuation around a classical
trajectory, imposing the same extremal condition (3.7)) as before
0H [9]

=0.
¢ (x) ‘ d=¢o+n

Whereas this means

SH [¢] o o , 3
6¢(X) ‘¢_¢0+77 =V (¢O + 7]) - 7(¢0 + n) + g(gf)o + 77)
— oH [¢] 2 mQ g 9 9
" (%) L:% = Vi =+ 00+ O
2
=0+ [—W = 26k n+ 0P,

Recalling, that the classical trajectory satisfies condition (3.7]), the first term equals zero.
By neglecting higher orders of 7, the calculation leads to

2
v Il =, (3.16)
2 2
with the fluctuation operator which is defined by
2
Mgg] = -V* = T + 265 = — [V* = V"(¢0)] (3.17)

The last step can be shown by calculating the second derivative of the potential (3.3])
with respect to ¢q

1

V(o) =5 (63 - 5*)
2
_ 9 m
=% 5

That is exactly the operator defined in . The fluctuation 7 solving the condition
is identified with the zero-mode ¥, since the Gaussian integral in the partition
function diverges by this mode. The connection of this zero-mode to the invariance
under translations of the kink ¢g(z) on the z-axis is outlined now. The translational
operator T(® is defined by small translations a:

0

do(z +a) = TWD¢o(2) = (1 + aaz) do(2) = ¢o(2) + agh(z) + O(a?). (3.18)

The prime here indicates a derivative with respect to z. By omitting the higher orders
of a, this can be written as

T@o(2) = ¢o(2) + c(a)¥o(2),
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where U corresponds to a translation in functional space induced by the translation of
the position in z-direction. For the classical solution

c(a)Po(z) = ad,pp(z) = amT sech? ( 5 z) (3.19)

is obtained. Assuming ¥ to be normalized, the scalar product provides
(c(a)Wo(2), c(a)Po(2)) = *(a)||¥ol* = ¢*(a).

From (3.19)), the constant can be derived

c*(a) = (c(a)¥o(2), c(a )‘Ifo( )) = a®(¢o(2), #o())

—a/d3 z(¢h(2))? =

according to the calculations of the kink energy in appendix [A:2] Consequently, in the
limit of infinitesimal a, the translation is given by

@Wgo(2) = ¢o(z + a) = o(2) + av/HoWo(2). (3.20)
Comparing (3.18) with (3.20) the following zero mode can be found
/
Wo(z) = %ol2)

VHo

Inserting the zero-mode Wy of the operator M [¢y] for n in the left hand equation
gives zero. Because of the above connection between the zero mode and the transla-
tion along the z-axis, the zero mode delivers a contribution to all one-kink solutions.
The following treatment applied here is called method of collective coordinates |[GST75].
Defining

for a field ¢(x). By the properties of the Dirac delta function follows

1= [agae) = [aeEoe(a)

where a shift and the derivative give
¢0(2)
d*x —
= o [ Ealotz+a) — u(a))

/H3d¢w2+®¢d)
VH,’
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because there ¢o(z) and ¢((z) do not depend on a any more. Furthermore, the derivative
with respect to a in ¢(&, z + a) can as well be written as a derivative with respect to z.
Therefore the path integral over an arbitrary configuration ¢(x) is given by

/ DgeH19) — / Do [ / dajid(f(a))} o~ HI¢l
:/da/qu/d?)x[qb'(f,qua)qjé%

X 0 </d3x [0(Z, 2 + a) — ¢o(2)] @%) ]G—H[qﬂ_

As there is no difference in evaluating all configurations ¢(Z, z + a) or ¢(&, z), the ex-
pression becomes

o= fan oo a6

X & </ A3z [p(x) — ¢o(2)] Qf%%) ]eH[dﬂ

On a symmetric support a € [—7/2,T/2], the first integral becomes T', because the rest
of the integral is independent of a. Setting now ¢ = ¢g + 7, the integral becomes

[ poettel =1 [ Do [ a* [(%(X) 1/ o) 2
X0 (/ d* [go(x) +n(x) — go(2)] %) ]eH[%(x)*”(xﬂ,

where the last expression can be substituted by the series expansion (3.11)) because only
small fluctuations are considered. The expression inside the delta function simplifies and

0
) ((n, 3.21
Vi, 2
is gained. This means, the integral has only a meaning, when
0 )
n, =0. 3.22
(7 322

Because of the energy integral [ d3z(¢))? = Hy the whole integral simplifies to

_ _ 1 s 1 3
Doe 1 — 7.\ /He Ho /D Hl + Lol ] 5 (( , 0 ))} 3 (mMn)+0(n*)
/ pe o€ U 77, (1 %) "))
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Evaluating the derivatives of the classical trajectory ¢o(z) deliver

bp(2) = n;v sech? ( 5 z)
Po(z) = n"iv tanh <W;Z> sech? (ng)
= gtanh (z) by (2).

This means, the scalar product (3.22) vanishes, if

/d%n(x)gb'(z) =0.

(n, 65) = % (1, tanh(mz/2)¢h(z)) = 0.

Explicitly this means

Then the above equation simplifies to
/ Dpe 19 ~ T\/Hye o / Drez (M) (3.23)

in second order expansion. By condition ({3.21]) follows, that only the fluctuations orthog-
onal to the zero mode are included in the integral (3.23]). To be explicit, the eigenvalues
Ao < A1 < ... < A\, of the eigenfunctions 7 in (3.16]) the integral is evaluated according
to

/Dne (n,Mn) _ /Hdc e 2zn>o

n>0

/dCO/HdC e ~3 Xm0 tn

n>0

—/ 2% /d /nl;[Odcne 3 20

Y5
qf)o N [da
det ¢0))

where the apostrophe denotes that the determinant is evaluated omitting the zero mode
Ao = 0. The factor v/27 is inserted due to the collective coordinate ¢g in the Gaussian
integral

/Dn:N/IZI\C/l%

0 o) = (2m) 2.

\/7
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3.4. The energy splitting

The partition function (3.13]) reads

H [¢o) e—Hl¢o] [da

Z=N\=; Vet (M[do])’

(3.24)
with H[¢] given in (3.9).

3.4. The energy splitting

From statistical field theory it is known, that the partition function for the broken phase
of the Ginzburg Landau theory corresponds to a transition amplitude in quantum field
theory induced by a time-evolution operator e 7. In the broken phase, there is no
degeneracy at finite volume. Furthermore, there is a symmetric ground state |05) with
energy F via the symmetry transformation ¢y — —¢g performed by an operator P and
an anti-symmetric ground state |0,)

Using the analogy between the partition function and the particle tunneling from
one state to the other, the following contribution for one kink on symmetric support
[—T1/2,T/2] is followed by (2.23)) and (3.24])

(+]e=HT| =) = N'T/Hy( det’ M)~1/2e~Ho (3.25)

with M = M]g)].

3.4.1. Multi kink contribution

A next step is the introduction of a sharp kink approximation, often called dilute gas
approximation. From equation it can be inferred, that the kinetic energy of kinks
are precisely localized with a size for order 1/m for large T' around z = a, see as well
Figure[3.2] This form is often called soliton in nonlinear-physics and resembles a pseudo-
particle in quantum field theory, called instanton. This means, there are, as stated
previously, more than only one kink. There are n kinks playing a role on a large T
scale. If the time is large T — oo, the characteristic intervals become 7' > m™! and
the corresponding Hamiltonian corresponding to such a configuration is nHy, where Hy
is the Hamiltonian of one kink. This can be seen in Figure This means, most
contribution of the multi kink energy splitting result from decreases and increases on
the states with ¢g = +wv, which is due to

M() = —VZ + m2.

This expression is comparable to the harmonic oscillator in quantum mechanics. From
quantum mechanics is known, that the spectrum of the harmonic oscillator is strictly
positive. Therefore, no correction due to a zero mode will be necessary. The path
integral in this case is similar to the previous path integral, giving

(+|e 1T |=) = N (det My) ™ /2e~Ho,
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ﬁ 7 o

t1 to t3 t4 ts

Figure 3.3.: Multi kinks in a sharp kink approximation.

where Hy corresponds to the symmetric functions. If the kinks are in sharp kink approx-
imation and the time is large enough, the functional integral can be evaluated summing
over all these configurations for widely separated objects go to H ~ nHg, which gives
according to [Col85|

e = gne o (3.26)

with a constant K to be determined later, with n objects centered at times ¢1, s, ..., ty,
where

“T/2<ty <ta<...<t,<T/2.
All multi kink configurations which fulfill the boundary conditions are the configurations

with an odd number of kink and anti kinks following each other. This means the integral
over all these configurations gives

T/2 t3 to
/da = / dty, - -- / dty / dt; =T1"/n!,
~T/2 ~T/)2 —T)2

which can be easily computed and proven by induction. Likewise, n must be odd by
definition of the boundary conditions. The determinant then is considered being only
the determinant over a product of separated harmonic oscillators, resembling the wells
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3.4. The energy splitting

of the double well potential. For n widely separated kinks, the result is

. Ke—Hor)"
(He=HT/M) -y = Ar(det Mp) /2 3 (n') (3.27)
n odd ’
exp (Ke HoT) —exp (—Ke toT
:N(detMO)fl/Q ( ) 5 ( )

1
_ —1/24 —Hp _ _ —Hp
= N (det Mo)™/* S exp (Ke o) [1 — exp (~2Ke o),
where the last expression can be compared with the initial equation (2.24]), so that
AE = 2Ke o,

The degeneracy of the two energy eigenvalues is broken by tunneling amplitude, the
difference is given by a Gamov factor e H0. This can be compared with the prior
statement, giving (3.25) and (3.27)) for n =1

| H,
N (det Mo) V2 Ke o = NT ?0( det’ M)~ 1/2e o,
T

o [Ho [ det' )"
N 2 det Mo ’
where the factor /27 is due to the zero mode.
Conclusively

so that

AE = 2Ke Ho

H
=2/ =2
2w

where the absolute value is used because the determinants are positive.
This solution indicates, that the energy splitting can be given in the proposed form
using the interface tension ([2.18))

—-1/2

/
M
det e Ho, (3.28)

det MO

AE = Cexp(—o(L1, La)L1Lo).
Then, the interface tension is given by

O'(Ll, LQ)LlLQ =-InAFE+InC.
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4

EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

The aim of this chapter is to find an expression to calculate the previously assessment

for the energy splitting
| H
AE = 2¢ Ho 10
2T

Riemann zeta functions and heat kernels can express the determinants involved in .
By taking into account, that there is a zero mode in det’ M, asymptotic behaviours of
heat kernels can be used which go back to H. Weyl in 1911 [Wey11]. In this approach,
the divergences can be handled. Especially, the heat kernels transform the problem into
a problem of zeta-functions, which can be calculated via zeta-function regularization
methods. It will be shown, that the expression

det’ M -1/

det My

(4.1)

det’ M

. det M()

(4.2)

can be transformed into integrals, following [Miin89]. The calculation is explicitly given
for L x L in the diploma thesis of P. Hoppe . This calculation will be redone, in
order to ensure, that the structure of these integrals also hold in the geometric dependent
setup. Finally, this chapter will show that only one of the three integrals must be
recalculated in order to satisfy the geometric dependence for L1 x Lo, Ly # Ls. This
calculation is brought up in chapter [5

In the preceding chapters, the expression for the fluctuation operator (3.17) was ob-
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

tained:
Mooy I
2 270
2 2
S v % + % tanh? (22)
2
3
=-V2— % + §m2 tanh? (?z)
3 3
=-VZ+m?— §m2 + §m2 tanh? <T;Lz>
3
= -VZ4m?— §m2 sech? (?z) .

The operator My corresponds to the previously mentioned dilute gas approximation
My = —V? +m?.
Defining the two dimensional Laplacian for the transverse modes
A= —9,0" — 5,0?,
the fluctuation operator can be expressed as
M=A+Q, My=A+Qo

with the z-component (in QFT time-like component) of the fluctuation operator

Q=—0.,0°+m?— ng sech? {ng] ,

Qo = —8,8° + m2.

First of all, the methods for the following chapters shall be introduced.

4.1. Zeta function regularization and heat kernel methods

In order to evaluate the determinant of an operator, the spectrum of the operator can
be used. For a matrix A the determinant is given in the following manner

n
det A =], (4.3)
i=1
where \; € R;i € {1,2,...,n} is the discrete spectrum of A containing a finite number

of eigenvalues A\; > 0. The Riemann zeta function is defined as

=3 &

k=1
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4.1. Zeta function regularization and heat kernel methods

for ®(z) > 1. An integral representation of the zeta-function is

1 detz1
k z __ dttZ 1 7]€t
=Y

et —

where the I'-Function is defined as

o0
z) = /dttz_le_t.
0

Via analytic continuation (see reflection formula in appendix |B.3)) the zeta function for
z € C\{1} can as well be defined. The derivative of the zeta function provides

Ink
Z = —Zlnk

d

which means the zeta function can be used to evaluate the determinant of a matrix A
defining a spectral version of the zeta function, in short spectral zeta function

n

d > o0
L) = —zlmi = —mH Ai = —Indet A (4.4)

z=0

using in the last step because A is self-adjoint and thus independent from the
chosen base.

By analogy with the handling of the matrix A, the same approach can be used for
self-adjoint operators O. The product of the eigenvalues gives the determinant of this
operator

det O =[] X

where \;,7 € N is the spectrum with A; > 0 for all ¢ € N, which is independent from the
chosen base, because O was defined to be self-adjoint. Often the spectrum of an operator
is neither discrete nor finite, the main idea in order to evaluate the determinant, is to
rewrite this expression in terms of an operator zeta function. This zeta function is
defined by analogy with for the operator O, where for a continuous spectrum the
spectral density will be used

Co(z) =TH(0*) =} % (4.5)

i=1
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

If the spectrum is not strictly positive, a shift can be done by adding a regularizing
mass 12 to the eigenvalues. Nevertheless, the trace is also defined for continuous spectra.
The last step in is only defined for discrete finite spectra and to be understood
symbolically, or as a definition, in other cases.

By taking the derivative at z = 0, the previous expression can be regained for
operators

d¢o(#)
dz

(e 9]
- l%—;kjslnki
1=

= —Zln/\i =—1In (H)‘Z> = —Indet O.
i=1 i=1

s=0

Compendiously,
IndetO =TrInO (4.6)
d¢o(2)
- _ 4.7
dZ 2=0 ( )

is achieved, as long as the operator zeta-function (p(z) is well defined. Moreover, it is
useful to define a heat kernel

Ki(A) := Tre 4, (4.8)

so that a suitable ¢ € R insures that the trace is well defined. The kernel defines a zeta
function

CKt(A)(Z) = F(lz) /dtt'z_l[{t(A)7 (4.9)
0

because

(ko) (0) = —Indet A= —InJ[ X = =) InA,.
And with (4.7)), it can be determined that

Trin A = —¢4(0) (4.10)
= —/dtt‘th(A), (4.11)
0

where from now on, the operator zeta function of a heat kernel will be identified by

Ca(2) = Ck,(a)(2)-

As there are more operators involved in the following sections, the factorization proper-
ties of heat kernels will be useful. For two operators O7 and Oy the heat kernel factorizes
due to the Baker-Campbell-Hausdorff formula

Ki(O1+09) =Tr e H01102) — my (eftoleftOQetQ[Ol’OQ]/QJ“') .
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4.2. Transforming the determinants into integrals

Here, the last factor depends on convoluted commutators of the operators, so that for
commutating operators

K (O1+ 09) =Tr (e_tole_t02> =Tr (e_tol) Tr (e_tOQ)
= K;(01)K(02) (4.12)
the properties of the trace Tr(O; ® Oz) = Tr(O1) Tr(O2) in the last step are used. In

this case, the exponential function provides the direct sum, which is the sum of the
eigenvalues of the operators O and Os.

4.2. Transforming the determinants into integrals

From , the evaluation of the fraction of the determinants needs to be calculated. In
the last section, it could be made obvious, that it is common for the evaluation determi-
nants of operators containing an unbounded spectrum to use zeta function-regularizing
techniques for expressions like

det’ M
n
det MQ

(4.13)

instead of using the expression in (4.1)). For equation (4.13), there exists a representation
in integrals, which will be developed in the following theorem.

THEOREM 4.1: TRANSFORMING THE DETERMINANTS IN INTEGRALS
The determinants in (4.1) can be transformed in integrals according to

det’ M
n
det MO

d
= (%) (4.14)

z=0

with
¢(z )241(2’)+C2( )+ G3(2),

LiLy -
/ det*1 417Tt2 K(Q) — 1},

,1

(2)

1
ar [K(A) — 1],
2) 0/

o) - 22| [RiQ) - 1],

=

G(2) =

where (1(2) and (2(2) are defined for (z) > 1 and analytically continued to z = 0 and
(3(z) is valid for all z and the difference of the heat kernels Ky(M) = Ky(M) — K;(My).
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

The proof of this theorem will take several transformations, which involve studying the
zero-modes of the operator M and My as well as investigating the asymptotic behaviour
of the involved heat kernels. At first, the zero-mode will be removed and the factorization
property will be used.

LEMMA 4.2: FACTORIZATION OF HEAT KERNELS
Introducing a regularizing mass j> > 0 the expression ([#.2]) can be rewritten in

det/ M [T 2 2
In dot My _;lzlg%) L/dtt Ki{(M + p*) —Inp”|, (4.15)
__ 4 ! 7dttz_1f( (M + 1) (4.16)
T &l TG e |

with where K;(M + ;i?) is defined as
Ki(M + ) = e " Ky(8) [K(Q) — Ki(Qo)].- (417)

Proof of lemma /.3 In order to handle the zero mode, a regularizing mass p? is intro-
duced which is chosen to be arbitrary large to dissolve the zero mode of M. The shift
in the spectrum of M and My with p? has been carried out in order to ensure that
the spectrum is always positive. In order to calculate the left hand side of the
determinants are transformed into a trace according to and the zero mode of M
is split off

det’ M M
1 =Tr'In — 4.1
. det M[) e MO ( 8)
1 M + p? 2
= }ng% [Trln (W) +Inp (4.19)

and following (4.11)) the heat kernel can be identified

det’ M . I 17 2 2
N St _—llg% L/dtt Ki(M +p%) —Inp”|, (4.20)
where K;(M + p?) is defined as the difference of the heat kernels
Ry(M + )+ = K (M + 22) — Ky(Mo + ) (4.21)
= R (A)E(Q), (4.22)

where the fact that heat kernels factorize (4.12]) was used, because all commutators are
Z€ero

Ki(M + 1i2) = e " K, (A) K1 (Q). (4.23)
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4.2. Transforming the determinants into integrals

O]

In [Hop93] a proof is given, that expression (4.15) exists for t — oo and g — 0. The
asymptotic behaviour of this expression for ¢ — 0 will be investigated later on. To
achieve this, the heat kernel of the operator Q will be calculated at first.

LEMMA 4.3: HEAT KERNEL FOR THE OPERATOR ()
Using the spectrum and the spectral densities of () the limit T' — oo the heat kernel

K (Q) is given by
Ry(Q) = exf(mov/) + e~ i exf <”;0\/£> ,

where erf(z) denotes the Gaussian error function.

Proof of lemmalf.3 First, the spectrum of @ is evaluated. Following [Hop93] and
[MF53] the spectrum of @ and Qo can be evaluated, which is given by the eigenmode
for translation

e1=0 (4.24)

and the discrete eigenmode

€ = ZmZ, (4.25)

corresponding to vibrational modes. The continuous part is given by

e =m> + k2, (4.26)
with the spectral density
1 p? + 3m? _
go(p) = — |T —3m N 2 +0O(T™h).
2 (pz + Zm2> (P2 + m2)

The spectrum of Qg can be obtained by solving the wave equation
d? 9
@Qpn(z) = (en +m7)Pn(2)

which gives
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For large T', the spectrum goes over to a quasi-continuous spectrum

ep=p* +m? (4.27)
with the following spectral density

. T

go(p) = Dy

The difference of the spectra is given by

241,
9o(p) — Jo(p) = L [—37” (p - +0(T7h), (4.28)

2 4 %mz) (p2 + m?2)

where the lower orders can be neglected in the limit T — oo.
Using the eigenvalues €1 and ey from (4.24]) and (4.25) as well as spectral densities of
Q@ and Qo from (4.28)), the heat kernel K;(Q) in the limit " — oo reads

R@ =1+t [ dplan(p) — go(p)]e @

—00
(o)
T2X ) pemim’ 4 / dpg(p)e @ +m?), (4.29)
—0oQ
where the spectral densities (4.28)) can be used in the limit T" — oo

m 2 1
= —— . 4.30
9(p) o (pQ—l—m% +p2+nf)> ( )

These integrals (as shown in the appendix are given by

/d x2x+a :g[l—erf(a\/{f)}.

+a?

This simplifies the heat kernel to

2m

Ki(Q) =1+ e amt _ —(1 —erf(mV/t)) — _*mQt;n 27 [1 — erf(m\/{g)]

2 m ™m 2

= erf(mv/f) + e 1™ erf (Z\/E) . (4.31)
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4.2. Transforming the determinants into integrals

REMARK 4.4. The asymptotic behaviour in the area = ~ 0 of the error function are given

as
ari(w) = 22— 24 0(a%)
= VT 3T )
so that (4.31)) conducts
. 3 3m3
Ky(Q) = 22— 2132 L 0(#5/2), (4.32)

v 3V

where the series expansion of the exponential function
exp(—z) =1 —x — O(z?)

is used as well.

In the limit ¢t — 0, the asymptotic behaviour of the heat kernels are given by the
Weyl law [Weyll]. A physical reasoning of this law can be found in the article ’Can
one hear the shape of a drum?’ by Marc Kac [Kac66]. Heat kernels can be treated like
the integral kernel of the heat equation, therefore, physically, the limit ¢ — 0 represents
the initial state. Imagining, that the initial state of a heat source can be described by
a Dirac d-function, the boundaries of the system play no role in the limit ¢ — 0. This
is similar to a diffusion equation in statistical physics, where these thoughts can be as
well applied.

LEMMA 4.5: ASYMPTOTIC BEHAVIOUR OF THE HEAT KERNEL

In the limit t — 0 the asymptotic expression of the heat kernels are given by

L1Ly
4rt

Ki(M + p?) = (a1 4 aot) + O(%/?),

7

with

a=m o 3ml e
1_271" 0= 2772()“'

Proof of lemma[{.5 In Remark the heat kernel of K;(Q) was observed to behave
like

K(Q R0
The limit for the e~ part is due to the exponential function

e =1 —tu® — O(?) (4.33)
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

so that

412 t—0
e M ~ 1.

This leads to the fact that the heat kernel of the Laplacian is viewed asymptotically.
Here, the Weyl formula applies [ANPS09]

Ky(A) = m +a+0(), (4.34)

where ) = Ly Lo is the area of integration and « is a constant not needed. Consequently,
K(A) RV
Therefore, combing the above asymptotic behaviour for ¢ — 0 leads to

K(M + ,lLQ) t:)/O t73/2
t Y

implying the integral diverges at ¢ = 0. To handle this divergency, the asymptotic
behaviour is examined later on in detail.

Combining the asymptotic expression of the heat kernel of @ and the series
expansion of e~ th’ (14.33)

with (4.34)), the term

~ L1L2 3m 3m 1
R(M ) = L2 |70 T

T “m?+ /ﬂﬂ + O3

2
is found. For the integrand of the zeta function with

3m 3m (1 o L2
ap = — ag=———\(=m
! o2’ 0 or \2 0 H

is

- 1L 1
tz_th(M + /,LQ) = ﬁtz_l/Q <a1t +ag+a_1t+ 0(t2)> .

O]

Sequentially, the determined expression for the asymptotic expansion of the heat ker-
nels will be used to split the integrands diverging parts from the non diverging parts in
the limits ¢ — 0 and u? — 0
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4.2. Transforming the determinants into integrals

LEMMA 4.6: SEPARATING THE DIVERGING PARTS
Using the asymptotic expansion derived in Lemma the searched expression can be
transformed into

det M
det MO dz

TG /dttz R (M) = 1], (4.35)

where K;(M) is the difference of the heat kernels of K;(M) and K(Mp).

Proof of lemma[{.6. The asymptotical observations in Lemma 4.5 mean, that the diver-
gencies, which come from p — 0, can be isolated. The terms diverging for ¢t — 0 are

separated with a1 := a; Ll\/£2 from reads

TUKGH(M + ) (4.36)

CM—}—/LQ(Z) = T(z

{ (M + pi?) — et

— 01— 1) [ant™1/? — 7] }

1 00
1 1 2
e B A i p— / det? et 4.37
+ r(z)al/ e e (4.37)
0 1
=:11(2) =:I5(2)

where O denotes the step function with O(z) = 1 for z > 0 and ©(z) = 0 for x < 0.
The separation has been executed between the ¢ € [0,1] interval and the ¢ € [1,00]
interval. In the ¢ € [0, 1] interval the asymptotic behaviour of Lemma |4.5| has been used.
Combining the two intervals is regained. Incidentally, the derivative

d 1 1 1

— 1 lim I 1

T, Ty ) = i (rf( e (z))

= limI(z)

z=

with an integral I(z) will often be used, where the identities of the gamma function were

used according to appendix
The last integral now will be evaluated. Since it converges for z = 0, the derivative

can be taken
o0 o0
1 / Atz et = / dtt~le—tw’
z2=0 F(Z) 1 1

= —y—Inp?+ O(u?). (4.38)

d d
I = —
2(2) dz

dZ 2=0
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

The last step results from the exponential integral Ei(x) and it’s series expansion (see
e.g. [BMMS13|)

T et
Ei(z) = — /dteT ~v+Inz+ O(x),

—T

where v = 0.5772... is the Euler-Mascheroni constant. The second integral in (4.37)
will be evaluated for z > 1/2

1
1 . 1 2
1(2) = i / A = g (4.39)
0

The derivative at z = 0 is with abuse of the condition R(z) > 1/2 (for details see Remark

4.7)

d 2 _
dzl,_g22—1
so that
d d 17
| L) = —|  ——ay [ dt¥3? = —4a. 4.4
e F(z)“lof o (4.40)

The first integral of (4.37)) is renamed

wlz) = F(lz) O/dtt“{f(t(M +2) = e 01— 1) [ayt /2 - e ] }

where the index shows the value of the regularising mass p?. Furthermore, it defines a
new zeta function (j,(2). For t > 1, the above integral gives, due to the properties of the
step function,

1
I'(2)

Q://L(Z) = 7dttz_1 [Kt(M—l— M2) . e—tuq _ (4.41)
0

This means, that including the values for ¢ < 1 from the step function

1
G(2) = Cul2) + F(lz) 0/ dets=! a1/ — o]

and, because the diverging parts have been split off, the limit 4 = 0 can be taken here

1
5(’)(2’) o C~0(Z) + F(lz) O/dttz_1 [&lt—lﬂ _ 1]
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4.2. Transforming the determinants into integrals

where again for R(z) > 1/2

1
U] = — -
I'(2) O/dtt {al ] I'(z) \2z—-1 =z

using 2I'(z) = T'(z + 1). Now taking the derivative, the first part equals (4.39), giving

d 1 20 1
— — = —4a; — 7. 4.42
dz|,—g (F(z) 2z—1 T(z+ 1)) a7 (442)

(see appendix [B.1)). This concludes

d = d -
— = — —4a; — . 4.43
TG = | ae —am -~ (1.43)
Remembering (4.15)),
det’ M . T 15 2 2
1ndetM0 __}}E%) L/dtt Kiy(M +p) —Inp
@38 .. d
1.37) (438 d -
- — Co(2) +2a1 + v+ lim (ln 2 —1In ,u2)
dz|,— =0
Em)  d) s
= az |- Go(2)

can be found. Conclusively, this means, with the definition of (4.41)), in the limit x — 0

det’ M d 17 i
mn——— =— —| — [de¥ V| K(M) -1 4.44
et My | dzlasg F(z)o/ K = 1], (4.44)
which concludes Lemma O

REMARK 4.7. The integrals in (4.40) and (4.42) were not defined for z = 0, thus the

solution

1
/ det*3/2 = 4
z=0 0

is not valid for R(z) < 1/2 and requires a study of their analytic continuation to R(z) <
1/2 or a dimensional renormalisation. But this is not necessary, because in the final
conclusion both of these integrals indicated with value 4 cancel out.

a
dz
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

Now a simple expression of the heat kernel is found that can be used to separate the
z-direction from the other directions. The following proof will complete Theorem

Proof of theorem[{.1. With K;(M) = K{(Q)K;(A) the z-direction can be split off far
away from the other spatial directions

8(2) = G2) + Gale) + Gal2) (1.45)
where
G(2) i [R@-1). (4.46)
G(2) = 5 B Zodttz_l [Ki(A) —1], (4.47)
() = i) - (222)] [R@ - 1], (1.48)

where in the symmetric case L X L the heat kernel of the Laplacian K;(A) can be
identified with the Jacobi #-function

= 3 e = 121 )),

ne”L

The left hand side of (4.45)), the zeta function (4.44)), can be achieved by summing the
three above integrals. |

4.3. Calculating the interface tension

In the following, the previously obtained integrals will be evaluated. It can be seen, that
the structure of the integrals {; and (3 is not changing by reconsidering the geometry
of the system. Thus, the solution of these integrals can be taken from the previous
literature.

Contribution of ¢, ()
From (4.29)) with A := L; Lo the integration can be done

Ci(z) = Fl/dttz 1L1L2(47Tt) [f(t(Q) - 1}

/dttz 2 —3m2t/4_|_ L1L2 /dttz 2 / dpg(p)etm 2 4p?)

47rF
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4.3. Calculating the interface tension

This integral is solved in [Miin89] in four dimensions and in [Miin90| in three dimen-
sions for the case L = L1 = Ly. Another approach involving residue calculus and the
properties of the complex logarithm will be shown in appendix This provides the
solution

d L1l 2( 3 )
e Gi(z) = L 3+41n3 (4.49)

With Ly = Ls = L, it can be observed that the geometrical dependence does not change
the solution, which was obtained before.

Contribution of (,(2)

The contribution of (2(z) is given by

1
I'(z)

Golz) = / At [ (A) — 1] (4.50)
0

The heat kernel K;(A), which is by knowing the eigenvalues of the Laplacian

Ki(A) = Tre 8, (4.51)

= E e_)\nlvth’

ni,na
where the eigenvalues are given by

2 2

)‘m,nz = (277)2

ni  nj
212

In (4.50)), the zero-mode of (4.51)) for n; = ng = 0 is avoided by the subtraction of 1, so
(o reads

1

R e

oo
5 / dttz~Ledmnat

ni,n2 0

where the integral is exactly the gamma function that cancels out. Therefore,

OED P

ni,n2

2 27177
—(2m) 2 S [ 2 4.52
(2) }j[L%JrL% (4.52)

ni,n2
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

needs to be calculated. In the case of L1 = Lo = L, this function is called Epstein-
Zeta function and has been calculated before. In the diploma thesis [Hop93|, an explicit
calculation can be found. In [Eli95], another approach can be found. The result in this
literature is

d¢o L? r(3/4)]
=2 =—In=—+2In|V2 . 4.
|, "t n[\[m/z;) (4.53)
2
~ - 147634, (4.54)
47

The result implies, that there will be a similar first term ~ In L1 Ly and a term, which is
depending on the geometric dependence of the problem, which must result in the second
term of for L1 = Ls. Thus for L1 # Ls equation needs another calculation
which will be done in the next chapter, including this geometric dependence.

Contribution of (5(2)
The (3(z) contribution in [Min90| is given by

d

—|  @(z) =2 7\/§Ame*\/§m‘/2
dz T

+ faster decreasing terms.
z=0
In this calculation the properties of the Jacobi § function were used, which do not apply
in the present case, because there is no fixed L in both spacial directions. Nevertheless,
it can be observed, that for large L, therefore for large L ~ /A = /L1L, this term
vanishes. This observation will not be proved in detail here. These calculations of (i (z)
and (3(z) leave the (3(z) contribution to be calculated.

4.3.1. Dimensional renormalization

The interface tension shall now be evaluated in dependence of physical quantities. These
are given by the system area LjLs, the inverse mass mgl as the correlation length, and
the renormalized coupling gr. In the proceeding, the broken phase is observed in first
loop order. The relevant renormalization was derived in one loop order in [Miin90,
explicit calculations are given for instance in [GKM96] and in the diploma thesis of M.
Kopf [K6p08|. Setting the extra dimension d = 4 — € in L = /L Lo, all equations in
these works stay invariant. Therefore, the calculations will not be given in detail here.
The renormalized coupling is given by
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4.3. Calculating the interface tension

with the dimensionless coupling

9R
Uup = —.
mp

The aim is to give the dimensionless coupling ug in first order. In this one loop scheme,
no orders above O(up) fall into place. The energy of a kink

2Am?
Hy = 22"
g

shall be expressed by the renormalized values. Therefore, a series expansion up to the
first order is used for the mass

m=mpy/1 S8 1 —1287ruR+(’)(uR) (4.55)

3 3

m_my (9 2 T 2 )
T on <1 1287TUR+O(UR)> <1 327ruR+O(uR)
3
mp 37 9 )

4.3.2. Geometric independence of the interface tension

The contributions of to the energy splitting of (;(z) and (3(z) were obtained before. The
contribution of (2(z) contained a term dependent on the system size and another term
independent of the system size for Ly = Lo = L. Assuming, for the setup Ly # Lo, this
will lead to a part depending on the system size and another term depending on the aspect
ratio L1/Lo of the system. The contribution of (2(z) has as well been seen only in the
prefactor. Thus, in this section, it will be assumed that again only the prefactor changes
because the analytic calculation of (2(z) in [Min90] was similar. The derivative of the
sum over the eigenvalues A, ,, will as well give a logarithmic contribution, depending
on the geometric dependence of the system which will expressed by the aspect ratio
T =1Ly /Ly. Thus, the prefactor is C(7) in [Min90]

AE = C(1)exp(—o(A)A), (4.57)
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EXPRESSING THE ENERGY SPLITTING BY INTEGRALS

setting A := /L1 L. In conclusion, the exponent of the energy splitting (4.1))
—-1/2
det’ M /

AE =2 Ho [ =2
¢ 27 |det My

can be calculated now depending only on (i(z). Here, Hy = 2Am3 /g and

det' M
n
det MO

- <a()

= —%Cl(z)

z=0 2=0

It has been observed that (3(z) contains no relevant contribution to the interface tension.
The following results were obtained for

A 3
/ _ 2 <
¢1(0) = L (3 +t1 In 3)

with A = L1 L. and in [Min90]
A
/ e — _—

where B(7) is still to be calculated, because of the geometric dependence of this factor.
Therefore, the determinants become

-1/2

‘ det’ M

1A B }
det My

= exp [—&Tm <3+41n3>—1 e 5

e_B(T)/2 A 9 3

This means, the energy splitting is given by

2Am3 e 24m3 A
AE =2 m eXp _am —m2<3—|—31n3>+...
2mg g 8T 4
/2 /2 24Am3 A
2m3 m
=4 —7exp ——m <3+1n3>
9 V2 [ g 8
= C(1) exp(0s04),
where
1 . om3  m?2 3
Oco = lgréoAJ(A)_Alg%o<g+87r<3+4ln3)+ )
om3  m?2 3
=—+ —(3+-1In3
g + 37 ( + 1 n )
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4.3. Calculating the interface tension

In a last step, this interface tension is expressed by the physical variables achieved by
dimensional renormalization. It follows with (4.56)) and (4.55))

1
— mhug 5 (3+31n3>

ur 64w 4 1287 87 4
m2 up (13 3

=2—A(1-=(=>+—-In3|+0 2).
UR < Ar (32 tg™ >+ (uk)

This is precisely the result obtained in [Miin90|. Nevertheless, the precise calculation for
the case Ly = Ly = L in [Hop93| indicates, that the interface tension will not change
under other geometries. But the prefactor C' can contain a dramatic change for the
energy splitting, thus for the correlation length of the system. With these calculations
it should be clear, that for the case with geometric dependence on a L1 x Lo geometry,
the prefactor must follow two restrictions:

e It must provide the result (4.53|) for L; = Lo, which means for the aspect ratio
7 = i. This indicates, that the theory can still be evaluated in the scheme of zeta
regularization techniques.

e A certain modular invariance must be given, as the system is invariant under the
change of Ly <+ Lg, which means, that the prefactor must be the same for 7 — 1/7.

These considerations will lead to the formulation of the theory for the geometric depen-
dence of the Laplace operator under the modular invariance 7 — 1/7.
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5

THE DETERMINANT OF THE LAPLACE OPERATOR

In the last chapter, the integral (o, which is the determinant of the two dimensional
Laplacian, was identified to play the key role for the geometric dependence. In the
literature, there are some approaches to calculate the determinant of the Laplacian that
will be used here. The first approach is due to D. B. Ray and I. M. Singer [RS73| and in
physics C. Itzykson and J.-B. Zuber [IZ86]. Mathematically, this approach is even older,
going back to the Kronecker limit formula [Sie61]. Thus, this calculation will need a deep
knowledge of special functions, many properties are given in the appendix [B] Then, the
calculation is some kind of straight forward and easy to understand. By this connection
it this calculation will be subsumed under the title Kronecker limit formula.

The second approach uses less constructions over special functions, but a many prop-
erties of complex integrals and complex analysis, mostly governed by the Cauchy residue
theorem. The key idea is due to [Pol86] a Sommerfeld-Watson transformation. Therefore,
this section is named after this transformation.

The last approach on the determinant differs completely from the other two. In this
approach the structural analogy to a Bosonic string will be used in order to evaluate
the upcoming expressions and the Laplacian will be identified with an infinite set of
harmonic oscillators coming from the massless Klein-Gordon equation. This approach
is motivated by J. Baez |[Bae98a, Bae98b)|.

Calculating the determinant of the Laplacian on an infinite plane, the plane is equiva-
lent to a sphere, which is a Riemanian surface. In the context of critical phenomena, the
simplest non-spherical case of a Riemanian surface is a torus, which is identical to a plane
with periodic boundary conditions in two directions. The two directions are separated
in a holomorphic and anti-holomorphic sector. The interactions between these sectors
are revealed by modular transformations [DFMS97]. The torus can be imagined as the
plane with periodic boundaries, where one direction is transformed by an exponential
transformation into a circle, which leads to a cylinder. In the other direction, the peri-
odic boundary conditions also apply, so that the endings of the cylinder are connected
leaving the form of a torus (see figure . This transformation is a conformal mapping,
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THE DETERMINANT OF THE LAPLACE OPERATOR

SEEEREN

Figure 5.1.: Transforming a plane with periodic boundary conditions into a torus.

leaving angles and local distances preserved but not distances at all. Thus, the torus can
be defined by two independent lattice vectors on a plane. On the complex plane, these
vectors are represented by two complex numbers wy and wo, where the area of the torus
is A = $(waw;). The modular ratio therefore is 7 = wy/w;. Under the imposed periodic
conditions in x1 and x9, direction the functional is invariant with respect to translations
by the periods w; and ws.

5.1. Kronecker limit formula

In this system, the function is restricted on asymmetric domains Ly x Lo periodic bound-
aries. This calculation follows the work of C. Itzykson and J.-B. Zuber [IZ86] and is
presented more detailed in the textbook . Historically this method follows an
approach in mathematics outlined by D. B. Ray and I. M. Singer ’Analytic Torsion on
two dimensional manifold’ using the Selberg trace which serves as an analogy to
the Poisson summation formula used in [Miin89]. The eigenfunctions of the Laplacian
A for a system with periodic boundaries are given by the equation

A‘P(wla 372) = )\m,m@(ajla x2)

where the eigenvalues A, ,, are given by

2 2
_ 2 |M1 N
Aniny = (27) 2 + 2 (5.1)
By introducing the values
wi =1L,  wy=ily
with W] = w1, W2 = —ws

a lattice A can be defined on a torus T = C/A

A = {win +wom|n,m € Z} .
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5.1. Kronecker limit formula

The dual lattice A* is then given by the generators

k1 :7 —i%, /jfz = Z%
with ky = ki, ko = —ko,

where A = Imwyloy is the area A = LjLo, which remains invariant under the modular
transformation. The eigenvalues take the form

n1L2 2 TLQLl 2 2 inle 2 Now1 2
21)? =(2
W[(A)*(A)] W(A)*(A)
which can be rewritten in terms of the dual lattice
27\ 2 2 21\ 2
(A) {—n%wg +n%wﬂ = (A> In1ws — now |* . (5.2)

Keeping in mind that wy € iR, resulting in Wy = —wy, now the eigenvalues (/5.1)), become

Aning = (21) [nuky + noks|® = (21/A)? [naws — naw | .
The modular ratio is given by 7 = wo/wy = iL1/Ls, which can be transformed in the
following way

= w1 /we = —ko/k1 = T%.

Introducing the modular ratio 7 = wa/wi, the sum over the eigenvalues (4.52)) can be
expressed by

1 1
—5n det/ A=Y\ }2 = 5G’(O) (5.3)
with the Eisenstein series
A |* / 1
= I — 4
Gls) =5 > (5.4)

Now the equivalence of the right hand side of (5.3) to (4.52)) can be proven

A 23 A |* v log|m + nT|
,G/ — —elfr T ol
2 () = 2mw (27rw1> Z \m—l—m'|25 27w 2 |m + n|?s
and
1 A
~G'(0 lo
2 Z g27rw1|m+n7]
so that

exp H | 27rw1

m+nt|’
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THE DETERMINANT OF THE LAPLACE OPERATOR

Conclusively, the Eisenstein series given in (5.4)) can be used to evaluate the sum. The
function G(s) is analytic for Res > 1 but can be continued [DFMS97|. Defining

472 G 9
G(s) = <2> Z [(m+nT)]™"°

P n,m

— (f}) {zg(zs) + Z’ <Z [(m + m')]_QS) } , (5.5)

m

where ((s) is the Riemann (-function with 7 = 71 + 7. Due to the representations of
the cotangent [BMMS13], the first step is achieved by

1 > 1 1
t P
7 cot(mz) z+dz_:1<z—d+z+d>

o0
meot(mz) = mi — 2mi Z q"(2), q(z) =™z

m=0

Differentiating both representations (k — 1) times with respect to z gives

o) 1 k 00
_]_k_ll"k < >:_2k k. m
0 X () = et X
SN et &
= () =S S
o \z+d (k) =
where the fact can be used, that k is even. Therefore, the lattice consists for any cz 4+ d
' 1 k 11 ’ 1
> () - T w T (S

This has been used in (5.5). The sum over m is periodic in the real part of n7T with
period 1. With 7 = 7| 4 i1 the following can prove,

o
1
nm) = ,
fnm) m:z_:oo |m + n(m + im2)|?

— .+ ! + ! + ! +

T =1 n(n )2 n(n +in)2s 0 14+ n(n +in)|?s
oo

- 1

oo Mt (T + 1) 4 i

0 1
= Im A+ (nTy 4 1) + i

= f(nTl + ]-)7

because the sum goes over all m € Z. A function f(x) periodic in [0,1] can now be
expressed by a Fourier expansion

1
f(l') _ Z CneQﬂina:’ Cp = /dxf(x)e—%rina:'
0

ne”
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5.1. Kronecker limit formula

As it was proven, the function f(n71) above is a periodic in [0, 1], so the Fourier expansion
reads

1
1 .
2mipnT] / d( ) —2mipnTy
m-l E e nm E ; €
= / — |m + n(11 + im2)|?
1
. 1 .
— 27F1p7LT1 / d —27‘(‘@py
E e Yy g ; 95 ©
sez / p |m 4+ y + inTo |
and
1 / 1
_ 2imlnTy —2imly
_— = e d
; |m + nrl|?s Z / ye %: |m + y + inty|?

! 0

%
:Z / dye%ﬂ(nn—y)
S

1
lm +y + into|?s

- LZ / dy/dtts_162i7rl(”71—y)—t(y2+n2722)
I'(s) 4 S

where the last transformation is due to the representation of the gamma function

1
i dttk 1 —Zt
zk I'(k /

so that

%
|m+y+inm|?  T(s) )

Evaluating the integral with respect to y leads to

1 7T1/2 ° 5—3/2 —(tn?724m212 /t—2ininT))
;!ernTPS :F(S)zz:/dtt o

:\/;‘_F(S_l/2)|n7_|1 —2s

I'(s)
s—1/2 %
\{7?) Z/ e217rln7'1 7l /dtts—3/2e—7r\ln|7'2(t+1/t), (56)
S nto
l
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THE DETERMINANT OF THE LAPLACE OPERATOR

because for [ =0

° ® -3/2
/ dtts =312’ = / d (t )s / et
) ) n2r2 \n273

with

For the second term in (5.6)), the substitution ¢t — |wl/(n72)|t is used as succeeding
o0
//dtts—3/2e—(tn2722+77212/t—2i7rln7'1)

7l s—3/2
—t
nmo

i ol (t1/1)

dt

nty

o
_ Z’ 2imlnm /
0

s—3/2
ol / /dt 1t]5 1/2 j—mnlrs(t+1/t)

— Z/ 2imwlnT
l

Consequently, the term results in

—2s
{2{(25)
1/2 Z |n |1 2s

s—1/2 F
7I' Z, Z/ eZmlm-l / /dtt53/267rlnT2(t+1/t)}. (57)
n l

I'(s)

472

2

Gls) = |~
2

7l

ntTy

Summing the second term over n, subsequent functional relation (reflection formula|B.3))

can be used
720 (5/2)¢(s) = 727320 (1)2 — 5/2)C(1 — s)
with the definition of the zeta function

2 e = 2yt B2 - 1)
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5.1. Kronecker limit formula

In order to find the value of the derivative G’(s) at s = 0, the function G(s) is expanded
to first order around s = 0. For the first term in (5.7)), this leads to

2¢(25) = 2¢(0) + 2s¢'(0) + O(s?)
= —1—2s5In(27) + O(s?)

with ¢(0) = —1/2 from (B.22) and 2¢’(0) = —In(27). The value of the second term in
(5.6) becomes

I'(1—s)¢(2—2s)
I'(s)

— (L+sT(1) + O(?)) (”6 +25¢'(2) + O(%)) (s + 0<s2>)

2

= %s +0(s%),

where the value ((2) = 72/6 (B.23), the value of the derivative (B.24) and the series

expansion 1/T'(s) = s + s2 + O(s?®) is used. The third term can as well be expanded
around s = 0. The integral (see for instance [Sch81])

/ qtp—3/2g—altH1/1) _ \/7 020
5 «

together with the series expansion gives in the last term of (5.7))

o
1 irinr / qets—3/2¢—linlma(t41/1)
0

I'(s)

— SeQiﬂ’lnﬁ ™ 6727r\ln\7'2 + 0(82).
m|ln|Te

These calculations lead to

G(s) =—-1—2sln

—2sIn2mw + z87‘2
W1 3

1 ..
+s Z/ Z/ mem”lmr%'ln'ﬁ + (’)(32).
n l
With the definition

L) =) [[O - ()

n=1
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of the Dedekind eta function n(7) and because of |A/w1| = /ATy, the derivative of G(s)
close to s = 0 reads

G'(s) = —Inm + grg + T](T)m

G'(0) = —2In (VAnln(r)P)

= —2In (x/Lle\/gn(T)F)
L;f? 9 (m\/gm(fn?) |

2
¢(0) = ~n o — 2 (Vazly()l?)

=—In 4Ljr —2In (\/E|n(1)|2)

=—In

FOl"leLQZL

2

~ —lnL— —1.47634 ...
47

is found.

5.2. Sommerfeld-Watson transformation

A second way of calculating the determinant follows J. Polchinski [Pol86]. In this cal-
culation, the Sommerfeld-Watson transformation plays a key role. The aim of this
transformation is to convert a slowly converging series into an contour integral using
the Cauchy residue theorem. The sum as a sum over the residues corresponds to the
integrand’s poles and the integral can be evaluated.

The problem of calculating infinite series over complex poles arises in the early 20th
century, when wireless communication began to grow. A. Sommerfeld calculated the
propagation of electro-magnetic surface-waves and transformed the contour of an inte-
gral over infinite poles into a contour excluding only two branch cuts [Som09]. The other
related work is due to G. N. Watson on a similar problem, calculating by transforming
a sum into a complex integral. This is called Watson transformation. The first usage of
this transformation goes back to G. N. Watson [Wat18] who calculated the diffraction
of electric fields in presence of the earth. A. Sommerfeld combined both methods. Then
a different theory of diffraction, using integrals, where he transformed the integral over
infinite poles into an integral using only one branch cut, was created. The present formu-
lation goes back to A. Sommerfeld applying the Watson transform in order to calculate
infinite series coming from spherical functions [Som47] arising from the calculation of
electro magnetic for the above mentioned problem. It has later been used in order to cal-
culate scattering amplitudes [Regh9]. These calculations became important in the high
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5.2. Sommerfeld-Watson transformation

energy sector of strong interactions, then the Regge theory was succeeded by quantum
chromo dynamics.

At first, the present form of (o needs to be rewritten. The calculation begins with the
left side of ([5.2)) by transforming it to

<2;1T>2 [—n%w% + n%wﬂ

Il
7N N N
SRR

2
) (ngwl — n1w2)(n2w1 + n1WQ)
2
wl) (722 — 7117')(?22 + 7117')
2
wl) (ng —ny7)(ng — n17)
= ——Q(ng — an)<n2 — nﬁ),

where in the third step the fact is used that 7 = 7 + im is purely imaginary. The last
step is due to comparison reasons with Polchinski. The (3 function (4.52)) can now be
expressed as

-5 , 2 s
Ca(s) = (Z) n%;Q l47'7;2(7w —n17)(ng — n1T)
d o ) ’
pe e In - = G'(0), (5.8)

where the fact was used, that the sum gived]

o0

SO 1=2¢0) = -1

n]j=—0o0ng=—0o0

to the derivative of the prefactor. The function G(s) is defined as

/| 42 -
G(s) = — Z [722(“2 —n17)(n2 — ”1%)]
/ 4r2\ ° =8
42\ ~* s Ar22\ " °
B

The sum is prevented from diverging because the regularizing mass p? is taken into
calculation. The calculations are similar to the (-function regularization, meaning here,

'there is a small error in [Pol86)
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THE DETERMINANT OF THE LAPLACE OPERATOR

that the derivative of G(s) at the value s = 0 is searched.The derivative of G(s) is given
by

d . d 4r2\ ° _ 91— 47r2u2 o
&G(S) o =— ll_rf(l] P { (722> Z [(nz —ni7)(ne — nT) + p } — ( 2 )

’u2_>0 ni,n2

The simplest part can be evaluated directly, as

d (4r2u2\ " d —sin(4mg2
lim<ﬂu> zlim—es(%)

s—0ds 7'22 s—0 ds
‘ A2 qu A2 M2 =S
= —limlIn 5 5
s—0 5 T3
=2In7m — 2In27u. (5.9)

The modular ratio was chosen to be a complex number, so splitting 7 = 7 + im» the
summand gets
(ng —ni7)(ng —m7) + ,u2 = n% + n%(n + i) (T — iT2) — 2n1ngT) + ,u2
= (ng —mm)® + nirg +

= (ng —mm)* + Q*(ny, p),

where
Q*(n1, 1) = nirg + pi. (5.10)
The sum becomes
S ftm-mr? @] = Y Y [ mm)? @)
ni,na S ——
=f(n2)

where the ne sum can be evaluated explicitly using the Sommerfeld-Watson transforma-
tion. Then

> (1)) = 5  ax2

sinmz’
n=—o00

The contour C' encloses all poles on the real axis, that are all zeros of sin(7z), which are
the numbers z = n,n € Z. For non-alternating series f(n), this can be converted into
into an integral using g(n) = e~ ™" f(n). This choice forces a changing of sign, because

e—ifrz
m < *1, for %(Z) > 0,
e—iwz
m > 0, for %(Z) < 0.
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5.2. Sommerfeld-Watson transformation

2t

N
N

Rz

\
7

Y

Figure 5.2.: Contour C closing at z — +o0.

Therefore, introducing the substitution

e—i7rz 1
T . __ T a f R) > 07
2isinwz 2 or 3(2)
e—i7rz 1
—_— + -, fi 3(z) <0,
2isinmz * 2 or 3(2)

can be used to change the integral into an integral using both contours Cy : {z, 00 +ie <
z < —oo+ie} and C_ : {2z, —00 — i€ < z < 00 — i€}, (see Figure[5.2)

o0 —17TZ —1TZ 1
Z f n2 / dzf <2lsln7rz ) / dzf (21sm7rz + 2)

ng=—00
B / 7/ +/ dzf 717rz B dzf(z) efifrz
N _ c, 21 sinmz o 2isinmz

=1 =1

In the succeeding, both integrals will be evaluated and their derivative will be taken.

Evaluating the 7, integral
For the I integral there is
Il(s): (/ / >dz (z —n1m1)? + Q*(ny, )} )
n1 —00 - Cs

which by a shift of 2 — 2z 4+ ny7 does not change on account of the infinite integration
limits. For this reason, the new function is symmetric f(z) = f(—z) and under a
substitution in C; with z — —z, it can be lined out that

o0
—S

Z /dz 22+ Q*(ny, ,u)} ) (5.11)

ny=—oo_"'
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Ny
C C
Ry Al R_
Z+
Cr
L Rz

Figure 5.3.: Contour I'; for integration.

where the limit ¢ — 0 has been taken. This integral can be evaluated using the Euler
beta function, what is done in the appendix Using (5.10)), the result is

lim ifl ZQWQ ni, Q

s—0 ds
= =27 — 27Ty Z ni, (5.12)
1

where, in the last step, the n; = 0 contribution was split up from the sum, and the limit
©? — 0 has been taken. Using the properties of the Riemann zeta function at ¢(—1),
(see appendix [B.3) the contribution is

lim ih( ) = —27mp — 27192¢(—1)

s—0ds

= —27r,u + ? (513)

Evaluating the I, integral
For the I, integral there is

Z / c [(Z —mm)? + Q(ni, u)}

o 21 sinmz

—S

—imz _s

— Z dz,e,i {(Z—n171)2+Q2(n17M)} )

o0 Ot 2isinmz
where the contour C' is given in Figure This integral converges for s = 0, so first
the derivative can be taken. The derive of the integral over the contour C is given by
d —ootie _s e—iT(Z —ootie e—iT(Z
lim — / dz{z2—|—,u2} — = / dzfln{zg—i—uﬂ.

2isinmz 2isinmz
oco—+ie oo-+tie
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5.2. Sommerfeld-Watson transformation

Furthermore, there is a branch point for the logarithm, when the argument is zero or
less. This will be used to deform the contour C to a contour I';, which is given in
Figure 5.3] From Cauchy’s residue theorem, it is known that for the new contour

¢ -0
Ty

because there are no singularities inside the contour I';, but there is a branch point at
vy =ni7 +1Q(n1, 1) = iz outside of the contour. While evaluating the integrals, the
limits R — oo and r — 0 will be taken. The part L of I'y running from oo + ie to
—0o0 + i€ is given by

—/:/ o+ o+ o+
L Cr, Cry C1 Co Cr

It can be deduced that (substituting z = z; + rel®, ¢ € (0,27))

Js

as well as for the other contributions (substituting z = Re 0, € (m,37/2),60, €
(3w/2,2m)), it consequently ends in

o, * e
(=[] 518

where the contour of C'; runs from iz to ico and for Cy from ico to iz with z4 > 0:

<2mr — 0,
r—0

— 0,
R—o0

due to [AGW96]. This means

Cy:{y€iR:izy <y <ioco} and Cy:{yeiR:ico <y <izy}

With a change of variables y = iz and dz = —idy for » — 0 the integral using contour
(1 is given by

o0
e ™Y
— d 71 2 2
/01 1/ Yoisin(—miy) o=y’ ]
2+

o0
Y

o

=il dy——1n|— 2 2
1/ yQSinh(wy) n[ Y +M}
Z4

and the integral using Cs is given by

Z4 efﬂy
=i [dy———In|—9*+u*
/02 1/ y2isin(—7riy) n{ 4 +,u}
oo
o0

e ™Y
=i [y In[—y? + 2]
1/ Y2 sinh(ry) n[-y*+ut]

Zt
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To such a degree, the integrals should as well cancel out. This is not the case, as there
is a gap of 20 over the branch cut of the logarithm. The complex logarithm will give
a contribution of 27i because the value is different when the branch cut is approached
from the left or from the right side by the contour. Now, the logarithm can be studied
explicitly. Rewriting
In(—y* + p%) = In [(iy + p) (iy — p)]
= In(iy + p) + In(iy — p),
while iy — i(y + 24+ ) = iy — p this is for the C part
In(—y® + ) = In(iy — p + p) + In(iy — 2p)
= In(iy + 9) + In(iy — 2u)

™
= lny——i+In(y—2
550, MY 51+ iy —2p)

as a result of the complex logarithm and because the branch cut is approached from the
right side. For the C5 part, the same substitution gives

In(—y? + ) = In(iy — p+ p) + In(iy — 2p)
= In(iy — 9) + In(iy — 2u)

37, .
o Iny + 5 + In(iy — 2p)

so that
3
In(—y? + p?) — In(—y? + p?) = —gi - ?Wi = —2mi.

Consequently, using the proposed substitution iy — i(y + z4) = iy — i, the integrals over
the contours Cy and Cy are

. OOd efﬂ(y+z+) 2 .
+ [ == : -
L+, 0/ Y ysmh [y + o)) o)

—m(y+24)
= —27T/dy °
0

2sinh [7(y + 24)]
=1In [1 — e_%‘z*} .
Finally, the integration over the L part leads to

/L = —In {1 — e_2m+] ,

as the sum of integrals over the contours C7 and C5 is the negative integral over L
(5.14)). For the C_ contour, the same calculation applies using a contour I'_ in the
negative complex plane. The contribution will be

/Ci =—In [1 —ef%z‘] ,
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5.2. Sommerfeld-Watson transformation

ergo the derivative of I leads with 2z = —iny71+1/n272 + p? to the following expression

by )2y i
w2—=0 ni
oo
= — i _ o 2mp| _ 2m(—ingT T2)
= 2#121210 In {1 e “} 2n1:E_OO In [1 e ini1T1+n172 ]
n17#0
2 = 27
= 1 T —27ming T
=2 lim In 172 - 42::1 In [1 - e 2mm7), (5.15)

where again the the zero mode n; = 0 was taken out, so that in the second term, the

limit 42 — 0 could be taken. The first expression can be expanded because the limit
p? — 0 will be taken later on

~2In [1 — e 2] = —2In 2mp + 2mpp + O(11?). (5.16)
Conclusively,

. . . T2
ll_)r% &G(s)\ =2Ilnm — 2In(2wm) + 27

L3
~—
-9 (5.12) £
oo )
+2In(2mp) = 2rp+4 Y In |1 — 2]
(5-10) n1=1

E-19)
so that the the zero mode cancels out and limit y? — 0 can be taken. The expression

o0
—% +4 Z In (1 — 62”1”172) = 21n |n(7)|?

ni=1

is just connected with the Dedekind eta function defined by

oo
) =g (1-¢"), q=e",
k=1
whose properties will be investigated later on. Combining the calculations

G'(0) =2In|n(7)* + 2In 7 = 2Inm|n(r)|?
and adding the prefactor ([5.8)),

G(0) =In = — G(0)
—InA+Inm —2lnmn(r)|?

= —InA—2Inmn(r)]?
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is obtained. This can be transformed in
A

=—In— —2In (\/47r72|77(7')|2)
47

=—InA—-2In (ﬁ|n(7)|2)
= 2l (VAnIn(r)?)

d
5@(2)

z=0

5.3. Massless Klein-Gordon field

In a new setup, a more ’physical’ approach will be examined. This goes back to a
blog entry of John Baez [Bae98alBae98b|. The main idea is to use the analogy, that
the investigated field is analogous to field of a massless field theory, the massless Klein-
Gordon field. As it has been seen before, the eigenvalues of the Laplacian are given
by

2 2

n n
Mg = 2m)2 | =5 + 221, n; € 2.
ni,no [% [% (2

The determinant is ’ill-defined’ by the product

det’ A= [] Anpno

ni,n2

which can be redefined via zeta function regularizing

d
Indet’ A = — lim —(a(2),

z—0dz

where the spectral zeta function is

NOED I

The partition function is given by a path integral, where the Euclidean action S is used
instead of the Hamiltonian from the chapters before. Especially for a Euclidean free
scalar field ¢ on Ly x Lg, the action functional is defined as [PS95|

S:% / d*zp(z) Ap(z).
L1><L2

The partition function is given by the path integral
Z = /Dgpe_s = (det’ A)~Y/2,

For a scalar field with mass p the Laplacian A can be replaced by

A=A, =A+ 2
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5.3. Massless Klein-Gordon field

which is needed later on.

In statistical physics, the partition function can as well be written in terms of the
trace, as it has been used in the introductory chapters. In this section, the value Lo is
used as the Euclidean time. The value L; then represents one space dimension. The
partition function is defined as

Z=Tre Al (5.17)

where H is the Hamiltonian of the scalar field. The scalar field represents a free massless
Klein-Gordon field, where the Hamiltonian is given by a collection of harmonic oscillators

1

H= Zw(k) [aT(k)a(kz) + 2} .

Here a! and a are the common creation and annihilation operators. The circular fre-
quency is given by

_ 2
w(k) = k2 + 2 "= k|, k= Liin nez. (5.18)

To perform the trace, the energies for the massless case are needed, which are given by

E(l)) =Y ij]n] (zn + ;) .

neL

This calculation is as well known from the quantum mechanic harmonic oscillator. Num-
ber [ represents the different energy levels, which are possible for the collection of n
harmonic oscillators given by the Hamiltonian H. The Klein-Gordon field used here is
given by all frequency modes. This means, that the sum over n is over all numbers in Z.
With the energies given, the trace can be evaluated, as the energies are the eigenvalues
of the Hamiltonian. The partition function now reads

o
— L2 2% (1, +1/2)|n]
z=T[ Y
nez l=0
L
e—wfflnl

L
—or=2
nezl—e L1 Inl

nel

which is owing to the representation of the geometric series, g is given by ¢(7) = €™ =
e~27L2/L1  Omitting the zero mode for n = 0 in the partition function, a new partition
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function is given by

neZ\{0}

o0
=[] ¢"Q—-¢")?
n=1

0 -2
— g2nea™ [H(l—q”)] : (5.19)

n=1

Now, the surprising result of the zeta function regularization (see appendix [B.3]) is needed
in order to handle the infinite sum in the exponent of the prefactor

> 1
1+2+3+...:Zn:C(—1):—E.

This leads to
g2 H
n=1
=n(7)|?
with the Dedekind eta function

n(r) = ¢"/* [ﬁ (1- q")] -

n=1

From the path integral (5.17)), it is known that

det’ A ~ n(7)|*,
det’ A = C\n(7)|4,

where a constant C is needed as a consequence of the contribution of the zero mode. In
the last steps, the divergency for n = 0 was excluded. To handle this factor in above
equation, the case of a massive Klein Gordon field has to be analyzed

det AM == det' A)\070,

where the zero mode is given by the constant solution Ao = 1?2, so that

det A
det’ A = lim 62”.
=0

In this case, the circle frequency (5.18) is given by

L2 271' o,

wlh) = \JR2 + 2 +
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5.3. Massless Klein-Gordon field

so that for n = 0, the value of n’ is n’ = mL;/(27) and by a similar calculation as in
(5.19), the partition function reads

2

L2 o L2, T
Z: He—’ﬂ'Ll’rL <1_e— 7TL17’L)
nez
-1

— o Hl2/2 (1 — e“LQ) A

Z/
= onl2/2 — g—pLa/2

Zl

- 2sinh(pLo/2)

Ensuing, the limit ;4 — 0 can be taken

(2sinh(pL2/2))?

Cdet’ A = lim det’ A 5 = Lidet’ A
=0 K
because of
L p2
lim 4 sinh (2a:r/2) 2
z—0 xT

Finally, this gives
det! A = Lf(r)[*
or
Indet’ A = 21n Lo|n(1)|?.

This solution only handles the case that L, was chosen as the Euclidean time before.
Switching Ly <> Lo gives the solution

Indet’ A = 21In Ly |n(7) %,
where now 7/ = 1/7 from before. It is found out, that

Indet’ A = 2In(La|n(T

—21n<\/ﬁ\rln >
=20 (/L L3 ()P

which ensures that the modular invariance 7 — 1/7 is correct. Finally identifying
A = L1 Lo, it results in

%{A(z) = —Indet' A = —2In (\/MW(ﬂF)

75



THE DETERMINANT OF THE LAPLACE OPERATOR

A more elegant but less intuitive way to gain the correct zero mode contribution would
be to calculate the zero mode in the way it has been done before by the method of
collective coordinates. A partition function here can be given by

7 - /D@ef%(@,mp)

- /dCO/ H dcnefé 2ns0Ancn

n>0

= \/Z/ 11 dene™ 2 2nsonch

n>0

= VAT 32

n>0

where the collective coordinate cy was used as before.

5.4. Result

As the results in the above calculations gave the Dedekind eta function, the proper-
ties of this function will be studied in detail before giving the result for the geometric
dependence of the factor C(7).

5.4.1. Properties of the Dedekind Eta function

The resulting determinant of the Laplacian was always given through the Dedekind Eta
function, which is defined by

,,7(7_) _ q1/24 H (1 - qk) ’ q= e27‘(‘i’7'. (520)
k=1

A plot of the eta function is shown in Figure To compare the results to other results
in literature, the value for 7 =i is needed. This can be derived from a special value of
the Euler g-series ®(g), which was given by Ramanujan in his "Lost Notebook’, [ABO5]

7r/12r 1/4
_ory _ €ET(1/4)
(D(e ) - 27T3/4 9 (521)
which is related to the Dedekind eta function by

<I)(q) _ q71/2477(7,)’ q= e2miT
so that

) _ _ '(1/4)
_ am/12 2my
n(i) =e D(e ) 55/ " (5.22)

This result is equivalently gained by using the Selberg-trace formula. But the result
in [Sel56] is achieved by calculating the Laplacian on a symmetric setup, therefore, this
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5.4. Result

[n(ir)]

[ S T N S S S T I T N S S S
05 1 15 2 25 3 35 4 45 5 55 6 65 7

Figure 5.4.: Plot of the Dedekind eta function performed with numerical data from
Mathematica.

result is gained with a similar calculation as before, setting Ly = Ly = L (see for
instance [Eli95]).
Another property is the symmetry, which was indicated in the following scheme

n(=1/7) = V—=irn(7), (5.23)

implying

VT2 =\ 1/7In(1/7)% (5.24)
what is just the modular invariance imposed in the introduction 7 — 1/7. This can also
be observed in the plot of the right hand side of equation (5.24]) in Figure

5.4.2. Geometric dependence of critical fluctuations

After describing the properties of the Dedekind eta function, the result for the correlation
length can now be given. As this result differs only in the prefactor C(7) from the present
results, this factor is evaluated now. The result is

o
0 = Jsmmmr

At first, this result can be compared to the results of the symmetric system. For L1 = Lo
the ratio is 7 =i, so that

(5.25)

C=C@) = \/Zm = 1.351956 ..., (5.26)
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which is the same result obtained analytically in [Min90]. Furthermore, the solution
provides the modular invariance 7 — 1/7, as this result is not changed qualitatively the
behaviour gained from the Dedekind eta function. The interface tension will not chang,
because there is no factor 7 included in the exponential that contributes to the interface
tension in . Therefore the only change with geometric dependence is included in
C(7). A comparison of the static factor C' = C(i) with the geometric depending factor
C(7) is given in Figure It can be seen, that there is a dramatic change in this factor.
This means, the correlation length increases with the deviation of aspect ratio from the
value 1.
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Tln(ir)?

Figure 5.5.:

24

2.2

1.8
1.6
1.4

1.2

0.8

Figure 5.6.:

Plot of \/7|n(7)|? with triangles denoting the values at integer values and

their inverse.

| C(n) /)
L “\\ -
I \\ /// |
0.5 1 L5 2 2.5 3.5 1
iT
The factor C(7) depending on the aspect ratio of L; and Ly compared to the

constant factor C' (blue line).
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CONCLUSION AND OUTLOOK

As proposed in the introduction, field theoretical methods have presented a fruitful
universal method for analysing interface fluctuations in three dimensions. This thesis
extended the examination of interface fluctuations on new structures with a genuine
attention on the geometric dependences. As underlying geometrical structure, a cuboid
was investigated and the suggested solution has been calculated by different methods.

In [2| it could be shown that the derivative raised for fluctuations, is responsible for
the geometric dependence of the correlation length in the Ginzburg-Landau theory. Re-
ferring to [Mun&9), field theoretical methods, reaching from path integral formalism over
the methods of collective coordinates and the instanton pseudo-particles, have been pro-
lific to develop this theory in chapter 3] The reasons using these methods were gathered
in detail in the last part of the first chapter, where the correlation length was identified
by the energy spitting of a massless particle in field theories. In chapter [ it was shown
by zeta regularization and heat kernel methods that only the transversal modes depend
on the geometrical setup of the system. Therefore, for new geometries only these modes,
corresponding to the two-dimensional Laplacian, need to be recalculated. Especially the
zeta regularization techniques have shown universal applications in these fields, since
they are applied in almost every calculation in chapter [4] and

In chapter[5| the geometry was focussed on a rectangular setup. Before calculating the
determinant explicitly, the geometrical structure with the imposed boundary conditions
was transformed into a torus by considerations from conformal field theory. Then, three
different methods were used. The first method has shown to be quite direct, getting
along without a deep understanding in complex analysis. The second method, due to
the Sommerfeld-Watson transformation, turned out to be rather complicated but also
quite elegant — it can be reduced on a few steps, when the reader is used to complex
analysis. Whereas the existing literature on this method is presented fairly abbreviated,
this thesis made a contrast and exposed this calculation most precisely. Both calculations
delivered an expression involving the Dedekind eta function insuring that the solution
is invariant under the transformation L; — Lo as proposed in the introduction. In a
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third method, the calculation was redone and the analogy between the Laplacian and a
massless Klein-Gordon field was used in order to write the partition function, obtained
from statistical mechanical considerations, in terms of harmonic oscillators. This method
highlighted to be a very intuitive approach for physicists, delivering the same solution.
However, this calculation is not as elegant as the two others, as the solution needs to be
modified by an argument in order to cover the proposed invariance. It could be shown
then, that for a strict solution, the method of collective coordinates needs to be applied
again.

As there is a deeper connection to conformal field theory in this rectangular setup
with periodic boundary conditions, another method, involving Virasoro algebra could
be possible.

A further calculation on a similar problem could be to impose other geometries as
basal area. As the calculation of the normal mode is invariant under the imposed ge-
ometric structure, only the geometry of the Laplacian needs to be recalculated. For
instance, there are solutions for the circular Laplacian [Wei87|, eventually there is an
approach solving elliptic problems, thus where it should also be a factor depending on
the geometrical structure.

In the future, it should be researched, if there is a proper limit law for the Dedekind
eta function, which would make a reduction on two dimensions possible, where the
correlation length can be compared to a direct two dimensional calculation, e.g. in
[PF83].

Because of the structure of the problem, which was motivated by the Ising model
in this thesis, there should also be an approach solving the geometric dependence of
the correlation length numerically by a Monte-Carlo calculation in order to test the
presented solution, as presented in the work of other papers [Min89,|Miin90|. It shows,
that a quantitative experimental analysis of the interface fluctuations is difficult to reach,
but it should be possible to test the geometrical dependence qualitatively in experiments.

A similar calculation applies for an effective string theory in quantum chromo dy-
namics. In the confining regime, the quark anti-quark pair ¢q is described by Wilson
Loops [LW02] where the partition function can be written as

7~ e*V(R)T7

where V(R) is the potential and T is the time-line of the world sheet. As confining regime
of quantum chromo dynamics contains in general two phases: the strong coupling phase
and the rough phase. The two are separated by the so-called roughening transition which
is the point in which the strong coupling expansion in the Wilson loop ceases to converge.
These two phases are related to two different behaviours of the quantum fluctuations.
In the strong coupling phase, these fluctuations are massive, while in the rough phase
they become massless. This fact can be used in order to describe this transition by
the massless theory in two dimensions. Calculating this transition by setting the time-
line direction Lo and R = L ends up in the same calculations as before, leading to the
Dedekind eta function. Therefore, this so called Liischer term [LSW80] can be calculated
this way. As there are too many expressions that have to be defined to reach the effective
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string theory, this has been omitted in this work, but it is an interesting fact, applying
these calculations in other fields of physics.
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FORM AND ENERGY OF THE KINK-PROFILE

A.1. Form of the kink

The variation of the Hamiltonian near the classical solution provides
o0H 1
00 lgp=g, 2

or to be more general

2
(—2V60) + 1468 — =260 = 0, (A1)

~Vo(x) + V'(6(x)) = 0,

where V'(¢) means the derivative of the potential V' with respect to the function ¢. As
it was proposed, the boundary conditions in z-direction were defined anti-periodic, so
that

o= lim ¢g(z) = +v.

z—rFo00
In this direction, the variation of the Hamiltonian (A.1)) provides
32 g m2
—500(2) + S68(2) — o-gul2) = 0. (A2)

This equation maintains for all z € [—00, 0o]. Therefore, the constant values of ¢ in the
limits cancel out the second derivative, so that the vacuum expectation is

2 2
/3
%v3 _ WQL v = v= L;" (A.3)

besides the trivial solution v = 0. In equation (A.2]), the z-direction was observed and
can be rewritten more generally performing a saddle point evaluation

62
5,200 = V'(¢0) (A-4)
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Now a solution of (A.4) is searched, which gives a minimum of the Euler-Lagrange
equation. It is a non-linear differential equation of second order that can be solved by
using the substitution

o ., a2 0,
5 () = 25-V(0). (A5)

From integration, it follows

z - o] d(ﬁ
a/dz—:to/\/m
L4
_i!¢g@kw%

g arctanh (%)

= z—a-F 12 "

Therefore, the solution

u

¢0(z) = Fvtanh { 5 (2~ a)] (A.6)

is obtained with (A.3)). It shows, that from (A.5]), two solutions follow, where the sign
can be chosen.
A.2. Energy of the kink

The energy integral is given by the spatial integration over the Hamiltonian density

1
H(go] = §(V¢0)2 + Vigol.
The first derivative of the kink solution (A.6) is

muv @(
2

0
%qﬁo = — sech? { 5 (7~ a)} . (A7)

Substituting this into the z-component of the energy integral ,

170 2 1 7 om? AL
/dz§ (ango) —i/duv Tsech <2u>

m?2 | 2tanh (%u) {sech2 (%u) + 2] >
T8 3m
B mu?
3
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is obtained and with (A.3)), it follows

1 /0 2 md
dz= | =— = —.
/ 22 (8,2 <Z50) g
The other spatial directions with the dilations L; and Ly with periodic boundary condi-
tions then lead to

m3

1
3 2
- -
/d :c2 (Vo) Li1Lo 7

The same result follows for the potential V' (¢o)

2 4
3 _ 309 4 m° o 3m
/d l‘V[(Z)()] - /d .1‘{4'¢0 - T¢0+ 89}
9. 4 4 m? 2 3 m’
= Lng/du =v* tanh®(u) — —ov* tanh”(u) + - —
4! 4 8
=L1L, {92}4 {u _ 5 tanh(u) + 2 tanh(u) sech2(u)}
m 3m

4!

Now v can be substituted with (A.3) and the linear terms, each individually leading
to divergence, cancel out, whereas the tanh(z) as an odd function cancels out too by
symmetric limits

9 4 23 2 3 4 o0 3
/d3xV(¢0) Y 2 I e L T A P
24 g 4 g 89 | g
9 3 3ym* ]~ 3
= L1Ly {—+}m2 — Ll
24 4 8) g g
—o00

Therefore, the solution of the energy integral
m3
H [¢o(x)] = 2LlLZ?

is the energy of a kink.
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PROPERTIES OF SPECIAL FUNCTIONS

B.1. The Gamma function
A generalization of the factorial n!, n € N for real or complex numbers leads to the
representation

I'(n)=(n—1)

where the gamma function is defined as
o
I(z) = /dttz_le_t
0

for all z > 0. For the factorial the following equation
(n+1)!=(n+1)n!

is valid for all n € N. This property can be transferred to the gamma function using
integration by parts and the L’Hopital rule

FNz+1)=2I'(2) = T()=E-DI'(z-1). (B.1)

This recursive property can be used to define the gamma function on all real numbers
z, except for nonpositive integers. A specific value of the Gamma function is

L(1/2) = V7, (B.2)

which results by a substitution ¢ — /¢ in the above integral giving a Gaussian integral.
With this value, all values of half integer numbers can be achieved by (B.1)).
Another important result is the reflection formula for 0 < z < 1 due to L. Euler

[AAR99] that reads

I'(1-2)T(z) = Sin?m), (B.3)
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which can be used to calculate the products

T(1/2)T(1/2) = = .
T(—1/2)T(1/2) = T(~1/2 + 1 — )T(1/2) = —20(1/2)[(1/2) = —2r, (B.5)

where (B.1)) was used in the second relation. The following relations are obtained from
the result I'(1) = 1 and (B.1)) or obtained from the derivatives of the gamma function
given in [AAR99] and [BMMS13]

1
o) = 0 (B.6)
I'(1) = —y (B.7)
I'(0) — oo (B.8)
I'(1/2) = —v/7(y + In4), (B.9)
_d 1
lim — ol 1 (B.10)
d 1
0dzT1—2) " (B-11)

where 7 is the Euler-Mascheroni constant.

B.2. The Euler beta function
The beta function is closely related to the gamma function. It is defined by

o0 tx—l
0

for ®(z) > 0 and R(y) > 0. By the following representation

I'()I'(y)

B(z,y) = m,

the analytic continuation of the gamma function applies. The beta function is used in
this thesis to evaluate expressions like

: d 1 d T 2 2\—z
il_H)%)@I(Z)—lI_}IHO& / dz(a® + %) (B.12)
_ : d r 2 2\—z
—Qll_r)%&/d:n(a +z7) (B.13)
0
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B.3. The Riemann zeta function

for any a and by the substitution ¢ = 2?/a?, dt = 2x/a?dx, the integral becomes

I(z) = /dt(a?—i—\gt)z
0

s 1/2
= al_ZZ/dtit
/ (1+1)*

=a'"%B(1/2,2 - 1/2).
And the derivative with respect to z is
I'(z) = —2In(a)a'"%*B(1/2,2 — 1/2) + a'"2*B'(1/2, 2 — 1/2), (B.14)

where in the limit z — 0, the first term vanishes according to B(1/2,z —1/2) — 0.
Because of the derivative of the beta function is given by the derivatives of the
gamma function which give here

IM(z—=1/2)T(2) = T'(z — 1/2)T"(2)

. / . 5
lll}I(I)B(l/ZZ 1/2) lll}l(l)F(l/Q)

I2(z)
. =27l (2)
= VTl e
This expression gives
. I(2) .od 1
) = M ore ~
from (B.10)). Conclusively for (B.12))
d
lim —I(z) = —2ma. (B.15)

2—0dz

Instead of the limit z — 0, in another calculation the limit z — 1 is needed. Beginning

with (B.14), it follows
. d _ -1 -1
lﬂ £I(z) = —2In(a)a” 7+ a " (—7wlnd), (B.16)

where in the first term, the value of the gamma function at 1/2 was used and in the
second term, the values of the derivative of the gamma function (B.7) and were
used.

B.3. The Riemann zeta function

The Riemann zeta function gives a connection between series and integrals. The famous
series

((z) = i n=~, (B.17)
n=1
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PROPERTIES OF SPECIAL FUNCTIONS

which converges for #(z) > 1, can also be defined as the integral

C(2) = — 7dt . (B.18)
TTrR) ) Y-t '
0
The zeta function can be continued analytically by the so called reflection formula (using
the reflection property of the gamma function)
720 (s/2)¢(s) = ©/27320(1)2 — 5/2)C(1 — s) (B.19)
C(s) = 2°n* Lsin (7;9) T(1— $)¢(1 — s) (B.20)

so that the zeta function is defined for any z € C\{1}. The reflection formula provides
the surprising solution

1

(1) => n= T (B.21)
The value at s = 0 is the sum
1
0)=> 1= —5 (B.22)
Another important value is
72
(2)=>Y n?= T (B.23)

The derivative of the zeta function provides [AAR99]

¢(0) = —% In(2r). (B.24)
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THE ERROR FUNCTION INTEGRAL

The integral

o0 o0 eft(a:2+a2)
/f(a:)dx: /da: — (C.1)

for a > 0 needs to be solved. For this the following expression can be achieved

o0 eft(:r2+a2) o0 1 ¢ a2 ra?
e K e K § (€2
0

—0o0 — 00

because the function f(x) can be rewritten by the following integral

—t(:c2+a2) 1

¢
d —a(x?+a?) _ _e
/ ae 2 + a? +x2+a2’
0

using the derivative. This has been used in (C.2) to replace n(z) in (C.1)).
The integral over the first term in (C.2) is easy to perform by using the arctan. The
result is for a > 0

7 1 s

Succeeding, the second term has to be solved. From the theorem of Fubini follows

[ee] t t

/daz/dae_a($2+a2) :/da / dge—o(@*+a%),
—00 0 —0o0

0
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THE ERROR FUNCTION INTEGRAL

By substituting z = \/ax, this integral separates into two parts which can be solved

independently
t 2 o0
e @ 2
da / dze .
[ a7
0 —0o0

The inner integral here is the Gaussian integral. The solution can be obtained by going
over to polar coordinates

7Odze_z2 = /7. (C.4)

Finally, the integral
¢ —a?a

needs to be solved. Here, the lower boundary of the integral is zero, so that the improper
integral has to be solved, taking the limit
3 2
e—a (0%
lim [ do

,BﬁO/B \/& '

By substituting u = a/c, the limit 5 — 0 can be taken

a\/ZQ —u? 9 av't
lim \/adue = lim — / due=
B—0 a Va o p=oa
a\/E ar/pB
9 a\/i ay/f
= lim — due™" — / due™
B—0 a
— o0 —00
av/t
= - / due ¥ — VT
a a
—o

The Gaussian integral is symmetric and its value is /7. We can use this property to
rewrite the integral above because the upper boundary is av/t > 0. Thus, the integration
from —oo to 0 can be taken out and the integral can be rewritten in terms of the error
function erf(z)

aV/t av't
/ dye™v" = \f + / due™v
—00 0

= \f + \f erf(a\/i).
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Finally, the integral (C.5|) reads
="+ Eerf(a\/f) S Eerf(a\/{f),
a a a a

which can together with the solution of the first part (C.3) be used in (C.2) to solve the
problem

(@*+a®) o g
/ dx 5 =— — Zerf(aVt)
x a

+ a2 a

= g (1 - erf(aﬂ)) .
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THE ERROR FUNCTION INTEGRAL

96



CALCULATION OF (;

The following integral is going to be evaluated

1
I'(z)

Q) = i [ A LaLa(ant) ™ [Ri@) - 1]
0

LiLy [ .5 smeis . Lils 7 _27 22
= dtt? m dtt? d m*+p*) D.1

where the derivative with respect to z is going to be taken in the limit z — 0. Substituting
r = 3/4m?*t and y = (m? + p?)t in (D.1)) leads to the following integral, replacing
LiLy/4m =: C by a constant C

T 4 N\, N 3 y 2V
O/d:v <3m2> % +/ dpg(]o)O/dy(m2_i_p2)z_1 )

The first integral here is a representation of the I' function and gives I'(z — 1). The
second integral evaluated with respect to y gives the same contribution I'(z — 1). Then
the integral reads

C
I'(2)

Gi(z) =

R L NN

_1) 7 —z
T(2) 3m2 +F(Z)_ZO dpg(p)(m® + p*)! ]

The first contribution is

7+§lnm
4 4 4 2
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CALCULATION OF (1

This leaves the integral

I'(z

I= (z)l)_é dpg(p)(m* + p*)' > (D.2)

r

to be evaluated. The spectral density (4.30))

()_ m 2 n 1
9\p) = 2w \ p2 +m?2 p2+"ﬁ

can be transformed into

2
2 3m?
m( 3 e (%)

-5 + +
2r | P2+ m2 " (P2 4+ m2)? T (p2 4 m2)2(p? + mTQ)

g(p) =

The following three integrals are gained for (D.2)) using this spectral density

1 3m

Al =-—75;

o
/ dp(p* +m?)~*

13 Vi
— m?—?z / dp(p2+1)—z
—0o0

127

1 3m3 T s
o) =~ [ dp(p? 4 m)!

— 1 3 m272z / dp(pQ_i_l)flfz

_2—18777
2 o0

1 m [3m? 1
B =0 (1) [ v 2
z—12m 4 (p2+m2)1+z(p2+mT)

1 ml 2z 3 2 1
= 2 d
2-1 2r Q)/pW+mﬂw+w
o0

Here, all transformations can be achieved by a substitution of p — pm. The solution for
F can be found be the beta function

1 3m2—2z
()=~ B(1/2,2 1))
~ F0) = %m%—%) — _3m?,
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where the derivative of the beta function and B(1/2,—1/2) = 0 has been used. The
second integral Fy is found in the same manner

1 2 ¥
le(z) _ <_( 3 m2—2z im2—2z 1nm) / dp(p2 + 1)—1—z

22 —1)8n Cz—187
1 3 9.5,d 70 2 —1-
— — z d 1 z
z—1 87Tm dz p(p”+1)
/ 2 (3 3 2 1
1 3 45.4,d / 2 1
— — r d 1 z
D0z —18r ' d p(p”+1)

The first integral gives
[dvt? + 17 = B2, 12 =

by the transformation of the integral into a beta function (see|B.2)). The second integral
can solved with beta function (s = z + 1) as well

d o0
> / dp(p? + 1) = B'(1/2,5 — 1/2) - —271n2
S

and the expression becomes
3
— Zm2 In 2.
Therefore, in the limit z — 0 the expression is
3m? /1 3
F3(0) = % (2 — lnm> — ZmQ In2.
For F3 the following applies

9m 1 P 7 1
F/ i —2z 7221 ) / d
3(2) 327r( 7(2_1)2771 +Z_1m nm p(p2+1)1+z(p2+%)

o

I9m 1 _o, d /d 1
_ =" m2F
P2rz—1 dz p(]?2+1)1+z(p2—|—%)

—00

Im 7 1
= Fé(O):%(l—anm) /dp(p2+1)(p2+1)
_0o 4

gt 9m d / 1
m — — .
032rdz ) TR+ )R+ )
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CALCULATION OF (1

Cr

—R R R

Figure D.1.: Contour I'p in order to integrate the integral (D.5)).

As the second integral converges, the following expression is achieved

[e.e]

i 4 / q 1 / In(p® + 1)
11m — = — .
==0dz ) P+ D) . PO+ )

(D.3)

For both integrals in (D.3)), a fraction decomposition can be applied, leaving for the first

integral
4 o0
-/ d
3 / P
— 0o
because of the arcus tangens again. For the second integral, the following is achieved

In(p? + 1) ln(p2+1)
o |

p?+1/4 p?+1
which can be evaluated in the complex plane (see figure [D.1]) considering the integral

dziln(; +i).
Tr 2z +1

This integral can be evaluated due to the residue theorem because of the the residue at

Z=1
In(z + 1) In(z + 1) In(2i) < i7r>
dz——— =Res,—; | ——— | =2 — =7 (ln2+—), D.
ﬁR e Res <22+1) m— 7| In —|—2 (D.6)

where the last expression follows because of the complex logarithm. The integral

R
lnx—i—l x—i—l ln:r—l—
dx = [ dx dx
/ 224+1 / 2+1 / 2241
0

1 4
_ A
g PPl 37

(D.4)

(D.5)
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then follows by equaling the real parts, because the integral over the contour Cr goes
to zero as R — oo. The solution the limit R — oo is given by

1)
<1n2+ ) /d m; ) tim
x4+ 1

Therefore, equaling the real parts, the solution of the second term in (D.4) is

In(p? + 1)
/dpp2—+—]_ =2rln 2,

while for the first term the same procedure applies, resulting in

n(p? + 1) 9
dp =2rln-.
/ R

And together the expression ([D.4]) results in

8; (1119—1 2) 8”111%,

giving

C{(O):C(—?)m—i-ln—l-anm

4 4 4
— 3m?
3m?2 3m?2 3m?2
S lnm—"—1n2
8 i I
3m2  3m? 3m2. 9
— ——Inm—-——In—
8 4 4 8

3 3 9
= Cm? <—3—|—4(21nm—lnm—lnm)—|— 1 <ln —ln2—ln>>

= —COm? (3+ iln?)) )
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