
Bachelor’s thesis

Direct Photon Production
at the LHC

Submitted by

Lea Ziemons

August 30, 2023

First examiner
Priv.-Doz. Dr. Karol Kovařík

Second examiner
Dr. Tomáš Ježo

Universität Münster
Fachbereich Physik

Institut für Theoretische Physik





Contents
1. Abstract 4

2. Introduction 4

3. Theory 5
3.1. Standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1. Colors and strong interaction . . . . . . . . . . . . . . . . . . . . . 7
3.2. Cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. Gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1. Quantum electro dynamics (QED) . . . . . . . . . . . . . . . . . . 9
3.3.2. Quantum chromo dynamics (QCD) . . . . . . . . . . . . . . . . . . 10
3.3.3. From the Lagrangian to matrix element . . . . . . . . . . . . . . . 10

3.4. Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5. Strong coupling constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6. Parton distribution functions (pdf’s) . . . . . . . . . . . . . . . . . . . . . 13
3.7. Direct photon production . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Theoretical prediction 16
4.1. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1. Quark-gluon scattering . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2. Antiquark-gluon scattering . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3. Antiquark-quark scattering . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Comparison to data 28
5.1. Experimental background . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3. Comparison of the theoretical prediction and experimental data . . . . . . 31
5.4. Prediction limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5. Prediction strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6. Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6.1. Scale-uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.2. PDF-uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.3. Total uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6. Conclusion 39

A. Appendix 42
A.1. γ-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2.1. Mandelstamm variables . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2.2. Subcalculation x1 and x2 . . . . . . . . . . . . . . . . . . . . . . . 42
A.2.3. Scattering angle θ . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2.4. Subcalculation integral . . . . . . . . . . . . . . . . . . . . . . . . . 44



1. Abstract

In this thesis a first order prediction for the cross section of direct photon production in
a proton proton collision is made and compared to experimental data from ALICE at
an energy of

√
S=8 TeV.

The data is being met with an upward shift. The shape of the curve is predicted
satisfactorily according to the limitations of the prediction. To improve the results higher
orders and the masses of the quarks, which are set to zero here, need to be included. The
dominant uncertainties are the scale error followed by the pdf error. The quark-gluon
scattering is the most contributing process, followed by antiquark-gluon scattering for
lower transversal photon momenta kT and by quark-antiquark scattering for higher kT ,
which shows the rapidly decreasing gluon pdf’s for increasing Bjorken scale x. Up quarks
contribute most to the cross section followed by charm quarks and then down quarks.

2. Introduction

What are we made of? What is the smallest existing particle? These are possibly the
most famous questions. I remember learning about the raisin bun model in school, which
is how people earlier thought atoms would look like. A positively charged dough with
negatively charged raisins, randomly distributed. Nowadays they already teach that
modelling the atom like a raisin bun is not appropriate and one rather looks at the
atoms as a heavy nucleus and the electrons move around it in certain tracks.
The next question is: What is the nucleus made of (if it is not flour)? We learned that it
is made of neutrons which are not electrically charged and protons which are positively
charged. So, what are the protons and neutrons made of? I definitely heard the word
quark in school, but to get a better understanding of the structure of protons I had
to study physics. Then I learned that ”what is something made of?” is not the only
question to ask but ”what keeps it together?” too. And here I am, in between I learned
some more about physical theories but again asking the question, what are we made of?
Now knowing that to understand the structure of protons I need to consider quantum
theory or more accurate quantum field theory to get an idea about strong interaction
and quarks. Thus, to what look? Particle physicist study the substructure of particles
like atoms, their nuclei or hadrons like neutrons and protons by colliding them at very
high energies and examining the decayed or even generated final state particles after the
interaction.

Here I want to get an insight into the proton structure, accordingly I will look at a
proton-proton collision. This collision can have many products. This thesis will focus on
the production of photons, which are directly produced in the interaction of protons so
called direct photons. The research question is: How are direct photons created in
a proton-proton collision? And what can be learned about the substructure
of a proton from the cross section of direct photon production?
Thus, the assumptions made for the strong interactions will be verified. Furthermore,
it can be shown how photons can be produced directly from quarks and gluons as a
consequence of the strong interaction.

To do so the thesis is structured as follows. First I will recap the theory (ch: 3) which is
needed to calculate the cross section. The theory chapter is mainly based on literature
by Halzen and Martin[8], Schwichtenberg [18] and Hollik [10]. It starts with the standard

4



model and the basic interactions, then cross sections are introduced. After that, I will
give a brief introduction about gauge theory to introduce Quantum Electro Dynamics
and Quantum Chromo Dynamics which are the basis for the calculation. This leads to
the feynman rules which are the practical rules to calculate the cross sections. Contin-
uing with the strong coupling constant and finishing with parton distribution functions
(pdf’s). Then in the second part calculations are evaluated (ch: 4). First, the different
processes and the corresponding feynman diagrams are discussed. Then for every pro-
cess, the matrix elements are calculated. Following that we will have a closer look on the
kinematics of the processes to get the cross section in its final form. In the next chapter
(ch: 5) the theoretical calculation is compared to experimental data after finishing the
numeric calculations. The thesis ends with a conclusion (ch: 6).

3. Theory

The goal of this thesis is to better understand the structure of protons by looking at
collisions between them. Experiments reveal that protons have a substructure and are
not the smallest entity. Fig: 1 shows schematically that protons consist of three valence
quarks and in principal arbitrarily many sea quarks and gluons corresponding to the
lowest plot. The sea quarks and gluons are created permanently by interaction between
them. These are strong interactions.
How does strong interaction work? In this thesis, the production of photons is considered
with proton-proton collision. The first learning is that not the protons are colliding but
their constituents. In consequence it is a collision between quarks and gluons (see fig:
2). Thus, to have a look at the Standard Model first is useful.

3.1. Standard model

All particles can be fundamentally classified into two types: fermions and bosons. The
difference is that fermions have a half-integer spin (the spin is a fundamental particle
characteristic postulated in quantum mechanics). Matter consists primarily of fermions,
the bosons however, are exchange particles and thus responsible for interaction and are
integer-spin particles. This becomes clearer if one looks at the standard model with the
fundamental particles (fig: 3).
It is structured in three blocks: quarks, leptons, and bosons. There are six quarks
arranged in three generations. Each has 1

2 spin (fermions) and 2
3 (up, charm, and top

quark) or −1
3 (donw, strange and bottom quark) electric charge. Then there are the

leptons which are fermions as well (spin 1
2), which are electron, myon, tauon and each

has a corresponding neutrino. At last, there are the bosons, namely photons, W+-,W−-
and Z-boson, gluons and higgs boson.
These three blocks make more sense while considering the four fundamental interactions:

- electromagnetic interaction
- strong interaction
- weak interaction
- gravitation

Hence each interaction has its exchange boson or interaction boson which carries the
charge. The electromagnetic interaction is mediated by photons, strong interaction by
gluons, weak interactions by W+,W− and Z-bosons and for gravitation hints for the
existence of an graviton are searched for.
Quarks interact strongly, weakly and electromagneticly. The leptons are divided in
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Figure 1: Shown is a schematic illustration of the possible components of a proton and
the effect on the structure function F (x) [8].

Figure 2: The sketch of the proton proton collision illustrates the underlying parton
collision. The blurred arrows correspond to the sea quarks.

electron, muon, and tauon. They interact electromagnetic and weak and the neutrinos
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Figure 3: Shown is the standardmodel of particle physics [3].

only weak.
Every particle from the standard model has a corresponding antiparticle, which is the
same in every characteristic but the charges have negative signs.
So for the consideration of the proton collisions the quarks of which the protons consist
are relevant. Furthermore the strong interaction and with it the gluons. Since direct
photon production is considered, also the electromagnetic interaction must be looked at.
Here is a table (tab: 1) which shows the masses of the different quarks which are relevant
for the calculation:

quark mass M
up 2.16 MeV

down 4.67 MeV
strange 93.4 MeV
charm 1.27 GeV
bottom 4.18 GeV

top around 170 GeV

Table 1: The tab shows the masses of the different quarks in natural units [19].

3.1.1. Colors and strong interaction

This thesis is about proton collision. Speaking about interactions, we can now more
accurately say, their components are interacting strongly and electromagnetically. What
does a proton look like?

p = uud (1)

That means that a proton consists of two up quarks and one down quark, these are the
three valence quarks. There are more sea quarks and gluons which appear through strong
interaction. The quarks are produced in quark antiquark pairs: uū, dd̄, cc̄, ss̄, tt̄, bb̄.
Looking at the valence quarks there is an illustrative way to see the necessity of in-
troducing color. The proton has an anti symmetric ground state due to uud. But the
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∆++-baryon has three up-quarks (∆++ = uuu). This is equivalent to a completely sym-
metric wave function which breaks the Pauli principle. To solve this, color or differently
said a new charge can be introduced, also answering the question of why single quarks are
never observed. There are three colors red, blue, and green, and their three anticolors.
All particles which can be observed are white, which means they either have all three
colors or anticolors, or are color anticolor pairs. See for example proton, antiproton, and
pion in fig: 4.

Figure 4: The figure shows the color composition of proton, antiproton and pion [8].

Strong interaction then is the exchange of color between quarks and gluons. In contrast
to electromagnetic interaction, where the photon is uncharged the gluons are charged,
gluons have color, more accurate they always carry a color and an anticolor and therefore
can interact as well. Hence, gluons can interact with themselves.

3.2. Cross section
Now coming back to the proton proton collision where quarks and gluons interact. So
what are we looking at now? The cross section is the central value of all the calcuations.
What is the cross section? 1

There is a number of particles scattered at a scattering center in a certain unit of time,
which is called N

∆t . This number of particles is proportional to the Luminosity L which is
the number of particles in a time unit per transverse area unit at the scattering center.
The proportionality factor is the cross section σ. So the cross section is kind of the
probability of a scattering event.
Normally one is not interested in the total cross section, but in the differential cross
section, in other words, the cross section in a certain angular range dΩ. Mathematically
said:

dN

dΩ
=
dσ

dΩ
L. (2)

The cross section is so useful because the luminosity L is a collision characteristic, so if
the cross section is calculated, one knows how many particles N in which angular range
dΩ scatter.
In quantum mechanics the differential cross section can be written as[16]:

dσ =
1

F
M2 dPSn. (3)

1The answer given in the following is based on [9].
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Here, F is the flux factor, M the matrix element and dPSn the phase space integral
which is Lorentz invariant.

3.3. Gauge theory

To get the cross section one needs to calculate the matrix element for which quantum
field theory is needed. The matrix element M is the probability of a particle in an initial
state 〈in| going to an outgoing state |out〉:

|M |2 ∼ 〈in| ... |out〉 . (4)

In this chapter the whole quantum field theory cannot be explained or derived, never-
theless a brief motivation is given: What is the basic idea and how are the feynman rules
derived from this, which are the basis of the calculation of the matrix element in the
second part?
Even though Gauge theory is mathematically complicated and looks kind of unnatural
sometimes it has one big advantage: it can describe all the mechanics (classical, electro-
magnetic and quantum mechanics).
So what is the fundamental idea? All particle actions underlay local gauge symmetries.
These symmetries are connected to conservation laws by the Lagrangian formalism.
The Lagrange formalism is known from classical mechanics: There is an action S, which
is Lorentz-invariant:

S =

∫
dt L. (5)

This action has to be minimised which leads to the Lagrange’s Equations which are
fundamental equations of motion:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (6)

qi are the generalised coordinates of the particles, t the time, here L has to be chosen
right and is L = T−V , which is the difference between kinetic energy T and the potential
energy V . Extending this formalism to fields, one gets the Euler-Lagrange equation:

d

dxµ

(
∂L

∂(∂φ/∂xµ)

)
− ∂L

∂φ
= 0. (7)

L is the Lagrange density, just called Lagrangian from now on. Then the action looks
like follows:

S =

∫
d4x L . (8)

This S follows certain rules, is for example invariant for Lorentz transformations and
has symmetries. Therefore, knowing S allows to get information about the field. The
task then is to choose the Lagrangian’s for the different problems.

3.3.1. Quantum electro dynamics (QED)

To get from classical to quantum mechanics the fields also have to be quantized, which
is done by a quantized wave function ψ and the fields are operators now. Starting with
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Quantum Electro Dynamics means to looking at electromagnetic interaction only. One
sets the condition of local invariance. In this case of QED it is an U(1) transforamtion:

ψ(x) → eiα(x)ψ(x). (9)

This invariance leads to the Lagrangian:

LQED = −1

4
FµνF

µν + eψ̄γµψA
µ + ψ̄(iγµ∂µ −m)ψ. (10)

F are the electromagnetic field tensor from electrodynamics and A the electromagnetic
fields. e is the electric charge and ψ the wave functions. The γ-matrices are the dirac
matrices. The first summand corresponds to the electromagnetic waves, the second to
the interaction and the last to mechanical electrons.

3.3.2. Quantum chromo dynamics (QCD)

Now how to get from QED to Quantum Chromo Dynamics? One extends the condition
for phase invariance of an U(1) group to a SU(3) group:

ψi → Uijψj = eiα
aTa

ijψ. (11)

U is part of the SU(3) group, which consists of unitary 3× 3 matrices. T a
ij is the base of

Lie algebra, the generator of the group and consists of a=8 3×3 matrices. a corresponds
to the eight different gluons due to the 8 combinations of three colors and anticolors. T
thus follows the Lie algebra with the structure constant fabc:

[Ta, Tb] = ifabcTc. (12)

This becomes important for the interaction between gluons (first summand of equation:
13), which however is not relevant for the process discussed here. In order to keep the
Lagrangian invariant under this phase transformation it must be adjusted as follows:

LQCD = −1

4
Ga

µνG
µν a + ψ̄i(iγ

µ/∂ −mq)δijψj − gsψ̄iγ
µT a

ijψjG
a
µ. (13)

The wave functions ψ are fields with i,j=1,2,3 each component has four-components
again. The slashed partial derivation is a short form to wright /∂ = ∂µγ

µ. As well gauge
fields Ga

µ were introduced and the strong interaction constant gs, which will be discussed
further in chapter 3.5. Here, the first term corresponds to gluon gluon interaction, the
second to free quarks and the last to gluon quark interaction.

3.3.3. From the Lagrangian to matrix element

How to get from the Lagrangian’s to the matrix element M needed for the cross sec-
tion?2 In quantum mechanics the Hamilton principle is used, where a time evolution
operator Û(t, t0) = e−

i
~ Ĥ(t−t0) describes the development of time of a state. Looking

for a transition amplitude from one state to another one generalised to G(x′′, t;x′, t0) =
〈x′′| Û(t, t0) |x′〉. Then a wave function can be written as another wave function with a
corresponding transition amplitude G:

ψ(x′′, t) =

∫
d3x′ G(x′′, t;x′, t0) ψ(x

′, t0). (14)

2This subsection bases on [15].
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Now G is the connection to the Lagrangian approach because G can be written as:

G(xf , tf , xi, ti) =

∫
D [x(t)]e

i
~S[x(t)], (15)

where Ŝ is the operator to the action S (eq: 8) the integral over the Lagragian density
L and D is the integral over all possible paths for fixed endpoints xi and xf . Because
S is related to the Lagrangian L (eq: 8) then the Lagrangian’s from QED (eq: 10) and
QCD (eq: 13) can be filled in to get the matrix element:

|M |2 ∼ 〈in|G |out〉 . (16)

To solve this equation a perturbation theory approach is used where, in simple terms, the
first relevant order of the exponential function series is considered. Thus, the feynman
rules can be derived, which goes beyond the scope of this bachelor thesis.

3.4. Feynman rules

The Feynman rules are an outcome of the gauge theory and an illustrative way to calu-
culate the matrix elements for the cross section. They are external lines (corresponding
to the interacting particles) and internal lines (which correspond to the propagator) and
vertices (the interactions).
Starting with the external lines which in our case can be quarks (17), antiquarks (18),
photons (19) and gluons(20):

Ingoing quark:
p

= u(p) Outgoing quark:
p

= ū(p) (17)

Ingoing antiquark:
p

= v̄(p) Outgoing antiquark:
p

= v(p) (18)

Ingoing photon:

γν

p

= εν(p) Outgoing photon:

γν

p

= ε∗ν(p) (19)

Ingoing gluon:

gaµ

p

= εaµ(p) Outgoing gluon:

gaµ

p

= εaµ(p) (20)

Here u,v are spinors (describing the spins) and εµ or εν describe the transversal polari-
sation. They depend on the corresponding momentum p of the particle.
The internal lines, in the case here, quarks and antiquarks (21), with the masses of
the quarks m and there momenta p:

quark:
ik

p = δki
i(/p+m)

p2 −m2
antiquark: i k

p
= δik

i(/p+m)

p2 −m2
(21)
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Lastly, looking at the vertices. First with two quarks and a gluon and then with two
antiquarks and a gluon (22), two quarks and a photon and two antiquarks and a photon
(23):

i

gaµ

j = i gs T
a
ji γ

µ

i

gaµ

j = i gs T
a
ij γ

µ (22)

j

k

γν

= i ef e γ
ν j

k

γν

= i ef e γ
ν (23)

Here the strong coupling constant gs (further discussed in ch: 3.5), the coupling of the
electromagnetic interaction e · ef which is the charge of the quark, T a which are the
generators of the color group SU(3) and the γ-matrices need for the solution of the
Dirac-equations, are introduced.
After identifying the feynman diagrams for the process, these feynman rules are used to
calculate the matrix elements M .

3.5. Strong coupling constant
The coupling constant αs (connected to gs through eq: 97) must be considered in more
detail in QCD because it is not a constant but depends on the scale Q2 with an arbitrary
size.3 This is due to the fact that a perturbation-theoretical approach was chosen. If all
orders would be included there would be no dependency on Q but if only one order or
two orders are included the strong coupling constant depends on Q.
The relation of αs and Q is given by:

αs(Q
2) =

4π

β0 ln
(
Q2

Λ2

) (24)

with

Λ2 = µ2 e
− 4π

β0
αs(µ2) (25)

and

β0 = 11− 2

3
nf . (26)

nf is number of different quark flavors, µ2 is the scale used at which αs(µ
2) is a constant.

Two things should be emphasised: First there is an asymptotic freedom, because the
coupling decreases, which means that for large Q the particles act like free particles,

3As a literature basis for this chapter [5] and [10] are used.
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which makes it legitimate to use perturbative theory for the strong interaction. Second
for small Q the coupling constant αs diverges so the coupling gets really strong.
The strong coupling constant then can be measured in experiments. Normally, the scale
of the Z-boson is choosen, so that[19]

µ = mz = 91.19GeV, and αs(µ
2) = 0.1179. (27)

The coupling constant plotted over the scale Q is shown in Fig. 5.

Figure 5: It is shown the theoretical prediction of the strong coupling constant αs in first
order with the experimental data at different scales Q [10].

3.6. Parton distribution functions (pdf’s)

It is now known how the cross section for the collision of two quarks or gluons can be
calculated. But in the experiment not two protons but quarks and gluons collide, these
are called partons, since there are parts of the proton. So how does one know which
particles of the respective protons will collide? One cannot know, but the parton model
suggests that protons consist of partons. All of these partons possess a fraction of the
proton energy and momentum. This fraction is called Bjorken variable x which indicates
which four momenta share a parton has of the total particle.
The parton distribution functions P (x) are the probability density of a parton, which
describe the probability of finding a parton with a momentum fraction x within the
proton. Per definition the sum over all partons i integrated over x is one:∑

i

∫
dx xPi(x) = 1. (28)

Since a proton proton collision at high energies is considered, its partons act as nearly
free particles.
The pdf’s are the means to conclude from the cross section on parton level to the cross
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section on proton level. In fig: 6 the pdf’s for different quarks and gluons can be seen
for two scales Q = 10 GeV and Q = 70 GeV corresponding to the momentum range
looked at in the comparison to experimental data later. x · P (Q, x) is shown with their
pdf uncertainty ∆Ppdf calculated with (in analogy to the pdf uncertainty discussed in
ch: 5.6.2)[14]:

∆xPpdf =
1

2

√∑
k

(xP (f+k )− xP (f−k ))2. (29)

The pdf set CT18NNLO[11] is used because it is the latest of the CT sets and NNLO is
next to next to leading order which is the most accurate including two orders. First of

Figure 6: Shown are the pdf’s at Q = 10.0 GeV and Q = 70.0 GeV for the different
partons. Pdf P (Q, x) times bjorken variable x over x. x · P (Q, x) is shown
with the corresponding pdf uncertainties ∆σpdf .

all, it is recognisable that for x going to one x ·P (x,Q) for all partons goes to zero, which
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matches with the expectation that a proton does not consist of just one particle which
would be the case if one particle would have had the total momentum. Furthermore,
for little momentum fractions the gluon is dominant and then decreasing rapidly for
increasing x. Also the diagrams show the peaks of the valence up and down quarks
and that the peak of the down quark is about half of the up quark. The probability
of finding a quark increases with decreasing x for all quark flavors. Note however, that
some flavors are more suppressed due to its much higher mass. In addition for a lower
scale Q the peak of the valence quarks is bigger and the probability of sea quarks lower.
In the following figure (fig: 7) only the pdf’s for antiparticles is shown to get a closer
look needed in the discussion later. To get the cross section one has to integrate over all

Figure 7: Pdf’s only anti particles by Q=70.0 GeV for antiquarks only. Pdf P(Q,x) times
bjorken variable x over x.

the energy fractions for each parton and multiply with the pdf’s[9]:

σ(AB → FX) =
∑
a,b

∫
dx1

∫
dx2 Pa/A(x1, Q

2)Pb/B(x2, Q
2) σ̂(ab→ F ). (30)

A and B denote the two protons, F is the final state, here a direct photon and X the
rest, which is a quark, an antiquark or a gluon (see in ch: 4.1). These particles hadronize
and will be seen in the experiment as jets. a and b then are the partons colliding and
Pa/A(x1, Q

2), Pb/B(x2, Q
2) their corresponding pdf’s. σ̂(ab → F ) is the cross section at

parton level.
The actual pdf’s are numerical calculations, trying functions to fit with the measured
data.

3.7. Direct photon production
An idea how to calculate the cross section was evaluated after it was demonstrated that
when protons collide their components, the quarks and gluons, interact with each other.
What are direct photons? One calls a produced photon a direct photon if they originate
in the interaction of gluons and quarks. Contrary photons that arise in the parton shower
or due to Bremsstrahlung are not direct photons. So in the case of direct photons the
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quark interacts electromagneticly while the strong interaction of a gluon and an (anti-
)quark happens simultaneously. This is possible because quarks have a color and an
electric charge.
In this case one can see the different Lagrangians (LQED and LQCD) as a sum so the
first interaction comes from the LQCD, this gets clearer when the feynman diagrams are
drawn in chapter 4.1.

4. Theoretical prediction

The calculation splits in two main parts. First, the matrix elements for the different
parton proccesses need to be calculated (ch: 4.1) . Then, to get from the parton cross
sections to a measurable cross section kinematics need to be considered (ch: 4.2).

4.1. Matrix elements

Starting with the matrix elements M : Reminding the feynman rules from ch: 3.4. Sev-
eral additional rules regulate which processes are allowed, i.e. which combinations of our
incoming and outgoing particles, propagtors and vertices are valid and produce direct
photons:
1. The fermion line must be continuous and consistent in direction.
2. Vertices can consist of two quarks and one gluon, or two quarks and a photon. (Deriv-
ing from the feynman rules also vertices with three gluons exist, but they do not matter
looking at direct photon production because there are no vertices consisting of gluons
and photons (gluons have no electromagnetic charge).
3. Electric and color charge has to be conserved in a vertex.
Also here only first order diagrams are considered, meaning no loops are allowed.

In consequence direct photons can be produced in three possible processes in proton-
proton collisions. These are shown below in the form of feynman diagrams. The first
process is quark-gluon scattering, where the s- (fig: 9a) and u-channels (fig: 9b) are
possible. One process is determined by the same input and output particles. The differ-
ent channels mean that different interaction (vertices) can lead to the same output. The
naming convention is inspired by the mandelstamm variables (see app:106) because the
squared momentum of the propagator is equivalent to the corresponding mandelstamm
variable. The second process is the same only that an antiquark is scattering with a
gluon (antiquark-gluon scattering), there is also the s-channel (fig: 10a) and the
u-channel (fig: 10b). The last process is quark-antiquark scattering you can see the
t-channel (fig: 11a) and the u-channel (fig: 11b) below. In the following for each of the
three processes the matrix elements which are directly connected to the cross sections
(eq: 3) are calculated.
They are more processes leading to the same result but including loops means higher
orders. These are not considered for the prediction as here only a first order prediction
is made. Here (fig: 8) is just one example given of how a higher order diagram would
look like:
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qj

γν

p1
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Figure 8: Here an example of a second order feynman diagram for quark-gluon scattering
is illustrated.

4.1.1. Quark-gluon scattering

qi

gaµ

qj

γν

pa

pb

pa + pb

k1

k2

a) s-channel

qi

gaµ

qj

γν

p1

p2

p1 − k2

k1

k2

b) u-channel

Figure 9: The figure shows the two (u- and s-channel) feynman diagramms for quark-
gluon scattering. Also there is a color coding to illustrate eq: 32

The feynman rules (derived in ch:3.4) are used to calculate the matrix elements. Starting
with the first process quark-gluon scattering in fig: 9. The full matrix element M1 is the
sum of the s- (M1s) (fig: 9a) and u-channel (M1u) (fig: 9a), also the interference term
has to be added, which can be simplified as shown below:

M2
1 =M2

1s +M2
1u +M †

1sM1u +M1sM
†
1u

=M2
1s +M2

1u + 2 Re(M1sM
†
1u) (31)

Starting with M1s combining the different terms of the feynman rules (eq: 17-23) to-
gether and using momentum conversion (p = pa + pb). The bold momenta symbolize

17



four-vectors. For the first matrix element M1s the feynman diagram (fig: 9a) is shown
and the different parts colored as the corresponding terms in the equation.

M1s =−
i · e · ef · gs
p2 −m2

q

ε̄µ(pb)ε̄
∗
ν(k2) · δkj T a

ij

ūs1(k1)γ̄
ν((pa + pb)

α γ̄α +mq)γ̄
µus2(pa). (32)

Then the adjoint is:

M †
1s =

i · e · ef · gs
p2 −m2

q

ε̄′µ
∗
(pb)ε̄ν′(k2) · δkj T a

ij

ūs2(pa)γ̄
µ′
((pa + pb)

α′
γ̄α

′
+mq)γ̄

ν′us1(k1). (33)

Here ef is the share of e from the charge of the quark (see tab: 3). The color part can
be considered seperately which leads to:

M1s,Color = δijT
a
jk

M †
1s,Color = δijT

a
kj

⇒M2
1s,Color = T a

kiT
a
ik = Tr(T aT a) =

1

2
δaa. (34)

Averaging over the colors of the quark ( 1
N ) and the gluon ( 1

N2−1
) and sum the eight

(N2 − 1) color combinations, M1,s,color
2 yield:

M1,s,color
2
=

1

N

1

N2 − 1

N2−1∑
a

1

2
δaa =

1

2N
. (35)

It has to be averaged over the colors of quark and gluon because there is no way to know
the color of the quark and the gluon.
Now the rest of M2

1s needs to be transformed before in the end adding the color factor
again:

M ′2
1s =

(e ef gs)
2

(p2 −m2
q)

2
ε̄µ

∗(pb)ε̄ν(k2)ε̄′µ
∗
(pb)ε̄ν′(k2)

ūs1(k1)γ̄
ν (pa + pb)

α γ̄α +mq)γ̄
µus2(pa)

ūs2(pa)γ̄
µ′
(pa + pb)

α′
γ̄α

′
+mq)γ̄

ν′us1(k1). (36)

First one can sum over the polarisation using
∑
ε̄µ(pb)ε̄

∗
µ′(pb) = gµµ′ and

∑
ε̄ν′(k2)ε̄

∗
ν(k2) =

gν′ν which results in:

M ′2
1s =

(e ef gs)
2

(p2 −m2
q)

2
ūs1(k1)γ̄ν ((pa + pb)

α γ̄α +mq)γ̄
µus2(pa)

ūs2(pa)γ̄µ ((pa + pb)
α′
γ̄α

′
+mq)γ̄

νus1(k1). (37)

Then one sums over the spins s1, s2 using the completeness relation∑
si
usi(p)ūsi(p) = /p+m and also identify a trace:

M ′2
1s =

(e ef gs)
2

(p2 −m2
q)

2
Tr(( /k1 +mq)γν(pαγ

α +mq)γ
µ( /pa +mq)γµ(p

′
α′γα

′
+mq)γ

ν). (38)
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At this point the quark masses are set to zero (mq ≈ 0), because they are small (see
1) compared to the considered centre of mass energy of

√
S=8 TeV. The validity of the

approximation is is discussed in ch: 5.4. So neglecting the masses it follows:

M ′2
1s =

(e ef gs)
2

p4
k1,β pα pa,δ pα′ Tr(γβγνγαγµγδγµγα

′
γν). (39)

Using γ-matrix identities (see 103, 104) the trace can be solved and also p = pa +pb is
used which leads to:

M ′2
1s = 16

(e ef gs
s

)2
[(k1 · p)(p · pa)− (k1 · pa)(p · p) + (k1 · p)(pa · p)]. (40)

Before continuing it is useful to have a closer look at the scalar products which can be
reformulated using the mandelstamm variables (A.2.1) one can write:

s = (pa + pb)
2 = p2

a + p2
b + 2pa · pb

⇒ pa · pb = k1 · k2 =
1

2
s (41)

pa · k2 = pb · k1 = −1

2
u (42)

pa · k1 = pb · k2 = −1

2
t. (43)

Then follows for M2
1s:

M ′2
1s = −8(e ef gs)

2u

s
. (44)

Now the color factor (eq: 35) is added again and the spins from the initial particles
(quark and gluon) are averaged (because here analogue to the colors, the spin of the
initial particles is unknown) which gives a factor of 1

2 for each:

M1s
2
= − 1

N
(e ef gs)

2u

s
. (45)

Analogously the matrix element M1u for the u-channel (fig: 11b) can now be calculated.
Using the feynman rules there is the following ansatz:

M1u =−
i · e · ef · gs
p2 −m2

q

ε̄µ(pb)ε̄
∗
ν(k2) · δjk T a

kj

ūs1(k1)γ̄
ν ((pa − k2)

α γ̄α +mq)γ̄
µus2(pa) (46)

M †
1u =

i · e · ef · gs
p2 −m2

q

ε̄′µ
∗
(pb)ε̄ν′(k2) · δjk T a

kj

ūs2(pa)γ̄
µ′
((pa − k2)

α′
γ̄α

′
+mq)γ̄

ν′us1(k1). (47)

The color factor is completly analogous:

M1,u,color
2
=

1

2N
. (48)

The rest of the calculation is also analogous only that p=pa-k2. One gets:

M1u
2
= − 1

N
(e ef gs)

2 s

u
. (49)
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Now the interference term is calculated:

M1sM1u† =
(e ef gs)

2

(p2 −m2
q)(p

′2 −m2
q)
ε̄µ(pb)ε̄

∗
ν(k2)ε̄′µ

∗
(pb)ε̄ν′(k2)

ūs1(k1)γ̄
ν (pαγ̄α +mq) γ̄

µus2(pa)

ūs2(pa)γ̄
µ′
(
p′α′

γ̄α
′
+mq

)
γ̄ν

′
us1(k1) (50)

where p and p′ are p=pa+pb and p′=pa-k2. Setting the quark mass to zero results in:

M1sM1u† =
(e · ef · gs)2

(p2 · p′2)
pα pα′ kβ1 p

δ
a Tr(γ

βγν′γ
αγµγδγν′γ

α′
γµ). (51)

Using γ-identities (app: 103, app 104) the equation evolves to:

M1sM1u† = −32
(e ef gs)

2

us
(p · p′)(k1 · pa). (52)

Which simplifies to:

M1sM1u† =
(e ef gs)

2

N

t(s+ t+ u)

us
. (53)

Using the relation that s+u+ t is proportional to the masses squared (app: 107) in the
case that masses are set zero the interaction term is zero. Now we can write the total
cross section for the quark-gluon-process, which is with eq: 31 in the case of mq = 0:

M2
1 = −

(e ef gs)
2

N

(u
s
+
s

u
+�������
2
t(s+ t+ u)

us

)
. (54)

It is also possible to not approximate the masses as zero. Therefore, the calculation is
made by mathematica[12]. Accordingly mathematica calculates anagolous to the hand
calculation and keeps the masses. This results in the following matrix element[12]:

M2
1 =

(e ef gs)
2

N
(
m2

q − s
)2 (

m2
q − u

)2
(16m8

q − 4m6
q(s+ u) +m4

q

(
9s2 − 52su+ 9u2

)
+m2

q

(
s3 + 13s2u+ 13su2 + u3

)
− su

(
s2 + u2

)
). (55)

4.1.2. Antiquark-gluon scattering

Let’s go to the second process in fig: 10. This case is almost analogous to the quark-
gluon scattering. Looking at the Ms (fig: 10a) and Mu (fig: 10b) the difference is only
the v instead of the u spinors (the color factor is already omitted here):

M ′
2s =−

i · e · ef · gs
p2 −m2

q

ε̄µ(pb)ε̄
∗
ν(k2) · δkj T a

ij

v̄s1(k1)γ̄
ν ((pa + pb)

α γ̄α +mq)γ̄
µvs2(pa) (56)

M ′
2u =−

i · e · ef · gs
p2 −m2

q

ε̄µ(pb)ε̄
∗
ν(k2) · δjk T a

kj

v̄s1(k1)γ̄
ν ((pa − k2)

α γ̄α +mq)γ̄
µvs2(pa). (57)
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a) s-channel
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b) u-channel

Figure 10: The figure shows the feynman two (s- and u-channel) diagrams for antiquark-
gluon scattering.

Now considering that the sum of the u-spinors is
∑

si
usi(p)ūsi(p) = /p+m and∑

si
vsi(p)v̄si(p) = /p − m there is a sign switch in the mass terms. So in the case of

mq = 0 the result is the same and even considering the masses one will see that there
only exist even exponents of the mass terms (M2 ∝ m2n) so that the antiquark-gluon
scattering and quark-gluon scattering has the same results:

M2
2 =M2

1 . (58)

4.1.3. Antiquark-quark scattering

Now the process in fig: 11 has to be analysed, an antiquark and quark scatter to a photon
and gluon. Starting with the t-channel (11a) the cross section without the color-term
with p = pb − k2, is:

M ′2
3t =

(e ef gs)
2

(p2 −m2
q)

2
v̄s1(pb)γ̄ν(p

αγ̄α +mq)γ̄
µus2(pa)

ūs2(pa)γ̄µ(p
α′
γ̄α

′
+mq)γ̄

νvs1(pb). (59)

This leads to:

M2
3t =

N2 − 1

N2
(e ef2 g)

2 u

t
. (60)

Looking at the u-channel (fig: 11b), p = pa − k2:

M ′2
3u =

(e ef gs)
2

(p2 −m2
q)

2
v̄s1(pb)γ̄

µ(pαγ̄α +mq)γ̄
νus2(pa)

ūs2(pa)γ̄
ν′(pα′

γ̄α
′
+mq)γ̄

µ′
vs1(pb) (61)
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Figure 11: The figure shows the two (t- and s-channel) feynman diagramms for
antiquark-quark scattering.

which is:

M2
3u =

N2 − 1

N2
(e ef gs)

2 t

u
. (62)

The interference term with p = pb − k2 and p′ = pa − k2 is:

M ′
3uM

′
3t† =

(e ef gs)
2

(p2 −m2
q)(p

′2 −m2
q)
v̄s1(pb)γ̄

ν(pαγ̄α +mq)γ̄
µus2(pa)

ūs2(pa)γ̄
ν′(pα′

γ̄α
′
+mq)γ̄

µ′
vs1(pb). (63)

Finally the result is:

M3tM3u† = −N
2 − 1

N2
(e ef gs)

2 2s(s+ t+ u). (64)

Then the matrix element for the antiquark-quark scattering looks like:

M2
3 =

N2 − 1

N2
(e ef gs)

2

(
t

u
+
u

t
−(((((((
2s(s+ t+ u)

)
. (65)

Here one can also include the masses in Mathematica and gets[12]:

M3
2
=−

(e ef gs)
2
(
N2 − 1

)
N2
(
m2

q − t
)2 (

m2
q − u

)2
(6m8

q + 9m6
q(t+ u) + 2m4

q

(
t2 − 30tu+ u2

)
(66)

+m2
q

(
t3 + 16t2u+ 16tu2 + u3

)
− tu

(
t2 + u2

)
). (67)

All needed matrix elements are summarised in tab: 2 and also compared to the results
from [7].
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4.2. Kinematics

Thus, the matrix elements are calculated and the cross section can be easily calculated for
the partonic process using eq: 3. At the experiment one ”sees” only the protons collide.
Accordingly one has to do some kinematics and have closer look at the collision to get the
cross section for the proton proton collision. The sketch (fig: 12) shows schematically the

Figure 12: This is a sketch of the proton proton collision.

collision process. There are two input particles and two output particles. This process
is first calculated at the parton level. So there is:

Parton in 1 : ~pa (momenta), Ea (energy)
Parton in 2 : ~pb (momenta), Eb (energy)

Parton out 1 : ~k1 (momenta), E1 (energy)

Parton out 2 : ~k2 (momenta), E2 (energy).

First of all it is useful to keep in mind that one has to distinguish between two systems.
Calculating the cross sections the partons (quarks and gluons) were looked at. The
partons live in the first system let’s call it the ”small center of mass” system from now
on SCMS. In this SCMS the whole energy can be expressed as ESCMS = Ea + Eb the
same for the momentum p = pa + pb, in addition it applies:

pa = k1 = −pb = −k2

⇒ Ea = Eb = E1 = E2. (68)

Furthermore, in the massless case for a four vector p = (E, ~p) applies because of the
relativistic energy momenta relation:

pµpµ = E2 − ~p · ~p = m2 = 0

⇒ E2 = |p|2. (69)

Now it is needed to change the system and get into the ”big one” now called ”big center
of mass” (BCMS) where the protons live, which actually collide. In this system, the
whole energy is EBCMS which is the energy that can be set in the experiment as

√
S.

To translate between this two systems one can make use of the known energy fraction
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x (Bjorken variable) of each parton from the energy of the proton, which leads to the
following:

Ea + Eb = x1Ep + x2Ep = (x1 + x2)Ep. (70)

The proton energy lives in the BCMS and is Ep = 1
2EBCMS = 1

2

√
S. All the measured

variables are measured in the lab system BCMS.

Now the matrix elements are calculated but to get the cross-section there it is use-
ful to take a closer look at the kinematics. Considering equation 3 the cross section is
given as:

dσ =
1

F
|M |2 dPSn. (71)

The matrix elements M were calculated at a parton level (SCMS). But from the ex-
perimental perspective there the two protons are colliding (BCMS) and it is not known
which parts of the protons are colliding. To solve this problem one needs to consider the
parton distributions functions (see ch: 3.6) which gives the following equation[9]:

σ(AB → FX) =
∑
a,b

∫
dx1

∫
dx2 Pa/A(x1, Q

2) Pb/B(x2, Q
2) σ̂(ab→ F ). (72)

So one looks at a collision from a proton A with another proton B, then only collisions
which lead to a certain output F , here direct photons, and a rest product X, are taken
into consideration. Accordingly, at the parton level all possible collisions (combinations
of a and b, which can be quarks and gluons) have to be taken into account and then
summed up:

σ(AB → FX) =

∫
dx1

∫
dx2 PQuark/A(x1, Q

2)PGluon/B(x2, Q
2) σ̂(M1)

+

∫
dx1

∫
dx2 PGluon/A(x1, Q

2)PQuark/B(x2, Q
2) σ̂(M1)

+

∫
dx1

∫
dx2 PAntiquark/A(x1, Q

2)PGluon/B(x2, Q
2) σ̂(M2 =M1)

+

∫
dx1

∫
dx2 PGluon/A(x1, Q

2)PAntiquark/B(x2, Q
2) σ̂(M2 =M1)

+

∫
dx1

∫
dx2 PQuark/A(x1, Q

2)PAntiquark/B(x2, Q
2) σ̂(M3)

+

∫
dx1

∫
dx2 PAntiquark/A(x1, Q

2)PQuark/B(x2, Q
2) σ̂(M3). (73)

Thus, the first two addends correspond to the quark-gluon scattering (4.1.1) the second
two to the antiquark-gluon scattering (4.1.2) and the last two to the quark-antiquark
scattering (4.1.3). Since we also need to sum over all quarks and antiquarks the formula
extends.
Hence, to get the cross section for the protons, dσ eq: 71 has to be put in eq: 72:

dσ(AB → FX) =
∑
a,b

∫
dx1

∫
dx2 Pa/A(x1, Q

2)Pb/B(x2, Q
2)

1

F
|M |2 dPSn. (74)
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First the integrals need to be transformed. It can be used that the integral above the
phase space dPSn can be written as (see [16]):

dPSn =
1

(2π)2
δ4(p− k1 − k2)

d3k1
2E1

d3k2
2E2

. (75)

Here, the momentum p is p = pa+pb. The idea is to write the whole cross section only
depending on the variables kt (the transversal momentum component of the photon, so
of k2, but from now on just written as kt), φ (the spherical coordinate to kt, see fig:
13) and the rapidity y2 also of the photon. These variables are chosen because they are
measurable and the depending variables in the experimental data. First the δ distri-

Figure 13: Illustration of the introduction of new spherical coordinates kT and φ.

bution is considered, which basically contains the energy and momentum conservation.
The four-dimensional δ-distribution can be splitted into the following four:

δ4(p− k1 − k2) =δ((x1 + x2)Ep − E1 − E2) (76)
· δ(−k1x − k2x) (77)
· δ(−k1y − k2y) (78)
· δ((x1 − x2)Ep − k1z − k2z). (79)

Here is used eq: 70 and that Ep ≈ |p| due to the fact that masses are approximated
to zero and therefore applying eq: 69. Also p has no x- nor y-component because the
coordinate system is chosen such that pa and pa and therefore p only have a z component
(see fig: 12). Now every δ distribution is considered separately. Starting with the last
(eq: 79):

δ((x1 − x2)Ep − k1z − k2z) =
1

Ep
δ

(
x1 − x2 −

k1z + k2z
Ep

)
(80)

⇒ x1 = x2 +
k1z + k2z

Ep
. (81)
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Now substituting x1 in equation (76) one gets terms for x1 and x2:

δ

((
2x2 +

k1z + k2z
Ep

)
Ep − E1 − E2

)
=

1

2Ep
δ

(
x2 +

k1z + k2z
2Ep

− E1 + E2

2Ep

)
(82)

⇒ x2 =
E1 + E2

2Ep
− k1z + k2z

2Ep
(83)

⇒ x1 =
E1 + E2

2Ep
+
k1z + k2z

2Ep
. (84)

Then, introducing the rapidity which can be written for a particle of momentum p1,2 as
(see [9]):

y1,2 = ln

((
E1,2 + k1,2z
E1,2 − k1,2z

)2
)
. (85)

x1 and x2 can be written as (see A.2.2):

x1 =
kT
2Ep

(ey1 + ey2) (86)

x2 =
kT
2Ep

(
e−y1 + e−y2

)
. (87)

Looking at the cross section (eq: 71) and just analysing the integrals using the δ-
distributions to solve the integrals over x1, x2, dk1x and dk1y and using dk1z = E1 dy1 and
dk2z = E2 dy2 (app: A.2.4) and introducing spherical coordinates dk2xdk2y = kTdkTdφ
(see fig: 13) it follows: ∫

dx1

∫
dx2 δ

4(p− k1 − k2)
d3k1
2E1

d3k2
2E2

=
1

4

1

2E2
p

1

E1E2
dk2x dk2y dk2z dk1z

=
1

2 · 4 E2
p

kT dkT dφ dy1 dy2

=
π

4E2
p

kT dkT dy1 dy2. (88)

Looking at the whole cross section (eq: 71) the pdf’s now depend on the rapidities
y1, y2: Pa/A(x1, Q

2) = Pa/A(y1, y2, Q
2) used eq: 86 and the same for Pb/B(x2, Q

2) =
Pb/B(y1, y2, Q

2) with eq: 87.
To get the limits for the y1 integration consider that x1,2 ∈ [0, 1]. Zero is only possible
if y1 and y2 diverge towards minus infinity. Here y2 is not set to minus infinity (in the
experimental comparison y2 is set close to zero) so x1,2 automaticlly doesn’t become zero.
Setting x1,2 = 1 in eq: 86,87 then one gets the lower and upper limit of y1 depending on
kT and y2:

y1 ≤ log

(
2Ep

kT
− ey2

)
=: yu

y1 ≥ − log

(
2Ep

kT
− e−y2

)
=: yo. (89)
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Now the matrix elements M have to be transformed to also only depend on y1, y2, kT .
M depends on the mandelstamm variables s, t, u which are considered now in SCMS, so
starting with s using that Ep ≈ |~p| (eq: 69):

s = (pa + pb)
2

= ((x1 + x2)Ep, (x1 − x2)~p)
2

=
(
(x1 + x2)

2 − (x1 − x2)
2
)
E2

p

= 4x1x2E
2
p . (90)

In SCMS Ea = Eb and E1 = E2 (eq: 68) and therefore applies:

s = (Ea + Eb)
2 = (E1 + E2)

2

= 4E2
a = 4E2

2

⇒ Ea = E2 =
√
x1x2Ep. (91)

Using that θSCMS is the angle between ~pa and ~k2 in the SCMS see fig: 14 and as given

Figure 14: Here the scattering angle φSCMS is illustrated.

in the appendix A.2.3 cos(θSCMS) = tanh
(y1−y2

2

)
for u follows:

u = −2 pa · k2

= −2Ea E2(1− cos(θSCMS)) (92)
= −2x1x2 E

2
p(1− cos(θSCMS))

= −2x1x2 E
2
p

(
1− tanh

(
y1 − y2

2

))
. (93)

t has a sign switch because ∠(~pb · ~k2) = π− ∠( ~pa · ~k2) and becomes:

t = −2 pb · k2

= −2x1x2 E
2
p(1 + cos(θSCMS))

= −2x1x2E
2
p

(
1 + tanh

(
y1 − y2

2

))
. (94)
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Finally, the cross sections looks as follows, using that the Flux-factor F = 4
√
(p1 · p2)2 −m2

am
2
b =

4E2
p · x1 · x2[16] for massless particles and putting eq: 88 in eq: 74:

dσ

dkT dy2
=

1

64 · E4
p π

yo∫
yu

∑
a,b

Pa/A(y1, y2, Q
2)

x1(y1, y2)

Pb/B(y1, y2, Q
2)

x2(y1, y2)
|Mab(y1, y2, kT )|2 · kTdy1

(95)

where the matrix element |Ma,b|2 has the following form (tab: 2):

a,b |Ma,b|2

quark, gluon |M1|2 = − 1
N (e ef gs)

2
(
u
s + s

u

)
gluon, quark |M1|2

antiquark, gluon |M2|2 = |M1|2 = − 1
N (e ef gs)

2
(
u
s + s

u

)
antiquark, gluon |M1|2

quark, antiquark |M3|2 = N2−1
N2 (e ef gs)

2
(
t
u + u

t

)
antiquark, quark |M3|2

Table 2: This is an overview of matrix elements |Ma,b|2 using the matrix elements from
ch: 4.1.

Now only the pdf’s have to be put in and the integral to y1 has to be solved. These
computations are done using the programming language python. The sum is over all
three processes (M1, M2 and M3) and over all quarks (up, down, charm, strange and
bottom).

5. Comparison to data
After the theoretical prediction was evaluated in the last chapter, in this chapter the
prediciton is compared to experimental data.

5.1. Experimental background
We start with looking at the experimental background: The prediction is put alongside
experimental data from the dissertation ”Probing the initial state of heavy-ion collisions
with isolated prompt photons” from Florian Jonas (2023)[13]. His results come from
the ALICE (A Large Ion Collider Experiment) experiment at the LHC (Large Hadron
Collider) at the Cern. The LHC is a synchrotron where particles can be accelerated in
two rings and the beams can be collided in four interaction points, one of them is the
ALICE experiment. In fig: 15 the schematic construction of the LHC is illustrated, one
sees ALICE in one of the four interaction points of the two beams. Dipole magnets ac-
celerate the particles with fields above 8 T. At the LHC particles with the same electric
charge can be accelerated which is needed to collide two protons. The ALICE experi-
ment studies QCD and QGP (Quark Gluon Plasma) and is able to identify particles and
measures a wide range of transversal momenta. Both is done by 19 subsystems (see fig:
16), which are not discussed further here. To measure direct photons electromagnetic
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Figure 15: Here one can see a schematic overview of the LHC with the different experi-
ments LHCb, ATLAS, CMS and ALICE [17].

calorimeters (marked in fig: 16) are needed due to the fact that photons undergo elec-
tromagnetic interaction. However for the experimental data protons are collided in the

Figure 16: This figure shows the schematic structure of the ALICE experiment[2] with
the marked EMCAL i.e. electromagnetic calorimeter.

ALICE experiment which have the energy
√
S=8 TeV (see fig: 17b) which corresponds

to the energy of both protons, one proton then has the energy Ep =
√
S
2 . The experiment

measured a Luminosity Lint = 530.1 1
nb to get from counted events to the cross section

(see eq: 2).

5.2. Numerics

Now the theoretical prediction is to be verified, in this case, better said compared to real
data to discuss limitations and strength of the results.
First the prediction has to be completed with the numerics. Therfore, eq: 95 is realized
in Python.
Defining parameters: The equation (eq: 95) is full of variables which need to be
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defined, starting with the electric charges efe and the strong coupling constant gs[19]:

αe =
1

137.035999084
e =

√
4παe (96)

αs(µ
2) = 0.1179

gs =
√
4παs. (97)

First the strong coupling constant gs was calculated with eq: 24 which is a first order
approximation. To get better results in the final calculations, αs was taken from the pdf
set which has a second order calculation and is used in eq: 97 to get the strong coupling
constant. In the sum over a and b (eq: 95) the partons are filled in which are gluon
and the quarks up, down, strange, charm, bottom and there antiquarks. Top quark
contributions are not relevant for the process since they are highly suppressed due to its
high mass (see tab: 1). The electric charges of the quarks ef are like following (tab: 3):

quark ef

up, charm 2
3

antiup, anticharm −2
3

down, strange, bottom −1
3

antidown, antistrange, antibottom 1
3

Table 3: The table shows the electric charges of the quarks.

The proton energy is set to:

Ep =

√
S

2
= 4TeV (98)

like discussed before. In order to compare to the experimental data transversal momenta
kT are chosen between 10 GeV and 80 GeV. The integer N is N = 3 for the SU(3) group.
And the parameter Q is set to Q = kT , because it has the unit of momenta and kT re-
lates to the parton system and for practical reasons because then it does not have to be
integrated. Q is further discussed in ch: 5.6.1.

Pdf data: The first numerical task is to get the pdf data. The pdf set CT18NNLO[11]
and the package LHAPDF[1] is used.

Integration: Secondly, the integration is done by the python routine quad from scipy.in-
tegrate. The integral is done for y1 (rapdity of the jet) in the limits calculated in eq:
89 which depend on y2 which is set to y2 = 0 so it is in the middle of the given interval
between -0.7 and 0.7. Hence, the result is a double differential cross section d2σ

dkT dy2
. To

prove that the rapidity y2 is constant in the observed interval also a second integration
over y2 is done in the limits of the interval between -0.7 and 0.7, then the result is a
single differential cross section dσ

dkT
. The chosen rapidity interval for y2 (rapidity of the

photon) close to zero corresponds to photons scattered along the transversal axis (see
~kT in fig: 14). The final results are the double differential cross section, bouth double
and single are compared in ch: 5.4.
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Units: The calculation was done in natural units, meaning ~, c = 1. To compare
to experimental data the result has to be transformed to SI-units. Therefore one in-
troduces a one (~c)2 = 0.389 379 372 1GeV2mb[19]. Because the result is wanted in
nb the theoretical result ∂σtheo has to be multiplied by 0.3894 106GeV2 nb. The units
match because the theoretical differential cross section resulted in 1

[GeV3]
multiplying

with [GeV2] · c (putting another 1=c on both sides, the momenta then are given in GeV
c )

the result is in the unit nb c
GeV .

In tab: 4 an overview of the corresponding variables of theory and experiment is given.

description prediction experimental data

double differential cross section d2σ
dkT dy2

d2σ
dpT dy

rapidity of the photon y2 y

transverse momentum of the photon kT pT

Table 4: The table compares the variable names of theoretical prediction and experi-
mental data.

5.3. Comparison of the theoretical prediction and experimental data

Now to discuss the quality of the theoretical prediction, it is compared to real data.
Because the quantitative data is not published yet the comparison is only made in a
qualitative way, a plot from Florian Jonas’ dissertion is used. In fig: 17a the prediction
is plotted and on the right (fig: 17b) the experimental data. In both plots the upper
plot shows the differential cross section (y-axis) for different momenta on the x-axis.
The experimental data is a double differential cross section d2σ

dkT dy . The lower plot
shows the relative differential cross section. This means the differential cross section is
normalized to one and the deviations are shown. The data still depends on the transverse
momentum pT and apparently also on the rapidity of the photon y. How exactly the
rapidity dependence was processed is not clear from the work, instead only an interval
(|y| < 0.7) is indicated. The theoretical prediction is therefore a double differential cross
section d2σ

dkT dy2
with the rapidity set to zero, i.e. y2 = 0. Both results are now given in

nb c
GeV . In both the data points are shown with their uncertainties further discussed in
section 5.6.

The first thing to note is that the shape of the curves matches qualitatively. The
cross section drops sharply with increasing momentum of the photon kT or pT . That
means that less photons with high kinetic energy are produced, which has different
reasons. One is that looking at the pdf’s (3.6) for lower transversal momenta kT which
corresponds to lower Bjorken scale x there is a diverging gluon density. Thus, a lot of
possible scattering partners decrease fast for higher x. Secondly, because of the chosen
interval for the rapidity y2 the transversal momenta kT is an energy proxy and therefore
to the Bjorken scale x too. Then for small transversal momentum going to zero in the
limit the cross section is diverging because of the antiproportional relation of the cross
section to x1 and x2 (see eq: 95).
To compare the values is difficult because the data is only available in form of a plot,
but one can say that the prediction values and data values are in the same order of
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a) Theoretical prediction of the double dif-
ferential cross section d2σ

dkT dy2
for

√
S= 8

TeV with the total errors. Below: rela-
tive cross section σrel and relative errors.

b) Experimental data[13] of the cross sec-
tion d2σ

dpT dy for
√
S= 8 TeV. Below: rel-

ative cross section σrel and relative er-
rors.

Figure 17: The figure shows the comparison ot the theoretical prediction and experimen-
tal data.

magnitude. The theoretical prediction is above the actual measured data points. This
might has different reasons which are discussed in the following.

5.4. Prediction limitations

Considering the limitations of the theoretical approach, this deviation is quite satisfac-
tory. First it is unknown how exactly the experimental data were extracted. For the
transversal momenta kT sharp values were taken in the prediction here as well could be
an error because the experimental data had to have measured events in a bin of momenta
and not at a sharp value of kT . Thus integrating the momenta bins could improve the
results. But a good sign is that the deviation from the experimental data does not in-
crease with increasing kt corresponding to the increasing bins in the experimental data.
In addition it is unclear how the rapidity dependency is measured in the experiment.
In the theoretical prediction therefore a double differential cross section evaluated at
y2 = 0 (the middle of the interval) shown in the comparison above (fig: 17a) and then
to check whether the photon rapidity y2 influences the result, also a single differential
cross section is calculated by integrating over y2 in the given interval, which leads to the
following results in fig: 18 compared to the one of the double differential cross section.
Like expected the double integrated results are higher on the y-axis. Both could be the
base of the experimental data plot, but one does not know.
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a) The simple differential cross section dσ
dkT

is shown.
b) The double differential cross section

dσ
dkT dy2

is shown.

Figure 18: This figure shows the comparison of the double and simple differential cross
section.

To really compare them to the double differential cross section the results have to be
divided by the width of the bin dy = 2 · 0.7 = 1.4 (fig: 19a). Then both are compared
in fig: 19 and it results that both look the same. Checking the numbers of the results
shows a small difference (the relative deviation is for each kT smaller than 1%), which
is really small in comparison to the accuracy of the calculation and not even notable in
the plot. The relative deviation is shown in fig: 20. The small deviation increases for
higher kT . Thus, maybe y2 is less constant for higher kT or it just has to do with the
measurement of y2 one does not know about.
Because of the small difference this comparison shows that the cross section is almost
constant in the rapidity bin. From now on the double differential cross section is used
for the discussion, because the results of the experiment are given as double differential
however it is not known how the rapidity y2 was dealt with. The used double differential
cross section from now on is only called cross section.

A second limit consists in the fact that the experiment is counting less direct pho-
tons than there actually are. This happens because the experimental set up tries to
exclude not-direct photons. One possible way they can be produced is via decay where
a pair of photons is produced. To exclude these nondirect photons the experiment only
counts photons where there is not a second photon in a certain cone around the first
one. (Because of the high velocity of the decaying particle the two photons would be
in an close cone.) The experiment though does not count photons which have a second
photon in a cone of an certain radius R = 0.4 (look fig: 17b). This approach correctly
eliminates a lot of not direct photons but also has uncertainty because it also elimi-
nates direct photons which are scattered close to one another coincidentally. To improve
the prediction these photons should be cut out of the prediction as well, but require a
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a) The simple differential cross section
dσ
dkT

1
1.4 is shown.

b) The double differential cross section
d2σ

dkT dy2
is shown.

Figure 19: The figure shows the comparison of the double and simple differential cross
section including the bin division.

Figure 20: Here the relative cross section for the single and the double differential (the
double is set to one) cross section with bin division is shown to illustrate the
relative deviation.

deeper dive into quantum chromo dynamics, which exceeds the scope of this work. This
improvement would lower the results of the theoretical prediction, which brings them
closer to the experimental data.

Another limit is that the calculation of the prediction only includes the first order.
The feynman diagrams again illustrate this. Only the feynman diagrams fig: 9, 10 and
11 were included. But also diagrams with loops like fig: 8 are possible. To do a first
order calculation perturbation theory was used. But to get closer to reality higher orders
need to be included in the calculation.
Not only for the matrix elements higher orders are needed but as well for the strong
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interaction constant αs. Eq: 24 is only the first order to get more precision higher or-
ders also need to be included. Thus, first the numerical calculation used eq: 24 with
the scale of the Z-boson. To minimize the scale error (ch: 5.6.1) for the final results the
coupling constant αs from the pdf-packages is used, which calculates the αs including
second order.

An additional constraint is that for heavy quarks the approximation of mass to
zero looses its validity for quarks with higher mass (quark masses in tab: 1). For the
up, down and strange quark the mass is in the area of MeV and therefore not relevant
but for the charm quark with mass mc ≈ 1.27 GeV one cannot safely approximate it
to be zero. For the bottom quark mb ≈ 4.18 GeV it is the same. Like one sees later
especially the charm quark plays a role in the processes so including the masses would
improve the prediction.

5.5. Prediction strengths

Like discussed the prediction has some big weaknesses but why is it still useful? First
of all, the qualitative shape of the relation can be predicted correct. This is a good
indicator that the theoretical prediction about the strong interactions is right.
In addition one can use the model to see the effect each subprocess and each particles
has on the overall result and thus the production of direct photons.
First, the three different matrix elements are looked at. Meaning M1 which corresponds
to the quark-gluon scattering, M2 to the antiquark-gluon scattering and lastly M3 cor-
responding to antiquark-quark scattering. In fig: 21 the different relative proportions
of the matrix elements in the cross section are plotted. So σrel is on on the y-axis over
the transversal momenta kT in GeV/c. The shares of the cross section are summed up,
so that for example for M2 at kT = 10 GeV

c is σrel ≈ 43%. The share of the quark-

Figure 21: This figure shows the relative cross section for the three processes: Quark-
gluon scattering M1, antiquark-gluon scattering M2 and quark-antiquark
scattering M3.

gluon scattering is the biggest, which makes sense remembering the pdf’s (ch: 3.6 ),
gluons are dominant and quarks are dominant over antiquarks (fig: 6). Then follows
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antiquark-gluon scattering, here as well gluons are the most probable particle, but anti-
quarks are less probable than quarks. Lastly, the antiquark-quark scattering has a small
share around 0.1 due to the fact that antiquarks are improbable in the proton. Also for
small kT corresponding to little x the gluons get dominant so M1 and M2 converge, M3

goes to zero in the limit. For big kT and x, M1 and M3 increase because the quark gets
dominant and the gluons decrease.

Second, the shares of each quark to the cross section for every process M1, M2, M3

are plotted in fig: 22. For M1 naturally quarks are compared since it is quark-gluon
scattering, for M2 we consider the antiquarks because it is antiquark-gluon scattering,
for M3 then it includes the quark and corresponding antiquark since it is quark-antiquark
scattering. The plots confirm the expectation that the up quark is the most frequent

a) This is the relative cross section σrel for
different quarks for M1.

b) This is the relative cross section σrel for
different quarks for M2.

c) This is the relative cross section σrel for
different quarks for M3.

Figure 22: This figure shows the contributions of the quarks to the cross section for each
of the three processes M1,M2,M3.

particle (two up and one down). Hence, one could expect that the second frequent would
be the down quark. But one sees that for M1 and M2 the charm quark has a higher share
than the down quark. This is the case because of the electric charge. Looking at the
pdf’s (fig: 6) for lower x the share of the charm quark is around half of the down quark
(this can be confirmed calculating the cross section with the matrix element M = 1).
Looking at the electric charges which is −1

3 for the down and +2
3 for the charm quark
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squared in the matrix elements (tab: 2) there is a factor 4 in the matrix element, times
the factor 1

2 from the pdf the charm quark’s cross section should be around two times
larger then the down quark’s one which can be seen in the plots (fig: 22a, 22c). Strange
and bottom have a low pdf influence and therefore do not contribute much to the cross
sections.
Looking at each process for M1 (fig: 22a) one sees that for higher kT the influence of
the up quarks gets higher which correspond to the pdf’s where for higher x the valence
quarks get dominant. This is also the reason why the down quarks share increases rela-
tively to the charm quark’s one which decreases because of the decreasing pdf for higher
x.
For the antiquark-gluon scattering M2 (fig: 22b) the up quark is dominant then follows
charm and then down corresponding to the dominant pdf’s (fig: 7) from antidown and
antiup quark which cannot be compensated by the electric charge.
Lastly, for the quark-antiquark scattering (fig: 22c) up-quark is dominant again, for low
kT and therefore x charm and down quark have the same share but for higher kT the
relative cross section of the down quark increases due to the raising pdf.

5.6. Uncertainties

The theoretical prediction has two main uncertainties which have been considered: the
scale uncercainty and the pdf uncertainty.

5.6.1. Scale-uncertainty

The scale uncertainty exists because as discussed in chapter 3.5 the used Q is only an
approximate. It is a free parameter but only if the calculation includes all orders. Thus
Q does not has a physical correspond but needs to be chosen to make the calculation by a
perturbation theory approach. The parameter Q has units of squared energy or momenta
and appears in the nominator in logarithms where the denominator is a function of
squared energies and momenta. To choose Q smart then is to approximate this function
and to set Q as this approximated value to make the fraction in the logarithm close to
one so the logarithm gets close to zero and the Q depends is as small as possible. For
higher orders the dependence on Q gets smaller. In consequence for higher orders αs

and the pdf’s P (x,Q) (both paremeters depending on Q) get more accurate. Because
here only the second order from the coupling constant αs and pdfs is used the scale of
Q gives an uncertainty. The scale uncertainty gets quantified in a certain way which is
a convention:

∆σQ =

[
σ

(
Q

2

)
, σ(2Q)

]
. (99)

In fig: 23a the prediction including the scale uncertainty is shown. It can be seen that
the uncertainty decreases with increasing kT . This is because for higher kT , which relates
to higher impulse fractions x the pdf’s decrease and so have less influence on the cross
section. The relative error is first decreasing but then increasing again. The scale error
has a sign change around 40 GeV implicating that the relative error is decreasing before
this point and increasing after it. This sign changes occurs because of the different
strength of the Q dependency of the strong coupling constant αs and the pdf’s P (x,Q):

M ∼ α2
s P (x,Q). (100)
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a) Above is shown the cross section d2σ
dkT dy2

with the scale error and below the rel-
ative cross section σrel and the relative
scale error ∆σQ.

b) Above is shown the cross section d2σ
dkT dy2

with the pdf error and below the relative
cross section σrel and the relative pdf
error ∆σpdf .

Lower Q increase the strong coupling constant αs and decrease the pdf’s P (x,Q). Be-
cause of the different strength of the dependency, which is not apparent here now, because
both come from the pdf set, there is a sign switch like one sees in the figure 23a.

5.6.2. PDF-uncertainty

The other source of uncertainty are the pdf functions. The pdf’s themselves are measured
and then fitted values of LHC experiments. Accordingly, they have own uncertainties.
The pdf set used here has one central data set and then for 29 fitting parameters an
lower and upper value. So to get the uncertainty the difference of the upper value f+k
and the lower f−k for every parameter k has to be summed up. The uncertainty can be
calculated with the following equation[14]:

∆σpdf =
1

2

√∑
k

(σ(f+k )− σ(f−k ))2. (101)

The uncertainties are plotted in figure 23b. The error is lower than the scale error and
only about 0.5% to 1.0 % of the cross section σ.

In addition one can look at the cross section for different pdf sets. In the calculation
CT18NNLO[11] is used which is a next to next to leading order, meaning two orders
calculation, which is now compared to an older version CT14nnlo[6] which is the same

38



just from 2014, also to CT18NLO[11] which is next to leading order so one order and to
MSHT20nnlo_mbrange_nf5[4] which is also a next to next to leading order calculation
but from different authors and with variation of the bottom quark mass. Fig: 24 shows

Figure 24: Here the relative cross section σrel for the used pdf sets with errors and in
comparison to three other pdf sets are shown.

that different pdf sets lead to slightly different results for the differential cross section,
but within the pdf uncertainty. Hence using different pdf sets influence the results but
considering the accurancy of the theoretical prediction it is not crucial.

5.6.3. Total uncertainties

All uncertainties are compared in fig: 25. Scale and pdf error are in the same scale of
magnitude. It turns out that first (for lower kT ) the scale error ∆σQ is dominant, around
kT=40 GeV the pdf uncertainty ∆σpdf is dominant but at kT=60 GeV the scale error
∆σQ gets dominant again (see fig: 25). The total error is calulated with the following
equation[14]:

∆σtot =
√

∆σ2Q +∆σ2pdf +∆σ2int. (102)

Theoretically there also is a numerical uncertainty from the integration. But the pre-
cision is increased till the integration uncertainty becomes small compared to the other
uncertainties and therefore gets irrelevant.

6. Conclusion
Concluding, this thesis could retrace how direct photons are produced in proton-proton
collisions at the LHC. The direct photons are a product of the strong interaction of
quarks and gluons inside the proton while the quark interacts electromagneticly at the
same time and therefore produces a photon.
For the prediction therefore feynman rules of strong and electromagnetic interaction are
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Figure 25: The figure shows the theoretical prediction for the cross section d2σ
dkT dy2

with
all uncertainties, named scale error, pdf error and integration error. Below
the relative cross section σrel with the relative errors is plotted.

used following from the Lagrangian and perturbation theory. There are three processes
quark-gluon scattering, antiquark-gluon scattering and antiquark-quark scattering that
produce a direct photon and therefore need to be considered. The prediction is then
made for

√
S=8 TeV corresponding to the experimental data. The theoretical results

match on a qualitatively level successfully the experimental data with an upward shift.
The discussion reveals that looking only at first order, setting the masses to zero and
including photons not counted from the experiment due to the exclusion cone are limits
of the prediction, which are also the possibilities to get better results. Even though this
massless first order prediction shows the right shape of the decrease of the cross section
for increasing photon momenta. In addition one can predict correctly that the quark-
gluon scattering M1 is the most probable process followed by antiquark-gluon scattering
M2 for lower photon momenta kT . For higher kT the trend that the antiquark-quark
scattering increases is visible as well. This allows important conclusions to be drawn
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about the proton structure: Gluons are more frequent for lower transversal momenta kT
and decrease for higher kT . Quarks are more frequent than antiquarks and for higher
kT get dominant against gluons. The comparison of the quarks shows that up quarks
are the most frequent. The second biggest contribution to the cross section have the
charm quarks which is because of their bigger electric charge which compensate their
less frequent existence in the pdfs. Considering the electric charges one still can confirm
that protons consist of two up quarks and one down quark.
All in all, much could be learned about LHC physics in this thesis. Starting how cross
sections are calculated theoretically and broaching quantum chromo dynamics. Espe-
cially, how to make a prediction in a way which makes a comparison of experimental data
and theoretical results possible could be studied and also which limitations simplified
calculations like this one have, could be studied.
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A. Appendix
A.1. γ-matrices
The γ-matrices or also called Dirac matrices because they were introduces in the dirac
equation and underly the dirac algebra. They have the following identities:

{γµ, γν} = 2gµν1

(γµ)† = γ0γµγ0

(γµ)2 = 1

γµγµ = 4

γµγαγµ = −2γα

γµγαγβγµ = 4gαβ

γµγαγβγδγµ = −2γδγβγα, (103)

Tr[γµ] = 0

Tr[γµγν ] = 4gµν

Tr[γµγνγρ] = 0

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gνρgµσ). (104)

Relations between u,v and γ-matrices:

ū(p) = u+(p)γ0

ψ̄(x) = ψ+γ0

v̄(p) = v+(p)γ0. (105)

A.2. Kinematics
A.2.1. Mandelstamm variables

s = (p1 + p2)
2 = (k1 + k2)

2

t = (p1 − k1)
2 = (p2 − k2)

2

u = (p1 − k2)
2 = (p2 − k1)

2 (106)

s+ t+ u = p1
2 + p2

2 + k1
2 + k2

2

= m2
1 +m2

2 +m2
3 +m2

4 (107)

A.2.2. Subcalculation x1 and x2

Starting from:

x2 =
E1 + E2

2Ep
− k1z + k2z

2Ep

x1 =
E1 + E2

2Ep
+
k1z + k2z

2Ep
. (108)
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Looking at the rapdities y1, y2 and using the conversion below (eq: 110) and that k2T =
k2x + k2y:

e±y1,2 =

√
E1,2 ± k1,2z
E1,2 ∓ k1,2z

=
E1,2 ± k1,2z

k1,2T
(109)

E1,2 ± k1,2z
E1,2 ∓ k1,2z

=
(E1,2 ± k1,2z)

2

(E1,2 ∓ k1,2z)(E1,2 ± k1,2z)

=
(E1,2 ± k1,2z)

2

E2
1,2 − k21,2z

=
(E1,2 ± k1,2z)

2

k21,2x + k21,2y + k21,2z − k21,2z

=
(E1,2 ± k1,2z)

2

k21,2T
(110)

Comparing eq: 109 with eq: 108 x1 and x2 can be written as:

x1 =
kT
2Ep

(ey1 + ey2) (111)

x2 =
kT
2Ep

(
e−y1 + e−y2

)
. (112)

A.2.3. Scattering angle θ

The following relation is to be proved:

cos(θSCMS) = tanh
(
y1− y2

2

)
. (113)

The angle θSCMS lives in the SCMS. Then a look at the rapidities is needed. The
rapidities y1 (from the jet) and y2 from the photon live in BSCMS, in the SCMS there
is a shift y∗:

y1,2 = ySCMS ± y∗ (114)

⇒ y∗ =
1

2
(y1 − y2). (115)

Hence θSCMS corresponds to the shift from the SCMS and to ~kSCMS
1,2 . In the following

equation kSCMS
1,2 is written as just k (in SCMS ~k1 and ~k2 are the same apart from an

minus sign, which does not matter for the angle), also |k| ≈ E and eq: 109 are used in
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fig: 14 one sees that for θSCMS applies:

cos(θSCMS) =
kz
|k|

=
2kz√

(|k| − kz)(|k|+ kz)

√
(|k| − kz)(|k|+ kz)

2kz

=

(√
|k|+ kz
|k| − kz

−

√
|k| − kz
|k|+ kz

) (√
|k|+ kz
|k| − kz

+

√
|k| − kz
|k|+ kz

)−1

=
(
ey − e−y

) 1

ey + e−y

=
sinh(y)
cosh(y)

= tanh(y) = tanh
(
y1 − y2

2

)
. (116)

Looking at fig: 14 on also sees that:

|k2| =
kT

sin(θSCMS)
. (117)

A.2.4. Subcalculation integral

Transforming the integral over kz-component to the rapidity using [16].

dy

dkz
=

(
∂y

∂kz
+
∂y

∂E

∂E

∂kz

)
=

E

E2 − k2z
− kz
E2 − k2z

kz
E

=
1

E
(118)

This applies for k1z and k1z and leads to:

1

E1,2
dkz1,2 = dy1,2. (119)
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