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1 Introduction

The Standard Model (SM) is the greatest achievement of particle physics. It explains
experimental results very accurately and was able to predict a sizeable number of par-
ticles, e.g. the top quark, theW and Z bosons and the Higgs boson. But there are also
a number of phenomena which can not be explained by the StandardModel. Notable
examples are gravity, dark matter (DM), and neutrino masses. To see where exactly
the Standard Model fails, physicists around the world try to find experimental results
which contradict the Standard Model. One of these experimental values is the muon
anomalous magnetic moment 𝑎μ = (𝑔μ − 2)/2, which is the topic of this thesis. It
describes the deviation of the 𝑔-factor 𝑔μ from the result predicted by the Dirac equa-
tion, namely 𝑔μ = 2. The 𝑔μ-factor describes a proportionality constant between the
magnetic moment �⃗� of the muon and its spin ⃗𝑆, and is therefore defined by:

�⃗� = 𝑔μ
𝑒

2𝑚μ
⃗𝑆 .

Recent experimental results from theFermilabNationalAccelerator Laboratory (FNAL)
show a combined average of 𝑎expμ = (116 592 061 ± 41) ⋅ 10−11 [Abi+21], which devi-
ates from the value predicted by the Standard Model, 𝑎SMμ = (116 591 810±43) ⋅ 10−11

[Aoy+20], by Δ𝑎μ = 𝑎expμ − 𝑎SMμ = (251 ± 59) ⋅ 10−11 or 4.2𝜎. This is just short of 5𝜎,
above which a deviation is considered a discovery in particle physics. The theoretical
Standard Model value is calculated considering electroweak and hadronic contribu-
tions, and contributions due to Quantum Electrodynamics (QED). From these values
it can be seen that both theoretical and experimental results can be determined with
similar precision, whichmakes the anomalous magnetic moment a promising test for
new physics.

Beyond the StandardModel (BSM)minimal extensions of the StandardModel can
be used to explain neutrinomasses and yield a candidate for darkmatter. An example
for this is the scotogenicmodel [Ma06], which extends the StandardModel by an exact
ℤ2-symmetry and a set of particles odd under ℤ2. This enables radiative corrections
to the neutrino masses and yields dark matter candidates from the new particles. In
this thesis an extension to the scotogenicmodel, presented in [CN19], is analyzedwith
respect to the anomalousmagneticmoment. Experimental constraints regarding relic
density, lepton flavor violation (LFV) and the Large Electron-Positron Collider (LEP)
charged particle mass limit are imposed.

First the anomalous magnetic moment is calculated analytically both in the SM
and in the extended scotogenic model by expressing the invariant amplitude in dif-
ferent form factors and identifying the form factors in the explicit calculation. The
anomalous magnetic moment can then be obtained from one of the form factors in
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the non-relativistic limit. After that, the analytical result is compared to the one nu-
merically computed by SPheno [Por03; PS12]. At last, the whole parameter space is
scanned using SPheno and micrOMEGAs [Bél+18]. The necessary files for this were
generated using SARAH [Sta08] and minimal-lagrangians [May21].
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2 Dark matter

TheΛCDMmodel is a cosmological model to describe evolution of the universe, start-
ing from the Big Bang. It includes the so called cold dark matter (CDM), which is a
type of matter that makes up 26.4% of the energy density of the universe or 84.4% of
the matter density [Zyl+20]. The “Λ” in ΛCDM stands for the cosmological constant
𝛬, which describes the energy density of the vacuum and can be associated with dark
energy in the universe. This accounts for the biggest part of the energy density present
in the universe and is hypothesized to be the cause of its accelerating expansion. The
“coldness” of this dark matter means that it is moving slowly compared to the speed
of light.

2.1 Evidence for the existence of dark matter

There are several sources of evidence for the existence of darkmatter. The first one are
the rotation curves of spiral galaxies: Equating the gravitational and the centripetal
force yields the rotation velocity 𝑣 dependent on the distance 𝑟 from the origin of the
galaxy [GD11]:

𝑣(𝑟) = √
𝐺𝑀(𝑟)
𝑟 . (2.1)

Here 𝑀(𝑟) is the mass enclosed within a sphere of radius 𝑟. For large distances 𝑟
from the galaxy’s origin, 𝑀(𝑟) can be assumed to be constant in eq. (2.1), such that
𝑣(𝑟) ∼ 1

√𝑟
, i.e. the rotation velocity 𝑣(𝑟) should decrease with increasing radius 𝑟.

However, the observed results deviate from this prediction: Measured rotation curves
stay constant at large distances, as shown in fig. 1. This means that𝑀(𝑟) can not stay

Figure 1: Measured velocity distribution of the spiral galaxy NGC 6503. The labeled
curves show the contributions by the observed disk, gas, and the dark matter halo.
Source: [JKG96, p. 207]
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constant but has to increase, even for large 𝑟. It follows that the matter contained in a
spiral galaxy is not concentrated at the center, but it has a halo of electromagnetically
non-interacting, or dark, matter.

Another type of evidence is provided by gravitational lensing around heavy ob-
jects, e.g. galaxies or clusters of galaxies. It describes the property of light to take
the shortest path in space, which can be curved, according to the theory of general
relativity. Around large gravitational wells, like the aforementioned galaxies, this ef-
fect enables light to travel around an object completely. The amount of curvature
is predicted by general relativity, so that images of gravitational lensing can be used
to measure the mass distribution of a distant object. This works even if the mass is
non-luminous matter, i.e. does not interact electromagnetically and can thus not be
detected by optical telescopes. With this method the Bullet Cluster (fig. 2) can be ex-
amined: It consists of two colliding clusters of galaxies, which show a discrepancy
between the concentration of luminous matter, and dark matter. In fig. 2 the lumi-
nous matter (hot gas), observed by the X-ray Chandra telescope and shown in blue,
is separated from most of the dark matter, shown in red. The latter was observed
by measurements of gravitational lensing [Opt06]. During the collision, a drag effect
slowed down the hot gas and separated it from the dark matter, which in turn did not
undergo this effect, since it only interacts very weakly.

At last, another source of evidence is the cosmic microwave background (CMB).
From peaks in its power spectrum the contents of the universe can be determined.

Figure 2: The Bullet Cluster (1E 0657-56). Luminousmatter is shown in red, and dark
matter, observed by gravitational lensing, is shown in blue. Source: [Opt06]

2.2 WIMPs as a candidate for dark matter

One of the most promising dark matter candidates are weakly interacting massive
particles (WIMPs). These are generally a type of particle with an interaction strength
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on the scale of the electroweak interaction or weaker, but nonetheless with a nonzero
strength. WIMPs are said to have been produced during a period of thermal equilib-
rium after the Big Bang, until the temperature of the universe decreased due to expan-
sion and the WIMPs began to only annihilate. This led to an exponential decrease of
their number density, up to a point afterwhich the annihilationwould stop completely
and leave behind aWIMP relic density. This is called the freeze-outmechanism and is
shown in fig. 3. Here the comoving number density 𝑌 = 𝑛

𝑠
is plotted logarithmically

against 𝑥 = 𝑚
𝑇
. 𝑛 is the dark matter number density and 𝑠 is the entropy density, such

that 𝑌 is the number of particles in a comoving volume, i.e. in a volume unaffected
by the expansion of the universe. Because the temperature 𝑇 decreases with time due
to the expansion of the universe, the 𝑥-axis also shows increasing time. The num-
ber density 𝑌EQ in thermal equilibrium decreases exponentially, up until when the
freeze-out happens at a decoupling temperature 𝑇dec, which is defined by the point in
time where the interaction rate 𝛤 = 𝜎𝑣𝑛 of the annihilation is equal to the Hubble
parameter 𝐻(𝑡). Here 𝜎 is the WIMP annihilation cross section and 𝑣 the velocity. At
this decoupling temperature the actual number density starts to diverge from the one
in thermal equilibrium and remains constant. Additionally, a dependence on ⟨𝜎𝑣⟩
is shown in fig. 3, which is the thermal average of the WIMP annihilation cross sec-
tion 𝜎 times the velocity 𝑣. For an increasing cross section 𝜎 the annihilation would
of course continue up to a later point in time, so that the number density after the
freeze-out is smaller. The time evolution of the number density 𝑛(𝑡) can be described
by the Boltzmann equation [GD11],

Figure 3: The freeze-out mechanism of WIMPs, where 𝑌 is the comoving number
density, dependent on the mass𝑚 divided by temperature 𝑇. The solid line shows its
exponential decrease at thermal equilibrium, the dashed lines show its actual trend,
dependent on ⟨𝜎𝑣⟩. Source: [KT90, p. 126]
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d𝑛
d𝑡 = −3𝐻(𝑡)𝑛(𝑡) − ⟨𝜎𝑣⟩(𝑛(𝑡)2 − 𝑛eq(𝑡)2) , (2.2)

where𝐻(𝑡) is the Hubble parameter at time 𝑡 and 𝑛eq(𝑡) is the number density at ther-
mal equilibrium.

The dark matter relic density Ωℎ2 describes how much dark matter is present in
the universe. It is determined by fitting Cosmic Microwave Background (CMB) radi-
ation spectra, which was done by the Planck collaboration and results in a value of
[Agh+20]

Ωℎ2 = 0.1200 ± 0.0012 . (2.3)

The density parameter Ω is defined as the dark matter mass density divided by the
critical density 𝜌c, which is the matter density in a universe with no curvature, and ℎ
is the Hubble constant 𝐻0 at present time divided by 100

km

sMpc
.

3 aμ in the Standard Model

3.1 From the Dirac equation to the Pauli equation

A great success of the Dirac equation was the theoretical result of 𝑔μ = 2, which is al-
ready very close to the experimental result. It is obtained by taking the non-relativistic
limit of the Dirac equation, the Pauli equation, which was formulated by Wolfgang
Pauli in 1927. The Pauli equation describes a charged spin-½ particle in an external
electromagnetic field, moving at a speedmuch less than the speed of light. The deriva-
tion of the Pauli equation and the value 𝑔μ = 2 shall be demonstrated in this section.
It is based on [Kuh16, pp. 45–46].

The Dirac equation in Hamiltonian form can be written as

i 𝜕𝜕𝑡𝜓 = 𝐻D𝜓 , (3.1)

where 𝜓 is a 4-component Dirac spinor and𝐻D is the Hamilton operator correspond-
ing to the Dirac equation:

𝐻D = −i�⃗� ⋅ ∇⃗ + 𝛽𝑚 . (3.2)

Here ∇⃗ is the nabla operator with respect to position space and 𝑚 is the mass of 𝜓.
The Dirac representation of the 4 × 4matrices 𝛼𝑖 (𝑖 ∈ {1, 2, 3}) and 𝛽 is

𝛼𝑖 = (
0 𝜎𝑖
𝜎𝑖 0

) and 𝛽 = (
𝟙2 0
0 −𝟙2

) . (3.3)
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𝜎𝑖 denotes the 𝑖-th Pauli matrix:

𝜎1 = (
0 1
1 0

) , 𝜎2 = (
0 −i
i 0

) , 𝜎3 = (
1 0
0 −1

) . (3.4)

To obtain the Dirac equation for a particle with charge −𝑒 in an electromagnetic field
the replacement 𝑝𝜇 → 𝑝𝜇 + 𝑒𝐴𝜇, where

𝑝𝜇 = i𝜕𝜇 = i ( 𝜕𝜕𝑡 , −∇⃗) ,

can be made. Here (𝐴𝜇) = (𝜙, ⃗𝐴) is the Lorentz contravariant electromagnetic poten-
tial, containing the scalar electric potential 𝜙 and the vector potential ⃗𝐴. With this the
Dirac equation becomes

i 𝜕𝜕𝑡𝜓 = [�⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴) + 𝛽𝑚 − 𝑒𝜙]𝜓 . (3.5)

Now the following ansatz can be used:

𝜓 = (
𝜑
𝜒
) 𝑒−i𝑚𝑡 , (3.6)

where the rapid time dependence caused by the rest mass is factored out. 𝜑 and 𝜒 are
two-component spinors. Plugging eq. (3.6) into eq. (3.5) results in:

i 𝜕𝜕𝑡 (
𝜑
𝜒
) + 𝑚(

𝜑
𝜒
) = [(

0 𝜎𝑖
𝜎𝑖 0

) (−i 𝜕𝜕𝑥𝑖
+ 𝑒𝐴𝑖) (

𝜑
𝜒
) + 𝑚(

𝟙2 0
0 −𝟙2

) (
𝜑
𝜒
) − 𝑒𝜙 (

𝜑
𝜒
)] .

Carrying out the matrix products yields two coupled differential equations:

i 𝜕𝜕𝑡𝜑 + 𝑚𝜑 = �⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)𝜒 + (𝑚 − 𝑒𝜙)𝜑 (3.7)

i 𝜕𝜕𝑡𝜒 + 𝑚𝜒 = �⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)𝜑 + (−𝑚 − 𝑒𝜙)𝜒 . (3.8)

These can be simplified using the non-relativistic limit, i.e. the change in time of 𝜒
and the electric potential can be neglected in comparison to the mass,

i 𝜕𝜕𝑡𝜒 ≪ 𝑚𝜒 and 𝑒𝜙𝜒 ≪ 𝑚𝜒 , (3.9)

such that eq. (3.8) becomes

𝜒 = 1
2𝑚�⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)𝜑 .
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Plugging this into eq. (3.7) yields

i 𝜕𝜕𝑡𝜑 = �⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)𝜒 − 𝑒𝜙𝜑 = 1
2𝑚[�⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)]2𝜑 − 𝑒𝜙𝜑 . (3.10)

The first term can be simplified as follows (using the identity ∇⃗ × ( ⃗𝐴𝜑) = (∇⃗ × ⃗𝐴)𝜑 +
(∇⃗𝜑) × ⃗𝐴):

[�⃗� ⋅ (−i∇⃗ + 𝑒 ⃗𝐴)]2𝜑 = 𝜎𝑖𝜎𝑗(−i
𝜕
𝜕𝑥𝑖

+ 𝑒𝐴𝑖)(−i
𝜕
𝜕𝑥𝑗

+ 𝑒𝐴𝑗)𝜑

= (𝛿𝑖𝑗 + i𝜀𝑖𝑗𝑘𝜎𝑘)(−i
𝜕
𝜕𝑥𝑖

+ 𝑒𝐴𝑖)(−i
𝜕
𝜕𝑥𝑗

+ 𝑒𝐴𝑗)𝜑

= (−i∇⃗ + 𝑒 ⃗𝐴)2𝜑 + i�⃗� ⋅ [(−i∇⃗ + 𝑒 ⃗𝐴) × (−i∇⃗ + 𝑒 ⃗𝐴)]𝜑

= (−i∇⃗ + 𝑒 ⃗𝐴)2𝜑 + 𝑒�⃗� ⋅ [∇⃗ × ( ⃗𝐴𝜑) + ⃗𝐴 × (∇⃗𝜑)]

= (−i∇⃗ + 𝑒 ⃗𝐴)2𝜑 + 𝑒�⃗� ⋅ (∇⃗ × ⃗𝐴)𝜑 . (3.11)

By plugging eq. (3.11) into eq. (3.10) together with using ⃗𝐵 = ∇⃗ × ⃗𝐴 and ⃗𝑆 = 1
2
�⃗�, the

following can be obtained:

i 𝜕𝜕𝑡𝜑 = [ 1
2𝑚(−i∇⃗ + 𝑒 ⃗𝐴)2 + 𝑒

𝑚
⃗𝑆 ⋅ ⃗𝐵 − 𝑒𝜙]𝜑 , (3.12)

which is the Pauli equation in its general form. From this the magnetic moment, i.e.
the coupling of the spin to the magnetic field, can be obtained. For the muon it is
defined as:

�⃗� = 𝑔μ
𝑒

2𝑚μ
⃗𝑆 , (3.13)

which is also the definition of the proportionality constant, the 𝑔-factor. Fromeq. (3.12)
it can be seen that 𝑔μ = 2, which is of course also true for the electron and the tau. To
quantify the deviation of an experimentally measured or theoretically predicted value
from 𝑔μ = 2, a new variable is introduced, namely the anomalous magnetic moment
𝑎μ. It is defined via

𝑎μ =
𝑔μ − 2
2 . (3.14)

where the factor 1/2 arises due to the definition of themagnetic form factor, which will
be introduced in the next section. The reason for these deviations are loop corrections,
which are not considered by only looking at the Dirac equation in the non-relativistic
limit.
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3.2 The electromagnetic form factors

The relevant process from which 𝑎μ can be calculated is shown in fig. 4. It describes
the interaction of a muon with an electromagnetic field, which is why the incoming
photon does not have to be on-shell. The blob in the middle in principle represents
all possible loops, which introduce corrections to 𝑔μ = 2.

In the beginning it is sensible to think about the structure of the invariant ampli-
tudeℳ = 𝜖𝜇ℳ𝜇, where 𝜖𝜇 is the polarization vector of the incoming photon. Because
ℳ𝜇 transforms like a Lorentz vector, we can parametrize it by the possible Lorentz
vectors that can appear in the calculation of the blob in fig. 4, similar to the calcula-
tion shown in [Jeg17, pp. 202–203]:

iℳ𝜇 = �̄�(𝑞2)[𝑓1𝛾𝜇 + 𝑓2𝑝𝜇 + 𝑓3𝑞
𝜇
1 + 𝑓4𝑞

𝜇
2

+𝑓5𝛾𝜇𝛾5 + 𝑓6𝑝𝜇𝛾5 + 𝑓7𝑞
𝜇
1 𝛾5 + 𝑓8𝑞

𝜇
2𝛾5]𝑢(𝑞1) .

(3.15)

Only 𝑓1 to 𝑓4 can appear in quantum electrodynamics (QED), as 𝑓5 to 𝑓8 are combined
with 𝛾5, but QED is parity invariant. Because the photon can not be assumed to be
on-shell, 𝑝2 ≠ 0. Furthermore, momentum conservation requires 𝑝 = 𝑞2 − 𝑞1.

𝑞1 𝑞2

𝑝

μ− μ−

γ

Figure 4: The relevant process in the calculation of the anomalousmagnetic moment.

Because they are Lorentz scalars, the 𝑓𝑖 can only depend on other Lorentz scalars,
such as scalar products of two momenta (𝑝2, 𝑞21/2, 𝑞1 ⋅ 𝑞2, 𝑝 ⋅ 𝑞1/2) or slashed momenta
(/𝑝, /𝑞1/2). This simplifies eq. (3.15) by using the following considerations:

1. Because the incoming and outgoing muon are on their mass shells, 𝑞21/2 = 𝑚2
μ.

Therefore 𝑞1 ⋅ 𝑞2 can be rewritten as

𝑞1 ⋅ 𝑞2 = −12[(𝑞2 − 𝑞1)2 − 𝑞22 − 𝑞21] = 𝑚2
μ −

1
2𝑝

2 (3.16)

and 𝑝 ⋅ 𝑞1/2 can be expressed as

𝑝 ⋅ 𝑞1/2 = ±12[(𝑞1/2 ± 𝑝)2 − 𝑝2 − 𝑞21/2] = ±12[𝑞
2
2/1 − 𝑝2 −𝑚2

μ] = ∓12𝑝
2 . (3.17)

2. The slashed momenta /𝑞1/2 and /𝑝 = /𝑞2 − /𝑞1 can be converted into terms de-
pendent on𝑚μ by using the Dirac equation (A.1) and its adjoint equation (A.2).
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Terms with 𝛾5 can be brought into the right order to apply the Dirac equation
via the anticommutation relation (A.8) of 𝛾5 and a Dirac-matrix 𝛾𝜇.

So it is apparent that the 𝑓𝑖 only depend on 𝑝2 and𝑚μ (and on other scalar parameters
such as particle masses (e.g. of particles in loops) or the fine structure constant 𝛼 =
𝑒2/(4𝜋)).

Momentum conservation 𝑝 = 𝑞2 − 𝑞1 allows to substitute 𝑝𝜇 by 𝑞
𝜇
1 and 𝑞

𝜇
2 in

eq. (3.15), which is equivalent to setting 𝑓2 = 0 and 𝑓6 = 0. TheWard identity 𝑝𝜇ℳ𝜇 =
0 can be used to relate some of the remaining 𝑓𝑖:

𝑝𝜇ℳ𝜇 = 0

= 𝑝𝜇 ̄𝑢(𝑞2)[𝑓1𝛾𝜇 + 𝑓3𝑞
𝜇
1 + 𝑓4𝑞

𝜇
2 + 𝑓5𝛾𝜇𝛾5 + 𝑓7𝑞

𝜇
1 𝛾5 + 𝑓8𝑞

𝜇
2𝛾5]𝑢(𝑞1)

= �̄�(𝑞2)[𝑓1 /𝑝 + 𝑓3𝑝 ⋅ 𝑞1 + 𝑓4𝑝 ⋅ 𝑞2 + 𝑓5 /𝑝𝛾5 + 𝑓7𝑝 ⋅ 𝑞1𝛾5 + 𝑓8𝑝 ⋅ 𝑞2𝛾5]𝑢(𝑞1) .

The first term becomes

𝑓1 ̄𝑢(𝑞2)/𝑝𝑢(𝑞1) = 𝑓1 ̄𝑢(𝑞2)[/𝑞2 − /𝑞1]𝑢(𝑞1)
(A.1),(A.2)

= 𝑓1 ̄𝑢(𝑞2)[𝑚μ −𝑚μ]𝑢(𝑞1) = 0 ,

and the fourth term can be written as

𝑓5 ̄𝑢(𝑞2)/𝑝𝛾5𝑢(𝑞1) = 𝑓5 ̄𝑢(𝑞2)[/𝑞2 − /𝑞1]𝛾
5𝑢(𝑞1)

(A.8)
= 𝑓5 ̄𝑢(𝑞2)[/𝑞2𝛾

5 + 𝛾5/𝑞1]𝑢(𝑞1)
(A.1),(A.2)

= 2𝑚μ𝑓5 ̄𝑢(𝑞2)𝛾5𝑢(𝑞1) .

So the Ward identity simplifies to

̄𝑢(𝑞2)[𝑓3𝑝 ⋅ 𝑞1 + 𝑓4𝑝 ⋅ 𝑞2 + 2𝑚μ𝑓5𝛾5 + 𝑓7𝑝 ⋅ 𝑞1𝛾5 + 𝑓8𝑝 ⋅ 𝑞2𝛾5]𝑢(𝑞1)
(3.17)
= �̄�(𝑞2)[−

1
2𝑝

2(𝑓3 − 𝑓4)𝟙4 + 2𝑚μ𝑓5𝛾5 −
1
2𝑝

2(𝑓7 − 𝑓8)𝛾5]𝑢(𝑞1) = 0 .

Because 𝟙4 and 𝛾5 are linearly independent, their factorsmust vanish separately. Equat-
ing the coefficients yields

𝑓3 = 𝑓4 , (3.18)

𝑓8 − 𝑓7 = −
4𝑚μ

𝑝2 𝑓5 . (3.19)
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This result can now be plugged into eq. (3.15):

iℳ𝜇 = �̄�(𝑞2)[𝑓1𝛾𝜇 + 𝑓3𝑞
𝜇
1 + 𝑓4𝑞

𝜇
2

+ 𝑓5𝛾𝜇𝛾5 + 𝑓7𝑞
𝜇
1 𝛾5 + 𝑓8𝑞

𝜇
2𝛾5]𝑢(𝑞1)

= �̄�(𝑞2)[𝑓1𝛾𝜇 + 𝑓3𝑞
𝜇
1 + 𝑓4𝑞

𝜇
2

+ 𝑓5𝛾𝜇𝛾5 +
1
2(𝑓8 − 𝑓7)(𝑞

𝜇
2 − 𝑞𝜇1 )𝛾5 +

1
2(𝑓7 + 𝑓8)(𝑞

𝜇
1 + 𝑞𝜇2 )𝛾5]𝑢(𝑞1)

(3.18),(3.19)
= �̄�(𝑞2)[𝑓1𝛾𝜇 + 𝑓3(𝑞

𝜇
1 + 𝑞𝜇2 )

+ 𝑓5(𝛾𝜇 −
2𝑚μ

𝑝2 𝑝𝜇)𝛾5 + 1
2(𝑓7 + 𝑓8)(𝑞

𝜇
1 + 𝑞𝜇2 )𝛾5]𝑢(𝑞1) .

Now theGordondecomposition, eq. (A.15), and its counterpart including 𝛾5, eq. (A.16),
can be used to express the 𝑞𝜇1 +𝑞

𝜇
2 occurrences in terms of the commutator 𝜎𝜇𝜈 of the

gamma matrices (defined by eq. (A.4)):

iℳ𝜇 = �̄�(𝑞2)[(𝑓1 + 2𝑚μ𝑓3)𝛾𝜇 − i𝑓3𝜎𝜇𝜈𝑝𝜈

+𝑓5(𝛾𝜇 −
2𝑚μ

𝑝2 𝑝𝜇)𝛾5 − i
2(𝑓7 + 𝑓8)𝜎𝜇𝜈𝑝𝜈𝛾5]𝑢(𝑞1)

These coefficients are now defined as four different form factors [Jeg17, p. 203]:

The electric charge form factor 𝐹E(𝑝2) =
i
𝑒[𝑓1(𝑞

2) + 2𝑚μ𝑓3(𝑝2)] ,

the magnetic form factor 𝐹M(𝑝2) =
i
𝑒[−2𝑚μ𝑓3(𝑝2)] ,

the anapole moment 𝐹A(𝑝2) =
i
𝑒𝑓5(𝑝

2) ,

and the electric dipole moment 𝐹D(𝑝2) =
i
𝑒[−i𝑚μ(𝑓7 + 𝑓8)] .

(3.20)

Using these, the invariant amplitude can be written in the following form:

iℳ𝜇 = −i𝑒�̄�(𝑞2)[𝛾𝜇𝐹E(𝑝2) +
i

2𝑚μ
𝜎𝜇𝜈𝑝𝜈𝐹M(𝑝2)

+ (𝛾𝜇 −
2𝑚μ

𝑝2 𝑝𝜇)𝛾5𝐹A(𝑝2) +
1

2𝑚μ
𝜎𝜇𝜈𝑝𝜈𝛾5𝐹D(𝑝2)]𝑢(𝑞1)

(3.21)

At tree level, the “blob” in the middle of fig. 4 is just a vertex. This results in the
invariant amplitude

iℳ𝜇
tl = −i𝑒�̄�(𝑞2)𝛾𝜇𝑢(𝑞1) , (3.22)
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for which the 𝑔-factor is 𝑔μ = 2. Corrections to this result thus have to come from
Feynman diagrams including loops. This also shows that at tree level all form factors
are 0, except for 𝐹E(𝑝2) = 1.

The magnetic form factor yields the anomalous magnetic moment in the non-
relativistic limit, i.e. for 𝑝 = 0, because the magnetic moment is measured at non-
relativistic energies:

𝑎μ =
𝑔μ − 2
2 = 𝐹M(0) (3.23)

This means that a term proportional to 𝜎𝜇𝜈 (and not proportional to 𝛾5) has to be
identified in the result of the calculation.

3.3 Calculationof theanomalousmagneticmoment in theStan-
dard Model

In the Standard Model, the mainly contributing one-loop diagram takes the form of
fig. 5. The blob of fig. 4 is thus replaced by the loop in fig. 5. In this chapter the
anomalous magnetic moment 𝑎μ will be obtained by first explicitly carrying out the
calculation of the invariant amplitude and then identifying the magnetic form factor
of eq. (3.21). The calculation of this chapter is based on [Sch14, pp. 318–320].

𝑞1

𝑘 μ−
𝑘 + 𝑝

μ−

𝑞2

𝑘 − 𝑞1

γ

𝑝

μ− μ−

γ

Figure 5: The Feynman diagram from which the first-order loop corrections to the
𝑔-factor can be calculated in the Standard Model.

Using the Feynman rules in appendix A.7, the diagram 5 leads to the invariant
amplitude

iℳSM = 𝜀𝜇∫
ℝ4

d4𝑘
(2𝜋)4

−i𝑔𝜈𝜌
(𝑘 − 𝑞1)2 + i𝜀

̄𝑢(𝑞2)(−i𝑒𝛾𝜈)

⋅
i(/𝑘 + /𝑝 + 𝑚μ)

(𝑘 + 𝑝)2 −𝑚2
μ + i𝜀

(−i𝑒𝛾𝜇)
i(/𝑘 + 𝑚μ)

𝑘2 −𝑚2
μ + i𝜀

(−i𝑒𝛾𝜌)𝑢(𝑞1)

= −𝑒3𝜀𝜇 ̄𝑢(𝑞2)∫
d4𝑘
(2𝜋)4

𝛾𝜈(/𝑘 + /𝑝 + 𝑚μ)𝛾𝜇(/𝑘 + 𝑚μ)𝛾𝜈
[(𝑘 − 𝑞1)2 + i𝜀][(𝑘 + 𝑝)2 −𝑚2

μ + i𝜀][𝑘2 −𝑚2
μ + i𝜀]

𝑢(𝑞1) .

(3.24)
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The mass 𝑚μ always stands for the muon mass and therefore has an upright index
μ, whereas a 𝜇 in italics acts as a Lorentz index and therefore can have the values
𝜇 ∈ {0, 1, 2, 3}.

To consider the numerator and denominator separately, the following abbrevia-
tions are introduced:

iℳSM = −𝑒3𝜀𝜇∫
ℝ4

d4𝑘
(2𝜋)4

𝑁𝜇

𝐴𝐵𝐶 , (3.25)

where
𝑁𝜇 = �̄�(𝑞2)𝛾𝜈(/𝑘 + /𝑝 + 𝑚μ)𝛾𝜇(/𝑘 + 𝑚μ)𝛾𝜈𝑢(𝑞1) ,

𝐴 = 𝑘2 −𝑚2
μ + i𝜀 ,

𝐵 = (𝑘 + 𝑝)2 −𝑚2
μ + i𝜀 ,

𝐶 = (𝑘 − 𝑞1)2 + i𝜀 .

(3.26)

To aid with the evaluation of the integral in the end, the following identity (see ap-
pendix A.5) is used:

1
𝐴𝐵𝐶 = 2∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) 1

(𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶)3
. (3.27)

Because of the 𝛿-function the identity

𝑥 + 𝑦 + 𝑧 = 1 (3.28)

can be used, momentum conservation gives the relation

𝑝 = 𝑞2 − 𝑞1 , (3.29)

and the incoming and outgoing muon are on their mass shells:

𝑞21 = 𝑞22 = 𝑚2
μ . (3.30)

The denominator of eq. (3.27) can be written as

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = 𝑥(𝑘2 −𝑚2
μ + i𝜀) + 𝑦(𝑘2 + 2𝑘 ⋅ 𝑝 + 𝑝2 −𝑚2

μ + i𝜀)

+ 𝑧(𝑘2 − 2𝑘 ⋅ 𝑞1 + 𝑞21 + i𝜀)
(3.28)
= 𝑘2 + 2𝑘 ⋅ (𝑦𝑝 − 𝑧𝑞1) − (1 − 𝑧)𝑚2

μ + 𝑦𝑝2 + 𝑧𝑞21 + i𝜀
(3.31)
= (𝑘 + 𝑦𝑝 − 𝑧𝑞1)2 − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1

− (1 − 𝑧)𝑚2
μ + 𝑦𝑝2 + 𝑧𝑞21 + i𝜀

=∶ (𝑘 + 𝑦𝑝 − 𝑧𝑞1)2 − 𝛥 + i𝜀
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where the following was used in the third line:

(𝑘 + 𝑦𝑝 − 𝑧𝑞1)2 = 𝑘2 + 𝑦2𝑝2 + 𝑧2𝑞21 + 2𝑦𝑘 ⋅ 𝑝 − 2𝑧𝑘 ⋅ 𝑞1 − 2𝑦𝑧𝑝 ⋅ 𝑞1
⇔ 𝑘2 + 2𝑘 ⋅ (𝑦𝑝 − 𝑧𝑞1) = (𝑘 + 𝑦𝑝 − 𝑧𝑞1)2 − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1 . (3.31)

Also the variable 𝛥 was defined. It can be simplified further:

−𝛥 = −(1 − 𝑧)𝑚2
μ + 𝑦𝑝2 + 𝑧𝑞21 − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1

(3.30)
= −(1 − 𝑧)𝑚2

μ + 𝑧(1 − 𝑧)𝑚2
μ + 𝑦(1 − 𝑦)𝑝2 + 2𝑦𝑧𝑝 ⋅ 𝑞1

(3.28)
= −(1 − 𝑧)2𝑚2

μ + 𝑥𝑦𝑝2 + 𝑦𝑧[𝑝2 + 2𝑝 ⋅ 𝑞1]

= −(1 − 𝑧)2𝑚2
μ + 𝑥𝑦𝑝2 + 𝑦𝑧[(𝑝 + 𝑞1)2⏟⎵⏟⎵⏟

(3.29)
= 𝑞22

− 𝑞21]

(3.28)
= −(1 − 𝑧)2𝑚2

μ + 𝑥𝑦𝑝2 .

So in conclusion the basis in the denominator of (3.25) simplifies to

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = (𝑘 + 𝑦𝑝 − 𝑧𝑞1)2 − 𝛥 + i𝜀

with 𝛥 = −𝑥𝑦𝑝2 + (1 − 𝑧)2𝑚2
μ .

(3.32)

If an integral substitution 𝑘 ↦ 𝑘 − 𝑦𝑝 + 𝑧𝑞1 is carried out, this result changes to

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = 𝑘2 − 𝛥 + i𝜀 . (3.33)

Now the numerator 𝑁𝜇 can be evaluated. By using various 𝛾-matrix identities (see
eq. (A.7)), it can be written as

𝑁𝜇 = �̄�(𝑞2)𝛾𝜈(/𝑘 + /𝑝 + 𝑚μ)𝛾𝜇(/𝑘 + 𝑚μ)𝛾𝜈𝑢(𝑞1)

= �̄�(𝑞2)[𝛾𝜈(/𝑘 + /𝑝)𝛾𝜇/𝑘𝛾𝜈 +𝑚μ𝛾𝜈(/𝑘 + /𝑝)𝛾𝜇𝛾𝜈

+𝑚μ𝛾𝜈𝛾𝜇/𝑘𝛾𝜈 +𝑚2
μ𝛾𝜈𝛾𝜇𝛾𝜈]𝑢(𝑞1)

(A.7)
= �̄�(𝑞2)[−2/𝑘𝛾𝜇(/𝑘 + /𝑝) + 4𝑚μ(𝑝 + 𝑘)𝜇 + 4𝑚μ𝑘𝜇 − 2𝑚2

μ𝛾𝜇]𝑢(𝑞1)

= −2�̄�(𝑞2)[/𝑘𝛾𝜇 /𝑝 + /𝑘𝛾𝜇/𝑘 + 𝑚2
μ𝛾𝜇 − 2𝑚μ(2𝑘𝜇 + 𝑝𝜇)]𝑢(𝑞1) .

The aforementioned integral substitution changes this in the following way:

−12𝑁
𝜇 subst.
↦ �̄�(𝑞2)[(/𝑘 − 𝑦/𝑝 + 𝑧/𝑞1)𝛾

𝜇 /𝑝 + (/𝑘 − 𝑦/𝑝 + 𝑧/𝑞1)𝛾
𝜇(/𝑘 − 𝑦/𝑝 + 𝑧/𝑞1)

+ 𝑚2
μ𝛾𝜇 − 2𝑚μ(2𝑘𝜇 − 2𝑦𝑝𝜇 + 2𝑧𝑞𝜇1 + 𝑝𝜇)]𝑢(𝑞1)
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= �̄�(𝑞2)[/𝑘𝛾𝜇 /𝑝 + (−𝑦/𝑝 + 𝑧/𝑞1)𝛾
𝜇 /𝑝

+ /𝑘𝛾𝜇/𝑘 + /𝑘𝛾𝜇(−𝑦/𝑝 + 𝑧/𝑞1)

+ (−𝑦/𝑝 + 𝑧/𝑞1)𝛾
𝜇/𝑘 + (−𝑦/𝑝 + 𝑧/𝑞1)𝛾

𝜇(−𝑦/𝑝 + 𝑧/𝑞1)

+ 𝑚2
μ𝛾𝜇 − 4𝑚μ𝑘𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1) .

The underlined terms are linear, i.e. antisymmetric, in one component of 𝑘, respec-
tively. Therefore integrals with these integrands vanish, as explained in appendix A.8.
This is equivalent to just leaving them out of 𝑁𝜇:

−12𝑁
𝜇 = �̄�(𝑞2)[(−𝑦/𝑝 + 𝑧/𝑞1)𝛾

𝜇 /𝑝 + /𝑘𝛾𝜇/𝑘 + (−𝑦/𝑝 + 𝑧/𝑞1)𝛾
𝜇(−𝑦/𝑝 + 𝑧/𝑞1)

+ 𝑚2
μ𝛾𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1)

(3.29)
= �̄�(𝑞2)[/𝑘𝛾𝜇/𝑘 + (−(𝑦 + 𝑧)/𝑝 + 𝑧/𝑞2)𝛾

𝜇((1 − 𝑦)/𝑝 + 𝑧/𝑞1)

+ 𝑚2
μ𝛾𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1)

(A.1),(A.2)
= �̄�(𝑞2)[/𝑘𝛾𝜇/𝑘 + (−(𝑦 + 𝑧)/𝑝 + 𝑧𝑚μ)𝛾𝜇((1 − 𝑦)/𝑝 + 𝑧𝑚μ)

+ 𝑚2
μ𝛾𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1)

= �̄�(𝑞2)[/𝑘𝛾𝜇/𝑘 − (1 − 𝑥)(1 − 𝑦)/𝑝𝛾𝜇 /𝑝

− (1 − 𝑥)𝑧𝑚μ /𝑝𝛾𝜇 + (1 − 𝑦)𝑧𝑚μ𝛾𝜇 /𝑝 + 𝑧2𝑚2
μ𝛾𝜇

+𝑚2
μ𝛾𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1) .

Some terms can be examined individually:

/𝑘𝛾𝜇/𝑘 = 𝑘𝜈𝑘𝜌𝛾𝜈𝛾𝜇𝛾𝜌
(A.26)
= 1

4𝑘
2𝑔𝜈𝜌𝛾𝜈𝛾𝜇𝛾𝜌

(A.7)
= −12𝑘

2𝛾𝜇 (3.34)

/𝑝𝛾𝜇 /𝑝 = 𝑝𝜈𝑝𝜌𝛾𝜈𝛾𝜇𝛾𝜌
(A.3)
= 𝑝𝜈𝑝𝜌𝛾𝜈(2𝑔𝜇𝜌 − 𝛾𝜌𝛾𝜇)

= 𝑝𝜇 /𝑝 − /𝑝/𝑝𝛾𝜇 = 𝑝𝜇 /𝑝 − 𝑝2𝛾𝜇

⇒ �̄�(𝑞2)/𝑝𝛾𝜇 /𝑝𝑢(𝑞1)
(3.29)
= �̄�(𝑞2)[𝑝𝜇(/𝑞2 − /𝑞1) − 𝑝2𝛾𝜇]𝑢(𝑞1)

(A.1),(A.2)
= �̄�(𝑞2)[−𝑝2𝛾𝜇]𝑢(𝑞1) (3.35)

̄𝑢(𝑞2)/𝑝𝛾𝜇𝑢(𝑞1)
(3.29),(A.2)

= �̄�(𝑞2)(𝑚μ − /𝑞1)𝛾
𝜇𝑢(𝑞1)

(A.3)
= �̄�(𝑞2)(𝑚μ𝛾𝜇 − 2𝑞𝜇1 + 𝛾𝜇/𝑞1)𝑢(𝑞1)
(A.1)
= 2�̄�(𝑞2)(𝑚μ𝛾𝜇 − 𝑞𝜇1 )𝑢(𝑞1) (3.36)

̄𝑢(𝑞2)𝛾𝜇 /𝑝𝑢(𝑞1)
(3.29),(A.1)

= �̄�(𝑞2)𝛾𝜇(/𝑞2 −𝑚μ)𝑢(𝑞1)
(A.3)
= �̄�(𝑞2)(2𝑞

𝜇
2 − /𝑞2𝛾

𝜇 −𝑚μ𝛾𝜇)𝑢(𝑞1)
(A.1)
= 2�̄�(𝑞2)(𝑞

𝜇
2 −𝑚μ𝛾𝜇)𝑢(𝑞1) . (3.37)
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Using this, the numerator becomes

−12𝑁
𝜇 = �̄�(𝑞2)[ −

1
2𝑘

2𝛾𝜇 + (1 − 𝑥)(1 − 𝑦)𝑝2𝛾𝜇

− 2(1 − 𝑥)𝑧𝑚μ(𝑚μ𝛾𝜇 − 𝑞𝜇1 ) + 2(1 − 𝑦)𝑧𝑚μ(𝑞
𝜇
2 −𝑚μ𝛾𝜇) + 𝑧2𝑚2

μ𝛾𝜇

+𝑚2
μ𝛾𝜇 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1)

= �̄�(𝑞2)[ −
1
2𝑘

2𝛾𝜇 + (1 − 𝑥)(1 − 𝑦)𝑝2𝛾𝜇 + (1 − 2𝑧 − 𝑧2)𝑚2
μ𝛾𝜇

+ 2(1 − 𝑥)𝑧𝑚μ𝑞
𝜇
1 + 2(1 − 𝑦)𝑧𝑚μ𝑞

𝜇
2 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1 ]𝑢(𝑞1) .

The Gordon identities proved in appendix A.6 can be used to find the desired form of
the numerator. To apply them, the required term 𝑞𝜇1 + 𝑞𝜇2 has to be obtained from the
following terms occurring in the numerator 𝑁𝜇:

2(1 − 𝑥)𝑧𝑚μ𝑞
𝜇
1 + 2(1 − 𝑦)𝑧𝑚μ𝑞

𝜇
2 − 2𝑚μ(1 − 2𝑦)𝑝𝜇 − 4𝑚μ𝑧𝑞

𝜇
1

= −2(1 + 𝑥)𝑧𝑚μ𝑞
𝜇
1 + 2(1 − 𝑦)𝑧𝑚μ𝑞

𝜇
2 − 2𝑚μ(1 − 2𝑦)𝑝𝜇

(3.29)
= −2(𝑥 + 𝑦)𝑧𝑚μ𝑞

𝜇
1 − 2(1 − 2𝑦 − (1 − 𝑦)𝑧)𝑚μ𝑝𝜇

= −(1 − 𝑧)𝑧𝑚μ(𝑞
𝜇
1 + 𝑞𝜇2 − 𝑝𝜇) − 2(1 − 2𝑦 − (1 − 𝑦)𝑧)𝑚μ𝑝𝜇

= −(1 − 𝑧)𝑧𝑚μ(𝑞
𝜇
1 + 𝑞𝜇2 ) + (−2 + 4𝑦 + 2𝑧 − 2𝑦𝑧 + 𝑧 − 𝑧2)𝑚μ𝑝𝜇

(3.28)
= −(1 − 𝑧)𝑧𝑚μ(𝑞

𝜇
1 + 𝑞𝜇2 ) + (𝑧 − 2)(𝑥 − 𝑦)𝑚μ𝑝𝜇 .

Now the Gordon identity can be used:

−12𝑁
𝜇 = �̄�(𝑞2)[ −

1
2𝑘

2𝛾𝜇 + (1 − 𝑥)(1 − 𝑦)𝑝2𝛾𝜇 + (1 − 2𝑧 − 𝑧2)𝑚2
μ𝛾𝜇

− (1 − 𝑧)𝑧𝑚μ(𝑞
𝜇
1 + 𝑞𝜇2 ) + (𝑧 − 2)(𝑥 − 𝑦)𝑚μ𝑝𝜇]𝑢(𝑞1)

(A.15)
= �̄�(𝑞2)[ −

1
2𝑘

2𝛾𝜇 + (1 − 𝑥)(1 − 𝑦)𝑝2𝛾𝜇 + (1 − 2𝑧 − 𝑧2)𝑚2
μ𝛾𝜇

− 2(1 − 𝑧)𝑧𝑚2
μ𝛾𝜇 + i𝑧(1 − 𝑧)𝑚μ𝜎𝜇𝜈𝑝𝜈 + (𝑧 − 2)(𝑥 − 𝑦)𝑚μ𝑝𝜇]𝑢(𝑞1)

= �̄�(𝑞2)[ −
1
2𝑘

2𝛾𝜇 + (1 − 𝑥)(1 − 𝑦)𝑝2𝛾𝜇 + (1 − 4𝑧 + 𝑧2)𝑚2
μ𝛾𝜇

+ i𝑧(1 − 𝑧)𝑚μ𝜎𝜇𝜈𝑝𝜈 + (𝑧 − 2)(𝑥 − 𝑦)𝑚μ𝑝𝜇]𝑢(𝑞1) .

Following eq. (3.21), there should be a term proportional to 𝛾𝜇 and one proportional
to 𝜎𝜇𝜈𝑝𝜈. Because fig. 5 is a QED diagram, 𝛾5 can not be present in the invariant
amplitude, such that 𝐹A(𝑝2) = 𝐹D(𝑝2) = 0 in eq. (3.21). This is exactly what can
be seen here, except for an extra term proportional to 𝑝𝜇. However, this term does
actually vanish, because currently the integral can be written as follows:

iℳSM = −2𝑒3𝜀𝜇∫
ℝ4

d4𝑘
(2𝜋)4

∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) 𝑁𝜇

(𝑘2 − 𝛥 + i𝜀)3
.
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Except for 𝑁𝜇, the integral is symmetric in exchanging 𝑥 ↔ 𝑦, because the respective
integrals have the same bounds, the 𝛿-function is symmetric in 𝑥 ↔ 𝑦, and 𝛥 is too.
In 𝑁𝜇, the term proportional to 𝑝𝜇 is antisymmetric in swapping 𝑥 ↔ 𝑦. That means
the integral over this term is equal to its negative, after doing the substitution 𝑥 ↔ 𝑦,
which can only be true if it is zero.

By eq. (3.21) the relevant contribution now comes from the term proportional to
𝜎𝜇𝜈𝑝𝜈, which will be called 𝑁

𝜇
M:

𝑁𝜇
M = −2𝑧(1 − 𝑧)𝑚μ ̄𝑢(𝑞2)i𝜎𝜇𝜈𝑝𝜈𝑢(𝑞1) . (3.38)

It is apparent that 𝑁𝜇
M does not depend on 𝑘. With that knowledge the 𝑘-integration

can be carried out by using the following identity:

∫
ℝ4

d4𝑘
(2𝜋4)

1
(𝑘2 − 𝛥 + i𝜀)3

= −i
32𝜋2𝛥 (3.39)

This can be proven by utilizing Wick rotations in the complex plane, as shown in
[Sch14, pp. 823–824]. Thus the invariant amplitude can be simplified to

iℳM = −2𝑒3𝜀𝜇∫
ℝ4

d4𝑘
(2𝜋)4

∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

𝑁𝜇
M

(𝑘2 − 𝛥 + i𝜀)3

= −2𝑒3𝜀𝜇∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) −i

32𝜋2𝛥𝑁
𝜇
M , (3.40)

where againℳM is the contribution proportional to the magnetic form factor to the
invariant amplitude. Equating iℳM from eq. (3.21) with eq. (3.40) results in

𝜀𝜇(−i𝑒) ̄𝑢(𝑞2)
i

2𝑚μ
𝜎𝜇𝜈𝑝𝜈𝐹M(𝑝2)𝑢(𝑞1) = −2𝑒3𝜀𝜇∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥+𝑦+𝑧−1) −i

32𝜋2𝛥𝑁
𝜇
M ,

which yields the following for the magnetic form factor:

𝐹M(𝑝2)
(3.32),(3.38)

= 𝛼
𝜋𝑚

2
μ∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) 𝑧(1 − 𝑧)

−𝑥𝑦𝑝2 + (1 − 𝑧)2𝑚2
μ
, (3.41)

where 𝛼 = 𝑒2/4𝜋 ≈ 1/137 is the fine-structure constant. To get the anomalous magnetic
moment, the non-relativistic limit 𝑝 = 0 has to be taken (see eq. (3.23)). This leads to
the following anomalous magnetic moment:

𝑎μ = 𝐹M(0)
(3.41)
= 𝛼

𝜋 ∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) 𝑧

1 − 𝑧

= 𝛼
𝜋 ∫

1

0
d𝑧 ∫

1−𝑧

0
d𝑥 𝑧

1 − 𝑧 =
𝛼
𝜋 ∫

1

0
𝑧 d𝑧
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= 𝛼
2𝜋 . (3.42)

The limits on the 𝑥-integral in the second line are caused by the 𝛿-function: Because
𝑦 = 1 − 𝑥 − 𝑧, and 0 ≤ 𝑦 ≤ 1, the inequalities

0 ≤ 1 − 𝑥 − 𝑧

⇒ 𝑥 ≤ 1 − 𝑧 ,
(3.43)

and
1 − 𝑥 − 𝑧 ≤ 1

⇒ −𝑧 ≤ 0 ≤ 𝑥
(3.44)

yield the integral limits 0 ≤ 𝑥 ≤ 1 − 𝑧. The end result is thus

𝑎μ =
𝛼
2𝜋 ≈ 0.001 161 ,

⇔ 𝑔μ = 2 + 𝛼
𝜋 ≈ 2.002 323 .

(3.45)

The first one to calculate this result was Schwinger in 1948. The current loop cor-
rected theoretical value includes pure QED, electroweak and hadronic contributions
[Aoy+20]. The QED contribution is calculated by using a perturbative expansion in
𝛼, including all terms up to𝒪(𝛼5), i.e. Feynman diagrams with more and more loops.
These contributions are the largest of the three, and have negligible numerical un-
certainties, as do the very small electroweak contributions. The latter are calculated
from Feynman diagrams including the W bosons, the Z boson or the Higgs boson.
The most difficult to calculate are the hadronic contributions, i.e. Feynman diagrams
including loop quarks and gluons, and additionally they yield the main part of the
numerical uncertainties. It is currently tried to calculate them using either a data-
driven, or a lattice-QCD approach. Reducing the uncertainty of the theoretical side is
very important to keep pace with current experiments, as the muon anomalous mag-
netic moment is a very promising hint of BSM physics.

4 aμ in an extended scotogenic model

4.1 Introduction to the model

The scotogenicmodel is a radiative seesawmodelwhichwas first introduced byErnest
Ma in [Ma06]. It is a minimal extension of the Standard Model, which yields small
neutrino masses via radiative corrections and also a candidate for dark matter. This
is achieved by extending the SM by an exact ℤ₂ symmetry (see appendix A.1). Now
three heavy singletMajorana neutrinosN𝑖, 𝑖 ∈ {1, 2, 3} and a scalar doublet (η+, η0) are
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added to the Standard Model. These have the properties listed for N and η in table 1.
The SU(2) column shows the dimension of the representation (i.e. if it is an SU(2)
singlet or doublet) of the respective particle and the U(1) one shows its weak hyper-
charge 𝑌 = 2(𝑄−𝑇3), where 𝑄 is the electric charge and 𝑇3 is the third component of
the weak isospin.

The exactness of the ℤ₂ symmetry prevents the η field from obtaining a vacuum
expectation value (VEV). It is notable that the new particles all have a ℤ₂ charge of −1,
while the Standard Model particles all have a ℤ₂ charge of 1. This has the effect that
every possible vertex has to consist of an even number of new particles to preserve ℤ2
charge conservation. Firstly, theℤ2 symmetry is thus the reasonwhy no new particles
can decay into just Standard Model fields, which makes the lightest ℤ₂-odd particle
a suitable dark matter candidate, if it has a neutral electric charge. Secondly, the
neutrinomasses can be created only via loop processes, which keeps them sufficiently
small and does not have to involve particles with exorbitant masses.

In this thesis an extension to the scotogenic model, featured in [CN19], is con-
sidered. Here the vector-like fermion doublets Χ1 = (χ+1 , χ01) and Χ2 = (χ02 , χ−2 ) are
included in addition to the fields already present in the scotogenic model. The prop-
erties of these are also listed in table 1.

Table 1: The field content of the scotogenicmodel (SM plus N and η) and its extension
(SM plus N, η and Χ1/2).

Field Generations Spin SU(3)𝐶 SU(2)𝐿 U(1)𝑌 ℤ₂

Standard Model fields 1
N 3 1⁄2 1 1 0 -1
η 1 0 1 2 1 -1
Χ1 1 1⁄2 1 2 1 -1
Χ2 1 1⁄2 1 2 -1 -1

The BSM Lagrangian ℒ of this model can be written as follows:

ℒ = − 1
2𝜆2(η

†η)2 − 𝜆3H†Hη†η − 𝜆4H†ηη†H−𝑚2
ηη†η

+ [ − 1
2𝜆5(η

†H)2 −𝑚ΧΧ1Χ2 −
1
2𝑚N𝑘N𝑘N𝑘

− 𝑦1H†Χ1N − 𝑦2η†Χ2ecR − 𝑦3HΧ2N − 𝑦4LηN +H. c.] ,

(4.1)

where H is the SM Higgs doublet, L is the SM left-handed lepton doublet, ecR is the
SM right-handed lepton singlet, N = (N1, N2, N3) and 𝑘 ∈ {1, 2, 3}. Implicitly the
convention of SU(2)-invariant products, presented in [May18, pp. 57–74], is used here.
Because of the multiple generations of N, e and L, 𝑦1, 𝑦2 and 𝑦3 are 3-component
vectors, and 𝑦4 is a 3 × 3-matrix. For the parameters 𝜆𝑖 the notation from [Ma06]
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is followed. Because in [CN19] the Yukawa coupling 𝑦1 is set to 0, this will be done
here too. The mixed states of the neutral fermions (χ01 , χ02 , N1, N2, N3)will be called ψ𝑖,
𝑖 ∈ {1, 2, 3, 4, 5}, where their masses increase with increasing 𝑖, i.e. ψ1 is the fermion
with the smallest mass and will therefore always be the dark matter candidate in this
thesis.

4.2 Calculation of the anomalous magnetic moment in the ex-
tended scotogenic model

In the extended scotogenic model the main contribution to the anomalous magnetic
moment arises from the diagram in fig. 6 [CN19]. Its invariant amplitudeℳ and the
resulting anomalous magnetic moment will be calculated in this chapter.

𝑞1

𝑘 + 𝑞1

ψ
𝑞2

𝑘 η−
𝑘 − 𝑝

η−

𝑝

μ− μ−

γ

Figure 6: The relevant Feynman diagram for the anomalous magnetic moment.

The arrows show the direction of charge flow. The bottom loop propagator shows
one of the mixed states ψ𝑖, 𝑖 ∈ {1, 2, 3, 4, 5}, here called ψ for simplicity. The contribu-
tions of the different fermions will be summed in the end.

The invariant amplitude is again compiled by using the Feynman rules established
in appendix A.7:

iℳ = 𝜀𝜇∫
ℝ4

d4𝑘
(2𝜋)4

(−i𝑒)(2𝑘𝜇 − 𝑝𝜇)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
γ,η-vertex

i
𝑘2 −𝑚2

η± + i𝜀
i

(𝑘 − 𝑝)2 −𝑚2
η± + i𝜀⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

η-propagators

⋅ �̄�(𝑞2) (𝑑 + 𝑑′𝛾5)⏟⎵⎵⏟⎵⎵⏟
left μ,η,ψ-vertex

i(/𝑘 + /𝑞1 +𝑚ψ)

(𝑘 + 𝑞1)2 −𝑚2
ψ + i𝜀⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

ψ-propagator

(𝑓 + 𝑓′𝛾5)⏟⎵⎵⏟⎵⎵⏟
right μ,η,ψ-vertex

𝑢(𝑞1)

= − 𝜀𝜇 𝑒∫
ℝ4

d4𝑘
(2𝜋)4

̄𝑢(𝑞2)
(2𝑘𝜇 − 𝑝𝜇)(𝑑 + 𝑑′𝛾5)

[𝑘2 −𝑚2
η± + i𝜀][(𝑘 − 𝑝)2 −𝑚2

η± + i𝜀]

⋅
(/𝑘 + /𝑞1 +𝑚ψ)(𝑓 + 𝑓′𝛾5)

[(𝑘 + 𝑞1)2 −𝑚2
ψ + i𝜀]

𝑢(𝑞1) .

(4.2)
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First the same abbreviations as in section 3.3 can be introduced again:

iℳ = −𝜀𝜇𝑒∫
ℝ4

d4𝑘
(2𝜋)4

𝑁𝜇

𝐴𝐵𝐶 , (4.3)

such that

𝑁𝜇 = �̄�(𝑞2)(2𝑘𝜇 − 𝑝𝜇)(𝑑 + 𝑑′𝛾5)(/𝑘 + /𝑞1 +𝑚ψ)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

𝐴 = 𝑘2 −𝑚2
η± + i𝜀

𝐵 = (𝑘 − 𝑝)2 −𝑚2
η± + i𝜀

𝐶 = (𝑘 + 𝑞1)2 −𝑚2
ψ + i𝜀 .

(4.4)

Again, eqs. (3.28) to (3.30) can be used to simplify the denominator of eq. (3.27):

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = 𝑥(𝑘2 −𝑚2
η± + i𝜀) + 𝑦(𝑘2 − 2𝑘 ⋅ 𝑝 + 𝑝2 −𝑚2

η± + i𝜀)

+ 𝑧(𝑘2 + 2𝑘 ⋅ 𝑞1 + 𝑞21 −𝑚2
ψ + i𝜀)

(3.28)
= 𝑘2 + 2𝑘 ⋅ (𝑧𝑞1 − 𝑦𝑝) + 𝑧𝑞21 + 𝑦𝑝2 − 𝑧𝑚2

ψ − (1 − 𝑧)𝑚2
η± + i𝜀

(4.5)
= (𝑘 − 𝑦𝑝 + 𝑧𝑞1)2 − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1

+ 𝑧𝑞21 + 𝑦𝑝2 − 𝑧𝑚2
ψ − (1 − 𝑧)𝑚2

η± + i𝜀

=∶ (𝑘 − 𝑦𝑝 + 𝑧𝑞1)2 − 𝛥 + i𝜀 ,

where the following was used in the third line:

(𝑘 − 𝑦𝑝 + 𝑧𝑞1)2 = 𝑘2 + 𝑦2𝑝2 + 𝑧2𝑞21 − 2𝑦𝑘 ⋅ 𝑝 + 2𝑧𝑘 ⋅ 𝑞1 − 2𝑦𝑧𝑝 ⋅ 𝑞1
⇔ 𝑘2 + 2𝑘 ⋅ (𝑧𝑞1 − 𝑦𝑝) = (𝑘 − 𝑦𝑝 + 𝑧𝑞1)2 − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1 . (4.5)

Analogous to the SM calculation the variable 𝛥 was defined:

−𝛥 = 𝑧𝑞21 + 𝑦𝑝2 − 𝑧𝑚2
ψ − (1 − 𝑧)𝑚2

η± − 𝑦2𝑝2 − 𝑧2𝑞21 + 2𝑦𝑧𝑝 ⋅ 𝑞1
= 𝑦(1 − 𝑦)𝑝2 + 2𝑦𝑧𝑝 ⋅ 𝑞1 + 𝑧(1 − 𝑧)𝑞21 − 𝑧𝑚2

ψ − (1 − 𝑧)𝑚2
η±

(3.28)
= (𝑥𝑦 + 𝑦𝑧)𝑝2 + 2𝑦𝑧𝑝 ⋅ 𝑞1 + (𝑥𝑧 + 𝑦𝑧)𝑞21 − 𝑧𝑚2

ψ − (1 − 𝑧)𝑚2
η±

= 𝑦𝑧(𝑝 + 𝑞1)2 + 𝑥𝑦𝑝2 + 𝑥𝑧𝑞21 − 𝑧𝑚2
ψ − (1 − 𝑧)𝑚2

η±
(3.29)
= 𝑦𝑧𝑞22 + 𝑥𝑦𝑝2 + 𝑥𝑧𝑞21 − 𝑧𝑚2

ψ − (1 − 𝑧)𝑚2
η±

(3.30),(3.28)
= 𝑥𝑦𝑝2 + 𝑧(1 − 𝑧)𝑚2

μ − 𝑧𝑚2
ψ − (1 − 𝑧)𝑚2

η± .

Using this, the basis in the denominator of eq. (4.3) simplifies to

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = (𝑘 − 𝑦𝑝 + 𝑧𝑞1)2 − 𝛥 + i𝜀

with 𝛥 = −𝑥𝑦𝑝2 − 𝑧(1 − 𝑧)𝑚2
μ + 𝑧𝑚2

ψ + (1 − 𝑧)𝑚2
η± .

(4.6)
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Now the integral substitution 𝑘 ↦ 𝑘 + 𝑦𝑝 − 𝑧𝑞1 can be carried out again. The overall
sign differs from the substitution used in the SM calculation, because in this section
the direction of the variable 𝑘 was reversed in fig. 6 with respect to fig. 5. The substi-
tution again gets rid of the terms added to 𝑘:

𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 = 𝑘2 − 𝛥 + i𝜀 . (4.7)

The numerator 𝑁𝜇 takes the following form:

𝑁𝜇 = �̄�(𝑞2)(2𝑘𝜇 − 𝑝𝜇)(𝑑 + 𝑑′𝛾5)(/𝑘 + /𝑞1 +𝑚ψ)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)
subst.
↦ �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)(2𝑘𝜇 + (2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )

⋅ (/𝑘 + 𝑦/𝑝 + (1 − 𝑧)/𝑞1 +𝑚ψ)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

= �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)[2𝑘𝜇/𝑘 + 2𝑘𝜇(𝑦/𝑝 + (1 − 𝑧)/𝑞1 +𝑚ψ)

+ ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )/𝑘

+ ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )(𝑦/𝑝 + (1 − 𝑧)/𝑞1 +𝑚ψ)](𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

The underlined terms are linear in the components of 𝑘 again, so the integrals result
in zero (see appendix A.8). Additionally, to simplify the first term in the brackets,
eq. (A.26) can be used:

2𝑘𝜇/𝑘 = 2𝑘𝜇𝑘𝜈𝛾𝜈
(A.26)
= 1

2𝑔
𝜇𝜈𝑘2𝛾𝜈 =

1
2𝑘

2𝛾𝜇 . (4.8)

This leads to

𝑁𝜇 = �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)[12𝑘
2𝛾𝜇 + ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )

⋅ (𝑦/𝑝 + (1 − 𝑧)/𝑞1 +𝑚ψ)](𝑓 + 𝑓′𝛾5)𝑢(𝑞1) .

To make use of the Dirac equation (A.1) and its adjoint (A.2), momentum conserva-
tion (eq. (3.29)) can be used to get rid of /𝑝:

𝑁𝜇 (3.28),(3.29)
= �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)[12𝑘

2𝛾𝜇 + ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )

⋅ (𝑦/𝑞2 + 𝑥/𝑞1 +𝑚ψ)](𝑓 + 𝑓′𝛾5)𝑢(𝑞1)
(A.8)
= �̄�(𝑞2)[

1
2𝑘

2𝛾𝜇 + ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑦/𝑞2](𝑑 − 𝑑′𝛾5)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

+ �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)(𝑓 − 𝑓′𝛾5)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑥/𝑞1𝑢(𝑞1)

+ �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑚ψ(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)
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(A.1),(A.2)
= �̄�(𝑞2)[

1
2𝑘

2𝛾𝜇 + ((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑦𝑚μ](𝑑 − 𝑑′𝛾5)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

+ �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)(𝑓 − 𝑓′𝛾5)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑥𝑚μ𝑢(𝑞1)

+ �̄�(𝑞2)(𝑑 + 𝑑′𝛾5)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝑚ψ(𝑓 + 𝑓′𝛾5)𝑢(𝑞1) .

Now the part proportional to 𝛾5 can be separated:

𝑁𝜇 = 1
2 ̄𝑢(𝑞2)𝑘2𝛾𝜇(𝑑 − 𝑑′𝛾5)(𝑓 + 𝑓′𝛾5)𝑢(𝑞1)

+ �̄�(𝑞2)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )[(𝑑 + 𝑑′𝛾5)(𝑓 − 𝑓′𝛾5)𝑥𝑚μ

+ (𝑑 − 𝑑′𝛾5)(𝑓 + 𝑓′𝛾5)𝑦𝑚μ + (𝑑 + 𝑑′𝛾5)(𝑓 + 𝑓′𝛾5)𝑚ψ]𝑢(𝑞1)
(A.9)
= 1

2 ̄𝑢(𝑞2)(𝑑𝑓 − 𝑑′𝑓′)𝑘2𝛾𝜇𝑢(𝑞1) +
1
2 ̄𝑢(𝑞2)(𝑑𝑓′ − 𝑑′𝑓)𝑘2𝛾𝜇𝛾5𝑢(𝑞1)

+ �̄�(𝑞2)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )[(𝑑𝑓 − 𝑑′𝑓′)(𝑥 + 𝑦)𝑚μ

+ (𝑑𝑓 + 𝑑′𝑓′)𝑚ψ]𝑢(𝑞1)

+ �̄�(𝑞2)((2𝑦 − 1)𝑝𝜇 − 2𝑧𝑞𝜇1 )𝛾5[(𝑑′𝑓 − 𝑑𝑓′)(𝑥 − 𝑦)𝑚μ

+ (𝑑′𝑓 + 𝑑𝑓′)𝑚ψ]𝑢(𝑞1) .

The Gordon identities proved in appendix A.6 can be used to find the desired form of
the numerator. To apply them, the required 𝑞𝜇1 + 𝑞𝜇2 is obtained by using

2𝑞𝜇1
(3.29)
= 𝑞𝜇1 + 𝑞𝜇2 − 𝑝𝜇 . (4.9)

This leads to

𝑁𝜇 (3.28),(4.9)
= 1

2 ̄𝑢(𝑞2)(𝑑𝑓 − 𝑑′𝑓′)𝑘2𝛾𝜇𝑢(𝑞1) +
1
2 ̄𝑢(𝑞2)(𝑑𝑓′ − 𝑑′𝑓)𝑘2𝛾𝜇𝛾5𝑢(𝑞1)

− �̄�(𝑞2)((𝑥 − 𝑦)𝑝𝜇 + 𝑧(𝑞𝜇1 + 𝑞𝜇2 ))[(𝑑𝑓 − 𝑑′𝑓′)(𝑥 + 𝑦)𝑚μ

+ (𝑑𝑓 + 𝑑′𝑓′)𝑚ψ]𝑢(𝑞1)

− �̄�(𝑞2)((𝑥 − 𝑦)𝑝𝜇 + 𝑧(𝑞𝜇1 + 𝑞𝜇2 ))𝛾5[(𝑑′𝑓 − 𝑑𝑓′)(𝑥 − 𝑦)𝑚μ

+ (𝑑′𝑓 + 𝑑𝑓′)𝑚ψ]𝑢(𝑞1)
(A.15),(A.16)

= 1
2 ̄𝑢(𝑞2)(𝑑𝑓 − 𝑑′𝑓′)𝑘2𝛾𝜇𝑢(𝑞1) +

1
2 ̄𝑢(𝑞2)(𝑑𝑓′ − 𝑑′𝑓)𝑘2𝛾𝜇𝛾5𝑢(𝑞1)

− �̄�(𝑞2)((𝑥 − 𝑦)𝑝𝜇 + 𝑧(2𝑚μ𝛾𝜇 + i𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈)))

⋅ [(𝑑𝑓 − 𝑑′𝑓′)(𝑥 + 𝑦)𝑚μ + (𝑑𝑓 + 𝑑′𝑓′)𝑚ψ]𝑢(𝑞1)

− �̄�(𝑞2)((𝑥 − 𝑦)𝑝𝜇 + i𝑧𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈))𝛾5

⋅ [(𝑑′𝑓 − 𝑑𝑓′)(𝑥 − 𝑦)𝑚μ + (𝑑′𝑓 + 𝑑𝑓′)𝑚ψ]𝑢(𝑞1) .
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The terms underlined in red are antisymmetric in substituting 𝑥 ↔ 𝑦, the blue ones
are symmetric in 𝑥 ↔ 𝑦, so products which combine red and blue are antisymmetric.
The denominator of the integral is symmetric in 𝑥 ↔ 𝑦, see eq. (4.6), so these whole
integrals are antisymmetric in 𝑥 ↔ 𝑦, which means that the integrals must vanish.
This is again equivalent to leaving the terms out of the numerator𝑁𝜇 altogether. Also
momentum conservation can be used to replace 𝑞1𝜈 − 𝑞2𝜈 by −𝑝𝜈:

𝑁𝜇 = 1
2 ̄𝑢(𝑞2)(𝑑𝑓 − 𝑑′𝑓′)𝑘2𝛾𝜇𝑢(𝑞1) +

1
2 ̄𝑢(𝑞2)(𝑑𝑓′ − 𝑑′𝑓)𝑘2𝛾𝜇𝛾5𝑢(𝑞1)

− �̄�(𝑞2)𝑧(2𝑚μ𝛾𝜇 − i𝜎𝜇𝜈𝑝𝜈)

⋅ [(𝑑𝑓 − 𝑑′𝑓′)(𝑥 + 𝑦)𝑚μ + (𝑑𝑓 + 𝑑′𝑓′)𝑚ψ]𝑢(𝑞1)

− �̄�(𝑞2)(𝑥 − 𝑦)2(𝑑′𝑓 − 𝑑𝑓′)𝑚μ𝑝𝜇𝛾5𝑢(𝑞1)

+ �̄�(𝑞2)i𝑧𝜎𝜇𝜈𝑝𝜈(𝑑′𝑓 + 𝑑𝑓′)𝑚ψ𝛾5𝑢(𝑞1) .

According to eq. (3.21) the relevant contribution now comes from the term propor-
tional to 𝜎𝜇𝜈𝑝𝜈 (but not proportional to 𝛾5), which will be called 𝑁

𝜇
M:

𝑁𝜇
M = �̄�(𝑞2)i𝜎𝜇𝜈𝑝𝜈𝑧[((1 − 𝑧)𝑚μ +𝑚ψ)𝑑𝑓 − ((1 − 𝑧)𝑚μ −𝑚ψ)𝑑′𝑓′]𝑢(𝑞1) . (4.10)

Here too it is apparent that 𝑁𝜇
M does not depend on 𝑘. Therefore eq. (3.39) can again

be applied directly:

iℳM = −2𝜀𝜇𝑒∫
ℝ4

d4𝑘
(2𝜋)4

∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

𝑁𝜇
M

(𝑘2 − 𝛥 + i𝜀)3

= −2𝜀𝜇𝑒∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) −i

32𝜋2𝛥𝑁
𝜇
M , (4.11)

where againℳM is the contribution proportional to the magnetic form factor. Equat-
ing iℳM from eqs. (3.21) and (4.11),

𝜀𝜇(−i𝑒) ̄𝑢(𝑞2)
i

2𝑚μ
𝜎𝜇𝜈𝑝𝜈𝐹M(𝑝2)𝑢(𝑞1) = −2𝜀𝜇𝑒∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1) −i

32𝜋2𝛥𝑁
𝜇
M ,

yields the magnetic form factor in a preliminary integral form by rearranging and
division by 𝜀𝜇 ̄𝑢(𝑞2)𝜎𝜇𝜈𝑝𝜈𝑢(𝑞1):

𝐹M(𝑝2)
(4.6),(4.10)

= − 1
8𝜋2𝑚μ∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

⋅
𝑧((1 − 𝑧)𝑚μ +𝑚ψ)𝑑𝑓 − 𝑧((1 − 𝑧)𝑚μ −𝑚ψ)𝑑′𝑓′

−𝑥𝑦𝑝2 − 𝑧(1 − 𝑧)𝑚2
μ + 𝑧𝑚2

ψ + (1 − 𝑧)𝑚2
η±

.

(4.12)
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Here the non-relativistic limit can be employed again (see eq. (3.23)), i.e. 𝑝2 can be
set to 0. For convenience the occurring integral is defined as 𝐼±ψ . Its index ψ should
remind of the different masses of the propagator fermions in fig. 6, which means that
the integral yields a different contribution for every fermion.

𝐹M(0) = − 1
8𝜋2𝑚μ∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

⋅
𝑧((1 − 𝑧)𝑚μ +𝑚ψ)𝑑𝑓 − 𝑧((1 − 𝑧)𝑚μ −𝑚ψ)𝑑′𝑓′

−𝑧(1 − 𝑧)𝑚2
μ + 𝑧𝑚2

ψ + (1 − 𝑧)𝑚2
η±

=∶ − 1
8𝜋2

𝑚2
μ

𝑚2
η±
(𝐼+N𝑑𝑓 − 𝐼−N𝑑′𝑓′) ,

which includes the definition

𝐼±ψ ∶=
𝑚2
η±

𝑚μ
∫

1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

𝑧((1 − 𝑧)𝑚μ ±𝑚ψ)
−𝑧(1 − 𝑧)𝑚2

μ + 𝑧𝑚2
ψ + (1 − 𝑧)𝑚2

η±

= ∫
1

0
d𝑥 d𝑦 d𝑧 𝛿(𝑥 + 𝑦 + 𝑧 − 1)

𝑧(1 − 𝑧 ± 𝜀ψ)
−𝑧(1 − 𝑧)𝜆2 + 𝑧(𝜀ψ𝜆)2 + 1 − 𝑧

, (4.13)

where the abbreviations
𝜀ψ =

𝑚ψ

𝑚μ
and 𝜆 =

𝑚μ

𝑚η±
(4.14)

were used. Evaluation of the 𝛿-function and the substitution 𝑧′ = 1 − 𝑧 change 𝐼±ψ to

𝐼±ψ
eval. 𝛿
= ∫

1

0
d𝑧∫

1−𝑧

0
d𝑦

𝑧(1 − 𝑧 ± 𝜀ψ)
−𝑧(1 − 𝑧)𝜆2 + 𝑧(𝜀ψ𝜆)2 + 1 − 𝑧

= ∫
1

0
d𝑧

𝑧(1 − 𝑧)(1 − 𝑧 ± 𝜀ψ)
−𝑧(1 − 𝑧)𝜆2 + 𝑧(𝜀ψ𝜆)2 + 1 − 𝑧

sub.
= ∫

1

0
d𝑧′

𝑧′(1 − 𝑧′)(𝑧′ ± 𝜀ψ)
−𝑧′(1 − 𝑧′)𝜆2 + (1 − 𝑧′)(𝜀ψ𝜆)2 + 𝑧′

= ∫
1

0
d𝑧′

𝑧′(1 − 𝑧′)(𝑧′ ± 𝜀ψ)
(𝜀ψ𝜆)2(1 − 𝑧′)(1 − 𝜀−2ψ 𝑧′) + 𝑧′

. (4.15)

The limits for the 𝑦-integration after the evaluation of the 𝛿-function can be obtained
by the same considerationsmade for the SMcalculation, namely eq. (3.43) and eq. (3.44).

The couplings 𝑓 and 𝑓′ can be expressed in terms of 𝑑 and 𝑑′. To see why, the
relevant interaction terms in the Lagrangian after electroweak symmetry breaking
are looked at [LPQ18, p. 25]:

ℒint = ̃𝑑η+ψ̄μ− + ̃𝑑′η+ψ̄𝛾5μ− +H. c.
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The coefficients are equal to the couplings up to a constant phase. To get the couplings
on the other side of fig. 6, the hermitian conjugate is examined:

H. c. = ̃𝑑∗(η+ψ†𝛾0μ−)† + ̃𝑑′∗(η+ψ†𝛾0𝛾5μ−)†

= ̃𝑑∗(μ−)†𝛾0ψ(η+)† + ̃𝑑′∗(μ−)†𝛾5𝛾0ψ(η+)†

(A.8)
= ̃𝑑∗(μ−)†𝛾0ψ(η+)† − ̃𝑑′∗μ̄−𝛾5ψ(η+)†

!
= ̃𝑓(μ−)†𝛾0ψ(η+)† + ̃𝑓′μ̄−𝛾5ψ(η+)† .

Thus the result is 𝑓 = 𝑑∗ and 𝑓′ = −𝑑′∗. The couplings of course also depend on
the fermion in the propagator of fig. 6, so they will get an index in the following sum-
mation over the fermions. The summation index ψwill count the mass eigenstates of
the mixed fermions. Finally, the anomalous magnetic moment in integral form can
be written as

Δ𝑎μ = 𝐹M(0) = − 1
8𝜋2

𝑚2
μ

𝑚2
η±

∑
fermion ψ

(𝐼+ψ |𝑑ψ|2 + 𝐼−ψ |𝑑
′
ψ|2)

= − 1
8𝜋2

𝑚2
μ

𝑚2
η±

∑
fermion ψ

∫
1

0
d𝑥

𝑥(1 − 𝑥)(𝑥 + 𝜀ψ)|𝑑ψ|2 + 𝑥(1 − 𝑥)(𝑥 − 𝜀ψ)|𝑑′ψ|2

(𝜀ψ𝜆)2(1 − 𝑥)(1 − 𝜀−2ψ 𝑥) + 𝑥
(4.16)

This result is also featured in [LPQ18, p. 26] in eqs. (26a) and (26b), and in [JN09,
p. 101] in eq. (264). In the latter the polynomials for the scalar and pseudoscalar
coupling directly under eq. (264) have to be plugged in to agree with the result in
[LPQ18] and the one calculated here.

Equation (4.16) is suited for actual numerical evaluation with a method to cal-
culate integrals numerically, because 𝐼±ψ consists only of polynomials of up to third
order, and the limits of integration are not prone to be affected by numerical errors.
Therefore this result is used in section 5.3.

Further analytical evaluation of 𝐼±ψ is still possible. For that, at first the square in
the denominator is completed:

(𝜀ψ𝜆)2(1 − 𝑥)(1 − 𝜀−2ψ 𝑥) + 𝑥 = 𝜆2𝑥2 + (1 − (𝜀ψ𝜆)2 − 𝜆2)𝑥 + (𝜀ψ𝜆)2

= 𝜆2(𝑥2 + (𝜆−2 − 𝜀2ψ − 1)⏟⎵⎵⎵⏟⎵⎵⎵⏟
=∶2𝑚

𝑥) + (𝜀ψ𝜆)2

= 𝜆2(𝑥 + 𝑚)2 − 𝜆2𝑚2 + (𝜀ψ𝜆)2 .

where 𝑚 is a dimensionless abbreviation. Using the substitution 𝑦 = 𝑥 + 𝑚, the
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integral transforms into

𝐼±𝑓 = 1
𝜆2 ∫

𝑚+1

𝑚
d𝑦

(𝑦 − 𝑚)(1 − 𝑦 + 𝑚)(𝑦 − 𝑚 ± 𝜀ψ)
𝑦2 −𝑚2 + 𝜀2ψ⏟⎵⎵⏟⎵⎵⏟

∶=−𝑎2

with a real constant 𝑎. The numerator can then be rewritten as a polynomial in 𝑦:

(𝑦 − 𝑚)(1 − 𝑦 + 𝑚)(𝑦 − 𝑚 ± 𝜀ψ) = −𝑦3 + (1 + 3𝑚 ∓ 𝜀ψ)𝑦2

+ (−3𝑚2 − 2𝑚 ± (2𝑚 + 1)𝜀ψ)𝑦 − 𝑚(𝑚 + 1)(−𝑚 ± 𝜀ψ)

Now for the different powers of 𝑦 the integrals shown in appendix A.9 can be used,
which leads to the rather lengthy equation

𝐼±𝑓 = − 1
2𝜆2 [2𝑚 + 1 + 𝑎2 ln |||

(𝑚 + 1)2 − 𝑎2

𝑚2 − 𝑎2
|||]

+ 1
𝜆2 (1 + 3𝑚 ∓ 𝜀ψ) [1 +

𝑎
2 ln

|||
𝑚 + 1 − 𝑎
𝑚 + 1 + 𝑎

||| −
𝑎
2 ln

|
|
𝑚 − 𝑎
𝑚 + 𝑎

|
|]

+ 1
2𝜆2 (−3𝑚

2 − 2𝑚 ± (2𝑚 + 1)𝜀ψ) ln
|||
(𝑚 + 1)2 − 𝑎2

𝑚2 − 𝑎2
|||

− 1
2𝑎𝜆2𝑚(𝑚 + 1)(−𝑚 ± 𝜀ψ) [ln

|||
𝑚 + 1 − 𝑎
𝑚 + 1 + 𝑎

||| − ln ||
𝑚 − 𝑎
𝑚 + 𝑎

|
|]

= 1
2𝜆2 [−𝑎

2 − 3𝑚2 − 2𝑚 ± (2𝑚 + 1)𝜀ψ] ln
|||
(𝑚 + 1)2 − 𝑎2

𝑚2 − 𝑎2
|||

+ 1
2𝜆2 [(1 + 3𝑚 ∓ 𝜀ψ)𝑎 −

𝑚
𝑎 (𝑚 + 1)(−𝑚 ± 𝜀ψ)] (ln

|||
𝑚 + 1 − 𝑎
𝑚 + 1 + 𝑎

||| − ln ||
𝑚 − 𝑎
𝑚 + 𝑎

|
|)

+ 1
𝜆2 [2𝑚 + 1

2 ∓ 𝜀ψ]

5 Numerical calculations

5.1 The coupling of the μ – ψ – η vertex

The couplings 𝑑 and 𝑑′ from section 4.2 still have to be determined, which is done
here for the extended scotogenic model. This was achieved by using theMathematica
extension SARAH [Sta08]. It analytically calculates various quantities for a model,
e.g. mass matrices or vertex couplings. The SARAH output is obtained as

η+

ψ𝑗

ℓ−𝑖 = − i
3
∑

𝑚,𝑛=1
(𝑈ψ)∗𝑗2 (𝑈e)𝑖𝑚 (𝑦2)𝑚 𝑃L

+ i
3
∑

𝑚,𝑛=1
(𝑦4)𝑚𝑛 (𝑉e)𝑖𝑚 (𝑈ψ)𝑗,𝑛+2 𝑃R

(5.1)
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(5.2)
= − i

3
∑
𝑛=1

(𝑈ψ)∗𝑗2 (𝑦2)𝑖 𝑃L

+ i
3
∑
𝑛=1

(𝑦4)𝑖𝑛 (𝑈ψ)𝑗,𝑛+2 𝑃R ,

where 𝑉e is the mixing matrix of the left-handed SM leptons, 𝑈e is its right-handed
counterpart, and 𝑈ψ is the mixing matrix of the BSM fermions. 𝑦2 and 𝑦4 are Yukawa
couplings defined in eq. (4.1). At last, 𝑃L and 𝑃R are the left-handed and right-handed
projectors (see appendix A.4). Because there is no mixing between the leptons and
the antileptons, 𝑉e and 𝑈e are the identity matrices, i.e.

(𝑉e)𝑖𝑚 = (𝑈e)𝑖𝑚 = 𝛿𝑖𝑚 . (5.2)

5.2 Introduction to the used toolchain

In this section the toolchain for analyzing the parameter space is presented briefly.
The model files for the extended scotogenic model were created using the Python
module “minimal-lagrangians” [May21]. These then were used by SARAH [Sta08]
to build the files for SPheno [Por03; PS12] and micrOMEGAS [Bél+18]. Using these
tools, a Python toolchain was used to input the parameters into the SPheno and mi-
crOMEGAS, either sampling one parameter continuously or a set of values randomly,
and reading out the output values, e.g. Δ𝑎μ. The former is used in section 5.3 and the
latter in section 5.4.

5.3 Comparison of SPheno and the analytical result

In this section the analytical result is compared to the anomalous magnetic moment
calculated by SPheno. For this, eq. (4.16) is used to calculateΔ𝑎μ, where the couplings
𝑑ψ and 𝑑′ψ are taken as the term proportional to 𝟙4 and 𝛾5, respectively, from eq. (5.1).
The mixing matrix𝑈ψ for the analytical result was also determined by SPheno. Using
the aforementioned toolchain,𝑚χ, 𝑦2, 𝑦3 and 𝑦4 were probed.

The results are shown in fig. 7 and the parameters and ranges are listed in ta-
ble 2. It should be noted that the lightest of the mixed ψ fermions is always taken as
the dark matter candidate, which is always ψ1, such that 𝑚DM = 𝑚ψ1. In fig. 7a 𝑚Χ

was sampled, for which the analytical results are in excellent agreement with SPheno.
The assumption that the diagram in fig. 6 yields the main contribution to Δ𝑎μ thus
seems to be correct (in this range of parameters). The shape of the curve also makes
sense, because with increasing masses of the loop particles, i.e. 𝑚Χ, the contribution
of the relevant diagram should get smaller. This can be seen in fig. 7a. In fig. 7b the
vector Yukawa couplings 𝑦2 and 𝑦3 were sampled with every component the same,
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and the matrix Yukawa coupling 𝑦4 was sampled as being proportional to 𝟙4 (see ta-
ble 2). It is apparent that the results agree with SPheno above a certain value of the
different Yukawa couplings, which seems to vary between them. The discrepancy
could stem from other contributing diagrams, which SPheno considers but are not
calculated in this thesis, or from SPheno making approximations to increase the per-
formance of the calculations. Either way, this is not a problem, because mainly the
order Δ𝑎μ ∼ 𝒪(10−9) is of interest, in which the analytical results agree with SPheno.
The downward spikes shown in fig. 7b are caused by a change of sign in Δ𝑎μ, i.e. Δ𝑎μ
becomes negative for decreasing values of the Yukawa couplings, which could not be
plotted here because of the logarithmic scale. At last, it is apparent from fig. 7 that a
value of Δ𝑎μ can (for now) be reached in this model.
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Figure 7: Comparison of analytical results and results calculated by SPheno. In (a)
𝑚Χ is varied, in (b) the Yukawa couplings. Spikes due to logarithmic scaling show
where the sign of Δ𝑎μ changes. The parameters and variation ranges can be found in
table 2.
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5.4 Random sampling of the parameter space

Now the random sampling of the parameter space is presented. Similar to the pre-
vious section, the varied parameters and their limits can be found in table 3 in ap-
pendix A.10. To ensure correct neutrino masses, the Casas-Ibarra parametrization
was used to determine the Yukawa coupling 𝑦4. Instead of sampling 𝑦3 directly, the 3-
component vector 𝜉 (introduced in [CN19, p. 12]) where 𝜉 = 𝑦4𝑦3, i.e. 𝜉𝑖 = (𝑦4)𝑖𝑗(𝑦3)𝑗,
was sampled around a benchmark point presented in [CN19, p. 16]. 𝑦3 was thus de-
termined by 𝑦3 = (𝑦4)−1𝜉, which was achieved by solving the corresponding system
of equations numerically.

After the probing, the following limits were imposed on the parameter space:

1. relic density: Ωℎ2 = 0.12 ± 0.07 (see eq. (2.3))

2. lepton flavor violation: BR(μ → e γ) < 4.2 ⋅ 10−13, BR(τ → e γ) < 3.3 ⋅ 10−8 and
BR(μ → 3e) < 1 ⋅ 10−12 [Zyl+20]

3. LEP (Large Electron-Positron Collider): 𝑚χ+1 > 102GeV [Abb+03]

Note that the actual experimental uncertainty on the relic density Ωℎ2 (see eq. (2.3))
is much smaller than the interval used here. The problem is that the probability of
reaching this interval is very small if most of the free parameters are sampled over
multiple orders of magnitude. Many pointswould then be discarded, even if they have
a relic density very close to the experimental value. Another reason are numerical
errors produced by micrOMEGAS, which introduce another theoretical uncertainty.

The parameter points, constrained by the above limits, are shown in fig. 8. In total,
1 033 580 data points were sampled, from which 840 survive all constraints. The most
points are excluded by the relic density and LFVconstraints. Because the lepton flavor
violating μ → e γ process has essentially the same diagram as the anomalousmagnetic
moment contribution, LFVexcludes the greaterΔ𝑎μ valuesmore prominently, as seen
in fig. 8b. In fig. 8c the excluded values are plotted in front of the allowed values,
because many more values are allowed than excluded. The hard cut at ≈ 100GeV
in fig. 8c can be explained by the fact that the dark matter candidate is taken as the
lightest neutral fermion, i.e. 𝑚DM = 𝑚ψ1: Thus the masses of the mass eigenstates
𝑚χ+1 have to be bigger than𝑚ψ1. The reason for this is that𝑚χ+1 is charged, so it can not
be a dark matter candidate. At𝑚DM > 102GeV this means that𝑚χ+1 is automatically
bigger than 102GeV, so the LEP constraint is always fulfilled.

In fig. 8b it can be seen that the limiting factor seems to be LFV, although it seems
to be possible to achieve Δ𝑎μ ∼ 𝒪(10−9). Because the probability of fulfilling the LFV
constraint and getting a sizableΔ𝑎μ is so small, none of the points with all constraints
get a Δ𝑎μ of the right size. This is also shown in fig. 9. The upper left quadrant here
is the region where parameter points which fulfill both constraints would show up.
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It can be seen that there are some points in this region, although with all constraints
imposed there are none left. Conclusively, the right size of the anomalous magnetic
moment could still be reached, but getting the right parameter points is very improb-
able in random sampling the parameter space. Maybe finding the right combinations
of parameters can better be achieved with more sophisticated methods of probing.

Also the relationship between the branching rations of the three lepton flavor vi-
olating processes used as limits can be evaluated. This is done in fig. 10. Here all
sampled points are plotted, where by the LFV constraints, shown as lines, it can be
seen that the process μ → e γ imposes the strictest constraint.

At last the direct detection spin-independent cross section 𝜎p(SI) was examined.
This is shown in fig. 11. If a parameter point has a main annihilation channel (i.e.
one with a branching ration greater than 50%), it is colored accordingly. As expected,
the main annihilation channel changes with the dark matter mass. With an increase
of mass, more annihilations get kinematically allowed, which can be seen e.g. for
ψ1 ψ1 → t ̄t: Its mass is approximately 173GeV, and this is the smallest dark matter
mass which shows this annihilation channel. The downward spikes at about 45.5GeV
and 62.5GeV are the Z0 (Z-boson) and h (Higgs boson) resonances. These can be
explained as follows: The ψ1 ψ1 annihilation happens with either a Z0 or a h as the
propagator, so the invariant amplitude of this process gets terms 1

𝑝2−𝑚2
Z0
and 1

𝑝2−𝑚h
,

where 𝑝 is the total four-momentum of the incoming ψ1. These become very large for
𝑝2 ≈ 𝑚Z0/h, so in turn the cross section of this process also gets bigger. That means
less scattering with the direct detection atoms happen and such 𝜎p gets smaller. The
process ψ1 ψ1 → W+W− is favored in such a way over the elastic scattering with the
proton that the cross section of the latter becomes several orders of magnitude smaller.
The XENON1T limit excludes many parameter points, which makes finding points
with the correct anomalous magnetic moment even more improbable. A solution for
this could be to use an algorithmic determination of the parameters, i.e. moving the
parameter steadily into regions with output values agreeing with the experimental
limits, instead of random sampling the points. The disadvantage here would be that
for this a certain smaller region of parameters has to be chosen. Also the Yukawa
coupling 𝑦1, which was set to 0 from the start, as it is done in [CN19], could influence
the anomalous magnetic moment if it has a nonzero value.
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Figure 8: The sampled values, shown as Δ𝑎μ against 𝑚DM = 𝑚ψ1. In (a), (b) and (c)
the individual constraints are imposed upon the parameter points, (d) shows all the
constraints at once.
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Figure 9: Correlation of the anomalous magnetic moment with LFV. The upper left
quadrant shows parameter points that are both allowed by the LFV constraint and
also have a Δ𝑎μ of the right magnitude.
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Figure 10: The different branching ratios which where used as limiting constraints in
this section, plotted against each other. A correlation between the three processes is
visible. The process μ → e γ imposes the strictest constraint.
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Figure 11: The spin-independent direct detection cross section against the darkmatter
mass. TheXENON1T limit is taken from [Apr+18]. The parameter points shownhere
are the ones fulfilling all imposed constraints.
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6 Conclusion and outlook

In this thesis, the anomalous magnetic moment of the muon was examined in an ex-
tended scotogenic model, i.e. a radiative seesaw model. For this, it was first shown
how 𝑔μ = 2 follows from the Dirac equation in the non-relativistic limit. Then the in-
variant amplitude of the process which yields the anomalous magnetic moment was
considered. First it was written in terms of the electromagnetic form factors, and af-
ter that it was calculated in the Standard Model, leading to the expected result of a
correction of 𝛼

𝜋
to 𝑔μ. Then the extension of the scotogenic model was introduced, in

which the one-loop contribution to 𝑔μwas calculated again. The result could be found
to be in agreement with the literature. For the numerical calculations a toolchain of
different tools was presented, in which the analytical calculation was compared to
the numerical result of the anomalous magnetic moment. In the relevant parameter
regions both results could be found to be in good agreement. At last a random scan
was conducted, where it was found that the model can indeed yield parameter points
with an anomalous magnetic moment in the right order of magnitude. But these are
severely constrained by LFV processes, as both are connected by similar Feynman di-
agrams, so only a few points satisfying both these constraints remained. The imposed
constraint on the relic density then discarded all of these points, so that in conclu-
sion the experimental constraints lead to an anomalous magnetic moment which is
too small. In principle the method of scanning randomly could be at fault, where
the probability of reaching a specific suitable parameter configuration gets smaller
with the addition of every free parameter. A solution could be a more sophisticated
probing method which gradually moves the parameter points to regions where the
experimental constraints can be fulfilled.

The anomalousmagneticmoment of themuon continues to pose a promising hint
on BSM particle physics. It can therefore be hoped that the improvements in deter-
mining its experimental and theoretical value lead to a bigger discrepancy in the next
years.
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A Appendix

A.1 The group ℤ₂

The groupℤ₂ is interpretable as two isomorphic groups: The quotient group (ℤ/2ℤ,+),
where

ℤ/2ℤ = {0, 1} and +∶ ℤ/2ℤ → ℤ/2ℤ, (𝑎, 𝑏) ↦ 𝑎 + 𝑏 mod 2 ,

or the cyclic group of order 2, (ℤ2, ⋅), where

ℤ2 = {−1,+1} and ⋅∶ ℤ2 → ℤ2, (𝑎, 𝑏) ↦ 𝑎 ⋅ 𝑏 .

Here it is more meaningful to use the second interpretation, because then, like it is
done in [Ma06] and [CN19], the terms “odd” and “even” and the abbreviations “−”
and “+” can be used for the elements of ℤ₂, −1 and +1.

A.2 The Dirac equation

The Dirac equation regarding a spin 1⁄2 particle with momentum 𝑞 in momentum
space reads

/𝑞𝑢(𝑞) = 𝑚𝑢(𝑞) , (A.1)

where 𝑚 is the mass of said particle and 𝑢(𝑞) its momentum space spinor. Here the
Feynman slash notation /𝑞 = 𝑞𝜇𝛾𝜇 is used. The adjoint Dirac equation can then be
obtained as

̄𝑢(𝑞)/𝑞 = 𝑚�̄�(𝑞) , (A.2)

with the adjoint spinor ̄𝑢(𝑞) = 𝑢(𝑞)†𝛾0.

A.3 Relations regarding the Dirac gammamatrices

The gamma matrices 𝛾𝜇 fulfill an anticommutator relation:

{𝛾𝜇, 𝛾𝜈} = 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈𝟙4 , (A.3)

where 𝟙4 is the four-dimensional identity matrix.
The commutator of the gamma matrices 𝛾𝜇 is defined as

𝜎𝜇𝜈 ∶= i
2[𝛾

𝜇, 𝛾𝜈] . (A.4)

Useful for the proof of the Gordon identities, the following can be observed from
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eq. (A.4):

i𝜎𝜇𝜈
(A.3)
= 𝑔𝜇𝜈 − 𝛾𝜇𝛾𝜈 , (A.5)

and also substituting 𝛾𝜇𝛾𝜈 in eq. (A.5) by using eq. (A.3) results in

i𝜎𝜇𝜈 = 𝛾𝜈𝛾𝜇 − 𝑔𝜇𝜈 . (A.6)

The following identities simplify handling products of the 𝛾-matrices [Sch14, p. 820]:

𝛾𝜇𝛾𝜇 = 4 𝟙4
𝛾𝜇𝛾𝜈𝛾𝜇 = −2𝛾𝜈

𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜇 = 4𝑔𝜈𝜌 𝟙4
𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜍𝛾𝜇 = −2𝛾𝜍𝛾𝜌𝛾𝜈

(A.7)

The fifth Dirac matrix 𝛾5 = i𝛾0𝛾1𝛾2𝛾3 anticommutes with the other four Dirac
matrices:

{𝛾𝜇, 𝛾5} = 0 ⇔ 𝛾𝜇𝛾5 = −𝛾5𝛾𝜇 (A.8)

Moreover, its square is the identity:

(𝛾5)2 = 𝟙4 (A.9)

A.4 The left- and right-handed projectors

The projectors 𝑃L and 𝑃R are defined as follows:

𝑃L =
1
2(1 − 𝛾5) and 𝑃R =

1
2(1 + 𝛾5) . (A.10)

They can be used to get the left- and right-handedWeyl spinors out of a Dirac spinor.
In theWeyl-basis, theDirac spinor𝜓 can bewritten as a doublet of the two-component
Weyl spinors:

𝜓 = (
𝜓L
𝜓R
) .

𝛾5 is represented as follows in the Weyl basis (where free space is to be interpreted as
0):

𝛾5 = (
−𝟙2

𝟙2
) .
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Therefore the projection operators take a very simple form in theWeyl representation:

𝑃L = (
𝟙2

0
) and 𝑃R = (

0
𝟙2
) ,

from which the projection property

𝑃L𝜓 = 𝜓L and 𝑃R𝜓 = 𝜓R

can be seen.

A.5 Feynman parametrization

This section is based on the proof sketch presented in [PS95, pp. 189–190]. The Feyn-
man parametrization is used to simplify denominators arising due to propagators,
where the multiplied terms are converted into a sum at the cost of some extra in-
tegrals. The advantage is that the loop momentum which comes up in this sum can
be shifted, such that a complete square is present in the denominator, which is the
case in section 4.2. This makes the integration over the loop momentum easier.

It is convenient to consider the special case for two factors 𝐴 and 𝐵 in the de-
nominator first. For this the following integral is evaluated (using the substitution
𝑢 = 𝑥𝐴 + (1 − 𝑥)𝐵):

∫
1

0
d𝑥 1

[𝑥𝐴 + (1 − 𝑥)𝐵]2
sub.
= ∫

𝐴

𝐵

d𝑢
𝐴 − 𝐵

1
𝑢2 = [−1𝑢]

𝐴

𝐵

1
𝐴 − 𝐵

= −( 1𝐴 − 1
𝐵)

1
𝐴 − 𝐵 = −𝐵 − 𝐴

𝐴𝐵
1

𝐴 − 𝐵 = 1
𝐴𝐵 ,

which can also be written in a form where 1 − 𝑥 is converted to a new variable 𝑦 by
introducing a second integral:

1
𝐴𝐵 = ∫

1

0
d𝑥 1

[𝑥𝐴 + (1 − 𝑥)𝐵]2
= ∫

1

0
d𝑥 d𝑦 𝛿(𝑥 + 𝑦 − 1) 1

[𝑥𝐴 + 𝑦𝐵]2
. (A.11)

Differentiating eq. (A.11) 𝑛 − 1 times with respect to 𝐵 yields

(−1)𝑛−1(𝑛 − 1)! 1
𝐴𝐵𝑛 = ∫

1

0
d𝑥 d𝑦 𝛿(𝑥 + 𝑦 − 1)

(−1)𝑛−1𝑛!𝑦𝑛−1

[𝑥𝐴 + 𝑦𝐵]𝑛+1

⇔ 1
𝐴𝐵𝑛 = ∫

1

0
d𝑥 d𝑦 𝛿(𝑥 + 𝑦 − 1)

𝑛𝑦𝑛−1

[𝑥𝐴 + 𝑦𝐵]𝑛+1
. (A.12)

Now the actual proof for 𝑛 factors 𝐴1,…, 𝐴𝑛 in the denominator can be carried out.
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The formula which shall be proven reads

1
𝐴1⋯𝐴𝑛

= ∫
1

0
d𝑥1⋯d𝑥𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥𝑖 − 1) (𝑛 − 1)!
[𝑥1𝐴1 +⋯+ 𝑥𝑛𝐴𝑛]

𝑛 . (A.13)

The proof is done by induction. The base case is eq. (A.11) for 𝑛 = 2, the induction
hypothesis (IH) is eq. (A.13). The induction step 𝑛 → 𝑛 + 1 is then conducted as

1
𝐴1⋯𝐴𝑛+1

IH
= ∫

1

0
d𝑥1⋯d𝑥𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥𝑖 − 1) (𝑛 − 1)!
[𝑥1𝐴1 +⋯+ 𝑥𝑛𝐴𝑛]

𝑛
1

𝐴𝑛+1

(A.12)
= ∫

1

0
d𝑥1⋯d𝑥𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥𝑖 − 1)(𝑛 − 1)!

⋅ ∫
1

0
d𝑥 d𝑦 𝛿(𝑥 + 𝑦 − 1)

𝑛𝑦𝑛−1

[𝑥𝐴𝑛+1 + 𝑦(𝑥1𝐴1 +⋯+ 𝑥𝑛𝐴𝑛)]
𝑛+1

= ∫
1

0
d𝑥1⋯d𝑥𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥𝑖 − 1)𝑛!

⋅ ∫
1

0
d𝑥 (1 − 𝑥)𝑛−1

[𝑥𝐴𝑛+1 + (1 − 𝑥)(𝑥1𝐴1 +⋯+ 𝑥𝑛𝐴𝑛)]
𝑛+1 .

Now the substitution 𝑥′𝑖 = (1−𝑥)𝑥𝑖, the renaming 𝑥 → 𝑥′𝑛+1 and the identity 𝛿(𝛼𝑥) =
𝛿(𝑥)/|𝛼| can be used:

1
𝐴1⋯𝐴𝑛+1

sub.
= ∫

1

0
d𝑥′𝑛+1∫

1−𝑥′𝑛+1

0
d𝑥′1⋯d𝑥′𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥′𝑖
1 − 𝑥′𝑛+1

− 1)

⋅ 𝑛!
1 − 𝑥′𝑛+1

1

[𝑥′1𝐴1 +⋯+ 𝑥′𝑛+1𝐴𝑛+1]
𝑛+1

= ∫
1

0
d𝑥′𝑛+1∫

1−𝑥′𝑛+1

0
d𝑥′1⋯d𝑥′𝑛 𝛿(

𝑛
∑
𝑖=1

𝑥′𝑖 − 1) 𝑛!

[𝑥′1𝐴1 +⋯+ 𝑥′𝑛+1𝐴𝑛+1]
𝑛+1

(A.14)
= ∫

1

0
d𝑥′1⋯d𝑥′𝑛+1 𝛿(

𝑛+1
∑
𝑖=1

𝑥′𝑖 − 1) 𝑛!

[𝑥′1𝐴1 +⋯+ 𝑥′𝑛+1𝐴𝑛+1]
𝑛+1 .

The last equality holds because the 𝛿-function is 0 if any 𝑥′𝑗 (𝑗 ∈ {1,…, 𝑛}) is greater
than the upper integral limit:

𝛿(
𝑛+1
∑
𝑖=1

𝑥′𝑖 − 1) = 0 if 𝑥′𝑗 > 1 − 𝑥′𝑛+1 . (A.14)
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This can be seen by considering

𝑛+1
∑
𝑖=1

𝑥′𝑖 − 1 = 𝑥′1 +…+ 𝑥′𝑗−1 + 𝑥′𝑗+1 +…+ 𝑥′𝑛 + 𝑥′𝑗 + 𝑥′𝑛+1 − 1⏟⎵⎵⎵⏟⎵⎵⎵⏟
> 0 if 𝑥′𝑗 > 1−𝑥′𝑛+1

> 𝑥′1 +…+ 𝑥′𝑗−1 + 𝑥′𝑗+1 +…+ 𝑥′𝑛 > 0 ,

but the 𝛿-function is only nonzero if its argument is 0.
With this the proof of eq. (A.13) is complete. Equation (A.13) with 𝑛 = 3 is used

in section 3.3 and section 4.2.

A.6 Gordon identity

TheGordon identity can be used to express the sumof two four vectormomenta, sand-
wiched between the corresponding spinors, in terms of gamma matrices 𝛾𝜇 and their
commutator 𝜎𝜇𝜈. For the Standard Model calculation the identity shown in [Sch14,
p. 316] can be used:

̄𝑢(𝑞2)(𝑞
𝜇
1 + 𝑞𝜇2 )𝑢(𝑞1) = 2𝑚μ ̄𝑢(𝑞2)𝛾𝜇𝑢(𝑞1) + 𝑖�̄�(𝑞2)𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈)𝑢(𝑞1) . (A.15)

Here 𝑢(𝑞1) and 𝑢(𝑞2) are two on-shell spinors in momentum space with momenta 𝑞1
and 𝑞2, respectively, and mass𝑚μ. It can be proven by using the Dirac equation (A.1)
and its adjoint equation (A.2):

𝑖 ̄𝑢(𝑞2)𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈)𝑢(𝑞1)
(A.5),(A.6)

= �̄�(𝑞2)[(𝑔𝜇𝜈 − 𝛾𝜇𝛾𝜈)𝑞1𝜈 − (𝛾𝜈𝛾𝜇 − 𝑔𝜇𝜈)𝑞2𝜈]𝑢(𝑞1)

= �̄�(𝑞2)[−/𝑞2𝛾
𝜇 − 𝛾𝜇/𝑞1 + 𝑞𝜇1 + 𝑞𝜇2 ]𝑢(𝑞1)

(A.1),(A.2)
= �̄�(𝑞2)(𝑞

𝜇
1 + 𝑞𝜇2 )𝑢(𝑞1) − 2𝑚μ ̄𝑢(𝑞2)𝛾𝜇𝑢(𝑞1) ,

which is equivalent to eq. (A.15).
A similar identity holds if 𝛾5 is present:

̄𝑢(𝑞2)(𝑞
𝜇
1 + 𝑞𝜇2 )𝛾5𝑢(𝑞1) = 𝑖�̄�(𝑞2)𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈)𝛾5𝑢(𝑞1) . (A.16)

This can be proven in the same way:

𝑖 ̄𝑢(𝑞2)𝜎𝜇𝜈(𝑞1𝜈 − 𝑞2𝜈)𝛾5𝑢(𝑞1)
(A.5),(A.6)

= �̄�(𝑞2)[(𝑔𝜇𝜈 − 𝛾𝜇𝛾𝜈)𝑞1𝜈 − (𝛾𝜈𝛾𝜇 − 𝑔𝜇𝜈)𝑞2𝜈]𝛾5𝑢(𝑞1)
(A.8)
= �̄�(𝑞2)(𝑞

𝜇
1 + 𝑞𝜇2 )𝛾5𝑢(𝑞1) + �̄�(𝑞2)(𝛾𝜇𝛾5/𝑞1 − /𝑞2𝛾

𝜇𝛾5)𝑢(𝑞1)
(A.1),(A.2)

= �̄�(𝑞2)(𝑞
𝜇
1 + 𝑞𝜇2 )𝛾5𝑢(𝑞1) .
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A.7 Feynman rules

The following Feynman rules are used in the calculation in section 3.3 and section 4.2.
Those also occurring in the Standard model are taken from [HM84].

Spin 1⁄2 fermion (in, out)
𝑞

= 𝑢(𝑞) (A.17)
𝑞

= �̄�(𝑞) (A.18)

Spin 1⁄2 fermion propagator
𝑘

= i(/𝑘 + 𝑚)
𝑘2 −𝑚2 (A.19)

Spin 0 boson propagator
𝑘

= i
𝑘2 −𝑚2 (A.20)

Photon propagator
𝑘

=
−i𝑔𝜇𝜈

𝑘2 (A.21)

Photon – spin 0 boson (charge 𝑒)

𝑘

𝑘′

= −i𝑒(𝑘 + 𝑘′)𝜇 (A.22)

In section 4.2 there is also the specific coupling μ⁻ – η⁺ – ψ. The coupling consists of a
linear combination of the projectors 𝑃L and 𝑃R, which is why it includes a scalar and
a pseudoscalar part.

μ⁻ – η⁺ – ψ

η+

ψ

μ− = 𝑑 + 𝑑′𝛾5 (A.23)

Here 𝑑 and 𝑑′ are two scalars, that still depend on e.g. mixing matrices. The concrete
coupling for the extended scotogenic model is determined in section 5.1.

A.8 Loop momentum integrals

In section 3.3 and section 4.2 integrals linear in 𝑘𝜇 arise:

𝐷𝜇(𝛥) ∶= ∫
ℝ4

d4𝑘
(2𝜋)4

𝑘𝜇

(𝑘2 − 𝛥)3
= 0 . (A.24)

The right equality holds because the integrand is antisymmetric in 𝑘𝜇, and the integral
has symmetric improper bounds, so the integral with integration variable 𝑘𝜇 vanishes,
which results in the whole integral vanishing.
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Furthermore, integrals with terms consisting of 𝑘𝜇𝑘𝜈 appear:

𝐷𝜇𝜈(𝛥) ∶= ∫
ℝ4

d4𝑘
(2𝜋)4

𝑘𝜇𝑘𝜈

(𝑘2 − 𝛥)3

(A.26)
= ∫

ℝ4

d4𝑘
(2𝜋)4

𝑔𝜇𝜈𝑘2

4
1

(𝑘2 − 𝛥)3
.

(A.25)

The second equality in eq. (A.25) means that

𝑘𝜇𝑘𝜈 = 1
4𝑔

𝜇𝜈𝑘2 (A.26)

in the context of the integral. The proof is featured in [Sch14, p. 380]. Due to𝐷𝜇𝜈 being
a tensor, it must be proportional to the only other occurring tensor in this calculation,
which is 𝑔𝜇𝜈. To match the dimensions, 𝐷𝜇𝜈 must also include the factor 𝑘2, which
results in the proportionality

∫
ℝ4

d4𝑘
(2𝜋)4

𝑘𝜇𝑘𝜈

(𝑘2 − 𝛥)3
∼ ∫

ℝ4

d4𝑘
(2𝜋)4

𝑔𝜇𝜈𝑘2 1
(𝑘2 − 𝛥)3

.

The proportionality constant 𝑐 can be obtained by calculating 𝑔𝜇𝜈𝐷𝜇𝜈:

𝑔𝜇𝜈∫
ℝ4

𝑑4𝑘
(2𝜋)4

𝑘𝜇𝑘𝜈

(𝑘2 − 𝛥)3
= 𝑔𝜇𝜈∫

ℝ4

d4𝑘
(2𝜋)4

𝑐𝑔𝜇𝜈 𝑘2

(𝑘2 − 𝛥)3

⇔ ∫
ℝ4

𝑑4𝑘
(2𝜋)4

𝑘2

(𝑘2 − 𝛥)3
= 4𝑐∫

ℝ4

𝑑4𝑘
(2𝜋)4

𝑘2

(𝑘2 − 𝛥)3

⇔ 𝑐 = 1
4 .

Together this results in eq. (A.26)

A.9 Integrals needed for the analytical calculation of Δaμ
The needed integrals are

∫d𝑥 𝑥𝑛

𝑥2 − 𝑎2 , (A.27)

where 𝑛 ∈ {0, 1, 2, 3}. The first one (𝑛 = 0) can be calculated using partial fraction
decomposition:

1
𝑥2 − 𝑎2 =

1
(𝑥 + 𝑎)(𝑥 − 𝑎)

= 𝐴
𝑥 + 𝑎 +

𝐵
𝑥 − 𝑎 ,

where 𝐴 and 𝐵 are the constants that have to be found. Multiplying by (𝑥 + 𝑎)(𝑥 − 𝑎)
gets

1 = 𝐴(𝑥 − 𝑎) + 𝐵(𝑥 + 𝑎) ⇔ 1 = 𝑎(𝐵 − 𝐴) + (𝐴 + 𝐵)𝑥 ,
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and equating the coefficients results in

𝐴 = − 1
2𝑎 and 𝐵 = 1

2𝑎 .

Now the first integral can be calculated:

∫d𝑥 1
𝑥2 − 𝑎2 =

1
2𝑎 ∫d𝑥 1

𝑥 − 𝑎 −
1
2𝑎 ∫d𝑥 1

𝑥 + 𝑎

= 1
2𝑎 ln |𝑥 − 𝑎| − 1

2𝑎 ln |𝑥 + 𝑎|

= 1
2𝑎 ln

|
|
𝑥 − 𝑎
𝑥 + 𝑎

|
| . (A.28)

The second integral can be proven by using the substitution 𝑢 = 𝑥2 − 𝑎2:

∫d𝑥 𝑥
𝑥2 − 𝑎2 = ∫d𝑢 1

2𝑢

= 1
2 ln |𝑥

2 − 𝑎2| . (A.29)

The calculation of the third integral uses the first integral:

∫d𝑥 𝑥2

𝑥2 − 𝑎2 = ∫d𝑥 +∫d𝑥 𝑎2

𝑥2 − 𝑎2
(A.28)
= 𝑥 + 𝑎

2 ln
|
|
𝑥 − 𝑎
𝑥 + 𝑎

|
| . (A.30)

Analogously, the fourth integral makes use of the second one:

∫d𝑥 𝑥3

𝑥2 − 𝑎2 = ∫d𝑥𝑥 +∫d𝑥 𝑥𝑎2

𝑥2 − 𝑎2
(A.29)
= 𝑥2

2 + 𝑎2
2 ln |𝑥2 − 𝑎2| . (A.31)
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A.10 Parameters used for the numerical calculations

Table 2: The parameters used for fig. 7.
(a) The parameters that were left constant throughout the probing.

𝜆 𝜆2 𝜆3 𝜆4 𝜆5 𝑚η[GeV] 𝑚N[GeV]

0.26 0.5 6 −5 2 ⋅ 10−9 1050 1000 ⋅ 𝟙3

(b) The variable parameters during the probing: if one parameter was varied, the others were
left constant. The ranges are shown as intervals.

parameter value if constant value if varied

𝑚Χ in GeV 950 [102, 104]

𝑦2 (
5 ⋅ 10−5

1
0.5

) [10−5, 10] ⋅ (
1
1
1
)

𝑦3 (
−1.40
−1.81
1.99

) [10−5, 10] ⋅ (
−1
−1
−1

)

𝑦4 (
1.3 ⋅ 10−2 5.0 ⋅ 10−4 8.9 ⋅ 10−3
1.0 ⋅ 10−2 2.4 ⋅ 10−2 4.1 ⋅ 10−3
−2.8 ⋅ 10−3 2.0 ⋅ 10−2 2.7 ⋅ 10−2

) [10−5, 10] ⋅ 𝟙3

Table 3: The parameters used for the random sampling in section 5.4. If a general
component of a vector or a matrix is shown, then all those components were sam-
pled independently. If the sampling interval includes several orders of magnitude,
the variable was sampled uniformly on a logarithmic scale. The neutrino mass is an
input parameter for the Casas-Ibarra parametrization.

parameter value

𝜆 0.26
𝜆2 0.5
𝜆3 [−√𝜆 ⋅ 𝜆2, 4𝜋]
𝜆4 [max(−4𝜋,−√𝜆 ⋅ 𝜆2 − 𝜆3 + |𝜆5|), 4𝜋]
𝜆5 ± [10−15, 10]
(𝑦2)𝑖 ±[10−5, 10]

𝜉
⎛
⎜⎜
⎝

±[10−8, 10−3]
±[10−4, 1]
±[10−4, 1]

⎞
⎟⎟
⎠

𝑚η in GeV [102, 104]
𝑚Χ in GeV [102, 104]
𝑚N in GeV diag([1, 104], [1, 104], [1, 104])
𝑚ν1 in eV [4 ⋅ 10−3, 2]
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