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1 Introduction

Compelling evidence for dark matter and neutrino masses apart from the fact that there is no
unified description of the four fundamental forces indicate the need for physics beyond the
Standard Model. The R-parity conserving Minimal Supersymmetric Standard Model (MSSM)
is one of the most appealing top-down approaches for the extension of the Standard Model as
it expands the Poincaré group as one of the main building blocks of the Standard Model in
the only possible non-trivial way. The quest for more symmetry has often proven successful
in the past. The invariance under general coordinate transformations led to general relativity
and the principle of gauge symmetry allowed the description of the electroweak and the strong
force. In this sense, supersymmetry provides with the lightest neutralino a candidate for cold
dark matter, a possible solution for the hierarchy problem and furthermore allows for the
unification of gauge couplings at the GUT scale.
Having a well-motivated dark matter candidate on the one hand and a very precise measurement
of the present amount of dark matter in the universe through the cosmic microwave background
on the other hand, justifies the inclusion of higher-order corrections to relic density calculations
such that the theoretical precision matches the experimental one. For this purpose, the DM@NLO
project aims at providing next-to-leading order (NLO) corrections for a broad range of (co)-
annihilation processes in the MSSM which in turn allow to constrain the MSSM parameter
space from cosmological observations. It turns out that for parameter regions where the
masses of the scalar top and the lightest neutralino are nearly degenerate, the annihilation of
a squark-antisquark pair can contribute in a sizeable manner to the relic density. For this
reason, the subject of this thesis is to provide a NLO correction for the annihilation of squarks
into two gluons within the DM@NLO codebase.
The second chapter gives a short introduction into supersymmetry with the main focus to
provide an overview of the particle content of the MSSM as well as the mixing patterns in the
squark and gaugino sector that emerge from soft supersymmetry breaking. The problem of
dark matter is introduced in the third chapter along with the freeze-out mechanism which
is a model for the production of dark matter in the early universe that allows to compute
the present relic density. In chapter four, Ward-Takahashi identities are introduced in the
context of BRS-symmetry and polarizations sums. These allow to derive how ghost processes
have to be included. The fifth chapter deals with the development of the Catani-Seymour
dipole subtraction method for massive initial states which represents a continuation of the
work started in [1]. The following chapter deals with colour bases that are a necessary
ingredient for resummation and allow a more efficient calculation of scattering amplitudes in
(SUSY)-QCD. Chapters seven and eight are devoted to the calculation of the cross section
for squark-antisquark annihilation into two gluons. The computation of the tree level cross
section and the virtual corrections is shown in detail. The real emission processes that are
needed to achieve an infrared finite result are included as well.
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Notation and conventions
The Einstein summation convention is employed throughout this thesis unless denoted other-
wise. The complex conjugate is indicated via an asterisk ∗ whereas a bar on a four-component
spinor ψ represents the Dirac adjoint ψ = ψ†γ0. In the case of a two-component Weyl fermion
ξ the bar is used as a shorthand for ξ = ξ† instead. The Minkowski metric gµν follows the
mostly plus convention g = diag (+,−,−,−). The spatial components of a four-vector p are
denoted with an arrow ~p. The ”Feynman slash notation” /p = γµp

µ is used as a shorthand
for the inner product between a four-vector p and the Dirac gamma matrices γµ. The Dirac
algebra is chosen to be {γµ, γν} = 2gµν . Divergent loop integrals are regularized in D = 4−2ε
dimensions. Physical quantities are expressed in natural units, i.e. c = 1 and ~ = 1.
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2 Supersymmetry and the MSSM

With the success of gauge and relativistic quantum field theories to describe elementary
particles in the 1950s, the idea came up whether it would be possible to combine the external
space-time symmetries given by the Poincaré group and internal symmetries into some sort of
a higher symmetry group. This pursuit lead to the ”no-go” theorem by Coleman and Mandula
who found that a combination of these two types of symmetries besides their trivial direct
product results in an overconstrained S-matrix and is therefore not possible [2]. In 1974 Wess
and Zumino discovered a new type of transformation which is not parameterized by an ordinary
commuting number, but by an object that transforms like a spinor under the Lorentz group
and converts bosonic into fermionic fields [3]. They originally called these transformations
supergauge transformations but they spread under the name of supersymmetry (SUSY). As
a follow-up it became apparent that the Coleman-Mandula theorem takes only commuting
generators into account and can, consequently, be bypassed by expanding the concept of a Lie
algebra to include anticommuting generators. This idea ultimately resulted in a theorem by
Haag, Lopuszanski und Sohnius in 1975 stating that the most general continuous symmetry
of the S-matrix is achieved by including supersymmetry as a non-trivial expansion of the
Poincaré algebra [4].
The application of supersymmetry to the Standard Model led to the MSSM which is a possible
supersymmetric extension of the Standard Model. As a full understanding of supersymmetry
and especially the superfield formalism is not necessary to be able to give phenomenological
predictions for a given final supersymmetric theory, the reader is referred to [5, 6, 7] for more
information on supersymmetry and the MSSM . However, to grab the quintessence the path
of Wess and Zumino of constructing a simple toy model is adopted here followed by a brief
summary of the particle content of the MSSM. In addition, the parameter space of a variant
of the MSSM is introduced which takes into account phenomenological observations and is
the so-called pMSSM-19.

2.1 A supersymmetric toy model

As a supersymmetric toy model we consider a theory with only massless and non-interacting
fields with the Lagrangian density

L = Lscalar + Lfermion = ∂µφ
∗∂µφ+ iψσµ∂µψ (2.1)

which consists of a single chiral supermultiplet, i.e. a complex scalar field φ as well as
left-handed Weyl fermion with components ψα. A simple approach to relate the boson to the
fermion is the global supersymmetry transformation

δεφ =
√
2εψ (2.2)

δεφ
∗ =

√
2 (εα)∗ (ψα)

∗ =
√
2εα̇ψ

α̇
=

√
2εψ (2.3)
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where the infinitesimal transformation parameter ε is not an ordinary commuting number
but a two-component Weyl spinor which anticommutes with itself and has mass dimension
[mass]−1/2. In order to counteract the variation of the scalar part under this transformation

δεLscalar =
√
2εα̇∂µψ

α̇
∂µφ+

√
2εα∂µφ

∗∂µψα (2.4)

one can deduce that the Weyl fermion must transform as

δεψα = −i
√
2 (σµε)α ∂µφ (2.5)

δεψα̇ = i
√
2 (εσµ)α̇ ∂µφ

∗ (2.6)

such that the variation of the fermionic part becomes

δεLfermion = −
√
2 (εσνσµ)α ∂νφ

∗∂µψα +
√
2ψσµσνε∂µ∂νφ . (2.7)

In order to match the right hand side to δLscalar, we can employ the Pauli matrix identity

σµσν + σνσµ = 2gµν (2.8)

and the fact that partial derivatives commute to perform the simplifications

(εσνσµ)α ∂νφ
∗∂µψα = ∂µ ((εσ

νσµ)α ∂νφ
∗ψα + εα∂µφ∗ψα) + εα∂µφ

∗∂µψα (2.9)

ψσµσνε∂µ∂νφ = ψε∂2φ = −εα̇∂µψ
α̇
∂µφ+ ∂µ

(
ψε∂µφ

)
(2.10)

so that when we combine both transformations the Lagrangian remains unchanged up to a
surface term

δεL = ∂µ
(
(εσνσµ)α ∂νφ

∗ψα − εα∂µφ∗ψα − εψ∂µφ
)

(2.11)

which has no effect on the action δεS = 0. We can now derive the supersymmetry algebra. For
two supersymmetry transformations parameterized by ε and η, we obtain for the commutator
acting on the scalar

[δε, δη]φ = −2i (ησµε− εσµη) ∂µφ (2.12)

whereas we have for the Weyl fermion

[δε, δη]ψα = −2i (σµη)α ε∂µψ − i (σµε)α η∂µψ (2.13)

which can be recast into a more useful form by applying the Fierz identity

χα(ξη) = −ξα(ηχ)− ηα(χξ) (2.14)

involving three Weyl spinors χ, ξ, η which yields

[δε, δη]ψα = −2i (ησµε− εσµη) ∂µψα − 2iηαε̄σ̄
µ∂µψ + 2iεαη̄σ̄

µ∂µψ. (2.15)

If ψ is on-shell, its equation of motion implies σµ∂µψ = 0 and we can conclude that the
commutator takes the general form

[δε, δη] = −2i (ησµε− εσµη) ∂µ. (2.16)
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As Pµ = −i∂µ is the generator of space-time translations, the commutator gives the insight that
supersymmetry is indeed a symmetry of space-time. In order to ensure that supersymmetry
also holds off-shell, one can use a trick and introduce an auxiliary complex scalar field F with
a Lagrangian density

Lauxiliary = F ∗F (2.17)

and mass dimension [mass]2. This new field can now be used to compensate the terms in
eq. (2.15) which do not vanish for an off-shell fermion. A simple guess is that F transforms
into a multiple of the equation of motion for ψ:

δεF = −
√
2iε̄σ̄µ∂µψ (2.18)

δεF
∗ =

√
2i∂µψσ

µε . (2.19)

Then the auxiliary part in the Lagrangian transforms as

δεLauxiliary =
√
2i∂µψσ

µεF +
√
2iε̄σ̄µ∂µψF

∗. (2.20)

A small modification of the transformation rule of ψ which is

δεψα = −
√
2i (σµε)α ∂µφ+

√
2εαF (2.21)

δεψα̇ =
√
2i (εσµ)α̇ ∂µφ

∗ +
√
2εαF

∗ (2.22)

suffices to ensure that the extra term in δεLfermion cancels δεLauxiliary up to a surface term.
With that

L = Lscalar + Lfermion + Lauxiliary (2.23)

is invariant under supersymmetry and eq. (2.16) holds also off-shell. The generators Qα and
Qα̇ of supersymmetry transformations are themselves two-component Weyl spinors and are
defined through the requirement

δεX =
(
εQ+ εQ

)
X (2.24)

for any field X that transforms under supersymmetry. Consistency of the generators with
eq. (2.16) requires

[δε, δη] =
[
εQ+ εQ, ηQ+ ηQ

]
=
[
εQ, ηQ

]
+
[
εQ, ηQ

]
=
(
ηαε

α̇ − εαηα̇
){
Qα, Q

α̇
}

!
= −2i (ησµε− εσµη) ∂µ. (2.25)

Comparing the last two expressions yields{
Qα, Qα̇

}
= 2 (σµ)αα̇ Pµ. (2.26)

From
[δε, a

µ∂µ] = 0 (2.27)

for any four-vector aµ, one can deduce that the generators Qα commute with translations

[Qα, P
µ] =

[
Qα̇, P

µ
]
= 0. (2.28)
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Next to a chiral supermultiplet we could also have a vector supermultiplet which consists of
a massless gauge field Aµ

a and a massless two-component Majorana fermion λa. The gauge
transformations for these two fields are

Aµ
a → Aµ

a +
1

g
∂µαa + fabcAµ

bαc (2.29)

λa → fabcλbαc (2.30)

where αa parameterize the transformation, g is the gauge coupling and fabc are the totally
antisymmetric structure constants. Whereas the degrees of freedom of Aµ

a and λa match
on-shell, the gauge boson has off-shell three real degrees of freedom and the gaugino as a
complex object with two components has four degrees. In order to ensure that supersymmetry
also holds off-shell, we can again introduce an auxiliary field Da. The Lagrangian density

Lgauge = −1

4
F a
µF

µν
a + iλσµDµλa +

1

2
DaDa (2.31)

with the field strength tensor

Fµν
a = ∂µAν

a − ∂νAµ
a + gfabcAb

µA
c
ν (2.32)

and the covariant derivative

Dµλa = ∂µλa + gfabcAµ
b λc (2.33)

is then invariant under supersymmetry. In order to get further insights into the construction
of supersymmetric theories with the help of the superfield formalism and the inclusion of
interactions the reader is referred to [6].

2.2 The Minimal Supersymmetric Standard Model
The R-parity conserving Minimal Supersymmetric Standard Model (MSSM) is the super-
symmetric extension of the Standard Model with one set of SUSY generators N = 1 and an
additional discrete Z2 symmetry called R-parity whose corresponding conserved multiplicative
quantum number is defined as

PR = (−1)3(B−L)+2s (2.34)

with baryon number B, lepton number L and spin s. The concept of R-parity was initially
introduced to forbid lepton and baryon number violating processes which would be in principle
allowed by the requirements of supersymmetry, gauge invariance and renormalizability but
undergo very stringent experimental limits. As a very important phenomenological side
effect each Standard Model particle receives R-parity +1 and each supersymmetric particle
(sparticle) −1 which forbids the decay of a sparticle into Standard Model particles alone, thus,
offering the possibility for a stable dark matter candidate.
Within the MSSM, each helicity state of a fermion receives a scalar superpartner, which,
apart from the spin, does not differ from its Standard Model equivalent. In a similar way,
each gauge boson receives a Majorana fermion as superpartner. Concerning nomenclature,
each scalar superpartner is prefixed with ”s” and each superpartner of a boson is suffixed
with ”ino”. In addition, all sparticles are distinguished by a tilde. For example, the partner
of a quark q is then called a ”squark” labelled as q̃ and the partner of a gluon is referred
to as a ”gluino” g̃. In contrast to the Standard Model, its supersymmetric version does not
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only contain one Higgs doublet but is a so-called Two-Higgs-Doublet model. Otherwise the
theory would become inconsistent on quantum level through gauge anomalies appearing in
the electroweak sector. Consequently, the Higgs with hypercharge Y = + 1/2 gives mass to
the ”up-type” quarks and the other one with Y = − 1/2 gives mass to the ”down-type” quarks
and the charged leptons. The corresponding fermionic superpartners are called Higgsinos.

The whole particle content of the MSSM is displayed in tables 2.1 and 2.2 and given in
terms of supermultiplets which are in fact elements of the representation space of irreducible
representations of the supersymmetry algebra and combine the Standard Model particles with
their superpartners.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 2.1: Chiral supermultiplets in the MSSM. Table taken from [6].

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 2.2: Gauge supermultiplets in the MSSM. Table taken from [6].

2.3 Soft SUSY Breaking

The commutation relation
[
P 2, Qα

]
= 0 indicates that particles within one supermultiplet

must possess the same mass. However, in experiments no superpartners have been observed
so far which in turn requires that SUSY must be broken. There is no agreement on how
SUSY should be broken but the general idea is that SUSY breaking takes place in a hidden
sector which is transferred to the visible sector via a messenger which could be gravity or a
gauge force. From a practical point of view the simplest way to break SUSY is to introduce
additional terms in the effective MSSM Lagrangian which break SUSY explicitly. These terms
should be ”soft” in the sense that the fermionic and bosonic loop corrections to the Higgs
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mass still cancel. With the Supersymmetry Parameter Analysis (SPA) convention [8] one
agreed on the following form of the soft SUSY breaking Lagrangian 1

−Lsoft =
1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.

)
+ Q̃∗

iL

(
m2

Q̃

)
ij
Q̃jL + L̃∗

iL

(
m2

L̃

)
ij
L̃jL

+ ũ∗iR
(
m2

ũ

)
ij
ũjR + d̃∗iR

(
m2

d̃

)
ij
d̃jR + ẽ∗iR

(
m2

ẽ

)
ij
ẽjR

+m2
Hd

|Hd|2 +m2
Hu

|Hu|2 − (BµHd ·Hu + h.c.)

+
[
(Tu)ij Hu · Q̃iLũ

∗
jR + (Td)ij Hd · Q̃iLd̃

∗
jR + (Te)ij Hd · L̃iLẽ

∗
jR + h.c.

]
(2.35)

where the T matrices are defined as the product of Yukawa couplings Y and the soft super-
symmetry breaking trilinear couplings A

Tij = AijYij (no summation). (2.36)

In eq. (2.35) only generation indices are explicitly given whereas all other are implicitly
summed over. In contrast to unbroken SUSY where only the supersymmetric higgsino mass
term µ appears as an additional parameter, the soft breaking of SUSY introduces in total 105
new free parameters.

2.4 The phenomenological MSSM

The large number of 105 additional parameters in the MSSM make it impossible to explore
the parameter space in full generality. For this reason, simplified models such as the phe-
nomenological MSSM (pMSSM) have evolved which constrain the MSSM based on strong
experimental evidence. The pMSSM-19 takes into account the following three assumptions
[10]:

• No Flavour Changing Neutral Currents (FCNC)
The appearance of FCNC is strongly constrained by experimental observations. There-
fore, all sfermion mixing matrices and T matrices are assumed to be diagonal in flavour
space.

• No new source of CP-violation
Experimental limits in the K-meson system as well as on the electric moments of the
electron and neutron indicate no new sources of CP-violation. The simplest way to
include this observation is to set all complex phases to zero.

• First and Second Generation Universality
The Yukawa couplings of the first two generations are small compared to the third
generation. Hence, the associated trilinear couplings are less important and can be set
to zero. In addition, K0 − K

0 mixing indicates a small mass splitting between first
and second generation squarks, unless their masses exceed 1TeV significantly. This
justifies the assumption of identical soft-SUSY breaking scalar mass terms for the first
two generations.

These assumptions leave 19 free parameters:

1Note that the Lagrangian given in [9] used by the first version of SPheno differs from eq. (2.35), but SPheno
supports the SPA conventions starting with version 2.2.2.
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tan(β) ratio of the vevs of the two-Higgs doublet fields
M1, M2, M3 gaugino mass parameters
At, Ab, Aτ third generation trilinear couplings
µ higgsino mass parameter
mA0 mass of the pseudoscalar Higgs boson
Ml̃L

, Mτ̃L , Ml̃R
, Mτ̃R soft slepton masses

Mq̃L , MũR , Md̃R
soft first/second generation squark masses

Mq̃3L , Mt̃R
, Mb̃R

soft third generation squark masses.

2.5 Squark and gaugino mixing pattern

So far, the Lagrangian of the MSSM is expressed through gauge (or interaction) eigenstates.
However, as known from the Standard Model one has to distinguish between gauge and
mass eigenstates where the latter ones are defined as those states that diagonalize the mass
terms and are related through a change of basis to the gauge eigenstates. As the mass
eigenstates correspond to freely propagating particles with fixed mass that are measured
in experiments, calculations are usually performed in the mass basis. In the following, the
connection between mass and gauge eigenstates for the sectors that are most important for
this work are highlighted.

2.5.1 Neutralino sector

After electroweak symmetry breaking the mass terms for the uncharged higgsinos (H̃0
d and

H̃0
u), wino W̃ 0 and bino B̃ can be combined into the overall mass term

−Lχ̃0

mass =
1

2

(
ψ0
)T Mχ0ψ0 (2.37)

with all gauge-eigenstates being combined into the vector(
ψ0
)T

=
(
B̃ W̃ 0 H̃0

d H̃
0
u

)
(2.38)

and with the mass matrix

Mχ0 =


M1 0 −mZ0cβsW mZ0sβsW
0 M2 mZ0cβcW −mZ0sβcW

−mZ0cβsW mZ0cβcW 0 −µ
mZ0sβsW −mZ0sβcW −µ 0

 (2.39)

where the Weinberg angle θW and the angle β enter trough cβ = cosβ, sβ = sinβ, sW = sin θW ,
cW = cos θW . The wino and bino mass parameters M1 and M2 in Mχ0 come directly from
the soft-breaking Lagrangian whereas −µ is the supersymmetric higgsino mass term. As Mχ0

is self-adjoint, it can be diagonalized through a unitary 4× 4 matrix N whose rows are the
eigenvectors of the mass matrix

N∗Mχ0N † = diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
(2.40)
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where the order of the eigenvalues (masses) is conventionally chosen as mχ̃0
1
≤ ... ≤ mχ̃0

4
. The

fields χ0
i that emerge from the change of basis

χ0
i = Nijψ

0
j (2.41)

are the so-called neutralinos. It is possible that there arise imaginary or negative masses in the
diagonalization procedure which can be turned into physical masses mχ̃0

i
> 0 by performing

chiral rotations on the components of ψ0. As the neutralinos couple only to electroweak
interactions, the lightest neutralino χ0

1 is usually assumed to the standard candidate for
non-baryonic dark matter unless there exists a lighter gravitino which is the superpartner of
the graviton.

2.5.2 Squark sector

As we work within the pMSSM, all non-diagonal terms in flavour space are neglected and
for that reason only mixing between the superpartners q̃L and q̃R related to the two chirality
parts of a quark takes place. All squark mass terms can be summarised under

−Lsquark mass =
∑
q̃

(
q̃∗L q̃∗R

)
M2

q̃

(
q̃L
q̃R

)
(2.42)

where M2
q̃ is a 2× 2 Hermitian matrix in chirality space

M2
q̃ =

(
M2

q̃LL
M2

q̃LR

M2∗
q̃LR

M2
q̃RR

)
(2.43)

with the diagonal

M2
q̃LL

= m2
Q̃
+m2

Z0

(
T q̃
3L −Qq sin

2 θW

)
cos 2β +m2

q (2.44)

M2
q̃RR

= m2
ũ,d̃

+Qqm
2
Z0 cos 2β sin

2 θW +m2
q (2.45)

and off-diagonal elements

M2
q̃LR

= −mqXq (2.46)

where Xq is defined as Xq = A∗
q + µ (tanβ)−2T q̃

3L , T q̃
3L as the third component of the weak

isospin and Qq as the electric charge of the quark q in units of e. Furthermore, mQ̃ is the soft
SUSY breaking mass for ”left-handed” squarks and mũ,d̃ for ”right-handed” up- and down-type
squarks respectively. The eigenvalues of a 2× 2 matrix can be conveniently expressed in terms
of its trace and determinant

m2
q̃1,2 =

1

2

(
TrM2

q̃ ±
√
Tr2M2

q̃ − 4 detM2
q̃

)
(2.47)

such that the off-diagonal matrix elements enter the square root with a positive sign through
the determinant. For the stop sector, this can induce a large mass splitting between t̃1 and
t̃2 due to the large mass of the top quark which elevates t̃1 to a potential candidate for the
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next-to-lightest supersymmetric particle (NLSP). The gauge eigenstates are transformed to
mass eigenstates through the orthogonal 2× 2 matrix Rq̃:(

q̃1
q̃2

)
=
(
Rq̃

L Rq̃
R

)(q̃L
q̃R

)
. (2.48)
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3 Dark Matter: Evidence and Production
Mechanism

3.1 Observational evidence for dark matter
The question of dark matter dates back to the 1930s when the astronomer Fritz Zwicky provided
the first renowned measurements of the velocity dispersion of the Coma cluster through the
redshift. He found that in order to explain the observed velocities in the Coma cluster, its
mean mass density would have to be four hundred times larger than what the amount of
luminous matter indicates [11]. This ”missing mass problem” was studied systematically in
the 1970s by Vera Rubin and Kent Ford who investigated the rotation curve of the Andromeda
Nebula (also called Messier 31 or M31) meaning the dependence of the circular speed vc on
the distance r from the center of the galaxy [12].
According to Newtonian gravity and under the assumption of circular orbits, one would expect
objects far from the center to rotate with a velocity

vc(r) =

√
GM(r)

r
(3.1)

where M(r) denotes the mass enclosed within r and G the gravitational constant. Since the
largest amount of matter must be located near the center of the galaxy, M(r) remains roughly
constant for large distances and thus vc is expected to decrease as 1/

√
r with increasing radial

distance. However, their measurements showed a completely different picture - the rotation

(a) Rotation curve of M31 from Rubin and Ford
[12].

(b) Rotation curve of M33 [13].

Figure 3.1: Rotation curves for the galaxies M31 and M33 (black dots with error bars).

curves remain almost constant (”flatten”) in outer regions of the disk as shown in fig. 3.1a.
Since then, the rotation curves of many more spiral galaxies have been investigated, further
confirming the problem of missing mass. In some cases like the M33 galaxy vc even increases
as shown in fig. 3.1b.
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The accidental discovery of the cosmic microwave background (CMB) in 1965 lead to a series
of space missions including the COBE, WMAP and Planck satellites that allowed to measure
the CMB with increasing precision which made it possible not only to give qualitative hints
towards the existence of dark matter, but also to provide quantitative information on the
dark matter content of the universe [14]. It turned out that this background radiation is
not isotropic but contains small temperature fluctuations of the order of parts per million.
These anisotropies in the spectrum are related to small density fluctuations in the early
universe which allowed dark matter to accumulate within these over dense regions whereas
the attraction of baryonic matter was counteracted by radiative pressure. The resulting
oscillations are what we observe nowadays as the temperature fluctuations in the CMB and
allow to deduce the relic density of cold dark matter with an astonishing precision

ΩCDMh
2 = 0.1200(12) (3.2)

where the ”little h” gives the present value of the Hubble expansion parameter H0 in units
of 100 km s−1Mpc−1 and the uncertainty corresponds to the 68% confidence level [15]. The
increasing accuracy of the relic density measurement can be visualized by comparing the
temperature variations as measured first by the COBE and then by the Planck satellite. The
skymap of both temperature variations is displayed in fig. 3.2.

(a) COBE. Source: https://science.nasa.
gov/missions/cobe

(b) Planck. Source: https://www.esa.
int/ESA_Multimedia/Images/2013/03/
Planck_CMB

Figure 3.2: Skymap of the temperature variations in the cosmic microwave background as
measured by the COBE and Planck satellites. (both pictures were retrieved on
the 2021-10-02)

3.2 The freeze-out mechanism

The standard paradigm to explain dark matter is that it could consist of weakly interacting
massive particles (WIMPs) which were in thermal equilibrium with the rest of the particle
content of the universe shortly after the Big Bang. As the universe cooled down, the
temperature must have dropped below their production threshold at one point and annihilation
took over until the point where the expansion of the universe dominated the annihilation rate
and the dark matter particles ”froze-out”. This so-called freeze-out mechanism leads under
the assumptions of WIMPs naturally to the right relic density which is referred to as WIMP
miracle. As we assume that dark matter consists of neutralinos, we describe the three different
regimes more precisely directly on the example of the MSSM as in [16]. Therefore consider a
set of N supersymmetric particles χi which eventually all decay to the dark matter candidate
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χ. The evolution of the number density ni of a particle i over time t is then described by a
set of N coupled nonlinear ordinary differential equations

1

a3
d

dt

(
nia

3
)
=−

N∑
j=1

〈σijvij〉
(
ninj − neq

i n
eq
j

)
(3.3)

−
∑
X

∑
j 6=i

[〈
σ′XijvXi

〉 (
nXni − neq

Xn
eq
i

)
−
〈
σ′XjivXj

〉 (
nXnj − neq

Xn
eq
j

)]
(3.4)

−
∑
j 6=i

[
Γij

(
ni − neq

i

)
− Γji

(
nj − neq

j

)]
, for 1 ≤ i ≤ N (3.5)

where X and Y are labels for all SM particles that could appear in the scattering or decay
process, 〈σv〉 denotes the thermal average of a cross section σ with a velocity distribution
v and a(t) the scale factor of the universe which is related to the Hubble expansion rate
via H(t) = ȧ(t)

a(t) . The left-hand side of this equations corresponds to the change of the total
number of particles nia3 of the species i in time which is caused through different scattering
processes described by the right-hand side where the differences between the number densities
and equilibrium number densities ensure that no change occurs in thermal equilibrium. The
first term accounts for annihilation

σij =
∑
X

σ (χiχj → X) , (3.6)

the second accounts for the conversion of a supersymmetric particle through scattering with a
SM particle

σ′Xij =
∑
Y

σ (Xχi → χj) (3.7)

and the last one χi decays
Γij =

∑
X

(χi → χjX) . (3.8)

As every sparticle must eventually decay to the LSP, all particle densities can be combined to

n =

N∑
i=1

ni (3.9)

which corresponds to the density of the neutralino for infinite times. Therefore, the set of
equations above greatly simplifies to one equation

1

a3
d

dt

(
na3
)
= −

N∑
i,j=1

〈σijvij〉
(
ninj − neq

i n
eq
j

)
. (3.10)

To express the right hand side of eq. (3.10) also through n, we can make the assumption
that all supersymmetric particles remain in thermal equilibrium by scattering with the much
lighter Standard Model particles

ni
n

'
neq
i

neq . (3.11)

Inserting this approximation into eq. (3.10) results in the Boltzmann equation

ṅ = −3Hn− 〈σeffv〉
(
n2 − n2eq

)
(3.12)
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where the whole particle physics information now resides in the effective cross section

〈σeffv〉 =
N∑

i,j=1

〈σijvij〉
neq
i

neq
neq
j

neq . (3.13)

As the number density nnr of a non-relativistic particle species with mass m scales as [17]

nnr ∼ exp
(
−m
T

)
(3.14)

at a temperature T , the ratios of the equilibrium number densities are proportional to

neq
i

neq ∼ exp

(
−mi −mχ

T

)
. (3.15)

From this relation, one can deduce that the contribution of annihilations involving particles
which are much heavier than the neutralino are suppressed whereas co-annihilation becomes
important if the mass difference between the next-to-lightest supersymmetric particle (NLSP)
and the LSP is small. If the NLSP and the LSP are nearly mass degenerate, even pair-
annihilation of the NLSP can contribute in a sizeable manner which is the subject of this
thesis.
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4 BRS-symmetry and polarization vectors

An important aspect of calculations of scattering amplitudes in quantum field theories with
massless gauge bosons is the treatment of polarization sums. It is well covered in the literature
that ghosts can appear as internal lines [18, 19], but it is also possible to have them as external
lines depending on the treatment of unphysical polarizations. The only common example for
the latter case in the literature are processes with two gluons in either the initial or final state
with only heuristic explanations as to why the ghosts processes have to be included that way.
As a means to construct such processes for an arbitrary number of gluons BRS-symmetry as
the quantum version of gauge symmetry and Slavnov-Taylor identities are introduced in this
chapter. The applications follows in chapters 7 and 8.

4.1 Classical Electrodynamics
For the discussion of the relationship between gauge invariance and polarization states of
massless gauge bosons we start with classical electrodynamics. Let’s consider the homogeneous
Maxwell equation in covariant form

∂µF
µν = 0. (4.1)

All information about the gauge field Aµ is contained inside the field strength tensor

Fµν = ∂µAν − ∂νAµ. (4.2)

If we now tried to solve the equations of motion for the field Aµ, we would recognize that the
solutions are not uniquely determined since Maxwell’s equations are invariant under a gauge
transformation

Aµ(x) → Aµ(x) + ∂µα(x) (4.3)

where α is an arbitrary scalar field that depends on space-time x. Thus, it is necessary to fix
the gauge by imposing further constraints on Aµ. The Lorenz condition

∂µA
µ(x) = 0 (4.4)

is a common choice for this since it leaves the theory covariant and therefore belongs to the
class of covariant gauges. Imposing this constraint reduces eq. (4.1) to the wave equation

�Aµ(x) = 0 (4.5)

whose solution is given by a plane wave

Aµ(x) = εµ(k)e
ikx + ε∗µ(k)e

−ikx (4.6)

if the four-momentum k is lightlike k2 = 0. The next step is to determine the polarization vector
εµ(k) which has for now four degrees of freedom related to its four entries. In momentum space
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the Lorenz condition becomes kµAµ = 0, so that the polarization vector must be transverse
to the momentum k

k · ε(k) = 0 (4.7)

which reduces the number of degrees of freedom to three. However, there still remains some
gauge freedom. As long as the scalar field α satisfies �α = 0, it is still possible to add an
additional term to the field Aµ without changing the physics. The function

α(x) = −iηeikx + iηe−ikx (4.8)

with an arbitrary real number η fulills this condition since the momentum k is already defined
to be lightlike k2 = 0. Inserting α into the gauge transformation gives

Aµ → (εµ(k) + ηkµ) e
ikx + (εµ(k) + ηkµ)

∗ e−ikx (4.9)

which means that two polarization vectors that differ by a momentum kµ are physically
equivalent εµ(k) ∼ εµ(k) + kµ and define an equivalence class. This brings us to a total of two
degrees of freedom which we already know from experiments as linear or circular polarized
light (or from Wigner’s theorem which states that every unitary irreducible representation of
the Poincaré group for a massless particle contains two states independent of the particle’s
spin [20]). For the explicit construction of the polarization vectors

εµ = (ε0, ε1, ε2, ε3)
T (4.10)

consider a momentum ~k parallel to the z-axis

kµ = (k0, 0, 0, k0)
T . (4.11)

The transversality condition in eq. (4.7) gives ε0 = ε3 and then η can be chosen as η = − ε0
k0

so that only the components ε1 and ε2 remain which we can use to build a basis for the two
physical polarizations. Two possible bases for the transverse polarizations are

εµ1 (k) =


0
1
0
0

 εµ2 (k) =


0
0
1
0

 or εµR (k) =
1√
2


0
1
i
0

 εµL (k) =
1√
2


0
1
−i
0


(4.12)

where the first choice corresponds to linear polarized light and the second one to circularly
polarized light. In order to ensure that all polarization vectors form a complete basis of
Minkowski space, it is common to also define the unphysical polarization vectors. One possible
definition is

εµ+ (k) =

(
|~k|
~k

)
= kµ εµ− (k) =

1

2|~k|2

(
|~k|
−~k

)
=

1

2|~k|2
k
µ (4.13)

where the notation
k
µ
=

(
k0
−~k

)
(4.14)
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for a parity transformed four-vector is used. These two vectors are called the forward
and backward lightlike polarization vectors. The forward lightlike polarization cannot be
normalized but the other vectors are normalized to −1. Another choice is

εµ0 (k) =


1
0
0
0

 εµ3 (k) =


0
0
0
1

 (4.15)

where εµ0 is called the timelike polarization and εµ3 the longitudinal polarization. One convenient
aspect of the latter choice is that ε0, . . . , ε3 form a canonical basis of Minkowski space and
satisfy εµλ(k)ελ′,µ(k) = gλλ′ . So far, we have only considered the Lorenz gauge ∂µAµ = 0. A
different approach are axial gauges which fix an axis nµ such that nµAµ = 0. Special cases are
the lightcone gauge where nµ is lightlike n2 = 0 or the Coulomb gauge ~∇ · ~A (in momentum
space ~k · ~A = 0). A similar discussion of the polarization vectors for a massless gauge field for
the Coulomb gauge instead of the Lorenz gauge is available in [18].
In order to perform sums over the two physical (transverse) polarizations with the transverse
lightlike direction kµ without relying on any particular basis we need to specify any other
direction nµ with n · k 6= 0 and ε(λ, k) · n = 0 for λ = 1, 2 to form a complete basis. This is
the idea behind the axial gauge. Then, we can make the covariant ansatz

dµν(k, n) =
∑
λ=1,2

εµ∗(λ, k)εν(λ, k) = A1g
µν +A2k

µkν +A3n
µkν +A4n

νkµ +A5n
µnν (4.16)

with coefficients Ai. The transversality conditions of the polarization vectors

kµd
µν = kνd

µν = nµd
µν = nνd

µν = 0 (4.17)

show that A5 must be zero and provide the constraints

A1 +A3k · n = A1 +A4k · n = A2k · n+A4n
2 = 0 (4.18)

which give

A3 = A4 = − A1

k · n
A2 = A1

n2

(k · n)2
. (4.19)

Thus, dµν can be completely parameterized in terms of A1. If we now contract dµν with
gµν and use the normalization of the transverse polarizations ε∗(λ, k) · ε(λ, k) = −1 we get
A1 = −1 and the final expression for the polarization tensor is

dµν(k, n) = −gµν + kµnν + kνnµ

n · k
− n2

kµkν

(n · k)2
. (4.20)

4.2 Canonical quantization of Yang-Mills theories

The standard canonical quantization method following the work of Dirac, which can be carried
out successfully in the case of abelian theories, becomes extremely difficult for non-abelian
theories and ultimately fails because of the complexity [21]. However, after Faddeev and Popov
found a path integral formulation of non-abelian gauge theories in covariant gauge [22], Becchi,
Rouet and Stora discovered a transformation which leaves the associated Lagrangian density

19



invariant including the gauge fixing terms [23]. This symmetry is called BRS-symmetry after
its discoverers. This symmetry allows the canonical quantization of Yang-Mills field theories
and thus offers the possibility to determine the Hilbert space of physical states which is not
possible within the path integral formulation. Instead of going the historical route of the path
integral, we postulate BRS-symmetry as quantum version of gauge symmetry and derive a
gauge fixing term from it allowing to proceed with the quantization following the work of
Kugo and Ojima [24, 25].

4.2.1 BRS-transformations

As a first step we fermionize the gauge transformations of the gauge field Aµ
a and the matter

field Φi by replacing the transformation parameter α(x) with a Grassmann number θ(x)
multiplied with the ghost field c(x). The field Φi is just a placeholder for any matter
field that could appear in the gauge invariant Lagrangian L(A,Φ). The infinitesimal gauge
transformations then take the form

δBA
µ
a(x) =

1

gs
θDµca(x) (4.21)

δBΦi(x) = iθca(x)T
a
ijΦj(x) (4.22)

with the covariant derivative Dµca = ∂µca + gsfabcA
µ
b cc and where the generators T a

ij of
some semi-simple compact Lie group are in the representation of Φi. We arrive at the BRS-
transformation δB by removing the Grassmann valued constant θ from the transformation
δB = θδB. The operator δB is now itself Grassmann valued which means that one has to pay
attention to the Grassmann parity of the fields within the product rule

δB(FG) = (δBF )G+ (−)|F |δBFG (4.23)

where the statistical index |F | takes the value zero if F is a bosonic field and one if F is
fermionic. The operator δB which is sometimes referred to as Slavnov operator has the
property of being nilpotent δ2B = 0 as a consequence of its Grassmannian nature. The
antighost field ca is defined to transform under the BRS-symmetry into the Nakanishi-Lautrup
field Ba which is for now just an auxiliary field that later enforces the gauge fixing condition
as a Lagrange multiplier

δBca(x) =
1

gs
Ba(x). (4.24)

From the nilpotency of δB follows directly the transformation rule of the Nakanishi-Lautrup
field

δBBa(x) = 0. (4.25)

The transformation of the ghost field ca(x) is derived from the requirement that the Slavnov
operator is nilpotent

0 = δB(δBΦi) = iT a
ijδB (caΦj) = iT a

ij [(δBca)Φj − caδBΦj ]

= i

[
(δBca)T

a
ijΦj −

i

2
cacb

(
1

N
dabc + ifabc

)
T c
ijΦj

]
. (4.26)
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The symmetric term dabc drops out due to the anticommuting nature of the ghosts which
means that the ghost field must transform as

δBca = −1

2
fabccbcc (4.27)

in order for the whole expression to vanish. In summary, the BRS-transformations are as
follows

δBΦi = icaT
a
ijΦj (4.28)

δBA
µ
a =

1

gs
∂µca + fabcA

µ
b cc (4.29)

δBca =
1

gs
Ba (4.30)

δBca = −1

2
fabccbcc. (4.31)

4.2.2 Gauge fixing the theory

With the tool of BRS symmetry it is now possible to add a gauge fixing LGF and Faddev
and Popov term LFP to the classical Lagrangian density L(A,Φ). For this, we select a gauge
fixing function F a(A,Φ, c, c, B) which must contain the same number of ghosts and antighosts
and write

LGF+FP = gsδB(caF
a) (4.32)

such that global BRS invariance of the gauge fixed Lagrangian

L̃(A,Φ, c, c, B) = L(A,Φ) + LGF+FP(A,Φ, c, c, B) (4.33)

is guaranteed through the nilpotency of δB independently of the explicit choice for F a. Note
that L is locally BRS invariant by construction but on the level of L̃ only global BRS invariance
holds. Applying the BRS transformation allows the separation of the ghost and the gauge
fixing term

LGF = BaF
a (4.34)

LFP = −gscaδBF a. (4.35)

There are two main classes of gauge fixing conditions. The class of covariant and renormalizable
Rξ-gauges

Fa = ∂µA
µ
a +

1

2
ξBa (4.36)

as well as the class of axial gauges

Fa = nµA
µ
a +

1

2
λBa. (4.37)

where λ and ξ are gauge parameters and nµ an arbitrary non-zero four-vector. As we want
the theory to be covariant and the commutation relations to be as simple as possible, the
Feynman gauge ξ = 1 turns out to be a good choice.
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4.2.3 Covariant canonical quantization of the free fields

In the case of Yang-Mills theories, the problem arises that the theory is intrinsically interacting,
which is why there exists no free-field mode expansion for the Heisenberg operators. We are
in this work only interested in computing elements of the S-matrix where it is according to
the LSZ reduction formula sufficient to know the asymptotic in- and out-fields. These are in
turn described by the free Lagrangian density

L̃0 = −1

4
Fµν
a F a

µν +Ba∂µA
µ
a +

1

2
B2

a + ∂µca∂
µca (4.38)

which originates from eq. (4.32) upon using Feynman gauge with all interaction terms turned
off (gs = 0) and matter fields suppressed. From eq. (4.38) we obtain the canonically conjugate
fields

πµa =
∂L̃0

∂Ȧµ
a

= Fµ0
a +Bag

µ0 πB =
∂L̃0

∂Ḃa

= 0 (4.39)

πac =
∂L̃0

∂ċa
= − ˙̄ca πac =

∂L̃
∂ ˙̄ca

= ċa (4.40)

and the equation of motions

Ba + ∂µA
µ = 0 (4.41)

�c̄a = �ca = 0 (4.42)
�Aµ − ∂µ∂νA

ν + ∂µBa = 0 (4.43)

where it is important to recall the rule for differentiating Grassmann valued fields. The
temporal component of πµa is now non-zero thanks to the gauge fixing condition which allows
to perform the quantization by writing down the canonical equal time (anti)-commutation
relations

[Aµ
a(t, ~x), π

ν
b (t, ~y)] = iδabg

µνδ(3)(~x− ~y) (4.44)
[Aµ

a(t, ~x), A
ν
b (t, ~y)] = [πµa (t, ~x), π

ν
b (t, ~y)] = 0 (4.45){

ca(t, ~x), πbc(t, ~y)
}
=
{
ca(t, ~x), πbc̄(t, ~y)

}
= iδabδ(3)(~x− ~y) (4.46){

c̄a(t, ~x), c̄b(t, ~y)
}
=
{
πac̄ (t, ~x), π

b
c̄(t, ~y)

}
= 0 (4.47){

ca(t, ~x), cb(t, ~y)
}
=
{
πac (t, ~x), π

b
c(t, ~y)

}
= 0 (4.48){

ca(t, ~x), cb(t, ~y)
}
= 0. (4.49)

Note that eq. (4.49) is consistent with eq. (4.46) due to the minus sign in πac . Moreover, the
field Ba can be integrated out by replacing it with its equation of motion Ba = −∂µAµ which
yields the canonical momenta

π0a = −∂µAµ
a (4.50)

πia = ∂iA0
a − ∂0Ai

a (4.51)

so that one obtains for the commutation relation of the gauge field[
Aµ

a(t, ~x), Ȧ
ν
b (t, ~y)

]
= −iδabg

µνδ(3)(~x− ~y). (4.52)
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Now we can proceed with the mode expansion of the fields. Combining eq. (4.41) and eq. (4.43)
yields the equation

�Aµ
a = 0 (4.53)

which means that the gauge field enjoys the simple expansion into Fourier modes

Aµ
a(x) =

∫
d3k

(2π)3
1√
2k0

∑
λ=±,1,2

[
εµ(λ, k)aa(λ,~k)e

−ikx + εµ∗(λ, k)a†a(λ,
~k)eikx

]
(4.54)

where the polarization vectors are chosen to form an orthogonal basis

ε(k, λ) · ε(k, λ′) = gλλ′ . (4.55)

The mode expansion of the free ghost fields is more peculiar. In order to ensure that L̃0 is
hermitian L̃0 = L̃†

0 such that time-evolution is described by a unitary operator and energy is
an observable quantity, the anti-ghost field has to be anti-hermitian c†a = −ca whereas the
ghost field is taken to be hermitian c†a = ca

1 such that

(∂µca∂
µca)

† = ∂µc
†
a∂

µc†a = −∂µca∂µca = ∂µca∂
µca. (4.56)

As a consequence, the expansion of the anti-ghost field must contain a relative minus sign(
ca(x)
ca(x)

)
=

∫
d3k

(2π)3
1√
2k0

[(
ca(~k)

−ca(~k)

)
e−ikx +

(
c†a(~k)

c†a(~k)

)
eikx

]
. (4.57)

Based on these free-field expansions and the postulated commutation relations, the creation
and annihilation operators fulfill[

aa

(
λ,~k
)
, a†b(λ

′, ~p)
]
= gλλ′δab(2π)

3δ(3)
(
~k − ~p

)
(4.58){

ca(~k), c
†
b(~p)

}
=
{
ca

(
~k
)
, c†b(~q)

}
= δab(2π)

3δ(3)
(
~k − ~p

)
. (4.59)

The relative minus sign also allows to properly close the contour of the time ordered product

〈0|T{c(x)c(y)} |0〉 = θ(x0 − y0) 〈0| c(x)c(y) |0〉 − θ(y0 − x0) 〈0| c(y)c(x) |0〉 (4.60)

to obtain the Feynman propagator

〈0|T{c(x)c(y)} |0〉 = DF (x− y) (4.61)

as for the scalar field.

4.2.4 Slavnov-Taylor identities

In general, global symmetries of a theory allow to derive relationships between different Green’s
functions. Such identities are called Ward-Takahashi identities or Slavnov-Taylor identities in

1Kugo and Ojima define an additional factor −i into the ghost part of the Lagrangian L̃0 ⊃ −i∂µca∂
µca

which allows to define ghost and anti-ghost as hermitian. However, this leads to different signs in the
Feynman rules for the ghost propagator and ghost-gluon vertex than the ones provided in appendix B.
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the non-abelian case. For BRS-symmetry these identities emerge from the application of the
BRS-operator δB on time-ordered products [25]

0 =
n∑

k=1

(−1)sk 〈0|T {O1 (x1) . . .Ok−1 (xk−1) (δBOk (xk))Ok+1 (xk+1) . . .On (xn)} |0〉 .

(4.62)

The index sk =
∑k−1

i=1 |i| counts the number of bosonic and fermionic fields before Ok where
|i| gives the Grassmann parity of Oi, i.e. i takes the value zero for bosonic and 1 for fermionic
fields.
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5 The Catani-Seymour dipole formalism for
massive initial states

The main goal of this chapter is to work out the integrated dipoles, which make it possible
to transfer analytically the infrared poles from the real corrections to the virtual ones. This
represents a continuation of the work started in [1] where the necessary splitting functions
are ”derived” by showing that they obey the desired asymptotic behaviour and where the
factorization of the different phase spaces is performed. In order to be able to use the new
results for the completely massive case in conjunction with those of Catani and Seymour,
the structure of this chapter and the notation follow the style of [26] to a large extent. We
begin with a brief review of the dipole subtraction method and end with a comparison of
the new results with the phase space slicing method which is an alternative approach for the
treatment of infrared divergences.

5.1 Brief review of the dipole subtraction method
A generic cross section σNLO describing the production of m particles at NLO accuracy in
(SUSY)-QCD is composed as

σNLO = σTree +∆σNLO (5.1)

where the NLO part ∆σNLO receives contributions from virtual corrections dσV as well as
from real emission dσR of massless particles

∆σNLO =

∫
m
dσV +

∫
m+1

dσR (5.2)

where the subscript on the integrals refers to the number of particles in the final state. After
successful renormalization the virtual part is ultraviolet (UV) finite but still contains another
type of divergence: the infrared (IR) divergence which appears when the loop momentum of a
massless virtual particle becomes almost zero or collinear to the direction of another particle.
Therefore, one distinguishes between soft, collinear and soft-collinear infrared divergences
where in the latter case the massless particle is soft and collinear at the same time.

The same kind of infrared behaviour occurs within the real contribution. According to the
Kinoshita-Lee-Nauenberg theorem every unitary quantum field theory such as the Standard
Model or its supersymmetric extension the MSSM is infrared finite as a whole [27]. As a
consequence, the IR divergences from the phase space integration cancel the ones coming
from the loop integrals on the right hand side of eq. (5.2). In practice, the divergences
have to be extracted in terms of some regulator which could be an artificial mass. However,
the only known regularization procedure which preserves gauge and Lorentz invariance (as
well as supersymmetry) is dimensional regularization (dimensional reduction). Within these
procedures, the number of space-time dimensions is continued analytically from four to
D = 4 − 2ε. In this regularization scheme, soft and collinear divergences take the form of
simple 1/ε poles whereas soft-collinear divergences appear as double poles 1/ε2. Due to the
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large number of terms that enter during the standard Feynman-diagrammatic calculation of
(SUSY)-QCD matrix elements, it is often impossible to perform the integration over the m+1
particle phase space in eq. (5.2) analytically in D dimensions except for the very simplest
processes or by exploiting special symmetries in the scattering amplitudes. In order to make a
numerical evaluation possible, Catani and Seymour developed the dipole subtraction method
[28]. The basic idea is to construct an auxiliary cross section dσA which converges pointwise
to dσR in the singular region in D dimensions, so that dσR − dσA is finite over the whole
region of phase space and can be integrated in D = 4 dimensions. At the same time it must
be possible to integrate dσR analytically in D dimensions over the one-particle phase space
of the radiated massless particle giving rise to the divergence. This allows to add back the
subtraction term and to cancel those divergences appearing in the virtual contribution which
are present in the form of poles in 1/ε. The computation of the NLO correction can then be
summarized as

∆σNLO =

∫
m+1

[
dσR

ε=0 − dσA
ε=0

]
+

∫
m

[
dσV +

∫
1
dσA

]
ε=0

. (5.3)

The counterterm dσA is constructed from the knowledge that QCD amplitudes factorize in
the soft and collinear limit in the process dependent Born level cross section dσB convoluted
with a universal splitting kernel dVdipole which reflects the singular behaviour. From another
point of view, the factorization can be thought of as a two-step process. In the first step, m
final state particles are produced through the Born level cross section dσB. In the second
step, the final (m + 1)-particle configuration is reached through the decay of one of the m
partons - the emitter - into two partons. This last step is described by the splitting function
dVdipole. The information about colour and spin correlations are accounted for by referencing
an additional parton - the spectator. The final expression for dσA is obtained by summing
over all possible emitter-spectator pairs

dσA =
∑

dipoles
dσB ⊗ dVdipole. (5.4)

The fact that the underlying structure of this factorization is formed by these pairs coined the
name dipoles. However, as this factorization holds only in the strict soft and collinear limit
and it is desirable that dσA approximates dσR also in a small region around the singularity
to render the subtraction procedure numerically stable, one has to introduce the so-called
dipole momenta to ensure that the factorization does not violate momentum conservation.
These obey momentum conservation in the whole m+ 1-particle phase space and are defined
through a smooth map from the m+ 3 real emission momenta to the m+ 2 dipole momenta.
The fact that this map is smooth has the important consequence that soft and soft-collinear
divergences do not undergo double counting.
In order to implement the aforementioned colour and spin correlations into the factorization
formula, the splitting functions Vdipole are realized as operators in colour and spin space. For
this purpose, Catani and Seymour introduce in [28, 26] a certain set of conventions as well
as a special notation for matrix elements. That is, coloured particles in the initial state are
labelled by a, b, . . . and partons1 in the final state by i, j, k, . . . . Since non-coloured particles
are irrelevant for the subtraction procedure, they are suppressed in the notation. Scattering

1In this context a parton stands for a coloured particle and not necessarily a constituent of the proton.
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amplitudes are considered as objects in an abstract vector space spanned by the spins sa, si
and colours ca, ci of all coloured particles involved in the process

|{i, a}〉m =
1∏

b

√
nc(b)

M{ci,si;ca,sa}
m ({pi; pa}) (|{ci; ca}〉 ⊗ |{si; sa}〉) (5.5)

where
∏

b

√
nc(b) fixes the normalization by averaging over the nc(b) colour degrees of freedom

for each initial parton b. The kets |{ci; ca}〉 and |{si; sa}〉 constitute formally an orthogonal
basis of the colour and spin space respectively. The colour charge operators Ti or Ta reflect
the emission of a gluon (or another massless coloured particle) from a parton i or a. Their
action on colour space is defined as

〈{i, a}|m Tj ·Tk |{i, a}〉m =
1∏

b nc(b)

[
Mc1,...,cj ,...,ck,...,cm;{a}

m ({pi; pa})
]∗

× T e
cjdj

T e
ckdk

Md1,...,dj ,...,dk,...,dm;{a}
m ({pi; pa}) (5.6)

and analogously if j or k are initial state partons. For a final state parton j the colour-charge
matrix T e

cd is defined as T e
cd = −ifcde if j is in the adjoint representation of su(3)c, as T e

st = test
if j is in the fundamental representation of su(3)c and T e

st = −tets if j is in the anti-fundamental
representation of su(3)c where the ta = λa

2 are the usual Gell-Mann matrices. The colour
charge operator Ta of an initial parton a obeys the same action defined in eq. (5.6). However,
by crossing symmetry the colour charge matrix in this case is defined as T e

st = −tets if a is
in the fundamental representation and as T e

st = test if a transforms in the anti-fundamental.
Since every (SUSY)-QCD interaction preserves colour, it follows directly from construction
that each state |{i, a}〉m must be a colour singlet∑

j

Tj +
∑
b

Tb

 |{i, a}〉m = 0. (5.7)

The final dipole factorization formula that defines the auxiliary matrix element related to
dσA is ∣∣∣MA

m+1

∣∣∣2 =∑
i,j

∑
k 6=i,j

Dij,k +
∑
i,j

∑
a

Da
ij +

∑
a,i

∑
j 6=i

Dai
j +

∑
a,i

∑
b6=a

Dai,b (5.8)

where one has to distinguish between four different dipoles for the four different initial/final
state combinations of emitter and spectator which are shown in fig. 5.1. The precise definition
of the dipoles Dij,k, Da

ij , Dai
j and Dai,b will be given in the following sections.

5.2 Final-state emitter and initial-state spectator
The dipole contribution Da

ij in eq. (5.8) is defined as

Da
ij =

1

−2pi · pj
1

xij,a

〈
...,
(
ĩj
)
, ...; ã, ...

∣∣
m,a

Ta ·Tij

T2
ij

Va
ij

∣∣..., (ĩj) , ...; ã, ...〉
m,a

(5.9)

where the tree matrix element with m-final state particles is obtained by discarding the
external leg of the radiated particle i and replacing the momenta pa and pj in the real emission
(m + 1)-particle matrix element with their dipole momenta p̃a and p̃ij . The function Va

ij

describes the splitting process ĩj → i+ j. The mass of the emitter ĩj is denoted as mij and
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ĩj

i

j

k

Dij,k:
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ĩj

i

j

a

Da
ij:

Va
ij

pa

pi

pj

ãi

a i

j

Dai
j :

Vai
j

pj

pa pi

ãi

a i

b

Dai,b:

Vai,b

pb

pa pi

Figure 1: Effective diagrams for the different emitter–spectator cases.

belong to the final or initial states. The first two terms on the right-hand side control
the singularities of the (m+ 1)-parton matrix element when two final-state partons i and
j become (quasi-)collinear: the emitter is a final-state parton and the spectator can be
either in the final (Dij,k) or in the initial (Da

ij) states. The third and fourth terms on the
right-hand side control the singularities of the (m+1)-parton matrix element when a final-
state parton i and an initial-state parton a become collinear: the emitter is an initial-state
parton and the spectator can be either in the final (Dai

j ) or in the initial (Dai,b) states.
When the parton i is soft, all the four dipole functions D become singular. These four
types of dipoles are considered in the following subsections.

The dipole factors introduced in Ref. [30] differ from ours in several respects. For
instance, they do not deal with the case of massive partons with unequal masses and,
typically, they treat the kinematic recoil differently. The main overall differences arise from
the fact that they are not aimed to control the quasi-collinear region.

5.1 Final-state emitter and final-state spectator

The dipole contribution Dij,k (see Fig. 1) to the factorization formula (5.1) is

Dij,k(p1, . . . , pm+1) =

− 1

(pi + pj)2 −m2
ij

m〈. . . , ĩj, . . . , k̃, . . . |
T k · T ij

T 2
ij

Vij,k| . . . , ĩj, . . . , k̃, . . .〉m . (5.2)

The final-state parton momenta pi, pj and pk have arbitrary masses and their total outgoing
momentum is denoted by Q,

p2i = m2
i , p2j = m2

j , p2k = m2
k , Q = pi + pj + pk . (5.3)

18

Figure 5.1: Effective digrams for different emitter-spectator pairs. Figure taken from [26].

will be defined for each splitting process separately.
Since a treatment of massless initial partons with massless [28] and massive final states [26] is
already available in the literature, the initial parton a will be treated as massive throughout
this section.

5.2.1 Dipole kinematics and phase space factorization

The phase space factorization in dimensional regularization for the fully massive case was
worked out in [1] where the kinematics of Dittmaier’s work [29] were adopted with a slightly
different notation. However, Dittmaier uses a small photon mass as IR regulator which is
common in electroweak physics so that the crucial part lied in the generalisation of the phase
space parametrization from four to D dimensions. In the following, the kinematic variables as
well as the end result for the factorized phase space are summarized.
The two main quantities are the square of the total outgoing momentum of the dipole phase
space

P 2 = (pi + pj)
2 , P = pi + pj (5.10)

and the total transferred momentum

Q = P − pa = pb − pk (5.11)
Q̄2 = Q2 −m2

a −m2
j (5.12)

where pk denotes the sum of the momenta of all other (m− 1)-final state particles besides pi
and pj . The dipole splitting functions are formulated in terms of the momentum fractions

zj =
pa · pj
P · pa

(5.13)
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zi =
pa · pi
P · pa

(5.14)

xij,a =
P · pa − pi · pj

P · pa
(5.15)

which take by definition only values between zero and one. They can be expressed in terms of
the future integration variables P 2, Q2 and zi through the relations

P 2 =
−Q̄2

xij,a
+Q2 −m2

a (5.16)

P · pa =
−Q̄2

2xij,a
(5.17)

zj = 1− zi. (5.18)

It is worth noting that since the product P · pa is always positive and xij,a can only take
values between zero and one, the quantity Q̄2 is always negative such that

√
Q̄4 = −Q̄2 where

Q̄4 =
(
Q̄2
)2 to be precise. The auxiliary variables

λaj = λ
(
Q2,m2

j ,m
2
a

)
= Q̄4 − 4m2

am
2
j (5.19)

Raj =

√√√√(Q̄2 + 2m2
axij,a

)2 − 4m2
aQ

2x2ij,a
λaj

=
−Q̄2

P 2 −Q2 +m2
a

√
(P 2 −Q2 −m2

a)
2 − 4m2

aQ
2

λaj

(5.20)

with the Källén function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx (5.21)

are introduced for later convenience. It is straightforward to check that zi, zj , xij,a, P 2 and
Raj behave in the soft pµi → 0 and collinear limit pa · pi → 0 as

zi → 0 zj → 1 xij,a → 1 P 2 → m2
j Raj → 1. (5.22)

The dipole momenta of the emitter and spectator

p̃µij =
xij,a
Raj

pµa +

(
1

Raj

Q̄2 + 2m2
axij,a

2Q2
−
Q2 +m2

a −m2
j

2Q2
+ 1

)
Qµ (5.23)

p̃µa = p̃µij −Qµ (5.24)

are constructed from the requirement to fulfill the on-shell conditions p̃2a = m2
a, p̃2ij = m2

ij

and momentum conservation p̃a + pb = p̃ij + pk. The factorization of the three-particle phase
space dΦ3 (pi, pj , pk; pa + pb) into the two-particle phase space dΦ2

(
P 2, Q2

)
and the dipole

phase space dpi
(
Q2, P 2, zi

)
involves a convolution over P 2

∫
dΦ3 (pi, pj , pk; pa + pb) =

∫ P 2
+

m2
j

dP 2

2π

∫
dΦ2

(
P 2, Q2

) ∫ [
dpi
(
Q2, P 2, zi

)]
(5.25)
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which corresponds to the integration of the boost parameter P 2 between the CM frame of
pi + pj and the CM frame of pa + pb. The integration of the splitting function over the
one-particle phase space∫ [

dpi
(
Q2, P 2, zi

)]
=

2π

(4π)2−ε

(
P 2
)−ε

Γ(1− ε)

(
Raj

√
λaj

−Q̄2

)2ε−1 ∫ z+

z−

dzi [(zi − z−) (z+ − zi)]
−ε

(5.26)
yields the singular behaviour parameterized by D = 4− 2ε dimensions where the integration
limits read

z± =
1− x

2

−Q̄2 ±
√
λajRaj

xm2
j − Q̄2(1− x)

. (5.27)

In the case of a 2 → 2 process, the remaining m-particle phase space is just the usual
two-particle phase space with outgoing momenta pk and P∫

dΦ2

(
P 2, Q2

)
=

1√
λ
(
s,m2

a,m
2
b

) ∫ Q2
+

(
P 2

)
Q2

−(P 2)

dQ2

8π
(5.28)

where the ”particle” that corresponds to P is off-shell. As Q2 is a Lorentz invariant quantity
the integration limits can be derived in any frame. Therefore, it is convenient to choose the
center-of-mass frame of the initial particles with the well-known kinematics [30, 31]

Eb =
s+m2

b −m2
a

2
√
s

Ek =
s+m2

k − P 2

2
√
s

(5.29)

|~pb| =

√
λ
(
s,m2

a,m
2
b

)
2
√
s

|~pk| =

√
λ
(
s,m2

k, P
2
)

2
√
s

. (5.30)

which were also derived again in [1] directly in the context of the phase space factorization. If
we expand Q2 into its components

Q2 = m2
b +m2

k − 2EbEk + 2|~pb||~pk| cos θ (5.31)

and use the knowledge that −1 ≤ cos θ ≤ 1, we obtain the integration limits

Q2
±
(
P 2
)
= m2

b +m2
k −

(
s+m2

b −m2
a

) (
s+m2

k − P 2
)

2s
±

√
λ
(
s,m2

a,m
2
b

)√
λ
(
s,m2

k, P
2
)

2s
(5.32)

where it is important to realize that the integration limits of Q2 depend on P 2. For P 2 = m2
j

the integration over Q2 reduces to the usual two-particle phase space involving the integration
over the scattering angle cosϑ

1√
λ
(
s,m2

a,m
2
b

) ∫ Q2
+

(
m2

j

)
Q2

−

(
m2

j

) dQ2

8π
=

1

16πs

√
λ
(
s,m2

k,m
2
j

)∫ 1

−1
dcosϑ. (5.33)
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As the integrand of the remaining m-particle phase space is IR finite the integration can be
performed for ε = 0. In order to deduce the integration limits for P 2, we can take into account
the soft limit

P 2 = m2
j + 2pi · pj

pµi →0
−→ m2

j (5.34)

which gives the lower limit P 2
− = m2

j . The upper limit can be obtained by minimizing

P 2 = s−m2
k − 2P · pk. (5.35)

By working in the CMS of pa and pb and using energy
√
s =

√
m2

i + |~pi|2+
√
m2

k + |~pk|2+ |~pj |
and momentum conservation |~P | = |~pk|, the product P · pk can be parameterized through |~P |
as

pk · P =

(√
s−

√
|~P |2 +m2

k

)√
|~P |2 +m2

k + |~P |2 (5.36)

which becomes minimal for |~P | = 0. Therefore, we arrive at the upper limit

P 2
+ =

(√
s−mk

)2
. (5.37)

In the massless case mj = 0 the integration limits related to zi simplify to

z± =
1

2
(1±Raj) . (5.38)

Furthermore, an additional auxiliary parameter x0 with 0 ≤ x0 < 1 is introduced as a lower
limit on xij,a for which the splitting functions are applied. This lower limit on x0 is provided
by the constraint that the argument of the square root in eq. (5.20) remains positive for all
possible values of Q2 which translates to the condition

−Q̄

2ma

(
ma −

√
Q2
) < x0 < 1. (5.39)

Since the singular behaviour occurs for xij,a → 1, applying the splitting function Va
ij for

x0 < xij,a < 1 still cancels the divergences. In addition, the independence of ∆σNLO on the
choice of x0 serves as a non-trivial check for the correct implementation of the subtraction
procedure.

5.2.2 The dipole splitting functions

The functions Va
ij in eq. (5.9) for the three QCD splitting processes

• Q→ g(pi) +Q(pj) : mi = 0 and mij = mj = mQ

• g → g(pi) + g(pj) : mij = mi = mj = 0

• g → Q(pi) + Q̄(pj) : mi = mj = mQ and mij = 0

were worked out for the fully massive case in [1]. The associated CPT -conjugated splitting
processes are formally identical to those given here and are therefore not listed separately.
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Explicitly, the dipole functions read

〈s|Va
gq|s′〉 = 2g2sµ

2εCF

(
2

2− xij,a − zj
− 2 + (1− ε)zi −

m2
j

pi · pj

)
δss′ = 〈Va

gq〉δss′ (5.40)

〈µ|Va
gg|ν〉 = 4g2sµ

2εCA

[
−gµν

(
1

1 + zi − xij,a
+

1

2− zi − xij,a
− 2

)
+

1− ε

pi · pj
Cµν

]
(5.41)

〈Va
gg〉 = 4g2sµ

2εCA

[
1

1 + zi − xij,a
+

1

2− zi − xij,a
− 2 + (z+ − zi) (zi − z−)

]
(5.42)

〈µ|Va
QQ

|ν〉 = 2g2sµ
2εTF

(
−gµν − 2

pi · pj
Cµν

)
(5.43)

〈Va
QQ

〉 = 2g2sµ
2εTF

(
1− 2

1− ε
(z+ − zi)(zi − z−)

)
(5.44)

where z± correspond to the integration limits in eq. (5.27). The spin correlation tensor

Cµν =
(
z
(m)
i pµi − z

(m)
j pµj

)(
z
(m)
i pνi − z

(m)
j pνj

)
(5.45)

depending on the new variables

z
(m)
i = zi − z− = zi −

1

2
(1−Raj) z

(m)
j = zj − z− = zj −

1

2
(1−Raj) (5.46)

is constructed such that it is orthogonal to the direction of the emitter

p̃µijCµν = p̃νijCµν = 0. (5.47)

By Lorentz invariance the integral over the one-particle phase space of a splitting function
with a gluon emitter can only take the form∫ [

dpi
(
Q2, P 2, zi

)]
〈µ|Va

ij |ν〉 = −A1g
µν +A2

p̃µij p̃
ν
a + p̃µij p̃

ν
a

p̃ij · p̃a
−A3

m2
ap̃

µ
ij p̃

ν
ij

(p̃ij · p̃a)2
+A4

p̃µa p̃νa
m2

a

. (5.48)

Due to the transversality condition on Cµν in eq. (5.47) the term A4 is zero. The coefficients
A2 and A3 can be chosen arbitrarily by the virtue of Slavnov-Taylor identities. However, in
order to include the correct number of physical polarizations, we can think of A2 and A3 as
being equal to A1 such that A1 can be disentangled by averaging over the D − 2 transverse
polarizations of the emitter

A1 =

∫ [
dpi
(
Q2, P 2, zi

)]
〈Va

ij〉 (5.49)

with the averaged splitting function

〈Va
ij〉 =

1

D − 2
dµν (p̃ij , p̃a) 〈µ|Va

ij |ν〉. (5.50)

The polarization tensor

dµν (p̃ij , p̃a) = −gµν +
p̃µij p̃

ν
a + p̃µij p̃

ν
a

p̃ij · p̃a
−

m2
ap̃

µ
ij p̃

ν
ij

(p̃ij · p̃a)2
(5.51)
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was introduced in eq. (4.20) and fulfills in D dimensions dµνdµν = D − 2.

5.2.3 The integrated dipole functions

The integral of the spin-averaged dipole function 〈Va
ij〉 over the dipole phase space is defined

as

g2s
2π

(4π)ε

Γ(1− ε)
Iaij
(
P 2, Q2; ε

)
=

∫ [
dpi
(
Q2, P 2, zi

)] 1

2pi · pj
1

xij,a
〈Va

ij〉 (5.52)

where Iaij depends on the auxiliary variables P 2 and Q2. By writing the single-parton phase
space in eq. (5.26) in the form∫ z+

z−

dzi [(zi − z−) (z+ − zi)]
−ε = (z+ − z−)

1−2ε

∫ 1

0
dt [(1− t)t]−ε (5.53)

through the substitution t = zi−z−
z+−z−

, the integration of the splitting function becomes straight-
forward in terms of the beta and Gaussian hypergeometric function listed in appendix A.1
giving

IagQ
(
P 2, Q2; ε

)
=

CF√
λajRaj

(m2
a + P 2 −Q2)1+2ε

(P 2 −m2
j )

1+2ε

(
m2

jxij,a + Q̄2(xij,a − 1)

−Q̄2

)2ε(
µ2

P 2

)ε

×

(√
λajRaj

Q̄2

(
1 +

Q̄4(xij,a − 1)2

4(m2
jxij,a + Q̄2(xij,a − 1))2

(ε− 1)

)
β(1− ε, 1− ε)− I1(−A; ε)

)
(5.54)

Iagg
(
P 2, Q2; ε

)
=

CAµ
2ε

Raj (P 2)1+ε

P 2 − Q̄2

Q̄2

(
I1 (−A; ε)− I1

(
Ã; ε

)
−R3

ajβ (2− ε, 2− ε) + 2Rajβ (1− ε, 1− ε)
)

(5.55)

Ia
QQ

(
P 2, Q2; ε

)
=

TFµ
2ε

2 (P 2)1+ε

Q̄2 − P 2

Q̄2

(
β(1− ε, 1− ε)− 2

1− ε
R2

ajβ(2− ε, 2− ε)

)
(5.56)

where the variables A and Ã are defined as

A =
z+ − z−

1− x+ z−
Ã =

z+ − z−
2− x− z−

. (5.57)

The ε-expansion of the hypergeometric function hidden in the new function

I1(z; ε) =z

∫ 1

0
dt

((1− t)t)−ε

1− zt
= zβ(1− ε, 1− ε) 2F1(1, 1− ε, 2− 2ε; z) (5.58)

=− ln(1− z) + ε

(
2Li2(z) +

1

2
ln2(1− z)

)
+O

(
ε2
)

(5.59)

is calculated in appendix A.1.3. The expansion is valid as long as the argument z remains
bounded between one and negative infinity −∞ < z < 1 which is always fulfilled for a massive
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emitter as in eq. (5.54). Following the Pfaff transformation of the hypergeometric function
given in eq. (A.11), the function I1 (z; ε) obeys the relation

I1 (z; ε) = −I1
(

z

z − 1
; ε

)
. (5.60)

In the massless case mj = 0 as in eq. (5.55), A and Ã take a similar form

A =
2
√
1− w2

1−
√
1− w2

, 0 ≤ A (5.61)

Ã =
2
√
1− w2

1 +
√
1− w2

, 0 ≤ Ã ≤ 1 (5.62)

when being expressed through the quantity

w =

√
4P 2(m2

a + 2P 2 − Q̄2)

3P 2 − Q̄2
, 0 ≤ w ≤ 1. (5.63)

Writing A and Ã in this manner makes the relation

Ã

Ã− 1
= −A (5.64)

apparent which allows to simplify the difference of the I1 functions in eq. (5.55)

I1 (−A; ε)− I1

(
Ã; ε

)
= 2I1 (−A; ε) (5.65)

by employing the identity in eq. (5.60). Recall that eqs. (5.61) and (5.62) are only valid for
mj = 0. In the massive case A reads

A =
−2
√
λajRaj

−2x
(
Q̄2 +m2

j

)
+ 3Q̄2 +

√
λajRaj

. (5.66)

For ε = 0 the functions Iaij become singular at the endpoint P 2 → m2
j giving the infrared

divergence. Therefore, the integration of the Iaij over P 2 and Q2 can not be handled numerically
yet. To allow for the extraction of the divergence in terms of ε while being able to perform
the integration of the product Iaij |M|2 involving the tree matrix element squared numerically,
the [...]+-distribution2 defined as

g(x) = [g(x)]+[a,b] + δ(x− a)

∫ b

a
dy g(y) (5.67)

provides a way around and serves as an artificially inserted zero to render the endpoint
contribution finite. The endpoint part is then further decomposed into a finite Ja;NS

ij and
singular Ja;S

ij piece where the latter contains the infrared poles in ε. This approach of making
the convolution over P 2 numerically accessible for ε = 0 and the treatment of interdependent

2The [...]+-distribution defined in [1, 26, 29] involves the upper instead of the lower limit.
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integration limits in the context of the [...]+-distribution is best illustrated for the case of
Q→ gQ splitting:

∫ P 2
+

m2
j

dP 2

2π

∫ Q2
+(P 2)

Q2
−(P 2)

dQ2

2
√
λ
(
s,m2

a,m
2
b

)IagQ (P 2, Q2; ε
) ∣∣M (

P 2, Q2
)∣∣2

=

√
λ
(
s,m2

k,m
2
j

)∫ 1

−1
dcosϑ

(
Ja;S
gQ

(
Q2; ε

)
+ Ja;NS

gQ

(
Q2
))

|M|2

+

∫ P 2
+

m2
j

dP 2

2π

∫ Q2
+(m2

j )

Q2
−(m2

j )
dQ2

[
1

P 2 −m2
j

]+
[
m2

j ,P
2
0

]∆Q2ĨagQ

(
P 2, Q̃2; 0

) ∣∣∣M(P 2, Q̃2)
∣∣∣2 . (5.68)

On the left hand side appears the integral we want to evaluate numerically but which is
singular for ε = 0. Notice that the integration limits of Q2 depend on P 2. The first term on
the right hand side corresponds to the integral proportional to the Dirac delta distribution in
eq. (5.67). It was used that the integral over Q2 reduces to the usual integration over the
scattering angle cosϑ in the limit P 2 → m2

j (cf. eq. (5.33)). The pieces Ja;S
gQ and Ja;NS

gQ arise
from the integration of the singular factor 1

P 2−m2
j

in eq. (5.54) which is placed inside the
”plus”-distribution”

Ja;S
gQ

(
Q2; ε

)
+ Ja;NS

gQ

(
Q2
)
= ĨagQ

(
m2

j , Q
2; ε
) ∫ P 2

0

m2
j

dP 2

2π

1

(P 2 −m2
j )

1+2ε

=
1

2π

(
− 1

2ε
+ ln

(
P 2
0 −m2

j

))
ĨagQ

(
m2

j , Q
2; ε
)
+O(ε). (5.69)

One can take any value for the integration limit P 2
0 as long as m2

j < P 2
0 ≤ P 2

+ since this
choice must cancel out which can be seen by inserting the definition of the [...]+-distribution
back into eq. (5.68). Checking the final result for P 2

0 independence is a further non-trivial
check for the correct implementation of the ”plus”-distribution. The factor ĨagQ

(
P 2, Q̃2; 0

)
in the second term on the right hand side of eq. (5.68) is defined through everything of the
integrated dipole IagQ(P 2, Q2; ε) which is not inside the ”plus”-distribution. The integration
limits of Q2 in this part were shifted through the substitution

Q2 7→ Q̃2 = ∆Q2
(
Q2 −Q2

−(m
2
j )
)
+Q2

−(P
2) (5.70)

with
∆Q2 =

Q2
+(P

2)−Q2
−(P

2)

Q2
+(m

2
j )−Q2

−(m
2
j )

(5.71)

to guarantee a consistent numerical evaluation. From now on Q2 represents the integration
variable associated with the limits Q2

−(m
2
j ) and Q2

+(m
2
j ), whereas the transformed variable

Q̃2 is associated with the integration limits Q2
−(P

2) and Q2
+(P

2). The explicit expressions
for the singular terms Ja;S

gQ and Ja;NS
gQ are provided at the end of this subsection. The lengthy

integral form of decomposing the integrated dipole used in eq. (5.68) served only the purpose
to illustrate the idea of the ”plus”-distribution and to highlight the dependent integration
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limits. It is more convenient to perform the decomposition by transforming the Iaij functions
to distributions. So, an alternative to eq. (5.68) is:

IagQ
(
P 2, Q2; ε

)
=
[
Ja
gQ

(
P 2, Q2

)]
+
+2πδ(P 2−m2

j )
(
Ja;S
gQ

(
Q2; ε

)
+ Ja;NS

gQ

(
Q2
))

+O(ε) (5.72)

where
[
Ja
gQ

(
P 2, Q2

)]
+

is given by

[
Ja
gQ

(
P 2, Q2

)]
+
= CF∆Q

2m
2
a + P 2 − Q̃2√
λajRaj

[
1

P 2 −m2
j

]
[
m2

j ,P
2
0

]
(√

λajRaj

¯̃Q2

×

(
1−

¯̃Q4(x− 1)2

4(m2
jx+ ¯̃Q2(x− 1))2

)
+ ln(1 +A)

)
. (5.73)

Note that the notation in eq. (5.73) is purely symbolic:
[
Ja
gQ

(
P 2, Q2

)]
+

is not a ”plus”-
distribution itself but contains all the plus distributions.
We can now move on to the integrated dipole Iagg. Disentangling the infrared poles in this case
of g → gg splitting is more involved due to the fact that besides the factor 1

(P 2)1+ε in eq. (5.54)
the function I1(−A; ε) diverges as well for P 2 → 0. Since the expansion in ε of I1(−A; ε)
is not analytic for P 2 = 0, the hypergeometric function itself has to be placed inside the
[...]+-distribution. Since the entire content of the ”plus”-distribution has to be integrated over
P 2 analytically, it makes sense to choose the associated expression as minimal as possible, in
the sense that the integration becomes as simple as possible. This is achieved by introducing
the argument of the hypergeometric function as new integration variable

yA =
1

A
= P 2A

(
P 2, Q̃2

)
(5.74)

which behaves analogously to P 2 in the singular region. This factorization is achieved by
expanding the denominator and numerator of A as given in eq. (5.61) with 1 +

√
1− w2

leading to
A
(
P 2, Q̃2

)
= 2

(
m2

a + 2P 2 − ¯̃Q2
) [(

ρ+ 3P 2 − ¯̃Q2
)
ρ
]−1

(5.75)

with
ρ =

√
(P 2 − ¯̃Q2)2 − 4m2

aP
2. (5.76)

In this new variable yA only the integral

I1 (y0; ε) =
∫ y0

0
dy

1

y1+ε
I1

(
−1

y
, ε

)
= − 1

2ε2
+
π2

12
− Li2

(
− 1

y0

)
+O(ε) (5.77)

has to be computed analytically. The associated steps are outlined in appendix A.1.4. When
the numerical integration of the [...]+-distribution is still performed in terms of P 2 (which is
advised in order to avoid separate integration routines), the derivative

y′A =
dyA
dP 2

= − 1

ρ3

(
3m2

aP
2 − ¯̃Q4 +

dQ̃2

dP 2
P 2( ¯̃Q2 − 2m2

a − P 2) + ¯̃Q2(m2
a + P 2)

)
(5.78)
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has to be included inside the ”plus”-distribution. In fact, it is not necessary to compute
the derivative dQ̃2

dP 2 when we make the replacement Q̃2 → Q2 within the parts of the plus-
distribution that are proportional to the Dirac delta distribution. As long as this replacement
is made consistently for the integral that results in the singular pieces and the counterpart
in the plus-distribution itself, this choice must cancel out. For the special case P 2 = 0 the
derivative y′A simply evaluates to

y′A

∣∣∣∣
P 2=0

= A(0, Q2) =
m2

a − Q̄2

Q̄4
. (5.79)

The integrated dipole Iagg can now be expressed as a distribution itself

Iagg
(
P 2, Q2; ε

)
=
[
Ja
gg

(
P 2, Q2

)]
+
+ 2πδ

(
P 2
) (
Ja;S
gg

(
Q2; ε

)
+ Ja;NS

gg

(
Q2
))

+O(ε) (5.80)

with

[
Ja
gg

(
P 2, Q2

)]
+
= CA∆Q

2P
2 − ¯̃Q2

¯̃Q2

(
1

6

[
1

P 2

]+
[
0,P 2

0

] (12−R2
aj

)
−
[
y′AA ln (1 +A)

]+[
0,P 2

0

] 2A
y′ARaj

)
. (5.81)

The singular Ja;S
gg and non-singular term Ja;NS

gg arise from the expansion

Ja;S
gg

(
Q2; ε

)
+ Ja;NS

gg

(
Q2
)
=
CA

2π

(
1

ε

(
µ2

P 2
0

)ε

(2β(1− ε, 1− ε)− β(2− ε, 2− ε))

−2µ2εA(0, Q2)εI1 (ymax
A ; ε)

)
+O(ε) (5.82)

with
ymax
A = P 2

0B
(
P 2
0 , Q

2
)
. (5.83)

The extraction of the collinear divergence for the case of a gluon splitting into a massless
quark-antiquark pair proceeds as in the case of Q→ gQ splitting

Ia
QQ

(
P 2, Q2; ε

)
=
[
Ja
QQ

(
P 2, Q2

)]
+
+ 2πδ(P 2)

(
Ja;S
QQ

(ε) + Ja;NS
QQ

)
(5.84)

with [
Ja
QQ

(
P 2, Q2

)]
+
= ∆Q2TF

2

[
1

P 2

]+
[
0,P 2

0

]
¯̃Q2 − P 2

¯̃Q2

(
1− 1

3
R2

aj

)
. (5.85)

In summary, the three different singular and non-singular contributions are

Ja;S
gQ

(
Q2; ε

)
=
CF

4πε

(
1− 1

v
ln(A+ 1)

)
(5.86)

Ja;NS
gQ

(
Q2
)
=
CF

2π

1

v

(
(v − ln(A+ 1)) ln

(
µmj

P 2
0 −m2

j

)
+ v +

1

4
ln2(1 +A) + Li2 (−A)

)
(5.87)
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Ja;S
gg

(
Q2; ε

)
=
CA

2π

(
1

ε2
+

1

6ε

(
6 ln

(
µ2(m2

a − Q̄2)

Q̄4

)
+ 11

))
(5.88)

Ja;NS
gg

(
Q2
)
=
CA

36π

(
9 ln2

(
µ2(m2

a − Q̄2)

Q̄4

)
+ 33 ln

(
µ2

P 2
0

)
+ 36Li2

(
− 1

ymax
A

)
+ 67− 3π2

)
(5.89)

Ja;S
QQ

(ε) = − TF
6πε

(5.90)

Ja;NS
QQ

= − TF
18π

(
5 + 3 ln

(
µ2

P 2
0

))
(5.91)

with v =
√

λaj

−Q̄2 . Recall that A is evaluated in eqs. (5.86) and (5.87) at P 2 = m2
j giving

A =
2
√
λaj

2m2
j − Q̄2 −

√
λaj

. (5.92)

The same poles given in eq. (5.88) are found in [32] after translating the different dipole
variables.

5.3 Initial-state emitter and final-state spectator
The dipole Dai

j is defined as

Dai
j = − 1

2pa · pi
1

xij,a

〈
..., j̃, ...; ãi, ...

∣∣∣
m,ãi

Tj ·Tai

T2
ai

Vai
j

∣∣∣..., j̃, ...; ãi, ...〉
m,ãi

(5.93)

where Vai
j describes the splitting process ãi → a + i. The momentum of parton a in the

tree level matrix element is replaced by the dipole momentum p̃ai and the momentum of j is
replaced by p̃j . Throughout this section the initial parton a is treated as massive since the
case ma = 0 is already worked out in [28, 26].

5.3.1 Kinematics and phase space factorization
The case of an initial-state emitter and final-state spectator is kinematically identical to the
case of a final-state emitter and an initial-state spectator after switching the roles played by ĩj
and a. Particle j takes over the role of the spectator and the associated dipole momenta are
relabelled accordingly as p̃ij → p̃j and p̃a → p̃ai. Therefore, the kinematics from section 5.2.1
can be adopted completely.

5.3.2 The dipole splitting functions
The function Vai

j in eq. (5.93) for the SUSY-QCD splitting process

• q̃ → g(pi) + q̃(pa) : mi = 0 and ma = mq̃

in presence of a massive emitter ãi was postulated in [1] and reads

〈s|Vq̃g
j

∣∣s′〉 = 2g2sCFµ
2ε

(
2

2− xij,a − zj
− 2− m2

axij,a
pa · pi

)
δss′ = 〈Vq̃g

j 〉δss′ . (5.94)
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5.3.3 The integrated dipole functions

The integral of the spin-averaged dipole function 〈Vai
j 〉 over the dipole phase space is defined

as

g2s
2π

(4π)ε

Γ(1− ε)
Iaij
(
P 2, Q2; ε

)
=

∫ [
dpi
(
Q2, P 2, zi

)] 1

2pa · pi
1

xij,a
〈Vai

j 〉. (5.95)

The cases of a massive spectator mj 6= 0 and a massless spectator mj = 0 have to be treated
separately due to different kinds of singular behaviour. The integrated dipole for mj = 0 is
marked with a hat to distinguish it from the massive case. The integral in eq. (5.95) can be
performed in straightforward manner through the hypergeometric and beta function given in
appendix A.1

I q̃gj
(
P 2, Q2; ε

)
=

CF√
λajRaj

(m2
a + P 2 −Q2)1+2ε

(P 2 −m2
j )

1+2ε

(
m2

jxij,a + Q̄2(x− 1)

−Q̄2

)2ε(
µ2

P 2

)ε

×

(
I1(−A; ε)− xI1(−B; ε) + 4m2

ax
2
ij,a

m2
jxij,a + Q̄2(xij,a − 1)

Q̄4 − λajR2
aj

(√
λajRaj

Q̄2
− ε ln(1 +B)

))
(5.96)

Î q̃g
j

(
P 2, Q2; ε

)
= − CF

Raj

µ2ε

(P 2)1+ε

(
I1 (−B; ε) +

P 2 − Q̄2

Q̄2
I1 (−A; ε)−

1

2
(Raj + 1)I2 (−B; ε)

)
(5.97)

where the variable B is defined as

B =
z+ − z−
z−

=
−2
√
λajRaj

Q̄2 +
√
λajRaj

. (5.98)

In the massless case it can be written as

B =
2
√
1− u2

1−
√
1− u2

(5.99)

with

u =
2ma

√
P 2

P 2 −Q2 +m2
a

. (5.100)

The variable A as well as the function I1(z; ε) were introduced in section 5.2.3. The functions
I1(−A; ε) and I1(−B; ε) in eq. (5.96) have to be understood in terms of their expansion in ε
since this explicit form was used to simplify the end result. The function

I2(z; ε) = z

∫ 1

0
dt

((1− t)t)−ε

(1− zt)2
= zβ(1− ε, 1− ε) 2F1(2, 1− ε; 2− 2ε; z) (5.101)

=
z

1− z
+ ε

2− z

z − 1
ln(1− z) +O

(
ε2
)

(5.102)

is defined similarly to I1(z; ε) but with a different argument set of the hypergeometric function
and the associated expansion is derived in appendix A.1.3. The extraction of the divergences
in the massless case is as peculiar as in the case of the gluon splitting function. However,
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it is possible to proceed in the same way. In fact, the divergent piece given by I1 (−A; ε) in
eq. (5.97) leads to the same integral I1 (ymax

A ; ε) already worked out in section 5.2.3. The
poles that arise through I1 (−B; ε) and I2 (−B; ε) can now be disentangled in a very similar
manner by introducing the variable

yB =
1

B
= P 2B

(
P 2, Q2

)
(5.103)

as new integration variable. This factorization is achieved as in the case of A by expanding B
written as in eq. (5.99) with 1 +

√
1− u2 which yields

B
(
P 2, Q2

)
=

2m2
a

(P 2 − Q̄2)ρ+ ρ2
(5.104)

where ρ was defined in eq. (5.76). For the integration of the function I2 (−B; ε) the integral

I2(y0; ε) =
∫ y0

0
dy

1

y1+ε
I2

(
−1

y
; ε

)
=

1

2ε
+ ln

(
1 +

1

y0

)
+O(ε) (5.105)

is calculated in appendix A.1.4. Connected to the substitution from P 2 to yB the derivative

y′B =
dyB
dP 2

=
2m2

a(P
2 + Q̄2)(2m2

aP
2 + (Q̄2 − P 2)(P 2 + ρ− Q̄2))

ρ((P 2 − Q̄2)(P 2 + ρ− Q̄2)− 4m2
aP

2)2
(5.106)

is needed which simply evaluates to

dyB
dP 2

∣∣∣∣
P 2=0

= B(0, Q2) =
m2

a

Q̄4
(5.107)

for P 2 = 0. With the knowledge of the integrals I1 and I2, the poles result from the
expansion

Ĵ q̃g;S
j

(
Q2; ε

)
+ Ĵ q̃g;NS

j

(
Q2
)
= −CFµ

2ε

2π

(
B(0, Q2)ε (I1 (ymax

B ; ε)− I2 (ymax
B ; ε))

−A(0, Q2)εI1 (ymax
A ; ε)

)
+O(ε). (5.108)

Now, we can shift the integration limits for Q2 through the linear transformation Q2 → Q̃2 as
discussed in section 5.2.3 and perform the decomposition in terms of the ”plus”-distribution

I q̃gj
(
P 2, Q2; ε

)
=
[
J q̃g
j

(
P 2, Q2

)]
+
+ 2πδ

(
P 2 −m2

j

) (
J q̃g;S
j

(
Q2; ε

)
+ J q̃g;NS

j

(
Q2
))

+O(ε)

(5.109)

[
J q̃g
j

(
P 2, Q2

)]
+
= CF∆Q

2

[
1

P 2 −m2
j

]+
[
m2

j ,P
2
0

] m
2
a + P 2 − Q̃2√
λajRaj

(xij,a ln(1 +B)− ln(1 +A)

+4m2
ax

2
ij,a

m2
jxij,a +

¯̃Q2(xij,a − 1)

¯̃Q4 − λajR2
aj

√
λajRaj

¯̃Q2

)
(5.110)

Î q̃gj
(
P 2, Q2; ε

)
=
[
Ĵ q̃g
j

(
P 2, Q2

)]
+
+ 2πδ

(
P 2
) (
Ĵ q̃g;S
j

(
Q2; ε

)
+ Ĵ q̃g;NS

j

(
Q2
))

(5.111)
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[
Ĵ q̃g
j

(
P 2, Q2

)]
+
= CF

∆Q2

Raj

([
y′BB ln (1 +B)

]+[
0,P 2

0

] B
y′B

+
[
y′AA ln (1 +A)

]+[
0,P 2

0

]AP 2 − ¯̃Q2

y′A
¯̃Q2

−
[
y′B

B2

1 +B

]+
[
0,P 2

0

] B
2y′B

(1 +Raj)

)
. (5.112)

The singular and non-singular contributions in the massive and massless case read

J q̃g;S
j

(
Q2; ε

)
=
CF

4πε

(
1− 1

v
ln

(
1 +B

1 +A

))
(5.113)

J q̃g;NS
j

(
Q2
)
=
CF

2π

1

v

((
v + ln

(
1 +A

1 +B

))
ln

(
µmj

P 2
0 −m2

j

)
+

1

2
ln(1 +B) (5.114)

+
1

4

[
ln2(1 +B)− ln2(1 +A)

]
+ Li2 (−B)− Li2 (−A)

)
(5.115)

Ĵ q̃g;S
j

(
Q2; ε

)
=
CF

4πε

(
1− ln

(
m2

a − Q̄2

m2
a

))
(5.116)

Ĵ q̃g;NS
j

(
Q2
)
=
CF

2π

(
1

4
ln2
(
µ2m2

a

Q̄4

)
+ ln

(
−µma

Q̄2

)
− 1

4
ln2
(
µ2(m2

a − Q̄2)

Q̄4

)
(5.117)

−Li2

(
− 1

ymax
A

)
+ Li2

(
− 1

ymax
B

)
+ ln

(
1 +

1

ymax
B

))
(5.118)

with the maximum value

ymax
B = P 2

0B
(
P 2
0 , Q

2
)
. (5.119)

5.4 Initial-state emitter and initial-state spectator
The dipole for emitter and spectator both from the initial state is defined as

Dai,b =
1

−2pa · pi
1

xi,ab

〈
1̃, ..., m̃+ 1; ãi, b

∣∣∣
m,ab

Tb ·Tai

T2
ai

Vai,b
∣∣∣1̃, ..., m̃+ 1; ãi, b

〉
m,ab

. (5.120)

The m-particle matrix element is obtained by discarding the parton i in the (m+ 1)-parton
element and replacing all other partons except for the spectator b.

5.4.1 Kinematics and phase space factorization
For the description of the dipole kinematics the same quantities as in [29] are used. The
divergences are parameterized in terms of the variables

xi,ab =
pa · pb − pi · pa − pi · pb

pa · pb
(5.121)

yab =
pa · pi
pa · pb

(5.122)

which behave in the soft limit pµi → 0 as

xi,ab → 1, yab → 0. (5.123)
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The sum of all outgoing momenta pk except for the soft gluon is denoted as

Pab = pa + pb − pi =
∑
k

pk. (5.124)

Furthermore, it is convenient to define the auxiliary variables

λab = λ
(
s,m2

a,m
2
b

)
= s2 − 4m2

am
2
b (5.125)

s = s−m2
a −m2

b . (5.126)

The construction of the dipole momenta is different from the previous two cases. Instead of
modifying only the momenta of emitter and spectator, the momentum of the spectator pb
remains unchanged whereas all other momenta are modified. The new momenta

p̃µai =

√
λ
(
P 2
ab,m

2
a,m

2
b

)
λab

pµa +

P 2
ab −m2

a −m2
b

2m2
b

− pa · pb
m2

b

√
λ
(
P 2
ab,m

2
a,m

2
b

)
λab

 pµb (5.127)

P̃µ
ab = p̃µai + pµb (5.128)

are build from the requirement to retain the mass-shell relations p̃2a = m2
a and P̃ 2

ab = P 2
ab. The

outgoing momenta pk except for pi are modified by a Lorentz transformation

p̃µk = Λµ
νp

ν
k (5.129)

with

Λµ
ν = gµν −

(
Pab + P̃ab

)µ (
Pab + P̃ab

)
ν

P 2
ab + Pab · P̃ab

+
2P̃µ

abPab,ν

P 2
ab

. (5.130)

If follows from direct calculation that Λµ
ν indeed leaves the Minkowski metric invariant

Λ µ
ρ Λρν = gµν such that it can be verified easily that the new momenta p̃k obey the on-shell

condition p̃2k = m2
k. In order to ensure that λ

(
P 2
ab,m

2
a,m

2
b

)
remains positive, so that the

dipole momenta take only real values, the kinematical lower bound

xi,ab > x0 ≥ x̂ =
2mamb

s
(5.131)

has to be enforced. For values of xi,ab below x̂ the splitting functions Vai,b are set to zero. The
dependence on the lower bound x0 must cancel out and can therefore be chosen arbitrarily
which offers the possibility to check whether the implementation of the subtraction procedure
is correct. Following again the work of Dittmaier [29] where a photon mass is used as regulator,
the phase space factorization is performed in dimensional regularization in [1]. For D = 4− 2ε
dimensions the dipole phase space then becomes∫

[dpi (s, x, yab)] =
s2−2ε

(4π)2−εΓ(1− ε)

s−ε

√
λab

1−2ε

∫ y+

y−

dyab [(yab − y−)(y+ − yab)]
−ε (5.132)

with the integration boundaries

y± =
1− x

2s

(
s+ 2m2

a ±
√
λab

)
. (5.133)
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5.4.2 The dipole splitting function

The dipole function Vai,b in eq. (5.120) for the SUSY-QCD process

• q̃ → q̃(pa) + g(pi) : mi = 0 and mai = ma = mq̃

was derived in [1] and reads explicitly

〈Vq̃g,b〉 = 2g2sµ
2εCF

(
2

1− xi,ab
− 2−

xi,abm
2
a

pa · pi

)
. (5.134)

The same splitting function holds if the squark is replaced by an antisquark which is why the
associated conjugated process is not listed separately.

5.4.3 The integrated dipole functions

In complete analogy to previous cases, the integrated dipole for the case of emitter and
spectator both from the initial state is defined as

g2s
2π

(4π)ε

Γ(1− ε)
Iai,b(x; ε) =

∫
[dpi (s, x, yab)]

1

2pa · pi
1

xi,ab
〈Vai,b〉 (5.135)

and the factorized phase space of the gluon can be turned into the convenient form∫ y+

y−

dyab [(yab − y−) (y+ − yab)]
−ε = (y+ − y−)

1−2ε

∫ 1

0
dt [(1− t)t]−ε (5.136)

via the substitution t = yab−y−
y+−y−

. By expressing the denominator in the dipole as pa ·pi = yabs/2

and with the help of the already known integrals I1(z; ε) and I2(z; ε) defined in eq. (5.59) and
eq. (5.102), the integration of the splitting function in eq. (5.134) is straightforward

I q̃g,b(x; ε) =
CF

2π

1√
λab

1

(1− x)1+2ε

(
µ2s

s2

)ε(
sI1(−C; ε)−

2m2
as

d1
I2(−C; ε)

)
(5.137)

where the new auxiliary variables d1 and C are defined as

C =
y+ − y−
y−

=
2
√
λab
d1

(5.138)

d1 = s+ 2m2
a −

√
λab. (5.139)

Since only massive initial states are considered, the argument C of the hypergeometric
functions hidden inside I1 and I2 does not diverge and we are allowed to use their associated
expansions in ε. As it should be familiar now from section 5.2.3, the soft divergence can be
disentangled with the help of the [. . . ]+-prescription

I q̃g,b(x; ε) =
[
J q̃g,b(x)

]
+
+ δ(1− x)

[
J q̃g,b;S(ε) + J q̃g,b;NS

]
+O(ε). (5.140)

The finite part that contains the ”plus”-distribution is then given by[
J q̃g,b(x)

]
+
=
CF

2π

[
1

1− x

]+
[1,x0]

(1− d2 ln(1 + C)) (5.141)
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and the singular terms originate from the expansion

J q̃g,b;S(ε) + J q̃g,b;NS = Ĩ q̃g,b(1; ε)

∫ 1

x0

dx
1

(1− x)1+2ε

=

(
− 1

2ε
+ ln(1− x0)

)
Ĩ q̃g,b(1; ε) +O(ε) (5.142)

with (1− x)−1−2εĨ q̃g,b(x; ε) = I q̃g,b(x; ε) which gives

J q̃g,b;S(ε) =
CF

4πε
(1− d2 ln(1 + C)) (5.143)

J q̃g,b;NS =
CF

4π

(
1

C
ln(1 + C) (C + 2) +

d2
2

(
4Li2(−C) + ln2(1 + C)

)
(5.144)

+(1− d2 ln(1 + C)) ln

(
µ2s

s2(1− x0)2

))
(5.145)

with
d2 =

s√
λab

. (5.146)

5.5 Final-state emitter and final-state spectator
Since the mass of the initial particles does not influence the splitting behaviour, the case of
emitter and spectator both from the final state is already fully covered for the massless and
massive case in works by Catani and Seymour [28, 26].

5.6 Comparison with the phase space slicing method
In an earlier DM@NLO work [33, 34] the NLO corrections to neutralino-stop coannihilation
processes were performed where the phase space slicing method was used to render the cross
section σNLO IR finite. The presence of this alternative method for the infrared treatment
offers the possibility to compare the newly worked out dipole subtraction method for massive
initial states against the results from phase space slicing.

Within the phase space slicing approach the three particle phase space is split into a hard
and a soft part by imposing a cutoff δs on the energy of the radiated gluon

σR = σhard(δs) + σsoft(δs) (5.147)

such that the real emission cross section σR is split into a finite part σhard(δs) which is safe
for numerical evaluation in D = 4 dimensions and a divergent piece σsoft(δs) which has to
be integrated analytically in D = 4− 2ε dimensions to isolate the infrared poles in ε. The
latter is made possible by usage of the eikonal (or soft) approximation. If the process contains
another massless particle, there can also occur collinear divergences. In this case the two
cutoff method was employed which introduces an additional collinear cutoff δc on the angle
between the two massless particles so that the hard phase space region is split further into a
hard and collinear and a hard and non-collinear part

σR = σhard
coll (δs, δc) + σhard

non-coll(δs, δc) + σsoft(δs). (5.148)
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The dipole subtraction method is implemented on top of the existing code for neutralino-stop
coannihilation NeuQ2qx. The processes χ̃0

1t̃1 → th/H as well as χ̃0
1t̃1 → tg are chosen for the

comparison. The first case is simpler since it involves only two dipoles where both the emitter
and spectator are massive whereas the latter requires twelve dipoles in total and in addition
features the more complicated case of a gluon as emitter.

tanβ µ mA M1 M2 M3 Mq̃1,2 Mq̃3 Mũ3 M˜̀ At

5.8 2925.8 948.8 335.0 1954.1 1945.6 3215.1 1578.0 609.2 3263.9 3033.7
Table 5.1: Parameters for the example scenario in the pMSSM examined in [34]. All quantities

except tanβ are given in GeV.

mχ̃0
1

338.3 GeV
mt̃1

375.6 GeV
mh0 122.0 GeV
mH0 942.7 GeV

Table 5.2: Physical neutralino, stop, and Higgs masses computed with SPheno 3.2.3 [9].

For the numerical study the example scenario in the pMSSM shown in table 5.1 is used.
The associated physical mass spectrum is computed with SPheno 3.2.3 [9] and the masses
relevant for the examined processes are displayed in table 5.2. All parameters that go into the
calculation are defined at the scale µR = QSUSY = 1TeV. The cutoffs p02, p03 ≥ δs = 3.0·10−4√s
and 2p2 · p3 ≥ δc = 3.0 · 10−5s are chosen as in [34] where

√
s denotes the center-of-mass

energy. More details on the implementation of the dipole method for the selected processes
as well as the results of the comparison are provided in the next two subsections devoted to
respective processes.

5.6.1 Processes with a Higgs boson in the final state

A generic real emission diagram for the coannihilation process with a light CP -even Higgs h0
or a heavy Higgs H0 is shown in fig. 5.2.

t̃1

h0/H0

χ̃0
1

t

g

pb

pa

p2

p1

p3

Figure 5.2: Generic real emission diagram for the processes χ̃0
1t̃1 → th and χ̃0

1t̃1 → tH. The
four-momenta are explicitly labelled.
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According to the dipole factorization formula, the integral over the three particle phase space
is rendered finite by constructing the auxiliary cross section from the two dipoles Db

31 and
Db3

1 . For a process with two coloured particles, the identity

T1 ·T2 |1, 2〉 = −T2
1 |1, 2〉 = −T2

2 |1, 2〉 (5.149)

follows from colour conservation and makes the colour algebra trivial in this case. The
expressions for the dipoles read

Db
31 =

1

2p1 · p3
1

x31,b
〈Vb

g3t1〉|M2 (p̃b, p̃31) |2 (5.150)

Db3
1 =

1

2pb · p3
1

x31,b
〈Vt̃1,bg3

1 〉|M2 (p̃b3, p̃1) |2 (5.151)

where the Mandelstam variables s, t and u in the existing LO matrix element |M2

(
pt̃1 , pt

)
|2

are replaced by the ”dipole Mandelstam invariants”

s̃ = (pa + p̃b)
2 (5.152)

t̃ = (p̃b − p2)
2 (5.153)

ũ = (pa − p2)
2 . (5.154)

The explicit expression for dσA is given by∫
3
dσA =

1

2NcF

∫
dΦ3

(
Db

31 +Db3
1

)
θ(x− x0) (5.155)

with the averaging factor 2Nc for initial colours and spins. The Heaviside function ensures
that the auxiliary variable x is greater than x0 where in this case the subscripts on x were
dropped since both dipoles defined in eq. (5.150) and eq. (5.151) share the same kinematic
quantities. The IR divergences appearing in the virtual corrections are cancelled by∫

3
dσA =

1

2NcF

∫
dΦ2

(
g2s
2π

|M2|2
(
J t̃1;S
gt (u; ε) + J t̃1;NS

gt (u) + J t̃1g;S
t (u; ε) + J t̃1g;NS

t (u)
))

+
g2s

4πNcF

∫ (√
s−mh/H

)2
m2

t

dP 2

2π

∫
dΦ2

(
P 2, Q2

) [ 1

P 2 −m2
t

]+
[m2

t ,P
2
0 ]

∆Q2θ(x− x0)

×
(
Ĩ t̃1gt(P

2, Q̃2; 0) + Ĩ t̃1gt (P 2, Q̃2; 0)
) ∣∣∣M2

(
P 2, Q̃2

)∣∣∣2 (5.156)

where ∆Q2 and Q̃2 were introduced in eqs. (5.70) and (5.71). At this point it is appropriate
to highlight the limits

lim
P 2→m2

t

∆Q2 = 1 lim
P 2→m2

t

Q̃2 = Q2 lim
P 2→m2

t

∣∣∣M2

(
P 2, Q̃2

)∣∣∣2 = |M2|2 (5.157)

which are relevant for the implementation of the ”plus”-distribution. In eq. (5.156) |M2|2
denotes the ordinary LO matrix element depending on s, t and u. The dependence of P 2 and
Q̃2 in the tree matrix element

∣∣∣M2

(
P 2, Q̃2

)∣∣∣2 enters through the dipole momenta p̃b and
p̃13.
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Figure 5.3: Tree-level cross section (black dashed line), full one-loop cross section obtained with
phase space slicing (red dotted line) and with the dipole method (blue solid line)
as well as the micrOMEGAs cross section (orange solid line) for the coannihilation
processes with a Higgs in the final state. The upper part of each plot shows the
absolute value of σv, whereas the lower part compares the different cross sections
(second item in the legend).

Figure 5.3 shows the tree level cross section computed with DM@NLO and CalcHEP through
micrOMEGAs as well as the NLO corrected cross section obtained with both methods - phase
space slicing and the dipole subtraction method. The two free parameters x0 and P 2

0

introduced in the dipole method are chosen to be x0 = 0.9 and P 2
0 =

(√
s−mh/H

)2 where it
was sufficiently checked that the final result is independent of these two values. The relative
difference between the two methods is less than 1% and, thus, the dipole method verifies
the cutoff choice made in [34] and the results for the cross section with a Higgs in the final
state. The relative small difference of around 10% between the DM@NLO result and the tree
cross section provided by micrOMEGAs is due to the fact that DM@NLO uses the on-shell mass
mOS

t = 173.3GeV of the top quark, whereas micrOMEGAs takes the DR-mass mDR
t = 161.6GeV

in account. In table 5.3 some values for ∆σNLO obtained with the phase space slicing and
dipole method are shown. The difference between the two methods is in the same order of

v∆σNLO [10−8 GeV−2]
pcm [GeV] dipole method phase space slicing

(
∆σNLO

dipole −∆σNLO
PSS

)
/∆σNLO

PSS [%]
10 0.05186 0.05096 1.8

100 0.04543 0.04446 2.2

250 0.02594 0.02569 1.0

500 0.00977 0.00985 −0.8

Table 5.3: Comparison of the O(αs) QCD corrections to the process χ̃0
1t̃1 → th0 between the

dipole and the phase space slicing (PSS) method.

magnitude as in [29].
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5.6.2 Processes with a gluon in the final state

t̃1

g

χ̃0
1

t

g

pb

pa

p2

p1

p3 t̃1

Q

χ̃0
1

t

Q

pb

pa p2

p1

p3

Figure 5.4: Generic real emission diagrams for the process χ̃1
0t̃1 → tg.

At NLO the two real emission processes shown in fig. 5.4 contribute to χ̃1
0t̃1 → tg. Besides

the emission of another gluon also the decay of gluon into a pair of massless quarks leads to
additional collinear divergences which cancel those singularities that appear through massless
quarks running in a loop within the virtual corrections. In DM@NLO the first four quark flavours
Nf = 4 are considered massless to avoid quasi-collinear divergences (large logarithms) which
compromise the numerical stability.

For a process involving three coloured particles the different colour projections fully factorize
in terms of the associated Casimirs and it is not necessary to calculate any colour-correlated
tree amplitude thanks to the relation

2T2 ·T3 |1, 2, 3〉 =
(
T2

1 −T2
2 −T2

3

)
|1, 2, 3〉 (5.158)

which holds analogously for T1 ·T3 and T1 ·T2. The factorization formula yields a total of
ten dipoles to compensate all infrared divergences in the three-particle phase space

D31,2 =
1

2p1 · p3
CA

2CF
〈Vg3t1,2〉|M2 (pb, p̃31, p̃2) |2 (5.159)

D21,3 =
1

2p1 · p2
CA

2CF
〈Vg2t1,3〉|M2 (pb, p̃21, p̃3) |2 (5.160)

D23,1 =
1

2p2 · p3
1

2
〈µ|Vg2g3,1|ν〉Tµν (pb, p̃1, p̃23) (5.161)

Db
23 =

1

2p2 · p3
1

x23,b

1

2
〈µ|Vb

g2g3 |ν〉Tµν (p̃b, p1, p̃23) (5.162)

Db
31 =

1

2p1 · p3
1

x31,b

(
1− CA

2CF

)
〈Vb

g3t1〉|M2 (p̃b, p̃31, p2) |2 (5.163)

Db
21 =

1

2p1 · p2
1

x21,b

(
1− CA

2CF

)
〈Vb

g2t1〉|M2 (p̃b, p̃21, p3) |2 (5.164)

Db3
2 =

1

2pb · p3
1

x32,b

CA

2CF
〈Vt̃1,bg3

2 〉|M2 (p̃b3, p1, p̃2) |2 (5.165)

Db2
3 =

1

2pb · p2
1

x23,b

CA

2CF
〈Vt̃1,bg2

3 〉|M2 (p̃b2, p1, p̃3) |2 (5.166)

Db3
1 =

1

2pb · p3
1

x31,b

(
1− CA

2CF

)
〈Vt̃1,bg3

1 〉|M2 (p̃b3, p̃1, p2) |2 (5.167)

Db2
1 =

1

2pb · p2
1

x21,b

(
1− CA

2CF

)
〈Vt̃1,bg2

1 〉|M2 (p̃b2, p̃1, p3) |2 (5.168)

48



with the tree level matrix element |M2

(
pt̃1 , pt, pg

)
|2. The tensor Tµν corresponds to the

LO squared amplitude where the polarization vector εµλ (p̃ij) of the emitter gluon has been
amputated. To cancel the collinear divergences from the production of Nf massless quark-
antiquark pairs the dipoles

D23,1 =
1

2p2 · p3
1

2
〈µ|VQ2Q3,1

|ν〉Tµν (pb, p̃23, p̃1) (5.169)

Db
23 =

1

2p2 · p3
1

x23,b

1

2
〈µ|Vb

Q2Q3
|ν〉Tµν (p̃b, p1, p̃23) (5.170)

are needed. Due to different kinematics it is no longer possible to give a single set of ”dipole
Mandelstams” for all dipoles compared to χ̃1

0t̃1 → th0. However, one can group together
dipoles with the same kinematics and form the associated invariants s̃, t̃ and ũ which is done
in table 5.4.

Db
21, Db2

1 Db
31, Db3

1 Db
23, Db2

3 , Db3
2

s̃ = (p̃b + pa)
2 s̃ = (p̃b + pa)

2 s̃ = (p̃b + pa)
2

t̃ = (p̃b − p3)
2 t̃ = (p̃b − p2)

2 t̃ = (pa − p1)
2

ũ = (pa − p3)
2 ũ = (pa − p2)

2 ũ = (p̃b − p1)
2

D31,2 D21,3 D23,1

s̃ = (pa + pb)
2 s̃ = (pa + pb)

2 s̃ = (pa + pb)
2

t̃ = (pb − p̃2)
2 t̃ = (pb − p̃3)

2 t̃ = (pa − p̃1)
2

ũ = (pa − p̃2)
2 ũ = (pa − p̃3)

2 ũ = (pb − p̃1)
2

Table 5.4: ”Dipole Mandelstam invariants” for six different kinematical configurations that
can be distinguished for the process χ̃1

0t̃1 → tg.

For the g → QQ dipoles D23,1 and Db
23 in eqs. (5.169) and (5.170) the same dipole Mandelstam

variables apply as for their g → gg counterparts. Since we compute a sufficiently inclusive
cross section, it is not necessary to evaluate the helicity correlation for the dipoles which
involve a gluon emitter explicitly. For example, the factorization

D23,1 =
1

2p2 · p3
1

2
〈Vg2g3,1〉|M2 (pb, p̃1, p̃23) |2 (5.171)

in terms of the averaged splitting function leads to the same results as using eq. (5.161).
Compared to the Higgs in the final state, this real emission process features two identical
particles in the final state. That’s why each real emission diagram with two gluons in the final
state carries an additional Bose symmetry factor S3 = 1

2 . In order to construct the auxiliary
matrix element for the virtual corrections from the dipoles, we have to count the symmetry
factors for the transition from two to one gluon3. The dipoles that are related through the
exchange of an emitted gluon result in the same integrated dipole. Thus, the symmetry factor
S3 gets cancelled in all cases except for the dipoles describing g → gg splitting D23,1 and
Db

23.

3The counting of symmetry factors for the general case of going from m + 1 to m partons is discussed
extensively in [28].
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Since this process furnishes double poles, another important aspect is the definition of the
poles. In DM@NLO every pole is defined with the prefactor cε = (4π)εΓ(1 + ε) which leads to
an additional finite term in the presence of double poles through the expansion

1

Γ(1− ε)Γ(1 + ε)
= 1− π2ε2

6
+O

(
ε3
)
. (5.172)

We are now ready to construct the auxiliary matrix element that cancels the infrared diver-
gences of the virtual one-loop correction

|MA
2→2|2 =

g2s
16π2

|M2|2
[
CA

(
2V(S) (s12,mt, 0; ε) + V(NS)

g (s12, 0,mt;κ) + V(NS)
t (s12,mt, 0)

)
+Γg(ε) + γg ln

(
µ2

sjk

)
+ γg +Kg + CA

(
1

CF
Γt(ε) +

3

2
ln

(
µ2

s12

)
+ 5− 5π2

6

))
+
g2s
2π

|M2|2
[
1

4

(
J t̃1;S
gg (t; ε) + J t̃1;NS

gg (t)− CAπ

12
− CA

12π

)
+
Nf

2

(
J t̃1;S
QQ

+ J t̃1;NS
QQ

)
+
CA

2CF

(
Ĵ t̃1g;S
g (t; ε) + Ĵ t̃1g;NS

g (t)
)
+

(
1− CA

2CF

)(
J t̃1;S
gt (u; ε) + J t̃1;NS

gt (u)

+J t̃1g;S
t (u; ε) + J t̃1g;NS

t (u)
)]

(5.173)

where s12 = s −m2
t and s, t and u are the usual Mandelstam variables. The first part of

eq. (5.173) corresponds to the case where emitter and spectator both are from the final state
which is covered in [35]. The associated expanded expressions including the conventional
prefactor cε are

V(S) (s12,mt, 0; ε) =
1

2

[
1

ε2
+

1

ε
ln

(
µ2

s12

)
+

1

2
ln2
(
µ2

s12

)
− π2

6

)
+

1

2

[
1

ε
+ ln

(
µ2

s12

)]
× ln

(
m2

t

s12

)
− 1

4
ln2
(
m2

t

s12

)
− π2

12
− 1

2
ln
(s12
s

)[
ln

(
m2

t

s12

)
+ ln

(
m2

t

s

)]
(5.174)

V(NS)
t (s12,mt, 0) =

3

2
ln
(s12
s

)
+
π2

6
− Li2

(s12
s

)
− 2 ln

(s12
s

)
− m2

t

s12
ln

(
m2

t

s

)
(5.175)

V(NS)
g (s12, 0,mt;κ) =

γg
CA

(
ln
(s12
s

)
− 2 ln

(√
s−mt√
s

)
− 2mt√

s+mt

)
+
π2

6

− Li2

(s12
s

)
+

(
κ− 2

3

)
m2

t

s12

((
2Nf

TF
CA

− 1

)
ln

(
2mt√
s+mt

))
(5.176)

with

γg =
11

6
CA − 2

3
TFNf (5.177)

Kg = CA

(
67

18
− π2

6

)
− 10

9
TFNf (5.178)

Γt (ε) = CF

(
1

ε
+

1

2
ln

(
m2

t

µ2

)
− 2

)
(5.179)
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Γg(ε) =
γg
ε

− CA

6
. (5.180)

The second part in eq. (5.173) covers final-state emission with an initial spectator and vice
versa. The terms CA

6 in eq. (5.180) and CA
12π in eq. (5.173) correspond to SUSY-restoring

counterterms which transform the CDR result to DRED and are provided in [35]. For the
remaining finite parts given by the different ”plus”-distributions we have to distinguish between
two cases. The case of a gluon acting as emitter or spectator

|MA
plus,1|2 =

g2s
2π

|M2

(
P 2, Q2

)
|2θ(x− x0)

(
CA

2CF

[
Ĵ t̃1g
g

(
P 2, Q2

)]
+
+

1

4

[
J t̃1
gg

(
P 2, Q2

)]
+

+
Nf

2

[
J t̃1
QQ

(
P 2, Q2

)]
+

)
(5.181)

where Q2 is related to the Mandelstam variable t and the case of the top acting as emitter or
spectator

|MA
plus,2|2 =

g2s
2π

|M2

(
P 2, Q2

)
|2θ(x− x0)

(
1− CA

2CF

)([
J t̃1
gt

(
P 2, Q2

)]
+

+
[
J t̃1g
t

(
P 2, Q2

)]
+

)
(5.182)

where Q2 is related to the invariant u. In summary, the three different contributions to the
total auxiliary cross section are

∫
dσA =

1

2NcF

[∫
dΦ2 (cosϑ) |MA

2→2|2 +
∫ (√

s−mt
)2

0

dP 2

2π

∫
dΦ2

(
P 2, Q2

)
|MA

plus,1|2

+

∫ s

m2
t

dP 2

2π

∫
dΦ2

(
P 2, Q2

)
|MA

plus,2|2
]
. (5.183)

Figure 5.5a shows the comparison between the dipole and the and the phase space slicing
method. It becomes obvious that there is a large deviation between both methods. In order to
ensure a correct implementation of the dipole method as well as that the integrated versions
of the dipoles are correct up to additional finite terms that are independent of P 2

0 besides
the non-trivial check of infrared convergence, the dependence of the result on the artificially
introduced parameters x0 and P 2

0 is examined in figs. 5.5b and 5.5c. It turns out that the
result is independent of both parameters.
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(a) Neutralino-stop coannihilation cross section σv with a top and a gluon in the final state for the
example scenario defined in table 5.1. The leading order result is computed with micrOMEAGs
(MO) and DM@NLO (tree). The fixed-order NLO results are calculated with the phase space slicing
method (PSS) and the dipole method (dipole). The lower panel shows the ratio of different
cross-sections indicated through the second item in the legend.
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Figure 5.5: Comparison of the phase space slicing method with the dipole formalism for the
process χ̃0

1t̃1 → tg and dependence of the results on the parameters x0 and P 2
0 .
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6 Colour bases

The non-abelian nature of (SUSY)-QCD complicates the evaluation of processes involving
coloured particles. In order to make a systematic treatment of the colour factors feasible, the
idea of colour bases is introduced in this chapter. As the construction of these bases is rather
heavy on group and representation theory, some definitions and theorems are repeated in the
first section. More information on group theory can be for example found in [36, 37, 38].

6.1 Group and representation theory essentials
Definition 6.1.1 (Group). A group (G, ◦) is a set G together with an operation ◦ fulfilling
the following axioms:

• Closure: g1, g2 ∈ G→ g1 ◦ g2 ∈ G

• Associativity: (g1 ◦ g2) g3 = g1 (g2 ◦ g3) ∀g1, g2, g3 ∈ G

• Identity element: ∃e ∈ G : g ◦ e = e ◦ g = g ∀g ∈ G

• Inverse element: ∀g ∈ G ∃g−1 : g ◦ g−1 = g−1 ◦ g = e

Definition 6.1.2 (Lie group). A group G which is at the same time a (smooth) manifold is
called Lie group if the group operations

1. G×G→ G, (g1, g2) 7→ g1g2

2. G→ G, g 7→ g−1

are both smooth maps.

The special properties of a Lie group allow to approximate each group element by an in-
finitesimal variation of its identity element. Studying this variation leads to the group’s Lie
algebra.

Definition 6.1.3 (Lie algebra). A Lie algebra is an algebra g where the bilinear product [·, ·],
the Lie bracket, is no longer associative and obeys the following two additional requirements
for all elements T a, T b, T c ∈ g:

• Skew symmetry:
[
T a, T b

]
= −

[
T b, T a

]
• Jacobi identity:

[
T a,

[
T b, T c

]]
+
[
T c,
[
T a, T b

]]
+
[
T b, [T c, T a]

]
= 0 .

The connection between Lie group and Lie algebra becomes evident through the matrix
exponential

g = exp (iαaT
a) . (6.1)

Definition 6.1.4 (Representation of a group). A representation D(g) of a group (G, ◦) acting
on a vector space V (referred to as representation space) is a group homomorphism

D : G→ GL(V ), g 7→ D(g) , (6.2)
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i.e. the function D fulfills D(g1 ◦ g2) = D(g1)D(g2).

Definition 6.1.5 (Representation of a Lie algebra). A representation π(T a) of a Lie algebra
g acting on a vector space V is a Lie algebra homomorphism

π : g → gl(V ), T a 7→ π(T a) , (6.3)

i.e. π respects the Lie bracket of the Lie algebra

π
([
T a, T b

])
=
[
π (T a) , π

(
T b
)]

∀ T a, T b ∈ g . (6.4)

Two important representations that exist for all Lie algebras are the fundamental or defining
representation where every element of the algebra is represented by itself π (T a) = T a and
the adjoint representation where the Lie algebra acts on itself.

Definition 6.1.6 (Adjoint representation). For a Lie algebra g the linear map adTa : g → g
given by

adTa

(
T b
)
=
[
T a, T b

]
, T a, T b ∈ g (6.5)

defines the adjoint representation T a 7→ adTa .

Definition 6.1.7 (Generators and structure constants). Let {T a} be a basis for a finite-
dimensional Lie algebra g. The constants fabc satisfying[

T a, T b
]
= ifabcT

c (6.6)

are uniquely defined for the given basis and are called structure constants. The elements T a

are called generators of the corresponding group G = exp (g).

With the notion of structure constants the adjoint representation can be directly read off the
commutator (adTa)cb = F a

cb := ifabc.

Definition 6.1.8 (Invariant subspace). A subspace W ⊂ V is an invariant subspace if
D(g)W ⊆W for all g in a group G.

Definition 6.1.9 (Reducible and irreducible representations). A representation D(g) is
reducible if the representation space contains an invariant subspace. Otherwise the representa-
tion is irreducible and the associated subspace itself is called irreducible. A representation is
fully reducible if the representation space V can be decomposed into a direct sum of irreducible
subspaces V =

⊕
i Vi, where all the subspaces Vi are invariant under D(g).

An irreducible representation is usually abbreviated as irrep.

Theorem 6.1.1 (Weyl’s theorem). LetG be a compact Lie group, then every finite-dimensional
representation of G is fully reducible.

Examples of compact Lie groups are SU(N) and U(N).

Theorem 6.1.2 (Schur’s lemma).

1) Let D1, D2 be two irreducible representations of a group G on respective vector spaces
V1 and V2. Let H : V1 → V2 be a linear operator such that HD1(g) = D2(g)H ∀g ∈ G .
Then either H = 0 or H is not singular and it holds D2(g) = HD1(g)H

−1 ∀g ∈ G.In
the latter case, the representations D1 and D2 are equivalent and H is the similarity
transformation.
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2) Let D(g) be an irreducible representation of a group G on a finite-dimensional vector
space V . Let H : V → V be a linear operator such that D(g)H = HD(g) ∀g ∈ G , then
H is a multiple of the identity element on V .

Definition 6.1.10 (Clebsch-Gordan coefficients). Let D(α)(g) and D(β)(g) be two irreps
of a group element g acting on the respective vector spaces V (α) and V (β) with bases{
v
(α)
1 , ..., v

(α)
d(α)

}
and

{
v
(β)
1 , ..., v

(β)
d(β)

}
. In addition, let

{
D(γ)

}
be a set of inequivalent irreps

labelled by γ acting on the respective vector spaces W (γ) with basis
{
w

(γ)
1 , ..., w

(γ)
d(γ)

}
. For

each label γ the dimension of the associated representation space is denoted by d(γ) whereas
the representation itself is referred to as Rγ . The decomposition

D(α) ⊗D(β) =
⊕
γ

aαβγ D(γ), aαβγ ∈ N (6.7)

of the tensor product representation into the direct sum of irreps is called Clebsch-Gordan
series. The spaces W (γ) form a d(γ)-dimensional subspace of V (α) ⊗ V (β) invariant under the
irrep D(γ)(g). The coefficients aαβγ give the number of times the irrep occurs in the series and
are referred to as outer multiplicity or just multiplicity. This decomposition induces a basis
transformation

v
(α)
i ⊗ v

(β)
j =

∑
γ

aαβ
γ∑
nγ

d(γ)∑
k=1

w
(γ)
k C

γ,nγ ;k
αβ;ij (6.8)

or alternatively

w
(γ)
k =

d(α)∑
i=1

d(β)∑
j=1

C
γ,nγ ;k
αβ;ij v

(α)
i ⊗ v

(β)
j (6.9)

where γ runs over all irreps contained in the decomposition and nγ refers to n-th occurrence
of the irrep γ. The (complex) coefficients Cγ;k

αβ;ij are called Clebsch-Gordan (CG) coefficients
or CG matrices. If the outer multiplicities take only the values aαβγ = 0, 1 the group in simply
reducible. For simplicity, every group is in general considered simply reducible such that the
label nγ can be omitted.

For the decomposition of a tensor product of an arbitrary number n of basis vectors

vα1
i1

⊗ ...⊗ vαn
in

=
∑
γ

d(γ)∑
k=1

w
(γ)
k Cγ;k

{α};{i} (6.10)

the multi-index notation {i} = i1...in is suitable. Following this notation, the orthonormality
relations ∑

γ,k

Cγ;k∗
{α};{i}C

γ;k
{α},{j} = δi1j1 ...δinjn (6.11)

∑
{i}

Cγ′;k′∗
{α};{i}C

γ;k
{α};{i} = δγγ′δkk′ (6.12)

in the case of orthonormal bases of the representation spaces appear by expressing the
Kronecker symbols on the right-hand side through scalar products of the corresponding basis
elements and applying eq. (6.8) and eq. (6.9) afterwards.
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To derive multiplicities aαβγ a few methods have been developed such as Young tableaux or
the notion of characters. A convenient alternative is the usage of a computer program such
LiE [39]. The method that we will use in the following is the tensor method. As an example
consider a tensor T ij that transforms under a group element R of SO(3)

T ij → T ′ij = RikRjlT kl. (6.13)

Another possibility to represent T ij is to arrange all elements in a column
(
T 11 T 23 . . . T 33

)T .
This column vector then transforms under a nine dimensional representation D(R) of R. To
find out whether this representation is reducible or not we have to find components of T ij

that transform among themselves. One irreducible subspace that is easy to discover is the
trace T kk since

T ii → RikRilδklT kl = Rik
(
RT
)li
T kl = δklT kl = T kl. (6.14)

This trace furnishes a one dimensional representation as their is one independent component.
After taking out the trace we are left with a traceless tensor

Sij = T ij − 1

3
δijTmm. (6.15)

The other subspaces that can be found in Sij emerge from symmetrization of the indices.
Therefore, consider thy antisymmetric tensor Aij = S[ij] = Sij −Sji. Under SO(3) the tensor
Aij transforms into itself

Aij → A′ij = S′ij − S′ji = RikRjlSkl −RjkRilSkl = RikRjlSkl −RjlRikSlk = RikRjlAij .
(6.16)

The number of independent components of Aij are 32 − 3/2 = 3 which means that we have a
three dimensional representation. After taking Aij out of Sij we are left with a symmetric
tensor

Sij =
1

2

(
Sij + Sji

)
+

1

2
Aij . (6.17)

which is denoted by S{ij} = Sij +Sji and forms also in invariant subspace with 32− 3− 1 = 5
components where the proof goes as for Aij . Thus, we obtain the decomposition

3⊗ 3 = 1⊕ 3⊕ 5 . (6.18)

where the representations are denoted by their respective dimensions. If we have a complex
group such as SU(N), we have to distinguish between vectors ψi and their dual vectors
ψi∗ = ψi, i.e. between upper and lower indices. By using this notation only traces between
upper and lower indices form SU(N) invariant subspaces. This short introduction to the tensor
method should be sufficient for the construction of the color bases. For more information the
reader is referred to [38].

6.2 Colour space

In order to lay down a clear mathematical foundation for the management of colour in
(SUSY)-QCD, the notion of colour space is introduced first. Considering only the colour of
particles, i.e. ignoring all other quantum numbers, squarks/quarks are elements of V = CNC ,
whereas anti-squarks/quarks live in the dual space V = CNC∗. As gluinos/gluons transform
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under the adjoint representation of SU (NC) they are defined as states in A = CN2
C−1. A

SUSY-QCD amplitude is in general associated with ng gluinos/gluons, nq squarks/quarks
and nq anti-squarks/-quarks. The colour space associated with this amplitude is then defined
through the tensor product C = V

⊗nq ⊗ V ⊗nq ⊗ A⊗ng . An element c ∈ C is referred to as
the colour structure of the amplitude. A natural metric on C is induced through the scalar
product

〈c1|c2〉 =
∑

a1,...,an

c∗a1,...,an1 ca1,...,an2 (6.19)

which is given by summing over all external color indices.

6.3 Trace bases

The simplest form of colour bases are trace bases [40, 41]. They are obtained by rewriting the
structure constants fabc trough the generators in the fundamental representation

ifabc =
1

TF
Tr
([
T a, T b

]
T c
)

(6.20)

and then ”contracting” all gluon indices with the Fierz identity given in eq. (A.35). After
this only linear combinations of products of traces over the indices of external gluons remain
or products of the form (T a1 . . . T an)ij with indices a1, . . . , an of external gluons and i, j of
external quarks/squarks.

6.4 Orthogonal multiplet bases

Trace bases have the disadvantage of being in general over-complete and non-orthogonal.
By choosing an orthogonal color basis scattering amplitudes can be subdivided into smaller,
separately gauge invariant pieces. Moreover, in the context of resummation it becomes
necessary to associate amplitudes with irreducible subspaces in colour space invariant under
SU(3) since particles forming a colour octet repel each other whereas singlets are likely to
form bound states.

6.4.1 Construction of the bases

The construction of orthogonal multiplet bases follows mainly the approach outlined in [42].
To start with, consider a scattering amplitude M{i},{f} describing a process with n coloured
particles in the initial state with colour indices {i} and N coloured particles in final state
with indices {f}. According to Weyl’s theorem the tensor product of initial and final state
representations can be decomposed into irreducible representations

Rα1 ⊗ ...⊗Rαn =
⊕
γ

Rγ Rβ1 ⊗ ...⊗RβN
=
⊕
Γ

RΓ . (6.21)

For further considerations it is useful to combine all equivalent irreducible representations
that appear in both decompositions in eq. (6.21) into pairs Pj = (Rγ ,RΓ) where the index j
denotes all allowed combinations.
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Using the orthogonality relation in eq. (6.11) the amplitude can be decomposed into irreducible
representations

M{i},{f} =
∑

γ,Γ,ki,kf

M{i′},{f ′}C
γ;ki
{α};{i}C

γ;ki∗
{α};{i′}C

Γ;k∗f
{β};{f}C

Γ;kf
{β};{f ′} (6.22)

=
∑

γ,Γ,ki,kf

MγΓ
kikf

Cγ;ki
{α};{i}C

Γ;k∗f
{β};{f} . (6.23)

The coefficients MγΓ
kikf

are called partial amplitudes or subamplitudes and form themselves a
linear map MγΓ : V (Γ) → V (γ). Each partial amplitude must conserve colour, i.e. obey the
transformation

MγΓ = D(γ)−1MγΓD(Γ) . (6.24)

Hence, according to Schur’s lemma the representations Rγ and RΓ are equivalent in the case
of a non-zero subamplitude, i.e. initial and final state belong to one of the pairs Pj and are of
the form MγΓ

kikf
= MγΓδkikf . Therefore, the final decomposition of the amplitude reads

M{i},{f} =
∑
j

M(j)c
(j)
{i},{f} (6.25)

with the basis elements
c
(j)
{i},{f} =

∑
k

Cγ;k
{α};{i}C

Γ;k∗

{β};{f} . (6.26)

That the c(j) are indeed orthogonal with respect to the scalar product defined in eq. (6.19)
can be verified using eq. (6.12).

6.4.2 Calculation of Clebsch-Gordan coefficients

In order to determine the Clebsch-Gordan coefficients which are relevant for the process
q̃q̃∗ → gg, we have to decompose the product spaces of the initial and final states into
irreducible representations first. This is achieved with the tensor method as it is only a small
step from there to the CG coefficients. We start with the initial state where we have a squark
and an antisquark. Therefore we have to decompose the product of a vector ψi and a dual
vector χj . The only invariant subspace that we can take out is the trace Ψiχi which yields
the decomposition

ψiχj =

(
ψiχj −

1

N
ψiχi

)
+

1

N
Ψiχi. (6.27)

The first part furnishes an eight dimensional representation as their are eight independent
components whereas the second part corresponds with one independent component to a one
dimensional representation which we can write as

3⊗ 3 = 8⊕ 1. (6.28)

An alternative notation is to denote an irreducible representation (m,n) by the number of
symmetric upper m and lower indices n such that eq. (6.28) corresponds to

(1, 0)⊗ (0, 1) = (1, 1)⊕ (0, 0). (6.29)
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A useful formula that allows to relate the dimension of a representation to the number of
indices n and m is [38]

D(m,n) =
1

2
(m+ 1)(n+ 1)(m+ n+ 2). (6.30)

If we compare eq. (6.27) to eq. (6.8), we can see that we only have to rewrite the 8 part in
terms of an object that carries an index that runs from one to eight. As

ϕi
j = ψiχj −

1

N
ψiχi (6.31)

itself is a traceless and hermitian matrix, it can be written in terms of the generators T a:

ϕi
j =

∑
a

va (T
a)ij . (6.32)

where va is a real vector with eight components. This allows to directly read of the Clebsch-
Gordan coefficients

C1
33;ij

= δij (6.33)

C8;a

33;ij
= T a

ij . (6.34)

where upper and lower indices are not distinguished for a clearer notation. For two gluons in
the final state we have to decompose the product of two tensors ψi

j and χk
l . As we usually label

gluons with indices that run from 1 to N2
c −1, it is more practical to decompose both tensors as

in eq. (6.32) and turn the generators around using the trace orthonormality Tr
(
T aT b

)
= 1

2δ
ab

and write
vawb = (T a)ji (T

b)lkψ
i
jχ

k
l . (6.35)

For the decomposition into invariant subspaces we can first take out the two traces

ϕi
l = ψi

nχ
n
l − 1

N
δilψ

m
n χ

n
m (6.36)

φkj = ψn
j χ

k
n − 1

N
δkjψ

m
n χ

n
m (6.37)

which gives

ψi
jχ

k
l = T ik

jl +
1

N

(
ϕi
lδ

k
j + φkj δ

i
l −

2

N
δilδ

k
jψ

m
n χ

n
m

)
(6.38)

and leaves as remainder the traceless tensor T ik
jl . It is possible to symmetrize ϕi

lδ
k
j and φkj δ

i
l

further by decomposing them into a symmetric and an antisymmetric part with respect to the
two ”gluon” indices a and b. This symmetry becomes more obvious by noting that (φkj )∗ = ϕk

j

which allows to decompose them as

ϕi
l =

∑
c

(vc + iwc) (T
c)il (6.39)

φkj =
∑
c

(vc − iwc) (T
c)kj (6.40)
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with two real vectors vc and wc. Contracting both with the generators (T a)ji (T
b)lk gives

(T a)ji (T
b)lk

(
ϕi
lδ

k
j + φkj δ

i
l

)
=
∑
c

vc

(
Tr
(
T aT bT c

)
+Tr

(
T bT aT c

))
=

1

2

∑
c

vc dabc (6.41)

(T a)ji (T
b)lk

(
ϕi
lδ

k
j − φkj δ

i
l

)
=
∑
c

iwc

(
Tr
(
T aT bT c

)
− Tr

(
T bT aT c

))
=

1

2

∑
c

iwcifabc.

(6.42)

This shows that eq. (6.41) is indeed symmetric in the indices a and b and furnishes the
irreducible representation 8S whereas eq. (6.42) is antisymmetric in a and b and corresponds
to 8A. As a next step we can antisymmetrize T ik

lj in its upper indices Aik
jl = T

[ik]
jl . The tensor

Aik
jl is now antisymmetric in its upper indices and without any further massaging already

symmetric in its lower indices. The latter part can be seen by defining Bmjl = εmikA
ik
jl . As

we claim that Bmjl is symmetric in j and l, the contraction Bmjlε
njl must vanish. With the

help of the identity
εmikε

njl ∼ δnmδ
j
i δ

l
l ± permuatations (6.43)

and the fact that Aik
jl is traceless, we get εmikε

njlAik
jl = 0. Inserting three symmetric lower

indices into eq. (6.30) tells us that Bmjl corresponds to the irreducible representation 10.
The same steps can be repeated for B̃mik = εmjlÃ

ik
jl with Ãik

jl = T ik
[jl] which show that B̃mik

furnishes the 10 representation. After taking Aik
jl and Ãik

jl out of T ik
lj only a symmetric tensor

with two upper and lower indices remains which is the irreducible 27. Thus, we arrive at

8⊗ 8 = 1⊕ 8S ⊕ 8A ⊕ 10⊕ 10⊕ 27 (6.44)

or
(1, 1)⊗ (1, 1) = (0, 0)⊕ (1, 1)⊕ (1, 1)⊕ (0, 3)⊕ (3, 0)⊕ (2, 2). (6.45)

For the eight dimensional subspace we can already read of the Clebsch-Gordan coefficients
from eqs. (6.41) and (6.42)

C8S ;c
88;ab = dabc (6.46)

C8A;c
88;ab = ifabc . (6.47)

In order to obtain the Clebsch-Gordan coefficients for the 1 representation in eq. (6.38), we
only have to compute (T a)ji (T

b)lkδ
i
lδ

k
j = Tr

(
T aT b

)
= 1

2δab which gives

C1
88;ab = δab. (6.48)

With these Clebsch-Gordan coefficients we have all we need for the construction of the bases
as the there are three possible combinations of equivalent initial and final state representations

Pi ∈ {(1,1) , (8,8A) , (8,8S)}. (6.49)

The corresponding orthogonal basis elements are

c
(1)
st,ab = C1

33;st
C1
88;ab = δstδab (6.50)

c
(8S)
st,ab = C8;c

33;st
C8S ;c
88;ab = dabcT

c
st (6.51)

c
(8A)
st,ab = C8;c

33;st
C8A;c
88;ab = ifabcT

c
st (6.52)
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with the norms

||c(1)||2 = N
(
N2 − 1

)
||c(8S)||2 = CF

(
N2 − 4

)
(6.53)

||c(8A)||2 = NCACF .

The same basis elements are found in [42].
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7 Phenomenology of squark annihilation

This thesis focusses on the case where the lightest stop is nearly mass degenerate with the
lightest neutralino. There are several theoretical and phenomenological reasons why a light
stop could be realized as the NLSP in nature. First, it is well studied that a light stop predicts
within the MSSM the mass of the CP-even Higgs as measured at the LHC [43, 44]. Second, a
light stop which is close in mass to the neutralino avoids the exclusion regions of the LHC
[45]. Third, it turns out that the cross section for neutralino annihilation alone is too small to
account for the whole relic density. Therefore, the annihilation rate needs to be enhanced by
another mechanism which could be efficient coannihilation [46].

7.1 Squark annihilation into gluons at leading order

To prepare for the subsequent discussion of higher order corrections to squark annihilation into
gluons, it is useful to get some insight into the nature of SUSY-QCD scattering amplitudes
and show the computational techniques used to arrive at the tree level cross section. The
Feynman diagrams for the leading order process are displayed in fig. 7.1 along with the naming
convention employed for momenta and other indices relevant to the process.

q̃αi,t

q̃∗βj,s

gµa (λ1)

gνb (λ2)

p1

p2

k1

k2

Figure 7.1: Tree level Feynman diagrams for the annihilation of a squark-antisquark pair into
two gluons. Four-momenta, colours (s,t,a,b), sfermion indices (i,j), flavours (α,β)
and polarizations (λ1,λ2) are explicitly labelled in the first diagram. The same
naming convention is used for the 2 → 2 NLO corrections1.

The second and third diagram are identical except for the interchange of the two gluons
in the final state. Both diagrams have to be taken into account since the two gluons are
indistinguishable from each other. For the same reason, an additional Bose symmetry factor

1In the real corrections appears a third gluon gρc (λ3) with momentum k3.
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S2 = 1/2! enters into the final expression for the total cross section. The different diagrams
are labelled according to which of the Mandelstam variables

s = (p1 + p2)
2 = (k1 + k2)

2

t = (k1 − p1)
2 = (k2 − p2)

2 (7.1)
u = (k2 − p1)

2 = (k1 − p2)
2

appears in the propagator. The last diagram is special since it has no propagator but due
to its shape this kind of topology is sometimes called v-channel (or ”seagull” diagram) even
tough there exists no corresponding kinetic invariant. Because of momentum conservation, the
Mandelstam variables obey the relation s+ t+u = m2

q̃αi
+m2

q̃αj
where all external particles are

considered to be on their respective mass shell, i.e. k21 = k22 = 0 for the gluons and p21 = m2
q̃αi

,
p22 = m2

q̃αj
for the squarks. By following the Feynman rules given in appendix B and using

Feynman gauge ξ = 1, one obtains the colour decomposed amplitudes

Ms = c
(8A)
st,ab

−ig2s
s

(p2 − p1)
σ gσρ (g

ρν (k1 + 2k2)
µ − gρµ (2k1 + k2)

ν

+gµν (k1 − k2)
ρ) ε∗µ(λ1, k1)ε

∗
ν(λ2, k2) (7.2)

Mt =
1

2

(
1

Nc
c
(1)
st,ab + c

(8S)
st,ab − c

(8A)
st,ab

)
ig2s

t−m2
q̃αi

(2p1 − k1)
µ

× (2p2 − k2)
ν ε∗µ(λ1, k1)ε

∗
ν(λ2, k2) (7.3)

Mu =
1

2

(
1

Nc
c
(1)
st,ab + c

(8S)
st,ab + c

(8A)
st,ab

)
ig2s

u−m2
q̃αi

(2p2 − k1)
µ

× (2p1 − k2)
ν ε∗µ(λ1, k1)ε

∗
ν(λ2, k2) (7.4)

Mv = i

(
1

Nc
c
(1)
st,ab + c

(8S)
st,ab

)
g2sg

µνε∗µ(λ1, k1)ε
∗
ν(λ2, k2) (7.5)

for the diagrams shown in fig. 7.1. The colour decomposition into the basis elements c(R)
st,ab

derived in section 6.4.2 is straightforward through the application of the su(Nc)-identity given
in eq. (A.42) for the t- and u-channel and eq. (A.34) for the v-channel. Since each interaction
vertex that appears in the tree process preserves flavour (as one of the key assumptions of the
pMSSM) and forbids the mixing of squark mass eigenstates, the associated Kronecker deltas
δij and δαβ are excluded from the amplitudes for simplicity. As these amplitudes appear
within the perturbative expansion of the S-matrix following the LSZ reduction formula and as
there appear no fermionic fields in the associated correlation functions which could possibly
introduce relative minus signs between the individual terms, the total transition amplitude is
given by the sum of all annihilation channels

MLO = Ms +Mt +Mu +Mv. (7.6)

For the following computations it is useful to define the helicity

MLO = Mµν
LOε

∗
µ(λ1, k1)ε

∗
ν(λ2, k2) (7.7)

and colour amputated amplitudes

MLO =
∑
R

c
(R)
st,abM

(R)
LO . (7.8)
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As presented in chapter 4, a scattering amplitude involving a massless vector boson should be
invariant under the replacement ε(λ, k) → ε(λ, k) + k by the principles of gauge and Lorentz
invariance. That is, MLO should vanish if one of the polarization vectors is replaced by its
associated momentum. However, if we perform the contractions of Mµν

LO with kµ1 and kµ2
and simplify the denominators to t−m2

q̃αi
= −2p1 · k1 and u−m2

q̃αi
= −2p2 · k1, we find that

this condition is only fulfilled if the gluons lie in the physical Hilbert space and are therefore
transverse

k1,µε
∗
ν(λ2, k2)M

µν
LO = − ig2s

2s
c
(8A)
st,ab(u− t)k2 · ε∗(λ2, k2) (7.9)

ε∗µ(λ1, k1)k2,νM
µν
LO = − ig2s

2s
c
(8A)
st,ab(u− t)k1 · ε∗(λ1, k1) (7.10)

unlike in QED where the Ward identity kµMµ = 0 holds for any scattering amplitude M
independently of the polarization states of the other photons involved in the process described
by M besides εµ(λ, k). The question arises whether these findings are due to the choice of the
gauge fixing condition which manifests itself in this case only in the gluon propagator or due
to the non-Abelian nature of the theory. To get to the bottom of this question, let us replace
the gluon propagator in Feynman gauge by the one in lightcone gauge given in eq. (B.1)

−g
σρ

s
→ Πσρ

lightcone(k1 + k2, n) (7.11)

which yields for eqs. (7.12) and (7.13)

k1,µε
∗
ν(λ2, k2)M

µν
LO = − ig2s

2s
c
(8A)
st,ab

(
u− t+

(p2 − p1) · n
(p1 + p2) · n

s

)
k2 · ε∗(λ2, k2) (7.12)

ε∗µ(λ1, k1)k2,νM
µν
LO = − ig2s

2s
c
(8A)
st,ab

(
u− t− (p2 − p1) · n

(p1 + p2) · n
s

)
k1 · ε∗(λ1, k1) (7.13)

where the only nonzero additional contribution comes from the nσ(k1 + k2)
ρ term whereas all

other drop out through (p2 − p1) · (p1 + p2) = 0. This shows that also in the axial gauge the
amplitude with one polarization vector being substituted with its associated momentum only
vanishes if the other gluon is physical.
In order to include only the physical states in the transition probability (the amplitude
squared), there are two possibilities. Within both approaches MLO is kept in Feynman gauge.
The first possibility is to explicitly sum only the transverse polarizations with the help of
eq. (4.20) which holds as an algebraic relation independently of the chosen gauge fixing
condition where it is useful to choose the arbitrary vector n as the respective momentum of
the other gluon. Since k1 and k2 are lightlike, this particular choice for n corresponds to the
polarization sum as obtained from the lightcone gauge fixing condition. Even though in cases
where the quantization itself is done in the covariant Feynman gauge, this approach towards
the determination of the squared amplitude is sometimes referred to as ”working lightcone
gauge”.
The second possibility follows the ”spirit” of BRST quantization. Thereby, all polarizations
are included by using −gµν for the polarization sum as in QED and the cancellation of the
unphysical degrees of freedom then proceeds through the inclusion of ghosts. The second
option will be explained in more detail in the following. The basic approach is to derive a set
of Slavnov-Taylor identities which relate the amplitude Mµν

LO to ghost amplitudes which are
then used to replace the longitudinal polarizations εµ(L, k) ∼ kµ appearing in the polarization
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tensor dµν(k1, k2). The first step is to derive the mentioned identities. For this, consider the
four-point Green’s function

〈Ω|T {q̃ (x1) q̃∗ (x2) ca (y1)Aν
b (y2)} |Ω〉 = 0 (7.14)

which vanishes because there must always appear an even number of ghosts and anti-ghosts
in a scattering process by conservation of the ghost number 2. Application of the BRS-
transformations yields

〈Ω|T {(δB q̃ (x1))q̃∗ (x2) ca (y1)Aν
b (y2)} |Ω〉

+ 〈Ω|T {q̃ (x1) (δB q̃∗ (x2))ca (y1)Aν
b (y2)} |Ω〉

+ 〈Ω|T {q̃ (x1) q̃∗ (x2) (δBca (y1))Aν
b (y2)} |Ω〉

− 〈Ω|T {q̃ (x1) q̃∗ (x2) ca (y1) δBAν
b (y2)} |Ω〉 = 0 . (7.15)

Let us have a closer look at the first correlation function in more detail

〈Ω|T {(δB q̃t (x1))q̃∗s (x2) ca (y1)Aν
b (y2)} |Ω〉

= iT a
tu 〈Ω|T {ca(x1)q̃u (x1) q̃∗s (x2) ca (y1)Aν

b (y2)} |Ω〉 . (7.16)

As we wish to compute S-matrix elements from these Green’s functions, they are multiplied
with the inverse propagators of the external fields within the LSZ reduction formula which for
q̃t(x1) amounts to i(m2

q̃ − p21). After the transformation there are two fields with the position
x1 which means that only the sum of the momenta of q̃t(x1) and ca(x1) yields the momentum
p1. Consequently, there will not appear a propagator i

p21−m2
q̃

and taking the on-shell limit
p21 → m2

q̃ will set the whole contribution from this Green’s function to the scattering amplitude
to zero. The same considerations apply to the second term as well as the additional field
introduced through the transformation of the gluon field within the covariant derivative in
eq. (4.29). A similar line of arguments can be found in [47]. After performing the remaining
transformations while keeping the LSZ formula in the back of our heads, we arrive at

〈Ω|T {q̃(x1)q̃∗(x1)∂y1,µAµ
a (y1)A

ν
b (y2)) |Ω〉

= −〈Ω|T (q̃q̃∗ca (y1) ∂y2,νcb (y2)) |Ω〉
= 〈Ω|T (q̃q̃∗∂y2,νcb (y2)) ca (y1) |Ω〉 (7.17)

where the anti-ghost field was commuted to the right3 in order to ensure that all Wick
contractions can be performed without introducing a new overall minus sign that would
contradict the Feynman rules. The same steps apply to the four-point function

〈Ω|T {q̃ (x1) q̃∗ (x2)Aµ
a (y1) cb (y2)} |Ω〉 = 0 (7.18)

such that its BRS-transformation gives

〈Ω|T (q̃(x1)q̃
∗(x2)A

µ
a (y1) ∂y2,νA

ν
b (y2)) |Ω〉

= 〈Ω|T (q̃(x1)q̃
∗(x1)∂y1,µca (y1) cb (y2)} |Ω〉 . (7.19)

2The ghost Lagrangian is invariant under a conformal transformation c → eθc, c → e−θc with an arbitrary
real parameter θ. The resulting conserved quantum number is the ghost number which counts every ghost
as +1 and every anti-ghost as −1 [24].

3Recall that fermionic fields anticommute within a timre-ordered product.
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As a last step we can transform both relations to momentum space via LSZ which gives us at
lowest order the two Slavnov-Taylor identities

k1,µMµν
L0 = −kν2SL0

1 (7.20)
k2,νMµν

L0 = −kµ1S
L0
2 (7.21)

where SL0
1 and SL0

2 are the leading order amplitudes associated with the two different ghost
processes. The corresponding diagrams are shown in fig. 7.2. The additional minus sign in
eqs. (7.20) and (7.21) compared to eqs. (7.17) and (7.19) comes from the antihermiticity of
the anti-ghost field.

ca

c̄b

k1

k2

c̄a

cb

k1

k2

Figure 7.2: Leading order Feynman diagrams for the amplitudes SLO
1 (left) and SLO

2 (right).

If we now use the Feynman rules for ghosts to write down the amplitudes

SLO
1 =

ig2s
s
c
(8A)
st,abk1 · (p1 − p2) =

ig2s
2s
c
(8A)
st,ab(u− t) (7.22)

SLO
2 =

−ig2s
s

c
(8A)
st,abk2 · (p1 − p2) =

ig2s
2s
c
(8A)
st,ab(u− t) (7.23)

we realize that we have already verified the two Slavnov-Taylor identities by explicit computa-
tion in eq. (7.12) and eq. (7.13). These identities can now be used to replace the longitudinal
polarizations within the sum over the transverse polarizations

2∑
λ1,λ2=1

Mµν
LOM

∗αβ
LO ε∗µ (λ1, k1) ε

∗
ν (λ2, k2) εα (λ1, k1) εβ (λ2, k2) (7.24)

= MLO
µν MLO

∗αβ

(
−gµα +

kµ2k
α
1 + kµ1k

α
2

k1 · k2

)(
−gνβ +

kν1k
β
2 + kν2k

β
1

k1 · k2

)
(7.25)

= Mµν
LOM

LO∗
µν − SLO∗

1 SLO
2 − SLO

1 SLO∗
2 = Mµν

LOM
LO∗
µν + |SLO

1 − SLO
2 |2 − |SLO

1 |2 − |SLO
2 |2

(7.26)
= Mµν

LOM
LO∗
µν − |SLO

1 |2 − |SL0
2 |2 (7.27)

where the it is easy to see from eqs. (7.22) and (7.23) that the difference of the ghost amplitudes
vanishes

SL0
1 − SL0

2 = 0. (7.28)

Thus, we have finally found that the squared amplitude at leading order can also be de-
termined by using the naive approach −gµν for the polarization sum, but it is therefore
necessary to introduce two ghost processes whose amplitudes are squared with themselves
and then subtracted. This calculation also shows that the ghost contributions receive the
same normalization factor as the actual process. Now that all physical states in the helicity
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space have been summed, the sum over the colours remains. For this purpose, the colour
normalized amplitudes

|M̂(R)|2 = ||c(R)||2|M(R)|2 (7.29)

are defined where the norms are given in eq. (6.53). The absolute value |M(R)|2 is defined to
also contain the sum over all Lorentz indices. In the last step it is necessary to perform the
phase space integration over the scattering angle ϑ to arrive at the total cross section

σ(R) =
1

F

∫
|M̂(R)|2 dΦ2 (k1, k2; pa, pb) (7.30)

with the two-particle phase space in the center-of-mass frame∫
dΦ2 (k1, k2; pa, pb) =

∫ 1

−1

1

16π
dcosϑ (7.31)

and the flux F = 4p01p
0
2v = 2

√
λ(s,m2

q̃ ,m
2
q̃) where v is the relative velocity between the two

initial squarks

v =

∣∣∣∣~pap0a − ~pb
p0b

∣∣∣∣ = |~va − ~vb| . (7.32)

In order to be able to perform the integration, the Mandelstam variables t and u are expressed
trough θ

t/u =
−s
2

+m2
q̃ ± 2 cos(ϑ)

√
s

4
−m2

q̃

√
s

4
(7.33)

such that one arrives after the integration at the colour decomposed cross sections

σ(1) =
8πα2

s

27sβ2
(β(1 + ρ) + ρ(ρ− 2) atanh(β)) (7.34)

σ(8S) =
5

2
σ(1) (7.35)

σ(8A) =
4πα2

s

9sβ2
(β(1 + 8ρ)− 3ρ(ρ+ 2) atanh(β)) (7.36)

with ρ = 4mq̃α
i /s and β =

√
1− ρ. In the context of dark matter relic abundance calculations

the quantity σv is more interesting since it appears in the thermal average 〈σeffv〉. As we have
in the CM frame

p0a =
√
p2cm +m2

q̃ = p0b =
√
s (7.37)

with the CM momentum pcm the cross section weighted with velocity is simply vσ = β/2σ.

7.2 Selection of scenarios in the pMSSM

In order to select scenarios that take into account the constraints of the most important
experimental searches for supersymmetry, the results of an analysis by the ATLAS collaboration
performed within the pMSSM are used [48]. The collaboration started with 5× 108 samples of
the pMSSM parameter space from which 300 000 viable points remain after applying exclusion
limits from ATLAS searches, requiring that the neutralino relic density is less than 0.1208 and
imposing further constraints from other precision observables such as (g − 2)µ and b → sγ.
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In order to find scenarios which are in accordance with the assumption of DM@NLO that the
lightest neutralino accounts for the whole dark matter content in the universe and where the
annihilation of the lightest stop plays an important role, we impose two more cuts on the
viable points. To fulfill the first assumption points with 0.114 ≤ Ωχ̃0

1
h2 ≤ 0.126 are selected

which corresponds to a conservative 5σ-interval of eq. (3.2). The relic density is computed with
micrOMEGAS 2.4.1 [49] which takes as input the original SUSY Les Houches Accord 2 [50] files
provided by the ATLAS collaboration within which the physical mass spectrum is computed
with SoftSUSY 3.4.0 [51]. The parameter points that remain after this cut in the mt̃1

−mχ̃0
1

mass plane are shown in section 7.2 subdivided into bino-, higgsino- and wino-like neutralinos.
The categorization into these three different types follows the definition in [48]. To ensure
that the annihilation of stop makes a significant contribution to the effective cross section,
the second cut excludes all parameter points which do not feature the lightest stop as NLSP.
The remaining parameter points are depicted in section 7.2 where it becomes obvious that
under these conditions only bino-like neutralinos remain. From these points two reference
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Figure 7.3: ATLAS points in the mt̃1
−mχ̃0

1
mass plane with the two additional constraints

explained in the text.

scenarios are selected whose associated 19 pMSSM parameters defined at a scale QSUSY are
given in table 7.1. The corresponding physical mass spectrum is displayed in table 7.2 for

I II

M1 350.88 -1046.58
M2 1397.86 -3942.8
M3 2471.74 3637.32
At -1946.61 3833.12
Ab 2616.21 -1492.51
Aτ -2742.65 676.78
Ml̃L

2976.18 3397.18
Mτ̃L 2019.22 3927.05
Ml̃R

3146.26 2867.94
Mτ̃R 2495.18 1661.57

I II

Mq̃L 3188.43 3459.34
Mq̃3L 522.26 3620.61
MũR 2239.76 2375.07
Mt̃R

1573.94 1008.22
Md̃R

1381.7 2845.0
Mb̃R

1730.6 3045.87
µ 655.09 1928.59

tanβ 41.31 53.09
mA0 3877.15 2401.96
QSUSY 896.42 1909.68

Table 7.1: Reference scenarios in the pMSSM. All dimensionful quantities are given in GeV.

the spectrum generator used by the ATLAS collaboration and SPheno 3.3.3 [9] which is
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the standard spectrum generator in the DM@NLO setup. There appears a surprising difference

mχ̃0
1

mχ̃0
2

mχ̃±
1

mt̃1
mb̃1

mh0 Ωχ̃0
1
h2

I SoftSUSY 3.4.0 352.34 657.21 658.06 379.13 405.47 124.45 0.120
SPheno 3.3.3 352.35 657.14 657.84 344.24 373.08 123.94 -

II SoftSUSY 3.4.0 1043.55 1937.89 1937.90 1061.97 3089.04 127.56 0.121
SPheno 3.3.3 1043.51 1937.19 1937.17 1070.57 3095.72 127.17 0.158

Table 7.2: Physical mass spectrum for the two scenarios defined in table 7.1 computed with
two spectrum generators as well the relic density from micrOMEGAS 2.4.1. All
dimensionful quantities are given in GeV.

between both spectrum generators for the masses of for third-generation squarks of more than
30GeV for scenario I and of more than 5GeV for scenario II. For SPheno, in scenario I the
mass of the stop is even below that of the neutralino, so that the neutralino is no longer a
dark matter candidate and no relic density can be specified, while for scenario II the stop is
already too heavy to allow efficient coannihilation, so that there occurs an overproduction of
neutralinos. This shows that a set of soft-breaking parameters can lead to two completely
different phenomenologies depending on the spectrum generator and that it is always necessary
to specify the spectrum generator used as well as the resulting mass spectrum. This also
raises the question whether model points that were discarded by the ATLAS collaboration
would become viable points when using a different spectrum generator.

7.3 Numerical analysis

The contributions of different channels to σann ∼
(
Ωh2

)−1 can also be computed with
micrOMEGAs and are displayed for the two reference scenarios in table 7.3. For both scenarios

Contributing channel Scenario I Scenario II

t̃1 t̃
∗
1 → g g 50.5% 61.4%

t̃1 t̃1 → t t - 5.0%

t̃1 b̃1 → t b 2.0% -
χ̃0
1 t̃1 → g t 6.6% 14.6%

χ̃0
1 t̃1 →W+ b 2.6% -
t̃1 t̃

∗
1 → Z0 g 9.1% 2.6%

t̃1 t̃
∗
1 → γ g 6.4% 8.7%

t̃1 t̃
∗
1 → h0 h0 2.4% -

t̃1 b̃
∗
1 →W+ g 5.9% -

Table 7.3: Dominant annihilation channels contributing to
(
Ωh2

)−1 for the mass spectrum
obtained with SoftSUSY 3.4.0 and the cross sections provided by micrOMEGAS
2.4.1 where contributions below 2% are omitted.

t̃1 t̃
∗
1 → g g contributes more than 50% and represents the most important channel. With the

knowledge that stop annihilation in gluons is an important process, we can discuss aspects of
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the tree level cross section. The leading order cross section as well as its singlet, symmetric
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Figure 7.4: The upper panel shows the leading-order cross section σv as a function of the
center-of-mass momentum pcm computed with micrOMEGAs (MO) and DM@NLO
(tree) as well as the subdivision into the three different colour channels. Their
respective relative contribution to σtree is display in the lower panel.

octet and antisymmetric octet contributions are shown in fig. 7.4 along with the result from
micrOMEGAs. The small deviation between the σMO and σtree results from a different precision
in the strong coupling. As the cross section is invariant under the exchange of the two gluons,
the partial wave of the antisymmetric octet is a p-wave which causes the dominance of the
singlet and symmetric octet cross section as both contain s-wave contributions.
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8 Computation of the next-to-leading order
corrections

A next-to-leading order calculation consists in general of two main building blocks which are
virtual and real corrections. Virtual corrections have the same initial and final states as the
tree process but contain the exchange as well as creation and annihilation of virtual particles.
For the process considered in this work the virtual corrections are 2 → 2 processes with the
same kinematics and phase space as the tree process. All the different Feynman diagrams that
reflect these quantum effects share divergent integrals over the undetermined virtual particle’s
momentum. These infinities occur at high energies (UV divergences) as well as at low energies
(IR divergences). Their treatment requires the computational machinery of regularization
to parametrize the divergence in the form of some artificially introduced quantity. The UV
divergences are then removed through a procedure called renormalization whereas the infrared
divergences in the loop integrals should cancel against those which appear through the phase
space integration over the real emission matrix element squared.

8.1 Regularization and one-loop integrals
The essence behind regularization is to introduce new quantities into the theory that parame-
terize the divergence such that all integrals converge but the original divergence is recovered if
these new quantities are set back to zero. As an example consider the correction of a fermion
loop to the Higgs propagator

iΣ(p2) = = (iλ)2
∫

d4q

(2π)4
Tr
[
(/q +m)(/q + /p+m)

]
(q2 −m2 + iε)((q + p)2 −m2 + iε)

(8.1)

where the coupling is just denoted as λ. If we count the power of the loop momenta we get
six in the numerator (including the integration measure d4q) and four in the denominator.
For high loop momenta this approximation leaves the integral∫

d4q
1

q2
∼ ∞ (8.2)

which scales quadratically with the loop momentum after the integration and is therefore
called to be quadratic divergent. This idea of power counting leads to the concept of the
superficial degree of divergence D defined as the difference of the number of loop momenta in
the numerator and denominator

D = # of momenta in the numerator −# of momenta in the denominator (8.3)

which states that an integral diverges logarithmically for D = 0, as a polynomial for D > 0
and converges if D < 0. However, these assignments hold only if all loop momenta diverge at
the same rate and if each propagator contains at least one divergent 4-momentum. Therefore,
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the superficial degree of divergence should be applied with care to decide whether a diagram
is UV convergent or not.
The simplest way to apply regularization and parametrize the divergence is to impose an
upper limit Λ <∞ on the momentum of the fermion such that∫ Λ

0
dq q = Λ2 (8.4)

is finite. This method is know as the cutoff method but has the clear disadvantage of violating
Lorentz invariance as the value of the cutoff depends on the frame of reference.

8.1.1 Dimensional regularization

A modern regularization procedure which respects not only Lorentz but also gauge invariance as
well as unitarity and was even awarded with a Nobel Prize in 1999 is dimensional regularization
invented by ’t Hooft and Veltmann [52]. The key observation is that an integral as in eq. (8.1)
diverges in four but not in less than four dimensions. For this reason, the dimension is used
as regularization parameter and the loop integrals are analytically continued to a complex
number of dimensions D = 4 − 2ε. The divergences manifest themselves as poles in the
complex plane. In order to ensure that the mass dimension of the integrals remains unchanged,
one has to introduce an artificial scale µ with mass dimension [µ] = 1 so that integration
measure in D dimensions reads ∫

d4q

(2π)4
→ µ2ε

∫
dDq

(2π)D
. (8.5)

where the factor 1
(2π)D

is conventional. As we work in D dimensions, Lorentz indices take
values from zero to D − 1 such that components of a momentum vector become

qµ = (q0, q1, . . . , qD−1) (8.6)

and the trace of the metric tensor evaluates to gµµ = D instead of four. The Dirac γ-matrices
are kept four-dimensional by definition Tr (γµγν) = 4gµν .

8.1.2 Scalar n-point functions and Passarino-Veltman reduction

A central method for calculating one-loop integrals is the so-called Passarino-Veltman reduction
[53] which is presented in a very pedagogical way in [54]. The starting point is that a general
one-loop integral

TN
µ1,...,µM

(p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)2ε

iπ2

∫
dDq

qµ1 . . . qµM

D0D1 . . .DN−1
(8.7)

with N propagators

D0 = q2 −m2
0 + iε (8.8)

D1 = (q + p1)
2 −m2

1 + iε (8.9)
. . . (8.10)
DN−1 = (q + pN−1)

2 −m2
N−1 + iε (8.11)
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in the denominator and M four-momenta qµ1 , . . . , qµM in the numerator can be reduced to
four scalar integrals (M = 0) called A0, B0, C0 and D0 which just follow from the redefinitions
T 1 → A0, T 2 → B0, T 3 → C0 and T 4 → D0. Their argument sets in DM@NLO follow the
convention specified in [30]

A0(m
2
0) =

∫
q

1

D0
(8.12)

B0(p
2
1,m

2
0,m

2
1) =

∫
q

1

D0D1
(8.13)

C0(p
2
1, (p1 − p2)

2, p22,m
2
0,m

2
1,m

2
2) =

∫
q

1

D0D1D2
(8.14)

D0(p
2
1, (p2 − p1)

2, (p3 − p2)
2, p23, p

2
2, (p3 − p1)

2,m2
0,m

2
1,m

2
2,m

2
3) =

∫
q

1

D0D1D2D3
(8.15)

where the shorthand ∫
q
=

(2πµ)2ε

iπ2

∫
dDq (8.16)

is employed. The decomposition of a tensor integral is performed by considering all symmetric
and covariant tensor structures of rank M that can be built out of the momenta p1, . . . , pN−1

and metric tensors, i.e.

Bµ = pµ1B1

Bµν = gµνB00 + pµ1p
ν
1B11

Cµ = pµ1C1 + pµ2C2 (8.17)

Cµν = gµνC00 +

2∑
i,j=1

pµi p
ν
jCij

Cµνρ =

2∑
i=1

(gµνpρi + gµρpνi + gνρpµi )C00i +

2∑
i,j,k=1

pµi p
ν
j p

ρ
lCijk

. . .

The coefficients B1, B00, B11 and so on are called Passarino-Veltman coefficient functions and
are computed through the following two steps:

1. Contraction of the decomposition into covariant quantities with external momenta and
metric tensors where squares q2 of the loop momentum are combined with artificially
introduced masses (q2 = (q2 −m2) +m2) so that they cancel against the denominators.

2. Solving the linear system of equations for to the coefficient functions.

Having performed this reduction, it is still necessary to compute the scalar integrals. As an
example on how to solve such an integral within dimensional regularization, we consider the
simplest case

A0

(
m2
)
=

(2πµ)2ε

iπ2

∫
dDq

1

q2 −m2 + iε
(8.18)

following the path outlined in [30]. The integrand of this function is complex and has poles at

q20 = ±
√
~q2 +m2 ∓ iε. (8.19)
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Their position in the complex plane allows to change the integration over q0 from the real to
the imaginary axis through the application of Cauchy’s integral theorem. This transformation
corresponds to a change from Minkowski to Euclidean space as we have q0 = iqE,0 and ~q = ~qE
which changes q2 in the denominator to

q2 = q20 − ~q2 = −q2E,0 − ~q2E = −q2E (8.20)

where qE is the new integration variable that parametrizes the integration along the imaginary
axis. After this change the integrand depends only on the absolute value of the ”Euclidean”
vector qE = (qE,0, ~qE) which means that the integral can be greatly simplified by switching to
spherical coordinates∫

dDq = i

∫
dΩD

∫ ∞

0
dqE q

D−1
E =

1

2

∫
dΩD

∫ ∞

0
dq2E

(
q2E
)D

2
−1 (8.21)

with the D-dimensional solid angle [18]

ΩD =

∫
dΩD =

2π
D
2

Γ (D/2)
. (8.22)

The remaining integral can be related to the Eulerian β-function with the help of the
substitution

t =
−m2 + iε

−q2E −m2 + iε
, q2E =

(
m2 − iε

) 1− t

t
(8.23)

which gives

∫
dq2E

(
−q2E

)D
2
−1

−q2E −m2 + iε
=
(
m2 − iε

)D
2
−1
∫ 1

0
dt t−

D
2 (1− t)

D
2
−1

=
(
m2 − iε

)1−2ε
β (ε− 1, 2− ε) . (8.24)

If we collect all terms together, we get

A0(m
2) =

(2πµ)2ε

π2
π2−ε

Γ(2− ε)
(m2 − iε)1−εβ (ε− 1, 2− ε) . (8.25)

The UV pole in ε can be made visible by relating the β-function to the Gamma function
β (ε− 1, 2− ε) = Γ(ε− 1)Γ(2− ε) followed by the application of the recursive property of the
Gamma function Γ(1 + ε) = ε(ε− 1)Γ(ε− 1) giving

A0(m
2) = −(m2 − iε) (4π)ε Γ(1 + ε)

(
m2 − iε

µ2

)−ε
1

ε (ε− 1)
. (8.26)

As the one-loop integrals are not multiplied with any further poles, we can safely neglect all
terms of O(ε). This is achieved through the expansions(

m2 − iε

µ2

)−ε

= 1− ε ln

(
m2 − iε

µ2

)
+O(ε) (8.27)

1

ε(ε− 1)
= −1

ε
− 1 +O(ε) (8.28)
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which gives when multiplying everything out

A0(m
2) = m2

(
cε
ε
− log

(
m2

µ2

)
+ 1 +O(ε)

)
. (8.29)

The factor
cε = (4π)ε Γ(1 + ε) (8.30)

turns out to be a common prefactor for divergent loop integrals and is ”defined into the pole”
and not expanded any further. This convention applies to all UV and IR poles in DM@NLO
equally. It is important to realize that the multiplication of a loop integral with D gives an
extra finite part

(4−D)A0(m
2) = 2m2. (8.31)

These factors of D usually occur through traces of the metric tensor gµµ. To obtain the finite
terms, it is of course necessary to know the poles which can be found for a large number
of one-loop tensor integrals in a compact form for example in [55]. As the loop library of
DM@NLO is already quite comprehensive, it was only necessary to include the argument set
D0(0, 0,m

2
3,m

2
3, p

2
2, (p3 − p1)

2, 0, 0, 0,m2
3) given in [56] as new special case and to compare

it with LoopTools [57]. However, the integrals in LoopTools are defined with a different
prefactor µ4−D

iπ2−εrΓ
with rΓ = Γ(1−ε)2Γ(ε+1)

Γ(1−2ε) which requires the following conversion

IN ;DM@NLO
µ1,...,µM

= cε
Γ(1− ε)2

Γ(1− 2ε)
IN ;LoopTools
µ1,...,µM

= cε

(
1− π2

6
ε2
)
IN ;LoopTools
µ1,...,µM

+O(ε) (8.32)

where cε is effectively treated as a one.

8.1.3 Variants of dimensional regularization and dimensional reduction

Even though its many advantageous features, dimensional regularization as described in
section 8.1.1 has the drawback of breaking supersymmetry as in D dimensions a vector boson
has D − 2 degrees of freedom which are then mapped under supersymmetry to a Majorana
spinor with 2 degrees of freedom. This mismatch was originally pointed out by Siegel
who proposed regularization by dimensional reduction (DRED) as a variant of dimensional
regularization which should preserve supersymmetry [58]. Within this regularization scheme
the number of dimensions of all momenta and space time coordinates is analytically continued
from four to D whereas the number of components of all other tensors, spinors and γ-matrices
remains fixed.
In order to avoid potential mathematical inconsistencies within DRED that were also outlined
by Siegel himself [59] and to formulate the two schemes in a consistent manner it is necessary
to introduce three different spaces which are characterized by their metric tensors [60, 61, 62].
The original four-dimensional space (4S) with metric gµν , a quasi-four-dimensional space (Q4S)
with metric tensor gµν for e.g. gluons in dimensional reduction and a quasi-D-dimensional
space (QDS) with metric ĝµν as a subspace of Q4S. By construction, Q4S can be decomposed
into the direct sum of QDS and its 4−D = 2ε-dimensional complement called QεS

Q4S = QDS ⊕ QεS (8.33)
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which induces the metric g̃µν with gµν = ĝµν + g̃µν . The dimensionality of the space becomes
apparent through the traces

gµνg
µν = gµνg

µν = 4 ĝµν ĝ
µν = D g̃µν g̃

µν = 2ε. (8.34)

The projection relations

gµν ĝ
ν
ρ = ĝµρ gµνg

ν
ρ = gµρ gµν ĝ

ν
ρ = gµρ gµν g̃

ν
ρ = g̃µρ ĝµν g̃

ν
ρ = 0

show that QDS is a subspace of Q4S and that 4S is a subspace of QDS. This embedding is
made possible through the fact that Q4S and QDS are actual infinite dimensional spaces whose
properties resemble those of a 4 or D dimensional space. For this reason, we are talking about
a quasi-four-dimensional space and not a four-dimensional space. Intuitively, D-dimensional
quantities can be thought of as four-dimensional but whose remaining 2ε components are
zero. Furthermore, this resolves the ambiguity of contracting a partial derivate with a gauge
field which itself has four components in dimensional reduction but depends on D space-time
coordinates. A quasi-four-dimensional vector tµ can be projected onto the subspaces using
the metrics ĝµν and g̃µν as projection operators

tµĝ ν
µ = t̂ν tµg̃ ν

µ = t̃ν . (8.35)

In particular, one finds

gµν t̂µt̂ν = gµν ĝ ρ
µ tρt̂ν = t̂νρtρt̂ν = t̂ν t̂

ν = t2 (8.36)

which makes it unnecessary to hat squared momenta. The spinor algebra is introduced in a
similar way compared to dimensional regularization by assuming that there exist quasi-four-
dimensional γ-matrices that fulfill the anti-commutation relation {γµ, γν} = 2gµν1, where the
spinor identity element must obey the trace condition Tr1 = 4. Using the projectors defined
above the anti-commutation relations of the other components can be deduced:

{γ̂µ, γ̂ν} = 2ĝµν1 {γ̃µ, γ̃ν} = 2g̃µν1 {γ̃µ, γ̂ν} = 0 . (8.37)

Before moving on to the discussion of the γ5 matrix, it is useful to recall two identities related
to the fifth γ-matrix in four dimensions:{

γ5, γµ
}
= 0 Tr

(
γµγνγργσγ5

)
= 4iεµνρσ . (8.38)

The treatment of γ5 in dimensional reduction is a peculiar as in dimensional regularization
due to the infinite-dimensional nature of Q4S and Q4D which makes counting impossible.
The problem is that the relations given in eq. (8.38) are not compatible with each other
in D 6= 4-dimensions. Two approaches have developed to deal with this problem. The
t’Hooft-Veltman-Breitenlohner-Maison scheme (HVBM) [63] defines γ5 as an element of 4S
γ̄5 = iγ1γ2γ3γ4 and, consequently, insists on the trace condition, whereas the naive scheme
(NS) assumes γ5 to anti-commute with all other γ-matrices{

γ5, γµ
}
= 0

{
γ5, γ̂µ

}
= 0

{
γ5, γ̃µ

}
= 0 (8.39)

causing a vanishing trace of γ5 with any number of γ-matrices, i.e.

Tr

(
γ5

n∏
i=0

Γµi

)
= 0 with Γµ = γµ, γ̃µ or γ̂µ (8.40)
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for any n. To fix this wrong result the trace can be constrained to obey the condition

Tr
(
ΓµΓνΓρΓσγ5

)
= 4iε̃µνρσ +O (ε) (8.41)

where the tensor ε̃µνρσ is completely antisymmetric in all indices and gives the following result
when being contracted with itself

ε̃αβγδ ε̃ρσµν = G
[α
[ρG

β
σG

γ
µG

δ]
ν] (8.42)

to ensure that ε̃µνρσ converts into the four-dimensional Levi-Civita symbol in the limit D → 4.
The square brackets denote the usual complete antisymmetrization symbol and Gµν stands
for the metric tensor depending on the Γµ’s in the trace. More information on the treatment
of γ5 in the different schemes is available in [64, 61]. In connection with SUSY and DRED the
HVBM-scheme has the disadvantage that supersymmetry in the case of the MSSM is already
broken at one-loop level [61]. Both definitions have the property

γ25 = 1 γ̄25 = 1 (8.43)

which guarantees the orthogonality PLPR = PRPL = 0 and idempotency P 2
L = PL, P 2

R = PR

of the chiral projection operators:

PL =
1

2

(
1− γ5

)
PR =

1

2

(
1+ γ5

)
. (8.44)

The NS-scheme is mostly used in DRED and is also applied in this work1.
With these definitions at hand it is now possible to describe the different computational
rules for dimensional regularization and dimensional reduction. As the momenta are kept
D-dimensional in both schemes it remains to be specified how the gluons are treated, i.e.
to what space the metric tensors in the propagator, vertices and polarization sum belong.
As it is not necessary to regulate all gluons, we have to introduce the notion of ”internal”
and ”external” gluons following the definition given in [62]. Within the virtual corrections
internal gluons are defined as gluons in a one-particle-irreducible diagram and within the
real corrections they are defined as gluon that can become soft or collinear. All other gluons
are defined as external gluons. Depending on how the external gluons are treated one can
distinguish two subvariants of each scheme. Dimensional regularization has the two variants:

• Conventional dimensional regularization (CDR): Internal and external gluons are treated
as D-dimensional.

• ’t Hooft-Veltman scheme (HV): External gluons liven in 4S whereas internal ones are
D-dimensional.

The two variants of dimensional reduction are:

• original/old dimensional reduction (DRED or DR): Internal and external gluons are
elements of Q4S.

• Four-dimensional helicity scheme (FDH): External gluons are strictly four-dimensional
whereas internal ones are quasi-four-dimensional.

1Traces of γ5 with four or more γ-matrices appear within this work during the evaluation of box diagrams
containing gluinos. Since the Levi-Civita symbol with four indices gets contracted with external momenta
and there exist in a 2 → 2 processes only three linearly independent momenta, these expressions yield zero
anyway.
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The different metric tensors that are used within these variants are summarized in table 8.1.
The analogue of the modified minimal-subtraction renormalization scheme MS in dimensional
regularization is called the DR scheme in dimensional reduction.

CDR HV DRED/DR FDH
internal ĝµν ĝµν gµν gµν

external ĝµν gµν gµν gµν

Table 8.1: Treatment of internal and external gluons in different regularization schemes. Table
taken from [62].

In practice, the schemes differ at one-loop level only through additional finite parts coming
from extra D’s which are introduced through the contractions of ĝµν ’s. As an example consider
the 1PI diagram2

p1

p2

= iδij
g4s

16π2

(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)
gµν

(
−3B0

(
(p1 + p2)

2 , 0, 0
)
+ θD2

)

(8.45)
where an extra finite part occurs depending on whether ĝµν or gµν is used for the internal
gluons which is indicated through the new parameter θD which takes the value one for
dimensional regularization (HV) and zero for dimensional reduction (FDH). It is important
to realize that also 1PI diagrams in dimensional reduction can give D-dimensional metric
tensors from the Passarino-Veltman decomposition

B̂µν = ĝµνB00 + p̂µp̂νB11 (8.46)

which takes place in QDS. One relation that often appears in this context is

gµν ĝ
µν = (ĝµν + g̃µν) ĝ

µν = D + ĝµν g̃µρg
ρ
ν = D . (8.47)

8.2 Renormalization in DM@NLO

The concept behind renormalization is that every UV divergence can be absorbed into free
parameters of a theory which could be the mass of some particle or a coupling constant. This
redefinition comes at the prize that the theory loses its predictivity for those observables.
Another way to think about renormalization is that the classical or ”bare” Lagrangian has no
connection to the quantum world, thus, the parameters in the bare Lagrangian are useless to
predict quantum effects as they undergo quantum corrections themselves. A simple picture
that one can keep in mind is that for example the electron is constantly surrounded by a
cloud of electron-positron pairs that are created from the vacuum and therefore these effects
have an impact on the charge that is measured. In this sense, the bare parameters have no
connection to quantities that can be physically measured and consequently they need to be
redefined/renormalized. A gentle introduction to renormalization can be found in [18] and
renormalization of pure QCD is discussed in [65].
With the framework of regularization by dimensional reduction, we are now ready to discuss

2The index structure for this diagram is the same as for the tree level calculation shown in fig. 7.1.
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how the UV divergences can be removed through renormalization. As only the renormalization
of the gluon, squark and ghost sector as well as the renormalization of αs is relevant for this
work to achieve a UV finite result and therefore presented in the following, we refer to earlier
works on DM@NLO [33, 66, 67] for other sectors.

8.2.1 Gluon sector
In multiplicative renormalization, the bare gluon field Aµ

0,a is related to the renormalized field
Aµ

a through the field strength renormalization constant Zg. In perturbation theory, Zg can be
expanded around the tree level value Zg = 1 + δZg +O

(
g4s
)

where Zg is defined at O
(
g2s
)

Aµ
0,a =

√
ZgA

µ
a =

(
1 +

1

2
δZg

)
Aµ

a . (8.48)

Consequently, the kinetic part of the gluon in the MSSM Lagrangian including the gauge
fixing term splits into a renormalized and a counterterm part that absorbs the divergence.
The counterterm δZg appears as new interaction vertex in the Lagrangian and yields the
Feynman rule

gµa gνb = −iδZgδab
(
p2gµν − pµpν

)
. (8.49)

It is convenient to decompose the gluon two-point function at one-loop into a transverse ΠT

and a longitudinal part ΠL

−iΠµν
ab (p

2) =

p p

gµa gνb = −iδab

[(
gµν − pµpν

p2

)
ΠT (p

2) +
pµpν

p2
ΠL(p

2)

]
,

(8.50)
where we do not distinguish between gµν , ĝµν , gµν in the decomposition as we use the FDH
scheme and all three give the same result when being contracted with gµν from the external
gluons.

Figure 8.1: One-loop contributions to the gluon self-energy.

The individual contributions to the gluon self-energy are shown in fig. 8.1. The explicit
contributions to the transverse and longitudinal part read

Πqq
T =

∑
q

−g2sTF
8π2

(
2A0(m

2
q)− 4B00(p

2,m2
q ,m

2
q)− p2B0(p

2,m2
q ,m

2
q)
)

(8.51)

Πqq
L = 0 (8.52)

Πg̃g̃
T =

−g2sCA

16π2
(
2A0(m

2
g̃)− 4B00(p

2,m2
g̃,m

2
g̃)− p2B0(p

2,m2
g̃,m

2
g̃)
)

(8.53)

Πg̃g̃
L = 0 (8.54)
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Πgg
T =

−g2sCA

16π2

(
2p2B0(p

2, 0, 0) + 5B00(p
2, 0, 0) + θD

p2

3

)
(8.55)

Πgg
L =

g2sCA

64π2
p2B0(p

2, 0, 0) (8.56)

Πq̃q̃∗

T =
∑
α,k

−g2sTF
4π2

B00(p
2,m2

q̃αk
,m2

q̃αk
) (8.57)

Πq̃q̃∗

T =
∑
α,k

−g2sTF
8π2

A0(m
2
q̃αk
) (8.58)

Πcc
T =

g2sCA

16π2
B00(p

2, 0, 0) (8.59)

Πcc
L = −g

2
sCA

64π2
p2B0(p

2, 0, 0) (8.60)

Πq̃
T = Πq̃

L =
∑
α,k

g2sTF
8π2

A0(m
2
q̃αk
) (8.61)

Πg
T = Πg

L = 0 (8.62)

where the superscript denotes the two virtual particles that run in the loop. It is observed
that only the sum of the gluon and ghost loop as well as the sum of the squark loop and
squark tadpole give a gauge invariant result, i.e. ΠT (p

2) = 0. Up to order g2s the renormalized
gluon two-point Green’s function Gab

µν(p) reads then

−iGab
µν(p) = + + + ...

(8.63)

=
−iδab

p2 + iε

(
gµν −

pµpν
p2

)
− −iδac

p2 + iε

(
gµρ −

pµpρ
p2

)
iδcd

[(
gρσ − pρpσ

p2

)
(8.64)

×
(
ΠT (p

2) + δZgp
2
)
+
pρpσ
p2

ΠL(p
2)

]
−iδdb

p2 + iε

(
gσν −

pσpν
p2

)
+O(g4s) (8.65)

=
−iδab

p2 + iε

(
gµν −

pµpν
p2

)(
1− ΠT (p

2) + δZgp
2

p2 + iε

)
+O(g4s). (8.66)

The gluon is renormalized in the on-shell scheme, which means that the physical mass must
be identical to the pole mass. This is achieved by requiring that the renormalized Green’s
function has a simple pole at p2 = −iε with residue 1

1 = Res(G,−iε) = lim
p2→−iε

(
p2 + iε

)
G(p2) = lim

p2→−iε

(
1− ΠT (p

2) + δZgp
2

p2 + iε

)
(8.67)

which adjusts the gluon wave-function renormalization constant to

δZg = −Re

(
∂

∂p2
ΠT

(
p2
))∣∣∣∣

p2=0

(8.68)

after applying L’Hôpital’s rule and setting ε to zero. From this on-shell condition the different
contributions to δZg can be deduced

δZqq
g =

∑
q

−g2sTF
12π2

(
2m2

qḂ0(0,m
2
q ,m

2
q) +B0(0,m

2
q ,m

2
q)−

1

3

)
(8.69)
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δZ g̃g̃
g =

−g2sCA

24π2

(
2m2

g̃Ḃ0(0,m
2
g̃,m

2
g̃) +B0(0,m

2
g̃,m

2
g̃)−

1

3

)
(8.70)

δZgg
g =

g2sCA

576π2
(57B0(0, 0, 0)− 67 + θD12) (8.71)

δZ q̃q̃∗
g =

∑
q̃

−g2sTF
48π2

(
B0(0,m

2
q̃ ,m

2
q̃)− 4m2

q̃Ḃ0(0,m
2
q̃ ,m

2
q̃) +

2

3

)
(8.72)

δZcc
g =

g2sCA

576π2
(3B0(0, 0, 0)− 1) (8.73)

δZ q̃
g = δZg

g = 0. (8.74)

For massless particles in the loop one has to be aware of the limits

lim
p2→0

p2Ḃ0(p
2, 0, 0) = −1 lim

m2→0
m2Ḃ(0,m2,m2) =

1

6
(8.75)

which can be found in [30]. The renormalization constant δZg is ultraviolet and infrared
divergent. Both parts can be extracted from the Passarino-Veltman functions and yield

δZUV
g =

g2s
16π2εUV

(CA − 2TFnq) (8.76)

δZIR
g =

g2s
48π2εIR

(4NfTF − 5CA) (8.77)

where nq gives the number of quarks included in the loops and Nf the number of quark
flavours that are treated as effectively massless.

8.2.2 Squark sector

Having discussed the renormalization of the gluon, we can move on to the squark sector where
we have to account for mixing effects. Therefore, the squark wave-function renormalization
constant Z q̃

ij carries indices i, j related to the two squark mass eigenstates of squarks. As
squarks are massive we also have to introduce a mass counterterm δm2

q̃i

q̃0,i =
√
Z q̃
ij q̃j =

(
δij +

1

2
δZ q̃

ij

)
q̃j (8.78)

m2
0,q̃i = m2

q̃i + δm2
q̃i . (8.79)

Then we can define the squark two-point function as

iΠq̃,αβ
ij,st (p

2) =

p p

q̃α∗i,s q̃βj,t = iδstδ
αβΠij(p

2) . (8.80)

where α, β are flavour, s, t colour and i, j sfermion mass eigenstate indices.

Figure 8.2: Contributions to the squark self-energy at one-loop.
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Note that the squark propagator at one loop is symmetric in the sfermion indices i and j.
The contributions to the squark self-energy shown in fig. 8.2 read explicitly

Πg̃q
ij (p

2) =
−g2sCF

8π2
(
δij
(
A0(m

2
g̃) +A0(m

2
qα)
)
+B0(p

2,m2
g̃,m

2
qα)

×
(
δij
(
m2

qα +m2
g̃ − p2

)
− 2mg̃mqα

(
Rα

i1R
α
j2 +Rα

j1R
α
i2

)))
(8.81)

Πgq̃
ij (p

2) =
g2sCF δij
16π2

(
A0(m

2
q̃αi
)− 2B0(p

2, 0,m2
q̃αi
)
(
m2

q̃αi
+ p2

))
(8.82)

Πq̃
ij(p

2) =

2∑
k=1

g2sCF

16π2
Aα

ikA
α
jkA0(m

2
q̃αk
) (8.83)

Πg
ij(p

2) = 0 . (8.84)

From there we can define the renormalized two-point function as

Π̂ij = Πij(p
2) +

1

2

(
p2 −m2

q̃i

)
δZ q̃

ij +
1

2

(
p2 −m2

q̃j

)
δZ q̃∗

ji − δijδm
2
q̃i (8.85)

In order to work out the on-shell renormalization conditions for the squark sector, we can
look at the one-loop corrected Green’s function for squarks

iGq̃
ij(p

2) =
i

p2 −m2
q̃i
+ iε

(
δij −

Π̂ij(p
2)

p2 −m2
q̃j
+ iε

)
+O(g4s). (8.86)

The requirement that the pole of the propagator is located at the physical mass is equal to
setting the residue to 1 for i = j

1 = Res(Gq̃
ii,m

2
q̃i − iε) = lim

p2→m2
q̃i
−iε

(
p2 −m2

q̃i + iε
)
Gq̃

ii(p
2). (8.87)

Applying L’Hôpital’s rule as well as setting ε to zero gives the squark field strength counterterm

Z q̃
ii = −Re

(
∂

∂p2
Πii(p

2)

)∣∣∣∣
p2=m2

q̃i

, i = j . (8.88)

The next condition
0 =

((
p2 −m2

q̃j

)
Gq̃

ij(p
2)
)∣∣∣

p2=m2
q̃j

, i 6= j (8.89)

forbids an on-shell squark to change its mass eigenstate while propagating freely and adjusts
the counterterm in this case to

δZ q̃
ij =

2ReΠji(m
2
q̃i
)

m2
q̃j
−m2

q̃i

, i 6= j . (8.90)

The last condition
Π̂ij(m

2
q̃i) = 0 (8.91)

ensures that any mass correction to a physical squark vanishes and defines the squark mass
counterterm to be

δm2
q̃i = ReΠii

(
m2

q̃i

)
. (8.92)
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For the case of identical sfermion mass eigenstates the two contributions to δZ q̃
ii are

δZ q̃,g̃q
ii =

g2sCF

8π2

(
Ḃ0

(
m2

q̃i ,m
2
g̃,m

2
q

) (
m2

q +m2
g̃ −m2

q̃i − 4mg̃mqRi1Ri2

)
−B0

(
m2

q̃i ,m
2
g̃,m

2
q

))
(8.93)

δZ q̃,gq̃
ii =

g2sCF

8π2

(
2m2

q̃iḂ0

(
m2

q̃i , 0,m
2
q̃i

)
+B0

(
m2

q̃i , 0,m
2
q̃i

))
(8.94)

and the squark renormalization constant is ultraviolet finite

δZ q̃;UV
ii = 0 (8.95)

whereas it may contain UV divergent pieces for different sfermion indices depending on the
mixing matrices in eqs. (8.81) and (8.83). It is the other way round for the infrared divergent
parts

δZ q̃;IR
ij =

{
− g2sCF

8π2εIR
, i = j

0, i 6= j
. (8.96)

Since the correction to the squark propagator does not contain any infrared divergent pieces,
the squark mass renormalization constant is infrared finite as well

(
δm2

q̃i

)IR
= 0.

8.2.3 Ghost sector

As we renormalize the n-particle irreducible Green’s function and not the complete NLO
process as a whole, the ghost fields must also be renormalized. As ghost and anti-ghost share

Figure 8.3: One-loop contributions to the ghost self-energy.

the same self-energy they can be renormalized with the same wave function renormalization
constant δZc. The renormalized fields are then defined as

c0a =
√
Zcc

R
a (8.97)

c0a =
√
Zcc

R
a (8.98)

where we need δZc only up to O
(
g2s
)

which leads to the expansion

Zc = 1 + δZc. (8.99)

Since the gluon is renormalized in the on-shell scheme, the same scheme is chosen for the
ghost. That is, the ghost renormalization constant is obtained by requiring that the ghost
Green’s function at one-loop level has a unit residue

δZc = −Re

(
∂

∂p2
Πc
(
p2
))∣∣∣∣

p2=0

. (8.100)

85



The ghost two-point function takes the general form

iΠc
ab(p

2) =

p p

ca cb = iδabΠ
c(p2) (8.101)

and there exists only one contribution which is depicted in fig. 8.3 and gives

Πc(p2) = −g
2
sCA

32π2
p2B0(p

2, 0, 0) . (8.102)

The QCD derivative of the ghost self-energy is then

∂

∂p2
Πc(p2) = −g

2
sCA

32π2
(
B0(p

2, 0, 0)− 1
)
. (8.103)

As the gluon renormalization constant is both ultraviolet and infrared divergent, the same
is expected for the ghost renormalization constant. The UV and IR divergent parts read
explicitly

δZUV
c =

g2sCA

32π2εUV
(8.104)

δZIR
c = − g2sCA

32π2εIR
. (8.105)

8.2.4 Renormalization of αs

The renormalization of the strong coupling αs =
g2s
4π is already discussed in detail in an earlier

work [33]. For that reason only the value of the associated renormalization constant

δgs
gs

=
g2s

32π2εUV
(nq − 3CA) (8.106)

that emerges from the perturbative expansion of the bare coupling gs,0

gs,0 = Zsgs = gs + δgs (8.107)

is repeated.

8.3 The virtual corrections

The computation of the virtual corrections is performed by identifying all one-particle ir-
reducible subgraphs which represent a correction of O(αs) with respect to the tree level
amplitude. These subgraphs then correspond to corrections to the propagators and vertices
and are shown as blobs in fig. 8.4. The advantage of focusing on the computation of Green’s
functions rather than the overall S-matrix element is that the 1PI graphs can be renormalized
individually and are process independent. Thus, they can be calculated once and for all and
then be embedded in any other process or diagram making an efficient and clear computation
of a large number of diagrams feasible.
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Figure 8.4: Irreducible subgraphs that can be embedded into the overall 2 → 2 process.

The amplitude for the virtual corrections is grouped further into propagator corrections, the
three different vertex corrections and counterterms that render the amplitude UV finite

MV = Mprop +Mvertex
4 +Mvertex

3g +Mvertex
2q̃g +Mcounter. (8.108)

For the evaluation of the Feynman diagrams the same naming conventions for momenta and
indices as for the tree level process shown in fig. 7.1 are used. The cross section for the virtual
part averaged/summed over initial/final state colours and polarizations is then computed as

σV =
1

2FN2
c

∫
dΦ2 (k1, k2)

∑
s,t,a,b

∑
λ1,λ2

2ReM∗
LOMV (8.109)

where only the transverse polarizations are summed, which is why the tensor dµν(k1, k2)
introduced in eq. (4.20) is used for the polarization sums. The alternative possibility to use
ghosts for the subtraction of the unphysical polarizations as well as the corresponding virtual
corrections are discussed separately in section 8.3.3.
The virtual corrections are computed in the FDH scheme which has the advantage that it is
in practice not necessary to distinguish between four- and D-dimensional metric tensors that
occur within the Passarino-Veltman decomposition as both give the same result when being
contracted with an external strictly four dimensional metric gµν . To convert the squared
matrix element from FDH to DRED one can use the transition rules provided in [62]. The
individual contributions in eq. (8.108) are presented in the following in more detail.

8.3.1 The propagator corrections
We begin with the propagator corrections Mprop

s , Mprop
t and Mprop

u which sum up to

Mprop = Mprop
s +Mprop

t +Mprop
u (8.110)

of eq. (8.108). These are obtained by inserting the squark self-energies in fig. 8.1 and the
gluon self-energies in fig. 8.2 into the blobs shown the first row of fig. 8.4. As the squark is a
scalar, the propagator corrections completely factorize from the tree level amplitude. The
transverse part of the gluon self-energy factorizes as well even though the gluon is a vector
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particle. This is because all terms proportional to pµ1 + pµ2 in Πµν
ab (s) cancel out when inserting

them into the s-channel amplitude in eq. (7.2) through the relation (p2 − p1) · (p1 + p2) = 0.
Thus, the corresponding corrections are achieved through the replacements

Ms →
−Πg

T (s)

s
Ms = Mprop

s (8.111)

Mt →
−Πq̃

ij(t)

t−m2
q̃i

Mt = Mprop
t (8.112)

Mu →
−Πq̃

ij(u)

u−m2
q̃i

Mu = Mprop
u . (8.113)

It is important to realize that the one-loop corrected squark propagator allows in principle
the annihilation of different squark mass eigenstates. However, since all NLO matrix elements
are combined with the tree level amplitude to arrive at the NLO cross section, this process is
forbidden at NLO as well.
In the context of the propagator corrections the question may arise as to why external lines
are not corrected but internal ones are. This is because in the renormalized LSZ theorem only
Green’s functions of renormalized fields are considered. For the derivation of the LSZ, however,
one had to assume that the external fields are free for asymptotic times t → ±∞, but the
renormalized fields result precisely from the free fields by including the series of 1PI insertions
onto the corresponding propagator. In our case these are the squark and gluon self-energies
that shift the bare masses to the pole masses and define the wave function renormalization
constants. Thus, loop corrections of the external legs are already taken into account by using
the on-shell scheme while this does not apply to the internal propagators.

8.3.2 The vertex corrextions

In the case of all three vertices, the computation of the corrections follows the same scheme
of choosing a certain parametrization for each vertex that captures all possible structures
of a correction. For the calculations themselves, aside to manual calculations a dedicated
Mathematica [68] function was developed for each vertex that reduces the amplitude to
Passarino-Veltmann functions. These functions are build upon FeynCalc 9.3.1 [69] which
provides the necessary Mathematica [68] objects for four-momenta and metric tensors and
handles the contraction of Lorentz indices as well as the expansion of scalar products. The
package Tracer 1.1 [70] takes on the evaluation of Dirac traces as it allows to define an
anticommuting γ5-matrix in D-dimensions within the naive scheme. The Levi-Civita symbols
that occur then through traces of γ5 with four or more γ-matrices during the evaluation of
diagrams with fermions as virtual particles are directly set to zero since they vanish anyway
when being contracted with external momenta. The code for each vertex is available in
appendix C.6. As a further computational support, FeynArts 3.11 [71] was used for the
verification of all Feynman diagrams that were found based on graph theory. In the following,
the chosen parametrizations are explained in more detail.

8.3.2.1 The four-gluon-squark vertex correction

The most general form of the four-gluon-squark vertex is constructed by considering all Lorentz
structures of rank two build upon metric tensors as well as incoming and outgoing momenta.
Then, the linear coefficients still depend on the colour structure but can be decomposed in
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terms of the colour basis elements found in section 6.4.2. The only remaining dependence is on
the squark mass eigenstates i and j which cannot be separated further due to the possibility of
mixing effects. A special feature of this vertex is that the external particles already correspond
to those of the target process. For this reason, the momenta and other indices follow the same
convention as defined in fig. 7.1. The final parametrization takes the form

δαβΓµν;ij
st,ab (p1, p2, k1, k2) =

q̃αi,t

q̃β∗j,s

gµa

gνb

p1

k1

p2

k2 = iδαβ
∑
R

c
(R)
st,ab

gµνA(R);ij
g +

2∑
m,n=1

(
kµmk

ν
nA

(R);ij
mn

+ pµmp
ν
nA

(R);ij
m+2 n+2 + kµmp

ν
nA

(R);ij
m n+2 + pµmk

ν
nA

(R);ij
m+2 n

))
. (8.114)

During the computation the external squarks and gluons are already taken to be on-shell since
the corrected vertex cannot be embedded into another diagram without increasing the loop
order. Because of the large number of Feynman diagrams that contribute to this corrections,
they are further subdivided into bubbles, triangles and boxes according to their topology and
are shown in figs. 8.5 to 8.7 respectively. One might be lead to the wrong assumption that
the boxes are convergent on their own, however, they turn out to be badly UV divergent and
that’s why they subsume under this correction and can not be treated separately . The form

Figure 8.5: Bubble contributions to the four-gluon-squark vertex correction at one-loop.

factors Ag and Anm for the bubbles and triangles are given in terms of Passarino-Veltman
functions in appendix C.1 for each diagram. This is no longer reasonable for the boxes due
to the large number of terms arising from the tensor reduction. Nevertheless, to ensure the
reproducibility of the results, the associated amplitudes are given in appendix C.1 along with
the Mathematica code in appendix C.6. Even though the u-channel contributions are related
to the t-channel ones by crossing symmetry through the exchanges t↔ u, µ↔ ν, a↔ b and
k1 ↔ k2 the corresponding results are still given in appendix C.1 for completeness. The final
contribution of this vertex correction in eq. (8.108) is

Mvertex
4 = Γµν;ij

st,ab ε
∗
µ(λ1, k1)ε

∗
ν(λ2, k2). (8.115)

8.3.2.2 The triple-gluon vertex correction

The three-gluon vertex correction can be decomposed by considering all Lorentz structures
of rank three build out of the momenta k1, k2 and k3 and as well as metric tensors. Just
based on the available colour indices the corrections can only be proportional to fcde or dcde.
However, as all interactions that lead to the corrections are non-chiral and therefore anomaly
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Figure 8.6: Triangle contributions to the four-gluon-squark vertex correction at one-loop.

free, the anomaly coefficient3 is zero and therefore only fcde can contribute. The correction of
this vertex is then parametrized as

ifcdeΓ
ρστ
3g (k1, k2, k3) = gσd

gτe

gρc

k2

k3

k1 = i (ifcde)

3∑
m=1

 3∑
n,o=1

kρmk
σ
nk

τ
oAmno

+gρσkτmAg1,m + gρτkσmAg2,m + gστkρmAg3,m) (8.116)

where all gluons are assumed to be in general off their mass shell. All Feynman diagrams that
contribute are shown in fig. 8.8 and their decomposed amplitudes are given in appendix C.2.
The Mathematica code is provided in appendix C.6.2. Note that within the quark triangles
the first two quark generations are considered as massless. The matrix element Mvertex

3g in
eq. (8.108) is obtained by inserting the O(αs) correction into the s-channel amplitude

Mvertex
3g =

k1

k2

p1 + p2

= δijc
(8A)
st,ab

−gs
s

(p1 − p2)σ Γ
νσµ
3g (−k2, p1 + p2, k1)

× ε∗µ(λ1, k1)ε
∗
ν(λ2, k2).

(8.117)

3For a discussion of (gauge) anomalies and the anomaly coefficient A(R) see [18, chap. 30].
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Figure 8.7: Box contributions to the four-gluon-squark vertex correction at one-loop.

8.3.2.3 The squark-gluon vertex correction

In contrast to the previous two vertex corrections, the Lorentz basis for the squark-gluon
vertex is chosen to be minimal in the sense that momentum conservation is already used
from the beginning to eliminate the momentum of the gluon. The vertex correction is then
parametrized as

δαβT c
urΓ

σ;lk
2q̃g (p1, p2) =

q̃αk,r

q̃β∗l,u

gσcp1

p2

p1 + p2

= iδαβT c
ur

(
Alk

+ (pσ1 + pσ2 ) +Alk
− (pσ1 − pσ2 )

)

(8.118)

so that it is easy to read off the part proportional to the tree level vertex which is Alk
− . Just

based on the available colour indices one can deduce that this vertex can only be proportional
to the colour basis element T c

ur. This vertex correction was already computed within DM@NLO
in [67] for the process q̃q̃∗ → QQ under use of the same parametrization. However, there
it was sufficient to consider only on-shell squarks. In order to be able to embed the vertex
correction also in the amplitudes Mt and Mu, it is necessary to compute the correction again
but this time for all external fields taken to be off-shell. All diagrams that contribute to
this vertex correction are shown in fig. 8.9 and the corresponding form factors Alk

+ and Alk
−

are provided for each diagram in appendix C.3 along with the Mathematica code for the
Passarino-Veltmann reduction in appendix C.6.3. The matrix element

Mvertex
2q̃g = Msquark

s +Msquark
t,upper +Msquark

t,lower +Msquark
u,upper +Msquark

u,lower (8.119)
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Figure 8.8: One-loop contributions to the triple-gluon vertex.

of eq. (8.108) consists of the following five insertions into the tree amplitude

Msquark
s =

p1

p2

= c
(8A)
st,ab

−gs
s

Γρ;ji
2q̃g (p1, p2)

(
g ν
ρ (k1 + 2k2)

µ − g µ
ρ (2k1 + k2)

ν

+gµν (k1 − k2)ρ

)
ε∗µ(λ1, k1)ε

∗
ν(λ2, k2)

(8.120)

Msquark
t,upper =

p1

k1 − p1
=

1

2

(
1

N
c
(1)
st,ab + c

(8S)
st,ab − c

(8A)
st,ab

)
gs

t−m2
q̃αj

× Γµ;ji
2q̃g (p1, k1 − p1) (k2 − 2p2)

ν ε∗µ(λ1, k1)ε
∗
ν(λ2, k2)

(8.121)
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Figure 8.9: One-loop contributions to the squark-gluon vertex.

Msquark
t,lower =

p2

k2 − p2 =
1

2

(
1

N
c
(1)
st,ab + c

(8S)
st,ab − c

(8A)
st,ab

)
gs

t−m2
q̃αi

× Γν;ji
2q̃g (k2 − p2, p2) (2p1 − k1)

µ ε∗µ(λ1, k1)ε
∗
ν(λ2, k2)

(8.122)

Msquark
u,upper =

p1
k2 − p1

=
1

2

(
1

N
c
(1)
st,ab + c

(8S)
st,ab + c

(8A)
st,ab

)
gs

u−m2
q̃αj

× Γν;ji
2q̃g (p1, k2 − p1) (k1 − 2p2)

µ ε∗µ(λ1, k1)ε
∗
ν(λ2, k2)

(8.123)

Msquark
u,lower =

p2

k1 − p2
=

1

2

(
1

N
c
(1)
st,ab + c

(8S)
st,ab + c

(8A)
st,ab

)
gs

u−m2
q̃αi

× Γµ;ji
2q̃g (k1 − p2, p2) (2p1 − k2)

ν ε∗µ(λ1, k1)ε
∗
ν(λ2, k2)

(8.124)
.

8.3.3 Ghost corrections

For the construction of the ghosts at NLO we can follow the same considerations as for the tree
level. The two Slavnov-Taylor identities in eqs. (7.17) and (7.19) are valid non-perturbatively
for all orders and can therefore be expanded to the next higher order, so that we get in
momentum space the identities

k1,µMµν
V = −kν2SNL0

1 (8.125)
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k2,νMµν
V = −kµ1S

NL0
2 (8.126)

where SNL0
i is the NLO analogue to SL0

i . The different irreducible subgraphs that can be
embedded into the tree ghost processes and yield the NLO corrections are shown in fig. 8.10.

Figure 8.10: Irreducible subgraphs that can be embedded into the two 2 → 2 ghost processes
where only the diagrams for SNLO

1 are shown. The diagrams for SNLO
2 can be

obtained by reversing the ghost flow.

There is the correction of gluon propagator which factorizes as discussed in section 8.3.1

SLO
i → −ΠT (s)

s
SLO
i = Sprop

i . (8.127)

Figure 8.11: One-loop contributions to the ghost-gluon vertex.

Next we have the correction of the ghost-gluon vertex which is parametrized as

ifcdeΓ
σ
c̄cg (k1, k2) = gσd

ce

cc
k2 − k1

k2

k1 = i (ifcde) (A1k
σ
1 +A2k

σ
2 ) (8.128)

and whose two contributions are shown in fig. 8.11. The values of their associated amplitudes
split into the form factors A1 and A2 which are provided in appendix C.4. This vertex
correction can be embedded into the 2 → 2 process to give

Sghost
1 =

k1

k2

= δαβδijc
(8A)
st,ab (p1 − p2)σ

−gs
s

Γσ
c̄cg (−k2, k1) (8.129)
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Figure 8.12: Triangle and box corrections to the ghost process SNLO
1 which do not have a tree

level analogue. The diagrams for SNLO
2 can be obtained by reversing the ghost

flow

and similarly for Sghost
2 . The squark-gluon vertex correction is embedded into the tree diagram

as in the case of Msquark
s to yield Ssquark

i . Lastly, there are the box corrections with amplitudes
Sbox
i which do not have a direct tree analogue and are shown in fig. 8.12. Their amplitudes

are given for both directions of the ghost flow in appendix C.5. The total amplitude is then
the sum of these four corrections an the counterterms Scounter

i additionally

SNL0
i = Sprop

i + Sghost
i + Ssquark

i + Sbox
i + Scounter

i . (8.130)

The construction of the amplitude squared proceeds as in the tree level case as well by inserting
the Slavnov-Taylor identities given in eqs. (8.125) and (8.126) into the full polarization sum

2∑
λ1,λ2=1

2Re
[
Mµν

LOM
∗αβ
V ε∗µ (λ1, k1) ε

∗
ν (λ2, k2) εα (λ1, k1) εβ (λ2, k2)

]
(8.131)

= 2Re
[
Mµν∗

LO MNLO
µν − SLO∗

1 SV
1 − SLO∗

2 SNLO
2

]
. (8.132)

It was checked numerically that the NLO amplitudes obey SNL0
1 − SNL0

2 = 0 similar to the
tree level. However, note that the construction of the amplitude squared is independent of
this identity.

8.3.4 The counterterms

With all necessary renormalization constants for masses, wave functions and the strong
coupling at hand, we are now able to construct the counterterms for all corrected vertices. As
an example, we can derive the counterterm for the four-squark-gluon vertex with the bare
Lagrangian density

L =
1

2
g2s,0

(
1

N
δstδab + dabcT

c
st

)
Aa

0,µA
µ,b
0 q̃∗0,i,sq̃0,i,t. (8.133)

If all bare quantities are now substituted with their renormalized analogues and the associated
renormalization constants are expanded around the tree level value up to order g2s , the term

δ4jk = 2
δgs
gs
δjk + δZgδjk +

1

2
δZ q̃

jk +
1

2

[
δZ q̃

kj

]∗
(8.134)

appears as new constant in the interaction vertex. As a non trivial check whether this
counterterm makes sense, we can verify that the dependence of the number of squark and
quark flavours present in δgs and Zg drops out since there appear no UV divergent diagrams
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within the vertex correction itself that carry this dependence. A short calculation shows that
this is true

δ4,UV
ii = 2

δgUV
s

gs
+ δZUV

g =
−g2sCA

8π2εUV
(8.135)

where we looked only at the case of identical sfermion indices relevant for us. The derivation
of the other counterterms proceeds in the same way and they are all provided as additional
Feynman rules in appendix B.3. The matrix elements Mcounter and Scounter

i of eq. (8.108) and
eq. (8.130) respectively are then obtained by inserting the counterterms instead of the vertex
corrections.

8.4 The real corrections

In this section, the real corrections are addressed which are another kind of O(αs) corrections
and feature the emission of massless particles. The inclusion of these real emission processes
should ultimately cancel the infrared divergences that one encounters within the virtual
corrections. For the calculation of the cross section, it is of course not possible to use the
usual two-particle phase space, so a parametrization of the three-particle phase space has
to be found. In order to ensure the unitary of the real emission matrix element, it is again
necessary to include ghosts as asymptotic states. How this must be done exactly is deduced
with the tool of BRS-symmetry. As the integration is performed numerically, the infrared
divergences that emerge from the phase-space integration have to be somehow transferred to
the virtual corrections which is achieved through the dipole subtraction method. Lastly, the
long standing question is answered on whether the processes stsT2gg and stsT2QQbar have
to be combined - the answer is yes - and how this has to be done.

8.4.1 Kinematics and phase space integration

We begin with a brief discussion of the parametrization of the three-particle phase space and
of the associated final state momenta. Following [30, 67] the three-particle phase space∫

dΦ3 =

∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

(2π)δ+(k
2
1 −m2

1)(2π)δ+(k
2
2 −m2

2)

× (2π)δ+(k
2
3 −m2

3)δ
(4)(k1 + k2 + k3 − pa − pb) (8.136)

with external momenta k1, k2, k3 and pa, pb can be parametrized through three angles η, θ, φ
and two energies k01, k03. For real emission processes it is common to use the dimensionless
quantities

xi =
2k0i√
s
, i = 1, 2, 3 µi =

mi√
s
, i = 1, 2, 3, a, b (8.137)

instead of energies and masses directly. In these new quantities energy conservation can be
written as

x1 + x2 + x3 = 2 (8.138)

and integrating out the Dirac distributions yields the phase space∫
dΦ3 =

s

32

1

(2π)5

∫
dx1 dη dx3 dcos θ dφ (8.139)
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with the integration limits

η ∈ (0, 2π), φ ∈ (0, 2π), θ ∈ (0, π) (8.140)
xmin
3 = 2µ3, xmax

3 = 1− µ2+ + µ23 (8.141)

(x1)
max
min =

1

2τ

[
σ(τ + µ+µ−)±

√
x23 − 4µ23

√(
τ − µ2+

) (
τ − µ2−

)]
. (8.142)

The shorthands σ, τ and m± are defined as

σ = 2− x3, τ = 1− x3 + µ23, µ± = µ1 ± µ2. (8.143)

The derivation of this parametrization was performed in the center-of-mass frame of the initial
momenta pa and pb which are taken to be aligned along the z-axis

pµa =

√
s

2

(
1 + µ2a − µ2b , 0, 0,

√
(1− µ2a − µ2b)

2 − 4µ2aµ
2
b

)
(8.144)

pµb =

√
s

2

(
1− µ2a + µ2b , 0, 0,−

√
(1− µ2a − µ2b)

2 − 4µ2aµ
2
b

)
. (8.145)

From there it follows that the final state momenta take the form

~k1 =

√
s

2

√
x21 − 4µ21

 cos(η) cos(θ) sin(ξ) + sin(θ) cos(ξ)

sin(η) sin(ξ)

cos(θ) cos(ξ)− cos(η) sin(θ) sin(ξ)

 (8.146)

~k3 =

√
s

2

√
x23 − 4µ23

 sin(θ)

0

cos(θ)

 (8.147)

where ~k2 follows from momentum conservation ~k2 = −~k1 − ~k3 and the respective temporal
components form the energy-momentum relation (k0i )

2 = ~k2i +m2
i . The auxiliary angle ξ is

cos ξ =
(2− x1 − x3)

2 + 4µ21 + 4µ23 − 4µ22 − x21 − x23
2
√
x21 − µ21

√
x23 − µ23

. (8.148)

The integration within DM@NLO itself is performed numerically using the Vegas algorithm from
the CUBA library [72]. In order to ensure the correct implementation of the three-particle
phase space, the phase space volume Φ3(m1,m2,m3) was computed analytically for different
mass configurations and compared to the numerical result. The analytic results are

Φ3(0, 0, 0) =
s

256π3
(8.149)

Φ3(m1, 0, 0) =
2m2

1s ln
(
m2

1
s

)
−m4

1 + s2

256π3s
(8.150)

Φ3(m1,m2, 0) =
1

1024π3

(
s

(
2i
(
µ4− − 2µ2−(µ

2
+ + 2) + (µ2+ − 4)µ2+

)
arcsin

(√
µ2− − 1

µ2− − µ2+

)
−iπµ4− + 2µ2−

√
(µ2− − 1)(µ2+ − 1) + 2iπµ2−µ

2
+ + 2µ2+

√
(µ2− − 1)(µ2+ − 1)
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+4
√
(µ2− − 1)(µ2+ − 1)− 8

√
µ2−µ

2
+ ln

(√
(µ2− − 1)µ2+
µ2−(µ

2
+ − 1)

− 1

)

+8
√
µ2−µ

2
+ ln

(√
(µ2− − 1)µ2+
µ2−(µ

2
+ − 1)

+ 1

)
+ 4iπµ2− − iπµ4+ + 4iπµ2+

))
. (8.151)

As Φ3(m1,m2,m3) is symmetric with respect to the interchange of masses, the results for
other mass configurations with the same number of massless and massive particles are identical
to those given here. For the fully massive case no analytic result could be found.

8.4.2 Real emission processes

As postulated in the Kinoshita-Lee-Nauenberg theorem [27], it is necessary to include real
emission processes to cancel the infrared divergences that appear within the virtual corrections.
At first sight, in our case this is the process

q̃i,t (p1) + q̃∗j,s (p2) −→ gµa (k1) + gνb (k2) + gρc (k3) (8.152)

whose corresponding diagrams are depicted in fig. 8.13 where the momenta of the gluons are
read from top to bottom starting with k1.

Figure 8.13: Real gluon emission diagrams contributing at next-to-leading order to squark
annihilation into two gluons.

However, there can also occur infrared divergences through massless quarks which in turn
depend on the number Nf of quarks whose masses are neglected. In the following, we want

98



to track this dependence within the virtual corrections to find out whether it is necessary to
include real emission diagrams with massless quarks as final states. We perform the discussion
in the ”lightcone” gauge first and then again with ghosts. The only potential source for
infrared divergences within the vertex corrections (not the counterterms) that depend on Nf

is the quark triangle diagram. These double poles cancel each other out within the vertex
correction itself when considering both directions of the fermion flow. Furthermore, the Nf

dependent simple poles also disappear when the vertex correction is contracted with M(8A)

under usage of the full polarization sum. The only other source is the gluon renormalization
constant that enters through the counterterms in many places. The easiest way to track
this dependence is to explicitly write down all contributions with the help of the colour
decomposition

1

2
δZg

[
M(8A)

s M∗(8A)
LO + 2M(8A)

t M∗(8A)
LO + 2M(8A)

u M∗(8A)
LO

]
︸ ︷︷ ︸

q̃∗q̃g

+
3

2
δZgM(8A)

s M∗(8A)
LO︸ ︷︷ ︸

3g

−δZgM(8A)
s M∗(8A)

LO︸ ︷︷ ︸
propagator

+
∑

R=1,8S

δZgM(R)
v M∗(R)

LO︸ ︷︷ ︸
4-vertex

+
1

2
δZg

[
2M(R)

t M∗(R)
LO + 2M(R)

u M∗(R)
LO

]
︸ ︷︷ ︸

q̃∗q̃g


= δZg

∑
R

|M(R)
LO |2 (8.153)

which means that we are left with g2
sTFNf/12π2εIR|MLO|2 after including the normalization

factor from the colour basis elements and cancelling the Bose symmetry factor S2 with the
global factor two from 2MNLOM∗

LO
4.

We can now focus on the case where the polarization sum is performed by means of the
ghosts. In that case the Nf dependent simple poles from the two quark triangles do not
drop out by ”themselves” but are precisely cancelled by the infrared dependence of the gluon
renormalization constant entering through the propagator correction of the ghost diagrams. In
addition, we receive in total a term −δZg(|S1|2+ |S2|2) from the squark-gluon and ghost-gluon
counterterm within the ghost corrections. So, we obtain the same Nf dependence for both
methods. This contribution to the infrared divergences can only be compensated by including
the process

q̃q̃∗ −→ qr (k1) + qu (k2) + gµa (k3) .

The corresponding diagrams are shown in fig. 8.14. However, it turns out that only a subset
of the diagrams shown are needed for the process stsT2gg. These are the four which contain
the splitting of a gluon into a massless quark-antiquark pair which becomes obvious by
constructing the singular parts of the associated dipoles

〈q̃, q̃∗, g,g|
g2sNf

2π

(
JS
QQ,g

T3T4

T2
3

+ J q̃;S
QQ

T1T3

T2
3

+ J q̃∗;S
QQ

T2T3

T2
3

)
|q̃, q̃∗, g, g〉 = −

g2sTFNf

12π2εIR
|MLO|2

(8.154)

where colour conservation T1 + T2 + T4 = −T3 with T1 = Tq̃, T2 = Tq̃∗ , T3 = Tq and
T4 = Tq was used to combine the different integrated dipoles 5. But since only all six diagrams
taken together reflect the correct probability of this process, we cannot consider only the

4This factor two is not included in eq. (8.153).
5The dipole for emitter and spectator both from the final state JS

QQ,g
computed by Catani and Seymour was

converted from their notation and convention in [28] to the one used in chapter 5.
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


Figure 8.14: Real emission diagrams with light quarks as final states that contribute to squark
annihilation into two gluons at next-to-leading order. The infrared divergences
from the two diagrams in brackets are found in stsT2QQbar.

relevant four diagrams. The IR poles from the other two diagrams occurring for massless
quarks must also be found somewhere. Since the same diagrams show up as real emissions for
the process q̃q̃∗ → QQ which is already available for massive quarks in DM@NLO as stsT2QQbar,
the poles are expected to be found there. Futhermore, Cutkosky’s cutting rules tell us also
where these poles are to be found. These double poles can only be located in the correction
of the quark-gluon vertex. These findings then indicate that stsT2QQbar must inevitably be
extended to support massless quarks and combined with stsT2gg to obtain a well defined and
infrared finite cross section.
Another source of additional processes which have to be considered is gauge invariance. As
in the case of the 2 → 2 process, we face the issue that we want to include only the two
physical polarizations within the polarization sum. The first options is again to use the full
polarization sum from eq. (4.20). However, it is not simply possible to use the momentum
of another gluon as reference vector n as any gluon can potentially become collinear to any
other gluon which would violate the condition n · k 6= 0. An easy way out is to use to the
parity transformed vectors ki which can be obtained from the parametrization introduced in
section 8.4.1 such that the polarization sum for each gluon becomes

∑
λ=1,2

εµ∗(λ, ki)ε
ν(λ, ki) = −gµν +

kµi k
ν
i + kνi k

µ
i

ki · ki
(8.155)

where the denominator is always nonzero by construction. The second option is to use ghost.
In order to find out what processes with ghosts as asymptotic states have to be included and
how, we can resort to Slavnov-Taylor identities. For their derivation, let us have a look at the
Green’s functions

〈Ω|T {q̃q̃∗ca(y1)Aν
b (y2)A

ρ
c(y3)} |Ω〉 = 0 (8.156)

〈Ω|T {q̃q̃∗Aµ
a(y1)cb(y2)A

ρ
c(y3)} |Ω〉 = 0 (8.157)

〈Ω|T {q̃q̃∗Aµ
a(y1)A

ν
b (y2)cc(y3)} |Ω〉 = 0 . (8.158)

Applying the BRS-transformation δB to the first one yields

0 = 〈Ω|T {q̃q̃∗ (δBca(y1))Aν(y2)bA
µ
c (y3)} |Ω〉 − 〈Ω|T {q̃q̃∗ca(y1) (δBAν

b (y2))A
µ
c (y3)} |Ω〉

− 〈Ω|T {q̃q̃∗ca(y1)Aν
b (y2) (δBA

µ
c (y3))} |Ω〉 (8.159)
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and in more detail

〈Ω|T
{
q̃q̃∗∂y1µ A

µ
a(y1)A

ν
b (y2)A

ρ
c(y3)

]
|Ω〉 = −〈Ω|T

{
q̃q̃∗ca(y1)∂

ν
y2cb(y2)A

ρ
c(y3)

}
|Ω〉 (8.160)

− 〈Ω|T
{
q̃q̃∗ca(x1)A

ν
b (x2)∂

ρ
x3
cc(x3)

}
|Ω〉 (8.161)

where the contribution from the transformations that are nonlinear in the fields are already
neglected for the same reasons discussed in section 7.1. The same steps can be repeated for
the other two Green’s functions so that we arrive at in total six ghost processes

S1 : q̃i,t (p1) + q̃∗j,s (p2) −→ ca (k1) + cb (k2) + gµc (k3) (8.162)
S2 : q̃i,t (p1) + q̃∗j,s (p2) −→ ca (k1) + cb (k2) + gµc (k3) (8.163)
S3 : q̃i,t (p1) + q̃∗j,s (p2) −→ ca (k1) + gµb (k2) + cc (k3) (8.164)
S4 : q̃i,t (p1) + q̃∗j,s (p2) −→ ca (k1) + gµb (k2) + cc (k3) (8.165)
S5 : q̃i,t (p1) + q̃∗j,s (p2) −→ gµa (k1) + cb (k2) + cc (k3) (8.166)
S6 : q̃i,t (p1) + q̃∗j,s (p2) −→ gµa (k1) + cb (k2) + cc (k3) (8.167)

with amplitudes S1 to S6 which are simultaneously used as labels for the different processes.
Applying the LSZ formula with the assignments y1,2,3 → k1,2,3 yields the generalized Ward-
Takahashi identities

k1,µMµνρ
3 = −kν2S

ρ
1 − kρ3S

ν
3

k2,νMµνρ
3 = −kµ1S

ρ
2 − kρ3S

µ
6 (8.168)

k3,ρMµνρ
3 = −kµ1S

ν
4 − kν2S

µ
5 ,

whereby one has to commute all anti-ghost fields to the right and to include the additional
minus sign from the antihermiticity of the anti-ghost field to obtain the correct relative sign.
The BRS-transformation of the five-point functions

〈Ω|T {q̃q̃∗ca (y1) cb (y2) cc (y3)} |Ω〉 = 0 (8.169)
〈Ω|T {q̃q̃∗ca (y1) cb (y2) cc(y3)} |Ω〉 = 0 (8.170)
〈Ω|T {q̃q̃∗ca (y1) cb (y2) cc (y3)} |Ω〉 = 0 (8.171)

allow us to relate the different correlation functions associated with the ghost amplitudes to
each other

0 = 〈Ω|T {q̃q̃∗ca (y1) ∂y2ν Aν
b (y2) cc (y3)} |Ω〉 − 〈Ω|T

{
q̃q̃∗ca (y1) cb (y2) ∂

y3
ρ A

ρ
c (y3)

}
|Ω〉

0 = −〈Ω|T
{
q̃q̃∗∂y1µ A

µ
a (y1) cb (y2) cc (y3)

}
|Ω〉 − 〈Ω|T {q̃q̃∗) ca (y1) cb (y2) ∂y3ρ Aρ

c (y3} |Ω〉
0 = −〈Ω|T

{
q̃q̃∗∂y1µ A

µ
a (y1) cb (y2) cc (y3)

}
|Ω〉+ 〈Ω|T {q̃q̃∗ca (y1) ∂y2ν Aν

b (y2) cc (y3)} |Ω〉
(8.172)

which read in momentum space

k2,νSν
4 = k3,ρSρ

2

k1,µSµ
5 = k3,ρSρ

1 (8.173)
k1,µSµ

6 = k2,νSν
3 .
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(a) Process S1.

(b) Process S2.

(c) Process S3.
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(d) Process S4.

(e) Process S5.

(f) Process S6.

Figure 8.15: Ghost diagrams that contribute to squark annihilation at next-to-leading order.
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With these two sets of Ward identities at hand, we are now ready to replace the unphysical
modes through ghost

2∑
λ1,λ2,λ3=1

MµνρM∗
αβγε

∗
µ (λ1, k1) ε

∗
ν (λ2, k2) ε

∗
ρ (λ3, k3) ε

α (λ1, k1) ε
β (λ2, k2) ε

γ (λ3, k3)

(8.174)

=MµνρM∗
αβγ

(
−gµα +

k
µ
1k

α
1 + kµ1k

α
1

k1 · k1

)(
−gνβ +

k
ν
2k

β
2 + kν2k

β
2

k2 · k2

)(
−gργ + k

ρ
3k

γ
3 + kρ3k

γ
3

k3 · k3

)
(8.175)

=−MµνρM∗
µνρ + S1 · S∗

2 + S2 · S∗
1 + S3 · S∗

4 + S4 · S∗
3 + S5 · S∗

6 + S6 · S∗
5 (8.176)

+
k2 · S4

k2 · k2
(k1 · S∗

6 − k2 · S∗
3 ) +

k3 · S2

k3 · k3
(k1 · S∗

5 − k3 · S∗
1 ) (8.177)

+
k3 · S1

k3 · k3
(k2 · S∗

4 − k3 · S∗
2 ) (8.178)

=−MµνρM∗
µνρ + S1 · S∗

2 + S2 · S∗
1 + S3 · S∗

4 + S4 · S∗
3 + S5 · S∗

6 + S6 · S∗
5 (8.179)

=−MµνρM∗
µνρ +

6∑
i=1

Sµ
i S

∗
i,µ. (8.180)

The first step corresponds to the replacement of the transverse polarizations with the polar-
ization sum in eq. (8.155). Then the identities in eq. (8.168) are used to replace the momenta
in the polarization sum. In the following step, the relations in eq. (8.173) between the ghost
amplitudes themselves are used to eliminate the differences of the ghost amplitudes. For
the last step we need further identities between the ghost amplitudes, which result from the
explicit evaluation of the amplitudes with the help of Feynman rules

(S1 − S2)
∗ · (S1 − S2) = (S3 − S4)

∗ · (S3 − S4) = (S5 − S6)
∗ · (S5 − S6) = 0. (8.181)

Inserting these gives a similar picture as in the 2 → 2 calculation. The ghost processes are
only squared with themselves and then subtracted from the matrix element squared of the
actual process.
After all processes that have to be included are found, we can proceed with the calculation of
the squared matrix elements. After the manual construction of all amplitudes, the contraction
of all Lorentz indices is performed with FeynCalc 9.3 which also handles the summation
of all colour indices. The matrix element describing the production of the three gluons is
equipped with a Bose symmetry factor 1/3! to account for the fact that we have three identical
particles in the final state. The additional Dirac traces which occur for the process with
quarks in the final state are calculated with Tracer 1.1. In that case, the summation over
all final spin states is achieved through the common completeness relations∑

s

u(s)(p)ū(s)(p) = /p+m (8.182)∑
s

v(s)(p)v̄(s)(p) = /p−m. (8.183)
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M = M0 (p1 − k3)

gρc

p1

k3

= gsT
c
tu

(2p1 − k3)
ρ

(p1 − k3)2 −m2
q̃

ε∗ρ (k3)Mtree
su,ab (p1 − k3) .

(8.184)

8.4.3 Treatment of soft and collinear divergences

To make the integration over the three-particle phase space numerically accessible, we rely
on the results for the dipole subtraction method from chapter 5. As there are already two
detailed examples provided for the application of the dipole method in the mentioned chapter,
only the required dipoles are discussed briefly and a special feature which occurs in processes
with more than three coloured particles is described. To simplify the notation, the initial
momenta are labelled as pa = p1 and pb = p2 in this section.

8.4.3.1 Three gluons in the final state

For the tree process with three gluons in the final state, all four possibilities to form emitter
and spectator pairs occur. The dipole formula results in a total of 27 dipoles which have to
be considered:

• FE-FS: D12,3, D13,2, D23,1

• IE-IS: Da1,b, Da2,b, Da3,b, Db1,a, Db2,a, Db3,a

• IE-FS: Da2
1 , Da3

1 , Da1
2 , Da3

2 , Da2
3 , Da1

3 , Db2
1 , Db3

1 , Db1
2 , Db3

2 , Db2
3 , Db1

3

• FE-IS: Da
12, Da

23, Da
13, Db

12, Db
13, Db

23.

For a tree matrix element involving four coloured particles it is no longer possible to factorize
the colour charge algebra. It follows from colour conservation, that four of the six colour
charge operators TiTj with i 6= j can be expressed through the quadratic Casimir invariants
and T1T2, T1T3 giving [28]

T3T4 |1, 2, 3, 4〉 =
[
1

2
(C1 + C2 − C3 − C4) +T1T2

]
|1, 2, 3, 4〉 (8.185)

T2T4 |1, 2, 3, 4〉 =
[
1

2
(C1 + C3 − C2 − C4) +T1T3

]
|1, 2, 3, 4〉 (8.186)

T2T3 |1, 2, 3, 4〉 =
[
1

2
(C4 − C1 − C2 − C3)−T1T2 −T1T3

]
|1, 2, 3, 4〉 (8.187)

T1T4 |1, 2, 3, 4〉 = − (C1 +T1T2 +T1T3) |1, 2, 3, 4〉 . (8.188)

The four colour charge operators are associated with the particles in our process as follows:

T1 = Tq̃, T2 = Tq̃∗ , T3 = Tga and T4 = Tgb . (8.189)
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For the remaining two operators the colour correlations have to be evaluated explicitly. For
T1T2 the colour correlated matrix element splits into the three known colour channels

〈1, 2, 3, 4|T1T2 |1, 2, 3, 4〉 =
[
Mst,ab

LO (pa, pb, k1, k2)
]∗

(−tcvt) tcsuM
uv,ab
LO (pa, pb, k1, k2) (8.190)

= −CF |M̂(1)
LO|

2 +
1

2N
|M̂(8S)

LO |2 + 1

2N
|M̂(8A)

LO |2 (8.191)

whereas T1T3 mixes them

〈1, 2, 3, 4|T1T3 |1, 2, 3, 4〉 =
[
Mst,ab

2 (pa, pb, k1, k2)
]∗

(−tcvt) ifacdM
sv,db
2 (pa, pb, k1, k2) .

(8.192)

Recall that s denotes here the colour of the anti-squark and t the colour of the squark.
This means that T1 acts on t and T2 on s. As an additional cross-check we can compare
the relations from colour conservation above with the explicit computation of the colour
correlation, for example

〈1, 2, 3, 4|T3T4 |1, 2, 3, 4〉 =
[
Mst,eb

gg (pa, pb, k1, k2)
]∗

(−ifeca)ifdcbMst,ad
gg (pa, pb, k1, k2)

= −CA|M(1)
gg |2 −

N

2
|M(8S)

gg |2 − N

2
|M(8A)

gg |2 = 〈1, 2, 3, 4|CF − CA +T1T2 |1, 2, 3, 4〉 .
(8.193)

The large number of different dipoles, which have to be considered on the real side, are reduced
to a few on the virtual side since two dipoles, that are related through the exchange of gluon,
give the same results after integrating out the emitted gluon

• FE-FS: 3Igg,g

• IE-IS: 3I q̃g,q̃∗ , 3I q̃∗g,q̃

• IE-FS: 6I q̃gg , 6I q̃
∗g

g

• FE-IS: 3I q̃gg, 3I q̃
∗

gg .

8.4.3.2 A quark-antiquark pair in the final state

For the process with a quark-antiquark pair in the final state a total of 15 dipoles are needed
to ensure an infrared finite result:

• IE-IS: Da3,b, Db3,a

• IE-FS: Da3
1 , Da3

2 , Db3
1 , Db3

2

• FE-FS: D12,3, D13,2, D23,1

• FE-IS: Da
12, Db

12, Da
31, Da

32, Db
31, Db

32.

It is important to recognize that in the singular limit, the Feynman diagrams in parentheses
from fig. 8.14 are reduced to the process q̃q̃∗ → QQ, while the remaining diagrams transition
to q̃q̃∗ → gg. For this reason, two different tree matrix elements occur in the dipoles. For
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the latter process the already known amplitude MLO applies and for the other one the new
amplitude

Mqq =

p1

p2

k1

k2

= δijT
a
stT

a
ru

ig2s
s

(p1 − p2)σ ū
(s)(k1)γ

σv(s)(k2) (8.194)

which gives the squared and summed matrix element

|Mqq|2 =
g4s
s2
NCF

(
s2 − 4m2

q̃αi
s− (t− u)2

)
(8.195)

has to be used. The colour correlated matrix elements factorize into |Mqq|2 and a colour
factor

〈1, 2, 3, 4|T1T2 |1, 2, 3, 4〉 =
1

2N
|Mqq|2 〈1, 2, 3, 4|T1T3 |1, 2, 3, 4〉 =

2−N2

2N
|Mqq|2.

(8.196)

8.5 Preliminary results and discussion
To check the consistency of the result for the corrected cross section ∆σNLO both the virtual
and real corrections are with the methods of ghosts and also by using the lightcone gauge (full
polarization sum). As the ghosts emerge from Slavnov-Taylor identities that the amplitudes
must fulfill, this effectively probes the gauge invariance of the cross section. However, since the
discrepancy between the dipole and the phase-space slicing method for the process χ̃0

1t̃1 → tg
could not be resolved until the thesis was to be finished and thus the correctness of the finite
parts of the integrated dipoles could not be finally confirmed, we refrain from giving a result
for the entire NLO correction. However, by applying the newly developed integrated dipoles
to the mentioned process, the correctness of the singular parts for the cases of a final emitter
with an inital spectator and vice versa could be confirmed which legitimises their application
to this process. Through extensive checks the infrared and ultraviolet convergence could
then be verified which provides a non-trivial check for the virtual cross section. In addition,
this confirms the correctness of the singular parts of the integrated dipole involving q̃ → q̃g
splitting for emitter and spectator both from the initial state which have not been probed yet
by another process. The results for the virtual corrections in both gauges where the infrared
poles are discarded are shown in table 8.2. Both gauges for different center-of-mass momenta
agree within two or three digits. Due to the lack of reference results in the literature, it is not
possible to determine whether this difference is of pure numerical nature or whether there
might still be an error in the calculation. However, it should be noted that this uncertainty is
smaller than the errors arising in connection with methods such as the phase-space slicing
approach as discussed in section 5.6.2 or [29].
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vσV
finite (FDH)

pcm [GeV] vσLO lightcone ghost
100 9.735215 4.857407 4.856361

200 9.276764 2.934100 2.931544

300 8.595282 2.192852 2.188095

400 7.785973 1.741655 1.734365

500 6.94020 1.414466 1.404658

Table 8.2: Leading order cross section vσLO and the IR finite parts of the virtual cross section
vσV

finite in the FDH scheme for different center-of-mass momenta pcm and for the
two different gauges. All cross sections times velocity vσ are given in 10−9GeV−2

and are obtained for the pMSSM scenario II defined in table 7.1.
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9 Conclusion and outlook

In this thesis, the virtual corrections to squark-antisquark annihilation into two gluons were
computed within the DM@NLO project where an infrared and ultraviolet finite result was
achieved. As an additional cross check the calculation was performed by employing the full
polarization sum (”lightcone gauge”) for the matrix element squared as well as by including
ghosts to subtract the unphysical polarizations of the gluon. However, the agreement of both
methods on the level of the cross section is limited to three digits which might point towards
an inconsistency within the calculation or implementation. In order to arrive at this result
orthogonal multiplet bases were introduced as an efficient method to deal with colour in (loop)
calculations as well Slavnov-Taylor identities that emerge from BRS-symmetry and allow to
derive how ghost processes have to be included in order to ensure a gauge invariant cross
section.
Building on [1] the dipole subtraction method for massive initial states was brought to the
point where all integrated dipoles relevant for this process are present. To check the correctness
of the results, the dipole method was implemented as an alternative for two processes which
are already available in DM@NLO and for which the phase-space slicing method was used. For
the first process χ̃0

1t̃1 → th0/H where only soft divergences appear both methods agree
within the expected uncertainties whereas for the second process χ̃0

1t̃1 → tg where in addition
collinear and soft-collinear divergences are present, a large deviation between both approaches
is observed. However, the correctness of the singular parts of the integrated dipoles was
confirmed which allowed to render the process of this thesis q̃q̃∗ → gg (stsT2gg) infrared finite
in the first place. Related to the real corrections it turned out that the process q̃q̃∗ → QQ
(stSt2QQbar) needs to be extended to support massless quarks in the final state and that
this process then has to be combined with stsT2gg in order to ensure a well-defined cross
section. However, as long as the discrepancy between the dipole and the phase-space slicing
method remains unsolved no final result for q̃q̃∗ → gg can be given which prevents this process
from being finished. In addition, it is reasonable to compare the dipole method against the
phase-space slicing approach for other processes available in DM@NLO. Suitable examples would
be q̃q̃ → QQ and q̃q̃∗ → QQ as these also cover the integrated dipole for an emitter and
spectator both from the initial state whose corresponding finite parts have not been checked
so far.
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A Useful formula and relations

A.1 Useful functions within dimensional regularization

This section lists some special functions and relations which turn out to be helpful for
calculations in dimensional regularization and can be found in the many standard mathematical
handbooks such as [73, 74]. In addition, expansions for two different argument sets of the
Gaussian hypergeometric function are derived in detail starting from the hypergeometric
equation in appendix A.1.3.

A.1.1 Gamma and Beta function

For complex numbers z with a positive real part, the Gamma function Γ(z) can be defined as
the improper integral

Γ(z) =

∫ ∞

0
dt tz−1e−t, Re z > 0. (A.1)

It obeys the recursion relation Γ(z + 1) = zΓ(z) and has the expansions

Γ(z) =
1

z
− γE +

1

2

(
γ2E +

π2

6

)
z − 1

6

(
γ3E + γE

π2

2
+ 2ζ(3)

)
z2 +O

(
z3
)

(A.2)

1

Γ(z)
= z + γEz

2 +
1

2

(
γ2E − π2

6

)
z3 +O

(
z4
)

(A.3)

where γE is the Euler-Mascheroni constant and ζ(z) the Riemann zeta function. The Euler
β-function (or Eulerian integral of the first kind)

β(a, b) =

∫ 1

0
dt (1− t)a−1tb−1 =

Γ(a)Γ(b)

Γ(a+ b)
(A.4)

often makes an expansion of an integral in some small parameter ε accessible through the
Gamma function. Two of these expansions needed within this work are

β(1− ε, 1− ε) = 1 + 2ε+

(
4− π2

6

)
ε2 +O

(
ε3
)

(A.5)

β(2− ε, 2− ε) =
1

6
+

5

18
ε+O

(
ε2
)
. (A.6)

A.1.2 Spence function

The Spence function or dilogarithm is defined as

Li2(z) = −
∫ 1

0
dt

ln(1− zt)

t
= −

∫ z

0
dt

ln(1− t)

t
. (A.7)
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A.1.3 Gaussian hypergeometric function

The Gaussian or just ordinary hypergeometric function u = 2F1(a, b; c; z) is in general a
solution of the hypergeometric equation

z(1− z)u′′(z) + (c− (a+ b+ 1)z)u′(z)− ab u(z) = 0 (A.8)

with the initial condition u(0) = 1. A solution of this homogenous second-order linear ODE is
given by the integral

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt
tb−1(1− t)c−b−1

(1− zt)a
. (A.9)

The identity∫ ∞

0
dt tα−1

2F1(a, b; c;−t) =
Γ(α)Γ(c)Γ(a− α)Γ(b− α)

Γ(a)Γ(b)Γ(c− α)
, 0 < Re(α) < min(Re(a),Re(b))

(A.10)

allows to integrate over a hypergeometric function[75]. The Pfaff transformation

2F1 (a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
(A.11)

relates different argument sets.
It is often very useful to expand the argument set of the hypergeometric function for an
infinitesimal parameter ε. The expansion can be obtained by inserting the ansatz

u(z) = r(z) + εs(z) +O
(
ε2
)

(A.12)

into the differential equation in eq. (A.8) and solving the resulting system of equations order
by order while enforcing the boundary conditions r(0) = 1 and s(0) = 0. This method is
illustrated by the argument set 2F1(1, 1− ε, 2− 2ε; z) leading to

O
(
ε0
)
: (1− z)zr′′(z) + (2− 3z)r′(z)− r(z) = 0 (A.13)

O
(
ε1
)
: (1− z)zs′′(z) + (z − 2)r′(z) + (2− 3z)s′(z)− s(z) + r(z) = 0. (A.14)

This system of ODEs can be solved by applying the product rule for differentiation ”inversely”
giving

O
(
ε0
)
:

d

dz

[
(1− z)

d

dz
zr(z)

]
= 0 (A.15)

O
(
ε1
)
:

d

dz

[
(1− z)

d

dz
zs(z) + zr(z)− 2r(z)

]
= 0 (A.16)

such that one obtains after two subsequent integrations

r(z) = C1
ln(1− z)

z
+
C2

z
(A.17)

s(z) =
1

z

(
C3 ln(1− z) + 2Li2(z) +

1

2
ln2(1− z)

)
+
C4

z
(A.18)
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where the Ci are constants of integration. These take the values C1 = −1, C2 = 0, C3 = 2 and
C4 = 0 after using L’Hôpital’s rule to ensure the limits r(0) = 1 and s(0) = 0. The complete
result reads

2F1(1, 1− ε, 2− 2ε; z) = − ln(1− z)

z
+
ε

z

(
2Li2(z) +

1

2
ln2(1− z) + 2 ln(1− z)

)
+O

(
ε2
)
.

(A.19)

The same steps can be repeated to obtain the expansion

2F1(2, 1− ε, 2− 2ε; z) =
1

1− z
+

ε

z(z − 1)
(2z + ln(1− z)(2− z)) +O

(
ε2
)
. (A.20)

A.1.4 Integrals related to the dipole subtraction method

The following integral is needed up to order O(ε)

I1(y0; ε) =
∫ y0

0
dy

1

y1+ε
I1

(
−1

y
; ε

)
. (A.21)

The integral can be separated into a part giving the divergences for y → 0 and a finite part

I1(y0; ε) = β(1− ε, 1− ε)

(
1

y1+ε
0

∫ 1

0
dt tε 2F1

(
1, 1− ε; 2− 2ε;− t

y0

)
−
∫ ∞

0
dt tε 2F1 (1, 1− ε; 2− 2ε;−t)

)
. (A.22)

The last integral contains the divergent piece and is evaluated using eq. (A.10)∫ ∞

0
dt tε 2F1(1, 1−ε, 2−2ε;−t) = Γ(2− 2ε)Γ(−2ε)Γ(−ε)Γ(1 + ε)

Γ(1− 3ε)Γ(1− ε)
=

1

2ε2
− 1

ε
+O(ε). (A.23)

The other integral is finite and can be evaluated for ε = 0 where the hypergeometric function
takes the form of the zeroth order term in eq. (A.19) giving a dilogarithm∫ 1

0
dt tε 2F1

(
1, 1− ε; 2− 2ε;− t

y0

)
= −y0 Li2

(
− 1

y0

)
+O(ε). (A.24)

After expanding everything up to order O(ε) one obtains

I1(y0; ε) = − 1

2ε2
+
π2

12
− Li2

(
− 1

y0

)
+O(ε). (A.25)

The same steps can be repeated for the integral

I2(y0; ε) =
∫ y0

0
dy

1

y1+ε
I2

(
−1

y
; ε

)
=

1

2ε
+ ln

(
1 +

1

y0

)
+O(ε) (A.26)

which are∫ ∞

0
dt tε 2F1(2, 1− ε, 2− 2ε;−t) = Γ(2− 2ε)Γ(−2ε)Γ(ε+ 1)

Γ(1− 3ε)
= − 1

2ε
+ 1 +O(ε) (A.27)
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∫ 1

0
dt tε 2F1

(
2, 1− ε; 2− 2ε;− t

y0

)
= y0

∫ 1

0
dt

1

t+ y0
+O(ε) = y0 ln

(
1 +

1

y0

)
+O(ε) .

(A.28)

A.2 Useful relations for the SU(Nc) generators

These relations can be found in [76] but are given here in a more modern notation. It is
convenient to introduce a matrix notation for the f - and d-symbol

(F a)bc = ifbac (A.29)
(Da)bc = dbac . (A.30)

The (anti)commutators are defined through[
T a, T b

]
= ifabcT

c (A.31)[
F a, F b

]
= ifabcF

c (A.32)[
F a, Db

]
= ifabcD

c (A.33){
T a, T b

}
=

1

N
δab1+ dabcT

c . (A.34)

The Fierz identity

T a
ijT

a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
(A.35)

allows to contract indices that belong to the adjoint representation. The quadratic Casimirs
take the following values

T aT a = CF1, CF =
N2 − 1

2N
(A.36)

F aF a = CA1, CA = N (A.37)

DaDa =
N2 − 4

N
1 . (A.38)

The Dynkin indices define the normalization of a representation and are given by

Tr
(
T aT b

)
= TF δab, TF =

1

2
(A.39)

Tr
(
F aF b

)
= Nδab (A.40)

Tr
(
DaDb

)
=
N2 − 4

N
δab . (A.41)

Other useful relations that can be derived from the definitions above are

T aT b =
1

2

[
1

N
δab1+ (dabc + ifabc)T

c

]
(A.42)
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Tr
(
F aF bF c

)
=

i

2
Nfabc (A.43)

T aT bT a = − 1

2N
T b . (A.44)
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B Feynman rules

B.1 Propagators

The momentum p in the fermionic propagators points for internal lines in the direction of the
fermion flow.

µ, a ν, b =

iδabΠ
µν
Rξ

(p) = iδab
−gµν+(1−ξ) p

µpν

p2

p2+iε

iδabΠ
µν
lightcone(p, n) = δab

i
p2+iε

(
−gµν + nµpν+nνpµ

n·p

) (B.1)

α, s β, t = δstδ
αβ i

(
/p+mqα

)
p2 −m2

qα + iε
(B.2)

a b = δab
i
(
/p+mg̃

)
p2 −m2

g̃ + iε
(B.3)

α, i, r β, j, s =
iδijδstδ

αβ

p2 −m2
q̃αi

+ iε
(B.4)

a b =
iδab

p2 + iε
(B.5)

B.2 Couplings

All couplings relevant for stop annihilation into gluons are listed below. These are taken
from [5] and compared to those in [77]. In order to arrive at the Feynman rules given in
[77] starting from [5], the quark gauge eigenstates have to be redefined via the replacements
UuR , UdR , UuL → 1 and UdL → V qL . In addition, the squark mixing matrices W f̃ have to
be flavour diagonal reducing them to the L−R-mixing matrices Rf̃ in accordance with the
assumptions of the pMSSM.

2-quark-gluon vertex

qαr

qβs

gµa = −igsT
a
srδ

αβγµ (B.6)
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2-gluino-gluon vertex

¯̃gb

g̃c

gµa = −gsfabcγµ (B.7)

Triple-gluon vertex

k1

k3

k2

gµa

gρc

gνb = −gsfabc ((k3 − k1)
νgρµ + (k1 − k2)

ρgµν + (k2 − k3)
µgνρ) (B.8)

2-squark-gluon vertex

k2

k3

k1

q̃α∗i,r

q̃βj,s

gµa = −igsT
a
rsδ

αβδij (k2 − k3)
µ (B.9)

Gluon-ghost vertex

k
cb

cc

gµa = −gsfabckµ (B.10)

Four-gluon-squark vertex

gµa

gνb

q̃β∗j,s

q̃αi,r

= ig2sδ
αβδij

{
T a, T b

}
sr
gµν (B.11)

118



Four-gluon vertex

gµa

gσd

gνb

gρc

=− ig2s (fabefcde (g
µρgνσ − gµσgνρ)

+ facefbde (g
µνgρσ − gµσgνρ)

+ fadefbce (g
µνgσρ − gµρgνσ)

)
(B.12)

Four-squark vertex

q̃βl,u

q̃αj,s q̃∗βk,t

q̃∗αi,r

= −ig2s

(
T a
rsT

a
tuA

α
ijA

β
kl + δαβT a

ruT
a
tsA

α
ilA

α
kj

)
(B.13)

with Aα
ij := Rα

i1R
α
j1 −Rα

i2R
α
j2 (B.14)

Quark-squark-gluino vertex

q̃αi,r

qβs

g̃a = −i
√
2gsT

a
srδ

αβ (Rα
i1PR −Rα

i2PL) (B.15)

q̃α∗i,r

qβs

g̃a = −i
√
2gsT

a
rsδ

αβ (Rα
i1PL −Rα

i2PR) (B.16)

B.3 Counterterms

p p

µ, a ν, b = −iδab
(
p2gµν − pµpν

)
δZg (B.17)

p p

α, i, r β, j, s = iδαβδrs

(
(p2 −m2

q̃αi
)δZ q̃α

ji − δijδm
2
q̃αi

)
(B.18)
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q̃αi,t

q̃β∗j,s

gµa

gνb

= ig2sg
µν
{
T a, T b

}
st
δαβδ4,αji (B.19)

with δ4,αji = 2
δgs
gs
δji + δZgδji +

1

2
δZ q̃α

ji +
1

2

[
δZ q̃α

ij

]∗
(B.20)

k1

k3

k2

gµa

gρc

gνb = −gsfabc ((k3 − k1)
νgρµ + (k1 − k2)

ρgµν + (k2 − k3)
µgνρ) δ3g (B.21)

with δ3g =
3

2
δZg +

δgs
gs

(B.22)

k2

k3

k1

q̃α∗i,r

q̃βj,s

gµa = −igsT
a
rsδ

αβ (k2 − k3)
µ δ2q̃g,αij (B.23)

with δ2q̃g,αij =

(
δgs
gs

+
1

2
δZg

)
δij +

1

2

[
δZ q̃α

ji

]∗
+

1

2
δZ q̃α

ij (B.24)

k
cb

cc

gµa = −gsfabckµδ2cg (B.25)

with δ2cg =
δgs
gs

+ δZc +
1

2
δZg (B.26)
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C Vertex corrections

The vertex corrections in this chapter are computed in the HV and FDH schemes simultane-
ously. The parameter θD takes the value zero for the dimensional reduction and one for the
dimensional regularization scheme. The shorthand

∫
q is used for∫

dDq

(2π)D
µ2εgms

D0 . . .Dn
(C.1)

where to correct number of appearances m of the strong coupling gs and number of propagators
n + 1 have to be inserted depending on the underlying Feynman diagram. Each vertex is
decomposed into partial amplitudes that are defined in the respective section in section 8.3.
The colour structure for each vertex has already been simplified so that only the colour basis
elements remain where each basis vector is accompanied by a real number as prefactor which
is referred to as colour factor and written directly in front of the basis element. The partial
amplitudes listed here are given without the colour factor. Of course, the final expression for
a whole vertex correction is obtained by combing the colour factors and form factors listed
in this section. In some cases additional mixing matrices appear which are kept outside the
form factors. In other cases, there arise colour structures that do not factorize with the rest
of the amplitude as in eq. (C.3) or eq. (C.73). In those few cases the relation between the
partial amplitudes and the rest of the amplitude is explicitly written out. The relationship
between colour factors and partial amplitudes is illustrated by some further examples such as
eq. (C.7) or eq. (C.89). Furthermore, the form factors listed for each vertex correction are
defined without the imaginary unit i that comes from the definition of the general n-point
integral in eq. (8.7). The subamplitudes that are not listed for a given diagram are zero.

C.1 Four-gluon-squark vertex

The momentum and index convention for the correction of the four-squark-gluon vertex as
well as its parametrization in terms of the form factors Ag and Amn is shown in eq. (8.114).
As the external fields of this vertex coincide with the ones of the whole 2 → 2 process, the
same indices and momentum labels are used.

C.1.1 Bubbles

Squark bubble

The matrices Aγ related to the mixing matrices Rγ for the squark sector with flavour γ are
defined in eq. (B.14).

B0

(
s,m2

q̃γk
,m2

q̃γk

)
(C.2)
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q

= i
∑
γ,k

(
1

2
c
(8S)
st,abA

α
jiA

γ
kk + δαγ

(
CF

N
c
(1)
st,ab −

1

2N
c
(8S)
st,ab

)
Aα

jkA
γ
ki

)
gµνAg

(C.3)

Ag =
−g4s
16π2

B0 (C.4)

D0 = q2 −m2
q̃γk

+ iε D1 = (q − k1 − k2)
2 −m2

q̃γk
+ iε (C.5)

Gluon bubble

B0 (s, 0, 0) (C.6)

q

= iδij

(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)
gµνAg (C.7)

Ag =
g4s

16π2
(−3B0 + θD2) (C.8)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k1 − k2)
2 −m2

q̃αi
+ iε (C.9)

Squark-gluon bubble t

B0

(
t, 0,m2

q̃αi

)
(C.10)

q = iδij

(
N2 − 2

2N2
c
(1)
st,ab +

N2 − 4

4N
c
(8S)
st,ab −

N2 − 4

4N
c
(8A)
st,ab

)
gµνAg (C.11)

Ag =
−g4s
16π2

B0 (C.12)

D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2 − k2)
2 + iε (C.13)
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Squark-gluon bubble u

B0

(
u, 0,m2

q̃αi

)
(C.14)

q = iδij

(
N2 − 2

2N2
c
(1)
st,ab +

N2 − 4

4N
c
(8S)
st,ab +

N2 − 4

4N
c
(8A)
st,ab

)
gµνAg (C.15)

Ag =
−g4s
16π2

B0 (C.16)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k1 + p2)
2 + iε (C.17)

C.1.2 Triangles

Gluon exchange left

C0

(
m2

q̃αi
, s,m2

q̃αi
, 0,m2

q̃αi
,m2

q̃αi

)
(C.18)

B0

(
s,m2

q̃αi
,m2

q̃αi

)
(C.19)

q = δij

(
CF

N
c
(1)
st,ab −

1

2N
c
(8S)
st,ab

)
gµν

∫
q
(2p1 − q) · (−2p2 − q) (C.20)

Ag =
g4s

16π2
(
B0 + (4m2

q̃i − 2s)C0 + 2
(
4m2

q̃i − s
)
C1

)
(C.21)

D0 = q2 + iε D1 = (q + p2)
2 −m2

q̃αi
+ iε D2 = (q − 2p1)

2 −m2
q̃αi

+ iε (C.22)

Gluon exchange above

C0

(
m2

q̃αi
, t, 0, 0,m2

q̃αi
, 0
)

(C.23)

B0

(
t,m2

q̃αi
, 0
)

(C.24)
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q

= δij
N

4

(
c
(8A)
st,ab − c

(8S)
st,ab

)∫
q
−(2p1 + q)σ

× (gµν(2k1 + q)σ + gµσ(q − k1)
ν − gνσ(k1 + 2q)µ)

(C.25)

Ag = − g4s
16π2

(m2
q̃αi
(2C0 + 3C1 + C2)− 2tC0 − tC1 − tC2 +B0 − C00) (C.26)

A11 =
g4s

16π2
(2C2 + C22) (C.27)

A33 =
g4s

16π2
(2C1 + C11) (C.28)

A13 =
g4s

16π2
(2C0 + C1 + C12 + 4C2) (C.29)

A31 =
g4s

16π2
(2C0 + C1 + C12 − 2C2) (C.30)

(C.31)

D0 = q2 + iε D1 = (q + p1)
2 −m2

q̃αi
+ iε D2 = (q + k1)

2 + iε (C.32)

Gluon exchange above u

C0

(
m2

q̃αi
, u, 0, 0,m2

q̃αi
, 0
)

(C.33)

B0

(
u,m2

q̃αi
, 0
)

(C.34)

q

= δij
−N
4

(
c
(8A)
st,ab + c

(8S)
st,ab

)∫
q
−(2p1 + q)σ

× (gµν(2k2 + q)σ − gµσ(k2 + 2q)ν + gνσ(q − k2)
µ)

(C.35)

Ag = − g4s
16π2

(M2(2C0 + 3C1 + C2)− 2uC0 − uC1 − uC2 +B0 − C00) (C.36)

A22 =
g4s

16π2
(2C2 + C22) (C.37)

A33 =
g4s

16π2
(2C1 + C11) (C.38)

A23 =
g4s

16π2
(2C0 + C1 + C12 − 2C2) (C.39)

A32 =
g4s

16π2
(2C0 + C1 + C12 + 4C2) (C.40)
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(C.41)

D0 = q2 + iε D1 = (q + p1)
2 −m2

q̃αi
+ iε D2 = (q + k2)

2 + iε (C.42)

Gluon exchange below

C0

(
m2

q̃αi
, t, 0, 0,m2

q̃αi
, 0
)

(C.43)

B0

(
t,m2

q̃αi
, 0
)

(C.44)

q

= δij
N

4

(
c
(8S)
st,ab − c

(8A)
st,ab

)∫
q
(−2p2 − q)σ

× (gµν (−(2k2 + q)σ) + gµσ(k2 + 2q)ν + gνσ(k2 − q)µ)

(C.45)

Ag =
g4s

16π2
(m2

q̃αi
(2C0 + 3C1 + C2)− 2tC0 − tC1 − tC2 +B0 − C00) (C.46)

A22 = − g4s
16π2

(2C2 + C22) (C.47)

A44 = − g4s
16π2

(2C1 + C11) (C.48)

A24 = − g4s
16π2

(2C0 + C1 + C12 − 2C2) (C.49)

A42 = − g4s
16π2

(2C0 + C1 + C12 + 4C2) (C.50)

(C.51)

D0 = q2 + iε D1 = (q + p2)
2 −m2

q̃αi
+ iε D2 = (q + k2)

2 + iε (C.52)

Gluon exchange below u

C0

(
m2

q̃αi
, u, 0, 0,m2

q̃αi
, 0
)

(C.53)

B0

(
u,m2

q̃αi
, 0
)

(C.54)

q

= δij
N

4

(
c
(8A)
st,ab + c

(8S)
st,ab

)∫
q
(−2p2 − q)σ

× (gµν (−(2k1 + q)σ) + gµσ(k1 − q)ν + gνσ(k1 + 2q)µ)

(C.55)
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Ag =
g4s

16π2
(m2

q̃αi
(2C0 + 3C1 + C2)− 2uC0 − uC1 − uC2 +B0 − C00) (C.56)

A11 = − g4s
16π2

(2C2 + C22) (C.57)

A44 = − g4s
16π2

(2C1 + C11) (C.58)

A14 = − g4s
16π2

(2C0 + C1 + C12 + 4C2) (C.59)

A41 = − g4s
16π2

(2C0 + C1 + C12 − 2C2) (C.60)

D0 = q2 + iε D1 = (q + p2)
2 −m2

q̃αi
+ iε D2 = (q + k1)

2 + iε (C.61)

Gluon exchange right

C0(0, s, 0, 0, 0, 0) (C.62)
B0(s, 0, 0) (C.63)

q = δij

(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)∫
q

(
gµρ(−2k1 − q)σ + gµσ(k1 − q)ρ

+gρσ(k1 + 2q)µ) (gνρ(2k2 − q)σ − gνσ(k2 + q)ρ + gρσ(2q − k2)
ν)

(C.64)

Ag =
g4s

16π2

(
2B0 −

5

2
sC0 + 10C00 − sC1 − 2θD

)
(C.65)

A11 =
g4s

16π2
(5C1 + 10C11) (C.66)

A22 =
g4s

16π2
(5C1 + 10C11) (C.67)

A12 =
−g4s
8π2

(C0 + 4C1 + 5C12) (C.68)

A21 =
g4s
8π2

(2C0 − C1 − 5C12) (C.69)

D0 = q2 + iε D1 = (q − k2)
2 + iε D2 = (q + k1)

2 + iε (C.70)

Squark exchange left

C0

(
m2

q̃αi
, s,m2

q̃αi
,m2

q̃αi
, 0, 0

)
(C.71)
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B0(s, 0, 0) (C.72)

q = iδij

[(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)
(gµνAg + pµ1p

ν
1A33 + pµ2p

ν
2A44)

+
∑
R

c
(R)
st,ab

(
pµ1p

ν
2A

(R)
34 + pµ2p

ν
1A

(R)
43

)]
(C.73)

Ag =
g4s

32π2
(
2B0 +

(
4m2

q̃i − s
)
C0 − 2C00 + 2

(
s− 4m2

q̃i

)
C1

)
(C.74)

A33 = A44 =
g4s

16π2
(C1 − C11) (C.75)

A
(1)
34 = A

(1)
43 =

g4s
32π2

(C0 − 2C1 + 2C12) (C.76)

A
(8S)
34 = A

(8S)
43 =

N

2

g4s
32π2

(C0 − 2C1 + 2C12) (C.77)

A
(8A)
34 = −A(8A)

43 = 3N
g4s

64π2
(C0 − 2C1) (C.78)

D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2)
2 + iε D2 = (q − p1)

2 + iε (C.79)

Squark exchange above

C0

(
0, t,m2

q̃αi
,m2

q̃αi
,m2

q̃i , 0
)

(C.80)

q

= iδij
1

2N

(
N2 − 2

2N
c
(1)
st,ab − c

(8S)
st,ab + c

(8A)
st,ab

)∫
q
(2q − k1)

µ(p1 + q)ν

(C.81)

Ag =
g4s
8π2

C00 (C.82)

A11 =
g4s

16π2
(C1 + 2C11) (C.83)

A33 =
−g4s
8π2

(C2 − C22) (C.84)

A13 =
−g4s
16π2

(C0 + 2C1 − 2C12 − C2) (C.85)
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A31 =
g4s
8π2

C12 (C.86)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k1)
2 −m2

q̃αi
+ iε D2 = (q − p1)

2 + iε (C.87)

Squark exchange above u

C0

(
0, u,m2

q̃αi
,m2

q̃αi
,m2

q̃αi
, 0
)

(C.88)

q

= iδij
1

2N

(
N2 − 2

2N
c
(1)
st,ab − c

(8S)
st,ab − c

(8A)
st,ab

)
× (gµνAg + kµ2k

ν
2A22 + pµ1p

ν
1A33 + kµ2 p

ν
1A23 + pµ1k

ν
2A32)

(C.89)

Ag =
g4s
8π2

C00 (C.90)

A22 =
g4s

16π2
(C1 + 2C11) (C.91)

A33 =
−g4s
8π2

(C2 − C22) (C.92)

A23 =
g4s
8π2

C12 (C.93)

A32 =
−g4s
16π2

(C0 + 2C1 − 2C12 − C2) (C.94)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k2)
2 −m2

q̃αi
+ iε D2 = (q − p1)

2 + iε (C.95)

Squark exchange below

C0

(
0, t,m2

q̃αi
,m2

q̃αi
,m2

q̃αi
, 0
)

(C.96)

q

= iδij
1

2N

(
N2 − 2

2N
c
(1)
st,ab − c

(8S)
st,ab + c

(8A)
st,ab

)∫
q
(k2 − 2q)ν(−p2 − q)µ

(C.97)

Ag =
g4s
8π2

C00 (C.98)
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A22 =
g4s

16π2
(C1 + 2C11) (C.99)

A44 =
−g4s
8π2

(C2 − C22) (C.100)

A24 =
g4s
8π2

C12 (C.101)

A42 =
−g4s
16π2

(C0 + 2C1 − 2C12 − C2) (C.102)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k2)
2 −m2

q̃αi
+ iε D2 = (q − p2)

2 + iε (C.103)

Squark exchange below u

C0

(
0, u,m2

q̃i ,m
2
q̃i ,m

2
q̃i , 0

)
(C.104)

q

= iδij
1

2N

(
N2 − 2

2N
c
(1)
st,ab − c

(8S)
st,ab − c

(8A)
st,ab

)
× (gµνAg + kµ1k

ν
1A11 + pµ2p

ν
2A44 + kµ1 p

ν
2A14 + pµ2k

ν
1A41)

(C.105)

Ag =
g4s
8π2

C00 (C.106)

A11 =
g4s

16π2
(C1 + 2C11) (C.107)

A44 =
−g4s
8π2

(C2 − C22) (C.108)

A14 =
−g4s
16π2

(C0 + 2C1 − 2C12 − C2) (C.109)

A41 =
g4s
8π2

C12 (C.110)

D0 = q2 −m2
q̃αi

+ iε D1 = (q − k1)
2 −m2

q̃αi
+ iε D2 = (q − p2)

2 + iε (C.111)

Squark exchange right

C0

(
0, s, 0,m2

q̃γk
,m2

q̃γk
,m2

q̃γk

)
(C.112)
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q + q = i
∑
γ,k

(
1

4
c
(8S)
st,abA

α
jiA

γ
kk

+δαγ
(
CF

2N
c
(1)
st,ab −

1

4N
c
(8S)
st,ab

)
Aα

jkA
γ
ki

)
× (gµνAg + kµ1k

ν
1A11 + kµ2k

ν
2A22 + kµ1k

ν
2A12 + kµ2k

ν
1A21)

Ag =
g4s
2π2

C00 (C.113)

A11 = A22 =
g4s
4π2

(C1 + 2C11) (C.114)

A12 =
−g4s
8π2

(C0 + 4 (C1 + C12)) (C.115)

A21 =
−g4s
2π2

C12 (C.116)

D0 = q2 −m2
q̃γk

+ iε D1 = (q − k2)
2 −m2

q̃γk
+ iε D2 = (q + k1)

2 −m2
q̃γk

+ iε

(C.117)

C.1.3 Boxes
Box 1

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, t, s, 0,m2

q̃αi
,m2

q̃αi
,m2

q̃αi

)
(C.118)

C0

(
0, 0, s,m2

q̃αi
,m2

q̃αi
,m2

q̃αi

)
(C.119)

q = δij

(
CF

2N
c
(1)
st,ab −

1

4N
c
(8S)
st,ab +

1

4N
c
(8A)
st,ab

)∫
q
(k2 + p1 − p2 − 2q)µ

× (−2q − 2p2 + k2)
ν (2p1 − q) · (q + 2p2)

(C.120)

D0 = q2 D1 = (q + p2)
2 −m2

q̃αi
(C.121)

D2 = (q − k2 + p2)
2 −m2

q̃αi
D3 = (q − p1)

2 −m2
q̃αi

(C.122)

Box 1 u (18)

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, u, s, 0,m2

q̃αi
,m2

q̃αi
,m2

q̃αi

)
(C.123)
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C0

(
0, 0, s,m2

q̃αi
,m2

q̃αi
,m2

q̃αi

)
(C.124)

q = δij

(
CF

2N
c
(1)
st,ab −

1

4N
c
(8S)
st,ab −

1

4N
c
(8A)
st,ab

)∫
q
(k1 − 2p2 − 2q)µ

× (p1 − p2 + k1 − 2q)ν (2p1 − q) · (q + 2p2)

(C.125)

D0 = q2 D1 = (q + p2)
2 −m2

q̃αi
(C.126)

D2 = (q + p2 − k1)
2 −m2

q̃αi
D3 = (q − p1)

2 −m2
q̃αi

(C.127)

Box 2

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, t, s,m2

q̃αi
, 0, 0, 0

)
(C.128)

C0 (0, 0, s, 0, 0, 0) (C.129)
B0 (0, 0, 0) (C.130)

q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)∫
q
(q + p1)σ (p2 − q)ρ

×
(
(q − 2k2 + p2)

ρ gνβ + (k2 − 2p2 − 2q)ν gβρ + (q + p2 + k2)
β gνρ

)
×
(
(q − 2k2 + 2p2 + p1)

σ g µ
β (q − 2p1 − p2 + k2)β g

σµ + (p1 − 2q + k2 − p2)
µ gσβ

)
(C.131)

D0 = q2 −m2
q̃αi

D1 = (q + p2)
2 (C.132)

D2 = (q + p2 − k2)
2 D3 = (q − p1)

2 (C.133)

Box 2 u

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, u, s,m2

q̃αi
, 0, 0, 0

)
(C.134)

C0 (0, 0, s, 0, 0, 0) (C.135)
B0 (0, 0, 0) (C.136)
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q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab +

N

4
c
(8A)
st,ab

)∫
q
(q + p1)σ (p2 − q)ρ

×
(
(q − 2k1 + p2)

ρ gµβ + (k1 − 2p2 − 2q)µ gβρ + (q + p2 + k1)
β gµρ

)
×
(
(q − 2k1 + 2p2 + p1)

σ g ν
β + (q − 2p1 − p2 + k1)β g

σν + (p1 − 2q + k1 − p2)
ν gσβ

)
(C.137)

D0 = q2 −m2
q̃αi

D1 = (q + p2)
2 (C.138)

D2 = (q + p2 − k1)
2 D3 = (q − p1)

2 (C.139)

Box 3.1

D0

(
m2

q̃αi
, 0,m2

q̃αi
, 0, t, u,m2

q̃αi
, 0, 0,m2

q̃αi

)
(C.140)

C0

(
0,m2

q̃αi
, u, 0, 0,m2

q̃αi

)
(C.141)

q = δij
1

4
c
(1)
st,ab

∫
q
(2q + k1)

µ (q + 2k1 + k2 − p2)ρ (q − p2)β

×
(
(q − 2k2 + p2)

β gνρ + (k2 − 2q − 2p2)
ν gβρ + (q + p2 + k2)

ρ gβν
)

(C.142)

D0 = q2 −m2
q̃αi

D1 = (q + p2)
2 (C.143)

D2 = (q − k2 + p2)
2 D3 = (q + k1)

2 −m2
q̃αi

(C.144)

Box 3.2

D0

(
m2

q̃αi
, 0,m2

q̃αi
, 0, t, u, 0,m2

q̃αi
,m2

q̃αi
, 0
)

(C.145)

C0

(
0,m2

q̃αi
, u,m2

q̃αi
,m2

q̃αi
, 0
)

(C.146)

q = δij
1

4
c
(1)
st,ab

∫
q
(2p2 + q)α (k2 − 2p2 − 2q)ν (k1 + 2k2 − 2p2 − q)ρ

× ((q − k1)
ρ gαµ + (−k1 − 2q)µ gαρ + (2k1 + q)α gµρ)

(C.147)
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D0 = q2 D1 = (q + p2)
2 −m2

q̃αi
(C.148)

D2 = (q − k2 + p2)
2 −m2

q̃αi
D3 = (q + k1)

2 (C.149)

Box 4

D0

(
m2

q̃αj
, 0, 0,m2

q̃αi
, t, s,m2

qα ,m
2
g̃,m

2
g̃,m

2
g̃

)
(C.150)

C0

(
0, 0, s,m2

g̃,m
2
g̃,m

2
g̃

)
(C.151)

B0

(
0,m2

g̃,m
2
g̃

)
(C.152)

q =

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)∫
q
Tr [(Rα

i1PR −Rα
i2PL)

×
(
/q − /p1 +mg̃

)
γµ
(
/q − /k2 + /p2 +mg̃

)
γν

×
(
/q + /p2 +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
/q +mqα

)]
(C.153)

D0 = q2 −m2
qα D1 = (q + p2)

2 −m2
g̃ (C.154)

D2 = (q − k2 + p2)
2 −m2

g̃ D3 = (q − p1)
2 −m2

g̃ (C.155)

Box 4 u

D0

(
m2

q̃αj
, 0, 0,m2

q̃αi
, u, s,m2

qα ,m
2
g̃,m

2
g̃,m

2
g̃

)
(C.156)

C0

(
0, 0, s,m2

g̃,m
2
g̃,m

2
g̃

)
(C.157)

B0

(
0,m2

g̃,m
2
g̃

)
(C.158)

q =

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab +

N

4
c
(8A)
st,ab

)∫
q
−2Tr [(Rα

i1PR −Rα
i2PL)

×
(
/q − /p1 +mg̃

)
γν
(
/q − /k1 + /p2 +mg̃

)
γµ

×
(
/q + /p2 +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
/q +mqα

)]
(C.159)

D0 = q2 −m2
qα D1 = (q + p2)

2 −m2
g̃ (C.160)

D2 = (q − k1 + p2)
2 −m2

g̃ D3 = (q − p1)
2 −m2

g̃ (C.161)
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Box 5

D0

(
m2

q̃αj
, 0, 0,m2

q̃αi
, t, s,m2

g̃,m
2
qα ,m

2
qα ,m

2
qα

)
(C.162)

C0

(
0, 0, s,m2

qα ,m
2
qα ,m

2
qα
)

(C.163)
B0

(
0,m2

qα ,m
2
qα
)

(C.164)

q =

(
CF

2N
c
(1)
st,ab −

1

4N
c
(8S)
st,ab +

1

4N
c
(8A)
st,ab

)∫
q
−2Tr [(Rα

i1PR −Rα
i2PL)

×
(
−/q +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
−/q − /p2 +mqα

)
γν

×
(
−/q − /p2 + /k2 +mqα

)
γµ
(
−/q + /p1 +mqα

)]
(C.165)

D0 = q2 −m2
g̃ D1 = (q + p2)

2 −m2
qα (C.166)

D2 = (q + p2 − k2)
2 −m2

qα D3 = (q − p1)
2 −m2

qα (C.167)

Box 5 u

D0

(
m2

q̃αj
, 0, 0,m2

q̃αi
, u, s,m2

g̃,m
2
qα ,m

2
qα ,m

2
qα

)
(C.168)

C0

(
0, 0, s,m2

qα ,m
2
qα ,m

2
qα
)

(C.169)
B0

(
0,m2

qα ,m
2
qα
)

(C.170)

q =

(
CF

2N
c
(1)
st,ab −

1

4N
c
(8S)
st,ab −

1

4N
c
(8A)
st,ab

)∫
q
−2Tr [(Rα

i1PR −Rα
i2PL)

×
(
−/q +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
−/q − /p2 +mqα

)
γµ

×
(
−/q − /p2 + /k1 +mqα

)
γν
(
−/q + /p1 +mqα

)]
(C.171)

D0 = q2 −m2
g̃ D1 = (q + p2)

2 −m2
qα (C.172)

D2 = (q + p2 − k1)
2 −m2

qα D3 = (q − p1)
2 −m2

qα (C.173)

Box 6.1

D0

(
m2

q̃αj
, 0,m2

q̃αi
, 0, t, u,m2

qα ,m
2
g̃,m

2
g̃,m

2
qα

)
(C.174)
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C0

(
0,m2

q̃αi
, u,m2

g̃,m
2
g̃,m

2
qα

)
(C.175)

B0

(
m2

q̃αi
,m2

g̃,m
2
qα

)
(C.176)

q =
1

4
c
(1)
st,ab

∫
q
−2Tr

[(
/q + /k1 +mqα

)
(Rα

i1PR −Rα
i2PL)

(
/q − /k2 + /p2 +mg̃

)
×γν

(
/q + /p2 +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
/q +mqα

)
γµ
]

(C.177)

D0 = q2 −m2
qα D1 = (q + p2)

2 −m2
g̃ (C.178)

D2 = (q + p2 − k2)
2 −m2

g̃ D3 = (q + k1)
2 −m2

qα (C.179)

Box 6.2

D0

(
m2

q̃αj
, 0,m2

q̃αi
, 0, t, u,m2

g̃,m
2
qα ,m

2
qα ,m

2
g̃

)
(C.180)

C0

(
0,m2

q̃αi
, u,m2

qα ,m
2
qα ,m

2
g̃

)
(C.181)

B0

(
m2

q̃αi
,m2

qα ,m
2
g̃

)
(C.182)

q =
1

4
c
(1)
st,ab

∫
q
−2Tr

[
γµ
(
−/q +mg̃

) (
Rα

j1PL −Rα
j2PR

) (
−/q − /p2 +mqα

)
×γν

(
−/q − /p2 + /k2 +mqα

)
(Rα

i1PR −Rα
i2PL)

(
−/q − /k1 +mg̃

)]
(C.183)

D0 = q2 −m2
g̃ D1 = (q + p2)

2 −m2
qα (C.184)

D2 = (q + p2 − k2)
2 −m2

qα D3 = (q + k1)
2 −m2

g̃ (C.185)

C.2 Triple-gluon vertex
The naming and momentum conventions for the triple-gluon vertex correction as well as its
parametrization in terms of the partial amplitudes Amno, Ag1,m, Ag2,m and Ag3,m are shown
in eq. (8.116).

Gluon bubble k1

B0

(
k21, 0, 0

)
(C.186)

135



q

=
N

2
ifcdeΓ

ρστ = i
N

2
ifcde (g

ρσkτ1Ag1,1 + gρτkσ1Ag2,1) (C.187)

Γρστ = −1

2

∫
q
gαµgβν

(
gατgβσ − gασgβτ − 2

(
gασgβτ − gατgβσ

))
× (gµν(k1 − 2q)ρ + gµρ(q − 2k1)

ν + gνρ(k1 + q)µ) (C.188)

Ag1,1 = − 9g3s
32π2

B0 (C.189)

Ag2,1 =
9g3s
32π2

B0 (C.190)

D0 = q2 + iε D1 = (q − k1)
2 + iε (C.191)

Gluon bubble k2

B0

(
k22, 0, 0

)
(C.192)

q

=
N

2
ifcdeΓ

ρστ = i
N

2
ifcde (g

ρσkτ2Ag1,2 + gστkρ2Ag3,2) (C.193)

Γρστ = −1

2

∫
q
gαβgµν

(
−gβτgνρ + gβρgντ − 2

(
gβτgνρ − gβρgντ

))
× (gαµ(2q − k2)

σ + gασ(−k2 − q)µ + gµσ(2k2 − q)α) (C.194)

Ag1,2 =
9g3s
32π2

B0 (C.195)

Ag3,2 = − 9g3s
32π2

B0 (C.196)

D0 = q2 + iε D1 = (q − k2)
2 + iε (C.197)

Gluon bubble k3

B0

(
k23, 0, 0

)
(C.198)
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q
=
N

2
ifcdeΓ

ρστ = i
N

2
ifcde (g

ρτkσ3Ag2,3 + gστkρ3Ag3,3) (C.199)

Γρστ = −1

2

∫
q
gαµgβν (−gµσgνρ + gµρgνσ − 2 (gµσgνρ − gµρgνσ))

×
(
gαβ(k3 − 2q)τ + gατ (q − 2k3)

β + gβτ (k3 + q)α
)

(C.200)

Ag2,3 =
9g3s
32π2

B0 (C.201)

Ag3,3 = − 9g3s
32π2

B0 (C.202)

D0 = q2 + iε D1 = (q − k3)
2 + iε (C.203)

Squark bubbles

All three squark bubbles vanish through the application of the identity

B1

(
p2,m2,m2

)
= −1

2
B0

(
p2,m2,m2

)
. (C.204)

= = = 0 (C.205)

Quark and gluino triangles

The quark triangle where the fermion flow is in the clockwise direction gives a colour structure
Tr
(
T dT cT e

)
= 1

4 (dcde − ifcde) and a fermionic trace

T ρστ
1 (m) = Tr

(
γσ
(
−/q + /k1 +m

)
γρ
(
−/q +m

)
γτ
(
−/q + /k3 +m

))
(C.206)

whereas the other quark triangle with the flow in the counter-clockwise direction gives a colour
structure Tr

(
T cT dT e

)
= 1

4 (dcde + ifcde) and a fermionic trace

T ρστ
2 (m) = Tr

(
γσ
(
/q − /k3 +m

)
γτ
(
/q +m

)
γρ
(
/q − /k1 +m

))
. (C.207)

It can be shown by explicit computation that the sum of both traces vanishes T ρστ
1 +T ρστ

2 = 0
so that only the antisymmetric part with respect to the colour indices survives.
The direction of the fermion flow for the gluino triangle is chosen to be counter-clockwise such
that its trace coincides with T ρστ

2 and the only difference lies in the colour factor. Consequently,
the quark and gluino triangles yield the same form factors in terms of Passarino-Veltmann
functions just evaluated for different argument sets. The form factors given below are the
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ones for the sum of both quark diagrams corresponding to −2T ρστ
2 . In order to arrive at the

partial amplitudes for the gluino, the form factors below have to be divided by two.

C0

(
k21, k

2
2, k

2
3,m

2
qγ ,m

2
qγ ,m

2
qγ
)

(C.208)
B0

(
k22,m

2
qγ ,m

2
qγ
)

(C.209)

q + q =
1

4
ifcde

∑
γ

∫
q
− (T ρστ

2 (mqγ )− T ρστ
1 (mqγ ))

(C.210)

D0 = q2−m2
qγ+iε D1 = (q−k1)2−m2

qγ+iε D2 = (q−k3)2−m2
qγ+iε (C.211)

C0

(
k21, k

2
2, k

2
3,m

2
g̃,m

2
g̃,m

2
g̃

)
(C.212)

B0

(
k22,m

2
g̃,m

2
g̃

)
(C.213)

q =
N

2
ifcde

∫
q
−T ρστ

2 (mg̃) (C.214)

D0 = q2−m2
g̃+iε D1 = (q−k1)2−m2

g̃+iε D2 = (q−k3)2−m2
g̃+iε (C.215)

Ag1,1 =
g3s
2π2

(
−2C12(k1 · k3)− 2k21C11 + k23C2 + 2B0 +B1 − 2C00 + 4C001

)
(C.216)

Ag1,3 = − g3s
2π2

(
2(C2 + C22)(k1 · k3) + k21(C1 + 2C12) +B0 +B1 − 2C00 − 4C002

)
(C.217)

Ag2,1 =
g3s
2π2

(
−k23C2 +B1 + 2C00 + 4C001

)
(C.218)

Ag2,3 = − g3s
2π2

(
k21C1 +B0 +B1 − 2C00 − 4C002

)
(C.219)

Ag3,1 =
g3s
2π2

(
−2(C1 + C11)(k1 · k3)− k23(2C12 + C2) +B1 + 2C00 + 4C001

)
(C.220)

Ag3,3 =
g3s
2π2

(
−2C12(k1 · k3) + k21C1 − 2k23C22 +B0 −B1 − 2C00 + 4C002

)
(C.221)

A111 =
2g3s
π2

(C11 + C111) (C.222)

138



A311 =
g3s
π2

(2C112 + C12) (C.223)

A113 =
g3s
π2

(C11 + 2(C112 + C12)) (C.224)

A313 =
g3s
π2

(C12 + 2C122 + C22) (C.225)

A131 =
g3s
π2

(C11 + 2C112 + C12) (C.226)

A331 =
g3s
π2

(C12 + 2C122) (C.227)

A133 =
g3s
π2

(2C12 + 2C122 + C22) (C.228)

A333 =
2g3s
π2

(C22 + C222) (C.229)

Squark triangles
When taking into account both directions of the charge flow, the symmetric colour part dcde
of the squark triangles vanishes, as for the quark triangles in appendix C.2. The form factors
given below are only valid for the sum of both diagrams.

C0

(
k21, k

2
2, k

2
3,m

2
q̃γk
,m2

q̃γk
,m2

q̃γk

)
(C.230)

q + q =
1

4
ifcde

∑
γ,k

∫
q
2 (2q − k1 − k3)

σ

× (2q − k1)
ρ (2q − k3)

τ

(C.231)

D0 = q2−m2
q̃γk
+iε D1 = (q−k1)2−m2

q̃γk
+iε D2 = (q−k3)2−m2

q̃γk
+iε (C.232)

Ag1,1 = − g
3
s

π2
C001 (C.233)

Ag1,3 = − g3s
2π2

(C00 + 2C002) (C.234)

Ag2,1 = − g3s
2π2

(C00 + 2C001) (C.235)

Ag2,3 = − g3s
2π2

(C00 + 2C002) (C.236)

Ag3,1 = − g3s
2π2

(C00 + 2C001) (C.237)

Ag3,3 = − g
3
s

π2
C002 (C.238)

A111 = − g3s
4π2

(C1 + 4(C11 + C111)) (C.239)
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A311 = − g3s
2π2

(2C112 + C12) (C.240)

A113 = − g3s
8π2

(C0 + 4C1 + 4C11 + 8C112 + 8C12 + 2C2) (C.241)

A313 = − g3s
4π2

(2C12 + 4C122 + C2 + 2C22) (C.242)

A131 = − g3s
4π2

(C1 + 2(C11 + 2C112 + C12)) (C.243)

A331 = − g3s
2π2

(C12 + 2C122) (C.244)

A133 = − g3s
8π2

(C0 + 2C1 + 4(2C12 + 2C122 + C2 + C22)) (C.245)

A333 = − g3s
4π2

(C2 + 4(C22 + C222)) (C.246)

Gluon triangle

The gluon triangle is the only correction to the triple gluon vertex where the dimensional
regularization and the dimensional reduction schemes differ.

C0

(
k21, k

2
2, k

2
3, 0, 0, 0

)
(C.247)

B0

(
k22, 0, 0

)
(C.248)

q =
N

2
ifcdeΓ

ρστ (C.249)

Γρστ = −
∫
q

(
gβν(k1 − 2q)ρ + gβρ(k1 + q)ν + gνρ(q − 2k1)

β
)

×
(
gβµ(k3 − 2q)τ + g τ

β (k3 + q)µ + g τ
µ (q − 2k3)β

)
× (gµν (k1 + k3 − 2q)σ + gµσ(k1 − 2k3 + q)ν + g σ

ν (−2k1 + k3 + q)µ) (C.250)

D0 = q2 + iε D1 = (q − k1)
2 + iε D2 = (q − k3)

2 + iε (C.251)

Ag1,1 =
g3s

16π2

(
−32C001 −

4

3
θD + 2(k1 · k3)(2C0 + 5C1 − C11 + 4C2)− 2k21C1 + 2k23C0

+ k23C1 − 2k23C12 + 6B0 + 2B1 + 14C001

)
(C.252)

Ag1,3 = − g3s
16π2

(
16C00 + 32C002 −

2

3
θD + (k1 · k3)(3C1 + 2C12 − 6C2)

+ k21(5C0 + 4C1 + 10C2) + 2k23C2 + 2k23C22 + 3B0 + 2B1 − 5C00 − 14C002

)
(C.253)
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Ag2,1 = − g3s
16π2

(
16C00 + 32C001 −

2

3
θD + (k1 · k3)(3C0 + 13C1 + 2C11 + 2C12 + 3C2)

+ 2k21(C1 + C11) + k23C0 − k23C1 + 2k23C12 − k23C2 +B0 − 2B1 − 5C00 − 14C001

)
(C.254)

Ag2,3 = − g3s
16π2

(
16C00 + 32C002 −

2

3
θD + (k1 · k3)(3C0 + 3C1 + 2C12 + 13C2 + 2C22)

+ k21(C0 − C1 + 2C12 − C2) + 2k23C2 + 2k23C22 + 3B0 + 2B1 − 5C00 − 14C002

)
(C.255)

Ag3,1 = − g3s
16π2

(
16C00 + 32C001 −

2

3
θD + (k1 · k3)(−6C1 + 2C12 + 3C2)

+ 2k21(C1 + C11) + 5k23C0 + 10k23C1 + 4k23C2 +B0 − 2B1 − 5C00 − 14C001

)
(C.256)

Ag3,3 =
g3s

16π2

(
−32C002 −

4

3
θD + 2(k1 · k3)(2C0 + 4C1 + 5C2 − C22)

+ k21(2C0 − 2C12 + C2)− 2k23C2 + 4B0 − 2B1 + 14C002

)
(C.257)

A111 = − 9g3s
8π2

(C11 + C111) (C.258)

A311 =
g3s

16π2
(3C1 − 18C112 − 9C12 − 3C2) (C.259)

A113 = − g3s
16π2

(−3C0 + 6C1 + 9C11 + 18C112 + 18C12 − 6C2) (C.260)

A313 = − g3s
16π2

(3C0 + 3C1 + 9C12 + 18C122 + 15C2 + 9C22) (C.261)

A131 = − g3s
16π2

(3C0 + 15C1 + 9C11 + 18C112 + 9C12 + 3C2) (C.262)

A331 = − g3s
16π2

(3C1 + 9C12 + 18C122 − 3C2) (C.263)

A133 = − g3s
16π2

(−3C0 − 6C1 + 18C12 + 18C122 + 6C2 + 9C22) (C.264)

A333 = − 9g3s
8π2

(C22 + C222) (C.265)

Ghost triangles

C0

(
k21, k

2
2, k

2
3, 0, 0, 0

)
(C.266)

q + q =
N

2
ifcde

∫
q
(qτ (q − k1)

ρ(k3 − q)σ + qρ

×(k1 − q)σ(q − k3)
τ )

(C.267)

D0 = q2 + iε D1 = (q − k1)
2 + iε D2 = (q − k3)

2 + iε (C.268)
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Ag1,1 =
g3s
8π2

C001 (C.269)

Ag1,3 =
g3s

16π2
(C00 + 2C002) (C.270)

Ag2,1 =
g3s

16π2
(C00 + 2C001) (C.271)

Ag2,3 =
g3s

16π2
(C00 + 2C002) (C.272)

Ag3,1 =
g3s

16π2
(C00 + 2C001) (C.273)

Ag3,3 =
g3s
8π2

C002 (C.274)

A111 =
g3s
8π2

(C11 + C111) (C.275)

A311 =
g3s

16π2
(2C112 + C12) (C.276)

A113 =
g3s

16π2
(C1 + C11 + 2(C112 + C12)) (C.277)

A313 =
g3s

16π2
(C12 + 2C122 + C2 + C22) (C.278)

A131 =
g3s

16π2
(C1 + C11 + 2C112 + C12) (C.279)

A331 =
g3s

16π2
(C12 + 2C122) (C.280)

A133 =
g3s

16π2
(2C12 + 2C122 + C2 + C22) (C.281)

A333 =
g3s
8π2

(C22 + C222) (C.282)
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C.3 Squark-gluon vertex

The momentum and index convention for the correction of the squark-squark-gluon vertex is
given in eq. (8.118). The form factors Alk

− and Alk
+ for this vertex are uniquely determined in

terms of their numerical value in contrast to the two vertex corrections before.

Gluon-squark bubble at p1

B0

(
p21,m

2
q̃αk
, 0
)

(C.283)

q
=
N2 − 2

2N
T c
ur

∫
q
(q + p1)

ρ (C.284)

Alk
+ = Alk

− = δkl
g3s

32π2
(B0 −B1) (C.285)

D0 = q2 −m2
q̃αk

+ iε D1 = (q − p1)
2 + iε (C.286)

Gluon-squark bubble at p2

B0

(
p22,m

2
q̃αk
, 0
)

(C.287)

q
=
N2 − 2

2N
T c
ur

∫
q
(−q − p2)

σ (C.288)

Alk
+ = −Alk

− = δkl
g3s

32π2
(B1 −B0) (C.289)

D0 = q2 −m2
q̃αk

+ iε D1 = (q − p1)
2 + iε (C.290)

Squark bubble

The squark bubble vanishes through B0(p
2,m2,m2)− 2B1(p

2,m2,m2) = 0.

= 0 (C.291)
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Gluon bubble

= 0 (C.292)

Gluon exchange

C0

(
p21, (p1 + p2)

2, p22, 0,m
2
q̃αk
,m2

q̃αk

)
(C.293)

B0

(
(p1 + p2)

2,m2
q̃αk
,m2

q̃αk

)
(C.294)

q = − 1

2N
T c
ur

∫
q
(2p1 − q) · (q + 2p2) (p1 − p2 − 2q)σ (C.295)

Alk
+ = δkl

g3s
16π2

(
B0 + 2B1 − 2p21(C11 − C12) + 2p22(C22 − C12)

+2p1 · p2(2C1 + C11 − 2C2 − C22)) (C.296)

Alk
− = −δkl

g3s
8π2

(
2C00 + p22(C12 + C2 + C22) + p21(C1 + C11 + C12)

−p1 · p2(2C0 + 3C1 + C11 + 2C12 + 3C2 + C22)) (C.297)

D0 = q2 + iε D1 = (q − p1)
2 −m2

q̃αk
+ iε D2 = (q + p2)

2 −m2
q̃αk

+ iε (C.298)

Squark exchange

C0

(
p21, (p1 + p2)

2, p22,m
2
q̃αk
, 0, 0

)
(C.299)

B0

(
(p1 + p2)

2, 0, 0
)

(C.300)

q =
N

2
T c
ur

∫
q
− [(2p2 + q + p1) · (q + p1) (q − p2)

σ

+(q − p2 − 2p1) · (q − p2)(q + p1)
σ + (q − p2)(q + p1) · (p1 − p2 − 2q)σ]

A =

∫
q
− [(2p2 + q + p1) · (q + p1) (q − p2)

σ + (q − p2 − 2p1) · (q − p2)(q + p1)
σ

+(q − p2)(q + p1) · (p1 − p2 − 2q)σ] (C.301)
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Alk
+ = δkl

g3s
32π2

(
p21(C0 − 3C1 + 2C11 − 2C12 − C2) + p22(−C0 + C1 + 2C12

+3C2 − 2C22) + 2p1 · p2(C1 − C11 − C2 + C22)) (C.302)

Alk
− = δkl

g3s
32π2

(
−4B0 + 4C00 + p22(−C0 + C1 + 2C12 + 3C2 + 2C22) + p21(−C0 + 3C1

+2C11 + 2C12 + C2)− 2p1 · p2(C0 − 2C1 + C11 + 2C12 − 2C2 + C22)− 4C0m
2
q̃αk

)
(C.303)

D0 = q2 −m2
q̃αk

+ iε D1 = (q − p1)
2 + iε D2 = (q + p2)

2 + iε (C.304)

Gluino exchange

C0

(
p21, (p1 + p2)

2, p22,m
2
g̃,m

2
qα ,m

2
qα
)

(C.305)
B0

(
(p1 + p2)

2,m2
qα ,m

2
qα
)

(C.306)

q = − 1

2N
T c
ur

∫
q
−2Tr

[
(Rα

k1PR −Rα
k2PL)

(
mg̃ − /q

)
× (Rα

l1PL −Rα
l2PR)

(
mqα − /q − /p2

)
γσ
(
mqα − /q + /p1

)] (C.307)

Alk
+ =

g3s
8π2

(
2mg̃mqα (Rk2Rl1 +Rk1Rl2) (C1 − C2) + (B0 + 2B1 −m2

g̃C1 −m2
qαC1

+p21C1 +m2
g̃C2 +m2

qαC2 − p22C2)δkl
)

(C.308)

Alk
− =

g3s
8π2

(
−2mg̃mqα (Rk2Rl1 +Rk1Rl2) (C0 + C1 + C2) + (B0 + 2m2

g̃C0 +m2
g̃C1

+m2
qαC1 + p21C1 +m2

g̃C2 +m2
qαC2 + p22C2)δkl

)
(C.309)

D0 = q2−m2
g̃+iε D1 = (q−p1)2−m2

qα+iε D2 = (q+p2)
2−m2

qα+iε (C.310)

Quark exchange

C0

(
(p21, (p1 + p2)

2, p22,m
2
qα ,m

2
g̃,m

2
qα
)

(C.311)
B0

(
(p1 + p2)

2,m2
g̃,m

2
g̃

)
(C.312)

q =
N

2
T c
ur

∫
q
2Tr

[
(Rα

k1PR −Rα
k2PL)

(
mg̃ + /q − /p1

)
γσ

×
(
mg̃ + /q + /p2

)
(Rα

l1PL −Rα
l2PR)

(
mqα + /q

)] (C.313)
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Alk
+ =

g3s
8π2

(
2mg̃mqα (Rk2Rl1 +Rk1Rl2) (C1 − C2) + (B0 + 2B1 −m2

g̃C1 −m2
qαC1

+p21C1 +m2
g̃C2 +m2

qαC2 − p22C2)δkl
)

(C.314)

Alk
− =

g3s
8π2

(
−2mg̃mqα (Rk2Rl1 +Rk1Rl2) (C0 + C1 + C2) + (B0 + 2m2

qαC0

+m2
g̃C1 +m2

qαC1 + p21C1 +m2
g̃C2 +m2

qαC2 + p22C2)δkl
)

(C.315)

D0 = q2−m2
qα+iε D1 = (q−p1)2−m2

g̃+iε D2 = (q+p2)
2−m2

g̃+iε (C.316)

C.4 Ghost-gluon vertex

The momentum and index convention as well as the definition of the partial amplitudes A1

and A2 for the corrected ghost-gluon vertex are shown in eq. (8.128). For both Feynman
diagrams that contribute to this correction applies the same argument set

C0

(
k22, (k2 − k1)

2 , k21, 0, 0, 0
)

(C.317)

B0

(
(k2 − k1)

2 , 0, 0
)

(C.318)

with the denominators

D0 = q2 + iε D1 = (q − k2)
2 + iε D2 = (q − k1)

2 + iε . (C.319)

Gluon exchange

q =
N

2
ifcde

∫
q
−k2 · (k1 − q)(k2 − q)σ = i

N

2
ifcde (A1k

σ
1 +A2k

σ
2 )

(C.320)

A1 = − g3s
16π2

(
(C2 + C22)(k1 · k2) + k22C12

)
(C.321)

A2 = − g3s
16π2

(
(k1 · k2)(C0 + C1 + C12 + C2) + k22(C1 + C11) + C00

)
(C.322)

Ghost exchange

q =
N

2
ifcde

∫
q
− ((k2 + k1 − 2q)σk2 · q + kσ2 (q − 2k2 + k1) · q

+qσ(q + k2 − 2k1) · k2) = i
N

2
ifcde (A1k

σ
1 +A2k

σ
2 )

(C.323)
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A1 =
g3s

16π2
(
(−C2 + C22)k1 · k2 + (C1 + C12 + C2)k

2
2

)
(C.324)

A2 =
g3s

16π2
(
−B0 + C00 + C2k

2
1 − (C1 − C12 + C2)k1 · k2 + C11k

2
2

)
(C.325)

C.5 Further ghost boxes and triangles
Ghost exchange right 1

C0(0, 0, s, 0, 0, 0) (C.326)

q

= − ig4s
32π2

δij

(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)
s (C0 + C1 + C2) (C.327)

D0 = q2 + iε D1 = (q − k2)
2 + iε D2 = (q − k1 − k2)

2 + iε (C.328)

Ghost exchange right 2

C0(0, 0, s, 0, 0, 0) (C.329)

q

= − ig4s
32π2

δij

(
c
(1)
st,ab +

N

2
c
(8S)
st,ab

)
sC2 (C.330)

D0 = q2 + iε D1 = (q − k2)
2 + iε D2 = (q − k1 − k2)

2 + iε (C.331)

Ghost box 1

C0 (0, 0, s, 0, 0, 0) (C.332)

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, t, s,m2

q̃αi
, 0, 0, 0

)
(C.333)

q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)
×
∫
q
− (q − p2) · (q − k2 + p2) k1 · (q + p1)

(C.334)
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D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2)
2 + iε (C.335)

D2 = (q + p2 − k2)
2 + iε D3 = (q − p1)

2 + iε (C.336)

Ghost box 1 u

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, u, s,m2

q̃αi
, 0, 0, 0

)
(C.337)

C0 (0, 0, s, 0, 0, 0) (C.338)

q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)
×
∫
q
(q − p2) · k1 (q + p1) · (k1 − q − p2)

(C.339)

D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2)
2 + iε (C.340)

D2 = (q + p2 − k1)
2 + iε D3 = (q − p1)

2 + iε (C.341)

Ghost box 2

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, t, s,m2

q̃αi
, 0, 0, 0

)
C0 (0, 0, s, 0, 0, 0) (C.342)

q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)
×
∫
q
− (q − p2) · k2 (k2 − p2 − q) · (q + p1)

(C.343)

D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2)
2 + iε (C.344)

D2 = (q + p2 − k2)
2 + iε D3 = (q − p1)

2 + iε (C.345)

Ghost box 2 u

D0

(
m2

q̃αi
, 0, 0,m2

q̃αi
, u, s,m2

q̃αi
, 0, 0, 0

)
(C.346)

C0 (0, 0, s, 0, 0, 0) (C.347)
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q = δij

(
1

2
c
(1)
st,ab +

N

4
c
(8S)
st,ab −

N

4
c
(8A)
st,ab

)
×
∫
q
(q − p2) · (q − k1 + p2) k2 · (q + p1)

(C.348)

D0 = q2 −m2
q̃αi

+ iε D1 = (q + p2)
2 + iε (C.349)

D2 = (q + p2 − k1)
2 + iε D3 = (q − p1)

2 + iε (C.350)

C.6 Mathematica codes for the Passarino-Veltman reduction
For each vertex a dedicated Mathematica routine was developed built on top of FeynCalc
9.3 that performs the reduction of an amplitude to Passarino-Veltman functions. The
Mathematica functions CMu, DMu, DMuNu, ... correspond to the decompositions in eq. (8.17).

C.6.1 Boxes
The Mathematica function ToPaVeBoxes performs the Passarino-Veltmann reduction for the
Boxes. It takes the numerator of a Box amplitude as input as well as the Lorentz indices mu
and nu of the two vector bosons. The list ExtP is required to contain all external momenta
which in our case are p1, p2, k1 and k2. The variable q defines the loop momentum. The
momenta p1, p2 and p3 as well as masses m0 and m1 are the ones that appear in denominator
as defined in the general n-point function in eq. (8.7).

1 ToPaVeBoxes[numerator_, mu_, nu_, q_, ExtP_, p1_, p2_, p3_, m0_, m1_]
2 := Module[{sigma, rho, temp, ExtP2, ExtP3},
3 temp = FCE[numerator // ExpandScalarProduct // ExpandAll // Contract];
4 ExtP2 = Tuples[{ExtP, ExtP}];
5 ExtP3 = Tuples[{ExtP, ExtP, ExtP}];
6 temp/.Flatten[{
7 MTD[mu, nu] SPD[q, q]^2 -> MTD[mu, nu] (m0^4 xd0 + (m0^2 + m1^2
8 + SPD[p1, p1]) xc0 - 2 FVD[p1, sigma]
9 CMu[sigma, p2 - p1, p3 - p1] + xb0),

10 MTD[mu, nu] SPD[#1, q] SPD[#2, q] -> MTD[mu, nu] FVD[#1, sigma]
11 FVD[#2, rho] DMuNu[sigma, rho, p1, p2, p3] & @@@ ExtP2,
12 MTD[mu, nu] SPD[#, q] SPD[q, q] -> MTD[mu, nu] (FVD[#, sigma]
13 CMu[sigma, p2 - p1, p3 - p1] - SPD[#, p1] xc0 + m0^2 FVD[#, sigma]
14 DMu[sigma, p1, p2, p3]) & /@ ExtP,
15 MTD[mu, nu] SPD[#, q] -> MTD[mu, nu] FVD[#, sigma]
16 DMu[sigma, p1, p2, p3] & /@ ExtP,
17 MTD[mu, nu] SPD[q, q] -> MTD[mu, nu] (xc0 + m0^2 xd0),
18 MTD[mu, nu] -> MTD[mu, nu] xd0,
19 SPD[q, q] FVD[q, mu] FVD[q, nu] -> m0^2 DMuNu[mu, nu, p1, p2, p3]
20 + CMuNu[mu, nu, p2 - p1, p3 - p1] + FVD[p1, mu] FVD[p1, nu] xc0
21 - FVD[p1, mu] CMu[nu, p2 - p1, p3 - p1]
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22 - FVD[p1, nu] CMu[mu, p2 - p1, p3 - p1],
23 SPD[q, q] FVD[q, mu] FVD[#, nu] -> m0^2 DMu[mu, p1, p2, p3] FVD[#, nu]
24 + FVD[#, nu] CMu[mu, p2 - p1, p3 - p1]
25 - FVD[#, nu] FVD[p1, mu] xc0 & /@ ExtP,
26 SPD[q, q] FVD[q, nu] FVD[#, mu] -> m0^2 DMu[nu, p1, p2, p3] FVD[#, mu]
27 + FVD[#, mu] CMu[nu, p2 - p1, p3 - p1]
28 - FVD[#, mu] FVD[p1, nu] xc0 & /@ ExtP,
29 SPD[q, q] FVD[#1, nu] FVD[#2, mu] -> FVD[#1, nu] FVD[#2, mu] xc0
30 + FVD[#1, nu] FVD[#2, mu] m0^2 xd0 & @@@ ExtP2,
31 SPD[q, #] FVD[q, mu] FVD[q, nu] -> FVD[#, sigma]
32 DMuNuRho[sigma, mu, nu, p1, p2, p3] & /@ ExtP,
33 SPD[q, #1] FVD[q, mu] FVD[#2, nu] -> FVD[#1, sigma] FVD[#2, nu]
34 DMuNu[sigma, mu, p1, p2, p3] & @@@ ExtP2,
35 SPD[q, #1] FVD[q, nu] FVD[#2, mu] -> FVD[#1, sigma] FVD[#2, mu]
36 DMuNu[sigma, nu, p1, p2, p3] & @@@ ExtP2,
37 SPD[q, #1] FVD[#2, nu] FVD[#3, mu] -> FVD[#1, sigma] FVD[#2, nu]
38 FVD[#3, mu] DMu[sigma, p1, p2, p3] & @@@ ExtP3,
39 FVD[#1, mu] FVD[#2, nu] -> FVD[#1, mu] FVD[#2, nu] xd0 & @@@ ExtP2,
40 FVD[q, nu] FVD[#, mu] -> DMu[nu, p1, p2, p3] FVD[#, mu] & /@ ExtP,
41 FVD[q, mu] FVD[#, nu] -> DMu[mu, p1, p2, p3] FVD[#, nu] & /@ ExtP,
42 FVD[q, mu] FVD[q, nu] -> DMuNu[mu, nu, p1, p2, p3]}] // Contract];

As an example consider the first box whose numerator

M = I GS^4/(16 \[Pi]^2) SPD[2 p1 - q, 2 p2 + q] FVD[k2 + p1 - p2 - 2 q,\[Mu]]
FVD[-2 q - 2 p2 + k2, \[Nu]];

is given in eq. (C.120). The command

ToPaVeBoxes[M, \[Mu], \[Nu], q, {p1, p2, k1, k2}, p2, -k2 + p2, -p1, 0, mi]

yields the reduced amplitude. Notice that the factor i/(4π)2 from the loop functions is already
defined into M since ToPaVeBoxes does not perform the corresponding replacement.

C.6.2 Triple-gluon vertex

1 ToPaVe3g[numerator_, q_, ExtP_, p1_, p2_, m0_] :=
2 Module[{alpha, temp, ExtP2, ExtP3},
3 temp = FCE[numerator // ExpandScalarProduct // ExpandAll // Contract];
4 ExtP2 = Tuples[{ExtP, ExtP}];
5 ExtP3 = Tuples[{ExtP, ExtP, ExtP}];
6 temp/.Flatten[{
7 MTD[a_, b_] FVD[q, c_] SPD[q, q] -> MTD[a, b] (BMu[c, p2 - p1]
8 - FVD[p1, c] xb0 + m0^2 CMu[c, p1, p2]),
9 MTD[a_, b_] FVD[#, c_] SPD[q, q] -> MTD[a, b] FVD[#, c]

10 (xb0 + m0^2 xc0) & /@ ExtP,
11 MTD[a_, b_] FVD[q, c_] SPD[#, q] -> MTD[a, b] FVD[#, alpha]
12 CMuNu[alpha, c, p1, p2] & /@ ExtP,
13 MTD[a_, b_] FVD[#1, c_] SPD[#2, q] -> MTD[a, b] FVD[#1, c]
14 FVD[#2, alpha] CMu[alpha, p1, p2] & @@@ ExtP2,
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15 MTD[a_, b_] FVD[q, c_] SPD[#1, #2] ->
16 MTD[a, b] SPD[#1, #2] CMu[c, p1, p2] & @@@ ExtP2,
17 MTD[a_, b_] FVD[q, c_] -> MTD[a, b] CMu[c, p1, p2],
18 MTD[a_, b_] FVD[#1, c_] -> MTD[a, b] FVD[#1, c] xc0 & /@ ExtP,
19 FVD[q, a_] FVD[q, b_] FVD[q, c_] -> CMuNuRho[a, b, c, p1, p2],
20 FVD[q, a_] FVD[q, b_] FVD[#, c_] -> FVD[#, c]
21 CMuNu[a, b, p1, p2] & /@ ExtP,
22 FVD[q, a_] FVD[#1, b_] FVD[#2, c_] -> FVD[#1, b] FVD[#2, c]
23 CMu[a, p1, p2] & @@@ ExtP2,
24 FVD[#1, a_] FVD[#2, b_] FVD[#3, c_] -> FVD[#1, a] FVD[#2, b]
25 FVD[#3, c] xc0 & @@@ ExtP3}] // Contract];

C.6.3 Squark-gluon vertex

1 ToPaVe2SqG[numerator_, mu_, q_, ExtP_, p1_, p2_, m0_] :=
2 Module[{alpha, temp, ExtP2, ExtP3},
3 temp = FCE[numerator // ExpandScalarProduct // ExpandAll // Expand //
4 Contract];
5 ExtP2 = Tuples[{ExtP, ExtP}];
6 ExtP3 = Tuples[{ExtP, ExtP, ExtP}];
7 temp /. Flatten[{
8 SPD[q, q] FVD[q, mu] -> BMu[mu, p2 - p1] - FVD[p1, mu] xb0
9 + m0^2 CMu[mu, p1, p2],

10 SPD[q, q] FVD[#, mu] -> FVD[#, mu] (xb0 + m0^2 xc0) & /@ ExtP,
11 SPD[q, #] FVD[q, mu] ->
12 FVD[#, alpha] CMuNu[mu, alpha, p1, p2] & /@ ExtP,
13 SPD[q, #1] FVD[#2, mu] -> FVD[#2, mu] FVD[#1, alpha]
14 CMu[alpha, p1, p2] & @@@ ExtP2,
15 SPD[#1, #2] FVD[q, mu] -> SPD[#1, #2] CMu[mu, p1, p2] & @@@ ExtP2,
16 SPD[#1, #2] FVD[#3, mu] -> SPD[#1, #2] FVD[#3, mu] xc0 & @@@ ExtP3,
17 FVD[q, mu] -> CMu[mu, p1, p2],
18 FVD[#, mu] -> FVD[#, mu] xc0 & /@ ExtP }] // Contract];
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