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1 Einleitung

Die Alltagserfahrung sagt uns, dass wir in einer Welt mit drei Raumdimensionen leben.
Daher beschäftigt sich auch ein großer Teil der Physik mit drei (oder weniger) Raum-
dimensionen, also einer vierdimensionalen Raumzeit. Höher-dimensionale Raumzeiten
spielen eine große Rolle in Theorien zur Vereinheitlichung von Gravitation und Elektro-
magnetismus, wie zum Beispiel der Kaluza-Klein-Theorie. In dieser Arbeit sollen inner-
halb der relativistischen Quantenmechanik die Konsequenzen einer höher-dimensionalen
Raumzeit bei Betrachtung des Coulomb-Potentials untersucht werden. Dazu sollen die
auf (D+1)-dimensionale Raumzeiten verallgemeinerten Dirac- und Klein-Gordon-Gleich-
ungen und ihre Lösungen für das Coulomb-Potential betrachtet werden. Man geht bei
der Konstruktion der höher-dimensionalen Quantenmechanik davon aus, dass die Struk-
tur der Gleichungen dieselbe ist wie in 3+1 Dimensionen, und nur die Operatoren an die
neue Dimension angepasst werden müssen. Aus Gründen der Einfachheit wird in dieser
Arbeit die Konvention ~ = c = 1 verwendet.

2 Die Dirac-Gleichung in D + 1 Dimensionen

Die Herleitung der Dirac-Gleichung ist motiviert durch die Forderung, dass die relati-
vistische Energie-Impuls-Beziehung gelten soll, ohne dass die Gleichung Zeitableitungen
zweiter Ordnung erhält. Sie lässt sich in D + 1 Dimensionen analog zur üblichen Herlei-
tung in drei Dimensionen durchführen. Es ergibt sich bis auf die angepasste Dimension
die aus drei Dimensionen bekannte Gleichung[1]

i
D
∑

µ=0

γµ(∂µ + iqAµ)Ψ(~x, t) = MΨ(~x, t). (2.1)

Es werden jetzt also D + 1 Matrizen γµ benötigt, die eine Clifford- bzw. Dirac-Algebra
bilden, also die Antikommutatorbeziehung

{γµ, γν} = 2ηµν1 (2.2)

erfüllen, wobei ηµν der metrische Tensor ist.

2.1 D = 2N + 1

Im Fall einer ungeraden Dimension D = 2N + 1 verwendet man zur Lösung der Dirac-
Gleichung den durch die gruppentheoretischen Eigenschaften der SO(2N+1) motivierten
Ansatz[1, 2]

ΨK,(j)(~r, t) = e−iEtr−
(D−1)

2

(

F (r)φK,(j)(r̂)
iG(r)φ−K,(j)(r̂)

)

, (2.3)

mit K = ±(l + N) = ±1
2(2l + D − 1), wobei die φK,(j)(r̂) durch Produkte aus den

auf hypersphärische Koordinaten verallgemeinerten Kugelflächenfunktionen Y
[λ]

M
(r̂) und
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einem Spinanteil gegeben sind. Durch Einsetzen von (2.3) in die Dirac-Gleichung ergeben
sich die Gleichungen (2.6) und (2.7).

2.2 D = 2N

Im Fall einer geraden Dimension D = 2N verwendet man den Ansatz[1, 2]

Ψ|K|,(j1)(~r, t) = e−iEtr−
(D−1)

2

(

F (r)φ|K|,(j1)(r̂) + iG(r)φ−|K|,(j1)(r̂)
)

(2.4)

Ψ−|K|,(j2)(~r, t) = e−iEtr−
(D−1)

2

(

F (r)φ−|K|,(j2)(r̂) + iG(r)φ|K|,(j2)(r̂)
)

, (2.5)

mit K = ±(l+N − 1
2 ) = ±1

2(2l+D−1), wobei die Spinanteile der φK,(j1/2)(r̂) eine andere
Form als bei ungerader Dimension haben, da die Spinordarstellung der SO(2N) reduzibel
ist. Durch Einsetzen in die Dirac-Gleichung ergeben sich auch hier die Gleichungen (2.6)
und (2.7).

2.3 Lösung der Radialgleichungen für das Coulomb-Potential

Die Radialgleichungen lauten also zusammengefasst sowohl für gerade als auch für un-
gerade Dimensionen D

d

dr
G(r) +

K

r
G(r) = (E − V (r) − M)F (r) (2.6)

− d

dr
F (r) +

K

r
F (r) = (E − V (r) + M)G(r). (2.7)

Wird nun das Coulomb-Potential

V (r) = −ξ

r
, ξ > 0

betrachtet, bietet es sich an, für die gebundenen Zustände (das heißt Zustände mit
|E| < M , da die Ruheenergie in E enthalten ist) die Reparametrisierung

ρ = 2r
√

M2 − E2 (2.8)

zu verwenden[3]. Die Energie E bleibt noch zu bestimmen. Die Gleichungen lauten dann

d

dρ
G(ρ) +

K

ρ
G(ρ) =



−1

2

√

M − E

M + E
+

ξ

ρ



F (ρ) (2.9)

d

dρ
F (ρ) − K

ρ
F (ρ) =



−1

2

√

M + E

M − E
− ξ

ρ



G(ρ). (2.10)
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Diese Gleichungen können mit einem Potenzreihenansatz gelöst werden, es hat sich je-
doch als praktisch erwiesen, zunächst folgenden Ansatz zu machen, der aus [3] übernom-
men wurde:

G(ρ) =
√

M − E (Φ+(ρ) + Φ−(ρ)) (2.11)

F (ρ) =
√

M + E (Φ+(ρ) − Φ−(ρ)) . (2.12)

Einsetzen in die Gleichungen (2.9) und (2.10) ergibt nach Zusammenfassung der Wur-
zelterme die beiden Gleichungen

d

dρ
(Φ+(ρ) + Φ−(ρ)) +

K

ρ
(Φ+(ρ) + Φ−(ρ)) =



−1

2
+

ξ

ρ

√

M + E

M − E



 (Φ+(ρ) − Φ−(ρ))

(2.13)

d

dρ
(Φ+(ρ) − Φ−(ρ)) − K

ρ
(Φ+(ρ) − Φ−(ρ)) =



−1

2
− ξ

ρ

√

M − E

M + E



 (Φ+(ρ) + Φ−(ρ)) .

(2.14)

Addition dieser beiden Gleichungen liefert

Φ′
+(ρ) +

K

ρ
Φ−(ρ) = − 1

2
Φ+(ρ) +

ξ

2ρ

√

M + E

M − E
(Φ+(ρ) − Φ−(ρ))

− ξ

2ρ

√

M − E

M + E
(Φ+(ρ) + Φ−(ρ))

= − 1

2
Φ+(ρ) +

ξ

2ρ

(M + E) (Φ+(ρ) − Φ−(ρ))√
M2 − E2

− ξ

2ρ

(M − E) (Φ+(ρ) + Φ−(ρ))√
M2 − E2

= − 1

2
Φ+(ρ) +

ξ

ρ

(

EΦ+(ρ) − MΦ−(ρ)√
M2 − E2

)

.

Mit den Abkürzungen

τ =
ξE√

M2 − E2

τ ′ =
ξM√

M2 − E2

ergibt sich schließlich

Φ′
+(ρ) −

(

τ

ρ
− 1

2

)

Φ+(ρ) = −τ ′ + K

ρ
Φ−(ρ). (2.15)
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Analog erhält man durch Subtraktion der Gleichungen (2.13) und (2.14) die folgende
Gleichung:

Φ′
−(ρ) +

(

τ

ρ
− 1

2

)

Φ−(ρ) =
τ ′ − K

ρ
Φ+(ρ). (2.16)

Auflösen der Gleichung (2.16) nach Φ+(ρ) und Einsetzen in (2.15) liefert
((

ρ
d2

dρ2
+ (1 + τ − ρ

2
)

d

dρ
− 1

2

)

−
(

τ

ρ
− 1

2

)

ρ

(

d

dρ
+
(

τ

ρ
− 1

2

))

+
τ ′2 − K2

ρ

)

Φ−(ρ)

τ ′ − K
= 0

(

ρ
d2

dρ2
+
(

1 + τ − ρ

2
−
(

τ

ρ
− 1

2

)

ρ

)

d

dρ
− 1

2
− ρ

(

τ

ρ
− 1

2

)2

+
τ ′2 − K2

ρ

)

Φ−(ρ) = 0

(

d2

dρ2
+

1

ρ

d

dρ
− 1

2ρ
−
(

τ2

ρ2
− τ

ρ
+

1

4

)

+
τ ′2 − K2

ρ2

)

Φ−(ρ) = 0

(

d2

dρ2
+

1

ρ

d

dρ
− 1

4
+

τ − 1
2

ρ
+

τ ′2 − K2 − τ2

ρ2

)

Φ−(ρ) = 0

(

d2

dρ2
+

1

ρ

d

dρ
+

(

−1

4
+

τ − 1
2

ρ
− K2 + τ2 − τ ′2

ρ2

))

Φ−(ρ) = 0.

Analog ergibt sich eine Gleichung für Φ+(ρ), wenn man (2.15) nach Φ−(ρ) auflöst und
in (2.16) einsetzt. Zusammengefasst lauten die Bestimmungsgleichungen für Φ±(ρ)

(

d2

dρ2
+

1

ρ

d

dρ
+

(

−1

4
+

τ ± 1
2

ρ
− η2

ρ2

))

Φ±(ρ) = 0, (2.17)

wobei die Abkürzung

η2 = K2 + τ2 − τ ′2 = K2 − ξ2 (2.18)

eingeführt wurde. Wir betrachten ein schwaches Potential und wählen

η =
√

K2 − ξ2 > 0. (2.19)

Betrachtet man, welche Terme die Gleichung (2.17) in den Grenzfällen ρ → ∞ und ρ → 0
dominieren, bietet sich zur Lösung der Gleichung der folgende Separationsansatz an[3]:

Φ±(ρ) = ρηe− ρ
2 R±(ρ). (2.20)

Durch Einsetzen des Ansatzes erhält man, wenn berücksichtigt wird, welche Terme durch
die Separation wegfallen

e−ρ/2

((

ρη d2

dρ2
+ 2

(

ηρη−1 − 1

2
ρη
)

d

dρ
− 2

1

2
ηρη−1

)

+
1

ρ
ρη(−1

2
+

d

dρ
) + ρη τ ± 1

2

ρ

)

R±(ρ) = 0

((

ρ
d2

dρ2
+ 2

(

η − 1

2
ρ

)

d

dρ
− η

)

+ (−1

2
+

d

dρ
) + (τ ± 1

2
)

)

R±(ρ) = 0.
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Es ergibt sich also für R±(ρ) die Gleichung
(

ρ
d2

dρ2
+ (2η + 1 − ρ)

d

dρ
+ (τ − η − 1

2
± 1

2
)

)

R±(ρ) = 0. (2.21)

Gleichung (2.21) entspricht der konfluenten hypergeometrischen Differentialgleichung,
auch Krummergleichung genannt, deren Lösung durch die konfluenten hypergeometri-
schen Funktionen, auch Krummerfunktionen, gegeben ist[1, 4]. Mit der hypergeometri-
schen Funktion der ersten Art,

1F1(α, β, z) =
∞
∑

n=0

(α)n

(β)n

zn

n!
, (2.22)

(α)n =
Γ(α + n)

Γ(α)
=

n−1
∏

k=0

(α + k), (α)0 = 1

lässt sich die Lösung von Gleichung (2.21) angeben als

R±(ρ) = a± 1F1(η − τ +
1

2
∓ 1

2
, 2η + 1, ρ). (2.23)

Der zweite Term aus der allgemeinen Lösung wird dabei vernachlässigt, da er zu einer
unphysikalischen Singularität im Ursprung führt. Die Funktion 1F1(α, β, z) hat einige
nützliche Eigenschaften:

d

dz
1F1(α, β, z) =

∞
∑

n=1

(α)n

(β)n

nzn−1

n!

=
∞
∑

n=0

(α)n+1

(β)n+1

(n + 1)zn

(n + 1)!

=
∞
∑

n=0

α(α + 1)n

β(β + 1)n

zn

n!

=
α

β
1F1(α + 1, β + 1, z) (2.24)

und

1F1(α, β, z) +
z

β
1F1(α + 1, β + 1, z) = 1 +

∞
∑

n=1

(α)n

(β)n

zn

n!
+

z

β

(α + 1)n−1

(β + 1)n−1

zn−1

(n − 1)!

= 1 +
∞
∑

n=1

(

α(α + 1)n−1

(β)n
+

n(α + 1)n−1

(β)n

)

zn

n!

= 1 +
∞
∑

n=1

(α + n)(α + 1)n−1

(β)n

zn

n!

= 1 +
∞
∑

n=1

(α + 1)n

(β)n

zn

n!

= 1F1(α + 1, β, z). (2.25)
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Aus (2.24) und (2.25) folgt
(

α

z
+

d

dz

)

1F1(α, β, z) =
α

z
1F1(α + 1, β, z). (2.26)

Zur Bestimmung der Konstanten a± wird (2.23) in (2.20) und dann in (2.15) eingesetzt.
Es ergibt sich unter Verwendung von (2.26)

e− ρ
2 ρη

((

η

ρ
− 1

2
+

d

dρ

)

R+(ρ) −
(

τ

ρ
− 1

2

)

R+(ρ)
)

= −τ ′ + K

ρ
e− ρ

2 ρηR−(ρ)

(

η − τ

ρ
+

d

dρ

)

a+ 1F1(η − τ, 2η + 1, ρ) = −τ ′ + K

ρ
a− 1F1(η − τ + 1, 2η + 1, ρ)

a+
η − τ

ρ
1F1(η − τ + 1, 2η + 1, ρ) = −τ ′ + K

ρ
a− 1F1(η − τ + 1, 2η + 1, ρ)

a− =
τ − η

τ ′ + K
a+.

Mit (2.11) und (2.12) kann die Lösung für die Radialfunktionen angegeben werden:

G(ρ) = N
√

M − Eρηe− ρ
2
(

(τ ′ + K) 1F1(−n′, 2η + 1, ρ) + n′
1F1(1 − n′, 2η + 1, ρ)

)

(2.27)

F (ρ) = N
√

M + Eρηe− ρ
2
(

(τ ′ + K) 1F1(−n′, 2η + 1, ρ) − n′
1F1(1 − n′, 2η + 1, ρ)

)

.

(2.28)

Dabei wurde die Abkürzung n′ = τ − η eingeführt. Der Faktor N ist noch aus der Nor-
mierung der Wellenfunktion zu bestimmen. Damit die Wellenfunktion im Unendlichen
verschwinden kann, darf die hypergeometrische Funktion nicht gegenüber dem e− ρ

2 -Term
dominieren. Dies hat zur Folge, dass für physikalische Lösungen n′ ∈ N0 gelten muss,
denn nur dann bricht die Reihe in Gleichung (2.22) ab. Aus dieser Tatsache lassen sich
die Energieeigenwerte bestimmen:

τ − η = n′

ξE√
M2 − E2

= n′ + η

ξ2E2 = (n′ + η)2(M2 − E2)

E2 =
M2(n′ + η)2

ξ2 + (n′ + η)2

E = M

(

1 +
ξ2

(n′ + η)2

)− 1
2

. (2.29)

Man führt als Hauptquantenzahl

n = l + 1 + n′

8



ein, so dass sich das gewohnte Verhalten n ≥ l + 1 > 0 ergibt. Mit (2.19) ergibt sich aus
(2.29) für die Energieeigenwerte:

E = M






1 +

ξ2

(

n − l − 1 +
√

1
4(2l + D − 1)2 − ξ2

)2







− 1
2

. (2.30)

Für D = 3 entspricht dies dem bekannten Ergebnis. Man kann an (2.30) sofort erkennen,
dass E < M gilt, und, da ξ klein ist, dass E nah bei M liegt. Aus (2.27) und (2.28)
folgt damit F (r) ≫ G(r). Der Term mit F (r) in (2.3) entspricht also den sogenannten
“großen Komponenten”, der mit G(r) den “kleinen Komponenten”.

2.4 Bestimmung der Normierung

Zur Bestimmung des Normierungsfaktors N nutzt man die Tatsache, dass sich die hy-
pergeometrische Funktion 1F1(−n, β+1, ρ) für n ∈ N0 durch die zugeordneten Laguerre-
Polynome ausdrücken lässt. Es gilt[1, 5]:

1F1(−n, β + 1, ρ) =
n! Γ(β + 1)

Γ(n + β + 1)
Lβ

n(ρ) (2.31)

∞̂

0

ρβe−ρLβ
n(ρ)Lβ

m(ρ)dρ =
Γ(n + β + 1)

n!
δmn.

Daraus ergibt sich:
∞̂

0

ρβe−ρ
1F1(−n, β + 1, ρ)2dρ =

n! Γ(β + 1)2

Γ(n + β + 1)
. (2.32)

Aus der Normierungsbedingung
ˆ

|Ψ|2 dV = 1

ergibt sich mit (2.3) bzw. (2.4) die Bedingung

1 =

∞̂

0

G(r)2 + F (r)2dr,

wobei ausgenutzt wurde, dass die Kugelflächenfunktionen normiert sind, und dass das D-
dimensionale Volumenelement in hypersphärischen Koordinaten dV = rD−1drdΩ lautet.
Mit (2.32) lässt sich das Integral lösen:

1 =
N22M

2
√

M2 − E2

∞̂

0

ρ2ηe−ρ(τ ′ + K)2
1F1(−n′, 2η + 1, ρ)2 + n′2

1F1(1 − n′, 2η + 1, ρ)2dρ

=
N2M√

M2 − E2

(

(τ ′ + K)2 n′! Γ(2η + 1)2

Γ(n′ + 2η + 1)
+ n′2 (n′ − 1)! Γ(2η + 1)2

Γ(n′ + 2η)

)

.
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Dass für n′ = 0 die Relation (2.31) auf den zweiten Term des Integrals nicht anwendbar
ist, stellt kein Problem dar, da dieser dann sowieso verschwindet. Mit der Definition von
n′ ergibt sich

1 =
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

(

(τ ′ + K)2

Γ(τ + η + 1)
+

(τ − η)

Γ(τ + η)

)

=
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

(

(τ ′ + K)2Γ(τ + η) + n′Γ(τ + η + 1)

Γ(τ + η + 1)Γ(τ + η)

)

,

und mit der Eigenschaft der Γ-Funktion, dass Γ(x + 1) = xΓ(x) ist,

1 =
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

(

(τ ′ + K)2 + (τ − η)(τ + η)

Γ(τ + η + 1)

)

=
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

(

(τ ′ + K)2 + τ2 − η2

Γ(τ + η + 1)

)

und daher mit (2.18)

1 =
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

(

(τ ′ + K)2 − K2 + τ ′2)

Γ(τ + η + 1)

)

=
N2M(τ − η)! Γ(2η + 1)2

√
M2 − E2

2τ ′(τ ′ + K)

Γ(τ + η + 1)
.

Es folgt schlussendlich

N =

(

M2 − E2
)

1
4

Γ(2η + 1)

(

Γ(τ + η + 1)

2Mτ ′(τ ′ + K)(τ − η)!

)

1
2

.

Damit sind die Radialfunktionen vollständig bestimmt.

2.5 Berechnung des radialen Erwartungswertes

Aus (2.3) bzw. (2.4) ergibt sich, dass der Erwartungswert
〈

rk
〉

durch

〈

rk
〉

=

∞̂

0

rk(G(r)2 + F (r)2)dr

gegeben ist. Mit der Abkürzung αk = 2N2

(4(M2−E2))
k+1

2

ergibt sich:

〈

rk
〉

= αk

∞̂

0

ρ2η+ke−ρM
(

(τ ′ + K)2
1F1(−n′, 2η + 1, ρ)2 + n′2

1F1(1 − n′, 2η + 1, ρ)2
)

− 2E(τ ′ + K)n′
1F1(−n′, 2η + 1, ρ) 1F1(1 − n′, 2η + 1, ρ)dρ.

(2.33)
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Um dieses Integral zu lösen, wird wieder die Beziehung (2.31) zwischen der hypergeome-
trischen Funktion 1F1 und den zugeordneten Laguerre-Polynomen benutzt. Allerdings
kann die Orthogonalitätsrelation (2.32) hier nicht mehr angewandt werden. Es wird
die folgende, von H. A. Mavromatis und R. S. Alassar in [6] angegebene, allgemeinere
Formel1 benötigt:

∞̂

0

ρke−ρLβn
n (ρ)Lβm

m (ρ)dρ =
(−1)mΓ(n + βn + 1)2Γ(m + βm + 1)

m! Γ(m + βm + 1)Γ(n + βn + 1)

×
n
∑

p=0

(−1)pΓ(k + 1 + p)Γ(k − βm + 1 + p)

Γ(n + 1 − p)Γ(βn + 1 + p)Γ(k − βm + 1 − m + p)p!
.

Dieser Ausdruck wurde mit dem Computeralgebrasystem Mathematica zu

∞̂

0

ρke−ρLβn
n (ρ)Lβm

m (ρ)dρ =
(−1)mΓ(k + 1)Γ(k − βm + 1)Γ(n + βn + 1)

m! n!
(2.34)

× 3F̃2(−n, k + 1, k − βm + 1; k − m − βm + 1, βn + 1; 1)

umgeformt, wobei die regularisierte hypergeometrische Funktion 3F̃2 auftritt, die ähnlich
wie 1F1 definiert ist. Es gilt allgemein[7]:

pF̃q(α1, ..., αp; β1, ..., βq ; z) =
1

Γ(β1)...Γ(βq)

∞
∑

n=0

(α1)n...(αp)n

(β1)n...(βq)n

zn

n!
.

Mit (2.34) lässt sich (2.33) berechnen. Es ergibt sich:

〈

rk
〉

=αk
(−1)n′

k! Γ(2η + 1)2Γ(k + 2η + 1)M

Γ(n′ + 2η + 1)
(2.35)

× ((τ ′ + K)2
3F̃2(−n′, k + 1, k + 2η + 1; k − n′ + 1, 2η + 1; 1)

− n′2(2η + n′) 3F̃2(1 − n′, k + 1, k + 2η + 1; k − n′ + 2, 2η + 1; 1)

+ 2
E

M
n′(τ ′ + K)(2η + n′) 3F̃2(−n′, k + 1, k + 2η + 1; k − n′ + 2, 2η + 1; 1)).

Bei der Auswertung dieses Ausdrucks ist zu beachten, dass der zweite Term, in dem 3F̃2

mit dem Argument 1 − n′ auftaucht, im Fall n′ = 0 bereits in (2.33) wegfällt, und daher
das Produkt n′

3F̃2(1 − n′, ...) ohne weitere Überlegungen als gleich zu Null betrachtet
werden kann.

3 Die Klein-Gordon-Gleichung in D + 1 Dimensionen

Die Klein-Gordon-Gleichung entsteht aus der relativistischen Energie-Impuls-Beziehung
E2 = p2c2+m2c4 durch die naheliegende Substitution der entsprechenden Operatoren für

1In [6] wird eine um einen Faktor Γ(n + β + 1) verschiedene Definition von Lβ
n(ρ) verwendet, der hier

in der Formel auftaucht.
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E und p und beschreibt spinlose Teilchen. Die zeitunabhängige Klein-Gordon-Gleichung
für ein Zentralpotential lautet[1]

(

−∇2 + M2
)

Ψ(~r) = (E − V (r))2 Ψ(~r), (3.1)

wobei sich in höheren Dimensionen lediglich die Form des Operators ∇2 entsprechend
ändert. Man verwendet als Lösungsansatz denselben Ansatz wie für die Schrödingerglei-
chung in D + 1 Dimensionen[1]:

Ψ(~r) = r− D−1
2 Rl(r)Y l

lD−2...l1(r̂). (3.2)

Mit den Ergebnissen

∇2 =
1

rD−1

∂

∂r

(

rD−1 ∂

∂r

)

− L2

r2

L2Y l
lD−2...l1(r̂) = l(l + D − 2)Y l

lD−2...l1(r̂)

aus [1] ergibt sich:

∇2Ψ(~r) =
1

rD−1

∂

∂r

(

r
D−1

2

(

−D − 1

2r
+

d

dr

)

Rl(r)Y l
lD−2...l1(r̂)

)

− L2

r2
Ψ(~r)

= r− D−1
2

(

−(D − 3)(D − 1)

4r2
+

d2

dr2

)

Rl(r)Y l
lD−2...l1(r̂) − L2

r2
Ψ(~r)

= r− D−1
2

(

d2

dr2
− D2 − 4D + 3 + 4l(l + D − 2)

4r2

)

Rl(r)Y l
lD−2...l1(r̂)

= r− D−1
2







d2

dr2
−

(

l − 1 + D
2

)2
− 1

4

r2






Rl(r)Y l

lD−2...l1(r̂).

Eingesetzt in die Klein-Gordon-Gleichung (3.1) ergibt sich mit der Abkürzung

κ =

∣

∣

∣

∣

l − 1 +
D

2

∣

∣

∣

∣

die folgende Gleichung für die Radialfunktion Rl(r):

(

d2

dr2
− κ2 − 1

4

r2

)

Rl(r) =
(

M2 − (E − V (r))2
)

Rl(r). (3.3)

3.1 Lösung der Radialgleichung für das Coulomb-Potential

Für das Coulomb-Potential

V (r) = −ξ

r
, ξ > 0

12



ergibt sich aus (3.3):

(

d2

dr2
+

ξ2 − κ2 + 1
4

r2
+

2Eξ

r
+ (E2 − M2)

)

Rl(r) = 0. (3.4)

Auch hier bietet es sich an, die Substitution

ρ = 2r
√

M2 − E2 (3.5)

durchzuführen[1]. Gleichung (3.4) wird dann zu

(

d2

dρ2
+

ξ2 − κ2 + 1
4

ρ2
+

τ

ρ
− 1

4

)

Rl(r) = 0, (3.6)

mit der auch bei der Lösung der Dirac-Gleichung benutzen Abkürzung

τ =
ξE√

M2 − E2
.

Betrachtet man wieder die für ρ → 0 und ρ → ∞ dominanten Terme, bietet sich ein
ähnlicher Separationsansatz wie bei der Dirac-Gleichung an[1]:

Rl(ρ) = ρη+ 1
2 e− ρ

2 φ(ρ).

Dabei wurde die Abkürzung η =
√

κ2 − ξ2 eingeführt. Einsetzen dieses Ansatzes in (3.6)
liefert eine zu (2.21) beinahe identische Gleichung:

(

ρ
d2

dρ2
+ (2η + 1 − ρ)

d

dρ
+ (τ − η − 1

2
)

)

φ(ρ) = 0. (3.7)

Bei Gleichung (3.7) handelt es sich wieder um die konfluente hypergeometrische Diffe-
rentialgleichung, die Lösung lässt sich daher direkt angeben. Für Rl(ρ) ergibt sich dann:

Rl(ρ) = Nρη+ 1
2 e− ρ

2 1F1(−n′, 2η + 1, ρ),

wobei diesmal

n′ = τ − η − 1

2

gewählt wurde. Wie zuvor lassen sich aus der Tatsache, dass für physikalische Lösungen
aufgrund des Verschwindens der Wellenfunktion im Unendlichen n′ ∈ N0 gelten muss,
die Energieeigenwerte bestimmen. Es ergibt sich analog zur Herleitung von (2.29):

E = M

(

1 +
ξ2

(n − l − 1
2 +

√

κ2 − ξ2)2

)− 1
2

,

mit der Hauptquantenzahl
n = l + 1 + n′.

13



3.2 Bestimmung der Normierung

Aus (3.2) und der Normierungsbedingung für die Wellenfunktion ergibt sich die Bedin-
gung

∞̂

0

Rl(r)2dr = 1.

Das Integral lautet ausgeschrieben:

∞̂

0

Rl(r)2dr =
N2

2
√

M2 − E2

∞̂

0

ρ2η+1e−ρ
1F1(−n′, 2η + 1, ρ)2dρ.

Mit (2.25) und (2.32) ergibt sich

∞̂

0

Rl(r)2dr =
N2 (2η)2

2
√

M2 − E2

∞̂

0

ρ2η−1e−ρ (
1F1(−n′, 2η, ρ) − 1F1(−(n′ + 1), 2η, ρ)

)2 dρ

=
N2 (2η)2

2
√

M2 − E2

(

n′! Γ(2η)2

Γ(n′ + 2η)
+

(n′ + 1)! Γ(2η)2

Γ(n′ + 1 + 2η)

)

=
N2Γ(2η + 1)2

2
√

M2 − E2

(

n′! (n′ + 2η) + (n′ + 1)!

Γ(n′ + 2η + 1)

)

=
N2Γ(2η + 1)2

2
√

M2 − E2

(

n′! (2n′ + 2η + 1)

Γ(n′ + 2η + 1)

)

.

Damit folgt

N =

(

M2 − E2
)

1
4

Γ(2η + 1)

(

2Γ(n′ + 2η + 1)

n′! (2n′ + 2η + 1)

)

1
2

(3.8)

und die Wellenfunktion ist vollständig bestimmt.

3.3 Berechnung des radialen Erwartungswertes

Aus (3.2) ergibt sich, dass der Erwartungswert
〈

rk
〉

durch

〈

rk
〉

=

∞̂

0

rkRl(r)2dr

=
N2

(4 (M2 − E2))
k+1

2

∞̂

0

ρ2η+1+ke−ρ
1F1(−n′, 2η + 1, ρ)2dρ
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gegeben ist. Mit (2.34) und (3.8) ergibt sich:

〈

rk
〉

=
1

2k (M2 − E2)
k
2

(

(−1)n′

(k + 1)! Γ(k + 2η + 2)

n′! (2n′ + 2η + 1)

)

× 3F̃2(−n′, k + 2, k + 2η + 2; k − n′ + 2, 2η + 1; 1).

4 Vergleich mit 3 + 1 Dimensionen

Um einen Vergleich zur bekannten Lösung für 3+1 Dimensionen herzustellen, wurden
mit den Ergebnissen der Dirac-Gleichung aus Abschnitt 2 einige Diagramme erstellt,
wobei ξ = 1

10 und m = 1 gewählt wurden. Die Ergebnisse der Klein-Gordon-Gleichung
unterscheiden sich auch in höheren Dimensionen nur minimal von denen der Dirac-
Gleichung und wurden daher nicht separat dargestellt.

Abbildung 5.1 zeigt die Energieniveaus des Coulombproblems, die durch (2.30) gegeben
sind, in Abhängigkeit von der Hauptquantenzahl n, bei l = 0, für verschiedene Di-
mensionen D. Man kann erkennen, dass die Bindungsenergie mit steigender Dimension
abnimmt, der Unterschied wird jedoch mit zunehmendem n kleiner.

Abbildung 5.2 zeigt die Radialfunktionen F (r) und G(r) für D = 3, bei l = 0 und
verschiedenen Werten von n. Die kleine Komponente G(r) wurde fünffach vergrößert
dargestellt.

Abbildung 5.3 zeigt die radiale Wahrscheinlichkeitsdichte G(r)2 +F (r)2 für verschiedene
Werte von n bei l = 0, für D = 3 und D = 4. Die Wahrscheinlichkeitsdichten für D = 3
zeigen den gewohnten Verlauf, die für D = 4 haben eine sehr ähnliche Form, sind jedoch
weniger eng und bei größeren Radien lokalisiert.

Abbildung 5.4 zeigt die radiale Wahrscheinlichkeitsdichte bei n = 1 für mehrere Werte
von D. Hier ist noch deutlicher zu erkennen, dass sich das Maximum der Wahrschein-
lichkeitsdichte mit steigender Dimension D zu größeren Radien verschiebt, während die
Lokalisierung unschärfer wird.

Abbildung 5.5 zeigt den durch (2.35) gegebenen Erwartungswert 〈r〉 für mehrere Werte
von n, bei l = 0. Man kann erkennen, dass der Abstand zwischen den Erwartungswerten
der verschiedenen Energieniveaus mit steigender Dimension D größer wird.

5 Zusammenfassung

Es wurden die Dirac-Gleichung und die Klein-Gordon-Gleichung mit dem Coulombpro-
blem in D+1 Dimensionen betrachtet. In Abschnitt 2 wurde die Dirac-Gleichung betrach-
tet und die Radialfunktionen des Coulombproblems wurden analytisch bestimmt, indem
die Bestimmungsgleichungen auf die konfluente hypergeometrische Differentialgleichung

(2.21) zurückgeführt wurden. In Abschnitt 2.5 wurde der radiale Erwartungswert
〈

rk
〉

analytisch bestimmt. Die Radialfunktionen und die radiale Wahrscheinlichkeitsdichte
wurden in Abschnitt 4 für verschiedene Werte von D und n grafisch dargestellt und die
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Abhängigkeit des radialen Erwartungswertes von der Dimension wurde betrachtet. In
Abschnitt 3 wurde die Klein-Gordon-Gleichung behandelt, wobei die Ergebnisse denen
der Dirac-Gleichung sehr ähneln. Die Radialfunktionen wurden wieder durch Rückfüh-
rung auf eine hypergeometrische Differentialgleichung analytisch bestimmt. In Abschnitt
3.3 wurde der radiale Erwartungswert auf dieselbe Weise wie bei der Dirac-Gleichung
analytisch bestimmt.
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Abbildung 5.1: Energieniveaus des Coulomb-Problems in D + 1 Dimensionen
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