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1 Einleitung

Die Alltagserfahrung sagt uns, dass wir in einer Welt mit drei Raumdimensionen leben.
Daher beschéftigt sich auch ein grofier Teil der Physik mit drei (oder weniger) Raum-
dimensionen, also einer vierdimensionalen Raumzeit. Hoher-dimensionale Raumzeiten
spielen eine grofie Rolle in Theorien zur Vereinheitlichung von Gravitation und Elektro-
magnetismus, wie zum Beispiel der Kaluza-Klein-Theorie. In dieser Arbeit sollen inner-
halb der relativistischen Quantenmechanik die Konsequenzen einer hoher-dimensionalen
Raumzeit bei Betrachtung des Coulomb-Potentials untersucht werden. Dazu sollen die
auf (D+1)-dimensionale Raumzeiten verallgemeinerten Dirac- und Klein-Gordon-Gleich-
ungen und ihre Loésungen fiir das Coulomb-Potential betrachtet werden. Man geht bei
der Konstruktion der hoher-dimensionalen Quantenmechanik davon aus, dass die Struk-
tur der Gleichungen dieselbe ist wie in 34+1 Dimensionen, und nur die Operatoren an die
neue Dimension angepasst werden miissen. Aus Griinden der Einfachheit wird in dieser
Arbeit die Konvention A = ¢ = 1 verwendet.

2 Die Dirac-Gleichung in D + 1 Dimensionen

Die Herleitung der Dirac-Gleichung ist motiviert durch die Forderung, dass die relati-
vistische Energie-Impuls-Beziehung gelten soll, ohne dass die Gleichung Zeitableitungen
zweiter Ordnung erhélt. Sie ldsst sich in D + 1 Dimensionen analog zur iiblichen Herlei-
tung in drei Dimensionen durchfithren. Es ergibt sich bis auf die angepasste Dimension
die aus drei Dimensionen bekannte Gleichung]I]

127“ o+ g AW (2, t) = MY(Z,t). (2.1)

Es werden jetzt also D 4+ 1 Matrizen v* benétigt, die eine Clifford- bzw. Dirac-Algebra
bilden, also die Antikommutatorbeziehung

{7, 7"} =21 (2.2)

erfiillen, wobei n** der metrische Tensor ist.

21 D=2N+1

Im Fall einer ungeraden Dimension D = 2N + 1 verwendet man zur Losung der Dirac-
Gleichung den durch die gruppentheoretischen Eigenschaften der SO(2N+1) motivierten

Ansatz[1l, 2]
e () (7 1) = oiBt— 5 ( (( ))¢K J)(;(n;) ) (2.3)
)

mit K = (I + N) = £3(2/ + D — 1), wobei die bk, () (7

auf hypersphérische Koordinaten verallgemeinerten Kugelflichenfunktionen v }( ) und

durch Produkte aus den



einem Spinanteil gegeben sind. Durch Einsetzen von (Z3)]) in die Dirac-Gleichung ergeben

sich die Gleichungen (Z.6]) und (Z71).

22 D=2N

Im Fall einer geraden Dimension D = 2N verwendet man den Ansatz[I, 2]

(D-1)

Vi) () (7 1) = e 0™ (F(?“)¢|K\,(jl)(f) + iG(T)¢f|K\,(j1)(f)) (2.4)
Uk (o) (P 8) = €702 (F(T)¢7\K|,(j2)(f) + iG(?")¢|K\,(jz)(f)) ;o (2.5)

mit K = £(I+N—3) = £1(2014 D —1), wobei die Spinanteile der DK (j, ) (7) eine andere
Form als bei ungerader Dimension haben, da die Spinordarstellung der SO(2N) reduzibel
ist. Durch Einsetzen in die Dirac-Gleichung ergeben sich auch hier die Gleichungen (Z.))

und (27).
2.3 Losung der Radialgleichungen fiir das Coulomb-Potential

Die Radialgleichungen lauten also zusammengefasst sowohl fiir gerade als auch fiir un-
gerade Dimensionen D

d K

T.G(r) + —G(r) = (E = V(r) = M)F(r) (2.6)
_%F(T) N gp(r) — (E— V() + M)G(r). (2.7)

Wird nun das Coulomb-Potential

V=650

betrachtet, bietet es sich an, fiir die gebundenen Zustédnde (das heift Zustédnde mit
|E| < M, da die Ruheenergie in E enthalten ist) die Reparametrisierung

p=2rvVM?— E? (2.8)

zu verwenden[3]. Die Energie E bleibt noch zu bestimmen. Die Gleichungen lauten dann

) Flp) (2.9)

N

p

d K 1 | M+E ¢
d_pF(p) - ;F(p) = (—5\/ V—F ;) G(p). (2.10)




Diese Gleichungen kénnen mit einem Potenzreihenansatz gelost werden, es hat sich je-
doch als praktisch erwiesen, zunéchst folgenden Ansatz zu machen, der aus [3] iibernom-
men wurde:

s

G(p) = VM — E(®4(p) + 2-(p)) (2.11)
F(p) = VM + E(®4(p) — 2-(p)). (2.12)

Einsetzen in die Gleichungen (Z9) und (2ZI0) ergibt nach Zusammenfassung der Wur-
zelterme die beiden Gleichungen

s

T (@40)+ B-(0) + - (@4(p) + -(p)) = (—% A g) (@4(p) — ®_(p))
(2.13)
T (@400) =B (p) =~ (@1(0) = - (p)) = (—% -4 %—;5) (@4(p)+ @ (p).
(2.14)
Addition dieser beiden Gleichungen liefert
B, (0)+ =0 () == 5040 + 1o [ (B4(0) = (o)
- o\ 3E @)+ 2 0)
= e+ 5 D) _2-0)
& (M- B)(@4() + - (p))
2p M2 — E2
i £ (E®.(p) - MO_(p)
e (Bt
Mit den Abkiirzungen
35
T AR - B2
, M
T T AR B2
ergibt sich schliefllich
#,(0)~ (5= 5) 2slo) = -2 (o) (2.15)



Analog erhélt man durch Subtraktion der Gleichungen (ZI3) und (ZI4) die folgende
Gleichung:

¥ o)+ (2= 5) o) = T Fa) (2.16)

Auflésen der Gleichung ([2.I6) nach @ (p) und Einsetzen in (215 liefert
d? p.d 1 1 d T o1 2 K%\ ®_(p)
— 4t (1475 =__ (- = — (== =0
((pdp2+(+T 2)dp 2) (p 2)p(dp+(p 2))+ p - K
d? p T 1 d 1 r 1\? 1?-K?
SN (NI (P |4 [P Y (R B
(pdp2+(+T 2 (p 2)p)dp 2 p(p 2)+
T —K2>
_i_i
2 2)
2

P

d2+1d 1 72 ’7’+1
dp*  pdp 2p \p* p 4 P
/

i

—(p) =0
—(p) =0
®_(p)=0

12
12
> 1d 1 7-35 7
02
2

d2 1d 1 7—2 K?24+72-71
- 4= - — d_(p) =0.
(dp2+pdp+< 1T P (v)
Analog ergibt sich eine Gleichung fiir ®(p), wenn man (ZI5) nach ®_(p) auflést und
in (ZI0) einsetzt. Zusammengefasst lauten die Bestimmungsgleichungen fir . (p)

? 1d 1 743 772))
b ——+ [+ — L))o =0, 2.17
<dp2 pdp ( 4 p P (®) (247

wobei die Abkiirzung

o= K 4?7 K% (2.18)

eingefiihrt wurde. Wir betrachten ein schwaches Potential und wéhlen

n=1/K2-¢>0. (2.19)

Betrachtet man, welche Terme die Gleichung (ZI7)) in den Grenzféllen p — oo und p — 0
dominieren, bietet sich zur Losung der Gleichung der folgende Separationsansatz an[3]:

®(p) = p'e” 2 R (p). (2:20)

Durch Einsetzen des Ansatzes erhélt man, wenn berticksichtigt wird, welche Terme durch
die Separation wegfallen

- d? o 1.Nd o1 1 1 d T+
e r/? <<p“d—p2 +2 (np" = 59’7) P = 250" 1) +;p”(—§ +d—p) +p”72> R+(p) =0

2
((p;—p2+2(n—%p)d%—n>+(—%+dip)+(7i%)>Ri(p):0-



Es ergibt sich also fur Ry (p) die Gleichung

d? d 11
d2+(2n+1—p)d—p+(7—n—§i§) Ri(p) =0. (2.21)
Gleichung (ZZ1]) entspricht der konfluenten hypergeometrischen Differentialgleichung,
auch Krummergleichung genannt, deren Losung durch die konfluenten hypergeometri-
schen Funktionen, auch Krummerfunktionen, gegeben ist[I], 4]. Mit der hypergeometri-
schen Funktion der ersten Art,

\Fi(a i n (2.22)
n=0
() = (;)‘T)") - ﬁ(a +E), () =1
k=0
lasst sich die Losung von Gleichung (ZZ1]) angeben als
Ryi(p) =ax 1F1(n—7'+1:F1,2n+1,p). (2.23)

2 2

Der zweite Term aus der allgemeinen Losung wird dabei vernachléssigt, da er zu einer
unphysikalischen Singularitdt im Ursprung fithrt. Die Funktion 1 F(«, 3, 2) hat einige
niitzliche Eigenschaften:

d [e9)
&1}?1(047672:) - ngl (/8

I
(78
\_/@ SN—
3
+
—
£
+
=
N
3

= BB+ 1) n!
_ %1F1(a +1,8+1,2) (2.24)
und
z _ o~ (a)n 2" z(at 1)y 2!
1F1(a,,8,2)+31F1(a+1,6+1,2) —1+nz::1( )nm B(,B+1)n—1 (n_l)l
- fala+1), 1 nla+1),1 z
“1+ 2 (T, B)n )%
B — (a+n)(a+ 1)y 2"
P S R —
R et
LT, W
= 1Fi(a+1,5,2) (2.25)



Aus ([Z24) und ([Z25]) folgt

d
<%+@) 171 (o, B, 2) = %1F1(04+1,ﬁ,2)- (2.26)

Zur Bestimmung der Konstanten ay wird (223)) in (Z20) und dann in (ZI5]) eingesetzt.
Es ergibt sich unter Verwendung von (2:26])

e 2" ((g = % + d%) Ry(p) - (% - %) R+(p)) - J; Ke‘gp"R—(p)

7+ K

-7 d
(77 —|—d—p)a+1F1(?’]—T,2T]+lap):_ a—1F1(77—7'+17277+17P)

p
— T 7J+K
T L Rm-7+1,2p+1,p) = —

a4 ‘LIFI(U—7'+1,277+1,P)

T
——a.
THE

Mit (ZII) und ZI2) kann die Losung fiir die Radialfunktionen angegeben werden:

G(p) = NVM = Eple™ (7' + K) 1 Fi(—n/, 20+ 1,p) + ' 1 Fi(1 — /. 2n + 1, p))
(2.27)
F(p) = NVM + Ep"e™ (' + K)1Fy(—n/,2n+ 1,p) —n' 1 Fi(1 —n/,2n+ 1, p)) .
(2.28)
Dabei wurde die Abkiirzung n’ = 7 — 7 eingefithrt. Der Faktor N ist noch aus der Nor-
mierung der Wellenfunktion zu bestimmen. Damit die Wellenfunktion im Unendlichen
verschwinden kann, darf die hypergeometrische Funktion nicht gegeniiber dem e~ %-Term
dominieren. Dies hat zur Folge, dass fiir physikalische Losungen n’ € Ny gelten muss,

denn nur dann bricht die Reihe in Gleichung (Z22]) ab. Aus dieser Tatsache lassen sich
die Energieeigenwerte bestimmen:

T—n=n
§&E-
M2 — F2 noA
§2E2 — (n/ +n)2(M2 _ EZ)
B — M?(n' +n)?
&+ (n +n)?
: \-}
£
Man fiihrt als Hauptquantenzahl
n=1+1+n



ein, so dass sich das gewohnte Verhalten n > [+ 1 > 0 ergibt. Mit (ZI9) ergibt sich aus
[229) fur die Energieeigenwerte:

52

E=M]|1+ 2
(n—1-1+/t@+D-1)?2-¢)

(2.30)

Fiir D = 3 entspricht dies dem bekannten Ergebnis. Man kann an (2:30) sofort erkennen,
dass E < M gilt, und, da & klein ist, dass E nah bei M liegt. Aus (Z27) und (Z28)
folgt damit F'(r) > G(r). Der Term mit F(r) in (Z3]) entspricht also den sogenannten
“grofien Komponenten”, der mit G(r) den “kleinen Komponenten”.

2.4 Bestimmung der Normierung

Zur Bestimmung des Normierungsfaktors N nutzt man die Tatsache, dass sich die hy-
pergeometrische Funktion 1 F; (—n, 5+1, p) fiir n € Ny durch die zugeordneten Laguerre-
Polynome ausdriicken lasst. Es gilt[I], 5]:

n!T(B+1)

Fi(— Lp) = ———r— I 2.31
T T(n+8+1
[rernioniea = 2D,

0
Daraus ergibt sich:
¥ A T(8 + 1)2

/pﬁep 1Fi(=n, B+1,p)%dp = (2.32)

0

Fn+p8+1)

Aus der Normierungsbedingung
/ |U2dV =1

ergibt sich mit ([23]) bzw. [24]) die Bedingung

1= [ G(r)? + F(r)dr,
/

wobei ausgenutzt wurde, dass die Kugelflichenfunktionen normiert sind, und dass das D-
dimensionale Volumenelement in hypersphirischen Koordinaten dV = rP?~1drdQ lautet.

Mit ([Z32]) lasst sich das Integral 16sen:

N22M
1= ———= [ pPe (7' + K)* 1 Fi(—1, 20+ 1,p)> + 0 1 F1(1 =0/, 20 + 1, p)?dp
2V M? — E?
0
LN (a1 (= I+ 12
M2 — F2 T(n'+2n+1) T'(n' + 2n) '



Dass fiir n’ = 0 die Relation (Z31]) auf den zweiten Term des Integrals nicht anwendbar
ist, stellt kein Problem dar, da dieser dann sowieso verschwindet. Mit der Definition von
n/ ergibt sich

Lo NEM(r ) T2 +1)2 [ (7 +K)? (=)
- VM2 — E? I(tr+n+1) T(r+n)
_ NZM(r —n)!T(2p + 1) <(7'/ + K)’T(r +n) +n'T(t +n+ 1))

VM? — E? Fir+n+1)I'(t+n)
und mit der Eigenschaft der I'-Funktion, dass I'(x + 1) = zI'(x) ist,

| NPM(r —)!T(20 +1)° ((T’ + K+ (1 —n)(7 + n))
VM? — E? T(r+n+1)
 NZM(r—m)'T(2n+1)? (7' + K)? + 72— n?
a VM? — E? ( T(t+n+1) )

und daher mit (ZI8))

_N2M(T—n)!F(2n+1)2 (7" + K)? — K? + 1?)
S yony - T +n+1)

N M(r—)'T(2n +1)? 27/ (7' + K)

B VM2 — E2 D(r+n+1)

1

Es folgt schlussendlich

_(MQ—E2)5< T(r+n+1) )%
 T(2n+1) \2M7 (7 + K)(r—n))

Damit sind die Radialfunktionen vollsténdig bestimmt.

2.5 Berechnung des radialen Erwartungswertes

Aus ([Z3) bzw. [Z4) ergibt sich, dass der Erwartungswert <rk> durch

o0

(rk) = / rH(G(r)? + F(r)?)dr

0

2 . .
NT T ergibt sich:

gegeben ist. Mit der Abkiirzung o, = ——=———+
(4(M2—E2))"2

[e.e]
<rk> = Ok / pPe TP M ((7'/ + K2 Fi(=n',2n+1,p)% + 0?1 Fi(1 —n', 20 +1, p)2)
0
—2B(r' + K)n' 1 Fy(=n/,2n 4+ 1,p) 1 F1 (1 — n/, 2 + 1, p)dp.
(2.33)

10



Um dieses Integral zu losen, wird wieder die Beziehung ([Z:31]) zwischen der hypergeome-
trischen Funktion ;F} und den zugeordneten Laguerre-Polynomen benutzt. Allerdings
kann die Orthogonalititsrelation (2.32]) hier nicht mehr angewandt werden. Es wird
die folgende, von H. A. Mavromatis und R. S. Alassar in [6] angegebene, allgemeinere
Formell benotigt:

[e.e]

[ e L)L ()dp =
0

(=)™ (n + Bp + 1)2T(m + B + 1)
m!T(m + By + DI (n + By, + 1)

Xip (=D)PT(k+1+p)T(k = Bm +1+p)

= n+1—=p) By +14+p)T(k—pBmn+1—m+p)p

Dieser Ausdruck wurde mit dem Computeralgebrasystem Mathematica zu

]opke—PLgn(p)L:;m (i - CL T+ TG ;'ﬁg SO0+ B+ 1) 1)
0

X 3Fy(—=n,k4+ 1,k — By + 1k —m — B + 1,8, + 1;1)

umgeformt, wobei die regularisierte hypergeometrische Funktion 5F, auftritt, die dhnlich
wie 1 F definiert ist. Es gilt allgemein|[7]:

n

pFolar, .. ap; B, ..., By 2) =

1 o~ (1)
Mit ([234)) lasst sich (Z33]) berechnen. Es ergibt sich:

n-(Qp)n 2

<7“k> 0 (=)™ EIT(2n 4+ 1)2T(k + 2 + 1)M
L(n'+2n+1)
x (7" + K)?3Fy(—n' k+ 1,k +2n+ 1;k —n' +1,2n + 1;1)
—n2@2n+n) 31 —n/ k+ 1, k+2n+ 1,k —n' +2,2n+1;1)

(2.35)

E -
+ 2Mn'(7" +K)2n+n')sFy(—n" k+ 1,k +2n+ 1;k —n' +2,2n + 1;1)).
Bei der Auswertung dieses Ausdrucks ist zu beachten, dass der zweite Term, in dem 5Fh
mit dem Argument 1 —n’ auftaucht, im Fall n’ = 0 bereits in ([Z33]) wegfillt, und daher
das Produkt n/3F»(1 — n/,...) ohne weitere Uberlegungen als gleich zu Null betrachtet
werden kann.

3 Die Klein-Gordon-Gleichung in D + 1 Dimensionen

Die Klein-Gordon-Gleichung entsteht aus der relativistischen Energie-Impuls-Beziehung
E? = p?c?4+m?c* durch die naheliegende Substitution der entsprechenden Operatoren fiir

n [6] wird eine um einen Faktor I'(n + 3 + 1) verschiedene Definition von LZ(p) verwendet, der hier
in der Formel auftaucht.

11



FE und p und beschreibt spinlose Teilchen. Die zeitunabhéngige Klein-Gordon-Gleichung
fiir ein Zentralpotential lautet[I]

(-2 + M) w(7) = (B - V(1) ¥(7), (3.1)
wobei sich in héheren Dimensionen lediglich die Form des Operators V? entsprechend

andert. Man verwendet als Losungsansatz denselben Ansatz wie fiir die Schrodingerglei-
chung in D + 1 Dimensionen[I]:

W) = r 2 R(r)YL o (7). (3.2)

Mit den Ergebnissen

oL D (pa2) L

rD=19r or r2
vk (@) =11+D=2)Y} , (7

aus [I] ergibt sich:

) = e (5 (—D;+§)Rl<r>mg_2...h<f>)——22\11(?)

r
b —1) a2 R /L
= 2 < + F) Rl(r)YllD,g...ll(r) T_Q\II(T)
b —4D+3+4i(l+ D - 2) 5
=y 2 <d7“2 — 12 )Rl(r)YllD 2 ll(r)
2
) -1+ %) —4
_ D-1 4 N
—=r "2 ﬁ — ( 2 ) RZ(T)Y}272...11 (T)

Eingesetzt in die Klein-Gordon-Gleichung ([B1]) ergibt sich mit der Abkiirzung
=|-1+ D
- 2

die folgende Gleichung fiir die Radialfunktion R;(r):

d2 K}Q
(w S 4) Rilr) = (M2 = (B = V()R) Rifr). (33

r

3.1 Losung der Radialgleichung fiir das Coulomb-Potential

Fur das Coulomb-Potential

Vi) =650

12



ergibt sich aus (3.3)):

d2 2 k241 9oE
( e-rit} 2

2 ;s =+ (B - M2)> Ry(r) =0. (3.4)

Auch hier bietet es sich an, die Substitution

p=2rvVM?— E? (3.5)

durchzufithren[I]. Gleichung ([34]) wird dann zu

p

mit der auch bei der Losung der Dirac-Gleichung benutzen Abkiirzung

S S

Betrachtet man wieder die fiir p — 0 und p — oo dominanten Terme, bietet sich ein
ahnlicher Separationsansatz wie bei der Dirac-Gleichung an[I]:

Ri(p) = p"2e 36(p).

Dabei wurde die Abkiirzung nn = \/k? — £? eingefiihrt. Einsetzen dieses Ansatzes in (3.6])
liefert eine zu (Z2ZI]) beinahe identische Gleichung:

2
(pcfd—p2+(2n+1—p)%+(7—n—%)> o(p) = 0. (3.7)

Bei Gleichung ([B7) handelt es sich wieder um die konfluente hypergeometrische Diffe-
rentialgleichung, die Losung lasst sich daher direkt angeben. Fir Ry(p) ergibt sich dann:

Ri(p) = Np"™ 25 1 Fy(—n', 20 + 1, p),

wobei diesmal 1
/ f— J— _— —

=T

gewahlt wurde. Wie zuvor lassen sich aus der Tatsache, dass fiir physikalische Losungen
aufgrund des Verschwindens der Wellenfunktion im Unendlichen n’ € Ny gelten muss,

die Energieeigenwerte bestimmen. Es ergibt sich analog zur Herleitung von (2:29)):

NI

_ & )
E_M<1+(n—l—%+\//127—§2)2> ’

mit der Hauptquantenzahl
n=1+14+n

13



3.2 Bestimmung der Normierung
Aus (32) und der Normierungsbedingung fiir die Wellenfunktion ergibt sich die Bedin-
gung

o0

/Rl(r)er = 1.

0

Das Integral lautet ausgeschrieben:

o o0
N2
/Rl(r)zdr T 2V/MZ - B2 /p2n+lep 1P (=, 20+ 1, p)*dp.
2V/M? — 2
0 0

Mit ([225) und (232) ergibt sich
N2 (2 7
/Rz )dr = 2\/% P21l e P (VR (=0, 20, p) — 1Py (= (' +1),2n,p))  dp

N2(2p)® (nT@2p)?* (0 +1)!T(2n)
- <F(n’+277) I(n + 1+277)>
N2T(2n+1)2 /0! (0 4+ 2n) + (n/ + 1)!
- ( I'(n'4+2n+1) )
N2+ 1) (/120 + 20+ 1)
NI (F(n’+2n+1) )

Damit folgt

N

(M? — E?)
re2n+1)

<2F(n +2n+1) )
(2n' +2n+1)

und die Wellenfunktion ist vollstdndig bestimmt.

3.3 Berechnung des radialen Erwartungswertes

Aus [B2) ergibt sich, dass der Erwartungswert <7"k> durch

[e.e]

<rk> = /rle(r)er

oo
N? _
= k41 /p277+1+ke plFI(_nl’2n+1’p)2dp
0

14



gegeben ist. Mit (Z34]) und (B.8)) ergibt sich:

< k> 1 (=) (k +1)!T(k + 21 + 2)
' ok (MQ—EQ)% n'!(2n' 4+ 2n+1)

X 3F2(—n’,k+2,k+277+2;k—n’+2,277+1;1)_

4 Vergleich mit 3 + 1 Dimensionen

Um einen Vergleich zur bekannten Losung fiir 341 Dimensionen herzustellen, wurden
mit den Ergebnissen der Dirac-Gleichung aus Abschnitt ] einige Diagramme erstellt,
wobei £ = % und m = 1 gewéhlt wurden. Die Ergebnisse der Klein-Gordon-Gleichung
unterscheiden sich auch in héheren Dimensionen nur minimal von denen der Dirac-
Gleichung und wurden daher nicht separat dargestellt.

Abbildung 51l zeigt die Energieniveaus des Coulombproblems, die durch ([2:30]) gegeben
sind, in Abhéangigkeit von der Hauptquantenzahl n, bei [ = 0, fiir verschiedene Di-
mensionen D. Man kann erkennen, dass die Bindungsenergie mit steigender Dimension
abnimmt, der Unterschied wird jedoch mit zunehmendem n kleiner.

Abbildung zeigt die Radialfunktionen F'(r) und G(r) fir D = 3, bei [ = 0 und
verschiedenen Werten von n. Die kleine Komponente G(r) wurde fiinffach vergroert
dargestellt.

Abbildung 53] zeigt die radiale Wahrscheinlichkeitsdichte G(r)? + F(r)? fiir verschiedene
Werte von n bei [ = 0, fiir D = 3 und D = 4. Die Wahrscheinlichkeitsdichten fiir D = 3
zeigen den gewohnten Verlauf, die fiir D = 4 haben eine sehr &hnliche Form, sind jedoch
weniger eng und bei grofleren Radien lokalisiert.

Abbildung [54] zeigt die radiale Wahrscheinlichkeitsdichte bei n = 1 fiir mehrere Werte
von D. Hier ist noch deutlicher zu erkennen, dass sich das Maximum der Wahrschein-
lichkeitsdichte mit steigender Dimension D zu gréfleren Radien verschiebt, wahrend die
Lokalisierung unschérfer wird.

Abbildung B0l zeigt den durch (235) gegebenen Erwartungswert (r) fiir mehrere Werte
von n, bei | = 0. Man kann erkennen, dass der Abstand zwischen den Erwartungswerten
der verschiedenen Energieniveaus mit steigender Dimension D gréfler wird.

5 Zusammenfassung

Es wurden die Dirac-Gleichung und die Klein-Gordon-Gleichung mit dem Coulombpro-
blem in D+1 Dimensionen betrachtet. In Abschnitt Zlwurde die Dirac-Gleichung betrach-
tet und die Radialfunktionen des Coulombproblems wurden analytisch bestimmt, indem
die Bestimmungsgleichungen auf die konfluente hypergeometrische Differentialgleichung
[221) zuriickgefiihrt wurden. In Abschnitt wurde der radiale Erwartungswert <rk >
analytisch bestimmt. Die Radialfunktionen und die radiale Wahrscheinlichkeitsdichte
wurden in Abschnitt d] fiir verschiedene Werte von D und n grafisch dargestellt und die
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Abhéngigkeit des radialen Erwartungswertes von der Dimension wurde betrachtet. In
Abschnitt Bl wurde die Klein-Gordon-Gleichung behandelt, wobei die Ergebnisse denen
der Dirac-Gleichung sehr dhneln. Die Radialfunktionen wurden wieder durch Riickfiih-
rung auf eine hypergeometrische Differentialgleichung analytisch bestimmt. In Abschnitt
wurde der radiale Erwartungswert auf dieselbe Weise wie bei der Dirac-Gleichung
analytisch bestimmt.
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Abbildung 5.1: Energieniveaus des Coulomb-Problems in D 4+ 1 Dimensionen
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Abbildung 5.2: Radialfunktionen des Coulombproblems fiir D = 3
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Abbildung 5.3: Radiale Wahrscheinlichkeitsdichte des Coulombproblems
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Abbildung 5.4: Radiale Wahrscheinlichkeitsdichte des Coulombproblems fiir n = 1
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