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1 EINLEITUNG

1 Einleitung

Wenn ein System sich bei einer Transformation invariant bleibt, sich also nicht ändert,
bezeichnet man es als symmetrisch. So verändert sich eine Kugel nicht, wenn man
sie um einen bestimmten Winkel um den Mittelpunkt dreht. In der Physik spielen
Symmetrien eine besondere Rolle. Nach dem Noether-Theorem sind kontinuierliche
Symmetrien mit der Existenz von Erhaltungsgröÿen verknüpft, die einem das Lösen
von Problemen erleichtern. Eine besondere Symmetrie stellt die Supersymmetrie dar.

Supersymmetrie

Die Welt besteht aus zwei Teilchensorten, den Fermionen und den Bosonen, die in
ihren Eigenschaften grundverschieden sind. Fermionen haben einen halbzahligen Spin
und sie genügen dem Pauliprinzip, nach dem sich keine zwei Fermionen im gleichen
Zustand be�nden können, während Bosonen einen ganzzahligen Spin haben und be-
liebig viele von ihnen im gleichen Zustand sein können. Fermionen sind die Grundbau-
steine von Materie, während Bosonen die Austauschteilchen von Wechselwirkungen
sind. Fermionen genügen der Fermi-Dirac-Statistik und Bosonen der Bose-Einstein-
Statistik.
1971 haben verschiedene Arbeitsgruppen die Supersymmetrie (SUSY) entdeckt [Zum],
die bosonische und fermionische Freiheitsgrade miteinander in Beziehung setzt. Eine
Folgerung aus supersymmetrischen Theorien ist, dass alle Teilchen des Standard-
modells supersymmetrische Partnerteilchen haben, die jeweils der anderen Statistik
genügen und sonst identisch sind. Bosonen haben also fermionische Partnerteilchen
und umgekehrt. Die Tatsache, dass diese Partnerteilchen noch nicht entdeckt wurden,
führt zu der Vermutung, dass SUSY eine spontan gebrochene Symmetrie ist und die
Massen der SUSY-Teilchen so groÿ sind, dass sie bisher nicht beobachtet wurden.
Supersymmetrische Theorien haben einige sehr vorteilhafte Eigenschaften. Zum Bei-
spiel werden dadurch einige Divergenzen in Quantenfeldtheorien abgeschwächt und
das leichteste Neutralino, ein Partnerteichen der neutralen elektroschwachen Eich-
und Higgs-Bosonen, ist ein Anwärter für die dunkle Materie.

Supersymmetrische Quantenmechanik

Bemerkenswerterweise spielt SUSY auch in der nichtrelativistischen Quantenmecha-
nik eine Rolle, obwohl der Spin der Teilchen, und damit auch die Statistik, keine Rolle
spielt, es sei denn man postuliert den Spin. 1976 hat Nicolai erstmals Supersymmetrie
in der nichtrelativistischen Quantenmechanik verwendet, um eine Kette aus Bosonen
und Fermionen zu beschreiben [Nic]. Witten nutze die supersymmetrische Quanten-
mechanik (SUSY QM) als Grenzfall einer supersymmetrischen Quantenfeldtheorie,
um die spontane Symmetriebrechung in einem System, bestehend aus einem Spin-1

2
-

1



1 EINLEITUNG

Teilchen zu untersuchen [Wit].
SUSY führt in der Quantenmechanik dazu, dass zu jedem System ein Partnersystem
existiert, das bis auf die Grundzustandsenergie das gleiche Spektrum besitzt und de-
ren Eigenzustände miteinander verknüpft sind. Auÿerdem lassen sich mit Hilfe von
SUSY die bekannten Näherungsmethoden verbessern, bzw. neue Näherungen �nden.
In dieser Bachelorarbeit wird so die Energieaufspaltung des Grundzustands bei einem
Doppelmuldenpotential bestimmt [Coo].

Doppelmuldenpotential

Das Doppelmuldenpotential ist ein beliebtes Modell zur Erklärung vieler Phänomene
in der Physik und Chemie. Ein Beispiel ist etwa die Chiralität von Molekülen [Wie].
Bei chiralen Molekülen existieren zwei Atomkon�gurationen, die aus den gleichen
Atomsorten bestehen, aber nicht durch Rotation ineinander überführbar sind, siehe
auch in Abbildung 1 die beiden vieratomigen Moleküle, die aus Atomen der gleichen
�Farbe� bestehen, die aber nicht durch Rotation auseinander hervorgehen. Die bei-
den möglichen Kon�gurationen können sich in ihren physikalischen und chemischen
Eigenschaften stark unterscheiden. Durch den quantenmechanischen Tunnele�ekt ist
es aber möglich, dass sich die Kon�gurationen ineinander umwandeln.

Abbildung 1: Das Doppelmuldenpotential zur Erklärung der Chiralität von Molekü-
len. Die Zustände in den Mulden entsprechen der links- bzw. rechtshädigen Kon�gu-
ration. Aus [Wie]

Zum Doppelmuldenpotantial gelangt man in diesem Modell, indem man in der
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

Born-Oppenheimer-Näherung1 die Schrödingergleichung für die Bindungselektronen
löst und das Potential der Elektronen im Grundzustand auf die Inversionsachse (die
Verbindungslinie des �roten� und des �schwarzen� Atoms) projeziert.
Ein prominentes Beispiel für ein chirales Molekül ist das Ammoniak [Bra], bei dem
das Sticksto�-Atom oberhalb oder unterhalb der durch die Wassersto�atome auf-
gespannten Ebene ist. Die beiden Kon�gurationen lassen sich nicht durch Rotation
ineinander überführen, da die Pyramide gekippt ist.

Abbildung 2: Die beiden Kon�gurationen des Ammoniak und das zugehörige Dop-
pelmuldenpotential. Aus [Bra]

Wie in Abschnitt 3.2 gezeigt wird, führt der Tunnele�ekt zu einer Aufpaltung der
Energieniveaus. Dies wird z.B. beim Ammoniak-Maser verwendet, siehe [Bra].

2 Supersymmetrische Quantenmechanik

2.1 Faktorisierung des Hamilton-Operators

Wenn der Grundzustand ψ0(x) eines Systems bekannt ist, lässt sich daraus das gesam-
te Potential V1(x) rekonstruieren. Ohne Beschränkung der Allgemeinheit kann man
Annehmen, dass die Grundzustandsenergie verschwindet, da das Potential ebenfalls
nur bis auf eine additive Konstante bestimmt ist. Es ist dann [Coo]

Ĥ1ψ0(x) = − ~2

2m
ψ′′0(x) + V1(x)ψ0(x) = 0, (2.1)

⇒ V1(x) =
~2

2m

ψ′′0(x)

ψ0(x)
. (2.2)

1In der Born-Oppenheimer-Näherung geht man davon aus, dass die Atomkerne viel träger sind
als die Elektronen, so dass man die Kerndynamik und die der Elektronen getrennt betrachten kann.
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

Jeder Hamiltonoperator lässt sich nun als Komposition zweier zueinander adjungier-
ter Operatoren schreiben

Ĥ1 = B̂�B̂, (2.3)

wobei

B̂ =
~√
2m

d

dx
+W (x), B̂� = − ~√

2m

d

dx
+W (x). (2.4)

Für die Funktion W (x), die man Superpotential nennt, erhält man durch Einsetzen
von (2.4) in (2.3)

V1(x) = W 2(x)− ~√
2m

W ′(x). (2.5)

Diese Di�erentialgleichung fürW (x) nennt man Riccati-Gleichung [Kal]. Aus B̂ψ0(x) =
0 folgt bereits Ĥ1ψ0(x) = B̂�B̂ψ0(x) = 0. Andererseits folgt B̂ψ0(x) = 0 aus Ĥ1ψ0(x) =
0, da

0 = 〈ψ0|Ĥ1|ψ0〉 = 〈ψ0|B̂�B̂|ψ0〉 =
∥∥∥B̂ψ0(x)

∥∥∥2

, (2.6)

wobei ‖.‖ die L2-Norm ist. Damit lässt sich W (x) analog zu V1(x) durch den Grund-
zustand ausdrücken.

B̂ψ0(x) =

(
~√
2m

d

dx
+W (x)

)
ψ0(x) = 0, (2.7)

⇒ W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
= − ~√

2m

d

dx
ln (ψ0(x)) . (2.8)

Auÿerdem folgt aus (2.6), dass man bei bekanntem Superpotential anstelle der Di�e-
rentialgleichung zweiter Ordnung Ĥψ0(x) = 0 die DGL erster Ordnung B̂ψ0(x) = 0
zur Bestimmung des Grundzustands verwenden kann.

2.2 Das Partnerpotential

Zu einer supersymmetrischen Theorie gelangt man nun, indem man einen zweiten
Hamiltonoperator Ĥ2 := B̂B̂� einführt [Coo], mit

Ĥ2 = − ~2

2m
ψ′′(x) + V2(x)ψ(x), V2(x) = W 2(x) +

~√
2m

W ′(x). (2.9)

Man bezeichnet V2(x) als Partnerpotential von V1(x). Wie im folgenden gezeigt wird,
hängen die Eigenzustände und Eigenenergien von Ĥ1 und Ĥ2 eng zusammen. Zur Un-
terscheidung der Eigenzustände und -energien der beiden Hamiltonoperatoren werden
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

diese mit einem oberen Index gekennzeichnet, ψ(i) und E(i)
n , i = 1, 2. Aus der Schrö-

dingergleichung für Ĥ1,

Ĥ1ψ
(1)
n = E(1)

n ψ(1)
n , (2.10)

folgt

Ĥ2

(
B̂ψ(1)

n

)
= B̂B̂�B̂ψ(1)

n = E(1)
n

(
B̂ψ(1)

n

)
. (2.11)

Analog folgt aus

Ĥ2ψ
(2)
n = E(2)

n ψ(2)
n (2.12)

für die Eigenzustände von Ĥ1

Ĥ1

(
B̂�ψ(2)

n

)
= B̂�B̂B̂�ψ(2)

n = E(2)
n

(
B̂�ψ(2)

n

)
. (2.13)

Die Operatoren B̂, B̂� transformieren die Eigenzustände von Ĥ1 zu Eigenzuständen
von Ĥ2 und umgekehrt. Wegen (2.6) gilt dies nur nicht für den Grundzustand von
Ĥ1. Aus (2.10) bis (2.13) folgt dann

E(2)
n = E

(1)
n+1, E

(1)
0 = 0 (2.14)

ψ(2)
n =

[
E

(1)
n+1

]−1/2

B̂ψ
(1)
n+1, (2.15)

ψ
(1)
n+1 =

[
E(2)
n

]−1/2
B̂�ψ(2)

n . (2.16)

Wenn die Zustände ψ(1)
n normiert sind, dann sind die Zustände ψ(2)

n ebenfalls normiert.
In Abbildung 3 ist das Spektrum eines supersymmetrischen Systems skizziert.

Im folgenden Beispiel wird die oben hergeleitete Methode noch einmal verdeut-
licht.

Beispiel 1 (Unendlicher Potentialtopf). Der Hamiltonoperator für die Bewegung
eines Teilchens in einem Potentialtopf mit der Breite L lautet

Ĥ = − ~2

2m

d2

dx2
+ V1(x) mit V1(x) =

{
0 für 0 ≤ x ≤ L

∞ sonst
. (2.17)

Man erhält als Eigenzustände und Eigenenergien

ψn(x) =

√
2

L
sin

(
(n+ 1)π

L
x

)
, En =

~2π2(n+ 1)2

2mL2
, n = 0, 1, 2, ... (2.18)
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

Abbildung 3: Die Entartung der Spektren von V1 und V2. Entnommen aus [Coo].

Für das Ausspielen der Supersymmetrie muss die Grundzustandsenergie verschwin-
den. Daher betrachtet man den Hamiltonoperator

Ĥ1 = Ĥ − E0, (2.19)

der das erfüllt. Dieser Hamiltonoperator hat die gleichen Eigenzustände wie Ĥ und
die Eigenenergien

E(1)
n =

~2π2

2mL2
n(n+ 2). (2.20)

Aus dem Grundzustand ψ0(x) =
√

2/L sin(πx/L) erhält man mit (2.8) das Superpo-
tential

W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
= − ~√

2m

π

L
cot

πx

L
. (2.21)

Aus (2.9) erhält man damit das Partnerpotential im Bereich [0, L]

V2(x) =
~2π2

2mL2

(
2

sin2(πx/L)
− 1

)
. (2.22)

Dieses Form dieses Potential ist viel komplizierter als die von V1(x) und die Lösung
nicht so einfach zu ermitteln. Dank der Supersymmetrie sind die Eigenenergien bereits
bekannt, E(2)

n = E
(1)
n+1, und aus (2.15) lassen sich die Eigenzustände bestimmen. Aus

(2.4) folgen die Operatoren B̂, B̂�

B̂ = − ~√
2m

(
π

L
cot

πx

L
− d

dx

)
, B̂� = − ~√

2m

(
π

L
cot

πx

L
+

d

dx

)
(2.23)
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

Damit erhält man etwa für den Grundzustand und den ersten angeregten Zustand

ψ
(2)
0 (x) =

1√
E

(2)
1

B̂ψ
(1)
1 = −

√
8

3L
sin2 πx

L
, (2.24)

ψ
(2)
1 (x) =

1√
E

(2)
2

B̂ψ
(1)
2 = − 2√

L
sin

πx

L
sin

2πx

L
. (2.25)

Die weiteren Zustände werden analog bestimmt. Hier konnte man also mit Hilfe
von Supersymmetrie die Zustände eines Teilchen im komplizierten Potential V2 aus
denen im einfachen Potential V1 bestimmen. Die ersten Zustände sind in Abbildung
4 eingezeichnet.

Abbildung 4: Der Potentialtopf und sein SUSY-Partner. Entnommen aus [Coo]

2.3 SUSY-Algebra

Die Supersymmetrie lässt sich am besten dadurch ausdrücken, dass man von den
beiden Hamilton-Operatoren Ĥ1 und Ĥ2 zu einer Matrix

ĤS =

(
Ĥ1 0

0 Ĥ2

)
=

[
− ~2

2m

d2

dx2
+W 2(x)

]
I− ~√

2m

dW (x)

dx
σ3 (2.26)
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

übergeht [Coo], mit der Einheitsmatrix I und der Pauli-Matrix

σ3 =

(
1 0
0 −1

)
. (2.27)

Diese Darstellug nennt man kanonische Darstellung. Man führt auÿerdem die sog.
Superladungen

Q̂ =

(
0 0

B̂ 0

)
und Q̂� =

(
0 B̂�

0 0

)
(2.28)

ein. Durch Nachrechnen zeigt man dann folgende Kommutator- und Antikommuta-
tor2-Relationen,

[ĤS, Q̂] = [ĤS, Q̂
�] = 0̂, (2.29)

{Q̂, Q̂} = {Q̂�, Q̂�} = 0̂, (2.30)

{Q̂, Q̂�} = ĤS. (2.31)

Dies ist eine SUSY-Algebra. Man bezeichnet Q̂ als Generator der Supersymmetrie
oder als Superladung. Dabei ist (2.29) verantwortlich für die Entartung der Eigen-
energien. Man interpretiert den Operator Q̂ dann so, dass er einen bosonischen Frei-
heitsgrad in einen fermionischen umwandelt. Aus (2.30) folgt, dass Q̂2 = (Q̂�)2 = 0̂
gilt, was die Einhaltung des Pauli-Prinzips garantiert. Die Wellenfunktion schreibt
sich als Vektor,

ψ(x) =

(
ψ(1)(x)
ψ(2)(x)

)
⇔
(

Boson
Fermion

)
. (2.32)

Anstelle von Q̂ und Q̂�, die nicht hermitesch sind, lassen sich auch hermitesche
Operatoren Q̂1 und Q̂2 einführen [Kal], mit

Q̂1 = Q̂+ Q̂�, (2.33)

Q̂2 = −i(Q̂− Q̂�). (2.34)

Damit ist Q̂ = 1/2(Q̂1 + iQ̂2), also ist (2.33), (2.34) eine Zerlegung in Real- und
Imaginärteil. Mit (2.29) bis (2.31) zeigt man

{Q̂1, Q̂2} = 0̂, (2.35)

[ĤS, Q̂1] = [ĤS, Q̂2] = 0̂, (2.36)

Q̂2
1 = Q̂2

2 = ĤS. (2.37)

Dies ist ebenfalls eine SUSY-Algebra. Beide Operatorpaare lassen sich in supersym-
metrischen Modellen verwenden.

2Man de�niert für zwei Operatoren Â und B̂ den Antikommutator durch {Â, B̂} := ÂB̂ + B̂Â
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2 SUPERSYMMETRISCHE QUANTENMECHANIK

2.4 Spontan gebrochene Supersymmetrie

Bisher wurde nur der Fall betrachtet, dass die Grundzustandsenergie von Ĥ1 ver-
schwindet, E(1)

0 = 0. Ist dies gegeben, so spricht man von exakter Supersymmetrie
und der Generator der Symmetrie lässt den Grundzustand verschwinden, Q̂ψ0(x) =
Q̂�ψ0(x) = 0. Wegen ĤSψ0(x) = {Q̂, Q̂�}ψ0(x) = 0 verschwindet dann die Grundzu-
standsenergie.
Man spricht nun von einer spontan gebrochenen Symmetrie, wenn der Grundzustand
eines Systems diese Symmetrie nicht besitzt, obwohl der Hamilton-Operator mit dem
Generator vertauscht, wie in (2.29), also die Symmetrie besitzt [Kal]. Das heiÿt, dann
ist Q̂ψ0(x) 6= 0.
Aus (2.7) folgt aus gegebenen Superpotential der Grundzustand von Ĥ1 mit E(1)

0 = 0

und aus B̂�ψ
(2)
0 = 0 den Grundzustand von Ĥ2 mit E(2)

0 = 0. Man erhält

ψ
(1)
0 (x) = C exp

(
−
√
m

~

∫ x

0

W (ξ)dξ

)
, (2.38)

ψ
(2)
0 (x) = C exp

(√
m

~

∫ x

0

W (ξ)dξ

)
. (2.39)

Da die Wellenfunktion normierbar sein muss, muss die Exponentialfunktion für |x| → ∞
verschwinden. Daraus ergeben sich folgende, sich ausschlieÿende Fälle:

1. ψ(1)
0 (x) ist Grundzustand bei E = 0, wenn∫ 0

−∞
W (x)dx = −∞ und

∫ ∞
0

W (x)dx =∞. (2.40)

Die Supersymmetrie ist dann exakt.

2. ψ(2)
0 (x) ist Grundzustand bei E = 0, wenn∫ 0

−∞
W (x)dx =∞ und

∫ ∞
0

W (x)dx = −∞. (2.41)

Die Supersymmetrie ist auch hier exakt.

3. Es existiert kein Zustand bei E = 0, und die Supersymmetrie ist spontan ge-
brochen.

Ob die Symmetrie gebrochen ist, hängt also nur vom globalen Verhalten des Superpo-
tentials ab. Für exakte Supersymmetrie darf das Superpotential also im Unendlichen
nicht verschwinden. Mit den De�nitionen

W+ = lim
x→∞

W (x), W− = lim
x→−∞

W (x), W± 6= 0, (2.42)

erhält man die äquivalenten Bedingungen

9



2 SUPERSYMMETRISCHE QUANTENMECHANIK

1. W− < 0 und W+ > 0 ⇒ SUSY exakt.

2. W− > 0 und W+ < 0 ⇒ SUSY exakt.

3. W± > 0 oder W± < 0 ⇒ SUSY gebrochen.

Abbildung 5: Schematische Darstellung der Spektren der Partnerpotentiale bei exak-
ter und gebrochener SUSY. Entnommen aus [Kal]

Da bei gebrochener Supersymmetrie B̂ψ(1)
0 6= 0 gilt, ist das Energiespektrum der

Partner-Systeme identisch,

E(2)
n = E(1)

n > 0. (2.43)

Für die Eigenzustände erhält man

ψ(2)
n =

[
E(1)
n

]−1/2
B̂ψ(1)

n und ψ(1)
n =

[
E(2)
n

]−1/2
B̂�ψ(2)

n . (2.44)

Die ist in Abbildung 5 skizziert. Im Gegensatz zur exakten Supersymmetrie werden
hier Zustände mit gleicher Quantenzahl n miteinander verknüpft.

2.5 Formale SUSY-Quantenmechanik

Formal besteht eine supersymmetrische Theorie aus dem Satz [Jaf], [Jun]

(H, Ĥ, τ̂ , Q̂1, ..., Q̂N). (2.45)

Dabei beschreibt (H, Ĥ) die gewöhnliche Quantenmechanik, bestehend aus einem
Hilbertraum H und einem Hamiltonoperator Ĥ. Die Supersymmetrie entsteht durch
die Involution τ̂ und die Superladungen Q̂i. Die in dieser Arbeit behandelte SUSY-
Quantenmechanik entspricht dem Fall N = 2.
Die Involution ist ein Operator, der zweimal angewandt den Einsoperator ergibt,

τ̂ �τ̂ = τ̂ τ̂ � = τ̂ 2 = 1̂. (2.46)

10



2 SUPERSYMMETRISCHE QUANTENMECHANIK

daraus folgt, dass τ nur die Eigenwerte 1 und −1 besitzt. Die zugehörigen Eigenräume
werden als H+ und H− bezeichnet und der Hilbertraum zerfällt in eine orthogonale
Summe H = H+ ⊕H−. Diese Zerlegung legt die Darstellung der Zustände als zwei-
dimensionale Vektoren und der Operatoren als 2 × 2-Matrizen wie in Abschitt 2.3
nahe. Die Projektionsoperatoren

P̂± =
1

2
(1̂± τ̂) (2.47)

angewandt auf H liefern H±. Man bezeichnet H+ als bosonischen (geraden) und H−
als fermionischen ungeraden Unterraum. Ein beliebiger hermitescher Operator Â lässt
sich mithilfe der Projektionsoperatoren in einen geraden und einen ungeraden Anteil
zerlegen,

Â = (P̂+ÂP̂+ + P̂−ÂP̂−) + (P̂+ÂP̂− + P̂−ÂP̂+) = Âb + Âf . (2.48)

Aus τ̂ P̂± = ±P̂± und [τ̂ , P̂±] = 0̂ folgt

[Âb, τ̂ ] = 0̂, (2.49)

{Âf , τ̂} = 0̂. (2.50)

Ein Operator der mit der Involution vertauscht, ist also ein gerader Operator, einer
der mit der Ivolution antivetauscht ist ungerade. Gerade Operatoren lassen H+,H−
invariant, ungerade Operatoren erzeugen Übergänge zwischen H+ und H−. Die In-
volution ist ein gerader Operator. Nun bezeichnet man einen hermiteschen Operator
Q̂i, der die Bedingungen

Q̂i = Q̂�
i (2.51)

{Q̂i, τ̂} = 0̂, (2.52)

{Q̂i, Q̂j} = 2δijĤS (2.53)

erfüllt, als Superladung bezüglich τ̂ . Wegen (2.52) sind Superladungen ungerade Ope-
ratoren und verknüpfen so bosonische und fermionische Zustände. In der gewöhnli-
chen Quantenmechanik kommen hingegen nur gerade Operatoren vor. Den Operator
ĤS nennt man supersymmetrischen Hamiltonoperator. Sind die Operatoren Q̂1, Q̂2

Superladungen, dann sind die Operatoren Q̂′1, Q̂
′
2 mit(

Q̂′1
Q̂′2

)
=

(
cosα sinα
− sinα cosα

)(
Q̂1

Q̂2

)
, α ∈ [0, 2π). (2.54)

ebenfalls Superladungen [Jun], erfüllen also auch die SUSY-Algebra, bzw. für die
komplexen Superladungen Q̂ = 1/2(Q̂1 + iQ̂2) ist Q̂′ auch eine Superladung falls

Q̂′ = e−iαQ̂, Q̂�
′
= eiαQ̂�. (2.55)

11



2 SUPERSYMMETRISCHE QUANTENMECHANIK

Dies ist mit einer Eichsymmetrie verknüpft. Transformiert man die Zustände in H±
nach

|ψ′±〉 = eiβ±|ψ±〉, (2.56)

dann bleibt bei der Wahl α = β+−β− in (2.54) die Supersymmetrie erhalten, also ins-
besondere (2.15), (2.16). Die Darstellungen in diesem Abschnitt gelten insbesondere
auch in der relativistischen Quantenmechanik.

2.6 SWKB-Näherung

In diesem Abschnitt soll die WKB-Quantisierungbedingung (A.11),∫ b

a

√
2m[En − V (x)] dx = ~π

(
n+

1

2

)
, (2.57)

mit Hilfe von Supersymmetrie verbessert werden. Dazu wird das Potential in (2.57)
durch (2.5) ersetzt,∫ b

a

√
2m

[
E

(1)
n −W 2(x) +

~√
2m

W ′(x)

]
dx = ~π

(
n+

1

2

)
. (2.58)

a und b sind die klassischen Umkehrpunkte. Die Wurzel wird nun bis zur ersten
Ordnung nach Potenzen von ~ entwickelt. Dabei wird angenommen, dass W (x) nicht
von ~ abhängt. Man erhält∫ b

a

√
2m
[
E

(1)
n −W 2(x)

]
+

~
2

∫ b

a

W ′(x) dx√
E

(1)
n −W 2(x)

+O(~2) = ~π
(
n+

1

2

)
. (2.59)

Die weiteren Schritte hängen davon ab, ob die Supersymmetrie exakt oder spontan
gebrochen ist.

SWKB bei exakter Supersymmetrie

Der zweite Summand in (2.59) lässt sich direkt integrieren,

~
2

∫ b

a

W ′(x) dx√
E

(1)
n −W 2(x)

=
~
2

arcsin

W (x)√
E

(1)
n

b
a

. (2.60)

Da die Supersymmetrie exakt ist, hat das Superpotential an den Umkehrpunkten
unterschiedliche Vorzeichen und es gilt

−W (a) = W (b) =

√
E

(1)
n . (2.61)

12



3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Damit ergibt das Integral in (2.60) denWert ~π/2 und die SWKB-Quantisierungbedingung
lautet ∫ b

a

√
2m
[
E

(1)
n −W 2(x)

]
= n~π, n = 0, 1, 2, .... (2.62)

Analog erhält man für das Partnerpotential V2(x)∫ b

a

√
2m
[
E

(2)
n −W 2(x)

]
= (n+ 1)~π, n = 0, 1, 2, .... (2.63)

Für n = 0 steht auf der linken Seite von (2.62) eine Null. Dies wird erfüllt durch
a = b und man erhält E(1)

0 = 0, das exakte Ergebnis. Während die WKB-Näherung
nur für groÿe n gute Ergebnisse liefert [Kal], ist die SWKB-Näherungen also für den
Grundzustand exakt, weshalb man insgesamt bessere Ergebnisse erwartet.
Der Vergleich von (2.62) und (2.63) zeigt, dass die SWKB-Näherung die Niveau-
Entartung, E(1)

n+1 = E
(2)
n , reproduziert.

SWKB bei gebrochener Supersymmetrie

Bei gebrochener Supersymmetrie hat das Superpotential in den Umkehrpunkten das
gleiche Vorzeichen und man erhält

W (a) = W (b) =

√
E

(1)
n . (2.64)

Mit (2.60) verschwindet dann der zweite Summand in (2.59) und man erhält die
SWKB Quantisierungsbedingung∫ b

a

√
2m
[
E

(1)
n −W 2(x)

]
= ~π

(
n+

1

2

)
. (2.65)

Analog erhält man für das Partnerpotential∫ b

a

√
2m
[
E

(2)
n −W 2(x)

]
= ~π

(
n+

1

2

)
. (2.66)

Man sieht, dass auch hier die typische Niveauentartung, E1
n = E2

n, reproduziert wird.

3 Doppelmuldenpotential und Tunnele�ekt

3.1 Klassische Bewegung im Doppelmuldenpotential

Bevor das Doppelmuldenpotential quantenmechanisch behandelt wird, soll zunächst
die klassische Dynamik betrachtet werden. Für die Bewegung im Doppelmuldenpo-

13



3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

tential V (x) = x4 − x2 lautet die klassische Hamiltonfunktion

H(x, p) =
p2

2m
+ x4 − x2 (3.1)

Dies führt zu den kanonischen Bewegungsgleichungen

dp

dt
= −∂H

∂x
= −4x3 + 2x,

dx

dt
=
∂H

∂p
=

p

m
. (3.2)

Die daraus folgende Dynamik ist im Phasenraumdiagramm in Abbildung 6 einge-
zeichnet.

Abbildung 6: Der klassische Phasenraum für die Bewegung eines Teilchens im Dop-
pelmuldenpotential.

Man erkennt in Abbildung 6, dass es zwei Lösungstypen gibt. Wenn die Energie
des Teilchens groÿ ist, schwingt das Teilchen über beide Mulden hinweg. Bei kleinen
Energien kann sich das Teilchen nur in einer der Mulden aufhalten und hat keine
Möglichkeit, in die andere Mulde zu gelangen. Dies ist der groÿe Unterschied zur
Quantenmechanik.

3.2 Tunnelwahrscheinlichkeit

Ein Teilchen in einer Mulde kann in die andere Mulde durchtunneln. Die Wahr-
scheinlichkeit hierfür hängt eng mit der Energiedi�erenz der beiden ersten Zustände

14



3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

zusammen [Mün]. Der Grundzustand |0〉 mit der Energie E0 ist symmetrisch, der
erste angeregte Zustand |1〉 mit der Enrgie E1 ist antisymmetrisch. Ein Teilchen be-
�nde sich nun in der linken Mulde. Den Zustand kann man durch den gemischten
Zustand |L〉 = 1/

√
2(|0〉 + |1〉) beschreiben. Nach dem Tunneln soll sich das Teil-

chen in der rechten Mulde, also im Zustand |R〉 = 1/
√

2(|0〉 − |1〉) be�nden. Das
Übergangsmatrixelement ist dann

〈L|Ĥ|R〉 = 2(E0 − E1) = −2∆E. (3.3)

Diese Energiedi�erenz wird im folgenden mit verschiedenen Methoden berechnet.

Abbildung 7: Links: Ein Doppelmuldenpotential mit unendlicher Potentilabarriere.
Rechts: Ein Doppelmuldenpotential mit endlicher Barriere. Entnommen aus [Kal]

3.3 WKB-Näherung

Zur Energieaufspaltung in der WKB-Näherung gelangt man durch folgende Überle-
gung [Kal]. Bei einem Doppelmuldenpotential mit unendlich hoher Potentialbarriere
zwischen den Mulden existieren nur Energieniveaus für die Bewegung in der einen
oder anderen Mulde, siehe Abbildung 7. Die Niveaus EL und ER der beiden Mulden
sind entartet. Verringert sich die Potentialbarriere, so wird die Entartung aufgeho-
ben und die Energien spalten sich auf. Ein Teilchen kann sich nun in beiden Mulden
bewegen.
Die ersten beiden Zustände können aus den Zuständen in den beiden Mulden ψR(x) =
〈x|R〉 und ψL(x) = 〈x|L〉 = ψR(−x) näherungsweise konstruiert werden.

ψ0(x) =
1√
2

[ψR(x) + ψR(−x)] , ψ1(x) =
1√
2

[ψR(x)− ψR(−x)] . (3.4)

15



3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Zu beachten ist aber, dass die Zustände ψ0, ψ1 und ψL, ψR in dieser Näherung unter-
schiedlich normiert sind, es gilt nämlich3

1 =

∫ ∞
−∞

ψ2
0,1 dx ≈

1

2

∫ ∞
−∞

(ψ2
R(x) + ψ2

R(−x)) dx

=
1

2

(∫ ∞
0

ψ2
R(x) dx+

∫ 0

−∞
ψ2
R(−x) dx

)
=

∫ ∞
0

ψ2
R(x) dx. (3.5)

Dabei wurde ausgenutzt, dass ψR(x) für negative x vernachlässigbar klein ist. Damit
ist auch ψR(x) ·ψR(−x) ≈ 0 Um die Energieaufspaltung ∆E = (E1−ER)+(ER−E0)
zu bestimmen, betrachtet die Schrödingergleichungen

ψ′′R(x) +
2m

~2
(ER − V (x))ψR(x) = 0, ψ′′0(x) +

2m

~2
(E0 − V (x))ψ0(x) = 0. (3.6)

Man multipliziert die erste Gleichung mit ψ0(x), die zweite mit ψR(x), subtrahiert
beide voneinander und erhält

ψ′′R(x)ψ0(x)− ψR(x)ψ′′0(x) =
2m

~2
(E0 − ER)ψR(x)ψ0(x). (3.7)

Durch Integration von 0 bis ∞ und eine partielle Integration auf der linken Seite
erhält man[

ψ′R(x)ψ0(x)− ψR(x)ψ′0(x)
]∞

0
=

2m

~2
(E0 − ER)

∫ ∞
0

ψR(x)ψ0(x) dx. (3.8)

Im Unendlichen verschwindet die Wellenfunktion. Für x = 0 erhält man aus (3.4)
ψ0(0) =

√
2ψR(0) und wegen

ψ′0(x) =
1√
2

[ψ′R(x)− ψ′R(−x)] (3.9)

erhält man ψ′0(0) = 0. Mit (3.4) und (3.5) erhält man∫ ∞
0

ψR(x)ψ0(x) dx ≈ 1√
2

∫ ∞
0

ψ2
R(x) dx =

1√
2

(3.10)

Damit erhält man

ER − E0 =
~2

m
ψR(0)ψ′R(0). (3.11)

3Eigentlich muss man bei der Normbildung über das Betragsquadrat integrieren. Da Eigenzu-
stände aber nur bis auf eine konstante Phase eiφ bestimmt sind, lassen sie sich immer reell wählen,
und man kann die Betragsbildung weglassen.
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Analog erhält man für E1 − ER den gleichen Ausdruck. Damit folgt für die Energie-
aufspaltung

∆E =
2~2

m
ψR(0)ψ′R(0) (3.12)

Die WKB Wellenfunktion lautet nun im klassisch verbotenen Bereich mit der Erset-
zung p→ i|p| [Raz]

ψR(x) =

√
mω

2π|p(x)|
exp

(
−1

~

∫ a

x

|p(ξ)| dξ
)
, |p(x)| =

√
2m[V (x)− E]. (3.13)

Dabei ist a ein klassischer Umkehrpunkt und ω die Frequenz der Bewegung in einer
Potentialmulde. Sie lässt sich folgendermaÿen abschätzen. Die Potentialmulde in der
Nähe des Minimums bei x0 wird durch ein harmonisches Oszillatorpotential V (x) =
mω2x2/2 abgeschätzt. Durch zweimaliges Ableiten erhält man

ω ≈
√
V ′′(x0)

m
. (3.14)

Als Ableitung von ψR(x) erhält man

ψ′R(x) =

[
|p(x)|

~
− 2mV ′(x)

4|p(x)|

]
ψR(x). (3.15)

Nähert man noch die Grundzustandsenergie E durch das Potential am Minimum
V (x0), so erhält man die Energieaufspaltung in WKB-Näherung

∆E =
~
π

√
V ′′(x0)

m
exp

(
−2

~

∫ a

0

√
2m[V (x)− V (x0)] dx

)
. (3.16)

3.4 Die Doppelmulde und ihr SUSY-Partner

Um die Energieaufspaltung mittels Supersymmetrie zu bestimmen, wird zunächst die
Grundzustandswellenfunktion benötigt [Kal]. Ein plausibler Ansatz ist die Überlage-
rung zweier Gauÿ-Funktionen,

ψ0(x) = e−α(x−x0)2 + e−α(x+x0)2 = 2e−α(x2+x2
0) cosh 2αxx0. (3.17)

Daraus folgt bereits das Superpotential

W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
=

2α~√
2m

(x− x0 tanh 2αx0x) (3.18)
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

und die beiden Partnerpotentiale

V1,2(x) =
2~2α2

m
[x− x0 tanh 2αx0x]2 ∓ ~2α

m

[
1− 2αx2

0

cosh2 2αxx0

]
. (3.19)

Abbildung 8: Links das Doppelmuldenpotential für verschiedene Werte von x0, also
verschiedene Tiefen. Rechts die zugehörigen Partnerpotentiale. Es wurde m = ~ =
α = 1 gewählt.

Das Partnerpotential zum Doppelmuldenpotential V1 hat also nur eine einzelne
Mulde. Dies gilt aber nur für kleine x0. Im Fall x0 →∞ erhält man nämlich

V1,2(x) =
2~2α2

m
(|x| − x0)2 ∓ ~2α

m
, (3.20)

zwei Doppelmuldenpotentiale. Die Tiefe der Potentiale D := V1,2(0) − V1,2(x0) =
2(~αx0)2/m wächst mit x0. In der WKB-Näherung erhält man für dieses Potential
aus (3.17), (3.12) die Energieaufspaltung

∆E =
4~2

m

√
2α

π
αx0 exp

(
−2αx2

0

)
. (3.21)

Nun zur Supersymmetrie. Nach De�nition verschwindet die Grundzustandsenergie
von V1(x), E(1)

0 = 0, und nach (2.14) ist die Energie des ersten angeregten Zusrands
gleich dem Grundzustand des Partnerpotetials, E(1)

1 = E
(2)
0 . Damit lautet die Ener-

gieaufspaltung

∆E = E
(2)
0 . (3.22)

Diese Energie lässt sich mit dem Ritz'schen Variationsverfahren und einer Gauÿfunk-
tion als Testfunktion bestimmen. Da das Partnerpotential nur aus einer einzelnen
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Abbildung 9: Vergleich der Ergebnisse für die Tunnelaufspaltung beim Doppel-
muldenpotential. Die Aufspaltung wurde für verschiedene Werte von x0 mit der
WKB-Näherung, mit Ausnutzung von Supersymmetrie und numerisch bestimmt.
Das numerische Ergebnis wurde mit dem Numerov-Algorithmus bestimmt. Es wurde
~ = m = α = 1 gewählt. Die y-Achse ist logarithmisch geplottet.

Mulde besteht und man nur�den Grundzustand benötigt, erwartet man bessere Er-
gebnisse als bei der Variation für den ersten angeregten Zustands der Doppelmulde.
Dies gilt allerdings wegen (3.20) nur für �ache Potentiale.

In Abbildung 9 sieht man wie erwartet, dass für kleine x0 und damit für �ache Po-
tentiale die Näherung das exakte Ergebnis reproduziert, während die WKB-Näherung
versagt. Für groÿe x0 wird die WKB-Näherung besser, während die SUSY-Näherung
versagt.

3.5 Regularisierung der Grundzustandswellenfunktion

Bei tiefen Doppelmuldenpotentialen erwartet man eine sehr kleine Energieaufspal-
tung, ∆E ≈ 0. Daraus folgt mit (3.22), dass dann auch die Grundzustandsenergie
von Ĥ2 ungefähr Null ist [Keu]. Das kann man auch in Abbildung 9 sehen. Dies kann
man ausnutzen, um eine Näherung für den Grundzustand von Ĥ2 zu bestimmen.
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Aus B̂ψ0(x) = 0 folgt B̂�(1/ψ0(x)) = 0. Mit der Quotientenregel erhält man

B̂� 1

ψ0(x)
=

(
− ~√

2m

d

dx
+W (x)

)
1

ψ0(x)
=

1

ψ2
0(x)

(
~√
2m

ψ′0(x) +W (x)ψ0(x)

)
︸ ︷︷ ︸

=B̂ψ0(x)=0

= 0.

(3.23)

Da ein Grundzustand keine Knoten besitzt, ist der obige Ausdruck für alle x ∈ R
de�niert. Mit (2.6) folgt damit auch aus Ĥ1ψ0(x) = 0, dass Ĥ2(1/ψ0(x)) = 0 gilt.
Eine notwendige Bedingung dafür, dass eine Funktion normierbar ist, ist dass sie
im Unendlichen verschwindet. Daher können ψ0(x) und 1/ψ0(x) nicht gleichzeitig
normierbar sein. Dies lässt sich dadurch beheben, dass man eine neue Funktion φ(x)
einführt, mit

φ(x) =

{
I(x)/ψ0(x) für x > 0

I(−x)/ψ0(x) für x < 0
, (3.24)

I(x) =

∫ ∞
x

|ψ0(ξ)|2 dξ. (3.25)

Im Ursprung ist φ(0) = (2ψ0(0))−1. Damit ist φ(x) auf ganz R stetig. Die Ableitung
von φ(x) lautet

φ′(x) =

{
−ψ0(x)− (ψ′(x)/ψ(x))φ(x) für x > 0

ψ0(x)− (ψ′(x)/ψ(x))φ(−x) für x < 0
(3.26)

und macht an der Stelle x = 0 einen Sprung,

lim
ε→0

[φ′(0 + ε)− φ′(0− ε)] = −2ψ0(0). (3.27)

Die Funktion φ(x) ist normierbar, da

lim
x→±∞

φ(x) = lim
x→±∞

∓ψ2
0(x)

ψ′0(x)
= ±
√
m

~
lim

x→±∞

ψ0(x)

W (x)
= 0 (3.28)

gilt. Dabei wurde die Regel von l'Hospital zweimal verwendet und, dass das Super-
potential bei exakter Supersymmetrie im Unendlichen nicht verschwindet. Nun ist zu
zeigen, dass φ(x) die Schrödingergleichung Ĥ2φ(x) = 0 für alle x 6= 0 erfüllt. Der Fall
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x = 0 wird danach behandelt. Es gilt zunächst für x > 0

B̂�φ(x) =

[
W (x)− ~√

2m

d

dx

]
I(x)

ψ0(x)
,

= I(x)

[
W (x)− ~√

2m

d

dx

]
1

ψ0(x)
− ~√

2m

I ′(x)

ψ0(x)
,

= I(x)B̂� 1

ψ0(x)
− ~√

2m

1

ψ0(x)

d

dx

∫ ∞
x

ψ2
0(ξ) dξ, (3.29)

B̂�φ(x) =
~√
2m

ψ0(x). (3.30)

In (3.29) wurde verwendet, dass B̂�(1/ψ0) = 0 gilt. Durch Anwenden von B̂ auf (3.30)
erhält man schlieÿlich

Ĥ2φ(x) = B̂B̂�φ(x) =
~√
2m

B̂ψ0(x) = 0. (3.31)

Analog erhält man das Gleiche für x < 0. Für x = 0 betrachtet man den Hamilton-
operator

Ĥ0 = Ĥ2 −
2~2

m
ψ2

0(0)δ(x). (3.32)

Für x 6= 0 sind Ĥ2 und Ĥ0 identisch. Durch die δ-Funktion wird der Sprung von φ′(x)
berücksichtigt. Das zeigt man, indem man die Schrödingergleichung

φ′′(x) +

[
2ψ2

0(0)δ(x)− 2m

~2
V2(x)

]
φ(x) = 0 (3.33)

von −ε bis ε integriert. Man erhält

φ′(ε)− φ′(−ε) = −2ψ2
0φ(0) +

2m

~2

∫ ε

−ε
V2(x)φ(x) dx (3.34)

und durch Bildung des Grenzwertes ε→ 0 folgt (3.27). φ(x) ist also Eigenfunktion von
Ĥ0 zum Eigenwert E = 0. Die Energieaufspaltung von Ĥ2 lässt sich nun bestimmen,
indem man Ĥ2 schreibt als

Ĥ2 = Ĥ0 + δĤ mit δĤ =
2~2

m
ψ2

0δ(x) (3.35)

als kleiner Störung. Die Störung ist umso kleiner, je gröÿer die Potentialbarriere ist,
da die Wellenfunktion mitten in der Barriere die Form ψ0(0) ∝ e−x

2
0 hat. In erster
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Ordnung Störungstheorie erhält man für die Grundzustandsenergie E(2)
0 = E + E ′.

Mit der ungestörten Lösung E = 0 und der Korrektur

E ′ =
〈φ|δĤ|φ〉
〈φ|φ〉

=
1

〈φ|φ〉

∫ ∞
−∞

φ2(x)δĤ dx =
1

〈φ|φ〉
~2

2m
. (3.36)

Mit

〈φ|φ〉 =

∫ ∞
−∞

φ2(x) dx = 2

∫ ∞
0

φ2(x) dx (3.37)

und (3.22) erhält man für die Energieaufspaltung

∆E =
~2

4m

[∫ ∞
0

φ2(x) dx

]−1

. (3.38)

Abbildung 10: Vergleich der berechneten Energieaufspaltung aus der WKB-Näherung,
der Regularisierung des Grundzustandes des Partnerpotentials und des numerischen
Ergebnisses [Keu]. Hier wurde die Störungsreihe sogar bis zur 3. Ordnung fortgesetzt.
Es wurde ~ = 2m = 1 gesetzt.

Man sieht in Abbildung 10, dass die Näherung für groÿe x0 schneller konvergiert
(in der ersten Ordnung) als die WKB-Näherung, da bei x0 = 1.5 bereits die Näherung
mit dem exakten Ergebnis nahezu übereinstimmt.
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4 DISKUSSION

4 Diskussion

In dieser Arbeit wurde gezeigt, wie sich die nichtrelativistische Quantenmechanik um
Supersymmetrie erweitern lässt. Dazu wurde der Hamiltonoperator faktorisiert und
sein Spektrum mit dem eines Partnersystems in Verbindung gesetzt. Es wurde kurz
auf die SUSY-Algebra und einige formale Eigenschaften der Supersymmetrie einge-
gangen, aus denen die Eigenschaften des Formalismus folgen.
Danach wurde gezeigt, wie sich die WKB-Näherung zunächst ohne Bezug zum Dop-
pelmuldenpotential als SWKB-Näherung verbessern lässt, um dann besondere Nä-
herungsmethoden für die Niveauaufspaltung des Doppelmuldenpotentials herzuleiten
und mit dem WKB-Ergebnis zu vergleichen.
Die erste Näherungmethode ist recht naheliegend. Man bestimmt das Partnerpoten-
tial der Doppelmulde, das bis zu einer bestimmten Tiefe des Doppelmuldenpotentials
aus nur einer Mulde besteht. Man nutzt weiter aus, dass die Grundzustandsenergie bei
exakter Supersymmetrie verschwindet und muss nur noch die Grundzustandsenergie
des Partnerpotentials bestimmen, die man mit einer Gauÿ-Funktion als Ansatz so-
lange gut bestimmen kann, wie das Partnerpotential eine Einzelmulde ist. Allerdings
ist die Variation der Energie trotz des leichten Ansatzes nicht ohne Computer durch-
zuführen. Das Ergebnis ist für �ache Doppelmulden sehr gut und wird mit steigender
Tiefe schlechter.
Bei der zweiten Näherung wurde angenommen, dass die Energieaufspaltung sehr klein
ist, was für tiefe Doppelmulden sehr gut erfüllt ist. Man bekommt dann sehr leicht
eine Lösung für den Grundzustand des Partnerpotentials, die aber nicht normierbar
ist. Daraus lässt sich dann eine geeignete Lösung konstruieren. Das Ergebnis für die
Energieaufspaltung ist wieder nur numerisch zu bestimmen, dafür ist es bei tiefen
Doppelmulden besser als die WKB-Näherung.
Durch Supersymmetrie lieÿen sich also bessere Näherungsergebnisse als mit der her-
kömmlichen WKB-Näherung erzielen. Ein weiterer Vorteil der SUSY-Näherungen
ist, dass die Verallgemeinerung auf asymmetrische Doppelmuldenpotentiale nahelie-
gender ist. Die erste Näherung lässt sich genauso verwenden, solange das Potential
nicht zu asymmetrisch ist und das Partnerpotential nur aus einer Mulde besteht,
und für die zweite Methode wird die Verallgemeinerung im Anhang C gezeigt. Bei
der Herleitung der WKB-Näherung wurde in (3.4) implizit vorausgesetzt, dass das
Doppelmuldenpotential symmetrisch ist. In [Boy] wird die WKB-Näherung mithilfe
von Pfadintegralen auf asymmetrische Doppelmulden angewandt.
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A WKB-Näherung

In der WKB-Näherung, nach Wentzel, Kramers und Brillouin, wird die Lösung der
stationären Schrödingergleichung(

− ~2

2m

d2

dx2
+ V (x)

)
φ(x) = Eφ(x) (A.1)

nach Potenzen von ~ entwickelt [Fli]. Zunächst wird in die Schrödingergleichung der
Ansatz

φ(x) = exp

(
iS(x)

~

)
, S(x) ∈ C (A.2)

eingesetzt. Dies führt zur Di�erentialgleichung

S ′(x)2 = 2m [E − V (x)] + i~S ′′(x). (A.3)

Das ′ bezeichne eine Ableitung nach x. Nun entwickelt man S(x) nach Potenzen von
~/i,

S(x) = S0(x) +
~
i
S1(x) +

(
~
i

)2

S2(x) + . . . , (A.4)

setzt dies in (A.3) ein und sortiert die Terme nach Potenzen von ~. Bis zur Ordnung
O(~) erhält man

S ′0(x)2 = 2m [E − V (x)] =: p2(x), O(∞) (A.5)
2

i
S ′0(x)S ′1(x) = iS ′′0 (x). O(~) (A.6)

Gleichung (A.5) ist die zeitunabhängige Hamilton-Jakobi-Gleichung. Für ~ → 0 er-
hält man also aus (A.3) das klassische Ergebnis, daher wird diese Näherung auch
semiklassische Näherung genannt. Der Ein�uss der Terme O(~∈) wird vernachlässigt.
Aus (A.5) erhält man

S0(x) = ±
∫ x

x0

p(ξ) dξ. (A.7)

Damit erhält man aus (A.6)

S ′1(x) = −1

2

S ′′0 (x)

S ′0(x)
=

1

2

|S ′0(x)|′

|S ′0(x)|
, (A.8)

⇒ S1(x) = ln
√
|S ′0(x)|+ const. (A.9)
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Dabei wurde in (A.8) ausgenutzt, dass S ′0(x) immer nur reell oder imaginär ist, und
man deswegend die Phase ±1 bzw. ±i in Zähler und Nenner kürzen kann. Nun setzt
man S ≈ S0 +~/i ·S1 in (A.2) ein und erhält für die Wellenfunktion die beiden linear
unabhängigen Näherungslösungen

φ±(x) =
const.√
|p(x)|

exp

(
± i

~

∫ x

x0

p(ξ) dξ

)
. (A.10)

Die allgemeine Lösung ist dann eine Linearkombination beider Lösungen. Man sieht,
dass die Lösung für p(x) = 0 singulär wird, also für die klassischen Umkehrpunkte mit
E = V (x). Eine Möglichkeit die Lösungen in den klassisch erlaubten mit denen in den
klassisch verbotenen Regionen zu verbinden, ist das Potential in der Nähe der Um-
kehrpunkte zu linearisieren. Damit erhält man die sogenannte Bohr-Sommerfeldsche
Quantisierungsregel [Raz]∫ b

a

√
2m [En − V (x)] dx = ~π

(
n+

1

2

)
, (A.11)

mit der man die Eigenenergien En näherungsweise berechnen kann. a und b sind die
klassischen Umkehrpunkte.

B Numerisches Lösen der Schrödingergleichung

Wenn man Näherungsmethoden für bestimmte Probleme entwickelt, dann will man
die Ergebnisse dieser mit den exakten Lösungen vergleichen. In diesem Abschnitt soll
erläutert werden, wie man beim numerischen Lösen der Schrödingergleichung

ψ′′(x) + F (x)ψ(x) = 0, mitF (x) =
2m

~2
(E − V (x)), (B.1)

vorgeht [Schn]. Zunächst entwickelt man ψ(x± h) bis zur 4. Ordnung nach h [Schn]

ψ(x± h) = ψ(x)± hψ′(x) +
h2

2
ψ′′(x)± h3

6
ψ′′′(x) +

h4

24
ψ(iv)(x) +O(〈5). (B.2)

Daraus folgt dann

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψ′′(x) +
h4

12
ψ(iv)(x) +O(〈6), (B.3)

⇔ ψ(x+ h) = 2ψ(x) + h2ψ′′(x)− ψ(x− h) +O(〈4), (B.4)

= (2− h2F (x))ψ(x)− ψ(x− h) +O(〈4). (B.5)
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Dabei wurde der Term proportional zu h4 vernachlässigt und die Schrödingergleichung
(B.1) eingesetzt. Damit lässt sich bei Vorgabe von zwei Werten die Schrödingerglei-
chung mit einer lokalen Fehlerordnung von h4 integrieren. Der Fehler lässt sich sogar
auf h6 reduzieren. Dazu wendet man zunächst den Di�erentialoperator

1 +
h2

12

d2

dx2
(B.6)

auf (B.1) an und erhält

ψ′′(x) +
h2

12
ψ(iv)(x) + F (x)ψ(x) +

h2

12

d2

dx2
(F (x)ψ(x)) = 0. (B.7)

Die zweiten Ableitungen der ersten beiden Terme werden nach (B.3) bis zur Ordnung
h4 bestimmt. Die zweite Ableitung von dem dritten Summanden wird bis zur Ordnung
h2 bestimmt. Wegen des Vorfaktors h2 ist die Fehlerordnung ebenfalls h4. Au�ösen
nach ψ(x+ h) liefert dann

ψ(x+ h) =
2ψ(x)− ψ(x− h)− h2

12
(10F (x)ψ(x) + F (x− h)ψ(x− h))

1 + h2

12
F (x+ h)

+O(〈6).

(B.8)

Dies ist der sogenannte Numerov-Algorithmus. Mit dieser Formel lässt sich die Schrö-
dingergleichung zwar lösen, die Eigenenergien sind aber weiterhin unbekannt. Um
diese zu bestimmen, nutzt man aus, dass Eigenzustände normierbar sein müssen.
Dies impliziert, dass sie im Unendlichen verschwinden. Dies ist auf Computern nicht
realisierbar. Statt dessen wählt man ein R, dass sich weit im klassisch verbotenen
Bereich be�ndet und fordert ψ(±R) = 0. Im Prinzip fügt man damit dem Potential
unendliche Potentialwälle bei ±R hinzu, die aber für groÿe R keinen Ein�uss auf das
Ergebnis haben.
Auÿerdem kann man den Knotensatz ausnutzen, der besagt, dass der n-te Eigenzu-
stand n Nullstellen (Knoten) im Endlichen hat [Nol]. Mann kann also beim Lösen die
Nullstellen zählen und so den gesuchten Zustand eingrenzen. Die Eigenenergien las-
sen sich dann durch eine Intervallschachtelung bestimmen, indem man noch ausnutzt,
dass für einen Schätzwert E und die Eigenenergie En gilt

� E > En ⇒ ψ(R) < 0

� E < En ⇒ ψ(R) > 0

Man kann nun ψ(−R) = 0 und ψ(−R + h) beliebig wählen und die Energie so
variieren, dass die ψ(R) möglichst klein wird. Methoden, die nach diesem Prinzip
ablaufen, bezeichnet man als Shooting-Methoden. Wegen Rechnerungenauigkeiten
wird die Wellenfunktion aber schlieÿlich doch divergieren. Dies ist für den ersten
angeregten Zustand im Doppelmuldenpotential in Abbildung 11 dargestellt.

Man sieht, dass der Zustand genau einen Knoten hat und auf Null abfällt, um
dann am rechten Rand doch zu divergieren.
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Abbildung 11: Der erste angeregte Zustand im Doppelmuldenpotential.

C Asymmetrische Doppelmuldenpotentiale

C.1 Die Doppelmulde und ihr SUSY-Partner

Für den Grundzustand der Wellenfunktion macht man beim asymmetrischen Dop-
pelmuldenpotential den Ansatz [Gan]

ψ0(x) = e−a(x+x0)2 + e−b(x−x0)2 , (C.1)

dabei sind a, b, x0 Variationsparameter, die an das gegebene Potential anzupassen
sind. Der Fall a = b entspricht einem symmetrischen Doppelmuldenpotential. Aus
diesem Grundzustand erhält man das Superpotential

W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
= 2

~√
2m

a (x+ x0) e−a(x+x0)2 + b (x− x0) e−b(x−x0)2

e−a(x+x0)2 + e−b(x−x0)2
. (C.2)
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Daraus folgen die Partnerpotentiale V1,2(x) = W 2(x)∓ ~/
√
mW ′(x),

V1(x) =
~2

m

a
[
2a (x+ x0)2 − 1

]
e−a(x+x0)2 + b

[
2b (x− x0)2 − 1

]
e−b(x−x0)2

e−a(x+x0)2 + e−b(x−x0)2
, (C.3)

V2(x) =
4~2

m

[
a (x+ x0) e−a(x+x0)2 + b (x− x0) e−b(x−x0)2

e−a(x+x0)2 + e−b(x−x0)2

]2

− ~2

m

a
[
2a (x+ x0)2 − 1

]
e−a(x+x0)2 + b

[
2b (x− x0)2 − 1

]
e−b(x−x0)2

e−a(x+x0)2 + e−b(x−x0)2
. (C.4)

Abbildung 12: Links das asymmetrische Doppelmuldenpotential für verschiedene
Werte von b und a = 1. b fungiert als Parameter für die Asymmetrie. Rechts die
zugehörigen Partnerpotentiale. Es wurde m = ~ = 1 gewählt.

Man sieht in Abbildung 12, dass für kleine b das Partnerpotential aus nur ei-
ner Mulde besteht und man deswegen eine Gauÿ-Funktion als Testfunktion ansetzen
kann.

C.2 Regularisierung des Grundzustands

Bei der Regularisierung des Grundzustands des Partnerpotentials argumentiert man
analog zum symmetrischen Fall, dass Ĥ21/ψ0(x) = 0 ist, ψ0(x) und 1/ψ0(x) nicht
gleichzeitig normierbar sind und wählt den Ansatz

φ(x) =


∫∞
x
ψ2

0(ξ) dξ

2I+ψ0(x)
für x > x̄∫ x

−∞ ψ
2
0(ξ) dξ

2I−ψ0(x)
für x < x̄

, (C.5)

I+ =

∫ ∞
x̄

ψ2
0(ξ) dξ, I− =

∫ x̄

−∞
ψ2

0(ξ) dξ. (C.6)
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Dabei ist x̄ ein beliebiger Ort, von dessen Wahl aber die Güte der Näherung abhängt.
Die Ableitung von φ(x) lautet

φ′(x) =


1

2I+

(
−ψ0(x)− ψ′0(x)

ψ2
0(x)

∫∞
x
ψ2

0(ξ) dξ

)
für x > x̄

1

2I−

(
ψ0(x)− ψ′0(x)

ψ2
0(x)

∫ x
−∞ ψ

2
0(ξ) dξ

)
für x < x̄

(C.7)

und hat einen Sprung bei x = x̄,

lim
ε→0

[φ′(x̄+ ε)− ψ′(x̄− ε)] = −
(

1

I+

+
1

I−

)
ψ0(x)

2
= −ψ0(x)

2I
, mit

1

I
=

1

I+

+
1

I−
(C.8)

Wie im symmetrischen Fall zeigt man, dass Ĥ2φ(x) = 0 für alle x 6= x̄ ist. Damit ist
φ(x) Eigenfunktion zum singulären Hamiltonoperator

Ĥ0 = Ĥ2 −
~2

2mI
ψ2

0(x̄)δ(x− x̄). (C.9)

Die Energieaufspaltung erhält man wieder dadurch, dass man Ĥ2 schreibt als

Ĥ2 = Ĥ0 + δĤ mit δĤ =
~2

2mI
ψ2

0(x̄)δ(x− x̄) (C.10)

als kleiner Störung. Die Störung ist umso kleiner, je kleiner ψ(x̄) ist. Die ist insbe-
sondere in der Potentialbarriere der Fall, daher wählt man x̄ als das Maximum des
Potentials. In erster Ordnung Störungstheorie erhält man dann für die Energieauf-
spaltung

∆E =
〈φ|δĤ|φ〉
〈φ|φ〉

=
1

〈φ|φ〉
~2

2mI

∫ ∞
−∞

φ2(x)ψ2
0(x̄)δ(x− x̄) dx =

~2

8mI

[∫ ∞
−∞

φ2(x) dx

]−1

.

(C.11)

Man sieht in Abbildung 13, dass das Ergebnis aus der Regularisierung des Grund-
zustands des Partnerpotentials viel besser ist als die WKB-Methode4.

4Die WKB-Näherung, die in [Gan] verwendet wurde, ist nicht die in dieser Arbeit hergeleitete,
sondern eine an asymmetrische Doppelmuldenpotentiale angepasste, auf die nicht weiter eingegangen
werden soll.
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Abbildung 13: Vergleich der Aufspaltungen aus einer WKB-Näherung, dem numeri-
schen Ergebnis und der in diesem Abschnitt vorgestellten Methode [Gan]. Hier ist
~ = 2m = 1, b = 1 und a = 0.4.
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