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1 EINLEITUNG

1 Einleitung

Wenn ein System sich bei einer Transformation invariant bleibt, sich also nicht &ndert,
bezeichnet man es als symmetrisch. So verédndert sich eine Kugel nicht, wenn man
sie um einen bestimmten Winkel um den Mittelpunkt dreht. In der Physik spielen
Symmetrien eine besondere Rolle. Nach dem Noether-Theorem sind kontinuierliche
Symmetrien mit der Existenz von Erhaltungsgrofen verkniipft, die einem das Losen
von Problemen erleichtern. Eine besondere Symmetrie stellt die Supersymmetrie dar.

Supersymmetrie

Die Welt besteht aus zwei Teilchensorten, den Fermionen und den Bosonen, die in
ihren Eigenschaften grundverschieden sind. Fermionen haben einen halbzahligen Spin
und sie geniigen dem Pauliprinzip, nach dem sich keine zwei Fermionen im gleichen
Zustand befinden konnen, wihrend Bosonen einen ganzzahligen Spin haben und be-
liebig viele von ihnen im gleichen Zustand sein kénnen. Fermionen sind die Grundbau-
steine von Materie, wihrend Bosonen die Austauschteilchen von Wechselwirkungen
sind. Fermionen geniigen der Fermi-Dirac-Statistik und Bosonen der Bose-Finstein-
Statistik.

1971 haben verschiedene Arbeitsgruppen die Supersymmetrie (SUSY) entdeckt [Zuml,
die bosonische und fermionische Freiheitsgrade miteinander in Beziehung setzt. Eine
Folgerung aus supersymmetrischen Theorien ist, dass alle Teilchen des Standard-
modells supersymmetrische Partnerteilchen haben, die jeweils der anderen Statistik
geniigen und sonst identisch sind. Bosonen haben also fermionische Partnerteilchen
und umgekehrt. Die Tatsache, dass diese Partnerteilchen noch nicht entdeckt wurden,
fiihrt zu der Vermutung, dass SUSY eine spontan gebrochene Symmetrie ist und die
Massen der SUSY-Teilchen so grof sind, dass sie bisher nicht beobachtet wurden.
Supersymmetrische Theorien haben einige sehr vorteilhafte Eigenschaften. Zum Bei-
spiel werden dadurch einige Divergenzen in Quantenfeldtheorien abgeschwécht und
das leichteste Neutralino, ein Partnerteichen der neutralen elektroschwachen Eich-
und Higgs-Bosonen, ist ein Anwérter fiir die dunkle Materie.

Supersymmetrische Quantenmechanik

Bemerkenswerterweise spielt SUSY auch in der nichtrelativistischen Quantenmecha-
nik eine Rolle, obwohl der Spin der Teilchen, und damit auch die Statistik, keine Rolle
spielt, es sei denn man postuliert den Spin. 1976 hat Nicolai erstmals Supersymmetrie
in der nichtrelativistischen Quantenmechanik verwendet, um eine Kette aus Bosonen
und Fermionen zu beschreiben [Nic|. Witten nutze die supersymmetrische Quanten-
mechanik (SUSY QM) als Grenzfall einer supersymmetrischen Quantenfeldtheorie,
um die spontane Symmetriebrechung in einem System, bestehend aus einem Spin—%—



1 EINLEITUNG

Teilchen zu untersuchen [Wit].

SUSY fiihrt in der Quantenmechanik dazu, dass zu jedem System ein Partnersystem
existiert, das bis auf die Grundzustandsenergie das gleiche Spektrum besitzt und de-
ren Eigenzustidnde miteinander verkniipft sind. Auferdem lassen sich mit Hilfe von
SUSY die bekannten Niaherungsmethoden verbessern, bzw. neue Naherungen finden.
In dieser Bachelorarbeit wird so die Energieaufspaltung des Grundzustands bei einem
Doppelmuldenpotential bestimmt [Cool.

Doppelmuldenpotential

Das Doppelmuldenpotential ist ein beliebtes Modell zur Erklarung vieler Phinomene
in der Physik und Chemie. Ein Beispiel ist etwa die Chiralitit von Molekiilen [Wie].
Bei chiralen Molekiilen existieren zwei Atomkonfigurationen, die aus den gleichen
Atomsorten bestehen, aber nicht durch Rotation ineinander iiberfiihrbar sind, siehe
auch in Abbildung [I| die beiden vieratomigen Molekiile, die aus Atomen der gleichen
sFarbe“ bestehen, die aber nicht durch Rotation auseinander hervorgehen. Die bei-
den moglichen Konfigurationen kénnen sich in ihren physikalischen und chemischen
Eigenschaften stark unterscheiden. Durch den quantenmechanischen Tunneleffekt ist
es aber moglich, dass sich die Konfigurationen ineinander umwandeln.

Abbildung 1: Das Doppelmuldenpotential zur Erklarung der Chiralitdt von Molekii-
len. Die Zusténde in den Mulden entsprechen der links- bzw. rechtshidigen Konfigu-
ration. Aus [Wie]

Zum Doppelmuldenpotantial gelangt man in diesem Modell, indem man in der



2 SUPERSYMMETRISCHE QUANTENMECHANIK

Born—Oppenheimer—Néherungﬂ die Schrédingergleichung fiir die Bindungselektronen
16st und das Potential der Elektronen im Grundzustand auf die Inversionsachse (die
Verbindungslinie des ,roten* und des ,schwarzen* Atoms) projeziert.

Ein prominentes Beispiel fiir ein chirales Molekiil ist das Ammoniak [Bral, bei dem
das Stickstoff-Atom oberhalb oder unterhalb der durch die Wasserstoffatome auf-
gespannten Ebene ist. Die beiden Konfigurationen lassen sich nicht durch Rotation
ineinander iiberfiihren, da die Pyramide gekippt ist.

V(z)4

| ] HéH

V,=2072 cm™

H
1 #=08cm’ H H
—Zn +Iy H
N

Abbildung 2: Die beiden Konfigurationen des Ammoniak und das zugehorige Dop-
pelmuldenpotential. Aus [Bral

Wie in Abschnitt [3.2] gezeigt wird, fiihrt der Tunneleffekt zu einer Aufpaltung der
Energieniveaus. Dies wird z.B. beim Ammoniak-Maser verwendet, siehe [Bral.

2 Supersymmetrische Quantenmechanik

2.1 Faktorisierung des Hamilton-Operators

Wenn der Grundzustand ¢y (x) eines Systems bekannt ist, ldsst sich daraus das gesam-
te Potential V}(z) rekonstruieren. Ohne Beschrinkung der Allgemeinheit kann man
Annehmen, dass die Grundzustandsenergie verschwindet, da das Potential ebenfalls
nur bis auf eine additive Konstante bestimmt ist. Es ist dann [Coo]

Hbo(r) = 5 (@) + Vi(ao(z) = O 2.1)
= Vi(z) = ;—m w(;gg (2.2)

'In der Born-Oppenheimer-Niherung geht man davon aus, dass die Atomkerne viel triger sind
als die Elektronen, so dass man die Kerndynamik und die der Elektronen getrennt betrachten kann.

3



2 SUPERSYMMETRISCHE QUANTENMECHANIK

Jeder Hamiltonoperator lasst sich nun als Komposition zweier zueinander adjungier-
ter Operatoren schreiben

H, = B'B, (2.3)

wobel

R h d - h d
= t— =
B N + W(z), B T di + W(x). (2.4)

Fiir die Funktion W (x), die man Superpotential nennt, erhilt man durch Einsetzen

von n

h
Vi(x) = Wi(z) — —W'(2). 2.5
Diese Differentialgleichung fiir W (z) nennt man Riccati-Gleichung [Kall. Aus Bz/Jo (x) =
0 folgt bereits Hytbo(z) = Bf Byy(x) = 0. Andererseits folgt Biy(z) = 0 aus Hytbo(z) =
0, da

2

0 = (ol Hlvo) = (ol B'Blvi) = || Buo(a)|" (2.6)

wobei ||.|| die Lo-Norm ist. Damit ldsst sich W (x) analog zu V;(z) durch den Grund-
zustand ausdriicken.

Bin(o) = (o= + W(a) ) valo) =0 27)
= W(e) =~ D0 B 0y, 29)

V2mio(x)  V2mdx

Auferdem folgt aus , dass man bei bekanntem Superpotential anstelle der Diffe-
rentialgleichung zwelter Ordnung Hwo( ) = 0 die DGL erster Ordnung B@/}O( )= 10
zur Bestimmung des Grundzustands verwenden kann.

2.2 Das Partnerpotential

Zu einer supersymmetrischen Theorie gelangt man nun, indem man einen zweiten
Hamiltonoperator Hy := BB einfiihrt [Coo|, mit
=@ e, ) = W)+ =W ). (29)
2 o 2 ; 2 Jom . .
Man bezeichnet V5(z) als Partnerpotential von Vj(z). Wie im folgenden gezeigt wird,
hdngen die Eigenzustidnde und Eigenenergien von H; und Hs eng zusammen. Zur Un-
terscheidung der Eigenzustdande und -energien der beiden Hamiltonoperatoren werden

4



2 SUPERSYMMETRISCHE QUANTENMECHANIK

diese mit einem oberen Index gekennzeichnet, ¥ und Eq(f), i =1,2. Aus der Schro-
dingergleichung fiir H,

) = EMgY, (2.10)
folgt
Ji8 (B¢§}>) = BB'ByW = g (Bw})) . (2.11)
Analog folgt aus
0P = P4 (2.12)
fiir die Eigenzustinde von H,
i, <BW§3>) — B'BBIy® = EY (BT @zsz)) . (2.13)

Die Operatoren B, B transformieren die Eigenzustinde von H, zu Eigenzustinden
von Hy und umgekehrt. Wegen (2.6) gilt dies nur nicht fiir den Grundzustand von
H;. Aus (2.10)) bis (2.13) folgt dann

EP =EY,  EY=0 (2.14)
—1/2 .

v@ =B ] Bul, (2.15)

W)y = (2] Biy®. (2.16)

Wenn die Zusténde @DS) normiert sind, dann sind die Zustédnde @Dﬁ?) ebenfalls normiert.
In Abbildung |3|ist das Spektrum eines supersymmetrischen Systems skizziert.

Im folgenden Beispiel wird die oben hergeleitete Methode noch einmal verdeut-
licht.

Beispiel 1 (Unendlicher Potentialtopf). Der Hamiltonoperator fiir die Bewegung
eines Teilchens in einem Potentialtopf mit der Breite L lautet

0 flro<ae<L

oo sonst

H= 50 + Vi(x) mit Vi(z) = { (2.17)

Man erhélt als Eigenzustinde und Eigenenergien

2 ((n+Dn _ RPr*(n+1)° _
p(x) = \/;sm (Tx) , FE,= —n gz = 0,1,2,... (2.18)
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Abbildung 3: Die Entartung der Spektren von V; und V2. Entnommen aus [Coq.

Fiir das Ausspielen der Supersymmetrie muss die Grundzustandsenergie verschwin-
den. Daher betrachtet man den Hamiltonoperator

H, = H — Ey, (2.19)
der das erfiillt. Dieser Hamiltonoperator hat die gleichen Eigenzustinde wie H und
die Eigenenergien

) _ h27T2
" 2mL>?

Aus dem Grundzustand 1y(z) = \/2/Lsin(rx/L) erhilt man mit (2.8) das Superpo-
tential

n(n + 2). (2.20)

hovole) B T 7T (2.21)

_\/Qmwo(l’) __\/QmL L
Aus (2.9)) erhélt man damit das Partnerpotential im Bereich [0, L]

h*m? 2
Vo(z) = —-1). 2.22
2() 2mL? (sin2(7rx/L) ) (2.22)
Dieses Form dieses Potential ist viel komplizierter als die von V;(z) und die Losung

nicht so einfach zu ermitteln. Dank der Supersymmetrie sind die Eigenenergien bereits
bekannt, F\2 = Eﬁl, und aus (2.15)) lassen sich die Eigenzusténde bestimmen. Aus

(2.4) folgen die Operatoren B, Bf

W(z) =

- h s T d - h T T d
Be—— [ Teot ™ - = Bt = ——— (Tt Tt 4 & 2.2
\/%(LCO I dx)’ m(LCO T +dx) (223)
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Damit erhilt man etwa fiir den Grundzustand und den ersten angeregten Zustand

8
2z sin? = (2.24)

/_ 3L L
= ———=sin — sin —. (2.25)

(2)
() \/E % - \/Z T Js

Die weiteren Zustédnde werden analog bestimmt. Hier konnte man also mit Hilfe
von Supersymmetrie die Zustdnde eines Teilchen im komplizierten Potential V5 aus
denen im einfachen Potential V] bestimmen. Die ersten Zusténde sind in Abbildung
eingezeichnet.

Vilx) =0 Vi(x) = 2 cosec2 x

9 /'\sin 3x
V

/\sin 2%
4

sin X

! .
| |sinxsin2x
I
I
I

Abbildung 4: Der Potentialtopf und sein SUSY-Partner. Entnommen aus [Cool

2.3 SUSY-Algebra

Die Supersymmetrie ldsst sich am besten dadurch ausdriicken, dass man von den
beiden Hamilton-Operatoren H; und Hs zu einer Matrix

. H 0 n? d? ho dW(x)
Ho — N = |- 1 W? I—- — 2.26
= 0= swe)|1- B, (o
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tibergeht [Cool, mit der Einheitsmatrix I und der Pauli-Matrix

— ( (1) _01 ) _ (2.27)

Diese Darstellug nennt man kanonische Darstellung. Man fiihrt aukerdem die sog.

Superladungen
. 0 0 - 0 Bt
= A T:
Q (B 0> und @ (0 0 ) (2.28)

ein. Durch Nachrechnen zeigt man dann folgende Kommutator- und Antikommuta-
torﬂ-Relationen,

(s, Q] = [Hs, Q" =0, (2.29)
{Q,Qr ={Q",Q"} =0, (2.30)
{Q.Q"} = Hs. (2.31)

Dies ist eine SUSY-Algebra. Man bezeichnet Q als Generator der Supersymmetrie
oder als Superladung. Dabei ist verantwortlich fiir die Entartung der Eigen-
energien. Man interpretiert den Operator Q dann so, dass er einen bosonischen Frei-
heitsgrad in einen fermionischen umwandelt. Aus folgt, dass Q% = (Q1)2 =0
gilt, was die Einhaltung des Pauli-Prinzips garantiert. Die Wellenfunktion schreibt

sich als Vektor,
(1) B
Vo) = ( @%Eg ) @ ( Fermion ) - (2.32)

Anstelle von Q und QT, die nicht hermitesch sind, lassen sich auch hermitesche
Operatoren () und Qs einfithren [Kal|, mit

Q1 =Q+Q, (2.33)
Q2 = —i(Q — Q). (2.34)

Damit ist Q = 1/2(Qy + iQ,), also ist ([2.33), (2.34) eine Zerlegung in Real- und
Imaginérteil. Mit (2.29) bis (2.31]) zeigt man

{Q1,Q2} =0, (2.35)
[Hs, ] = [Hs,Qs] =0, (2.36)
QO = Q3 = Hs. (2.37)

Dies ist ebenfalls eine SUSY-Algebra. Beide Operatorpaare lassen sich in supersym-
metrischen Modellen verwenden.

2Man definiert fiir zwei Operatoren A und B den Antikommutator durch {A, B} := AB + BA

8



2 SUPERSYMMETRISCHE QUANTENMECHANIK

2.4 Spontan gebrochene Supersymmetrie

Bisher wurde nur der Fall betrachtet, dass die Grundzustandsenergie von H, ver-
schwindet, E(gl) = 0. Ist dies gegeben, so spricht man von exakter Supersymmetrie
und der Generator der Symmetrie ldsst den Grundzustand verschwinden, Qwo(x) =
Qbo(x) = 0. Wegen Hgiho(z) = {Q, Qt}po() = 0 verschwindet dann die Grundzu-
standsenergie.

Man spricht nun von einer spontan gebrochenen Symmetrie, wenn der Grundzustand
eines Systems diese Symmetrie nicht besitzt, obwohl der Hamilton-Operator mit dem
Generator vertauscht, wie in (2.29), also die Symmetrie besitzt [Kal|. Das heift, dann
ist Qtyo(x) # 0.

Aus folgt aus gegebenen Superpotential der Grundzustand von H; mit Eél) =0
und aus éT¢é2) = 0 den Grundzustand von H, mit Eé2) = 0. Man erhélt

0y (@) = Cexp (—“—f /O m W(&)d&) , (2.38)
Y (z) = Clexp (“—f /0 ) W(f)df) . (2.39)

Da die Wellenfunktion normierbar sein muss, muss die Exponentialfunktion fiir |z| — oo
verschwinden. Daraus ergeben sich folgende, sich ausschlieffende Fille:

L. wél)(x) ist Grundzustand bei £ = 0, wenn
0 oo
/ W(z)dx = —oc0 und / W(z)dr = oc. (2.40)
oo 0

Die Supersymmetrie ist dann exakt.

2. zb((f) (x) ist Grundzustand bei E = 0, wenn
0 )
/ W(x)dr = oo und / W(x)dr = —o0. (2.41)
—00 0

Die Supersymmetrie ist auch hier exakt.

3. Es existiert kein Zustand bei £ = 0, und die Supersymmetrie ist spontan ge-
brochen.

Ob die Symmetrie gebrochen ist, hingt also nur vom globalen Verhalten des Superpo-
tentials ab. Fiir exakte Supersymmetrie darf das Superpotential also im Unendlichen
nicht verschwinden. Mit den Definitionen

W, = lim W(x), W_ = lim W(x), Wy #0, (2.42)

r——00

erhalt man die dquivalenten Bedingungen
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1. W_ <0 und W, >0 = SUSY exakt.
2. W_>0und W, <0 = SUSY exakt.

3. WL >0 oder Wy <0 = SUSY gebrochen.

SUSY exakt gebrochen

bxy
n
=

Abbildung 5: Schematische Darstellung der Spektren der Partnerpotentiale bei exak-
ter und gebrochener SUSY. Entnommen aus [Kal|

Da bei gebrochener Supersymmetrie éwél) # 0 gilt, ist das Energiespektrum der
Partner-Systeme identisch,

E® =EWD >, (2.43)
Fiir die FEigenzustédnde erhélt man

4@ = [EO] ™2 By und pO = [E@] 2 Biy®@, (2.44)

n n n

Die ist in Abbildung || skizziert. Im Gegensatz zur exakten Supersymmetrie werden
hier Zustdnde mit gleicher Quantenzahl n miteinander verkniipft.

2.5 Formale SUSY-Quantenmechanik

Formal besteht eine supersymmetrische Theorie aus dem Satz [Jaf], [Jun]
(Haﬁafac?la--wQN)- (245)

Dabei beschreibt (H, H) die gewohnliche Quantenmechanik, bestehend aus einem
Hilbertraum H und einem Hamiltonoperator H. Die Supersymmetrie entsteht durch
die Involution 7 und die Superladungen Qz Die in dieser Arbeit behandelte SUSY-
Quantenmechanik entspricht dem Fall N = 2.

Die Involution ist ein Operator, der zweimal angewandt den Einsoperator ergibt,

#r =t =22 21, (2.46)

10



2 SUPERSYMMETRISCHE QUANTENMECHANIK

daraus folgt, dass 7 nur die Eigenwerte 1 und —1 besitzt. Die zugehorigen Eigenrdume
werden als H, und H_ bezeichnet und der Hilbertraum zerfillt in eine orthogonale
Summe H = H, ¢ H_. Diese Zerlegung legt die Darstellung der Zusténde als zwei-
dimensionale Vektoren und der Operatoren als 2 x 2-Matrizen wie in Abschitt
nahe. Die Projektionsoperatoren

. 1 .

P, = 5(1 +7) (2.47)
angewandt auf H liefern H.. Man bezeichnet H, als bosonischen (geraden) und H_
als fermionischen ungeraden Unterraum. Ein beliebiger hermitescher Operator A lasst
sich mithilfe der Projektionsoperatoren in einen geraden und einen ungeraden Anteil

zerlegen,

A= (P AP, + P_AP_)+ (P, AP_ + P_AP,) = A, + Ay. (2.48)

Aus 7Py = +P, und 7, Pi] = 0 folgt
[A,,7] = 0, (2.49)
{Af,7} = 0. (2.50)

Ein Operator der mit der Involution vertauscht, ist also ein gerader Operator, einer
der mit der Ivolution antivetauscht ist ungerade. Gerade Operatoren lassen ‘H,, H_
invariant, ungerade Operatoren erzeugen Uberginge zwischen H, und H_. Die In-
volution ist ein gerader Operator. Nun bezeichnet man einen hermiteschen Operator
Qi, der die Bedingungen

Qi = Q) (2.51)
{Qi,7} =0, (2.52)
{Qi. Q;} = 20, Hs (2.53)

erfiillt, als Superladung beziiglich 7. Wegen sind Superladungen ungerade Ope-
ratoren und verkniipfen so bosonische und fermionische Zustéinde. In der gewohnli-
chen Quantenmechanik kommen hingegen nur gerade Operatoren vor. Den Operator
Hg nennt man supersymmetrischen Hamiltonoperator. Sind die Operatoren Ql,Qg
Superladungen, dann sind die Operatoren Q’l, Qé mit

()~ (G o) (&) mewm oo

ebenfalls Superladungen [Jun|, erfiillen also auch die SUSY-Algebra, bzw. fiir die
komplexen Superladungen Q = 1 / 2(@1 + ZQQ) ist Q' auch eine Superladung falls

~

Q' = e, Ot = it (2.55)

11



2 SUPERSYMMETRISCHE QUANTENMECHANIK

Dies ist mit einer Eichsymmetrie verkniipft. Transformiert man die Zustinde in H4
nach

') = ePelp*), (2.56)

dann bleibt bei der Wahl v = 8, — G_ in (2.54)) die Supersymmetrie erhalten, also ins-
besondere (2.15)), (2.16). Die Darstellungen in diesem Abschnitt gelten insbesondere
auch in der relativistischen Quantenmechanik.

2.6 SWKB-Naherung
In diesem Abschnitt soll die WKB-Quantisierungbedingung (A.11]),

/ab V2m[E, — V(z)]dz = hr <n + %) : (2.57)

mit Hilfe von Supersymmetrie verbessert werden. Dazu wird das Potential in ([2.57])
durch (2.5) ersetzt,

S e P R

a und b sind die klassischen Umkehrpunkte. Die Wurzel wird nun bis zur ersten
Ordnung nach Potenzen von 7 entwickelt. Dabei wird angenommen, dass W (z) nicht
von h abhingt. Man erhalt

/\/2m B — wa /\/W (n—i-;) (2.59)

Die weiteren Schritte hingen davon ab, ob die Supersymmetrie exakt oder spontan
gebrochen ist.

SWKB bei exakter Supersymmetrie

Der zweite Summand in (2.59) ldsst sich direkt integrieren,

b
= = arcsm w (513)

Da die Supersymmetrie exakt ist, hat das Superpotential an den Umkehrpunkten
unterschiedliche Vorzeichen und es gilt

(2.60)

—W(a) =W (b) =/ EV. (2.61)

12



3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Damit ergibt das Integral in (2.60)) den Wert A /2 und die SWKB-Quantisierungbedingung
lautet

b
/ \/Qm [Ef(ll) — WQ(.%‘)] = nhr, n=0,1,2 ... (2.62)

Analog erhilt man fiir das Partnerpotential V5(x)

/b \/Qm [E,‘g) N WQ(x)} — (n+ 1)k, n=012,.. (2.63)

Fiir n = 0 steht auf der linken Seite von (2.62) eine Null. Dies wird erfiillt durch
a = b und man erhilt Eél) = 0, das exakte Ergebnis. Wihrend die WKB-Naherung

nur fiir groke n gute Ergebnisse liefert [Kall, ist die SWKB-Niaherungen also fiir den
Grundzustand exakt, weshalb man insgesamt bessere Ergebnisse erwartet.

Der Vergleich von (2.62) und zeigt, dass die SWKB-Naherung die Niveau-
Entartung, E,(Lljzl = EY , reproduziert.

SWKRB bei gebrochener Supersymmetrie

Bei gebrochener Supersymmetrie hat das Superpotential in den Umkehrpunkten das
gleiche Vorzeichen und man erhélt

W(a) = W(b) =/ E. (2.64)

Mit (2.60) verschwindet dann der zweite Summand in (2.59) und man erhélt die
SWKB Quantisierungsbedingung

/ab \/Qm [Eé” - WQ(x)} = (n + %) . (2.65)

Analog erhilt man fiir das Partnerpotential

/ab \/2m [Eéf) - Wg(x)} = h (n + %) . (2.66)

Man sieht, dass auch hier die typische Niveauentartung, £} = E? reproduziert wird.

3 Doppelmuldenpotential und Tunneleffekt

3.1 Klassische Bewegung im Doppelmuldenpotential

Bevor das Doppelmuldenpotential quantenmechanisch behandelt wird, soll zunéchst
die klassische Dynamik betrachtet werden. Fiir die Bewegung im Doppelmuldenpo-
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

tential V() = z* — 22 lautet die klassische Hamiltonfunktion

2
H(z,p) = ;’—m + ot —g? (3.1)

Dies fiihrt zu den kanonischen Bewegungsgleichungen

dp _8H
dt  Ox

dr O0H p
x° + 2z, o o m (3.2)
Die daraus folgende Dynamik ist im Phasenraumdiagramm in Abbildung [6] einge-
zeichnet.

-8.84

-2 =1.5 -1 =-8.5 a 8.5 1 1.5 2

Abbildung 6: Der klassische Phasenraum fiir die Bewegung eines Teilchens im Dop-
pelmuldenpotential.

Man erkennt in Abbildung [6] dass es zwei Losungstypen gibt. Wenn die Energie
des Teilchens grofs ist, schwingt das Teilchen iiber beide Mulden hinweg. Bei kleinen
Energien kann sich das Teilchen nur in einer der Mulden aufhalten und hat keine
Moglichkeit, in die andere Mulde zu gelangen. Dies ist der grofe Unterschied zur
Quantenmechanik.

3.2 Tunnelwahrscheinlichkeit

Ein Teilchen in einer Mulde kann in die andere Mulde durchtunneln. Die Wahr-
scheinlichkeit hierfiir hangt eng mit der Energiedifferenz der beiden ersten Zustdnde
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

zusammen |Miin]. Der Grundzustand |0) mit der Energie Ej, ist symmetrisch, der
erste angeregte Zustand |1) mit der Enrgie E; ist antisymmetrisch. Ein Teilchen be-
finde sich nun in der linken Mulde. Den Zustand kann man durch den gemischten
Zustand |L) = 1/v/2(|0) + |1)) beschreiben. Nach dem Tunneln soll sich das Teil-
chen in der rechten Mulde, also im Zustand |R) = 1/4/2(|0) — [1)) befinden. Das
Ubergangsmatrixelement ist dann

(L|H|R) = 2(Ey — Ey) = —2AE. (3.3)
Diese Energiedifferenz wird im folgenden mit verschiedenen Methoden berechnet.

® 1 ®

L R L R

El
E,

Ep AE{[ | E==--

Abbildung 7: Links: Kin Doppelmuldenpotential mit unendlicher Potentilabarriere.
Rechts: Ein Doppelmuldenpotential mit endlicher Barriere. Entnommen aus [Kall

3.3 WKB-Niaherung

Zur Energieaufspaltung in der WKB-Niherung gelangt man durch folgende Uberle-
gung [Kal|. Bei einem Doppelmuldenpotential mit unendlich hoher Potentialbarriere
zwischen den Mulden existieren nur Energieniveaus fiir die Bewegung in der einen
oder anderen Mulde, siehe Abbildung[7] Die Niveaus E;, und Er der beiden Mulden
sind entartet. Verringert sich die Potentialbarriere, so wird die Entartung aufgeho-
ben und die Energien spalten sich auf. Ein Teilchen kann sich nun in beiden Mulden
bewegen.

Die ersten beiden Zusténde konnen aus den Zusténden in den beiden Mulden tg(x) =
(z|R) und ¢ (z) = (z|L) = ¥r(—x) ndherungsweise konstruiert werden.

1 1
Yo(z) = 7 [Vr(7) +Yr(—2)], Pi(z) = 7 [Vr(z) — Yr(—)]. (3.4)
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Zu beachten ist aber, dass die Zustdnde vy, ¥, und ¥, Y g in dieser Naherung unter-
schiedlich normiert sind, es gilt nimlichf]

1= [ e n g [ k) + i) da
([t [ enw) = [Tiwae 6

Dabei wurde ausgenutzt, dass ¥g(z) fiir negative z vernachlissigbar klein ist. Damit
ist auch ¥r(x)-1r(—2) ~ 0 Um die Energieaufspaltung AE = (E; — Eg)+ (Er— Eo)
zu bestimmen, betrachtet die Schrédingergleichungen

1) + 2 (g — V()r(z) =0, () + (B — V(@)o(z) = 0. (3.6)

Man multipliziert die erste Gleichung mit vg(x), die zweite mit ¥ g(z), subtrahiert
beide voneinander und erhalt

2m

r(@)Yo(w) — Yr(x)Y(r) = ﬁ(Eo — Er)Yr(z)to(r). (3.7)

Durch Integration von 0 bis oo und eine partielle Integration auf der linken Seite
erhalt man

o  2m >
[wﬁz(ﬁ)%(x) - ¢R(1‘)%(I)]O = 72 (Fo— ER)/ Vr(x)tho(z) de. (3.8)
0
Im Unendlichen verschwindet die Wellenfunktion. Fiir = 0 erhélt man aus (3.4)
10(0) = V2¢5(0) und wegen
1

V2
erhélt man )(0) = 0. Mit (3.4) und (3.5) erhilt man

bo(w) = —= [We(r) — YR(=2)] (3.9)

> 1 o0 9 B 1
/0 Unla)n(e) e~ — /0 Ve dr = —= (3.10)

Damit erhalt man

B~ By = " 0n(0)u4(0). (3.11)

3Eigentlich muss man bei der Normbildung iiber das Betragsquadrat integrieren. Da Eigenzu-
stinde aber nur bis auf eine konstante Phase e¢'® bestimmt sind, lassen sie sich immer reell wihlen,
und man kann die Betragsbildung weglassen.
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Analog erhilt man fiir Fy — Ei den gleichen Ausdruck. Damit folgt fiir die Energie-
aufspaltung

AE =2 0)u(0) (3.12)

Die WKB Wellenfunktion lautet nun im klassisch verbotenen Bereich mit der Erset-
zung p — i|p| [Raz]

onte) = [y (<3 [ @) o) = VIR Bl 613

Dabei ist a ein klassischer Umkehrpunkt und w die Frequenz der Bewegung in einer
Potentialmulde. Sie ldsst sich folgendermafen abschitzen. Die Potentialmulde in der
Néhe des Minimums bei xy wird durch ein harmonisches Oszillatorpotential V (z) =
mw?z?/2 abgeschiitzt. Durch zweimaliges Ableiten erhilt man

w R M. (3.14)

m

Als Ableitung von ¢ g(x) erhdlt man

p) 2mV()
Vh(®) = { R ap@)

Néhert man noch die Grundzustandsenergie E durch das Potential am Minimum
V(xg), so erhilt man die Energieaufspaltung in WKB-N#herung

AE = ZW (——/ V2m[V )]dx>. (3.16)

3.4 Die Doppelmulde und ihr SUSY-Partner

Um die Energieaufspaltung mittels Supersymmetrie zu bestimmen, wird zunéchst die
Grundzustandswellenfunktion benétigt [Kal|. Ein plausibler Ansatz ist die Uberlage-
rung zweier Gaufs-Funktionen,

] Vr(@) (3.15)

Po(x) = e~ @20 4 gmalete)® — 9o=ale®+20) ¢osh 20z, (3.17)
Daraus folgt bereits das Superpotential

ho y(z)  2ah

W) == Fomvole) ~ Vam

(x — zg tanh 2azox) (3.18)
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

und die beiden Partnerpotentiale

Via(z) =

2ﬁ2 2 h2 2 2
a [z — xo tanh 204x0x]2 T a {1 — 9% 1 )

m m cosh? 2azzg

Vi(x)
vaix)

Abbildung 8: Links das Doppelmuldenpotential fiir verschiedene Werte von xg, also
verschiedene Tiefen. Rechts die zugehoérigen Partnerpotentiale. Es wurde m = h =
a =1 gewdhlt.

Das Partnerpotential zum Doppelmuldenpotential V; hat also nur eine einzelne
Mulde. Dies gilt aber nur fiir kleine zy. Im Fall 2y — oo erhélt man nédmlich

2h2 2 h2
= (fo| - 70)* F —, (3.20)

Via(z) =

zwei Doppelmuldenpotentiale. Die Tiefe der Potentiale D := Vj5(0) — Vi2(z) =
2(hawg)?/m wichst mit zg. In der WKB-Néherung erhilt man fiir dieses Potential

aus (3.17), (3.12)) die Energieaufspaltung

B 4R 2«

AFE “—axgexp (—20ap) . (3.21)
m

m

Nun zur Supersymmetrie. Nach Definition verschwindet die Grundzustandsenergie
von Vi(x), E((]l) = 0, und nach (2.14)) ist die Energie des ersten angeregten Zusrands

gleich dem Grundzustand des Partnerpotetials, EF) = E(g2). Damit lautet die Ener-
gieaufspaltung

AE = E?. (3.22)

Diese Energie ldsst sich mit dem Ritz’schen Variationsverfahren und einer Gauffunk-
tion als Testfunktion bestimmen. Da das Partnerpotential nur aus einer einzelnen
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18 - T
Humerisch ——

SUSY & Variation
HKB —

Delta E

a.881 -

a,0881

Abbildung 9: Vergleich der Ergebnisse fiir die Tunnelaufspaltung beim Doppel-
muldenpotential. Die Aufspaltung wurde fiir verschiedene Werte von zy mit der
WKB-Néherung, mit Ausnutzung von Supersymmetrie und numerisch bestimmt.
Das numerische Ergebnis wurde mit dem Numerov-Algorithmus bestimmt. Es wurde
h =m = a = 1 gewahlt. Die y-Achse ist logarithmisch geplottet.

Mulde besteht und man nur“den Grundzustand benotigt, erwartet man bessere Er-
gebnisse als bei der Variation fiir den ersten angeregten Zustands der Doppelmulde.
Dies gilt allerdings wegen nur fiir flache Potentiale.

In Abbildung[9]sicht man wie erwartet, dass fiir kleine 2y und damit fiir flache Po-
tentiale die Naherung das exakte Ergebnis reproduziert, wihrend die WKB-N&herung
versagt. Fiir grofse xy wird die WKB-N&herung besser, wiahrend die SUSY-Né&herung
versagt.

3.5 Regularisierung der Grundzustandswellenfunktion

Bei tiefen Doppelmuldenpotentialen erwartet man eine sehr kleine Energieaufspal-
tung, AE =~ 0. Daraus folgt mit (3.22), dass dann auch die Grundzustandsenergie
von H, ungefihr Null ist |[Keu|. Das kann man auch in Abbildung @ sehen. Dies kann
man ausnutzen, um eine Ndherung fiir den Grundzustand von H, zu bestimmen.
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

Aus Buy(z) = 0 folgt BT(1/1p0(z)) = 0. Mit der Quotientenregel erhilt man

. 1 h d 1 1 h , _
B @ (‘ﬁ% " W(x)) ho@) ~ @ (m%m ! W(m)%(x)) =0

J/

-~

=B ()=0
(3.23)

Da ein Grundzustand keine Knoten besitzt, ist der obige Ausdruck fiir alle z € R
definiert. Mit folgt damit auch aus Hyyy(x) = 0, dass Hy(1/tg(x)) = 0 gilt.
Eine notwendige Bedingung dafiir, dass eine Funktion normierbar ist, ist dass sie
im Unendlichen verschwindet. Daher konnen ty(z) und 1/to(x) nicht gleichzeitig
normierbar sein. Dies ldsst sich dadurch beheben, dass man eine neue Funktion ¢(z)
einfiihrt, mit

) I(z)/po(x)  fiirz >0
¢lz) = {I(—x)/wo(a:) fir . <0’ (3.24)
1) = [ @) Pde. (3.9

Im Ursprung ist ¢(0) = (2¢(0))~!. Damit ist ¢(z) auf ganz R stetig. Die Ableitung
von ¢(z) lautet

Gt
und macht an der Stelle = = 0 einen Sprung,
lim [¢'(0 + €) — ¢'(0 — )] = —2¢(0). (3.27)
Die Funktion ¢(z) ist normierbar, da
lm o(r) = lim £20&) _ VMo Ye(@) (3.28)

gilt. Dabei wurde die Regel von I’'Hospital zweimal verwendet und, dass das Super-
potential bei exakter Supersymmetrie im Unendlichen nicht verschwindet. Nun ist zu
zeigen, dass ¢(x) die Schrodingergleichung Hogp(x) = 0 fiir alle x # 0 erfiillt. Der Fall
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3 DOPPELMULDENPOTENTIAL UND TUNNELEFFEKT

x = 0 wird danach behandelt. Es gilt zunéchst fiir z > 0

Blota) = W) - d} L)

\/_dl’ wo(fc
TN hoT(x)
=X ){W \/%df 1/)0 \/_%( )’
— (B .
OB S~ VG / vol6) ot (3:29)
Blo(x) = g_mwo(a:). (3.30)

In (3.29) wurde verwendet, dass BT(1/14) = 0 gilt. Durch Anwenden von B auf (3.30)
erhélt man schliefslich

A o h

Hyp(x) = BB'o(z) = —B 3.31
Analog erhélt man das Gleiche fiir x < 0. Fiir x = 0 betrachtet man den Hamilton-
operator

iy = iy — 203 (0)0() (3.52)

Fiir 2 # 0 sind H, und Hy identisch. Durch die §-Funktion wird der Sprung von ¢/ ()
beriicksichtigt. Das zeigt man, indem man die Schrodingergleichung

o) + | 23(000(0) ~ 357l | ) =0 (339
von —e bis € integriert. Man erhélt
510~ (-0 = ~2080(0) + 5 [ Valwpole) do (3.34)

und durch Bildung des Grenzwertes e — 0 folgt (3.27). ¢(x) ist also Eigenfunktion von
Hy zum Eigenwert £ = 0. Die Energleaufspaltung von H2 lasst sich nun bestimmen,
indem man H2 schreibt als

. ) 212
Hy = Hy+6H mit §H = —¢§5( ) (3.35)

als kleiner Storung. Die Storung ist umso kleiner, je grofer die Potentialbarriere ist,
da die Wellenfunktion mitten in der Barriere die Form t,(0) o e~ hat. In erster
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Ordnung Storungstheorie erhilt man fiir die Grundzustandsenergie ESQ)

Mit der ungestorten Losung £ = 0 und der Korrektur

. (GloH1g) LR
_ VWHdr = ————
b= ¢>|¢/ Pt de = o

Mit

(9lo) = /_Z ¢*(v) do = 2/000 ¢2(z) dz

und (3.22)) erhilt man fiir die Energieaufspaltung

:"L_;[/O%(x)dxr.

! —————
k- - R
i Vo(x) = exp[—(x—x,)"]+exp[—(x+x,)"]
100 -
(=] e
[ ]
i
I
I
qu | — ™ order; exact -
f asymptotlc form: ]
- 8x,(2/m) 2exp(-2x,%)
10-2 NP S R

= FE+FE.

(3.36)

(3.37)

(3.38)

Abbildung 10: Vergleich der berechneten Energieaufspaltung aus der WKB-Naherung,
der Regularisierung des Grundzustandes des Partnerpotentials und des numerischen
Ergebnisses [Keu|. Hier wurde die Storungsreihe sogar bis zur 3. Ordnung fortgesetzt.

Es wurde h = 2m = 1 gesetzt.

Man sieht in Abbildung [10] dass die Ndherung fiir grofe zo schneller konvergiert
(in der ersten Ordnung) als die WKB-N&herung, da bei xy = 1.5 bereits die N&herung

mit dem exakten Ergebnis nahezu iibereinstimmt.
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4 DISKUSSION

4 Diskussion

In dieser Arbeit wurde gezeigt, wie sich die nichtrelativistische Quantenmechanik um
Supersymmetrie erweitern ldsst. Dazu wurde der Hamiltonoperator faktorisiert und
sein Spektrum mit dem eines Partnersystems in Verbindung gesetzt. Es wurde kurz
auf die SUSY-Algebra und einige formale Eigenschaften der Supersymmetrie einge-
gangen, aus denen die Eigenschaften des Formalismus folgen.

Danach wurde gezeigt, wie sich die WKB-Nidherung zundchst ohne Bezug zum Dop-
pelmuldenpotential als SWKB-Niherung verbessern ldsst, um dann besondere Na-
herungsmethoden fiir die Niveauaufspaltung des Doppelmuldenpotentials herzuleiten
und mit dem WKB-Ergebnis zu vergleichen.

Die erste Naherungmethode ist recht naheliegend. Man bestimmt das Partnerpoten-
tial der Doppelmulde, das bis zu einer bestimmten Tiefe des Doppelmuldenpotentials
aus nur einer Mulde besteht. Man nutzt weiter aus, dass die Grundzustandsenergie bei
exakter Supersymmetrie verschwindet und muss nur noch die Grundzustandsenergie
des Partnerpotentials bestimmen, die man mit einer Gauf-Funktion als Ansatz so-
lange gut bestimmen kann, wie das Partnerpotential eine Einzelmulde ist. Allerdings
ist die Variation der Energie trotz des leichten Ansatzes nicht ohne Computer durch-
zufithren. Das Ergebnis ist fiir flache Doppelmulden sehr gut und wird mit steigender
Tiefe schlechter.

Bei der zweiten Naherung wurde angenommen, dass die Energieaufspaltung sehr klein
ist, was fiir tiefe Doppelmulden sehr gut erfiillt ist. Man bekommt dann sehr leicht
eine Losung fiir den Grundzustand des Partnerpotentials, die aber nicht normierbar
ist. Daraus ldsst sich dann eine geeignete Losung konstruieren. Das Ergebnis fiir die
Energieaufspaltung ist wieder nur numerisch zu bestimmen, dafiir ist es bei tiefen
Doppelmulden besser als die WKB-N&aherung.

Durch Supersymmetrie liefen sich also bessere Naherungsergebnisse als mit der her-
kommlichen WKB-Niherung erzielen. Ein weiterer Vorteil der SUSY-Naherungen
ist, dass die Verallgemeinerung auf asymmetrische Doppelmuldenpotentiale nahelie-
gender ist. Die erste Ndherung lasst sich genauso verwenden, solange das Potential
nicht zu asymmetrisch ist und das Partnerpotential nur aus einer Mulde besteht,
und fiir die zweite Methode wird die Verallgemeinerung im Anhang [C| gezeigt. Bei
der Herleitung der WKB-Néherung wurde in implizit vorausgesetzt, dass das
Doppelmuldenpotential symmetrisch ist. In [Boy| wird die WKB-Né&herung mithilfe
von Pfadintegralen auf asymmetrische Doppelmulden angewandt.
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A  WKB-Naherung

In der WKB-Nédherung, nach Wentzel, Kramers und Brillouin, wird die Losung der
stationdren Schrodingergleichung

(g + V(@) 6a) = Eole) (A1)

2m dx?

nach Potenzen von # entwickelt [Fli]. Zunéchst wird in die Schréodingergleichung der
Ansatz

é(x) = exp (@) , S(x)ecC (A.2)

eingesetzt. Dies fiihrt zur Differentialgleichung
S'(z)? =2m[E — V(z)] +ihS" (). (A.3)

Das " bezeichne eine Ableitung nach z. Nun entwickelt man S(x) nach Potenzen von
h/1,

S(z) = So(z) + ?sl(x) + (?) Sy(@)+ ..., (A1)

setzt dies in (A.3]) ein und sortiert die Terme nach Potenzen von A. Bis zur Ordnung
O(h) erhdlt man

Sy(x)? = 2m [E — V()] = p(x), O)  (A5)
284081 (x) = 155 (). om (A

Gleichung (A.5)) ist die zeitunabhéingige Hamilton-Jakobi-Gleichung. Fiir i — 0 er-
hilt man also aus (A.3) das klassische Ergebnis, daher wird diese N&herung auch
semiklassische Niaherung genannt. Der Einfluss der Terme O(h€) wird vernachléssigt.

Aus erhilt man
Si() == [ 9l (A7)

zQ

Damit erhélt man aus (A.6)

_155(x) _ 1]Sp(@)['
25(x) 2 [S(x)]”

= Si(x) = In+/|S)(z)| + const. (A.9)

Si(z) =
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Dabei wurde in (A.8)) ausgenutzt, dass S)(x) immer nur reell oder imaginér ist, und
man deswegend die Phase +1 bzw. +7 in Zahler und Nenner kiirzen kann. Nun setzt
man S ~ So+h/i-S7 in (A.2)) ein und erhélt fiir die Wellenfunktion die beiden linear

unabhingigen Ndherungslosungen

0-(0) = T e (iﬁ / jp@) dg) | (A.10)

Die allgemeine Losung ist dann eine Linearkombination beider Lésungen. Man sieht,
dass die Losung fiir p(z) = 0 singulér wird, also fiir die klassischen Umkehrpunkte mit
E = V(z). Eine Moglichkeit die Losungen in den klassisch erlaubten mit denen in den
klassisch verbotenen Regionen zu verbinden, ist das Potential in der Nahe der Um-
kehrpunkte zu linearisieren. Damit erhilt man die sogenannte Bohr-Sommerfeldsche
Quantisierungsregel [Razl

/ab I B, = V)] dx = hr <n + %) , (A1)

mit der man die Eigenenergien F,, ndherungsweise berechnen kann. a und b sind die
klassischen Umkehrpunkte.

B Numerisches Losen der Schrodingergleichung

Wenn man Niherungsmethoden fiir bestimmte Probleme entwickelt, dann will man
die Ergebnisse dieser mit den exakten Losungen vergleichen. In diesem Abschnitt soll
erldutert werden, wie man beim numerischen Losen der Schrodingergleichung

2m

W(z) + F(x)i(x) =0, mitF(z) = —(E - V(z)), (B.1)

vorgeht [Schn|. Zunédchst entwickelt man ¢ (z £ h) bis zur 4. Ordnung nach h [Schnl

4

bl ) = () () + @) £ )+ e o). (B2)

Daraus folgt dann

V(@ +h) + (e —h) = 20(@) + 0" (2) + 7 @/)“”( ) +O((), (B.3)
& Yz +h) = 2¢(x) + h*" () - ( h) +O((%), (B4)
= (2= W*F(2))(z) — vz — h) + O((%). (B.5)
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B NUMERISCHES LOSEN DER SCHRODINGERGLEICHUNG

Dabei wurde der Term proportional zu h* vernachlissigt und die Schrédingergleichung
eingesetzt. Damit lisst sich bei Vorgabe von zwei Werten die Schrodingerglei-
chung mit einer lokalen Fehlerordnung von h* integrieren. Der Fehler lisst sich sogar
auf h°® reduzieren. Dazu wendet man zunichst den Differentialoperator

h? d?
+ EE (B.G)
auf an und erhilt
h? . h? d?
W)+ @) + e + L F@p@) 0. (B)

Die zweiten Ableitungen der ersten beiden Terme werden nach bis zur Ordnung
h* bestimmt. Die zweite Ableitung von dem dritten Summanden wird bis zur Ordnung
h? bestimmt. Wegen des Vorfaktors h? ist die Fehlerordnung ebenfalls h*. Auflésen
nach ¢ (z + h) liefert dann

20(x) — (= h) = B (10F (2)¢(x) + F(z = h)p(x — h))
1+ 2 F(x +h)

+ O({.
(B.8)

Dies ist der sogenannte Numerov-Algorithmus. Mit dieser Formel lasst sich die Schro-
dingergleichung zwar losen, die Eigenenergien sind aber weiterhin unbekannt. Um
diese zu bestimmen, nutzt man aus, dass Eigenzustidnde normierbar sein miissen.
Dies impliziert, dass sie im Unendlichen verschwinden. Dies ist auf Computern nicht
realisierbar. Statt dessen wihlt man ein R, dass sich weit im klassisch verbotenen
Bereich befindet und fordert ¢(£R) = 0. Im Prinzip fiigt man damit dem Potential
unendliche Potentialwille bei R hinzu, die aber fiir groke R keinen Einfluss auf das
Ergebnis haben.

Aufserdem kann man den Knotensatz ausnutzen, der besagt, dass der n-te Eigenzu-
stand n Nullstellen (Knoten) im Endlichen hat [Nol|. Mann kann also beim Losen die
Nullstellen zdhlen und so den gesuchten Zustand eingrenzen. Die Eigenenergien las-
sen sich dann durch eine Intervallschachtelung bestimmen, indem man noch ausnutzt,
dass fiir einen Schiatzwert £ und die Eigenenergie F,, gilt

e F>FE,=9Y(R)<0

e E<E,=Y(R)>0

Man kann nun ¢(—R) = 0 und ¢(—R + h) beliebig wihlen und die Energie so
variieren, dass die ¥(R) moglichst klein wird. Methoden, die nach diesem Prinzip
ablaufen, bezeichnet man als Shooting-Methoden. Wegen Rechnerungenauigkeiten
wird die Wellenfunktion aber schlieflich doch divergieren. Dies ist fiir den ersten
angeregten Zustand im Doppelmuldenpotential in Abbildung [11] dargestellt.

Man sieht, dass der Zustand genau einen Knoten hat und auf Null abfillt, um
dann am rechten Rand doch zu divergieren.

U+ h) =
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Abbildung 11: Der erste angeregte Zustand im Doppelmuldenpotential.

C Asymmetrische Doppelmuldenpotentiale

C.1 Die Doppelmulde und ihr SUSY-Partner

Fiir den Grundzustand der Wellenfunktion macht man beim asymmetrischen Dop-
pelmuldenpotential den Ansatz |[Ganl

wo(x) = e—a(x+xo)2 + e—b(m—xo)Q’ (C.1)

dabei sind a, b, ry Variationsparameter, die an das gegebene Potential anzupassen
sind. Der Fall a = b entspricht einem symmetrischen Doppelmuldenpotential. Aus
diesem Grundzustand erhilt man das Superpotential

h dolz) h a(z+ o) ealet0)® 4 p (x — x0) e—bl@—z0)
W(x) = — =2 — _ e — . (CQ)
\/§m 1/}0<x) V2m e—a(z+zo)” 4 e—blz—20)
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Daraus folgen die Partnerpotentiale V; o(z) = W?(x) F h//mW'(z),
h2a[2a(z +20)” — 1] e @0 1 b [2b (2 — wo)” — 1] )

2

‘/1(1') m e—a($+$0)2 + e_b($_$0)2 9 (C3)
2
V() 4R? | a (z + z0) e0@+20)” 4 (2 — 29) e~ba—20)
T) =—o0
2 m e*a(ﬂf“rl‘o)z _‘_efb(l‘*ﬁo)Q
2 a [2a (z + x9)° — 1] e—alztzo)® 4 p) [2b (x — 2)* — 1] o —bla—z0)° -

m e—a(m—l—a:o)z + e—b(z—;to)2

10

viin)
vain)

Abbildung 12: Links das asymmetrische Doppelmuldenpotential fiir verschiedene
Werte von b und a = 1. b fungiert als Parameter fiir die Asymmetrie. Rechts die
zugehorigen Partnerpotentiale. Es wurde m = A = 1 gewéahlt.

Man sieht in Abbildung dass fiir kleine b das Partnerpotential aus nur ei-
ner Mulde besteht und man deswegen eine Gauf-Funktion als Testfunktion ansetzen
kann.

C.2 Regularisierung des Grundzustands

Bei der Regularisierung des Grundzustands des Partnerpotentials argumentiert man
analog zum symmetrischen Fall, dass Hy1/vy(z) = 0 ist, ¥o(x) und 1/¢y(z) nicht
gleichzeitig normierbar sind und wahlt den Ansatz

w fire>x
o) = { Fhv@) (C.5)
—ffoo 1/18(5) ad firz <z |
21_to(z) )
I, = / GR(6) de. I = / SR(E) de. (C.6)
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Dabei ist  ein beliebiger Ort, von dessen Wahl aber die Giite der Naherung abhéngt.
Die Ableitung von ¢(z) lautet

1 () %<? 2R (e ) fiir z > z

/ 21 2
¢'(x) = 1+ wh( 2; )x ) ) (C.7)
ol Yo(z 8(x)f°°¢ ) fiirz <z
und hat einen Sprung bei x = 7,

: . o 1 1Y\ ¢o(x) o(x) o1 1 1

1 _ ) = == — e

i [¢(z + ¢) = ¥/(z = <) (1++1) > of ™M IT LT
(C.8)

Wie im symmetrischen Fall zeigt man, dass Haod(z) = 0 fiir alle 2 # Z ist. Damit ist
¢(z) Eigenfunktion zum singuldren Hamiltonoperator

~

. h? _ _
Hy= Hy — m—[@bg(:ﬂ)é(z —I). (C.9)
Die Energieaufspaltung erhilt man wieder dadurch, dass man H, schreibt als

0(2)0(x — ) (C.10)

als kleiner Stoérung. Die Stérung ist umso kleiner, je kleiner () ist. Die ist insbe-
sondere in der Potentialbarriere der Fall, daher wahlt man z als das Maximum des
Potentials. In erster Ordnung Stérungstheorie erhdlt man dann fiir die Energieauf-
spaltung

(¢l6H]9) _ 1

@8 (9 2m1/ Fapp(@)le —2)dv = 8mf[/ A df"}l'
(C.11)

AFE =

Man sieht in Abbildung[13] dass das Ergebnis aus der Regularisierung des Grund-
zustands des Partnerpotentials viel besser ist als die WKB-Methoddf]

‘Die WKB-Néiherung, die in [Gan| verwendet wurde, ist nicht die in dieser Arbeit hergeleitete,
sondern eine an asymmetrische Doppelmuldenpotentiale angepasste, auf die nicht weiter eingegangen
werden soll.

29



LITERATUR

T T T T—I' T T T T I T T T T ! T T T T l T T T T
1.00 | —
R ————  Numerical Result :
P )
0.50 ~ ;\-.{_. - - — SuUsY-qM
L N
Ny \ ..... WKB
- =
= .
= \ a = .4
0.10 — —
0.05 |
= i 1 1 1 | 1 i 1 1 [ 1 1 1 1 ! 1 L 1 1 | 1 1 I 1
1 1.2 1.4 1.6 1.8 2

Xo

Abbildung 13: Vergleich der Aufspaltungen aus einer WKB-Niherung, dem numeri-
schen Ergebnis und der in diesem Abschnitt vorgestellten Methode |[Gan|. Hier ist
h=2m=1,b=1und a = 0.4.
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