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1 Introduction 1

1 Introduction

One of the most confounding problems in modern physics is the plethora of evidence pointing
to the fact that most of the mass in the universe is not made up of the known particles. In
fact, only roughly 5% of the total mass is made of ordinary matter. The other 95% is
what is known as the dark sector. This contains a dark matter (DM) component making
up 27% of the universe’s mass and the rest is what is known as dark energy [1]. While
the true nature of both dark energy and DM is not yet known, this thesis deals with one
model for DM and as such, the topic of dark energy is not dealt with beyond this point.

Figure 1.1: Measured rotation velocities
in the galaxy NGC3198 com-
pared to the idealized Keplerian
behaviour, where v ∝ 1/

√
r for

large radii r [2].

The term DM refers to the fact that it is invisible in
the sense that it does not interact electromagnetically.
However, its presence can be observed because it inter-
acts gravitationally. The first evidence for such mat-
ter was discovered in the 1930s by Zwicky and Smith
who investigated the velocity dispersions of galaxy
clusters. These were much higher than could be ex-
plained with the visible mass present but it took until
the 1970s until this discrepancy was attributed to the
presence of additional mass. Furthermore, the obser-
vations of the rotation curves of galaxies also pointed
to the presence of additional mass. Since most of the
mass lies at the center of the galaxy the radial ve-
locity should decrease with 1/

√
r. What was observed

instead is a roughly constant radial velocity for large
radii r [3]. This is illustrated in Fig. 1.1.
Since then, more and more evidence for the existence of DM has been found. This includes
the spectrum of the cosmic microwave background (CMB) from which the above mass frac-
tions are derived as well as the modeling of structure formation in the early universe and
observed effects of gravitational lensing [2, 3].
While the evidence for DM is abundant, as of today, the nature of this matter is largely
unknown. DM could be a single new elementary particle but more complex models as well
as compound particles also remain viable explanations [3]. The investigations of the validity
of such models is one of the interesting connections between particle physics and cosmology
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which this thesis tries to study.
There are three approaches currently under experimental and theoretical investigations in an
effort to detect DM or at least limit the possible candidates. Direct detection experiments
try to observe the interaction of a DM particle with known matter. Such interactions should
be exceedingly rare if they exist at all and are therefore very difficult to detect. Ongoing
experimental efforts in this regard include time-projection chambers filled with liquid Xenon
such as the XENONnT experiment which aims to detect the scattering of DM particles off
of Xenon nucleii [4]. Searches at colliders try to produce DM through the collision of known
particles [5].
Finally, there is also a plethora of indirect detection methods which are in a sense the inverse
of the collider searches. DM models that allow for the annihilation into SM particles will
produce fluxes of SM particles which are in principle measurable. Hence, the observation
of cosmic γ-rays as well as neutrinos can put limits on the cross section for these processes
which are be already constrained by the fact that the model also needs to explain the amount
of DM measured today [5].
The specific model in this thesis is neutrinophilic, i.e. the hidden sector of DM particles only
couples to neutrinos. Therefore, the only viable detection mechanism is indirect detection
through cosmic neutrinos. At present, these fluxes do not provide an additional constraint
on the parameter space of the model as the observed DM density today - usually referred to
as the relic density - is always the stronger limitation.
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2 The Particle Content of the Universe

The most accurate theory to describe elementary particles and their interactions presently
available is known as the Standard Model (SM). It is able to accurately explain the interac-
tions of all particles detected to date as well as three out of four of the known elementary
forces: the electromagnetic, weak and the strong interaction [6].
The theory has the form of a quantum field theory in which the individual particles are
represented as excited states of fundamental fields. Its core element is a Lagrangian which
gives the equations of motion for the fields from the minimization of the action as the Euler-
Lagrange equations [7].
The SM is compatible with special relativity. This means that its equations of motion are
invariant when the frame of reference is changed. This corresponds to an invariance of the
Lagrangian1 under Lorentz transformations and restricts the kind of terms which can appear
in the Lagrangian as well as the possible behaviors of the fields under Lorentz transforma-
tions [7]. This is explained in more detail when the DM model investigated in this thesis is
introduced at the end of this chapter.
It is not useful for the purposes of this thesis to discuss all particles of the SM in detail as the
extension of the SM investigated in this thesis as a model for DM only couples to neutrinos.
Instead, only a brief introduction on neutrinos is given in the following Section 2.1.
Regardless of its success, the SM in its current form is incomplete. For one, there is the dark
sector mentioned in the previous chapter. Section 2.2 elaborates on WIMPs as one class of
candidates for DM and Section 2.3 introduces the specific type of WIMP investigated in this
thesis.

2.1 (Neutrinos in) the Standard Model of particle physics

Neutrinos were originally postulated in 1930 to explain the continuous energy spectrum of
β-decays as massless Spin-1/2 particles. They only interact with other particles through the
weak force and are therefore notoriously hard to detect [8].
Today, there are three known neutrino flavors corresponding to the three charged leptons -
the electron, muon, and tau. In contrast to the charged leptons, neutrinos do not possess an

1 The equations of motion come from the action, not the Lagrangian itself. So in principle, the Lagrangian
could vary under Lorentz transformations as long as the action is invariant. But if the Lagrangian is
invariant, then so is the action.
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electric charge and therefore only interact with other particles through the weak interaction.
They are also considered to be massless in the standard model [8].
However, the observation of neutrino oscillations shows that neutrinos must possess a mass,
albeit a very small one. The exact masses are currently under experimental investigation but
are below 1 eV [9].
It is also not yet clear whether neutrinos are Dirac fermions, meaning neutrinos and anti-
neutrinos are different particles, or Majorana fermions, meaning that neutrinos are their own
anti-particles. In the latter case, there is the possibility for a neutrino-less double-β decay
which is currently being looked for by multiple experiments [10]. The calculations made in
this thesis assume neutrinos to be Dirac fermions.

2.2 Weakly Interacting Massive Particles

As mentioned in the introduction there are numerous viable models for DM on mass scales of
the DM candidate from a few eV all the way up to macroscopic masses. One of the leading
paradigms is known as Weakly Interacting Massive Particles (WIMPs) [4].
The term originates from the fact that particles with masses in the GeV to TeV range nat-
urally have annihilation cross sections similar to those of the weak force (in the order of
10−26 cm3/s) in order to produce the observed relic density via freeze-out. As such both
models where the new particles interact via the weak force and where the new particles in-
teract via a new force of similar strength have been studied extensively and the term WIMP
has been taken to mean both kinds of models [3].

2.3 The model for dark matter of this thesis

The model consists of the Standard Model (SM) sector as the visible sector with a hidden
sector made up of Dirac fermions D (and D̄) with mass mD and a scalar portal φ with mass
mφ. The D fermion is the DM candidate and both fields do not possess charges under the
SM gauge group, hence the term ‘hidden’. However, the two sectors are connected via the
scalar portal φ which only has couplings with the neutrinos of the visible sector and the DM
candidate. The Lagrangian after electroweak symmetry breaking is written as

L = LSM + Lkin + Lint , (2.1)
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where LSM is the SM Lagrangian and the Lagrangian of the hidden sector is

Lkin =
1

2
∂µφ∂

µφ− 1

2
m2

φφ
2 + D̄(̂ıγµ∂µ −mD)D,

Lint = −φν̄i(gnij + ı̂g′nijγ
5)νj − φD̄(gx + ı̂g′xγ

5)D . (2.2)

The notation of this Lagrangian makes use of two conventions which make the notation more
compact: one is Einstein’s summation convention where indices appearing multiple times in
a product are summed over. Lowercase Latin letters i, j, ... correspond to sums from 1 to 3

while lowercase Greek letters µ, ν, ... run from 0 to 3.
Secondly, this thesis uses natural units where the numerical values of the reduced Planck
constant ~, the speed of light c and the Boltzmann constant kB are set to 1.
For simplicity, the couplings gnij and g′nij are taken to be diagonal and the same for the three
neutrino species, i.e., gnij = gnδij and g′nij = g′nδij. This means that only neutrinos of the
same flavor can interact via the scalar φ and the strength of the interaction is the same for
all three flavors.
The Lagrangian L encodes all information about the equations of motions of the particles and
their interactions. The term Lkin is the equivalent to the kinetic energy in the Lagrangians
of classical mechanics. The equations of motion can be obtained by partially differentiating
after the fields. Ignoring the interaction term Lint, these are the Klein-Gordon equation for
the scalar field φ and the Dirac equation for the (anti-)fermion field D (D̄ = D†γ0) as these
equations are the equations of motion for a free scalar and a free spin-1/2 particle [6].
Lint specifies the kind of interactions that are possible as well as the strength of the coupling
for these interactions. The presence of the scalar φ and the fermion as well as anti-fermion
fields in all of its summands implies that all interactions are mediated via the scalar φ which
allows annihilation of fermion anti-fermion pairs as well as scattering processes and decays
of φ into both DD̄-pairs and neutrinos and anti-neutrinos. However, decays of D and D̄

are impossible since the fields only appear in combination in the interaction terms and never
alone. The factors in the summands of Lint other than the fields are known as the vertex
factors. They are matrix valued with γ5 being the ‘fifth’ Dirac matrix. This also appears
in the vertex factors of the weak interaction where a factor (1 − γ5)/2 ensures that only
left-chiral particles interact via the weak force.[7]
This thesis will not use L explicitly after this point. As it encodes all information about the
model it is however playing a crucial role in the background, specifically when calculating
decay widths and cross sections for the processes possible in this model in Chapter 5. This
will be done using Feynman rules which are summarized in Appendix A.
The decay widths and cross sections determine the relic density. This connection is explained
in Chapter 4. Since the relic density can be measured, this restricts the viable parameter



6 2 The Particle Content of the Universe

space of the model, that is the values of the couplings and masses. Chapter 6 calculates
the relic density for different parameters. In addition, the decays of the scalar portal φ and
annihilation processes produce neutrinos. Their flux is observable and also restricts the viable
parameters which is investigated in Chapter 7.
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3 Expansion, Thermodynamics and History of
the Universe

To understand the universe as it is observed today, it is crucial to reconstruct the events in
the past that lead it to its current state. Presently, the best theory to depict the development
of the universe is known as the Lambda cold DM model (ΛCDM). Other than the particles
of the SM, it also takes into account dark energy and DM [11].
Hence, the intricacies of this model require both the relativistic dynamics and the particle
interactions given by the SM in addition to the dark sector. Section 3.1 goes over the ba-
sic relativistic dynamics which imply the existence of a Big Bang. After that, Section 3.2
introduces some thermodynamics that are helpful to understand the key results of ΛCDM
which are given in Section 3.3 with a focus on the role of the neutrinos and cold DM. The
thermodynamics are used in the following chapters that deal with the Boltzmann equation
for DM freeze-out while the results of ΛCDM impose some constraints on the model.

3.1 The Friedmann equations

This section is based on the first section in [11] and a shorter, freely accessible overview can
be found in the first section of [12].
In general, the dynamics of the universe due to gravity are described by the tensor-valued
Einstein equation. However, the universe is both isotropic and homogenous on large scales.
The CMB shows that this is also true in the early universe. With this as an assumption, the
Einstein equation reduces to two ordinary differential equations.
The first of these equations, referred to as the first Friedmann equation, is(

ȧ

a

)2

=
8πG

3
ρ− k

a2
. (3.1)

G is Newton’s gravitational constant and ρ the total energy density. k is a parameter de-
scribing the curvature of the universe.
a(t) is called the scale factor and describes the expansion of the universe. A doubling of
the scale factor causes the physical distance rphys. between two comoving points in space to
double as well, so rphys.(t) = a(t)rcom.. This is illustrated in Fig. 3.1. The normalization of



8 3 Expansion, Thermodynamics and History of the Universe

Figure 3.1: An illustration of the effect of the scale factor a(t): The physical distance between two
points of a comoving coordinate system is proportional to it. In addition, a(t) increases with
time. Figure take from [11, p. 7].

the scale factor can be chosen freely and so it is useful to define a = 1 at present day.
The relative change of a with time is the Hubble parameterH = ȧ/a, which is time-dependent.
Plugging this into Eq. 3.1 leads to

H2 =
8πG

3
ρ− k

a2
. (3.2)

To solve this equation, the relation between the energy density ρ and the scale factor is
needed. The relevant contributions are radiation, matter, cold DM and dark energy (Λ).
The total energy density is the sum of these three contributions. This allows Eq. 3.2 to be
written as

H2 =
8πG

3
(ρra

−4 + ρma
−3 + ρca

−3 + ρΛ)− ka−2 (3.3)

where the densities ρi are the densities today.
Defining the dimensionless density parameters

Ωi =
ρi
ρcrit

, i = r,m, c,Λ, k with ρcrit =
3H2

0

8πG
and ρk =

−3k

8πG
(3.4)

where H0 is today’s Hubble parameter, gives the form

(
H

H0

)2

= Ωra
−4 +Ωca

−3 +Ωca
−3 +ΩΛ +Ωka

−2 (3.5)

to the first Friedmann equation. This form allows for easy comparison between the four con-
tributions. For a� 1 the universe was dominated by radiation while the relative importance
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of matter and especially dark energy increases with the scale factor.
This form also makes it possible to link the energy densities to the curvature k:

Ω ≡ Ωr +Ωm +Ωc +ΩΛ = 1 , (3.6)

implies k = 0.
Today, we have Ωk ≤ 0.01 [1] and because its impact scales with a−2, this means that the
influence of the curvature in the first Friedmann equation is always negligible.
This form is also the reason to write the observed energy densities in terms of the critical
density ρcrit as Ωi or in the form Ωih

2 where h is value of the Hubble parameter in units of 100
Mpckm−1s−1. The latter is independent of the exact value of H and thus often preferable.
One of the most important implications of the first Friedmann equation is that because H is
positive today and the curvature term is negligible, a has monotonically increased with time
(and will do so in the future as well) and at some point been equal to 0. At this point in
time, the universe was a singularity of infinite density and no spacial extension.
There is no current theory for describing such a state or anything before the singularity.
However, at some point this singularity started to expand. This is known as the Big Bang
and the modeling of its aftermath produces the best theory for the history of the universe
currently available.

3.2 Thermodynamics of the expanding universe

There is strong evidence that the early universe was in local thermal equilibrium. This evi-
dence comes from the near perfect black-body spectrum of the Cosmic Microwave Background
(CMB). Its origin will be discussed in the following section. This means that the results of
equilibrium thermodynamics can be used to describe the evolution of thermodynamical quan-
tities such as the energy density ρ and the number density n.
One of the standard results of quantum statistical mechanics is that the phase space density
has the form

g

(2π)3
× f(p) =

g

(2π)3
× 1

exp (E(p)− µ)/T ± 1
(3.7)

where the + of the Fermi-Dirac distribution is for fermions and the − of the Bose-Einstein
distribution for bosons. g accounts for internal degrees of freedom. It is 2 for Dirac particles
and photons, 1 for scalar bosons and 3 for massive vector bosons.
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In the non-relativistic case of low temperatures E(p) − µ > T both distributions are well
approximated by the Maxwell-Boltzmann distribution

f(p) = exp

(
µ− E(p)

T

)
. (3.8)

The temperature dependent chemical potential µ can be neglected in the early universe.
From the phase space densities, the density W (t)/V , where V is the physical volume and
therefore scales with a3, of a thermodynamical quantity w(E)2 is obtained by calculating the
integral

W (t)

V
=

g

(2π)3

∫
d3pf(E, t)w(E) . (3.9)

However, this formula only works for one particle species. The key to generalize it for arbitrary
particle species is the concept of effective degrees of freedom. This is best explained for the
concrete example of the energy density ρ. Here, there are three relevant cases with analytical
solutions for a particle species with mass m:

ρ =
g

(2π)3

∫
d3pf(E)E (3.10)

=


gm
(
mT
2π

)3/2
exp (−m/T) n.r. approximation for T � m

π2

30 gT
4 relativistic bosons T � m

7
8
π2

30 gT
4 relativistic fermions T � m

So ρ for relativistic particles scales with T 4 while ρ for non-relativistic particles is exponen-
tially suppressed.
The energy density of the radiation ρr is the sum of contributions of all relativistic particles
species. These do not have to be in thermal equilibrium and thus have different temperatures.
Therefore, this leads to

ρ =
π2

30
geff(T )T

4 with geff(T ) =
∑

Bosons
gB
T 4
B

T 4
+

7

8

∑
Fermions

gF
T 4
F

T 4
(3.11)

where T now refers to the photon temperature. The quantity geff(T ) is the effective number
of degrees of freedom and can be found in tabulated form for the particle content of the SM.
This thesis uses the degrees of freedom calculated in [13].
Crucially, Eq. 3.11 gives a connection between Hubble parameter H and temperature T

H =

√
8πG

3
ρ =

√
4π3G

45
geffT

2 (3.12)

2 There will be no dependence on location because of homogeneity or momentum because of isotropy.
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and therefore also time t and temperature T . The next chapter will make use of this connec-
tion to obtain a differential equation in terms of temperature T for the number density.
In the same way geff is defined for the energy density ρ, the effective degrees of freedom heff

for the entropy density s̃ = S/V are defined to fulfill

s̃ =
2π2

45
heff(T )T

3 with heff(T ) =
∑

Bosons
gB
T 3
B

T 3
+

7

8

∑
Fermions

gF
T 3
F

T 3
. (3.13)

Because entropy S is conserved in equilibrium, the entropy density s̃ is proportional to a−3.

3.3 The Big Bang and the early universe

Starting from the Big Bang, the first ∼ 10−43 s cannot be described by current theories as the
conditions here require a workable quantum field theory of gravity which currently does not
exist. The following first second of the universe is filled with fascinating events which would
take up too much space to discuss here. Baumann’s lecture notes [11] give a good overview
and so does the classic textbook by Kolb and Turner [14]. The contents of this section can
be found in both sources.
To describe it shortly: Because of the continuing expansion of the universe the temperature
drops rapidly at first from an initial value of 1018GeV at around ∼ 10−43 s down to about
1MeV, 1 s after the Big Bang. During this time, particles receive their masses through the
Higgs mechanism and quarks and gluons form mesons and baryons. Before that, there also
must have been a period of accelerated expansion known as inflation as otherwise the universe
today should not be as homogenous and isotropic as it is observed to be on cosmic scales.
After the temperature T drops below 1MeV, the interaction rate Γ of the processes

n+ νe ↔ p+ e−

p+ ν̄e ↔ n+ e+
(3.14)

becomes negligible against the expansion rate H. Before this point, these processes kept the
abundances of neutrons, protons and neutrinos at their equilibrium distribution and thus the
amount of protons and neutrons is determined by the amount present at this point. This is
known as a freeze-out and the same mechanism can create an abundance of DM particles. It
is discussed in more detail in the next chapter.
As the model for DM investigated in this thesis produces neutrinos through the decay of the
scalar φ and annihilation processes of DD̄, both of these processes need to be negligible for
temperatures T < 1MeV ⇐⇒ t > 1 s. Otherwise, there would be an additional amount of
neutrinos which would impact the decoupling point of protons and neutrons from thermal
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equilibrium and thus the ratio of protons to neutrons.
However, since the measured ratio of protons to neutrons today requires the decoupling to
be at T = 1MeV this cannot be. This imposes restrictions on the parameter space of the
DM model: The life expectancy of the scalar φ should be no greater than one second

Γ−1
φ→νν < 1 s (3.15)

and the decoupling of the fermionD from thermal equilibrium needs to occur at a temperature
Tf with

Tf > 1MeV . (3.16)

The analysis of the model will show that the restriction on the life expectancy is only relevant
for mφ ≪ mD and the restriction on the freeze-out temperature is dealt with if mD & 1GeV.
Thus, this model is part of the WIMP-family of DM models.
After 3min or at around 100 keV the Big Bang nucleosynthesis begins and creates nucleii up
to Lithium-7, although almost exclusively Helium and Hydrogen. It ends less than 15min

after the Big Bang when the conditions are no longer sufficient for further fusion reactions.
The final relevant step for this thesis occurs around 380 000 yrs after the Big Bang. At this
point, the photons decouple from thermal equilibrium, allowing the formation of atoms and
creating what today has become the CMB. This almost perfect black body spectrum allows
a multitude of insights into the universe. One of them is the most precise measurement of
the amount of cold DM to date, giving [1]

Ωch
2 = 0.120± 0.001 . (3.17)
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4 Dark Matter Freeze-Out

While there are multiple possible mechanisms to create the observed abundance of DM this
thesis will focus on freeze-out. This occurs when the interaction rate Γ of processes keeping
particles in thermal equilibrium drops below the rate of expansion, the Hubble parameter H.
Fig. 4.1 illustrates the expected resulting behavior of the number density. The interaction
rate is given as Γ = n〈σv〉 where n is the number density of the particle and 〈σv〉 is the
thermal average of the cross section for the processes times a velocity v.

Figure 4.1: Schematic illustration of particle freeze-out. At high temperatures T � m, where the
particles move at relativistic velocities, the number density n stays in thermal equilibrium.
At low temperatures with T � m the interaction rate Γ = n〈σv〉 drops below the expansion
rate H and so the number density freezes out to remain at a much higher value than the
equilibrium distribution. Figure taken from [11].

Section 4.1 introduces the relevant differential equation for the number density n which
describes freeze-out for a DM model with only one stable particle. The following Section 4.2
turns this into a differential equation for the yield Y which is easier to use as Y is independent
of the scale factor a and Section 4.3 simplifies elements of the differential equation.
The original derivations of this chapter for the purpose of describing DM freeze-out have been
done by Gondolo and Gelmini in [15].

4.1 The Boltzmann equation for the number density

In general, tracking the evolution of a particle species requires the Boltzmann equation

L[f ] = C[f ] , (4.1)
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which describes the evolution of the phase space density f(p, x, t) over time. f should be
homogenous and isotropic in space as the same holds for the observed universe and thus only
depends on the energy E and time t. So it is connected to the number density n via

n =

∫
dn =

∫
d3pf(E, t)

g

(2π3)
, (4.2)

where the factor g accounts for possible internal degrees of freedom because of spin.
L (the Liouville operator) contains the terms tracking the net change of f in time, while
the collision term C describes the effects of annihilations into different particles as well as
scattering.
In the case of two DM particles species and under the additional assumption that all other
particles which the DM particles interact with are in thermal equilibrium3 Eq. 4.1 leads to
coupled differential equations for the number densities of the DM particles n1 and n2 - in the
model investigated in this thesis presented in Section 2.3 the two DM particles are D and its
anti-particle D̄:

ṅ1 + 3Hn1 = −〈σvMøl〉(n1n2 − neq1 n
eq
2 )

ṅ2 + 3Hn2 = −〈σvMøl〉(n1n2 − neq1 n
eq
2 ) . (4.3)

neq1 and neq2 are the number densities in thermal equilibrium, that is Eq. 4.2 with the Fermi-
Dirac or Bose-Einstein distribution for fermions or bosons respectively. So the collision term
on the right hand side of the differential equations results in a depletion of the number densi-
ties towards their equilibrium distributions. The term 3Ha3 on the left hand side represents
the change of number density through the expansion of the universe, that is, the change of
the scale factor H = ȧ/a. The left hand sides can also be written as

ṅ+ 3Hn =
1

a3
d(na3)

dt
, (4.4)

meaning that the number of particles in a covariant volume only changes because of annihi-
lations, as is to be expected.
So these differential equations match the qualitative assessment from the previous chapter:
There are two competing effects on the number density. The expansion leads to a decrease of
n while the interaction with other particles results in a change towards thermal equilibrium.

3 This is another reason this thesis only investigates mD ≥ 1GeV: For lower mD this assumption might not
hold for neutrinos, which decouple around 1MeV (see Section 3.3), before the relic density is set.
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The thermally averaged cross section times velocity 〈σvMøl〉 in the right hand side is given
as

〈σvMøl〉 =
∫

dneq1 dneq2 σvMøl
neq1 n

eq
2

, (4.5)

where vMøl is the Møller velocity

vMøl =
√

|~v1 − ~v2|2 − |~v1 × ~v2|2 . (4.6)

The cross section σ is the sum of the cross sections for all annihilation channels. For the
concrete model of Section 2.3 these are the processes DD̄ → φφ and DD̄ → νν̄.
There is no reason to assume an asymmetry in the initial production of D and D̄ and so there
is n1 = n2 = n. Thus, the coupled differential equations Eq. 4.3 become identical because the
indices 1 and 2 are irrelevant and the differential equation for the number density reads

ṅ+ 3Hn = −〈σvMøl〉(n2 − n2eq) (4.7)

Working with this decoupled differential equation Eq. 4.7 is not ideal for two reasons: Firstly,
one would need to track the scale factor a and the Hubble parameter H in addition to the
number density n. Using a differential equation for the yield Y = n/s̃ instead, with s̃ being
the entropy density, circumvents these problems. The next section derives this differential
equation for Y .
Secondly, the equation for 〈σvMøl〉 and the equilibrium densities neq can be brought into
forms that are easier to work with. This is the topic of the last Section 4.3 of this chapter.

4.2 The Boltzmann equation for the yield

From the Boltzmann equation Eq. 4.7 one obtains

Ẏ =
1

s̃a3
d(na3)

dt
+ na3

d
(
s̃a3
)−1

dt
=

1

s̃a3
d(na3)

dt
= −1

s̃
〈σvMøl〉(n2 − n2eq) (4.8)

= −s̃〈σvMøl〉(Y 2 − Y 2
eq)

as the differential equation for the yield Y . Since s̃ ∝ a−3, the time derivative of s̃a3 vanishes.
Having time as the independent variable is inconvenient as the freeze-out happens at differ-
ent times depending on the chosen parameters of the model, especially on mD, and so the
interval within which decoupling happens would need to be estimated first for each mass.
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Furthermore, the equilibrium distributions as well as 〈σvMøl〉 naturally depend on the tem-
perature T . Hence, the most convenient choice for the independent variable is x = m/T as
the freeze-out occurs at around x = 20 and Y is almost constant for x & 200 [11, 12].
The chain rule gives

Ẏ =
dY
dx

dx
da
ȧ (4.9)

and so the differential equations becomes

dY
dx

= − s

Ha

da
dx

〈σvMøl〉(Y 2 − Y 2
eq) . (4.10)

This can be simplified further to

dY
dx

=
1

3H

ds
dx

〈σvMøl〉(Y 2 − Y 2
eq) (4.11)

because s̃ ∝ a−3. Plugging in the expressions Eq. 3.12 and Eq. 3.13 for H and s̃ in terms of
effective degrees of freedom gives the form of the differential equation which will be imple-
mented in the code for the numerical calculation of the relic density:

dY
dx

= −
√

45π

G

√
g∗m

x2
〈σvMøl〉(Y 2 − Y 2

eq)

with √
g∗ =

heff√
geff

(
T

3

d lnheff
dT

)
.

(4.12)

4.3 Simplifying the thermal averages

The final, model-independent steps in rewriting the differential equation are the thermal av-
erages of the equilibrium distributions as well as the thermally averaged cross section times
velocity 〈σvMøl〉.
As mentioned above, the freeze-out happens at around x = 20. For x ≤ 1 the interaction
rate n〈σvMøl〉 is usually so large that n = neq. This is also the initial condition when solving
the differential equation numerically.
So the region of the differential equation that needs to be solved numerically fulfills m & T
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where the Fermi-Dirac distribution are well approximated as a Maxwell-Boltzmann distribu-
tion which simplifies the integrals.
With this approximation, the number density in equilibrium is

neq (T ) =
g

(2π)3

∫
d3p exp

(
−E
T

)
=

g

2π2

∫ ∞

0
dp p2 exp

(
−
√
p2 +m2

T

)
q2=p2/m2+1

=
gm3

2π2

∫ ∞

1
dq
√
q2 − 1 exp

(
−mq
T

)
=
gm3

(6π2

√
q2 − 1

3
exp (−xq)

∣∣∣q=∞

q=1
+
gm3

6π2
m

T

∫ ∞

1
dq
√
q2 − 1

3
exp

(
−mq
T

)
=
gm3

6π2
m

T

∫ ∞

1
dq
√
q2 − 1

3
exp

(
−mq
T

)
=

g

2π2
m2TK2

(m
T

)
.

(4.13)

The last line follows from the integral form of the modified Bessel functions of the second
kind [16]

Kn(z) =

√
π

(n− 1
2)!

(z
2

)n ∫ ∞

1
du exp(−zu)

(
u2 − 1

)n−1/2
. (4.14)

〈σvMøl〉 of Eq. 4.5 can be written as a single integral. The first step toward this goal is
writing

dneq1 dneq2 =
g

(2π)3
exp

(
−E1

T

)
d3p1

g

(2π)3
exp

(
−E2

T

)
d3p2 (4.15)

in the numerator. The denominator of Eq. 4.5 has been calculated already as Eq. 4.13.
Total cross sections σ only depend on the total energy

√
s in the center-of-mass system while

vMøl depends on the angle ϑ between the momenta of the particles as well as the magni-
tudes of those momenta ~p1 and ~p2. So by using spherical coordinates with three additional,
independent angular coordinates to ϑ the phase space element becomes

d3p1 d3p2 = 4πp21 dp14πp22 dp2
1

2
d cosϑ (4.16)

As the Boltzmann factor depends on energy, but not on momentum, having the energies as
the integration variables is more convenient. This leads to

d3p1 d3p2 = 4πp1E1 dE14πp2E2 dE2
1

2
d cosϑ , (4.17)

with the integration region in the numerator of Eq. 4.5 now being E1, E2 ≥ m and | cosϑ| ≤ 1 .
The final transformation of integration variables is to the variables

E+ = E1 + E2, E− = E1 − E2 and s = (p1,µ + p2,µ)(p
µ
1 + pµ2 ) . (4.18)
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For these variables, the integration boundaries are no longer independent. Since the energy
in the center-of-mass frame

s = (E1 + E2)
2 − (~p1 + ~p2)

2 = E2
+ − (~p1 + ~p2)

2 = 2m2 + 2E1E2 − 2~p1 ~p2 cosϑ (4.19)

is minimal for particles at rest with ~p1 = ~p2 = 0, which implies E1 = E2 = m and thus
s = 4m2 and has no upper bound, the integration region for s is s ≥ 4m2.
(~p1 + ~p2)

2 is ≥ 0 and so the integration region for E+ then has to be E+ ≥
√
s. Finally,

the boundaries for E− are given by the edge cases | cosϑ| = 1. Solving this condition for E−

gives the integration boundaries

|E−| =
√
1− 4m2

s

√
E2

+ − s ≡ E . (4.20)

The Jacobi determinant for the transformation (E1, E2, cosϑ) → (E+, E−, s) is

detT = − 1

4p1p2
(4.21)

which results in the final momentum phase space element being

d3p1 d3p2 = 2π2E1E2 dE− dE+ ds . (4.22)

Overall, the numerator of 〈σvMøl〉 can now be written as

∫
dneq1 dneq2 σvMøl = 2π2

g2

(2π)6

∫ ∞

4m2

dsσvMølE1E2

∫ ∞

√
s

dE+ exp(−E+

T
)

∫ E

−E
dE− . (4.23)

The factor σvMølE1E2 depends on s only:

σvMølE1E2 =
σ

2

√
s(s− 4m2) . (4.24)

The above equation follows from substituting ~v1,2 = ~p1,2/E1,2 in the definition of vMøl Eq. 4.6
and using Eq. 4.19 for s. With this, both the E− and E+ integrals can be evaluated to give∫

dneq1 dneq2 σvMøl =
g2

32π4

∫ ∞

4m2

dsσ
√
s(s− 4m2)

∫ ∞

√
s

dE+ exp(−E+

T
)E

=
g2

32π4

∫ ∞

4m2

dsσ(s− 4m2)

∫ ∞

√
s

dE+ exp(−E+

T
)
√
E2

+ − s

=
g2

32π4
T

∫ ∞

4m2

dsσ(s− 4m2)
√
sK1

(√
s

T

)
,

(4.25)
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where the last line follows from the substitution u = E+/
√
s and the form for K1 given in

Eq. 4.14. With this, the final result for 〈σvMøl〉 becomes

〈σvMøl〉 =
1

8m4TK2
2(m/T )

∫ ∞

4m2

σ(s− 4m2)
√
sK1(

√
s/T )ds . (4.26)
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5 Annihilation Cross Sections and Decay
Widths of the Dark Matter Model

In order to solve the Boltzmann equation and then obtain the relic density, what remains to
be done is the calculation of the unpolarized total cross section σ appearing in the thermally
averaged cross section times velocity 〈σvMøl〉 and thus the Boltzmann equations. Further-
more, the decay width of the scalar φ is needed to make use of the restriction Eq. 3.15 and
will also prove useful in calculating the cross sections.
These calculations are easiest to perform using Feynman diagrams and Feynman rules. They
are explained in detail in Appendix Ax. In short, they provide a straightforward way to
calculate the matrix element 〈f |U |i〉 = Mfi relevant for the differential cross section and the
decay width by giving mathematical expressions to incoming and outgoing particles as well
as virtual particles mediating the process, called propagators, and the interactions points
between particles, commonly called vertices. U is the time evolution operator and |i〉(|f〉)
is the initial (final) state. The connection between these matrix elements, decay widths and
differential cross sections is described in chapter 4.5 of [17].
This chapter only considers the leading order of the processes corresponding to the simplest
Feynman diagrams. For large couplings, higher order corrections from more complex dia-
grams become relevant. Their calculation are out of the scope of this thesis.
In the only case of both two ingoing and two outgoing particles dealt with in this thesis, the
unpolarized differential cross section in the center-of-mass frame is given as

dσ
dΩ

=
α

64π2s

|~pf |
|~pi|

|M|2 , (5.1)

where s is again the square of the total energy, ~pi the momentum of the initial particles and
~pf the momentum of the outgoing particles. α is only relevant if the two outgoing particles
are identical. Then there is α = 1/2 to prevent double counting.
The unpolarized differential decay width for a decay into two particles in the center-of-mass
frame is

dΓ = α
|~pf |

32π2mA2

|M|2 dΩ . (5.2)

mA is the mass of the decaying particle.
|M|2, often referred to as the invariant amplitude, is defined as the sum over all possible
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final states and the average over all possible initial states of |Mfi|2. For initial as well as final
states these possible states are the spin states of the particles and thus

|M|2 =
∑
i

1

2Si + 1

∑
f

|Mfi|2 , (5.3)

where Si is the spin of the incoming particles [17, p. 132]. In principle, these spin states could
be measured which is why |M|2 is also known as the unpolarized squared matrix element
and consequently the derived decay width or cross section is also unpolarized.
For the purposes of describing dark matter freeze-out, these unpolarized formulas are the
only ones of interest [15, p. 150]. The expressions obtained for M from the Feynman rules
and especially |M|2 contain a number of Dirac matrices γµ. Specifically, the summation for
|M|2 leads to a trace over a product of Dirac matrices. For this reason, Appendix B contains
some useful identities for these matrices.

5.1 Mandelstam variables

Before calculating the invariant amplitudes it is useful to introduce some Lorentz invariant
variables with which these can be expressed instead of using variables such as scattering
angles which are dependent on the frame of reference. The most common choice are known
as the Mandelstam variables.
From here on pA and pB will denote the four-momenta of particles in the initial state while
k1 and k2 will refer to the four-momenta of the particles in the final state. Squared four-
momenta as well as products of them refer to relativistic dot products: p2 = p0p0 − pjpj and
pk = pµk

µ. Three-momenta are indicated as ~p.
The first of the Mandelstam variables is the square of the total energy in the center-of-mass
frame

s ≡ (pA + pB)
2 = (k1 + k2)

2 . (5.4)

The other two are useful to compactly denote the angular dependencies in the differential
cross sections

t ≡ (pA − k1)
2 = (k2 − pB)

2

u ≡ (pB − k2)
2 = (k1 − pA)

2 .
(5.5)

Because of conservation of energy the three Mandelstam variables are not independent but
fulfill the relation [17, p. 158]

s+ t+ u = m2
A +m2

B +m2
1 +m2

2 . (5.6)



5 Annihilation Cross Sections and Decay Widths of the Dark Matter Model 23

It will prove useful to have a differential cross section in terms of t instead of the scattering
angle ϑ. Since t as a function of the scattering angle ϑ and s is

t = m2
A +m2

1 − 2EAE1 + 2| ~pA||~p1| cosϑ (5.7)

this has the form
dσ
dt

=
1

64πs|~pi|2
|M|2 (5.8)

where the integral over the azimuthal angle has already been performed to give a factor of
2π [18].

5.2 Decay width of the scalar portal

The decay width Γ of the scalar φ is easier to calculate than the cross sections as the Feynman
diagram does not include a propagator and only has one vertex. The calculation will be done
for the decay φ → νν̄ first. From there, the calculation of the decay width for φ → DD̄ will
only be a matter of replacing mν → mD, gn → gx and g′n → g′x.

5.2.1 Decay width for the decay φ → νν̄

k2

k1

φ

ν̄

ν

Figure 5.1: Feynman dia-
gram of the de-
cay φ→ νν̄.

By the Feynman rules introduced in Appendix A, the matrix ele-
ment for the process φ → νν̄ where ν and ν̄ are a neutrino and an
anti-neutrino of the same flavor has the form 4

M = ūs1(k1)(−ı̂(gn + ı̂g′nγ
5))vs2(k2) . (5.9)

This process is illustrated on the right in Fig. 5.1. The factor in
the middle represents the vertex, while ūs1(k1) is for the outgoing
neutrino and vs2(k2) for the anti-neutrino. The scalar corresponds
to a factor of 1 and hence changes nothing.
To calculate the invariant amplitude, the complex conjugate M∗ is needed. As M is just a
number, this is the same as the hermitian conjugate M† which is

M† = v̄s2(k2)(̂ı(gn + ı̂g′nγ
5))us1(k1) . (5.10)

4 Some textbooks such as [17] define M so that an additional factor ı̂ would have to appear in front of M
here while others such as [6] do not. This thesis omits the additional factor ı̂.
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This follows from the identities Eq. B.2 and Eq. B.4 as well as

(AB)† = B†A† , (5.11)

which holds for any two matrices A and B.
For the decay width, the object of interest is the squared absolute value of M

|M|2 = MM† =
{
ūs1(k1)(−ı̂(gn + ı̂g′nγ

5))vs2(k2)
}{

v̄s2(k2)(̂ı(gn + ı̂g′nγ
5))us1(k1)

}
. (5.12)

This still depends on the spin states of the outgoing neutrinos which are irrelevant for the pur-
poses of this thesis. Using Feynman slash notation, where /Q = γµQµ is used for compactness,
the sum over the spins gives

|M|2 =
∑
s1, s2

MM†

=
∑
s1, s2

4∑
A,B,C,D=1

ūs1A (k1)(−ı̂(gn1AB + ı̂g′nγ
5
AB))v

s2
B (k2)v̄

s2
C (k2)(̂ı(gn1CD + ı̂g′nγ

5
CD))u

s1
D (k1)

=
∑
s1, s2

4∑
A,B,C,D=1

us1D (k1)ū
s1
A (k1)(−ı̂(gn1AB + ı̂g′nγ

5
AB))v

s2
B (k2)v̄

s2
C (k2)(̂ı(gn1CD + ı̂g′nγ

5
CD))

=Tr
{
(/k1 +mν)(−ı̂(gn + ı̂g′nγ

5)) (/k2 −mν )̂ı(gn + ı̂g′nγ
5)
}

(5.13)

by making use of the completeness relations Eq. A.5 in the last line. As an intermediate step,
the second line of Eq. 5.13 writes out the matrix multiplication explicitly which allows the
entries of the matrices to be moved freely. The order of the third line then enables the use
of the completeness relations.
So what needs to be calculated is the trace of a product of Dirac matrices. As mentioned in
the previous section, this is the case for invariant amplitudes of all processes. Appendix B
contains the identities used in the following steps to simplify the above form of the invariant
amplitude.
One of these is that the trace over any term with an uneven number of Dirac matrices
vanishes. Hence, the expansion

|M|2 = Tr
{
/k1(−ı̂(gn + ı̂g′nγ

5)) /k2ı̂(gn + ı̂g′nγ
5)
}
− Tr

{
mν(−ı̂(gn + ı̂g′nγ

5))mν ı̂(gn + ı̂g′nγ
5)
}

(5.14)
of the invariant amplitude holds. As γ52 = 1, this becomes

|M|2 = Tr
(
g2n/k1/k2

)
− Tr

(
g′n

2/k1γ
5/k2γ

5
)
+Tr

(
g′n

2
mνγ

5mνγ
5
)
− Tr

(
g2nm

2
ν

)
(5.15)
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which leads to
|M|2 = 4

(
g2n + g′n

2
)
k1k2 + 4

(
g′n

2 − g2n

)
m2

ν (5.16)

because of {γµ, γ5} = 0 and the identity Eq. B.6 for the trace over a product of two Dirac
matrices. This can be written in terms of s with equation Eq. 5.4

|M|2 = 4
(
g2n + g′n

2
) (s

2
−m2

ν

)
+ 4

(
g′n

2 − g2n

)
m2

ν . (5.17)

Here, the center-of-mass energy is
√
s = mφ and the mass of the neutrinos is negligible against

all relevant masses of φ. Therefore, the final form of the invariant amplitude is

|M|2 = 2
(
g2n + g′n

2
)
m2

φ . (5.18)

Putting this in the formula for the decay width Eq. 5.2, with α = 1 because ν and ν̄ are not
identical particles, gives

Γφ→νν =
| ~k1|

32π2m2
φ

·
∫

|M|2dΩ

=

mφ

2

32π2m2
φ

3 · 2
(
g2n + g′n

2
)
m2

φ · 4π

=
3

8π

(
g2n + g′n

2
)
mφ ,

(5.19)

The additional factor of 3 comes from the three neutrino flavors which each contribute the
same invariant amplitude of Eq. 5.18 to the decay width as the mass of the neutrinos can be
neglected.
The only case that will be considered in the numerical analysis is gn = g′n in which case

Γφ→νν =
3

4π
g2nmφ (5.20)

is the simplest form for the decay width. To avoid an impact of this decay on the Big Bang
nucleosynthesis, it should be

1

Γφ→νν
< 1 s

⇔ gn

√
mφ

GeV
>

√
4π

3

~
1 s ·GeV

= 1.6604 · 10−12 .

(5.21)
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5.2.2 Decay width for the decay φ → DD̄

k2

k1

φ

D̄

D

Figure 5.2: Feynman dia-
gram of the de-
cay φ→ DD̄.

Calculating the matrix element for the decay φ → DD̄ which is
illustrated in Fig. 5.2 with the Feynman rules from Appendix A
gives

M = ūs1(k1)(−ı̂(gx + ı̂g′xγ
5))vs2(k2) . (5.22)

This is the same as Eq. 5.9 with the replacements gn → gx and
g′n → g′x. So the invariant amplitude will be that of Eq. 5.17 with
the additional replacement mν → mD. Hence, the decay width
Eq. 5.2 is

Γφ→DD =
| ~k1|

32π2m2
φ

·
∫

|M|2dΩ

=

√
m2

φ

4 −m2
D

8πm2
φ

·

[
4
(
g2x + g′x

2
) m2

φ

2
− 8g2xm

2
D

] (5.23)

and in the case of gx = g′x it simplifies to

Γφ→DD =
g2x
4π
mφ

(
1−

2m2
D

m2
φ

)√
1−

4m2
D

m2
φ

. (5.24)

This decay is only possible for mφ ≥ 2mD because of conservation of energy. However, this
region of the parameter space cannot be investigated with the approach outlined in Chapter 4
as this decay would be a source of additional D. Investigating this part of the parameter
space would therefore require coupled differential equations for φ and D.

5.3 Cross section of DD̄ → νν̄

pA

pB

φ

k2

k1

D

D̄ ν̄

ν

Figure 5.3: The only Feynman diagram for the annihilation process DD̄ → νν̄ with two vertices.
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The Feynman diagram for the annihilation process DD̄ → νν̄ can be seen in Fig. 5.3. Using
the Feynman rules of Appendix A gives the matrix element

M = ”D ”fermion line” · scalar propagator · ”ν fermion line”

=
{
v̄s1(pB)(−ı̂(gx + ı̂g′xγ

5))us2(pA)
}( ı̂

s−m2
φ + ı̂ε

){
ūs3(k1)(−ı̂(gn + ı̂g′nγ

5))vs4(k2)
}
.

(5.25)

Consequently, the matrix element is just the product of the matrix elements for the decays
φ→ νν̄ and φ→ DD̄ with the additional term for the scalar propagator since the Feynman
diagram is just the Feynman diagrams of both of these decays connected through the scalar
propagator.
The scalar propagator has to carry a four-momentum with q2 = s by conservation of energy
and momentum. Because of this, the propagator and thus the cross section diverges for
s→ mφ and ε→ 0 which does not make sense.
This process is in fact a case of a Breit-Wigner resonance, which occurs when a process
A + B → C + D is mediated by an unstable particle O. Here, an additional term ı̂m2

OΓO

needs to be included in the denominator of the propagator to obtain the correct result [6, pp.
461]. ΓO is the total decay width of the particle O, that is, the sum over the decay widths
for each possible decay channel

ΓO =
∑
x≥y

ΓO→x+y . (5.26)

In the case of DD̄ → νν̄, the unstable particle O is the scalar φ and the possible decay
channels are φ→ νν̄ and φ→ DD̄ if mφ ≥ 2mD and only φ→ νν̄ if mφ < 2mD.
With this adjustment, the ı̂ε−terms preventing a divergence can be dropped and the hermi-
tian conjugate of the matrix element is

M† =
{
ūs2(pA)(̂ı(gx + ı̂g′xγ

5))vs1(pB)
}
·

(
−ı̂

s−m2
φ − ı̂mφΓφ

)
·
{
v̄s4(k2)(̂ı(gn + ı̂g′nγ

5))us3(k1)
}

(5.27)
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because of the same identities used to obtain Eq. 5.10.
The unpolarized cross section depends on the invariant amplitude |M|2 which is |M|2 aver-
aged over initial spins and summed over final spins. This is

|M|2 = 1

4
·

4∑
i=1

∑
si

MM† ≡ 1

4
· 1

(s−m2
φ)

2 +m2
φΓ

2
· TrBTrA

=
1

4
· 1

(s−m2
φ)

2 +m2
φΓ

2
· Tr

{
(/pB −mD)(−ı̂(gx + ı̂g′xγ

5))(/pA +mD)(̂ı(gx + ı̂g′xγ
5))
}

× Tr
{
(/k1 +mν)(−ı̂(gn + ı̂g′nγ

5)) (/k2 −mν )̂ı(gn + ı̂g′nγ
5)
}

(5.28)

because the terms in {...} are numbers and thus commute. Reordering them enables the use
of the completeness relations of Eq. A.5 and leads to the traces in the same way that has
been shown in Eq. 5.13.
Both TrB and TrA in the above equation have been calculated already, the first one for the
decay width of φ → DD̄ and the second one for the decay width of φ → νν̄. Substituting
these in results in

|M|2 = 3

4(s−m2
φ)

2 + 4m2
φΓ

2

[
2
(
g2x + g′x

2
)
s− 8g2xm

2
D

] [
2
(
g2n + g′n

2
)
s
]

(5.29)

where the factor 3 again accounts for the three neutrino flavors and any terms containing the
mass of any neutrino have been dropped.
Therefore, the differential cross section of Eq. 5.1 for this process is

dσDD̄→νν̄

dΩ
=

1

64π2s
· |~pf |
|~pi|

|M|2

=
3

256π2

(
g2n + g′n

2
)
s
[(
g2x + g′x

2
)
s− 4g2xm

2
D

]
√
s
(
s− 4m2

D

) (
(s−m2

φ)
2 +m2

φΓ
2
) .

(5.30)

This just depends on s which is independent of the scattering angle in the center-of-mass
frame and so the total cross section only includes an additional factor 4π:

σDD̄→νν̄ =
3

16π

(
g2n + g′n

2
)
s
[(
g2x + g′x

2
)
s− 4g2xm

2
D

]
√
s
(
s− 4m2

D

) (
(s−m2

φ)
2 +m2

φΓ
2
) (5.31)
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In the case considered in the numerical solution to the Boltzmann equation of gn = g′n and
gx = g′x, this becomes

σDD̄→νν̄ =
3

4π
g2xg

2
n

√
s
(
s− 2m2

D

)√
s− 4m2

D

[
(s−m2

φ)
2 +m2

φΓ
2
φ

] . (5.32)

5.4 Cross section of DD̄ → φφ

There are two distinct Feynman diagrams for the annihilation process DD̄ → φφ which are
shown in Fig. 5.4. They are referred to as t-channel and u-channel respectively after the four-
momentum q2 the propagator carries. These are physically indistinguishable as the outgoing
scalars φ are identical particles. So the matrix element for the cross section will be given by
the sum of t- and u-channel matrix elements:

M = Mt +Mu . (5.33)

This means, that the invariant amplitude

|M|2 = |Mt +Mu|2 = |Mt|
2
+ |Mu|

2
+MtM†

u +MuM†
t (5.34)

contains an interference term between the two channels in addition to the invariant amplitudes
of both channels.
Because of this, it is useful to work with a generic matrix element My where the index y = 1

refers to the matrix element with four-momentum of the propagator of q21 = t and y = 2

pA k1

pA − k1

k2pB

D φ

φD̄

pA

pA − k2

pB

D φ

φD̄

k2

k1

Figure 5.4: The two Feynman diagrams for the annihilation process DD̄ → φφ with two vertices. The
crossed scalar lines in the diagram on the right just serve as an illustration that the momenta
of the scalars are switched compared to the diagram on the left - there is no self-interaction
between the scalars happening.
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refers to the matrix element with four-momentum of the propagator of q22 = u.
According to the Feynman rules of Appendix A, the matrix element is

My = v̄s2(pB)
(
−ı̂(gx + ı̂g′xγ

5)
)
·
(
ı̂

/qy +mD

qy2 −m2
D + ı̂ε

)
·
(
−ı̂(gx + ı̂g′xγ

5)
)
us1(pA) . (5.35)

The complex conjugate of the matrix element is

My
† = ūs1(pA)̂ı(gx + ı̂g′xγ

5) ·
(
−ı̂

/qy +mD

qy2 −m2
D + ı̂ε

)
· ı̂(gx + ı̂g′xγ

5)vs2(pB) (5.36)

because of the same identities outlined in section 5.2.1 to obtain Eq. 5.10.
Therefore, the general summand of the invariant amplitude becomes

MyMz
† =

1

4

2∑
s1,s2=1

MyMz
†

=
1

4
(
q2y −m2

D + ı̂ε
) (
q2z −m2

D − ı̂ε
) · Tr{(/pA +mD

)
(gx + ı̂g′xγ

5)
(
/qy +mD

)
×(gx + ı̂g′xγ

5)
(
/pB −mD

)
(gx + ı̂g′xγ

5)
(
/qz +mD

)
(gx + ı̂g′xγ

5)
}
.

≡ TrAyz

4
(
q2y −m2

D + ı̂ε
) (
q2z −m2

D − ı̂ε
) .

(5.37)

The trace over the matrix Ayz can be obtained by the same completeness relations Eq. A.5
used to obtain the traces in the three previous sections.
TrAyz can be expanded to a sum of terms containing traces over two and four Dirac matrices
by first using γ52 = 1 and {γµ, γ5} = 0 to obtain

TrAyz = Tr
{(
/pA +mD

) [
/qy(g

2
x + g′x

2
) +m(g2x − g′x

2
+ 2ı̂gxg

′
xγ

5)
]

×
(
/pB −mD

) [
/qz(g

2
x + g′x

2
) +m(g2x − g′x

2
+ 2ı̂gxg

′
xγ

5)
]} (5.38)

and then Tr(γµγµγ
5) = 0 as well as the fact that the trace of an uneven number of Dirac

matrices vanishes lead to

TrAyz = (g2x + g′x
2
)2Tr

[
/pA/qy/pB/qz

]
+m2

D(g
4
x − g′x

4
)Tr

[
/pB/qy + /pB/qz − /pA/qy − /pA/qz

]
+m2

D(g
2
x + g′x

2
)2Tr

[
/pA/pB − /qy/qz

]
− 4m4

D

(
(g2x − g′x

2
)2 − 4g2xg

′
x
2
)
.

(5.39)
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With the identities Eq. B.7 for the trace over four Dirac matrices and Eq. B.6 for the trace
over two Dirac matrices this becomes

TrAyz = 4(g2x + g′x
2
)2
[
(pAqy)(pBqz) + (pAqz)(pBqy)− (pApB)(qyqz) +m2

D(pApB − qyqz)
]

− 4m4
D

(
g4x + g′x

4 − 6g2xg
′
x
2
)
+ 4m2

D(g
4
x − g′x

4
) [pBqy + pBqz − pAqy − pAqz] .

(5.40)

To continue, the relativistic dot products need to be expressed in terms of the Mandelstam
variables for which it is necessary to look at the t-channel, u-channel and the interference
terms individually.

5.4.1 t-channel and u-channel

The trace TrA11 in the invariant amplitude of the t-channel and the TrA22 in the invariant
amplitude of the u-channel do not need to be calculated individually. The reason for this
can be seen from Eq. 5.5: Replacing q1 → q2 in the relativistic dot products appearing in
Eq. 5.40 gives the same results with the replacement t→ u.
Expressing the relativistic dot products with Mandelstam variables via Eq. 5.4 and Eq. 5.5
gives

TrA11 = 4(g2x + g′x
2
)2

[
−
(t+m2

D −m2
φ)

2

2
− (

s

2
−m2

D)t+m2
D(
s

2
−m2

D − t)

]
− 8m2

D(g
4
x − g′x

4
)
[
t+m2

D −m2
φ

]
− 4m4

D

(
g4x + g′x

4 − 6g2xg
′
x
2
) (5.41)

which can be expanded to terms in powers of t and gx to make the integration for the total
cross section down the line simpler:

TrA11 = − 2(g2x + g′x
2
)2t2 + 2g4x

[
(2m2

φ − s− 6m2
D)t− 9m4

D −m4
φ + 6m2

Dm
2
φ +m2

Ds
]

+ 2g′x
4 [

(2m2
φ − s+ 2m2

D)t−m4
D −m4

φ − 2m2
Dm

2
φ +m2

Ds
]

+ 4g2xg
′
x
2 [

(2m2
φ − s− 2m2

D)t+ 3m4
D −m4

φ + 2m2
Dm

2
φ +m2

Ds
]
.

(5.42)

Instead of expressing t over the scattering angle ϑ in some frame of reference and integrating
the differential cross section of Eq. 5.1 over the solid angle, it is easier to perform the integral
over the squared matrix element with t as the integration variable.
Because of the identity Eq. 5.6 connecting t and u, choosing u as the integration variable
yields the same integration interval. So the contributions of t-channel and u-channel to the
total cross section are identical.
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Therefore, the integral needed to calculate the contribution of both channels to the total
cross section is

I11 = 4

∫ m2
D−a+b

m2
D−a−b

|M1|2 dt =
∫ m2

D−a+b

m2
D−a−b

A11

(t−m2
D + ı̂ε)2

dt

with a =
s

2
−m2

φ, b =
1

2

√
(s− 4m2

D)(s− 4m2
φ) .

(5.43)

This expression does not diverge without the ı̂ε-terms as |a| > |b| with

a2 − b2 =
(
m2

φ − s

2

)2
−
(
1

2

√
(s− 4m2

D)(s− 4m2
φ)

)2

= m4
φ +

s2

4
−m2

φs−
s2

4
− 4m2

Dm
2
φ +m2

Ds+m2
φs

= m4
φ +m2

D(s− 4m2
φ) .

(5.44)

It is always s ≥ 4m2
φ as otherwise the decay is impossible by conservation of energy. Hence,

the ı̂ε-term in the denominator of the propagators can be set to 0 moving forward as they
only served to prevent a divergence.
With the anti-derivatives ∫

1

(t−m2
D)

2
dt = 1

m2
D − t

(5.45)

and
∫

1

t−m2
D

dt = ln(t−m2
D) , (5.46)

the indefinite integral ∫
t

(t−m2
D)

dt = ln(t−m2
D) +

m2
D

m2
D − t

(5.47)

can be obtained by adding ±m2
D in the numerator and the anti-derivative

∫
t2

(t−m2
D)

dt = 2m2
D ln(t−m2

D) +
m4

D

m2
D − t

+ t (5.48)

by completing the square in the numerator. Using these indefinite integrals, the definite
integral I11 becomes

I11 =
[
2(g2x + g′x

2
)2(2m2

φ − s)− 16g2x(g
2
x + g′x

2
)m2

D

]
ln

(
a− b

a+ b

)
− 4(g2x + g′x

2
)2b (5.49)

+
[
−2(g2x + g′x

2
)2m4

φ + 16g2x(g
2
x + g′x

2
)m2

Dm
2
φ − 32g4xm

4
D

] 2b

a2 − b2
.
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5.4.2 Interference term

In case of the interference terms TrA12 and TrA21 it is again sufficient to calculate one of
the two as both terms are identical. This follows from Eq. 5.40 which is unchanged when the
indices x and y are switched.
Expressing Eq. 5.40 for x = 1 and y = 2 in terms of the Mandelstam variables gives

TrA12 = 2(g2x + g′x
2
)2
{
−(t+m2

D −m2
φ)(u+m2

D −m2
φ)

−(s− 2m2
D)(m

2
D −m2

φ) +m2
D(s− 2m2

D + 2m2
φ − 2m2

D)
}

− 4(g4x − g′x
4
)m2

D(t+m2
D −m2

φ + u+m2
D −m2

φ)

− 4m4
D

(
g4x + g′x

4 − 6g2xg
′
x
2
) (5.50)

Expanding this into terms in powers of gx allows all but the isolated u to be eliminated due
to Eq. 5.6 connecting t and u to give

TrA12 = 2(g2x + g′x
2
)2
(
m2

D(2m
2
φ − s) +m4

φ +m4
D − tu)

)
+ 8g4x(s− 4m4

D) + 8g2xg
′
x
2
s .

(5.51)

For the integration to obtain the contribution to the total cross section the remaining u can
be expressed in terms of t, again with Eq. 5.6, to give

TrA12 = 2(g2x + g′x
2
)2
(
m2

D(2m
2
φ − s) +m4

φ +m4
D − t(t+ s− (2m2

D +m2
φ)))

)
+ 8g4x(s− 2m4

D) + 8g2xg
′
x
2
s .

(5.52)

The contribution to the total cross section of the interference term is proportional to the
integral

I12 =4

∫ m2
D−a+b

m2
D−a−b

M1M2
† dt =

∫ m2
D−a+b

m2
D−a−b

A12

(t−m2
D)(u−m2

D)
dt

with a =
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2
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φ, b =
1

2

√
(s− 4m2

D)(s− 4m2
φ) .

(5.53)

The most straightforward way to calculate this integral is starting with the anti-derivative∫
1

(t−m2
D)(n− t)

dt =
ln(t−m2

D)− ln(t− n)

n−m2
D

(5.54)

which can be obtained by using partial fractions and the standard integral Eq. 5.46. From
there, ∫

t

(t−m2
D)(n− t)

dt =
m2

D ln(t−m2
D)− n ln(t− n)

n−m2
D

(5.55)
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follows by adding ±m2
D to the numerator and using the same standard integral Eq. 5.46 .

Finally, ∫
t2

(t−m2
D)(n− t)

dt =
m4

D ln(t−m2
D)− n2 ln(t− n)

n−m2
D

− t (5.56)

can be found by adding ±(n −m2
D)t ± nm2

D) to the numerator, regrouping the terms and
making use of both of the previous anti-derivatives.
In the concrete case of I12, there is n = m2

D − 2a and hence with the boundaries of Eq. 5.53
the integral becomes

I12 = 4(g2x + g′x
2
)2

[
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+
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2
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D

)
ln
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)
.

5.4.3 Total cross section

With the results of Eq. 5.49 for the integrated invariant amplitude of the t- and u-channel
and Eq. 5.57 for the interference term, the total cross section becomes

σDD̄→φφ =
α

64πs|~pi|2
I11 + I12

2
(5.58)

due to Eq. 5.8 for the differential cross section in terms of t. Here, the factor α in front
becomes relevant because the outgoing φ are identical particles and therefore needs to be set
to 1/2.
Hence, the final cross section of the process DD̄ → φφ is

σDD̄→φφ =
1

32πs(s− 4m2
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{[
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+
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2

√
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D)(s− 4m2
φ) and s ≥ 4 ·max(m2

D,m
2
φ) .

The most striking difference to the cross section of the process DD̄ → νν̄ is the presence of
a logarithmic term. The condition s ≥ 4 ·max(m2

D,m
2
φ) comes from conservation of energy.
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The case considered in the numerical analysis is gx = g′x which has the more compact cross
section

σDD̄→φφ =
1

8πs(s− 4m2
D)

[
−
(
2m2

D(s− 6m2
φ) + 3m4

φ + 4m4
D

) 2b
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(5.60)

+
s2 + 8m2

D(s−m2
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φs+ 6m4
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φ

ln
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2

√
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φ) and s ≥ 4 ·max(m2

D,m
2
φ) .

5.5 〈σv〉 at rest

For the numerical analysis of the following chapters, an approximation of 〈σv〉 for low tem-
peratures is useful. In general, such an approximation can be obtained by expanding σv in
powers of v2 around v = 0 which leads to an expansion of 〈σv〉 in powers of 1/x [see 15,
pp. 157]. For the purposes of this thesis, considering so called s-wave annihilation where
〈σv〉 = σv at v = 0 is sufficient.
〈σv〉 is not identical to 〈σvMøl〉. It uses the relative velocity v of the annihilating particles in
the lab frame where one of the particles is at rest instead of the Møller velocity vMøl defined
in Eq. 4.6. In the limit of v → 0, both become identical and 〈σv〉 = 〈σvMøl〉 [15, pp. 154].
The reason these limits are calculated for σv is that in the lab frame, there is

s = 2m2

(
1 +

1√
1− v2

)
⇐⇒ v =

√
s
√
s− 4m2

s− 2m2
D

. (5.61)

With this connection,

lim
v→0
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for the annihilation cross section into two neutrinos of Eq. 5.32 follows. For the annihilation
cross sections into two scalars of Eq. 5.60, the result is

lim
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D
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)2 (5.63)
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for mD ≥ mφ since the limit of the logarithmic term is

lim
s→4m2

D

√
s− 4m2

D

−1

ln

(
a+ b

a− b

)
=

2
√
m2

D −m2
φ

2m2
D −m2

φ

. (5.64)

For mD < mφ, the annihilation is not possible for v = 0 as s < 4m2
φ would violate conservation

of energy and so limv→0 σDD̄→φφv = 0.
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6 Numerical Solution of the Boltzmann
Equation

In this chapter, the analytical cross sections obtained in the previous chapter are used to
constrain the possible values of the masses mD and mφ as well as the couplings gx and gn

by numerically solving the differential equation Eq. 4.12 and comparing the resulting yield
to the observed relic density of Ωch

2 = 0.120 ± 0.001. This significantly restricts the viable
parameter space of the model.
The simulation is implemented in MATLAB [19] and compared to results obtained from micrOMEGAs [20].

6.1 Implementation in MATLAB

MATLAB provides multiple solvers for Ordinary Differential Equations (ODE) and therefore
makes the numerical simulation relatively straightforward. These solvers automatically adjust
the step width according to the stiffness of the equation and also allow the user to specify the
desired errors. These features are crucial for the ODE at hand because the resulting function
Y (x) follows the exponentially decreasing equilibrium yield Yeq for x . 1 and then decouples
from it to become constant for x & 50. Hence, small x require small step widths of 10−5 and
below, while for large x even steps of O(1) can be taken without sacrificing accuracy.
The chosen solver is called ode15s, uses the variable order method and is the most precise
solver for stiff problems [21]. The line of code

1 [ x ,Y] = ode15s (@(x ,Y) BoltzmannEquation (x ,Y, massDCurrent , massPhiCurrent , . . .
2 gXCurrent , gNuCurrent , constWithSqrtG , gInterna l , decayWidthOfPhi , . . .
3 gstar_tmp , heff_tmp ) , c r i t i c a l I n t e r v a l , i n i t i a lCond i t i on , opt ions ) ;

uses it to extrapolate the Boltzmann equation 4.12 for the Yield Y in terms of x over the
interval specified in criticalInterval and stores the evaluated points for x and Y as col-
umn vectors in the variables of the same name. The 1× 2 matrix criticalInterval has the
starting point xs as the first and the end point xe as the second element. The starting point
for the broader scans of Section 6.4 onward is xs = 1, the sections before use xs = 0.3) and
xe = 350 as the end point.
The argument initialCondition contains the yield Y0 ≡ Y (xs). At x . 1 the thermally
averaged cross section will be so large that Y (x) = Yeq(x) and so the initial condition is
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Y0 = Yeq(xs) This holds for all parameters investigated in this thesis. However, for small
enough couplings the freeze-out happens even before this point.
The argument options contains a number of optional parameters for the solver. Most im-
portantly, these are relative and absolute error tolerances. The absolute error tolerance is set
to be ignored because of the exponentially decreasing yield.
Finally, the function BoltzmannEquation implements the right hand side of Eq. 4.12 with
the 〈σvMøl〉 as Eq. 4.26 where the total cross section is σ = σDD̄→φφ + σDD̄→νν̄ . It takes
the four parameters of the model as arguments as well as constants which do not need to be
calculated in every step of the iteration. Moreover, the interpolants gstar_tmp and heff_tmp

for the effective degrees of freedom are passed as arguments to this function so that they do
not have to redefined every time BoltzmannEquation is called.
Using ode15s to continue the solution until today’s photon temperature T0 is inefficient be-
cause for the relevant masses in the GeV to TeV range, T0 = (2.725 28 ± 0.000 57)K [22]
(corresponding to T0 = (234.891± 0.049)µeV in natural units) is reached when x is at least
of order 1013. The more efficient solution is to drop Yeq from the differential equation Eq. 4.1
at some temperature Td after freeze-out where Y � Yeq. This differential equation has the
integral solution

1

Y (T0)
=

1

Y (Td)
+

√
π

45G

∫ Td

T0

√
g∗〈σvMøl〉dT . (6.1)

After x ≈ 350 the Bessel functions in the formulas cause underflow errors. Therefore, the
above equation is used after Td = mD/350 and 〈σvMøl〉 is replaced by the σv at v = 0 from
Section 5.5.
The formula for the relic density today is

Ωch
2 =

ρc
ρcrit

h2 = 2
mDY (T0)s(T0)

3/ (8πG)

(
100

Mpc

km · s

)−2

= 2 · 1.3775 · 107Y (T0)
mD

GeV

T 3
0

K3
(6.2)

because heff(T0) = 3.9387 [13]. The factor of 2 accounts for D and D̄.

6.2 Evolution of the yield with temperature

Before delving into broader scans of the parameter space focused on Ωch
2, it is useful to look

at the raw output of ode15s to check whether the resulting curves for the yield match the
expected shape shown in Fig. 4.1. As a representative example, Fig. 6.1 shows Y as a function
of x for different couplings gx with all other parameters staying identical. The resulting curves
match the expectations perfectly: For x . 10 the yield follows the equilibrium distribution
and then decouples to become essentially constant for x & 200. This happens later for higher
gx and thus higher cross sections which leads to a lower final yield.
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Figure 6.1: Yield Y as a function of x with mD = 50GeV, mφ = 5GeV and gn = 0.1 compared to the
equilibrium distribution Yeq.

Another interesting parameter to look at is the ratio between the masses of the scalar and
the fermion R = mφ/mD. For ratios below R . 1/5, this has almost no impact on the cross
section because all terms containing mφ are in even powers and therefore suppressed by at
least a factor of 1/25. For higher R, there are two competing effects from the two annihilation
channels.
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Figure 6.2: Yield Y as a function of x with
mD = 50GeV and gx = gn = 0.1 com-
pared to the equilibrium distribution Yeq.

The cross section σDD̄→νν̄ monotonously in-
creases with R in the region of the param-
eter space with R < 2 which this thesis in-
vestigates. Hence, the final yield should be-
come lower for increasing R if this process
is dominant. However, since the cross sec-
tion σDD̄→φφ monotonously decreases with
R, these effects almost cancel out for R . 1.2

if the couplings gx and gn are identical. This
can be seen in Fig. 6.2. For higher R, the
process DD̄ → φφ becomes kinematically in-
accessible - since it requires the fermions to have a significant amount of kinetic energy if
they are lighter than the scalars - so early on that the process DD̄ → νν̄ is most relevant
and the final yield decreases. These properties of the cross sections are dealt with in more
detail in the following Section 6.3.
Fig. 6.3 shows the freeze-out for different R when 〈σvMøl〉 is dominated by one of the two
processes because of a disparity between the couplings and thus isolates the behavior of the
cross sections discussed above. So while the final yield decreases with R in Fig. 6.3a where
the process DD̄ → νν̄ is stronger by a factor of ∼ 100 because of the couplings, the same
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Figure 6.3: Yield Y as a function of x with mD = 50GeV. The figure on the left shows curves where
gx = 0.01 and gn = 0.1 and therefore the annihilation into neutrinos is dominant. Here, the
final yield increases with the mass ratio R = mφ/mD. In the figure on the right, there is
gx = 0.1 and gn = 0.01, and hence the annihilation into scalars is the primary process. For
R > 1, the decay into neutrinos becomes increasingly important.

cannot be said for the opposite case shown in Fig. 6.3b. Here, the final yield increases with
R but then drops off again when R becomes significantly larger than 1. This is again because
DD̄ → φφ becomes kinematically inaccessible for low temperatures and so the annihilation
into neutrinos is dominant regardless of the choice of couplings.
An important observation to make is that 〈σvMøl〉 decreases quadratically when the absolute
mass scale is increased, i.e. higher mD but R stays constant. This follows from the substitu-
tion s̃ = s/m2

D in 〈σvMøl〉 (see Eq. 4.26) and the fact that σ has units of GeV−2. The right
hand side of the differential equation Eq. 4.1 contains an additional factor mD as well as the
degrees of freedom g∗. The latter only varies about a factor of 10 from the early universe
until today. Hence, an increase in the mass scale makes the right hand side of Eq. 4.1 smaller
and amounts to a higher final yield. This can be seen in Fig. 6.4.
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Figure 6.4: Yield Y as a function of x with for different mD in units of GeV. The other input
parameters are gx = gn = 0.1 and R = 0.4. As argued above, the yield increases with mD.
Yeq shown in the plot is for mD = 10GeV.



6 Numerical Solution of the Boltzmann Equation 41

The reason the yields are not quite identical for small x in this figure lies in the fact that the
equilibrium distribution depends not only on x but also the absolute temperature through
the degrees of freedom heff(T ). Yeq shown in the plot is for mD = 10GeV.

6.3 Interaction rates and 〈σvMøl〉

The previous section alluded to the behavior of the two different cross sections included in
〈σvMøl〉. Fig. 6.5a shows 〈σvMøl〉 with just σDD̄→νν̄ and σDD̄→φφ for different values of R.
While σDD̄→νν̄ increases with R, σDD̄→φφ decreases and does not stay finite for R > 1 but
instead rapidly decreases with temperature T because the DM particles rarely have enough
energy for T � m to enable an annihilation into two scalars. In any case, for gx = gn like in
Fig. 6.5a DD̄ → νν̄ is always the dominant process.
An important aspect visible in Fig. 6.5a is that if 〈σvMøl〉 stays finite for a process, it asymp-
totically approaches a maximum value. Since both cross sections scale ∝ 1/s - disregarding
mass terms - and their values at higher s are exponentially suppressed in the thermal average
(see Eq. 4.26), this value is just 〈σvMøl〉 at T = 0 which is σvMøl at s = 4m2

D. This property
is useful in the following Chapter 7.
The same dependency of 〈σvMøl〉 on T also translates into the interaction rates Γ = n〈σvMøl〉.
As explained in the beginning of Chapter 4, these should only drop below the Hubble pa-
rameter H when n decouples from the equilibrium distribution. Fig. 6.5b shows that this is
indeed the case. However, if the couplings are decreased by more than approximately two
orders of magnitude, then the interaction rate is lower than the H for all values of x shown
here. In this case, freeze-out happens for x� 1 if at all and the approach of Chapter 4 fails.
Fortunately, such couplings produce a relic density orders of magnitude above the observed
values and so this case is generally not relevant.
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Figure 6.5: (a) 〈σvMøl〉 for both relevant annihilation processes with gn = gx = 0.1 and mD = 50GeV
as a function of x. (b) The interaction rates n〈σvMøl〉 compared to the Hubble parameter H
for mD = 50GeV and gx = gn = 0.1
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6.4 Restriction through the final relic density

Without further ado, Fig. 6.6 shows one scan of the parameter space for constant couplings
gx = gn = 0.1 as a heat map, in which relic densities with 0.11 < Ωch

2 < 0.13 are highlighted
in green. For R . 0.25, this parameter has negligible impact on the final relic density and
the necessary dark matter mass mD is around 50GeV. Until the mass of the scalar reaches
the dark matter mass at R = 1, the necessary dark matter mass increases slightly due to the
fact that the cross section for the annihilation into neutrinos increases slightly faster than
the cross section for the annihilation into scalars decreases. This changes at R = 1 when the
process DD̄ → φφ is no longer possible at rest, i.e. the thermally averaged cross section times
velocity for this processes rapidly decreases for temperatures T � mD. Past this point, the
required mD increases rapidly with R, reaching mD ≈ 550GeV for R = 1.9 because σDD̄→νν̄

increases rapidly in this regime as the resonance occurs at s = m2
φ which can be met for R ≥ 2.
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Figure 6.6: A logarithmically scaled heat map showing the relic density Ωch
2 for gx = gn = 0.1

obtained from the MATLAB simulation. The green region marks where 0.11 < Ωch
2 < 0.13 is

fulfilled.

The qualitative behavior of the relic density Ωch
2 stays the same for all couplings but shifts

in the mass axis as is to be expected from the behavior of the yield discussed in the previous
section: Higher couplings decrease the final yield for identical masses and so the mass required
to meet the observed relic density increases. If the coupling gn becomes stronger relative to
gx the shift at R = 1 disappears because the annihilation into scalars is then always negligible
and conversely if gx is the stronger coupling the shift becomes more pronounced.
As a result, Eq. 3.15 limiting the decay width of φ to less than 1 s is almost irrelevant. It
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only excludes extremely small values of both gn or mφ.

6.5 Comparison to the results from micrOMEGAs
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Figure 6.7: A logarithmically scaled heat map showing the relic density Ωch
2 for gx = gn = 0.1

obtained from micrOMEGAs. The green region marks where 0.11 < Ωch
2 < 0.13 is fulfilled.

micrOMEGAs is a well established software which numerically solves the Boltzmann equation
as well as determines exclusion limits from direct as well as indirect detection from a variety
of sources. The code as well as the documentation can be found here [20]. It requires the
dark matter model to be specified in .mdl-files. For the Lagrangian of this thesis, this task
has kindly been performed by Dr. Amin Abou Ibrahim.
Unfortunately, the possibilities of micrOMEGAs with respect to dark matter detection are
mostly not applicable to the model investigated here as it only couples to neutrinos. There
is a possibility to compare the generated neutrino flux with results of IceCube22 to check
whether these are sufficient to exclude the model indirectly but the method used in the follow-
ing chapter allows to include more neutrino detection experiments for the indirect exclusion
limits thanks to the work done in [23]. Therefore, the only functionality used here is the
solution of the Boltzmann equation to obtain the resulting relic density.
Fig. 6.7 shows the results from microOMEGAs_5.3.41 for the same parameters as Fig. 6.6.
The python script used to loop over different model parameters has been provided by Dr.
Amin Abou Ibrahim.
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The qualitative behavior is identical to the results from MATLAB presented in the previous sec-
tions. However, looking at the relative difference between the calculated relic densities from
MATLAB and micrOMEGAs plotted in Fig. 6.8 shows that there is a systematic discrepancy be-
tween the two simulations although the results from MATLAB and micrOMEGAs generally differ
by less than 5 %.
The differences are partially due to the s-wave approximation after x = 350 which overesti-
mates 〈σvMøl〉. The impact of this shortcoming is especially pronounced for high R due to
the resonance of σDD̄→νν̄ as well as low masses mD since σ increases quadratically when mD

is decreased and R is kept constant (this is discussed at the end of Section 4.2 as well). Both
combine to cause a relative difference of as low as −15% for R→ 2 and mD = 1GeV.
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Figure 6.8: A heat map showing of the relative deviations between the results of micrOMEGAs and
MATLAB. The results generally deviate by less than 5 %. However, for large R and small mD

the difference increases due to the resonance in σDD̄→νν̄ . The blue region shows where the
relative difference is less than -5 % as otherwise the other features become indistinguishable.

Apart from this region, the difference is especially pronounced for masses around 7GeV re-
gardless of the other parameters which indicates that the another source for the differences
might lie with the degrees of freedom g∗. These have a sharp drop around 150MeV because
of the QCD phase transition. The precise shape of this drop is the biggest difference between
different approaches to calculating the degrees of freedom. For masses of a few GeV, this
drop occurs right after decoupling and therefore has a significant impact on the relic density.
This is what Drees et al. found in their paper as well from which the degrees of freedom used
in the MATLAB code are taken from [13].
This paper compared multiple sets of the degrees of freedom for generic forms of 〈σvMøl〉,
namely proportional to 1/x and a constant 〈σvMøl〉 chosen so that Ωch

2 = 0.1193. Fig. 6.9a
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Figure 6.9: (a) The relative difference between the results from MATLAB and micrOMEGAs for different
couplings at R = 0.5. (b) For comparison, this plot from [13] shows the impact of different sets
for the degrees of freedom on pure p-wave annihilation with 〈σvMøl〉 = x−1 · 1.2 · 10−24 cm3/s.
The simulation in MATLAB uses the degrees of freedom from [13] and micrOMEGAs those labeled
‘Gondolo & Gelmini’ [24]. Fig. 6.9a reproduces many of the features seen in Fig. 6.9b but in
addition there are systematic discrepancies because of the s-wave approximation.

compares the relative difference between the MATLAB and micrOMEGAs simulation for different
couplings and Fig. 6.9b shows the results of [13] for a generic 〈σvMøl〉 of x−1 ·1.2 ·10−24 cm3/s.
The bright green curve marked as ‘Gondolo & Gelmini’ is what one would roughly expect
to be the result from comparing the simulation in MATLAB to micrOMEGAs since the paper by
Gondolo and Gelmini [15] uses the same source for their degrees of freedom heff and geff as
micrOMEGAs (see [15, p. 159] and [24, p. 8]): two papers from Olive et al. from 1981 [25] and
1988 [26].
And indeed, the same patterns found in [13] show up in Fig. 6.9a, especially the peak in
the relative deviations at masses of a few GeV. Its position shifts towards smaller masses
for lower couplings since then the decoupling happens slightly earlier but the general shape
stays. Furthermore, the relative differences for the smallest couplings gx = gn = 0.01 shown
in Fig. 6.9a have another peak at mD ≈ 450GeV which is what can be seen in Fig. 6.9b
for masses around 1TeV as well. For higher couplings, this peak occurs after 1TeV and is
therefore not visible in Fig. 6.9a.
The reason that the relative difference becomes negative for masses of . 3GeV is that 〈σvMøl〉
increases when mD is decreased and so the s-wave approximation is worse. This leads to a
too low relic density.
There are two more differences which in principle contribute to the systematic differences but
have completely negligible impact. The first is that micrOMEGAs uses 1.1 · Yeq as the initial
condition [20] whereas the MATLAB code uses just Yeq. Since before decoupling, Y tends to-
ward Yeq, the influence on the results of such a small difference is irrelevant.
The second is the approximate solution Eq. 6.1 which micrOMEGAs uses after Y ≥ 10Yeq [20]
whereas the MATLAB code uses it for x ≥ 350. For both cases, the influence of Yeq is always



46 6 Numerical Solution of the Boltzmann Equation

negligible.
Another improvement would be to include the particles of the hidden sector in the effective
degrees of freedom geff(T ) and heff(T ) since they also contribute to the total energy and
entropy densities. Freeze-out happens for mD > T where their contribution is already ex-
ponentially suppressed (see Eq. 3.10) and Eq. 6.2 for the final relic density only explicitly
depends on the entropy density which the frozen-out particles do not contribute to. So would
not change the relic density by much and is also not implemented in micrOMEGAs.

6.6 Using bisection to restrict the parameter space

All analysis up to now was done by looping over different values for the model parameters.
This works well enough but is rather inefficient since the scan Fig. 6.6 shows that even the
restriction Ωch

2 = 0.120 ± 0.010, a tolerance of 10 times larger than the uncertainty of the
experimental value [1], excludes the vast majority of the parameter space. Therefore, if a
more detailed restriction of the viable parameter space is desired simply looping will evaluate
a lot of points whose relic density is off by orders of magnitude.
A better option is to use the observation from Section 6.2 that Ωch

2 monotonously decreases
with gx and monotonously increases with mD if R, gn and the respective other parameter
are kept constant 5.
This means that bisection can be used to find the parameters producing the desired relic
density more efficiently. The code in Appendix C implements this with the bisection being
done for the parameter gx while all other parameters are still simply looped over. The code
could easily be changed to a bisection in mD if desired. In this case, the initial condition has
to be reset for each step.
Fig. 6.10 illustrates the procedure of the bisection code. It starts by solving the Boltzmann
equation for one coupling which produces a too high relic density and one which produces a
too low relic density. Both of these have to be set manually. For the model at hand, gx = 10−4

produces a too high relic density for almost all investigated masses. While Section 6.3 shows
that this coupling is so low that the freeze-out happens before the simulated interval of x
for some masses, this does not impact the functionality of the code as then the relic density
is above the observed values by orders of magnitude. The simulations give the same result
and even though the precise value might be far off, this is of no consequence for a bisection
algorithm.
A sensible choice for a coupling producing too low a relic density is gx =

√
4π. This is because

for higher couplings, the matrix element for the self-scattering process DD̄ → DD̄ will always
5 The relic density will also be monotonous in gn for the most part. However, at the resonance s = mφ of
σDD̄→νν̄ ∝ g−2

n and so there will be issues for some parts of the parameter space.
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Figure 6.10: An example of the procedure implemented in the simulation code in Appendix C: The
blue points represent the simulated gx, which up to the x-shaped marker are the geometric
mean of current upper and lower bound on gx and exclude values for gx, which do not produce
the desired relic density. The excluded values are shaded red. In this figure, the desired relic
density is set to 0.11 < Ωch

2 < 0.13. The x-shaped marker shows, where the relic density
is first in this interval. After that, bisection is used to approximate Ωch

2 = 0.11 and then
Ωch

2 = 0.13, which widens the green shaded region, which shows where 0.11 < Ωch
2 < 0.13

is met.

exceed unity when integrated over the angle of both outgoing particles and only the simplest
diagram (Fig. 5.3 with the neutrinos replaced by D and D̄) is considered.
After these initial values, the code solves the Boltzmann equation for the coupling that is the
geometric mean of the highest coupling producing a relic density over a specified threshold and
the lowest coupling producing a relic density under another specified threshold. The geometric
mean is the better choice compared to the usual arithmetic mean since the coupling has a
roughly exponential effect on the relic density and the geometric mean takes the arithmetic
mean of the logarithms:

√
ab =

√
exp (ln a+ ln b) = exp

(
ln a+ ln b

2

)
(6.3)

The function CloseInBoundaries then checks whether the relic density is too high, too low or
fits within the desired interval set in the file Parameters.m as densityBoundaries. As long as
it does not fit, bisection continues up to a maximum number of steps and in this way excludes
an increasing amount of the parameter space. In Fig. 6.10, this is shaded red. The current
parameters closest to producing the desired relic density are stored in currentBounds. If the
relic density is within the desired interval, which in Fig. 6.10 first happens after 7 iterations,
the code proceeds to bisect on the edges of the region which produces the correct relic density
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Figure 6.11: The shaded areas show the region where the condition 0.11 < Ωch
2 < 0.13 is met. The

coupling gn is set to 0.1 in this plot.

through the function FindNewBoundaries. This way, the region which is known to give the
desired relic density, shaded green in Fig. 6.10, and the region which is known to not give the
desired relic density come increasingly closer together.
In Fig. 6.11, the resulting regions with the desired relic density are plotted as a function of
mD. As is to be expected, the required gx increases monotonously with mD and decreases
with R for R & 1. For R < 1 and mD & 500GeV, the required gx exceeds 0.1 and as the
plot uses gn = 0.1, this means that here DD̄ → φφ takes over and the total 〈σvMøl〉 now
scales quartically instead of quadratically with gx. As a result, the required gx increases more
slowly with mD. Additionally, the width of the interval in gx fulfilling 0.11 < Ωch

2 < 0.13

appears to increase exponentially with mD.
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7 Restrictions from the Measured Neutrino
Flux

Since the DM of this model couples to neutrinos, annihilations produce a flux of neutrinos
which can be measured and turned into limits on the model parameters. This has been done
independent of the specific model in [23] by Argüelles et al. for a variety of neutrino detection
experiments.
The results of their calculations for s-wave annihilations into two neutrinos are shown in
Fig. 7.1. Since the expected flux is proportional to the thermally averaged self annihilation
cross section times velocity into all neutrino flavors 〈σv〉, the measured flux gives upper limits
on the size of this cross section independent of the specific model which currently exclude
the shaded regions in Fig. 7.1. The dashed lines show the expected results from future
experiments.

Figure 7.1: Fig. 2 of [23]: It illustrates the excluded regions for 〈σv〉 into all neutrino flavors in the
case of s-wave annihilation through the measured neutrino flux (solid lines/ shaded regions)
and projected measurements (dashed lines). The black dotted line shows the required 〈σv〉
to produce the observed relic abundance, if 〈σv〉 is constant. The limits shown are for single
particle Majorana DM and need to be multiplied by a factor of 2 for single particle Dirac DM
like the model of this thesis.
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The limits of Fig. 7.1 are for a Majorana DM particle and need to be multiplied by a factor of
2 for Dirac DM which is the case of this model. Additionally, the limits in Fig. 7.1 hold only
for s-wave annihilation, that is when 〈σv〉 can be approximated as σv at v = 0. In principle,
〈σv〉 at small temperatures T � mD can be obtained by expanding σv in powers of v2 which
leads to an expression for 〈σv〉 in powers of T [see 15, pp. 157]. There are models, where
most annihilations even at today’s temperature of T0 = (234.891 ± 0.049)µeV [22] do not
happen at v = 0 and hence [23] also calculates limits for the higher order p− and d−wave
annihilations (∝ v2 and ∝ v4, respectively) but these are a lot weaker and not relevant to
the model of this thesis. The s-wave approximation of 〈σv〉 for this model can be found in
Section 5.5.
The calculations of [23] only take into account annihilations into two neutrinos. For the
model of this thesis, the scalar portal φ also decays into neutrinos and as the annihilations
happen at rest this means that the process DD̄ → φφ is only possible for mD ≥ mφ. With
this condition, φ always decays into two neutrinos and so DD̄ → φφ effectively produces four
neutrinos, each with an energy of mD/2. Since the limits of Fig. 7.1 are not strongly dependent
on the neutrino energy, the total cross section on which the limits of Fig. 7.1 are imposed
can be approximated by

〈σv〉 = 〈σDD̄→νν̄v〉+ 2〈σDD̄→φφv〉 (7.1)

for v = 0. The correct treatment of decays into four neutrinos would require the limits of
Fig. 7.1 to be recalculated which is a task out of the scope of this thesis.
The cross sections were calculated in Section 5.5 and are now used to turn the limits shown
in Fig. 7.1 into limits on the parameter space of the model of this thesis. The relevant data
sets have been provided by the authors of [23] on request of Dr. Amin Abou Ibrahim and
the projected limits on KM3NeT have been extracted from the plot using WebPlotDigitizer

[27].

7.1 Limits on the parameter space

Today, indirect detection via the neutrino flux imposes no additional constraint to the ob-
served relic density which agrees with the findings of [23]. Fig. 7.2 shows the regions excluded
through the neutrino flux for gx = gn, both from existing detection data and projected ex-
periments, as well as the parameters, for which the relic density from the simulation with
MATLAB fulfills 0.11 < Ωch

2 < 0.13.
In the mass range around 10GeV where the limits of Fig. 7.2 occur, these are set by the data
from Super-Kamiokande (SK) and the projected sensitivity of Hyper-Kamiokande (HK). For
larger couplings than gx = gn = 0.1 which are used for Fig. 7.2, the projected sensitivity of
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KM3NeT comes into play but is also not sufficient to exclude any portion of the parameter
space which leads to the observed relic density.
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Figure 7.2: Parameter space excluded by the observed neutrino flux for gx = gn = 0.1 compared to
combinations of mD and mφ with a relic density of 0.11 < Ωch

2 < 0.13. The latter is obtained
from a simulation with micrOMEGAs. The basis for the limits shown is the work of [23].

While not even next-generation neutrino detectors will be sufficient to rule out this DM model,
it is promising that the gap between the DM masses excluded by neutrino detection and the
DM masses leading to the observed relic density shown in Fig. 7.2 is likely to be almost halved
by neutrino detection experiments currently under construction/ in planning.
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8 Conclusion and Outlook

This thesis investigates the hidden sector specified in Section 2.3 as an extension of the
standard model to explain the observed DM relic density of Ωch

2 = 0.120± 0.001 [1].
For this purpose, the Boltzmann equation Eq. 4.12 needs to be solved numerically. This
differential equation contains the annihilation cross sections of the DM candidate, the leading
order of which is calculated using Feynman rules in Chapter 5. These cross sections are then
used to solve the Boltzmann equation in MATLAB.
The results of the simulations is best summarized in Fig. 6.6: The restriction to the observed
relic density only allows for a very limited mass region for set couplings. However, since there
are almost no other restriction on the parameters, the couplings are not limited and so a wide
range of masses remains viable.
Comparing the results for the relic density of micrOMEGAs to those of MATLAB shows systematic
differences with two main contributions: One are the values used for the degrees of freedom
and the other is the fact that the simulation in MATLAB uses an s-wave approximation to
extrapolate until today’s temperature. The total error generally stays within 5 % but increases
rapidly around the resonance of σDD̄→νν̄ to values of up to 15 %. A better approximation
would be to include the higher order p-wave annihilations or to approximate the modified
Bessel functions for low temperatures instead of the cross sections.
In principle, other restrictions include the decay width of the scalar mediator φ which has
to be limited to < 1 s so that no additional neutrinos are injected during the decoupling
of protons and neutrons as predicted by ΛCDM. However, this restriction only excludes
extremely light mφ and very small couplings to neutrinos.
More importantly, the DM model produces a flux of neutrinos which can be compared to
the observed neutrino flux. As Fig. 7.2 shows, the data of existing experiments excludes
masses within an order of magnitude of those necessary to explain the observed relic density
and the next generation of neutrino detectors is expected to almost halve this gap. So while
neutrino detection is not yet sensitive enough to exclude additional parts of the parameter
space, progress is being made.
There is further work to be done in studying this model. This includes the case of heavy φ

with mφ ≥ 2mD as well as the case when φ is not in equilibrium during the decoupling of
D and D̄. Both require coupled differential equations for φ, D and D̄. In addition, there is
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also the case of non-diagonal couplings gnij and g′nij to consider. And beyond that, a freeze-in
scenario as opposed to the freeze-out studied in this thesis is another possibility.
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A Feynman Rules

Feynman rules are a powerful tool to calculate the matrix element M for all kinds of pro-
cesses. They allow the elements in the Feynman diagram of the process to be identified with
expressions so that the whole Feynman diagram not only functions as a visualisation of the
process but also encodes M.
The two dimensions of Feynman diagrams correspond to an axis of time and one of space. In
the diagrams shown in this thesis, the earliest events in time are on the left while the latest
are on the right. The direction from top to bottom represents different points in space.
The Lagrangian of the hidden sector Eq. 2.2 allows for two kinds of vertices, one which cor-
responds to an interaction between two DM fermions and the scalar φ and another which
corresponds to an interaction between to neutrinos and the scalar φ. Both interactions are a
Yukawa coupling, the Feynman rules for which are derived e.g. in [17, pp.116]. The vertices
can be equated to the respective couplings

φ

D̄

D

= −ı̂(gx + ı̂g′xγ
5) φ

ν̄

ν

= −ı̂(gn + ı̂g′nγ
5) . (A.1)

These equations hold regardless of the orientation of the vertex. In the form above they
represent the decay of the scalar but for the purposes of the vertex factor, this is of no
consequence.
The above Eq. A.1 makes use of the usual way to represent both scalars and fermions.
Dotted lines are scalars. External scalars, which are connected to one vertex, and scalar
propagators, which are connected to vertices on both ends and therefore neither an incoming
nor an outgoing particle, have different Feynman rules. They are

φ = 1 and
q

= ı̂
q2−m2

φ+ı̂ε
. (A.2)

The ı̂ε prevents a divergence of the fraction and can be set to 0 at the end of the calculation.
Fermions are represented by solid lines with arrows in the middle. If the arrow on the line
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points in the direction of negative time, the line represents an anti-fermion. For the four
cases of in- and outgoing fermions and anti-fermions, the Feynman rules are

p

D = us(p),

p

D̄ = v̄s(p),

p

D = ūs(p) and
p

D̄ = vs(p) .

(A.3)
us(p) are the general four-spinor solutions to the Dirac equation of a free particle with mo-
mentum p and the index s = 1, 2 is for the two possible spin states. That is, they fulfill

(̂ıγµ∂µ −m)ψ = 0 with ψ = us(p)e−ipνxν (A.4)

vs(p) are the corresponding negative energy solutions, which are identified with the anti-
particle solutions. The barred quantities are defined by w̄ = w†γ0. These fulfill the com-
pleteness relations

∑
s=1,2

ūs(p)us(p) = /p−m and
∑
s=1,2

v̄s(p)vs(p) = /p+m, (A.5)

where the expression /p = pµγ
µ is written in Feynman slash notation.

Lastly, fermion propagators can be replaced by

p

= ı̂
/p+mD

p2 −m2
. (A.6)

To construct the diagram of a given process the external lines which represent the incoming
and outgoing particles need to be connected using vertices and propagators. These diagrams
correspond to terms in time-dependent perturbation theory where the couplings function as
a smallness parameter. Therefore, it is usually sufficient to only look at the diagrams with
the fewest possible vertices6.
To get from the diagram to the matrix element the terms along connected fermion lines
following the direction of the arrows on the lines need to be multiplied, with the term at
the start of the fermion line being the rightmost one and the following terms along the line
going to the left of its predecessor. All other terms in the diagrams commute and can be
multiplied in whatever order. The momentum of internal lines is defined by four-momentum
conservation7. This procedure to obtain the matrix element should become more clear by
looking at the processes calculated in Chapter 5 as examples.

6 There can be problems with unitarity, that is probabilities greater than 1, when looking at a limited number
of orders [see 6, pp. 463]. In this case, higher order corrections are necessary.

7 This is not the case for diagrams with ‘loops’. These require additional rules. In contrast, the rules in this
chapter describe ‘tree-level’ processes.
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B Identities Involving Dirac Matrices

Calculating the matrix elements for processes requires the manipulation of products of Dirac
matrices. This chapter lists a collection of useful identities taken from [28, pp. 543], which is
a more extensive collection for the general d dimensional Dirac algebra. The identities here
are for the usual four-dimensional case.
The defining feature of the Dirac matrices is the anti-commutator

{γµ, γν} = 2ηµν (B.1)

where ηµν is the Minkowski metric with η00 = 1. This property leaves some freedom in
choosing the behavior of γµ under hermitian conjugation. The usual choice is

γ0
†
= γ0, γk

†
= −γk =⇒ γµ

†
= γ0γµγ0 . (B.2)

The ‘fifth’ Dirac matrix γ5 is defined by

γ5 = iγ0γ1γ2γ3 . (B.3)

It does not fulfill the anti-commutator of Eq. B.1 but instead

γ5
†
= γ5, γ5

2
= 1 and

{
γ5, γµ

}
= 0 . (B.4)

Finally, the defining anti-commutator Eq. B.1 leads to a host of useful trace identities for
products of Dirac matrices. The relevant ones for this thesis are

For any product of an odd number of γµ, the trace is zero. (B.5)

Tr (γµγν) = 4ηµν (B.6)

Tr (γµγνγργσ) = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ) (B.7)

Tr
(
γ5
)
= Tr (γµγν) = 0 (B.8)

For γ5 times any product of an odd number of γµ, the trace is still zero. (B.9)
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C Simulation Code in MATLAB

This chapter contains the bisection simulation code introduced in Section 6.6. It omits the
purely mathematical functions used to implement the Boltzmann equation Eq. 4.12 and the
formula for the relic density Eq. 6.2.

1 %t h i s f i l e , c a l l e d Parameters .m, s e t s the paramters and constants used during the
2 %simulat ion which i s done by running SimulatinOfBoltzmannEquationBisect .m.
3 %Changing the b i s e c t i o n to g_X can be done by loop ing over va lues o f g_X
4 %ins tead of massD and s e t t i n g bounds on massD analogous to gXToo . . .
5 %−−−−−−−−−genera l parameters −−−−−−−−−−−−−−−−
6 %t h i s s p e c i f i e s opt ions for the s o l v e r ode15s such as error to l e rance s
7 opt ions = odeset ( 'RelTol' ,1 e−5,'AbsTol' ,1 e −100,'Refine' ,2) ;
8 % s t a r t and end po in t s o f the s imulat ion
9 %x i s m/T in natura l un i t s

10 xStart = 1 . 0 ;
11 xEnd = 350 .0 ;
12 %simulat ion i n t e r v a l
13 c r i t i c a l I n t e r v a l = [ xStart xEnd ] ;
14 %−−−−−−−−number of b i s e c t i o n i t e r a t i o n s −−−−−
15 i n i t i a l I t e r a t i o n s = 12;%max i t e r a t i o n s to f ind omega h^2 in densityBounds
16 rowsSavedData = 26;%number of data rows per massD , massRatio and gN
17 t o t a l I t e r a t i o n s = rowsSavedData −1;%t h i s inc ludes i t e r a t i o n s to f ind edges
18 %−−−−−−−−−bounds on r e l i c densi ty −−−−−−−
19 omegaExp = 0 .120 ; % observed va lue from Planck , 2020
20 lowerBoundOmegaH2 = 0 . 1 1 ;%lower bound for b i s e c t i o n algor i thm
21 upperBoundOmegaH2 = 0 . 1 3 ;%upper bound for b i s e c t i o n algor i thm
22 densityBounds = [ lowerBoundOmegaH2 upperBoundOmegaH2 ] ;
23
24 %−−−−−−−−−constants /parameters in the formulas −−−−−−−−−−−−−
25 gravConstant = 6.7088.∗(10.^( −39) ) ;%g r a v i t a t i o n a l constant in 1/GeV.^2
26 constWithSqrtG = sqrt ( pi . / ( 4 5 . ∗ gravConstant ) ) ;
27 %model parameters to s imulate
28 massD = logspace (0 ,3 ,100) ;%mass of Fermion D
29 massRatio = linspace ( 0 . 1 , 1 .95 , 100) ;%massRatio between D and Phi
30 gN = [ 0 . 0 1 0.05 0 .1 0 . 5 ] ;%coup l ing g_nu
31 %upper and lower bounds on g_X
32 gXTooLowRelicStart = sqrt (4 . ∗ pi ) ;
33 gXTooHighRelicStart = 1 ./10 .^ (4 ) ;
34 %Temperature today in K ( from Fixsen , 2009)
35 tempToday = 2.72528 ;
36 tempTodayGeV = 234.891∗10.^( −15) ;
37 gInte rna l = 2 ;% i n t e r n a l degrees o f freedom of a fermion
38 %−−−−−−−degrees of freedom ( Drees , 2018) ; implemented by A. Abou Ibrahim−−−−−
39 heff_tab = load ( 'degrees_of_freedom/heffdhs.dat' ) ;%data h_eff
40 gstar_tab = load ( 'degrees_of_freedom/gstardhs.dat' ) ;%data ( g ∗) ^(1/2)
41 geff_tab = load ( 'degrees_of_freedom/heffdhs.dat' ) ;%data g_eff
42 heff_tmp = gr iddedInterpo lant ( flipud ( log ( heff_tab ( : , 1 )+1e−100) ) , . . .
43 flipud ( log ( heff_tab ( : , 2 ) ) ) , 'pchip' ) ;%i n t e r p o l a n t for h_eff
44 gstar_tmp = gr iddedInterpo lant ( flipud ( log ( gstar_tab ( : , 1 )+1e−100) ) , . . .
45 flipud ( log ( gstar_tab ( : , 2 ) ) ) , 'linear' ) ; %i n t e r p o l a n t for ( g ∗) ^(1/2)
46 geff_tmp = gr iddedInterpo lant ( flipud ( log ( gef f_tab ( : , 1 )+1e−100) ) , . . .
47 flipud ( log ( gef f_tab ( : , 2 ) ) ) , 'linear' ) ; %i n t e r p o l a n t for g_eff



60 C Simulation Code in MATLAB

1 %s o l v e Boltzmann equat ion for a given s e t o f parameters
2 %saving t h i s in a f i l e c a l l e d Simulate .m a l l ows t h i s to be c a l l e s
3 %with the statement Simulate
4 [ ~ ,Y] = ode15s (@(x ,Y) BoltzmannEquation (x ,Y, massDCurrent , massPhiCurrent ,

gXCurrent , gNCurrent , constWithSqrtG , gInterna l , decayWidthOfPhi , gstar_tab ,
heff_tmp ) , c r i t i c a l I n t e r v a l , i n i t i a lCond i t i on , opt ions ) ;

5 YFinal = ProjectToCurrentTemp (xEnd , tempTodayGeV ,Y(end , 1 ) , massDCurrent ,
massPhiCurrent , gXCurrent , gNCurrent , decayWidthOfPhi , constWithSqrtG , gstar_tmp ) ;

1 function resu l tArray = CalculateMainResults (Y, YToday , massDirac , tempToday ,
densityBounds ) % t h i s funct ion c a l c u l a t e s the most important r e s u l t s

2 resu l tArray = zeros (1 ,4) ;
3 resu l tArray (1 ,1) = length (Y) ;%data po in t s in ode15s output
4 resu l tArray (1 ,2) = YToday ;%y i e l d today
5 %r e l i c dens i t y today
6 resu l tArray (1 ,3) = DMDensity( resu l tArray (1 ,2) , massDirac , tempToday) ;
7 i f resu l tArray (1 ,3) > densityBounds (1 ,1) . . .
8 && resu ltArray (1 ,3) < densityBounds (1 ,2)
9 resu l tArray (1 ,4) = 1 ;%r e l i c dens i t y wi th in bounds

10 else
11 resu l tArray (1 ,4) = 0 ;%r e l i c dens i t y ou t s ide bounds
12 end
13 %one data point : ode15s f a i l e d and DM Density w i l l be ou t s ide bounds
14 resu l tArray (1 ,4) = l o g i c a l ( resu l tArray (1 ,4) ) && l o g i c a l ( resu l tArray (1 ,1) −1) ;
15 end

1 function [ newBounds , re su l tS imul ] = CloseInBoundaries ( bisectParam , boundTooLow ,
boundTooHigh ,Y, YToday , massDirac , tempToday , densityBounds )

2 %f i n d s the new upper and lower boundaries for the parameter bisectParam
3 %between which the requ ired r e l i c dens i t y can be found .
4 %only works as long as the r e l i c dens i t y i s ou t s ide densityBounds
5 re su l tS imul = CalculateMainResults (Y, YToday , massDirac , tempToday ,

densityBounds ) ;%main r e s u l t s fo r current parameters
6 i f re su l tS imul (1 ,1) < 2 | | re su l tS imul (1 ,3) > densityBounds (1 ,2)
7 %e i t h e r the r e l i c dens i t y was too high or ode15s didn ’ t work .
8 %Latter g e n e r a l l y happens for very smal l cross s e c t i on s −> too high r e l i c s
9 newBounds (1 ,2) = bisectParam ;

10 newBounds (1 ,1) = boundTooLow ;
11 e l s e i f l o g i c a l ( re su l tS imul (1 ,4) )%r e l i c dens i t y wi th in bounds
12 newBounds (1 ,2) = boundTooHigh ;% Returns o r i g i n a l bounds
13 newBounds (1 ,1) = boundTooLow ;
14 else %r e l i c dens i t y too low
15 newBounds (1 ,2) = boundTooHigh ;
16 newBounds (1 ,1) = bisectParam ;
17 end
18 end

1 function [ newBounds , re su l tS imul ] = FindNewBoundaries ( bisectParam , boundOutside ,
boundInside ,Y, massDirac , tempToday , densityBounds )

2 %does b i s e c t i o n i f a s e t o f parameters conforming to the r e l i c dens i t y bounds
3 %i s found by CloseInBoundaries and c l o s e s in on where r e l i c Density = bound
4 re su l tS imul ( 1 , 1 : 4 ) = CalculateMainResults (Y, YToday , massDirac , tempToday ,

densityBounds ) ; %main r e s u l t s fo r current parameters
5 i f l o g i c a l ( re su l tS imul (1 ,4) )%r e l i c dens i t y in s i d e bounds
6 newBounds (1 ,1) = boundOutside ;
7 newBounds (1 ,2) = bisectParam ;%−> new ins i d e boundary
8 else %r e l i c dens i t y ou t s ide bounds
9 newBounds (1 ,1) = bisectParam ;%−> new out s ide boundary

10 newBounds (1 ,2) = boundInside ;
11 end
12 end
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1 %This s c r i p t makes use of b i s e c t i o n in the coup l ing gX to f ind
2 %parts o f the parameter space which g i ve the correc t r e l i c dens i t y
3 %more q u i c k l y than simply loop ing over a l l model parameters .
4
5 %−−−−−−i n t i a l i z i n g parameters−−−−−−−
6 Parameters
7 %−−−−−−looping over the des i red s imulat ion parameters s e t in Parameters .m
8 for k=1: length (gN)
9 gNCurrent = gN(1 , k) ;

10 for j =1: length ( massRatio )
11 massRatioCurrent = massRatio (1 , j ) ;
12 for l =1: length (massD)
13 massDCurrent = massD(1 , l ) ;
14 %−−−−−s e t t i n g i n t i t i a l condi t ion & mass & decay width of s ca l a r p o r t a l
15 %needs to be done be fore every s tep in of the b i s e c t i o n i f massD i s
16 %des i red as the b i s e c t i o n parameter ins tead of gX
17 i n i t i a l C o n d i t i o n = YEquil (x0 , massDCurrent , gInterna l , heff_tmp ) ;
18 massPhiCurrent = massDCurrent . ∗ massRatioCurrent ;
19 decayWidthOfPhi = DecayWidthPhiNuNu( massPhiCurrent , gNCurrent ) ;
20 t o t a l I t e r a t i o n s = rowsSavedData −1;%r e s e t t i n g as pot . changed in prev . i t e r .
21 %these arrays are for saving the most important r e s u l t s
22 re su l tS imul = −3.∗ones ( rowsSavedData , 4 ) ;
23 simulatedParameters = −10.∗ ones ( rowsSavedData , 1 ) ;
24 %parameters c l o s e s t to but s t i l l ou t s ide the des i red i n t e r v a l o f the
25 boundsOuter = −1.∗ones ( rowsSavedData , 2 ) ;%r e l i c dens i t y
26 %parameters in s i d e and c l o s e s t to the edge of the des i red i n t e r v a l o f the
27 boundsInner = −2.∗ones ( rowsSavedData , 2 ) ;%r e l i c dens i t y
28 %dummy containing the current known bounds
29 %in the f i r s t loop (1 ,1) i s the outer bound with too low r e l i c dens i t y
30 currentBounds = zeros (1 ,2) ;
31 %−−−−−−simula t ing parameters where r e l i c dens i t y i s too low−−−−−
32 gXCurrent = gXTooLowRelicStart ;
33 Simulate
34 %g e t t i n g r e s u l t s fo r lower boundary
35 [ currentBounds , re su l tS imul ( 1 , : ) ] = CloseInBoundaries ( gXCurrent ,

gXTooLowYieldStart , gXTooHighYieldStart ,Y, YToday , massDCurrent , tempFinal ,
densityBounds ) ;

36 %true i f r e l i c dens i t y wi th in des i red i n t e r v a l and s imulat ion worked
37 tooLowBoundFits = l o g i c a l ( re su l tS imul (1 ,4) ) ;
38 tooLowBoundSimulated = l o g i c a l ( re su l tS imul (1 ,1 ) −1) ;%true i f s imulat ion worked
39 %saving outer bounds and simulated parameter
40 boundsOuter ( 1 , : ) = currentBounds ;
41 simulatedParameters (1 ,1 ) = gXCurrent ;
42 i f tooLowBoundFits
43 boundsInner ( 1 , : ) = gXCurrent . ∗ ones (1 ,2 ) ; %saving inner bounds
44 end
45 c l e a r v a r s Y %r e s e t t i n g arrays
46
47 %−−−−−−simula t ing parameters where r e l i c dens i t y i s too high−−−−−
48 gXCurrent = gXTooHighRelicStart ;
49 Simulate
50 %g e t t i n g r e s u l t s fo r upper boundary
51 [ currentBounds , re su l tS imul ( 2 , : ) ] = CloseInBoundaries ( gXCurrent ,

currentBounds (1 ,1) , currentBounds (1 ,2) ,Y, YToday , massDCurrent , tempFinal ,
densityBounds ) ;

52 %true i f r e l i c dens i t y wi th in des i red i n t e r v a l and s imulat ion worked
53 tooHighBoundFits = l o g i c a l ( re su l tS imul (2 ,4 ) ) ;
54 tooHighBoundSimulated = l o g i c a l ( re su l tS imul (2 ,1) −1) ;%true : s imulat ion worked
55 boundsOuter ( 2 , : ) = currentBounds ; %saving outer bounds
56 simulatedParameters (2 ,1 ) = gXCurrent ;% saving simulated parameter
57 i f tooHighBoundFits
58 boundsInner ( 2 , : ) = gXCurrent . ∗ ones (1 ,2 ) ;%saving inner bounds
59 end
60 c l e a r v a r s Y %r e s e t t i n g arrays
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61 %−−−−−− main b i s e c t i o n part−−−−−−−−−−−−−−−−
62 outerBoundsDontFit = not ( tooLowBoundFits ) && not ( tooHighBoundFits ) ;
63 i f ( tooLowBoundSimulated | | tooHighBoundSimulated ) . . .
64 && ( resu l tS imul (1 ,3 ) < densityBounds (1 ,2) . . .
65 && resu l tS imul (2 ,3 ) > densityBounds (1 ,1) )
66 %ode15s was ab l e to s imulate at l e a s t one end of the i n t e r v a l boundaries and
67 %thus i t makes sense to continue s imula t ing . This loop f i n d s an i n i t i a l s e t
68 %of parameters with the des i red r e l i c dens i t y
69 for i = 3 : i n i t i a l I t e r a t i o n s
70 gXCurrent = geomean( currentBounds ) ;%s e t t t i n g new parameter
71 Simulate
72 %get new bounds
73 [ currentBounds , re su l tS imul ( i , : ) ] = CloseInBoundaries ( gXCurrent ,

currentBounds (1 ,1) , currentBounds (1 ,2) , Y, YToday , massDCurrent ,
tempFinal , densityBounds ) ;

74 foundFittingParam = l o g i c a l ( re su l tS imul ( i , 4 ) ) ;
75 boundsOuter ( i , : ) = currentBounds ; %saving outer bounds
76 simulatedParameters ( i , 1 ) = gXCurrent ;%saving simulated parameter
77 c l e a r v a r s Y%r e s e t t i n g array
78 i f outerBoundsDontFit && foundFittingParam %r e l i c dens i t y f i t s .
79 boundsInner ( i , : ) = gXCurrent . ∗ ones (1 ,2 ) ;%saving as inner bound
80 f i r s tF i t t ingGX = gXCurrent ;
81 break %Exi t ing t h i s loop
82 e l s e i f outerBoundsDontFit && not ( foundFittingParam ) %no f i t t i n g parameter
83 continue%found yet . Keep b i s e c t i n g
84 e l s e i f not ( foundFittingParam )%no f i t t i n g parameter found
85 %and one of the i n i t i a l bounds has a r e l i c dens i t y in the des i red i n t e r v a l
86 boundsInner ( i , : ) = boundsInner ( i −1 ,:) ;
87 e l s e i f tooLowBoundFits && foundFittingParam%f i t t i n g parameter found
88 %and the r e l i c dens i t y o f gXTooLowRelicStart i s wi th in
89 %the des i red i n t e r v a l f o r the r e l i c dens i t y .
90 %Bisec t on the edge where the r e l i c dens i t y reaches the upper l i m i t
91 boundsInner ( i , : ) = [ boundsInner (1 ,1 ) gXCurrent ] ;
92 currentBounds (1 ,1) = gXCurrent ;
93 e l s e i f tooHighBoundFits && foundFittingParam%f i t t i n g parameter found
94 %and the r e l i c dens i t y o f gXTooHighRelicStart
95 %i s wi th in the des i red i n t e r v a l f o r the r e l i c dens i t y .
96 %Bisec t on the edge where the r e l i c dens i t y reaches the lower l i m i t
97 boundsInner ( i , : ) = [ gXCurrent boundsInner (2 ,2 ) ] ;
98 currentBounds (1 ,2) = gXCurrent ;
99 end

100 end
101
102 i f i >= i n i t i a l I t e r a t i o n s %no r e l i c dens i t y wi th in bounds found
103 t o t a l I t e r a t i o n s = i n i t i a l I t e r a t i o n s ; %r e s e t t i n g t o t a l I t e r a t i o n s t h i s way
104 %makes wr i t ing in to f i l e s ea s i e r
105 else %continues i f f i t t i n g parameter found be fore l a s t i t e r a t i o n
106 i t e r a t i o n s L e f t = t o t a l I t e r a t i o n s −i ;
107 i f l o g i c a l (mod( i t e r a t i o n s L e f t , 2 ) )%ensures both boundaries are t r ea t ed
108 i t e r a t i o n s L e f t = i t e r a t i o n s L e f t +1;%e q u a l l y
109 t o t a l I t e r a t i o n s = t o t a l I t e r a t i o n s +1;
110 end
111 r e f i n i n g I t e r = i t e r a t i o n s L e f t . / 2 ;%i t e r a t i o n s for each boundary .
112 %−−−−−t h i s part dea l s with the boundary with DM Dens i t i e s at−−−−−
113 %−−−−−the low end of the des i red in t e r va l −−−−−
114 currentBounds = [ boundsOuter ( i , 1 ) f i r s tF i t t ingGX ] ;
115 gXCurrent = geomean( currentBounds ) ;
116 for o = 1 : r e f i n i n g I t e r
117 Simulate
118 %get r e s u l t s
119 [ currentBounds , re su l tS imul ( i+o , : ) ] = FindNewBoundaries ( gXCurrent ,

currentBounds (1 ,1) , currentBounds (1 ,2) , Y, YToday , massDCurrent ,
tempFinal , densityBounds ) ;

120 %saving data
121 simulatedParameters ( i+o , 1 ) = gXCurrent ;
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122 boundsOuter ( i+o , : ) = [ currentBounds (1 ,1) boundsOuter ( i , 2 ) ] ;
123 boundsInner ( i+o , : ) = [ currentBounds (1 ,2) boundsInner ( i , 2 ) ] ;
124 gXCurrent = geomean( currentBounds ) ;%s e t t i n g new parameter
125 c l e a r v a r s Y %r e s e t array
126 end
127 %−−−−−t h i s part dea l s with the boundary with DM Dens i t i e s at−−−−−
128 %−−−−−the high endof the des i red in t e r va l −−−−−
129 currentBounds = [ boundsOuter ( i , 2 ) f i r s tF i t t ingGX ] ;
130 gXCurrent = geomean( currentBounds ) ;
131 for o = 1 : r e f i n i n g I t e r
132 Simulate
133 %get r e s u l t s
134 [ currentBounds , re su l tS imul ( i+o+r e f i n i n g I t e r , : ) ] = FindNewBoundaries (

gXCurrent , currentBounds (1 ,1) , currentBounds (1 ,2) , Y, YToday ,
massDCurrent , tempFinal , densityBounds ) ;

135 %saving data
136 simulatedParameters ( i+o+r e f i n i n g I t e r , 1 ) = gXCurrent ;
137 boundsOuter ( i+o+r e f i n i n g I t e r , : ) = [ boundsOuter ( i+r e f i n i n g I t e r , 1 )

currentBounds (1 ,1) ] ;
138 boundsInner ( i+o+r e f i n i n g I t e r , : ) = [ boundsInner ( i+r e f i n i n g I t e r , 1 )

currentBounds (1 ,2) ] ;
139 gXCurrent = geomean( currentBounds ) ;%s e t t i n g new parameter
140 c l e a r v a r s Y %r e s e t array
141 end
142 else %gXTooLowYieldStart and gXTooHighYieldStart where chosen in such a
143 t o t a l I t e r a t i o n s = 2 ; %way tha t the b i s e c t i o n did not make sense
144 end
145 end
146
147 %−−−−−−s e t t i n g arrays for saving data
148 parametersForSaving = [ gNCurrent . ∗ ones ( rowsSavedData , 1 ) . . .
149 massRatioCurrent . ∗ ones ( rowsSavedData , 1 ) . . .
150 massDCurrent . ∗ ones ( rowsSavedData , 1 ) simulatedParameters ] ;
151 parametersForSaving ( t o t a l I t e r a t i o n s +1:end , : ) = . . .
152 −11.∗ ones ( rowsSavedData−t o t a l I t e r a t i o n s , 4 ) ;
153 savedArray = [ parametersForSaving boundsOuter boundsInner resu l tS imul ] ;
154 %wri t ing data in to csv f i l e s
155 writematrix ( savedArray , 'AllResults.csv' , 'WriteMode' , 'append' )
156 %r e s e t t i n g arrays to ensure no data i s t rans f e r r ed to the next i t e r a t i o n
157 c l e a r v a r s savedArray parametersForSaving f ina lResu l tArray
158 c l e a r v a r s boundsOuter boundsInner simulatedParameters re su l tS imul
159 end
160 end
161 end
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