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1 Einleitung

In dieser Arbeit sollen Systeme in beliebigen rdaumlichen Dimensionen in der nichtrelativisti-
schen Quantenmechanik behandelt werden. Neben dem rein akademischen Interesse, warum
wir in einem anscheinend dreidimensionalen Raum leben, beziehungsweise in wie fern sich
der dreidimensionale Raum und die physikalischen Gesetze in 3 Dimensionen von den physi-
kalischen Gesetzen und ihren Auswirkungen in beliebigen Dimensionen unterscheiden, exis-
tieren noch weitere Griinde sich mit der Quantenmechanik in beliebigen Dimensionen zu
beschéftigen. Dimensionsreduzierte quantenmechanische Systeme wie das zweidimensionale
Elektronengas werden in der Fest- und Oberflichenphysik als Modelle zur Beschreibung von
Oberflachen, diinnen Schichten und Bandstrukturen, wie in [1] zusammengefasst, genutzt.
Physikalische Modelle in hoheren Dimensionen finden sich vor allem im Bereich der Physik
jenseits des Standardmodells, aber auch in der Festkorperphysik existieren Ansétze [2].
Hier soll die Abhéingigkeit der Energieeigenwerte zweier Potentiale von der Dimension be-
handelt werden. Das erste Potential ist das exakt 16sbare Coulomb-Potential, das durch die
Vorhersage des Spektrums des Wasserstoffatoms historisch bedeutend ist. Als Verallgemei-
nerung des Coulomb-Potential wird das Yukawa-Potential untersucht, das im dreidimensio-
nalen zum Beispiel in der Atomphysik zur Vorhersage von Spektren neutraler Atome [3]
genutzt wird. Im ersten Abschnitt werden zunéchst die wichtigsten Grundlagen angegeben,
die zur Behandlung von radialsymmetrischen Hamiltonoperatoren in beliebigen Dimensio-
nen benotigt werden. Danach wird im zweiten Abschnitt das Coulomb-Potential diskutiert.
Die Dimensionsabhéngigkeit der Energieeigenwerte des Yukawa-Potentials wird im dritten
Abschnitt untersucht.

2 Grundlagen

In diesem Abschnitt werden kurz die zur Verallgemeinerung von radialsymmetrischen Hamil-
tonoperatoren in beliebige Dimensionen benotigten Relationen zusammengefasst. Die For-
meln stammen aus [4] und werden dort wesentlich ausfiihrlicher diskutiert, weshalb fiir Her-
leitungen und mathematische Erlduterungen auch auf [4] verwiesen wird.

2.1 Kugelkoordinaten in beliebigen Dimensionen

Da das Coulomb-Potential und das Yukawa-Potential rotationssymmetrisch sind, ist es prak-
tisch in Kugelkoordinaten zu arbeiten. Die Transformation von Kugelkoordinaten zu karte-



sischen Koordinaten in D Dimensionen kann durch

D-1

x1 = rcos(f;) H sin(6;)
=r 1__[ sin(6;)
Ty =1C08(0,_1) H sin(6;)

xp =rcos(fp_1)

definiert werden, wobei a € [3, D — 1], r € [0,00), 61 € [-7, 7] und 6, € [0,7],b € [2,D — 1]
gelten. r = \/ZID =2 ist der Radius einer D dimensionalen Kugel. Bezeichnet man r als 6y,

sind die Normierungsfaktoren der Einheitsvektoren h; = | | t=0,..D—-1fir D > 3 durch
ho=1 (1)
D-1
hi=r || sin(6;) (2)
=2
D-1
h2 =T H sm(@z) (3>
=3
—1
he=r sin(6;) (4)
i=a+1
hD—l =T (5)

gegeben, wihrend im Fall D = 2 hg = 1 und h; = r gilt. Das Volumenelement berechnet
sich aus

D D-
H dz; = rP~1drdQ, H sin(6;))7~'db;. (6)

=1

2.2 Drehimpulsoperator in beliebigen Dimensionen

Die Drehimpulsoperatoren L, sind in kartesischen Koordinaten als (A = 1)

. 0 0
Lab =1 (xb (9:10,1 - xaa_xb) (7>

definiert und sind die Generatoren der Gruppe SO(D), wobei ihr Kommutator durch

[Lab, Lea] = 1(6acLiva + ObaLac — 0adLvd — ObeLad) (8)



gegeben ist. Den Casimir Operator L?, der mit allen Elementen der Gruppe vertauscht,
erhédlt man aus der Summe aller Quadrate der Generatoren

L* = Z Lib (9)

a<b=2
und lautet in Kugelkoordinaten
D—2

P=2 o 1~n2<ak> Linj—lle) <<‘>% Smj_l(@”')a%ﬂ o

j=1 Llk=j4+151

1 1 J . poo 0
+ 3 LinDl(é’D_l) <39D_1 sin (9D1)80D_1>} . (11)

l
D—2--l1

Seine Eigenfunktionen Y, (0;....0p_1) werden Kugelflachenfunktionen genannt und erfiillen

die Eigenwertgleichung
L*Y}

Ip—2...l1

(91-'-'6D71) = l(l + D - 2)}6;_2”'11 (91'-'-9D71)' (12)

2.3 Laplaceoperator in beliebigen Dimensionen

Um spéter einen rotationssymmetrischen Hamiltonoperator in D dimensionalen Kugelkoor-
dinaten darstellen zu kénnen, muss zunédchst der Laplace-Operator in beliebig dimensiona-
len Kugelkoordinaten betrachtet werden. Setzt man in die allgemeine Formel zur Berech-
nung des Laplace-Operators in einem anderen Koordinatensystemen mit den Koordinaten

Yo, Y1, ---YbD-1

1 o (h 0
o150 (1) "
h ; Oy; \ 3 9y;
o a7
mit h = th, hj:|8—9i| (14)
7=0
fir yo = r und y; = 6;,7 € [1, D — 1] ein, erhdlt man mit (5)
1 0 0
2 _ 9 ( p19
V= rP=1or (T 87“) (15)
D—2
L T e e (o, 2,
+ = — — —sin’"(0;) = (16)
e j=1 HkD:j1+1 sin®(6y,) Lsin’ " (6;) \ 90, 00,
1 1 0 . po 0
— Op— : 17
T LmD—l(eDl) (aeDl ™0 1>aeD1)1 {an)
Durch Vergleich mit Gleichung (11) fiir den kommutierenden Drehimpulsoperator kann der
Laplace-Operator als
1 0 0 L?
2 _ 9 ( p19 )\ _ L~ 1
v rP=1or (T (97“) 72 (18)

geschrieben werden.



3 Coulomb-Potential

Als Coulomb-Potential in beliebigen Dimensionen wird hier ein Potential der Form V (r) = 1
angenommen. Die Losung der Poissongleichung in D Dimensionen ist hingegen

V() 3, wenn D # 2 (19)
)=
yIn(r), wenn D =2

und entspricht somit nur fir D = 3 dem gewéhlten Ansatz [5]. Es konnte in [6] gezeigt
werden, dass fiir Atome mit einem Potential der Form V*(r) fiir D > 3 nur stabile Zusténde
existieren, deren Energien positiv sind und dass im Fall von D = 4 keine stabilen Zustédnde
existieren. Da dies der experimentellen Beobachtung widerspricht, scheint man die Giiltigkeit
des Gaufischen Gesetzes in hoheren Dimensionen aufgeben zu miissen. Das Potential V' (r)
entspricht hingegen den Beobachtungen der Rutherford-Streuexperimente, die unabhéingig
von der Anzahl der rdumlichen Dimensionen sind [7]. Dies rechtfertigt den gewéhlten Ansatz
der Form % Fiir die Konstante v gilt in 3 Dimensionen v = %. Dabei sind ¢; und ¢ die
Ladungen der beiden elektrisch wechselwirkenden Teilchen. Eine Verallgemeinerung dieser
Konstanten auf beliebige Dimensionen soll hier nicht vorgenommen werden, da unklar ist in
wie fern sich die Naturkonstanten in anderen Dimensionen verhalten beziehungsweise ver-
halten wiirden. Daher wird in den folgenden Abschnitten die Konstante nur als v bezeichnet.

3.1 Energiespektrum und Eigenzustinde

Die Rechnungen in diesem Abschnitt erfolgen nach [5], [8] und [9], wenn nicht anders an-

gegeben. Die zeitunabhéngige Schrodingergleichung eines Wasserstoff dhnlichen Atoms ist
durch

hz — — —
—@V%uﬁ—%ﬂﬂ:Ewm) (20)
gegeben, wobei p die reduzierte Masse ist. In folgenden Formeln wird h = pu = 1 gesetzt
und es werden nur die gebundenen Zusténde mit £ < 0 betrachtet. Setzt man den Laplace-
Operator in Kugelkoordinaten (18) fiir eine beliebige Anzahl an Dimensionen ein, ergibt
sich
11 1 0 0 L?
— _(erl_) -
2 | rP=10r or 72

Mit dem Separationsansatz (%) = R(r)Y.
chung fiir den Winkelanteil

Ju@) = [+ 2] u(@), 1)

(01....0p_1) erhdlt man die Eigenwertglei-

LZS/Z:)_Q...ll (91....9[),1) — Q}/EZD_Q...h (61....01),1) (22)
und die Differenzialgleichung
1 d(p,d v o Q
— — R 2E+2———= | R(r)=0 23
rP=1dr (T dr) (r)+ ( * r 7’2> (r) (23)

fiir den Radialanteil.



Winkelanteil

Die Losung des Eigenwertproblems des Winkelanteils ist nach (12) gegeben durch
3 (01..0p_1) =11+ D =2)Y}  (61...0p_1). (24)
Fiir die Eigenwerte €2 gilt damit

Q=1(1+D-2). (25)

Radialanteil

Mit (25) erhélt man fiir den Radialanteil R;(r) die Gleichung

9l _
dr? r dr + r 72

CRi(r) | D-1dR(r) (2E gl w) Ri(r) =0, (26)

die sich mit Hilfe der Substitution p = v/—8Fr und der Abkiirzung 7 = v

\/jﬁ als

d*Ri(p) = D —1dR(p) r 1 I(Il+D-2) B
12 + T +(——1——————>Rm»_o (27)

schreiben lidsst. Um einen geeigneten Ansatz fiir die Losung der Differentialgleichung zu
finden, betrachtet man zunéchst den Grenzfall p — oo

d ff;ﬁf” ~TRi(p) =0 (28)

Die Gleichung kann mit Hilfe des Ansatzes R;(p) = const. - =2 gelost werden. Wihlt man
den Ansatz

Ri(p) = ple 2 F(p) (29)
folgt fiir F'(p) mit (27)
pdde(Q'O)+(2l+D—l—p)di—2p)+(T—l—?)F(p)—O. (30)

Diese Gleichung wird nun mit Hilfe der Sommerfeldschen Polynom Methode gelost. Dazu
wird fiir F(p) der Ansatz F(p) = > o, axp” verwendet und es folgt aus (30)

0= Zaka (k+1k+20+D-1) Zaka (k+1) (31)
k=0 k=0
D-1
—Zakpkk+(7'—l— T)Zakp . (32)
— k=0



Da die Potenzen von p voneinander linear unabhéngig sind, fithrt man einen Koeffizienten-
vergleich durch und erhélt die Rekursionsgleichung

k—(r—1-22)

k+1)k+ 214+ D —21)(k +1)

Qg, (33)

g1 — (

wobei ag # 0 gilt. Da die Zustdnde normierbar sein miissen, muss die Reihe fiir ein endliches
k abbrechen. Die Abbruchbedingung fiir die Reihe ist somit

D-1
T—I—T:m:(),l,Z,.... (34)

Analog zur Definition der Hauptquantenzahl des Wasserstoffatoms in 3 Dimensionen definiert
man die Quantenzahl n = n, 4+ [+ 1. Die Energie der Zustidnde kann nun mit (34) bestimmt
werden, da 7 = y—=— abhiingig von der Energie ist. Dies fiihrt zu

—2F
D -3 1
s T V5 (35)

und die Energie ergibt sich somit aus

,.)/2

E(n,D) = —m.

(36)

Die Energie ist somit abhéngig von der Dimension D, aber unabhéngig von der Quantenzahl
[. Aus der Rekursionsrelation kénnen die zugeordneten Laguerre Polynome L%(t) hergeleitet
werden, die durch

g=y (L) (37

1l
j=0 I
gegeben sind. Insgesamt ist der Radialanteil somit durch
R(p) = Nple 2 L24P(p) (38)

gegeben, wobei N die noch zu bestimmende Normierungskonstante ist. Sie wird mit (6) und
mit p = v/ —8F durch die Relation
© N2 oo
| Bt = S [T g — (39)
0 (—8E)z2 Jo

bestimmt. Das Integral kann mit Hilfe der Integralformel

Toa= [ e L @) (10)
CTlat+m+ 1)~ (DT (m—k-B)l(a+k+5+1) .
R ,; Tk — BT(a+ bt Dim— g Mt Rel@+5+1)>0

(41)



gelost werden [10]. Aus Gleichung (39) folgt f = 1 und die Integralformel vereinfacht sich
u [11]

2 nr 1
ngz(m%—ozjL JT(a+m + ) (42)

m!

Durch die Relationen (39), (42), m =n — 1 — 1 und a = 2] + D — 2 erhélt man

N2 (2n+D-3)'(l+D+n—-2)
(—8E)*? (n—1-1)!

_1, (43)
woraus mit (36) die Normierungskonstante folgt

(N (n—1— 1)l
_(2n—|—D—3) \/(2n+D—3)F(l+D+n_2)‘ (44)

Insgesamt lautet die Wellenfunktion des Coulombproblems

U(R) = N S L2 P2 ()Y, 1 (01 ) (45)

Abhéangigkeit der Bindungsenergie von der Dimension

Anhand von (36) wird nun die Abhéngigkeit der Energieniveaus von der Dimension disku-
tiert. In allen Dimensionen wird der Abstand der Energien mit steigendem n immer kleiner
und néhert sich null an, wie es schon vom Wasserstoffatom in drei Dimensionen bekannt
ist. Die Energien aller Zustdnde werden mit zunehmender Dimension immer gréfler, sodass
das Elektron immer schwicher gebunden ist. Generell entspricht die Bindungsenergie eines
Systems mit der Dimension D und der Hauptquantenzahl n einem System mit einer héher-
en Dimension D + 2 und einer niedrigeren Hauptquantenzahl n — 1. In der Abbildung (1)

werden die Grundzustandsenergie E; = % und die Energie des ersten angeregten Zu-
standes Fy = D %2 in Abhéngigkeit von der Dimension dargestellt. Eine Besonderheit ist

der eindimensionale Fall, bei dem die Grundzustandsenergie —oo wird. Der Quotlent der
Grundzustandsenergie und der Energie des zweiten angeregten Zustands E—2 = (g +32 ist
auch dimensionsabhéngig und nimmt mit steigender Dimension zu. Wihrend fiir D = 2 die
Energie des zweiten Zustands Fy nur 11.11% der Grundzustandsenergie betréigt, sind es fiir
D = 4 schon 36%.

Auch die Form der Wellenfunktion und damit die Wahrscheinlichkeitsdichte sind von der Di-
mension abhéngig. Abbildung 2 zeigt fiir den Grundzustand die Wahrscheinlichkeitsdichte
|R(r)|? des Radialteils in Abhiingigkeit von dem Radius. Da die Kugelfliichenfunktion und
damit der Winkelanteil fiir n = 1 konstant ist, wird die Wahrscheinlichkeitsdichte bis auf
einen konstanten Faktor durch den Radialteil bestimmt. Auffillig ist dabei, dass die Wahr-
scheinlichkeitsdichte am Kern mit zunehmender Dimension abnimmt. Insgesamt beeinflusst
somit die Dimension eines Coulomb-Problems nicht nur die Energie der einzelnen Zustédnde
sondern auch den Abstand zwischen den Energien und die Wahrscheinlichkeitsdichte.
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3.2 Leiteroperatoren

In diesem Abschnitt werden die Auf- und Absteigeoperatoren fiir den Radialteil der Wellen-
funktion R;,(p) = Np'e™2 L2FP2(p) aufgestellt. Die Herleitung und Argumentation erfolgt
dabei nach [5] und [12]. Die radiale Wellenfunktion héngt von den beiden Quantenzahlen n
und [ ab, wobei das Auffinden von Leiteroperatoren fiir n schwierig ist, da p aufgrund seiner
Definition p = v/ —8FEr von der Energie und damit auch von n abhéngt. Deshalb miissen wir
annehmen, dass fiir den Aufsteigeoperator

MrjRn,l(pn) = Cn,an-i-l,l(Pn) # Cn,an—I—l,l(pn-i-l) (46)

gilt, sodass ein Leiteroperator gefunden werden muss, der p, zu p,,; macht. Dieses kom-
plizierte Problem soll hier nicht behandelt werden. Stattdessen werden die Leiteroperatoren
fiir die Quantenzahl [ untersucht, da p nicht von dieser abhéangt. Um diese Operatoren zu
finden, wird wegen (38) eine Relation zwischen den Laguerrepolynomen L% und L' fiir
den Aufsteigeoperator und eine Relation zwischen L& und Lgﬁ fiir den Absteigeoperator
benotigt. Die erste Relation ist durch

TL) =~ WLET0) + nLi) (n

gegeben[13]. Bildet man nun die Ableitung von R,

4
dp

[ 1

o d
_ - = N l —§_L2l+D—2 4
Ruale) = (1 = 5 ) Boalo) + Nosgle™ 8 12525200 (48)

und setzt (47) sowie (38) ein ergibt sich

d I 1/2n+D -3 -1 N,
dp p ' 2\20+D-1 = —Ry, : 4
(dp p + 9 (2[ +D—1 >) Rn,l(ﬂ) A+D—1 Nn’l_HR ,l+1(P) ( 9)

Daraus folgt die Beziehung
M1+Rn,l(p) = m?_Rn,H—l(p) (5())

mit der Definition des Aufsteigeoperators

N d l 1 /2n+D — 3
M= — - _ [ — = 1
! d,0+p 2(2Z+D—1) (51)
und
—1-1 l4+D—2

20+D -1

Um den Absteigeoperator zu finden, wird zunéchst die benétigte Relation zwischen den
Laguerrepolynomen gesucht. Die Formel

(n+1)(n+ @) L3i(y) = [a(a — 1) —yla +n)|Li(y) + (o - 1)ydiyLZ‘(y), (53)

10



deren Herleitung im Anhang néher erlautert wird, kann zu

ala—1)
Yy

1 Lo(y) + (n+ l)y(n + Oz)LgJ_r% (54)

d
(0= )3 La0) = (e m) -
umgeformt werden. Setzt man diese Gleichung in (48) ein, erhélt man

d [+D—-2 1/(2n+D -3 n—0l)n+I1l+D—-3) N,
( - < ))RW(P):( A ) D Rna-1,

» T, 2\ 2+ D3 A+D-3 N,
(55)
was die Definition
- d I+D-2 1(2n+D-3
M =—4y = = - (22TZ7 °
! dp+ p 2<2l—|—D—3> (56)
fiir den Absteigeoperator nahe legt. Insgesamt folgt daraus mit
—1 l+D -3
= V(=D +1+D-3) (57)
20+D -3
die Gleichung
My Ryg(p) = my Ry (p). (58)

3.3 Abbildung des Coulomb-Potentials auf den harmonischen Os-
zillator

In diesem Abschnitt wird die Radialfunktion des Coulombproblems auf die Radialfunkti-
on des harmonischen Oszillators abgebildet. Der harmonische Oszillator der Masse m in d
Dimensionen besitzt ein Potential der Form

V(r) = r (59)
und die radiale Differentialgleichung lautet daher (h = m = 1)[14]

d? d—1d )
d—yQRL(y)+Td—yRL(y)+ Y - ;

L(L+d-2)

2

+ K| R, =0, (60)

wobei y = ry/w, K = 2N + d und fiir die Quantenzahlen N und L N > L gilt. Die
Energieeigenwerte sind durch

wK_w

Ey =— 2N +d 1
N=—=52N+d) (61)
und die Eigenfunktionen sind durch
v L—1+4
Ru(y) = Ne %y Li . (") (62)




mit der Normierungskonstanten

a [2T[FFE +1]

F[N+§+D]

N=uw" (63)

gegeben [15]. Mit der Substitution p = y? kann (38) in (62) iiberfiihrt werden. Dabei ergeben
sich fiir die Quantenzahlen N, n, L und [ und die Dimensionen D und d der beiden Systeme
aufgrund des Exponenten von p und der Indizes der Laguerre Polynome die Relationen [14]

L =2l N=2n-2, und d=2D —2. (64)

Zwischen den Losungen des Radialproblems beider Systeme besteht somit die Beziehung [15]

Ri(p,D,n,l) = ANoRp(y,2D — 2,2n — 2,2l) (65)
mit
1 2p-2 (2’}/ D
A = - 4 E——
°T " V/Oz+-2§§)D‘1 o

Aus (64) folgt, dass alle Eigenzusténde eines D dimensionalen Coulombproblems mit n > 1
und [ > 0 auf Eigenzusténde eines harmonischen Oszillators abgebildet werden kdnnen,
solange D > 1 ist. Die Abbildung kann weiter verallgemeinert werden. Dazu wird (65) um
einen zusétzlichen Faktor ergénzt [15]

Rl(p>D7n7l) = A)\yiARL«y?da N7 L) (67>

Aufgrund des zusiitzlichen Faktors y~* muss Ry (y, d, N, L) den Faktor y“+* enthalten, sodass
L zu L + X\ wird. Damit die Indizes der Laguerre Polynome sich nicht verdndern, muss N
durch N 4+ X\ und d durch d — 2\ ersetzt werden. Fiir die Quantenzahlen und Dimensionen
gelten nun die Relationen

L =24\, N=2n—-2+), und d=2D —2—2), (68)
wahrend fir den Radialteil der Wellenfunktion
Ri(p,D,n,1) = Aoy Rp(y,2D — 2 — 2X\,2n — 2+ X\, 20 + \) (69)

gilt [15]. Da L,l,d, D,n und N ganze Zahlen sind, muss auch \ eine ganze Zahl sein. Die
physikalischen Beschriankungen N > 0, L > 0 und d > 1 fithren zu A > 2 — 2n, A > -2
und A < D — 2. Mdéchte man alle moglichen Eigenzustidnde abbilden und beriicksichtigt man
auch [ > 0 und n > 1, muss A die Beziechung

0<A<D-2 (70)

erfiillen [15].

12
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Abbildung 3: Coulomb-Potential und Yukawa-Potential mit B =1 und p = 15

4 Yukawa-Potential

Nun soll das Coulombproblem verallgemeinert werden, indem das Yukawa-Potential

e HT

V(r)=-B w>0 (71)

r
betrachtet wird. Das Yukawa-Potential geht fiir den Grenzfall 1 — 0 in das Coulomb-
Potential iiber und kann als abgeschirmtes Coulomb-Potential aufgefasst werden, sodass
fiir das Yukawa-Potential Energieeigenwerte erwartet werden, die grofler sind als die des
Coulomb-Potentials. Wie in Abbildung (3) gezeigt, ndhert sich das Yukawa-Potential dem
Coulomb-Potential fiir kleine r an, wihrend es fiir einen gréfleren Abstand zum Mittelpunkt
schneller als das Coulomb-Potential gegen null geht.

Setzt man die Reihen-Definition der Exponentialfunktion e#” = > (_g—r)w ein, hat das
Potential die Form

B Bu2r
=~ 4+ uB—
V(r) ot 5

T (72)

Die ersten beiden Terme sind somit nichts anderes als ein energetisch um pB verschobenes
Coulombproblem, wobei die Bindungsenergie verringert wird. Fiir sehr kleine p sollte somit
die dimensionsunabhéngige Energieverschiebung dominieren und sich das System #hnlich
wie das Wasserstoffatom verhalten. Das Yukawa-Potential ist wie das Coulomb-Potential
radialsymmetrisch, wobei die Storung die zufillige [ Entartung autheben sollte, sodass die
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Energieeigenwerte nun auch von der Quantenzahl [ abhéngen.

Im néchsten Abschnitt wird zundchst mit Hilfe der Storungstheorie das grundsétzliche Ver-
halten der Grundzustandsenergie des Yukawa-Potentials fiir kleine p untersucht. Anschlie-
Bend wird durch Variationsrechnung auch das Verhalten fiir grofiere p betrachtet, bevor die
Energien durch eine Konvergenzbetrachtung der Reihenentwicklung der Zustdnde genauer
diskutiert und die verschiedenen Verfahren miteinander verglichen werden. Der eindimensio-
nale Fall kann hier aufgrund der unendlichen Grundzustandsenergie des Coulomb-Potentials
nicht betrachtet werden.

4.1 Storungstheorie

Fiir das Yukawa-Potential wird als erstes die Grundzustandsenergie Ey mit Hilfe der Storungs-
theorie berechnet. Dazu wird angenommen, dass p und damit die Storung klein ist, was im
Hinblick auf (72) gerechtfertigt scheint. Das Yukawa-Potential erhilt die Form

S| < 2opSEcpe]

r n!

V(r)=-B

n=1

wenn die Reihendarstellung der Exponentialfunktion eingesetzt wird. Das ungestorte System

mit Hy = —% und E; = —% ist das schon geléste Coulombproblem mit v = B und die
Storung H; lautet daher
_ = Iu_n _1\n,.n—1
H, = B;n!(l)r ] (74)

Die Energie des gestorten Grundzustands Ej ist nach der Storungstheorie zweiter Ordnung
durch [16]

—2B?

Do BV + B (75)

EQI

gegeben. Da der Grundzustand des Coulombproblems mit den Quantenzahlen n =1, =10
und m = 0 nicht entartet ist, ergibt sich die erste Ordnung der Energiekorrektur aus

EM = (100/H,|100), (76)

wobei der Grundzustand des Wasserstoffproblems durch [100) = Ne ™Y, mit b = /=2,
gegeben ist. Setzt man (74) in (76) ein errechnet sich die erste Energiekorrektur durch

B = -BN?Y (-1 / o 22Dy, (77)
n! 0
n=1

Dabei wurde genutzt, dass die Kugelflichenfunktionen normiert sind und deshalb [ YdQ =
1 gilt. Das Integral wird mit fooo x"e”dr = % gelost, wobei ¢ > 0 und n > 0 gelten muss.
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Es miissen keine Einschrankungen vorgenommen werden, da Félle in denen D > 1 und b > 0
nicht gelten, physikalisch nicht sinnvoll sind. Somit folgt

(n—2+D)!

(1) 2 lu n
E}" =—-BN nJ< 1) ()b (78)
n=1
was sich mit (39) und (36) zu
B =" D—1)""n-2+ D)
W _ _ B P =1)
B = —p i 2 Y (@B)" (79)

vereinfacht. Die erste Energiekorrektur ist somit abhéngig von den Parametern B und g,
sowie von der Dimension. Der fiir kleine p dominante erste Term verringert die Bindungs-
energie und ist proportional zu B und p, was der Erwartung durch (72) entspricht. Die
Energiekorrektur zweiter Ordnung ist

l(m L, mm|H1|1OO l(m 1, mm|H1|100)|2
=2 Z —
mAl =i

(80)

Aufgrund der Orthogonalitdt der Kugelflichenfunktionen beschriankt sich die Summe auf
Zustande mit [, = 0 und m,, = 0. Das Matrixelement lautet mit (37) explizit

(M Ly, Mg | H1|100) = (81)
. oo m—1 (m 3—|—D) ( D 3)j pitn—1
— BN, —oN —24mr —1) 2 D-1,
=0 170/0 ¢ ;FO nl (m—j-D -2+ ;3 |7
(82)
mit
2B B
A, = . 83
D—-1 + m+ 2=3 (83)

Dies lasst sich zu

(mly,my,|Hi[100) = (84)

0 m-1 (m — 3+ D)(-2B—)

+n+ D —2)!
_ch n+] 2 (] : 85
; jzo n! m—j— 1D — 2+ j)! jI(24,,)7tn+P-1 (85)

auflosen, wobei C),, die Abkiirzung fiir

(4B)P (m—1)!
G (D —DI((D—1)(2m+ D —3))% \/(2m +D—=3)(D+m—3) (86)

ist. Um die Dimensionsabhéngigkeit des Yukawa-Potentials zu diskutieren scheint die Storungs-
theorie nicht gut geeignet zu sein, da der erste dominierende Term By dimensionsunabhéngig
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ist und man anhand der nachfolgenden Summanden erkennen kann, dass der Einfluss der Di-
mension erst mit groBerem p auf die Energie zunimmt. Die Storungstheorie zweiter Ordnung
liefert nur eine sehr geringe Energiekorrektur von der Gréfienordnung 1071 bis 1078, die
mit ¢ zunimmt und wesentlich kleiner ist als die Korrektur erster Ordnung. Da nicht sicher
ist, in welchem Wertebereich von p die Stérungstheorie brauchbare obere Schranken fiir die
Grundzustandsenergie liefert, werden die Energieeigenwerte noch mit zwei weiteren Verfah-
ren bestimmt und die Werte anschlieBend in den Tabellen (1), (2), (3) und (4) miteinander
verglichen. Die Energien werden hier mit Hilfe der ersten 100 Summanden bestimmt. Die Be-
rechnung wird dabei numerisch durch die schnell anwachsenden Fakultédten begrenzt, wobei
die grofiten Fakultdten in den meisten Fillen in den vernachléssigbar kleinen Summanden
mit groflen n bezichungsweise m enthalten sind.

4.2 Reihenentwicklung der Zustinde

In diesem Abschnitt wird eine Reihenentwicklung der exakten Zusténde fiir das Yukawa-
Potential aufgestellt. Da das Yukawa-Potential, genauso wie das Coulomb-Potential, radial-
symmetrisch ist, kann man den Separationsansatz (%) = R(r)Y}. _  (61...0p_1) fiir die
Wellenfunktion anwenden. Die Rechnung erfolgt somit zunéchst analog zu der Rechnung des
Coulombproblems, wobei v = Be™" gesetzt wird. Die Gleichung (30) lautet dann

deF(p) F(p) D-1

d
dp2 + (2l +D—-1- p)d—p + (56_047 -1l — T)F(ﬂ) = 0, (87)

wobei die Abkiirzungen § = \/%715 und a = \/—_%E benutzt werden. Der Radialteil ist durch

Ri(p) = ple 5 F(p) (88)

gegeben und wird wieder mit Hilfe der Sommerfeldschen Polynom Methode gelost. Mit
dem Ansatz F(p) = > io,arp® und Reihen-Definition der Exponentialfunktion e " =

S (_Z!T)w erhédlt man

=0
0=> armp"(k+ Dk + @ +D—1)> apup(k+1) =D ap’k (89)
k=0 k=0 k=1
D—1 & X L (—ap)® | i
- (HT)ZW +80 . )OO ap®). (90)
k=0 =0 ) k=0

Da die Potenzen von p untereinander linear unabhéngig sind, muss die Gleichung

0=ap1(k+1)k+ 20+ D — Dagy(k+1) — ark (91)

k
0+ DQ_ D+ 803 a(~1)72

al

T

) (92)

=0
gelten. Daraus folgt die Rekursionsrelation

(k+1+ 22 — B)ar — B an—o(—1)"2)
(k+1)(2l+D —1+k)

(93)

Qp+1 =
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mit ag # 0, deren erster Teil genau der Rekursionsrelation des Coulombproblems (33) ent-
spricht. Die unnormierten Wellenfunktionen des Yukawa-Potentials sind somit durch

W(T) =Y, (Orbpa)pe Y apt (94)
k=0

gegeben. Die Zusténde des Yukawa- und des Coulomb-Potentials unterscheiden sich somit nur
durch die Rekursionsrelation fiir die Koeffizienten a,. Fiihrt man den Parameter b = / —2F
ein, lautet die Rekursionsrelation

2b(k + 1+ 251) — 2BJay — 2B(3%_ | ar—a(—1)"L5)

1 = (k+ 1)l +D—1+k) ' (95)
und die unnormierte Wellenfunktion
V(@)=Y | (01..0p_q)rle™ Z apr®. (96)
k=0

Der vom Coulombproblem abweichende Term —2B(32F_ ar—s(—1)"L:) der Rekursionsrela-
tion nimmt wie erwartet mit der Groéflie von B und p zu.

Da die Kugelflichenfunktionen bereits normiert sind, muss nur noch der Radialteil normiert
werden. Die Normierung N ergibt sich dann aus

N2 / =2 [ZZ a air2l+k+i+D—1] D1, (97)
0

i=0 k=0

Das Integral lédsst sich mit der schon zuvor genutzten Formel fooo e dr = C,’L% 16sen,
sodass die Normierung durch

& 20+k+i+D-1
N = <Zzakai< (2b) 2R +i+D : > (98)

[

gegeben ist.

4.3 Rayleigh-Ritzsches Variationsverfahren

Da eine Reihenentwicklung fiir die exakten Zustédnde vorliegt, wird nun mit dem Variations-
verfahren eine obere Schranke fiir die Grundzustandsenergie E, gesucht [17]

(0 (0)[H(0))
Bo = T mme)

wobei als Testfunktion eine nach N Summanden abgebrochene Reihenentwicklung der ex-
akten Zustdnde (94) genutzt wird. Als Variationsparameter dient b = v/—2F und es wird

(99)
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angenommen, dass fiir den Grundzustand analog zum Coulombproblem [ = 0 gilt. Der Test-
zustand lautet dann

U(b) = Yo(61...0p 1) zijakr (100)

Fiir N = 0 entspricht dieser Testzustand dem Grundzustand des Coulomb-Potentials. Das
Matrixelement (1(b)|H |1 (b)) vereinfacht sich aufgrund von [ = 0 zu

WO = W O)I00) + @OV ) (101)
= Lo+ 2 ) - Bu) ). o

Setzt man nun die Testzustdnde explizit ein erhélt man
b2 00 N N
WOIHRO) == [ S wan e [ya0 (103)
+ b/ e 2| Zakanrn+k_1n]rD_1dr/§/()2dQ (104)
0 n=0 k=0

N N
| oo N N

— 5/ e_2bT[Z Zakanr”+k_2n(n — 1)]7"D_1dr/YE)2dQ (105)
0 =0

n=0 k
D_1 [ N N
+ —b e 2] Z Zakanran]rDldr/YOQdQ (106)
0 n=0 k=0
D_1 [ N N
e e 2r [Z Z apay,r" )P dr / Y2dQ (107)
2 0 n=0 k=0
o N N
_ B/ e_(%ﬂm[zZakanr"Jrk_l]rD_ldr/Yode. (108)
0 n=0 k=0

Da die verallgemeinerten Kugelflichenfunktionen normiert sind, gilt [ Y2dQ2 = 1. Die rest-
lichen Integrale lassen sich mit Hilfe der Formel fooo 2'e"dr = c,l% mit ¢ > 0und n > 0
16sen. Die erste Bedingung ist aufgrund von b = /—2F > 0 fiir gebundene Zusténde erfiillt,
wihrend die zweite Bedingung durch eine Einschriankung der Dimension auf D > 2 erfiillt
werden kann. Mit der Integralformel ergibt sich

N N
(n+k+D—-1)! nn+k+D-2)
(W) H|p(b)) = ZZakan[— kiDL T SR (109)
n=0 k=0
n(n—1)(n+k+D=3)! (D-1)(n+k+D-2)
N on+k+D—1 + SnkiD (110)
n(D—D(n+k+D—3) 1
o 2Tl+k+D 1 ]bn+k+D—2 (111)

_Bzzaknn+k+D—2) (112)

n+k+D—-1"
n=0 k=0 2b—|—ﬂ
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Die Normierung (¢ (b)|¢(b)) kann analog zur oberen Rechnung berechnet werden

(n+k+D—1)
Z Z Ak n (20)n kD (113)

n=0 k=0

Um die Minima von % zu erhalten, wird die Ableitung nach b gebildet und gleich

' Gleic
null gesetzt, sodass die Gleichung

d

0= (GO ) CORO) - OO (FOpe)) a1

gelost werden muss. Die Ableitungen sind durch

d Y& (n+k+D) 1
SORON = =SS aant (115)
n=0 k=0
N N
d (n+k+D—1)
+2 Z Z (&a") On (2b)+h+D (116)
n=0 k=0
sowie
d Al (n+k+D—2)
5 WO = =33 Aupparan S (17)
n=0 k=0
N N d 1
+ 22 ZAnkD (&Gk) nAn,k,Dm (1]‘8>
n=0 k=0
N N
(n+k+D—1)
+ 2B agQy, 119
2 2 g (19)
mit
m+k+D-1)! nn+k+D-—2)!
Anpp = — ontk+D+1 ontk+D—1 (120)
nin—1)n+k+D-=3)! (D-1)(n+k+ D —2)!
o on+k+D—1 + on-+k+D (121)
n(D—1)(n+k+ D —3)!
e (122)
und
d 2b(k +1+ 22) —2B] (&
— Qg1 = [ ( + 2 ) ] (dbak) (123)
db (k+1)20+D—-1+k)

(k+1)(2l+ D —1+k)

gegeben. Die Nullstellensuche und die anschlieBende Berechnung der Energie erfolgt nume-
risch {iber das Bisektionsverfahren mit Hilfe eines selbstgeschriebenen Programms. Die mit
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dem Programm bestimmten Schranken variieren sehr stark mit der Anzahl N der Summan-
den, sodass es fiir jede Abschirmung eine optimale Anzahl N an Summanden gibt und damit
eine niedrigste Schranke existiert. Sowohl fiir N die grofler als auch fiir N die kleiner als das
optimale N sind, erhélt man gréflere und damit schlechtere Schranken. Deshalb muss man
sich meist von unten an das optimale N herantasten. Dabei gilt, dass die optimale Anzahl an
Summanden mit zunehmender Abschirmung p grofler wird. Die Berechnung wird numerisch
durch die schnell anwachsenden Fakultdten der Form (n + k + D — 1)! limitiert. Daher ist
auch die Anzahl der Summanden und damit die Moglichkeit die Grundzustandsenergie fiir
grofle 1 zu berechnen beschrankt.

Erster angeregter Zustand

Um auch die Dimensionsabhéngigkeit des Energieabstands zwischen den Zusténden disku-
tieren zu konnen, wird mit dem Variationsverfahren der néchst hohere Energieeigenwert F
abgeschétzt. Dazu wird die zur approximierten Grundzustandswellenfunktion ¢g orthogona-
le Komponente ® der Testfunktion v gebildet. Als Testfunktion wird wieder eine nach N
Summanden abgebrochene Reihenentwicklung der Zustdnde mit [ = 0 und dem Variations-
parameter b genutzt (94). ® ergibt sich dann aus

|®) = [¢) = [do)(Polt)) (125)
und die obere Schranke fiir den Energieeigenwert E ist
B, < SPOIHI®O) _ (Y0)|H[Y (b)) - Eol(dol)* (126)

— (®0)|2(0)) (WO (0)) = [{bo|)?

Damit die Extremstellen bestimmt werden konnen, wird die Ableitung gebildet und gleich
null gesetzt

0= | GWOLEI) - Bl ] [010) - lendv)] (127)

- [wOlEO) - Bl | oo - (Glene)]. )

a (Y(b)|H|¥(b)) und (1p(b)[1(b)) schon im vorherigen Abschnitt berechnet wurden, muss
nur noch (¢g|1)) betrachtet werden. Setzt man die approximierte Grundzustandswellenfunkti-
on ¢ ein, die nach Ny Summanden abgebrochen wird und die mit der Energie Ey berechneten
Koeffizienten ~, besitzt, ergibt sich

| (bOWJ M / bo+b)r ZZ’Y ak,r,nJrk D— ldT (129>

n=0 k=0

(n+k+D-—1)!
Zz%ak (bo + b)ntk+D (130)

nOkO

wobei M, die Normierung der approximierten Grundzustandswellenfunktion

No No

n+k+D—1
M2_| ¢0|¢0 |_Zza’ka’n n+k+D ) (131)

n=0 k=0
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ist. Die Ableitung nach b ergibt sich dann aus

d 2 2 B X n+k+ D)
35 () = o= 20> e (lfo jb),ngH (132)
N /d N\ (n+k+D—1)

n=0 k=0

Das Variationsverfahren lieferte in diesem Fall nur Abschétzungen der Grundzustandsener-
gie. Dies konnte darauf zuriickzufiihren sein, dass die Anzahl der berechenbaren Summanden
N nicht grofl genug ist um einen angeregten Zustand genau genug zu approximieren. Da beim
Coulombproblem die hoheren Zustinde wegen den zugeordneten Laguerre-Polynomen Sum-
manden mit hoheren Potenzen enthalten, konvergieren vermutlich auch die Reihenentwick-
lungen der angeregten Zustédnde des Yukawa-Potentials langsamer als die des Grundzustands,
sodass auch ein grofleres N genutzt werden miisste.

4.4 Bestimmung der Energieeigenwerte aus dem Konvergenzver-
halten

Wenn eine Reihenentwicklung C(r) Y, axr* der Zusténde vorliegt, kénnen die Energieeigen-
werte, wie in [18] und [19] fiir das Morse-Potential erwihnt, durch die Konvergenz der Reihe
bei n — oo numerisch bestimmt werden. Da die Zustdnde normierbar sein miissen, muss
die Reihe entweder abbrechen, oder die Koeffizienten miissen geniigend schnell gegen null
laufen. Diese Methode soll im folgenden Abschnitt auch auf das Yukawa-Potential mit (94)
angewendet werden.

Dazu werden mit Hilfe der Rekursionsrelation (95) die Koeffizienten a;, fiir eine Energie E
berechnet und aufgezeichnet ab welchem k* die Koeffizienten mit & > k* numerisch nicht
mehr von null unterschieden werden kénnen. Aufgrund der Normierbarkeitsbedingung geht
ay bei einem tatséchlichen Energieeigenwert F, schneller gegen null und k* ist kleiner als bei
einer Energie F, + A, die kein Energieeigenwert ist. Variiert man die Energie mit geniigend
kleiner Schrittweite, kann man so theoretisch alle Energiecigenwerte mit beliebiger Genau-
igkeit bestimmen.

Hier werden die Eigenwerte mit Hilfe eines selbstgeschriebenen Programms berechnet. Dabei
werden Zahlen mit doppelter Maschinengenauigkeit genutzt, sodass Koeffizienten die kleiner
sind als ungefihr 1073% nicht mehr von Null unterschieden werden kénnen. Um Energiein-
tervalle zu erhalten, in denen sich ein Energieeigenwert befindet, werden die Koeffizienten
vom Programm mit (95) fiir verschiedene b = v/—2F berechnet. Die Abbildung (4) zeigt
exemplarisch fiir ein Yukawa-Potential mit [ = 0, B = 0.1 und g = 0.001 in 3 Dimensionen
die Zahl der Koeffizienten k*, nach denen die nachfolgenden Koeffizienten nicht mehr von
null unterscheidbar sind, in einem Energiebereich von £ = —0.005 bis £ = —0.0048 mit
einer Abtastrate von A, = 1078, Fiir die beiden abgetasteten Energien E = —0.00490075
und £ = —0.00490074 ist £* minimal, somit befindet sich zwischen den beiden Werten ein
Minimum fiir £*, dass in diesem Fall den Grundzustand markiert. Der mit Hilfe des Va-
riationsverfahrens gewonnene Wert fiir den selben Zustand liegt genau innerhalb des hier
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Abbildung 4: Bestimmung der Grundzustandsenergie mit B = 0.1, D = 3 und p = 0.001

bestimmten Intervalls. Da bei der Abtastung [ = 0 vorgegeben wurde, wurde auch die An-
nahme bestétigt, dass die Grundzustandsenergie die Drehimpulsquantenzahl null besitzt.
Fiir die nachfolgende Bestimmung der Energieeigenwerte wird jeweils der Mittelwert eines
gefundenen Intervalls berechnet und als Fehler die halbe Intervallbreite angenommen.

Die Zuordnung, ob ein gefundenes Energieintervall zu dem Grundzustand oder zu einem
angeregten Zustand gehort, kann bei dieser Methode nur durch Vergleich mit der Energie
des entsprechenden Zustands eines ungestorten Coulomb-Potentials erfolgen. Da aber die
Quantenzahl [ explizit in die Rekursionsrelation eingeht, kann gezielt nach Energieniveaus
mit entsprechendem [ gesucht werden.

Weil die erforderliche Schrittweite A,, mit der b abgetastet wird, um einen Zustand er-
kennen zu konnen, in den meisten Féllen 10~® oder kleiner ist und somit eine sehr grofie
Rechenzeit fiir ein gesamtes Energiespektrum benétigt wird, beschrinken wir uns hier auf
die Bestimmung des Grundzustandes, des ersten angeregten Zustands mit [ = 0 und des ers-
ten angeregten Zustands mit [ = 1. Die Rechenzeit kann weiter verringert werden, wenn man
kleine Energieintervalle untersucht, in denen ein Zustand vermutet wird. Fiir den Grund-
zustand ist dabei durch das Variationsverfahren eine obere Schranke gegeben. Zusétzlich
existiert fiir alle Zustdnde mit der Energie des ungestorten Systems eine untere Schranke,
da die Energien des Yukawa-Potentials, wie vorher festgestellt, immer geringer sind als die
entsprechenden Energien des Coulomb-Potentials mit v = B.
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1 Storungstheorie Variationsverfahren Konvergenz der Reihe
107° | —1.99999000002 - 1072 | —1.59708758308 - 1073[2] | —1.9999906 - 1072 £6 - 10~°
1075 | —1.99990000252 - 1072 | —1.59618787364 - 1073[2] | —1.9999001 - 1072 £6- 107
1074 | —1.99900025223 - 1072 | —1.58721691721 - 1073[2] | —1.9990003 - 1072 £ 6.2 - 1078

1073[2]
1074[2]

1073 | —1.99002516681 - 1072 | —1.50006147002 - 2] | —1.9900251-1072+7.4-1078
1072 | —1.90246157022 - 1072 | —8.36742977925 - 2] | —1.9024400 - 10724+ 2.4 -107°

Tabelle 1: Grundzustandsenergie mit B = 0.1 und D = 2

! Storungstheorie Variationsverfahren Konvergenz der Reihe

[
1075 | —4.99800015116 - 1073 | —4.99900007499 - 1073[3] | —4.9990005 - 1072 £ 1.5-107?
107* | —4.98001510759 - 1073 | —4.99000749500 - 1073[3] —4.9900079 - 1073 £2-107°
1073 | —4.80150175286 - 1073 | —4.90074506746 - 1073[5] | —4.9007451-1072 £3.2-107°
1072 | —3.14169326091 - 1073 | —4.07058030613 - 1073[13] | —4.0705803 - 1073 + 1.4 - 10710

107% | —4.99980000151 - 1072 | —4.99990000074 - 10~3[1] | —4.9999005- 1072 £ 1.5- 1077
]

Tabelle 2: Grundzustandsenergie mit B = 0.1 und D = 3

4.5 Vergleich der Verfahren

In den Tabellen (1),(2), (3) und (4) werden die Energiewerte der verschiedenen Verfahren mit
B = 0.1 in verschiedenen Dimensionen und fiir verschiedene Abschirmungen j miteinander
verglichen. Die Zahl in den Klammern hinter dem Energiewert gibt dabei die fiir das Varia-
tionsverfahren benttigte Anzahl an Summanden N an. Bei der Storungstheorie bezeichnet
,»/“entweder eine divergierende oder positive Energieschranke und beim Konvergenzverfah-
ren einen Zustand, der aufgrund zu geringer Genauigkeit nicht gefunden werden konnte.

Es zeigt sich, dass die mit dem Konvergenzverhalten berechneten Werte konsistent mit
den zuvor erhaltenen oberen Schranken sind. Die Energieeigenwerte aus dem Variationsver-
fahren sind entweder grofler oder innerhalb der bestimmten Intervalle. Die Storungstheorie
liefert fiir Dimensionen grofler als 2 immer groflere und damit schlechtere obere Schranken
als das Variationsverfahren. Auffillig ist hingegen, dass das Variationsverfahren fiir D = 2
schlechtere Schranken als die Storungstheorie erster Ordnung liefert. Alle Verfahren sind
somit gegeniiber der Grofle der Abschirmung und der Dimension begrenzt. Beim Variations-
verfahren sinkt die Anzahl der berechenbaren Summanden N aufgrund der Fakultédten mit
der Dimension, wéhrend die Schranke bei der Storungstheorie mit zunehmender Dimension
immer schlechter wird. Bei dem Konvergenzverfahren muss eine wesentlich genauere Abtas-
tung bei groflen Dimensionen genutzt werden, weil die Energien mit der Dimension immer

! Storungstheorie Variationsverfahren Konvergenz der Reihe

1070 | —2.22162223124 - 107 | —2.22212222372 - 10 3[3] | —2.2221226 - 10 £ 6.7 - 10~ 10
1075 | —2.21622312389 - 1073 | —2.22122237220 - 10~3[3] | —2.2212225 - 10~ £ 6.7 - 10~ 10
104 | —2.16231228856 - 1073 | —2.21223720352 - 103[5] | —2.2122376- 1073 £ 6.7 - 10~°
1073 | —1.63112862951 - 1073 | —2.12370398079 - 10-3[7] | —2.1237045 - 1073 £ 2.6 - 10~°
102 / —1.35720439133 - 1073[13] /

Tabelle 3: Grundzustandsenergie mit B = 0.1 und D =4
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1 Storungstheorie Variationsverfahren Konvergenz der Reihe

107° | —1.24760006001 - 1072 | —1.24990000249 - 10~3[1] | —1.24990024 - 1072 £ 1.5 - 10~°
1075 | —1.22600600049 - 1073 | —1.24900024995 - 1073[3] | —1.24900046 - 1073 £ 2 - 107
107% | —1.01059897125 - 1073 | —1.24002495023 - 1073[5] | —1.24002524 - 1073 £ 2.5 - 107°
1073 / —1.15245224090 - 1073[9] | —1.1524524 - 103 +2.7-107%

Tabelle 4: Grundzustandsenergie mit B =0.1 und D =5

I Formel Konvergenz der Reihe
1075 | —4.999899 - 1073 £5-107° | —4.9999005- 1073 4+ 1.5-107°
1079 | —4.998998 - 1073 +5-107° | —4.9990005- 1073 +1.5-10°
1074 | —4.989991-1034+5-107° —4.9900079 - 103 +2-107°
1073 | —4.900560-10734+5-107° | —4.9007451 -1073 £ 3.2-107°
1072 | —4.068054 - 1073 +£4.1-107° | —4.0705803 - 103 £ 1.4 - 10710

Tabelle 5: Vegleich der Grundzustandsenergie mit B = 0.1 und D = 3

kleiner werden.

Fiir die Berechnung der Energiewerte wird die Stérungstheorie im folgendem Abschnitt nicht
verwendet, da man mit ihr vor allem fiir groflere Storungen schlechtere Schranken erhélt, die
mit zunehmender Dimension noch schlechter werden, wobei moglichst grofie Storungen fiir
die Dimensionsabhéngigkeit beriicksichtigt werden sollten. Gegen das Variationsverfahren
spricht, dass die Rechenzeit bei der Bestimmung der Energien meist grofler ist, die Energie-
schranken fiir D = 2 nur eine schlechte Abschétzung liefern, keine Fehler angegeben werden
und keine hoheren Zustdnde berechnet werden konnen. Deshalb wird das Verhalten des
Yukawa-Potentials in beliebigen Dimensionen mit Hilfe der aus dem Konvergenzverhalten
bestimmten Werten diskutiert. Die erhaltenen Energieeigenwerte fiir den 3 dimensionalen
Fall kénnen noch mit Hilfe der in [20] und [21] angegebenen numerisch ermittelten Formel

P (23 28— 2A(Np; +0)* +2CN}, (134)
MTANZ TR T ey,

tiberpriift werden, wobei A = 1.9875, C' = 1.2464 und o = 0.003951 sind. Der Parameter g,
berechnet sich gendhert aus [21]

gny = (1.248n + 1.6521 + 1.296)°. (135)

N,; = n+141 entspricht der Definition der Hauptquantenzahl des Coulomb-Potentials. Die
Formel gibt die Energien fiir einen grofien Bereich der Quantenzahlen n und [ mit 1%iger
Genauigkeit an. Tabelle (5) zeigt, dass die ermittelten Werte im Rahmen der angegebenen
Fehler auch mit (134) iibereinstimmen.
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Abbildung 5: Grundzustandsenergie in Abhéngigkeit von p fiir D =2 und B = 0.1

4.6 Diskussion der Dimensionsabhingigkeit
Grundzustandsenergie

Zunéchst wird die Abhéngigkeit der Grundzustandsenergie von der Abschirmung u betrach-
tet. Dazu wird B = 0.1 gesetzt und p in verschiedenen Dimensionen variiert. Dabei musste
bei grofleren Abschirmungen und somit kleineren Energien die Abtastrate immer weiter
erhoht werden, sodass die benotigte Rechenzeit mit der Gréfle von p zunimmt. Es konnten
abhéngig von der jeweiligen Dimension die Energien fiir Abschirmungen von bis zu p = 0.01
berechnet werden. Mdégliche Ursachen dafiir sind, dass ab einem bestimmten von der Di-
mension abhéngigen Wert von p keine stabilen Zustdnde mehr existieren, die numerische
Genauigkeit des Programms nicht ausreicht oder eine wesentlich kleinere Abtastung und da-
mit mehr Rechenzeit notig ist. Die genaue Ursache konnte hier nicht ermittelt werden. Die
in zwei Dimensionen erhaltenen Werte sind in der Abbildung (5) aufgetragen.

Tragt man zusétzlich die aus der Reihenentwicklung des Yukawa-Potentials folgende lineare
Korrektur EQ+ By der Grundzustandsenergie EQ des Coulomb-Potentials auf, zeigt sich, dass
die Energieeigenwerte fiir kleine Abschirmungen gut durch die lineare Korrektur approximiert
werden konnen. Mit zunehmendem p weichen die numerisch bestimmten Daten immer weiter
von der linearen Korrektur ab, sodass die Daten durch eine Funktion mit einem zusétzlichem
in p quadratischen Term gefittet werden. Die zum fitten genutzte Funktion hat somit die
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Abbildung 6: Grundzustandsenergie in Abhéngigkeit von p fiir D =3 und B = 0.1
Dimension Parameter d
2 —0.24448 £1.925 - 1074
3 —0.709079 + 1.52 - 1073
4 —1.42203 + 2.526 - 1072
5 —2.37606 + 4.611 - 1073
6 —3.57008 + 1.51 - 1072
Tabelle 6: Parameter d fiir B = 0.1
Form

Ey = Ey + Bu + di®. (136)

Fiir den Parameter d erhilt man mit Gnuplot den Wert d = —0.24448 4+ 1.925 - 10~*. Die
Grundzustandsenergie ist somit bei groferen Abschirmungen niedriger als man allein durch
die lineare Korrektur erwarten wiirde. Mit EJ+ By erhélt man somit im betrachteten Bereich
von g eine obere Schranke. Tréigt man, wie in den Abbildungen (6) und (7), die Energie in
anderen Dimensionen, aber fiir den selben Wert von B, gegen die Abschirmung auf, zeigt
sich, dass der Parameter d abhéngig von der Dimension ist. In héheren Dimensionen wird die
Abweichung von der linearen Korrektur immer gréfler, was aus Tabelle (6) folgt. Die Differenz
zwischen den Grundzustandsenergien von Coulomb-Potential und Yukawa-Potential ist bei
gleicher Abschirmung in hoheren Dimensionen geringer, betrachtet man aber den Quotienten
der Energien von dem gestorten und dem ungestorten System in der gleichen Dimension,
nimmt dieser mit zunehmender Dimension ab. Betrédgt die Grundzustandsenergie mit p =
0.001 in zwei Dimensionen noch 99.5% der ungestorten Energie, sind es in 6 Dimensionen
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Abbildung 7: Grundzustandsenergie in Abhéngigkeit von p fiir D =6 und B = 0.1

nur noch 87.9%. Betrachtet man das Verhalten bei anderen Werten fiir B, ist das Verhalten
der Grundzustandsenergie sehr dhnlich (Abbildung (8)). Sie kann auch mit (136) gefittet
werden, wobei die Werte fiir d von B abhéngig sind.

Aus den Tabellen (7) und (8) folgt, dass d mit zunehmendem B kleiner wird. Der Einfluss
von B auf den Parameter d scheint dabei auch von der Dimension abzuhidngen. Um diesen
Zusammenhang genauer zu betrachten, sind mehr Daten erforderlich, wobei die benotigte
Rechenzeit fiir die Grundzustandsenergie sowohl fiir kleine als auch fiir grofle B zunimmt.
Fiir groe B nimmt die Anzahl der numerisch von null unterscheidbaren Koeffizienten zu,

B ‘ Parameter d

0.01 | —0.709043 + 1.693 - 10~*
0.1 | —0.709079 +1.52- 1073
1 —0.745463 +1.69 - 1073

Tabelle 7: Parameter d in D = 3 Dimensionen

wéhrend bei kleinen B die Energie wesentlich genauer abgetastet werden muss.

B ‘ Parameter d

0.01 | —3.48141 4+7.29-1073
0.1 | —3.57008 +1.51-1072
1 | —3.67198 +2.949 - 1073

Tabelle 8: Parameter d in D = 6 Dimensionen
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Abbildung 8: Grundzustandsenergie in Abhéngigkeit von p fiir D =3 und B =1

W Energie des Zustands [ = 0 Energie des Zustands [ = 1
107 | —1.249900229 - 1073 £ 2.5- 10710 | —1.249900422 - 103 &£ 1.5- 107"
107° | —1.249000179 - 1072 £9.2- 1078 | —1.249000399 - 1073 +1.5-107°
107* | —1.240030187 - 1073 £ 2.5- 10710 | —1.240025207 - 1072 £1.8-107°
1073 | —1.152932879- 1073 £1.3-107? | —1.152452216 - 1072 £2.7- 107

Tabelle 9: Vergleich der Energie fiir [l =0 und [ =1 mit B =0.1 und D = 3

Setzt man die berechneten Grundzustandsenergien in die Reihenentwicklung (95) der Wel-
lenfunktion ein, erhélt man eine alternierende Reihe, deren Koeffizienten a; mit grofier wer-
dendem k schnell gegen null laufen. Dadurch zeigt sich wieder die Ahnlichkeit zum Cou-
lombproblem, da die Laguerre-Polynome (37) auch alternieren. Setzt man hingegen nicht
Energieeigenwerte ein, zeigen die Koeffizienten dieses Verhalten nicht.

Erste angeregte Zustinde

In diesem Abschnitt werden die ersten beiden angeregten Zustdnde mit den Quantenzah-
len [ = 0 und [ = 1 untersucht, da die zufillige [ Entartung vom Wasserstoffatom nicht
mehr beim Yukawa-Potential gelten sollte. Es zeigt sich wie fiir den dreidimensionalen Fall
in Tabelle (9) dargestellt, dass der erste angeregte Zustand mit [ = 1 eine niedrigere Ener-
gie als der Zustand mit [ = 0 besitzt. Dabei sind beide Zusténde fiir kleine p mit der hier
verwendeten Methode energetisch noch nicht unterscheidbar. Die Energiedifferenz zwischen
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Dimension | Parameter d bei [ =0 Parameter d bei l = 1 Ad

2 —1.5941 +5.573 .10 | —1.38403 £3.969- 1073 | 0.21 £+6.984-107°
—2.72095 + 8.976 - 1073 | —2.4775+£1.676-1073 | 0.24345+9.131 - 1073
—4.36447 £5.5116 - 1073 | —3.65587 + 3.686 - 1073 0.7086 + 6.3 - 1073
—5.99624 + 9.724 - 1073 —5.07323+£6.7-1073 0.92301 £ 1.18 - 1072
—7.89371+£1.534-1072 | —6.6999 £+ 1.129 - 102 1.19381 +1.9-1072

O O = W

Tabelle 10: Parameter d der angeregten Zusténde fiir B = 0.1

beiden Zustédnden nimmt aber mit der Abschirmung zu und wird auflerdem mit zunehmen-
der Dimension grofier. Vergleicht man die Werte in 3 Dimensionen mit (134), kann man
den einzelnen Zustédnden zusétzlich zur Quantenzahl [ auch die Quantenzahl n zuordnen.
Fiir den hier bestimmten Energiebereich der beiden angeregten Zustinde kommen nur die
beiden Zusténde mit n = 0 und [ = 1 sowie n = 1 und [ = 0 in Frage. Die gefundenen
Energieintervalle gehoren damit zu den Zustdnden n = 0,/ = 1 und n = 1, [ = 0. Die er-
mittelten Werte stimmen dann auch im Rahmen der angegebenen Fehler mit (134) iiberein.
Die Energiewerte der beiden angeregten Zustédnde weisen dasselbe grundsétzliche Verhalten
wie die Grundzustandsenergie auf und werden &hnlich zu (136) mit

E, = E} + Bu + di®. (137)

approximiert, wobei EY die Energie des ersten angeregten Zustands des Coulomb-Problems
ist. Die Energiedifferenz zwischen den beiden Zustinden ist dann durch (dj—; — dj—o)u* =
Ad - pi? gegeben. In der Tabelle (10) werden die ermittelten Werte von d fiir beide Zusténde
und ihre Differenz angegeben. Der Abstand zwischen den Energien fiir [ = 0 und [ = 1
wird mit zunehmender Dimension und mit zunehmender Abschirmung gréfer. Die in [22]
gegebene Beziehung

En,l < Enfl,lJrl (138)

fiir die Energieeigenwerte eines Yukawa-Potentials in 3 Dimensionen scheint somit zumindest
fiir £ und Ep; auch in beliebigen Dimensionen zu gelten.

Die Energiedifferenz AE zwischen dem Energieniveau des Grundzustands und der angeregten
Zusténde ergibt sich bei den hier betrachteten p in guter Néherung nach (137) und (136)
durch AE = EY — EQ+(dy—dy)p?, wobei dy der Fit-Parameter des angeregten Zustandes und
dy der Fit-Parameter des Grundzustandes ist. Da die angeregten Zustande grofiere Werte fiir
d als der jeweilige Grundzustand besitzen und somit fiir die Dimensionen zwei bis 6 immer
dy < dy gilt, wird der Abstand zwischen den Energien mit zunehmendem g und zunehmender
Dimension geringer.

5 Zusammenfassung

Anhand des exakt losbaren Coulombproblems zeigt sich, dass die Energieeigenwerte und
die Wellenfunktionen durch die Anzahl der rdumlichen Dimensionen beeinflusst werden. So-
wohl die Energie eines gebundenen Zustands als auch der Abstand zwischen den einzelnen
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Energieniveaus verdndern sich. Das grundsétzliche Verhalten der Energien und auch die
Charakterisierung der Niveaus mit Hilfe der Quantenzahl n bleibt aufgrund der selben Sym-
metrie in allen Dimensionen erhalten. Die mehrdimensionale Betrachtung erméglicht auch
Verkniipfungen zu anderen quantenmechanischen Modellsystemen herzustellen, wie der Ab-
bildung des Coulombpotentials auf den harmonischen Oszillator.

Fiir das Yukawa-Potential konnte gezeigt werden, dass sich die Energieeigenwerte fiir klei-
ne Abschirmungen gut durch ein energetisch verschobenes Coulombpotential approximieren
lassen. Die Storung ist in diesem Fall auch in guter Ndherung dimensionsunabhéngig. Fiir
groflere Storungen weichen die Energieeigenwerte mit zunehmender Dimension immer weiter
von der dimensionsunabhéngigen Korrektur ab. Die Zustéinde des Yukawa-Potentials konn-
ten auflerdem als Reihenentwicklung dargestellt werden.

Um die Energieeigenwerte zu bestimmen wurden drei verschiedene Verfahren genutzt und
die Ergebnisse miteinander verglichen. Die Storungstheorie erster und zweiter Ordnung lie-
fert fiir die Grundzustandsenergie fiir fast alle betrachteten Dimensionen schlechtere obere
Schranken als die beiden anderen Verfahren. Dabei wird die Abweichung von den anderen
Verfahren mit zunehmender Abschirmung und Dimension gréfler. Mit dem Variationsver-
fahren erhélt man fiir hohere Dimensionen zuverlissig gute obere Schranken fiir die Grund-
zustandsenergie, obwohl die Rechenzeit mit zunehmender Abschirmung stark zunimmt. Im
zweidimensionalen Fall sind Energiewerte aber wesentlich schlechter als die der Stérungstheo-
rie. Eine Abschéitzung fiir den ersten angeregten Zustand war mit dem Variationsverfahren
nicht moglich. Mit Hilfe der Betrachtung der Konvergenz der Zustandsreihenentwicklung
konnten mit meist geringem Aufwand an Rechenzeit und mit abschitzbarem Fehler die
Eigenwerte bestimmt werden. Durch dieses Verfahren konnten auch die ersten angeregten
Zusténde untersucht werden. Der erste angeregte Zustand mit [ = 0 besitzt einen kleineren
Energieeigenwert als der Zustand mit [ = 1, wobei die Differenz zwischen den beiden Energi-
en mit der Dimension und der Abschirmung gréfler wird. Die in 3 Dimensionen herrschende
Ordnung der Eigenwerte E,; < FE,_1;4+1 scheint damit auch in héheren Dimensionen zu
gelten.

In wie fern die in [20] gegebene numerisch bestimmte Formel fiir die Energieeigenwerte in drei
Dimensionen auch auf beliebige Dimensionen verallgemeinert werden kann, konnte aufgrund
der zu geringen Anzahl an Daten nicht beantwortet werden.
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6 Anhang

6.1 Leiteroperatoren

Die Herleitung erfolgt nach [23]. Um die Formel (53) herzuleiten, beginnt man mit den

Relationen [13] fiir die zugeordneten Laguerrepolynome

d
yggtn = nal) — (nta) Lo,

und
(n+1DL(y) — 2n+a+1-y)Ly(y) + (n+ )Ly (y) = 0.
Setzt man (140) in (139) ein erhélt man

d
ygyln = —a— gL+ (n+ 1)L ).

Die Relation [13]
Ly y) = Ly(y) = Ly 1 (v)
eingesetzt in (140) ergibt
(n+1)Loy(y) — (n+a)Ly(y) — (n+a) Ly (y) + (e +y — 1)L7 = 0.
Nutzt man (142) noch einmal, zeigt man, dass die Gleichung
(0 = D)LY (y) + (n+ )Ly (y) — Lot ()] — (e +y — D L7(y) =0
gilt. Wird (142) ein letztes Mal angewendet, gelangt man zu dem Ausdruck
(0 =1Ly (y) — (n+ )Ly 3 (y) — (a+y — 1Ly =0,

der gemeinsam mit (141) die Formel (53)
(n+ D0+ )L50) = lala = 1) = yla + mL5() + (@~ Dy L)

ergibt.
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