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1 Einleitung

In dieser Arbeit sollen Systeme in beliebigen räumlichen Dimensionen in der nichtrelativisti-
schen Quantenmechanik behandelt werden. Neben dem rein akademischen Interesse, warum
wir in einem anscheinend dreidimensionalen Raum leben, beziehungsweise in wie fern sich
der dreidimensionale Raum und die physikalischen Gesetze in 3 Dimensionen von den physi-
kalischen Gesetzen und ihren Auswirkungen in beliebigen Dimensionen unterscheiden, exis-
tieren noch weitere Gründe sich mit der Quantenmechanik in beliebigen Dimensionen zu
beschäftigen. Dimensionsreduzierte quantenmechanische Systeme wie das zweidimensionale
Elektronengas werden in der Fest- und Oberflächenphysik als Modelle zur Beschreibung von
Oberflächen, dünnen Schichten und Bandstrukturen, wie in [1] zusammengefasst, genutzt.
Physikalische Modelle in höheren Dimensionen finden sich vor allem im Bereich der Physik
jenseits des Standardmodells, aber auch in der Festkörperphysik existieren Ansätze [2].
Hier soll die Abhängigkeit der Energieeigenwerte zweier Potentiale von der Dimension be-
handelt werden. Das erste Potential ist das exakt lösbare Coulomb-Potential, das durch die
Vorhersage des Spektrums des Wasserstoffatoms historisch bedeutend ist. Als Verallgemei-
nerung des Coulomb-Potential wird das Yukawa-Potential untersucht, das im dreidimensio-
nalen zum Beispiel in der Atomphysik zur Vorhersage von Spektren neutraler Atome [3]
genutzt wird. Im ersten Abschnitt werden zunächst die wichtigsten Grundlagen angegeben,
die zur Behandlung von radialsymmetrischen Hamiltonoperatoren in beliebigen Dimensio-
nen benötigt werden. Danach wird im zweiten Abschnitt das Coulomb-Potential diskutiert.
Die Dimensionsabhängigkeit der Energieeigenwerte des Yukawa-Potentials wird im dritten
Abschnitt untersucht.

2 Grundlagen

In diesem Abschnitt werden kurz die zur Verallgemeinerung von radialsymmetrischen Hamil-
tonoperatoren in beliebige Dimensionen benötigten Relationen zusammengefasst. Die For-
meln stammen aus [4] und werden dort wesentlich ausführlicher diskutiert, weshalb für Her-
leitungen und mathematische Erläuterungen auch auf [4] verwiesen wird.

2.1 Kugelkoordinaten in beliebigen Dimensionen

Da das Coulomb-Potential und das Yukawa-Potential rotationssymmetrisch sind, ist es prak-
tisch in Kugelkoordinaten zu arbeiten. Die Transformation von Kugelkoordinaten zu karte-
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sischen Koordinaten in D Dimensionen kann durch

x1 = r cos(θ1)
D−1∏
i=2

sin(θi)

x2 = r

D−1∏
i=1

sin(θi)

xa = r cos(θa−1)
D−1∏
i=a

sin(θi)

xD = r cos(θD−1)

definiert werden, wobei a ∈ [3, D − 1], r ∈ [0,∞), θ1 ∈ [−π, π] und θb ∈ [0, π], b ∈ [2, D − 1]

gelten. r =
√∑D

i=1 x
2
i ist der Radius einer D dimensionalen Kugel. Bezeichnet man r als θ0,

sind die Normierungsfaktoren der Einheitsvektoren hi = |∂ #»r
∂θi
| i = 0, ...D−1 für D ≥ 3 durch

h0 = 1 (1)

h1 = r
D−1∏
i=2

sin(θi) (2)

h2 = r
D−1∏
i=3

sin(θi) (3)

ha = r
D−1∏
i=a+1

sin(θi) (4)

hD−1 = r (5)

gegeben, während im Fall D = 2 h0 = 1 und h1 = r gilt. Das Volumenelement berechnet
sich aus

D∏
i=1

dxi = rD−1drdΩ, dΩ =
D−1∏
j=1

[sin(θj)]
j−1dθj. (6)

2.2 Drehimpulsoperator in beliebigen Dimensionen

Die Drehimpulsoperatoren Lab sind in kartesischen Koordinaten als (~ = 1)

Lab = i

(
xb

∂

∂xa
− xa

∂

∂xb

)
(7)

definiert und sind die Generatoren der Gruppe SO(D), wobei ihr Kommutator durch

[Lab, Lcd] = i(δacLbd + δbdLac − δadLbd − δbcLad) (8)
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gegeben ist. Den Casimir Operator L2, der mit allen Elementen der Gruppe vertauscht,
erhält man aus der Summe aller Quadrate der Generatoren

L2 =
D∑

a<b=2

L2
ab (9)

und lautet in Kugelkoordinaten

L2 =
D−2∑
j=1

1∏D−1
k=j+1 sin2(θk)

[
1

sinj−1(θj)

(
∂

∂θj
sinj−1(θj)

∂

∂θj

)]
(10)

+
1

r2

[
1

sinD−1(θD−1)

(
∂

∂θD−1
sinD−2(θD−1)

∂

∂θD−1

)]
. (11)

Seine Eigenfunktionen Y l
lD−2...l1

(θ1....θD−1) werden Kugelflächenfunktionen genannt und erfüllen
die Eigenwertgleichung

L2Y l
lD−2...l1

(θ1....θD−1) = l(l +D − 2)Y l
lD−2...l1

(θ1....θD−1). (12)

2.3 Laplaceoperator in beliebigen Dimensionen

Um später einen rotationssymmetrischen Hamiltonoperator in D dimensionalen Kugelkoor-
dinaten darstellen zu können, muss zunächst der Laplace-Operator in beliebig dimensiona-
len Kugelkoordinaten betrachtet werden. Setzt man in die allgemeine Formel zur Berech-
nung des Laplace-Operators in einem anderen Koordinatensystemen mit den Koordinaten
y0, y1, ...yD−1

∇2 =
1

h

D−1∑
j=0

∂

∂yj

(
h

h2j

∂

∂yj

)
(13)

mit h =
D−1∏
j=0

hj, hj = |∂
#»r

∂θi
| (14)

für y0 = r und yi = θi, i ∈ [1, D − 1] ein, erhält man mit (5)

∇2 =
1

rD−1
∂

∂r

(
rD−1

∂

∂r

)
(15)

+
1

r2

D−2∑
j=1

1∏D−1
k=j+1 sin2(θk)

[
1

sinj−1(θj)

(
∂

∂θj
sinj−1(θj)

∂

∂θj

)]
(16)

+
1

r2

[
1

sinD−1(θD−1)

(
∂

∂θD−1
sinD−2(θD−1)

∂

∂θD−1

)]
. (17)

Durch Vergleich mit Gleichung (11) für den kommutierenden Drehimpulsoperator kann der
Laplace-Operator als

∇2 =
1

rD−1
∂

∂r

(
rD−1

∂

∂r

)
− L2

r2
(18)

geschrieben werden.
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3 Coulomb-Potential

Als Coulomb-Potential in beliebigen Dimensionen wird hier ein Potential der Form V (r) = γ
r

angenommen. Die Lösung der Poissongleichung in D Dimensionen ist hingegen

V ∗(r) =

{
γ

rD−2 , wenn D 6= 2

γ ln (r), wenn D = 2
(19)

und entspricht somit nur für D = 3 dem gewählten Ansatz [5]. Es konnte in [6] gezeigt
werden, dass für Atome mit einem Potential der Form V ∗(r) für D > 3 nur stabile Zustände
existieren, deren Energien positiv sind und dass im Fall von D = 4 keine stabilen Zustände
existieren. Da dies der experimentellen Beobachtung widerspricht, scheint man die Gültigkeit
des Gaußschen Gesetzes in höheren Dimensionen aufgeben zu müssen. Das Potential V (r)
entspricht hingegen den Beobachtungen der Rutherford-Streuexperimente, die unabhängig
von der Anzahl der räumlichen Dimensionen sind [7]. Dies rechtfertigt den gewählten Ansatz
der Form 1

r
. Für die Konstante γ gilt in 3 Dimensionen γ = q1q2

4πε0
. Dabei sind q1 und q2 die

Ladungen der beiden elektrisch wechselwirkenden Teilchen. Eine Verallgemeinerung dieser
Konstanten auf beliebige Dimensionen soll hier nicht vorgenommen werden, da unklar ist in
wie fern sich die Naturkonstanten in anderen Dimensionen verhalten beziehungsweise ver-
halten würden. Daher wird in den folgenden Abschnitten die Konstante nur als γ bezeichnet.

3.1 Energiespektrum und Eigenzustände

Die Rechnungen in diesem Abschnitt erfolgen nach [5], [8] und [9], wenn nicht anders an-
gegeben. Die zeitunabhängige Schrödingergleichung eines Wasserstoff ähnlichen Atoms ist
durch

− ~2

2µ
∇2ψ( #»x )− γ

r
ψ( #»x ) = Eψ( #»x ) (20)

gegeben, wobei µ die reduzierte Masse ist. In folgenden Formeln wird ~ = µ = 1 gesetzt
und es werden nur die gebundenen Zustände mit E < 0 betrachtet. Setzt man den Laplace-
Operator in Kugelkoordinaten (18) für eine beliebige Anzahl an Dimensionen ein, ergibt
sich

−1

2

[
1

rD−1
∂

∂r
(rD−1

∂

∂r
)− L2

r2

]
ψ( #»x ) =

[
E +

γ

r

]
ψ( #»x ). (21)

Mit dem Separationsansatz ψ( #»x ) = R(r)Y l
lD−2...l1

(θ1....θD−1) erhält man die Eigenwertglei-
chung für den Winkelanteil

L2Y l
lD−2...l1

(θ1....θD−1) = ΩY l
lD−2...l1

(θ1....θD−1) (22)

und die Differenzialgleichung

1

rD−1
d

dr

(
rD−1

d

dr

)
R(r) +

(
2E + 2

γ

r
− Ω

r2

)
R(r) = 0 (23)

für den Radialanteil.
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Winkelanteil

Die Lösung des Eigenwertproblems des Winkelanteils ist nach (12) gegeben durch

L2Y l
lD−2...l1

(θ1....θD−1) = l(l +D − 2)Y l
lD−2...l1

(θ1....θD−1). (24)

Für die Eigenwerte Ω gilt damit

Ω = l(l +D − 2). (25)

Radialanteil

Mit (25) erhält man für den Radialanteil Rl(r) die Gleichung

d2Rl(r)

dr2
+
D − 1

r

dRl(r)

dr
+

(
2E + 2

γ

r
− l(l +D − 2)

r2

)
Rl(r) = 0, (26)

die sich mit Hilfe der Substitution ρ =
√
−8Er und der Abkürzung τ = γ 1√

−2E als

d2Rl(ρ)

dρ2
+
D − 1

ρ

dRl(ρ)

dρ
+

(
τ

ρ
− 1

4
− l(l +D − 2)

ρ2

)
Rl(ρ) = 0 (27)

schreiben lässt. Um einen geeigneten Ansatz für die Lösung der Differentialgleichung zu
finden, betrachtet man zunächst den Grenzfall ρ→∞

d2Rl(ρ)

dρ2
− 1

4
Rl(ρ) = 0. (28)

Die Gleichung kann mit Hilfe des Ansatzes Rl(ρ) = const. · e− ρ2 gelöst werden. Wählt man
den Ansatz

Rl(ρ) = ρle−
ρ
2F (ρ) (29)

folgt für F (ρ) mit (27)

ρ
d2F (ρ)

dρ2
+ (2l +D − 1− ρ)

dF (ρ)

dρ
+

(
τ − l − D − 1

2

)
F (ρ) = 0. (30)

Diese Gleichung wird nun mit Hilfe der Sommerfeldschen Polynom Methode gelöst. Dazu
wird für F (ρ) der Ansatz F (ρ) =

∑∞
k=0 akρ

k verwendet und es folgt aus (30)

0 =
∞∑
k=0

ak+1ρ
k(k + 1)k + (2l +D − 1)

∞∑
k=0

ak+1ρ
k(k + 1) (31)

−
∞∑
k=1

akρ
kk + (τ − l − D − 1

2
)
∞∑
k=0

akρ
k. (32)
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Da die Potenzen von ρ voneinander linear unabhängig sind, führt man einen Koeffizienten-
vergleich durch und erhält die Rekursionsgleichung

ak+1 =
k − (τ − l − D−1

2
)

(k + 1)k + (2l +D − 1)(k + 1)
ak, (33)

wobei a0 6= 0 gilt. Da die Zustände normierbar sein müssen, muss die Reihe für ein endliches
k abbrechen. Die Abbruchbedingung für die Reihe ist somit

τ − l − D − 1

2
= nr = 0, 1, 2, ... . (34)

Analog zur Definition der Hauptquantenzahl des Wasserstoffatoms in 3 Dimensionen definiert
man die Quantenzahl n = nr + l+ 1. Die Energie der Zustände kann nun mit (34) bestimmt
werden, da τ = γ 1√

−2E abhängig von der Energie ist. Dies führt zu

n+
D − 3

2
= γ

√
1

−2E
(35)

und die Energie ergibt sich somit aus

E(n,D) = − γ2

2(n+ D−3
2

)2
. (36)

Die Energie ist somit abhängig von der Dimension D, aber unabhängig von der Quantenzahl
l. Aus der Rekursionsrelation können die zugeordneten Laguerre Polynome Lαn(t) hergeleitet
werden, die durch

Lαn =
n∑
j=0

(
n+ α

n− j

)
(−t)j

j!
(37)

gegeben sind. Insgesamt ist der Radialanteil somit durch

R(ρ) = Nρle−
ρ
2L2l+D−2

n−l−1 (ρ) (38)

gegeben, wobei N die noch zu bestimmende Normierungskonstante ist. Sie wird mit (6) und
mit ρ =

√
−8E durch die Relation∫ ∞

0

R(ρ)2rD−1dr =
N2

(−8E)
D
2

∫ ∞
0

ρD−1+2l[L2l+D−2
n−l−1 (ρ)]2dρ = 1 (39)

bestimmt. Das Integral kann mit Hilfe der Integralformel

Jβm,α =

∫ ∞
0

e−xxα+β[Lαm(x)]2 (40)

=
Γ(α +m+ 1)

m!

m∑
k=0

(−1)kΓ(m− k − β)Γ(α + k + β + 1)

Γ(−k − β)Γ(α + k + 1)k!(m− k)!
mit Re(α + β + 1) > 0

(41)
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gelöst werden [10]. Aus Gleichung (39) folgt β = 1 und die Integralformel vereinfacht sich
zu [11]

J1
m,α =

(2m+ α + 1)Γ(α +m+ 1)

m!
. (42)

Durch die Relationen (39), (42), m = n− l − 1 und α = 2l +D − 2 erhält man

N2

(−8E)
D
2

(2n+D − 3)Γ(l +D + n− 2)

(n− l − 1)!
= 1, (43)

woraus mit (36) die Normierungskonstante folgt

N =

(
4γ

2n+D − 3

)D
2

√
(n− l − 1)!

(2n+D − 3)Γ(l +D + n− 2)
. (44)

Insgesamt lautet die Wellenfunktion des Coulombproblems

ψ( #»x ) = Nρle−
ρ
2L2l+D−2

n−l−1 (ρ)Y l
lD−2...l1

(θ1....θD−1). (45)

Abhängigkeit der Bindungsenergie von der Dimension

Anhand von (36) wird nun die Abhängigkeit der Energieniveaus von der Dimension disku-
tiert. In allen Dimensionen wird der Abstand der Energien mit steigendem n immer kleiner
und nähert sich null an, wie es schon vom Wasserstoffatom in drei Dimensionen bekannt
ist. Die Energien aller Zustände werden mit zunehmender Dimension immer größer, sodass
das Elektron immer schwächer gebunden ist. Generell entspricht die Bindungsenergie eines
Systems mit der Dimension D und der Hauptquantenzahl n einem System mit einer höher-
en Dimension D + 2 und einer niedrigeren Hauptquantenzahl n − 1. In der Abbildung (1)
werden die Grundzustandsenergie E1 = −2B2

(D−1)2 und die Energie des ersten angeregten Zu-

standes E2 = −2B2

(D+1)2
in Abhängigkeit von der Dimension dargestellt. Eine Besonderheit ist

der eindimensionale Fall, bei dem die Grundzustandsenergie −∞ wird. Der Quotient der

Grundzustandsenergie und der Energie des zweiten angeregten Zustands E2

E1
= (D−1)2

(D+1)2
ist

auch dimensionsabhängig und nimmt mit steigender Dimension zu. Während für D = 2 die
Energie des zweiten Zustands E2 nur 11.11% der Grundzustandsenergie beträgt, sind es für
D = 4 schon 36%.
Auch die Form der Wellenfunktion und damit die Wahrscheinlichkeitsdichte sind von der Di-
mension abhängig. Abbildung 2 zeigt für den Grundzustand die Wahrscheinlichkeitsdichte
|R(r)|2 des Radialteils in Abhängigkeit von dem Radius. Da die Kugelflächenfunktion und
damit der Winkelanteil für n = 1 konstant ist, wird die Wahrscheinlichkeitsdichte bis auf
einen konstanten Faktor durch den Radialteil bestimmt. Auffällig ist dabei, dass die Wahr-
scheinlichkeitsdichte am Kern mit zunehmender Dimension abnimmt. Insgesamt beeinflusst
somit die Dimension eines Coulomb-Problems nicht nur die Energie der einzelnen Zustände
sondern auch den Abstand zwischen den Energien und die Wahrscheinlichkeitsdichte.
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Abbildung 1: Grundzustandsenergie und Energie des ersten angeregten Zustands

Abbildung 2: Wahrscheinlichkeitsdichte in Abhängigkeit von r
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3.2 Leiteroperatoren

In diesem Abschnitt werden die Auf- und Absteigeoperatoren für den Radialteil der Wellen-
funktion Rl,n(ρ) = Nρle−

ρ
2L2l+D−2

n−l−1 (ρ) aufgestellt. Die Herleitung und Argumentation erfolgt
dabei nach [5] und [12]. Die radiale Wellenfunktion hängt von den beiden Quantenzahlen n
und l ab, wobei das Auffinden von Leiteroperatoren für n schwierig ist, da ρ aufgrund seiner
Definition ρ =

√
−8Er von der Energie und damit auch von n abhängt. Deshalb müssen wir

annehmen, dass für den Aufsteigeoperator

M̂+
n Rn,l(ρn) = Cn,lRn+1,l(ρn) 6= Cn,lRn+1,l(ρn+1) (46)

gilt, sodass ein Leiteroperator gefunden werden muss, der ρn zu ρn+1 macht. Dieses kom-
plizierte Problem soll hier nicht behandelt werden. Stattdessen werden die Leiteroperatoren
für die Quantenzahl l untersucht, da ρ nicht von dieser abhängt. Um diese Operatoren zu
finden, wird wegen (38) eine Relation zwischen den Laguerrepolynomen Lαn und Lα+2

n−1 für
den Aufsteigeoperator und eine Relation zwischen Lαn und Lα−2n+1 für den Absteigeoperator
benötigt. Die erste Relation ist durch

d

dy
Lαn(y) = − 1

α + 1
[yLα+2

n−1(y) + nLαn(y)] (47)

gegeben[13]. Bildet man nun die Ableitung von Rn,l

d

dρ
Rn,l(ρ) =

(
l

ρ
− 1

2

)
Rn,l(ρ) +Nn,lρ

le−
ρ
2

d

dρ
L2l+D−2
n−l−1 (ρ) (48)

und setzt (47) sowie (38) ein ergibt sich(
d

dρ
− l

ρ
+

1

2

(
2n+D − 3

2l +D − 1

))
Rn,l(ρ) =

−1

2l +D − 1

Nn,l

Nn,l+1

Rn,l+1(ρ). (49)

Daraus folgt die Beziehung

M̂+
l Rn,l(ρ) = m+

l Rn,l+1(ρ) (50)

mit der Definition des Aufsteigeoperators

M̂+
l = − d

dρ
+
l

ρ
− 1

2

(
2n+D − 3

2l +D − 1

)
(51)

und

m+
l =

√
(n− l − 1)(n+ l +D − 2)

2l +D − 1
. (52)

Um den Absteigeoperator zu finden, wird zunächst die benötigte Relation zwischen den
Laguerrepolynomen gesucht. Die Formel

(n+ 1)(n+ α)Lα−2n+1(y) = [α(α− 1)− y(α + n)]Lαn(y) + (α− 1)y
d

dy
Lαn(y), (53)
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deren Herleitung im Anhang näher erläutert wird, kann zu

(α− 1)
d

dy
Lαn(y) =

[
(α + n)− α(α− 1)

y

]
Lαn(y) +

(n+ 1)(n+ α)

y
Lα−2n+1 (54)

umgeformt werden. Setzt man diese Gleichung in (48) ein, erhält man(
d

dρ
+
l +D − 2

ρ
− 1

2

(
2n+D − 3

2l +D − 3

))
Rn,l(ρ) =

(n− l)(n+ l +D − 3)

2l +D − 3

Nn,l

Nn,l−1
Rn,l−1,

(55)

was die Definition

M̂−
l =

d

dρ
+
l +D − 2

ρ
− 1

2

(
2n+D − 3

2l +D − 3

)
(56)

für den Absteigeoperator nahe legt. Insgesamt folgt daraus mit

m−l =

√
(n− l)(n+ l +D − 3)

2l +D − 3
(57)

die Gleichung

M̂−
l Rn,l(ρ) = m−l Rn,l−1(ρ). (58)

3.3 Abbildung des Coulomb-Potentials auf den harmonischen Os-
zillator

In diesem Abschnitt wird die Radialfunktion des Coulombproblems auf die Radialfunkti-
on des harmonischen Oszillators abgebildet. Der harmonische Oszillator der Masse m in d
Dimensionen besitzt ein Potential der Form

V (r) =
mω2

2
r2 (59)

und die radiale Differentialgleichung lautet daher (~ = m = 1)[14]

d2

dy2
RL(y) +

d− 1

y

d

dy
RL(y) +

[
−y2 − L(L+ d− 2)

y2
+K

]
RL = 0, (60)

wobei y = r
√
ω, K = 2N + d und für die Quantenzahlen N und L N ≥ L gilt. Die

Energieeigenwerte sind durch

EN =
ωK

2
=
ω

2
(2N + d) (61)

und die Eigenfunktionen sind durch

RL(y) = Ne−
y2

2 yLL
L−1+ d

2
N−L

2

(y2) (62)
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mit der Normierungskonstanten

N = ω−
d
4

√
2Γ[N−L

2
+ 1]

Γ[N+L+D
2

]
(63)

gegeben [15]. Mit der Substitution ρ = y2 kann (38) in (62) überführt werden. Dabei ergeben
sich für die Quantenzahlen N, n, L und l und die Dimensionen D und d der beiden Systeme
aufgrund des Exponenten von ρ und der Indizes der Laguerre Polynome die Relationen [14]

L = 2l, N = 2n− 2, und d = 2D − 2. (64)

Zwischen den Lösungen des Radialproblems beider Systeme besteht somit die Beziehung [15]

Rl(ρ,D, n, l) = Λ0RL(y, 2D − 2, 2n− 2, 2l) (65)

mit

Λ0 =
1

2
ω

2D−2
4

√
(2γ)D

(n+ D−3
2

)D−1
. (66)

Aus (64) folgt, dass alle Eigenzustände eines D dimensionalen Coulombproblems mit n ≥ 1
und l ≥ 0 auf Eigenzustände eines harmonischen Oszillators abgebildet werden können,
solange D > 1 ist. Die Abbildung kann weiter verallgemeinert werden. Dazu wird (65) um
einen zusätzlichen Faktor ergänzt [15]

Rl(ρ,D, n, l) = Λλy
−λRL(y, d,N, L). (67)

Aufgrund des zusätzlichen Faktors y−λ muss RL(y, d,N, L) den Faktor yL+λ enthalten, sodass
L zu L + λ wird. Damit die Indizes der Laguerre Polynome sich nicht verändern, muss N
durch N + λ und d durch d − 2λ ersetzt werden. Für die Quantenzahlen und Dimensionen
gelten nun die Relationen

L = 2l + λ, N = 2n− 2 + λ, und d = 2D − 2− 2λ, (68)

während für den Radialteil der Wellenfunktion

Rl(ρ,D, n, l) = Λ0y
−λRL(y, 2D − 2− 2λ, 2n− 2 + λ, 2l + λ) (69)

gilt [15]. Da L, l, d,D, n und N ganze Zahlen sind, muss auch λ eine ganze Zahl sein. Die
physikalischen Beschränkungen N ≥ 0, L ≥ 0 und d ≥ 1 führen zu λ ≥ 2 − 2n, λ ≥ −2l
und λ ≤ D− 2. Möchte man alle möglichen Eigenzustände abbilden und berücksichtigt man
auch l ≥ 0 und n ≥ 1, muss λ die Beziehung

0 ≤ λ ≤ D − 2 (70)

erfüllen [15].
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Abbildung 3: Coulomb-Potential und Yukawa-Potential mit B = 1 und µ = 15

4 Yukawa-Potential

Nun soll das Coulombproblem verallgemeinert werden, indem das Yukawa-Potential

V (r) = −B e−µr

r
µ ≥ 0 (71)

betrachtet wird. Das Yukawa-Potential geht für den Grenzfall µ −→ 0 in das Coulomb-
Potential über und kann als abgeschirmtes Coulomb-Potential aufgefasst werden, sodass
für das Yukawa-Potential Energieeigenwerte erwartet werden, die größer sind als die des
Coulomb-Potentials. Wie in Abbildung (3) gezeigt, nähert sich das Yukawa-Potential dem
Coulomb-Potential für kleine r an, während es für einen größeren Abstand zum Mittelpunkt
schneller als das Coulomb-Potential gegen null geht.
Setzt man die Reihen-Definition der Exponentialfunktion eµr =

∑∞
x=0

(−µr)x
x!

ein, hat das
Potential die Form

V (r) = −B
r

+ µB − Bµ2r

2
+ ... . (72)

Die ersten beiden Terme sind somit nichts anderes als ein energetisch um µB verschobenes
Coulombproblem, wobei die Bindungsenergie verringert wird. Für sehr kleine µ sollte somit
die dimensionsunabhängige Energieverschiebung dominieren und sich das System ähnlich
wie das Wasserstoffatom verhalten. Das Yukawa-Potential ist wie das Coulomb-Potential
radialsymmetrisch, wobei die Störung die zufällige l Entartung aufheben sollte, sodass die

13



Energieeigenwerte nun auch von der Quantenzahl l abhängen.
Im nächsten Abschnitt wird zunächst mit Hilfe der Störungstheorie das grundsätzliche Ver-
halten der Grundzustandsenergie des Yukawa-Potentials für kleine µ untersucht. Anschlie-
ßend wird durch Variationsrechnung auch das Verhalten für größere µ betrachtet, bevor die
Energien durch eine Konvergenzbetrachtung der Reihenentwicklung der Zustände genauer
diskutiert und die verschiedenen Verfahren miteinander verglichen werden. Der eindimensio-
nale Fall kann hier aufgrund der unendlichen Grundzustandsenergie des Coulomb-Potentials
nicht betrachtet werden.

4.1 Störungstheorie

Für das Yukawa-Potential wird als erstes die Grundzustandsenergie E0 mit Hilfe der Störungs-
theorie berechnet. Dazu wird angenommen, dass µ und damit die Störung klein ist, was im
Hinblick auf (72) gerechtfertigt scheint. Das Yukawa-Potential erhält die Form

V (r) = −B

[
∞∑
n=0

µn

n!
(−1)nrn−1

]
= −B

r
−B

[
∞∑
n=1

µn

n!
(−1)nrn−1

]
, (73)

wenn die Reihendarstellung der Exponentialfunktion eingesetzt wird. Das ungestörte System
mit H0 = −B

r
und E1 = − 2B2

(D−1)2 ist das schon gelöste Coulombproblem mit γ = B und die
Störung H1 lautet daher

H1 = −B

[
∞∑
n=1

µn

n!
(−1)nrn−1

]
. (74)

Die Energie des gestörten Grundzustands E0 ist nach der Störungstheorie zweiter Ordnung
durch [16]

E0 =
−2B2

(D − 1)2
+ E

(1)
1 + E

(2)
1 (75)

gegeben. Da der Grundzustand des Coulombproblems mit den Quantenzahlen n = 1, l = 0
und m = 0 nicht entartet ist, ergibt sich die erste Ordnung der Energiekorrektur aus

E
(1)
1 = 〈1 0 0|H1|1 0 0〉, (76)

wobei der Grundzustand des Wasserstoffproblems durch |1 0 0〉 = Ne−brY0 mit b =
√
−2E1

gegeben ist. Setzt man (74) in (76) ein errechnet sich die erste Energiekorrektur durch

E
(1)
1 = −BN2

∞∑
n=1

µn

n!
(−1)n

∫ ∞
0

e−2brrn−2+Ddr. (77)

Dabei wurde genutzt, dass die Kugelflächenfunktionen normiert sind und deshalb
∫
Y 2
0 dΩ =

1 gilt. Das Integral wird mit
∫∞
0
xne−cxdx = n!

cn+1 gelöst, wobei c > 0 und n ≥ 0 gelten muss.
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Es müssen keine Einschränkungen vorgenommen werden, da Fälle in denen D ≥ 1 und b > 0
nicht gelten, physikalisch nicht sinnvoll sind. Somit folgt

E
(1)
1 = −BN2

∞∑
n=1

µn

n!
(−1)n

(n− 2 +D)!

(2b)n−1+D
, (78)

was sich mit (39) und (36) zu

E
(1)
1 = − B

(D − 1)!

∞∑
n=1

µn

n!
(−1)n

(D − 1)n−1(n− 2 +D)!

(4B)n−1
(79)

vereinfacht. Die erste Energiekorrektur ist somit abhängig von den Parametern B und µ,
sowie von der Dimension. Der für kleine µ dominante erste Term verringert die Bindungs-
energie und ist proportional zu B und µ, was der Erwartung durch (72) entspricht. Die
Energiekorrektur zweiter Ordnung ist

E
(2)
1 =

∑
m6=1

|〈mlmmm|H1|1 0 0〉|2

E1 − Em
=

∞∑
m=2

|〈mlmmm|H1|1 0 0〉|2
B2

2(m+D−3
2

)2
− 2B2

(D−1)2
. (80)

Aufgrund der Orthogonalität der Kugelflächenfunktionen beschränkt sich die Summe auf
Zustände mit lm = 0 und mm = 0. Das Matrixelement lautet mit (37) explizit

〈mlmmm|H1|1 0 0〉 = (81)

−BNm,l=0N1,0

∫ ∞
0

e−2Amr

 ∞∑
n=1

m−1∑
j=0

µn

n!
(−1)n+j

(m− 3 +D)!( 2B
m+D−3

2

)j

(m− j − 1)!(D − 2 + j)!

rj+n−1

j!

 rD−1dr
(82)

mit

Am =
2B

D − 1
+

B

m+ D−3
2

. (83)

Dies lässt sich zu

〈mlmmm|H1|1 0 0〉 = (84)

−BCm
∞∑
n=1

m−1∑
j=0

µn

n!
(−1)n+j

(m− 3 +D)!( 2B
m+D−3

2

)j

(m− j − 1)!(D − 2 + j)!

(j + n+D − 2)!

j!(2Am)j+n+D−1
(85)

auflösen, wobei Cm die Abkürzung für

Cm =
(4B)D√

(D − 1)!((D − 1)(2m+D − 3))
D
2

√
(m− 1)!

(2m+D − 3)(D +m− 3)!
(86)

ist. Um die Dimensionsabhängigkeit des Yukawa-Potentials zu diskutieren scheint die Störungs-
theorie nicht gut geeignet zu sein, da der erste dominierende Term Bµ dimensionsunabhängig
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ist und man anhand der nachfolgenden Summanden erkennen kann, dass der Einfluss der Di-
mension erst mit größerem µ auf die Energie zunimmt. Die Störungstheorie zweiter Ordnung
liefert nur eine sehr geringe Energiekorrektur von der Größenordnung 10−14 bis 10−8, die
mit µ zunimmt und wesentlich kleiner ist als die Korrektur erster Ordnung. Da nicht sicher
ist, in welchem Wertebereich von µ die Störungstheorie brauchbare obere Schranken für die
Grundzustandsenergie liefert, werden die Energieeigenwerte noch mit zwei weiteren Verfah-
ren bestimmt und die Werte anschließend in den Tabellen (1), (2), (3) und (4) miteinander
verglichen. Die Energien werden hier mit Hilfe der ersten 100 Summanden bestimmt. Die Be-
rechnung wird dabei numerisch durch die schnell anwachsenden Fakultäten begrenzt, wobei
die größten Fakultäten in den meisten Fällen in den vernachlässigbar kleinen Summanden
mit großen n beziehungsweise m enthalten sind.

4.2 Reihenentwicklung der Zustände

In diesem Abschnitt wird eine Reihenentwicklung der exakten Zustände für das Yukawa-
Potential aufgestellt. Da das Yukawa-Potential, genauso wie das Coulomb-Potential, radial-
symmetrisch ist, kann man den Separationsansatz ψ( #»x ) = R(r)Y l

lD−2...l1
(θ1....θD−1) für die

Wellenfunktion anwenden. Die Rechnung erfolgt somit zunächst analog zu der Rechnung des
Coulombproblems, wobei γ = Be−µr gesetzt wird. Die Gleichung (30) lautet dann

ρ
d2F (ρ)

dρ2
+ (2l +D − 1− ρ)

dF (ρ)

dρ
+ (βe−αρ − l − D − 1

2
)F (ρ) = 0, (87)

wobei die Abkürzungen β = B√
−2E und α = µ√

−8E benutzt werden. Der Radialteil ist durch

Rl(ρ) = ρle−
ρ
2F (ρ) (88)

gegeben und wird wieder mit Hilfe der Sommerfeldschen Polynom Methode gelöst. Mit
dem Ansatz F (ρ) =

∑∞
k=0 akρ

k und Reihen-Definition der Exponentialfunktion e−µr =∑∞
x=0

(−µr)x
x!

erhält man

0 =
∞∑
k=0

ak+1ρ
k(k + 1)k + (2l +D − 1)

∞∑
k=0

ak+1ρ
k(k + 1)−

∞∑
k=1

akρ
kk (89)

− (l +
D − 1

2
)
∞∑
k=0

akρ
k + β(

∞∑
x=0

(−αρ)x

x!
)(
∞∑
k=0

akρ
k). (90)

Da die Potenzen von ρ untereinander linear unabhängig sind, muss die Gleichung

0 =ak+1(k + 1)k + (2l +D − 1)ak+1(k + 1)− akk (91)

− (l +
D − 1

2
)ak + β(

k∑
x=0

ak−x(−1)x
αx

x!
) (92)

gelten. Daraus folgt die Rekursionsrelation

ak+1 =
(k + l + D−1

2
− β)ak − β(

∑k
x=1 ak−x(−1)x α

x

x!
)

(k + 1)(2l +D − 1 + k)
(93)
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mit a0 6= 0, deren erster Teil genau der Rekursionsrelation des Coulombproblems (33) ent-
spricht. Die unnormierten Wellenfunktionen des Yukawa-Potentials sind somit durch

ψ( #»x ) = Y l
lD−2...l1

(θ1....θD−1)ρ
le−

ρ
2

∞∑
k=0

akρ
k (94)

gegeben. Die Zustände des Yukawa- und des Coulomb-Potentials unterscheiden sich somit nur
durch die Rekursionsrelation für die Koeffizienten ak. Führt man den Parameter b =

√
−2E

ein, lautet die Rekursionsrelation

ak+1 =
[2b(k + l + D−1

2
)− 2B]ak − 2B(

∑k
x=1 ak−x(−1)x µ

x

x!
)

(k + 1)(2l +D − 1 + k)
(95)

und die unnormierte Wellenfunktion

ψ( #»x ) = Y l
lD−2...l1

(θ1....θD−1)r
le−br

∞∑
k=0

akr
k. (96)

Der vom Coulombproblem abweichende Term −2B(
∑k

x=1 ak−x(−1)x µ
x

x!
) der Rekursionsrela-

tion nimmt wie erwartet mit der Größe von B und µ zu.
Da die Kugelflächenfunktionen bereits normiert sind, muss nur noch der Radialteil normiert
werden. Die Normierung N ergibt sich dann aus

N2

∫ ∞
0

ρ2le−2br

[
∞∑
i=0

∞∑
k=0

akair
2l+k+i+D−1

]
rD−1dr. (97)

Das Integral lässt sich mit der schon zuvor genutzten Formel
∫∞
0
xne−cxdx = n!

cn+1 lösen,
sodass die Normierung durch

N =

(
∞∑
i=0

∞∑
k=0

akai
(2l + k + i+D − 1)!

(2b)2l+k+i+D

)− 1
2

(98)

gegeben ist.

4.3 Rayleigh-Ritzsches Variationsverfahren

Da eine Reihenentwicklung für die exakten Zustände vorliegt, wird nun mit dem Variations-
verfahren eine obere Schranke für die Grundzustandsenergie E0 gesucht [17]

E0 ≤
〈ψ(b)|H|ψ(b)〉
〈ψ(b)|ψ(b)〉

, (99)

wobei als Testfunktion eine nach N Summanden abgebrochene Reihenentwicklung der ex-
akten Zustände (94) genutzt wird. Als Variationsparameter dient b =

√
−2E und es wird
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angenommen, dass für den Grundzustand analog zum Coulombproblem l = 0 gilt. Der Test-
zustand lautet dann

ψ(b) = Y0(θ1....θD−1)e
−br

N∑
k=0

akr
k. (100)

Für N = 0 entspricht dieser Testzustand dem Grundzustand des Coulomb-Potentials. Das
Matrixelement 〈ψ(b)|H|ψ(b)〉 vereinfacht sich aufgrund von l = 0 zu

〈ψ(b)|H|ψ(b)〉 = −1

2
〈ψ(b)|∇2|ψ(b)〉+ 〈ψ(b)|V (r)|ψ(b)〉 (101)

= −1

2
〈ψ(b)| ∂

2

∂r2
+
D − 1

2

∂

∂r
|ψ(b)〉 −B〈ψ(b)|e

−µr

r
|ψ(b)〉. (102)

Setzt man nun die Testzustände explizit ein erhält man

〈ψ(b)|H|ψ(b)〉 = −b
2

2

∫ ∞
0

e−2br[
N∑
n=0

N∑
k=0

akanr
n+k]rD−1dr

∫
Y 2
0 dΩ (103)

+ b

∫ ∞
0

e−2br[
N∑
n=0

N∑
k=0

akanr
n+k−1n]rD−1dr

∫
Y 2
0 dΩ (104)

− 1

2

∫ ∞
0

e−2br[
N∑
n=0

N∑
k=0

akanr
n+k−2n(n− 1)]rD−1dr

∫
Y 2
0 dΩ (105)

+
D − 1

2
b

∫ ∞
0

e−2br[
N∑
n=0

N∑
k=0

akanr
n+k−1]rD−1dr

∫
Y 2
0 dΩ (106)

− D − 1

2

∫ ∞
0

e−2br[
N∑
n=0

N∑
k=0

akanr
n+k−2n]rD−1dr

∫
Y 2
0 dΩ (107)

−B
∫ ∞
0

e−(2b+µ)r[
N∑
n=0

N∑
k=0

akanr
n+k−1]rD−1dr

∫
Y 2
0 dΩ. (108)

Da die verallgemeinerten Kugelflächenfunktionen normiert sind, gilt
∫
Y 2
0 dΩ = 1. Die rest-

lichen Integrale lassen sich mit Hilfe der Formel
∫∞
0
xne−cxdx = n!

cn+1 mit c > 0 und n ≥ 0

lösen. Die erste Bedingung ist aufgrund von b =
√
−2E > 0 für gebundene Zustände erfüllt,

während die zweite Bedingung durch eine Einschränkung der Dimension auf D ≥ 2 erfüllt
werden kann. Mit der Integralformel ergibt sich

〈ψ(b)|H|ψ(b)〉 =
N∑
n=0

N∑
k=0

akan[−(n+ k +D − 1)!

2n+k+D+1
+
n(n+ k +D − 2)!

2n+k+D−1
(109)

− n(n− 1)(n+ k +D − 3)!

2n+k+D−1
+

(D − 1)(n+ k +D − 2)!

2n+k+D
(110)

− n(D − 1)(n+ k +D − 3)!

2n+k+D−1
]

1

bn+k+D−2
(111)

−B
N∑
n=0

N∑
k=0

akan
(n+ k +D − 2)!

(2b+ µ)n+k+D−1
. (112)
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Die Normierung 〈ψ(b)|ψ(b)〉 kann analog zur oberen Rechnung berechnet werden

〈ψ(b)|ψ(b)〉 =
N∑
n=0

N∑
k=0

akan
(n+ k +D − 1)!

(2b)n+k+D
. (113)

Um die Minima von 〈ψ(b)|H|ψ(b)〉
〈ψ(b)|ψ(b)〉 zu erhalten, wird die Ableitung nach b gebildet und gleich

null gesetzt, sodass die Gleichung

0 =

(
d

db
〈ψ(b)|H|ψ(b)〉

)
〈ψ(b)|ψ(b)〉 − 〈ψ(b)|H|ψ(b)〉

(
d

db
〈ψ(b)|ψ(b)〉

)
(114)

gelöst werden muss. Die Ableitungen sind durch

d

db
(〈ψ(b)|ψ(b)〉) = −

N∑
n=0

N∑
k=0

akan
(n+ k +D)!

2n+k+D
1

bn+k+D+1
(115)

+ 2
N∑
n=0

N∑
k=0

(
d

db
ak

)
an

(n+ k +D − 1)!

(2b)n+k+D
(116)

sowie

d

db
(〈ψ(b)|H|ψ(b)〉) = −

N∑
n=0

N∑
k=0

An,k,Dakan
(n+ k +D − 2)

bn+k+D−1
(117)

+ 2
N∑
n=0

N∑
k=0

An,k,D

(
d

db
ak

)
anAn,k,D

1

bn+k+D−2
(118)

+ 2B
N∑
n=0

N∑
k=0

akan
(n+ k +D − 1)!

(2b+ µ)n+k+D
(119)

mit

An,k,D = −(n+ k +D − 1)!

2n+k+D+1
+
n(n+ k +D − 2)!

2n+k+D−1
(120)

− n(n− 1)(n+ k +D − 3)!

2n+k+D−1
+

(D − 1)(n+ k +D − 2)!

2n+k+D
(121)

− n(D − 1)(n+ k +D − 3)!

2n+k+D−1
(122)

und

d

db
ak+1 =

[2b(k + l + D−1
2

)− 2B]
(

d
db
ak
)

(k + 1)(2l +D − 1 + k)
(123)

−
2B(

∑k
x=1

(
d
db
ak−x

)
(−1)x µ

x

x!
) + 2(k + l + D−1

2
)ak

(k + 1)(2l +D − 1 + k)
(124)

gegeben. Die Nullstellensuche und die anschließende Berechnung der Energie erfolgt nume-
risch über das Bisektionsverfahren mit Hilfe eines selbstgeschriebenen Programms. Die mit
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dem Programm bestimmten Schranken variieren sehr stark mit der Anzahl N der Summan-
den, sodass es für jede Abschirmung eine optimale Anzahl N an Summanden gibt und damit
eine niedrigste Schranke existiert. Sowohl für N die größer als auch für N die kleiner als das
optimale N sind, erhält man größere und damit schlechtere Schranken. Deshalb muss man
sich meist von unten an das optimale N herantasten. Dabei gilt, dass die optimale Anzahl an
Summanden mit zunehmender Abschirmung µ größer wird. Die Berechnung wird numerisch
durch die schnell anwachsenden Fakultäten der Form (n + k + D − 1)! limitiert. Daher ist
auch die Anzahl der Summanden und damit die Möglichkeit die Grundzustandsenergie für
große µ zu berechnen beschränkt.

Erster angeregter Zustand

Um auch die Dimensionsabhängigkeit des Energieabstands zwischen den Zuständen disku-
tieren zu können, wird mit dem Variationsverfahren der nächst höhere Energieeigenwert E1

abgeschätzt. Dazu wird die zur approximierten Grundzustandswellenfunktion φ0 orthogona-
le Komponente Φ der Testfunktion ψ gebildet. Als Testfunktion wird wieder eine nach N
Summanden abgebrochene Reihenentwicklung der Zustände mit l = 0 und dem Variations-
parameter b genutzt (94). Φ ergibt sich dann aus

|Φ〉 = |ψ〉 − |φ0〉〈φ0|ψ〉 (125)

und die obere Schranke für den Energieeigenwert E1 ist

E1 ≤
〈Φ(b)|H|Φ(b)〉
〈Φ(b)|Φ(b)〉

=
〈ψ(b)|H|ψ(b)〉 − E0|〈φ0|ψ〉|2

〈ψ(b)|ψ(b)〉 − |〈φ0|ψ〉|2
. (126)

Damit die Extremstellen bestimmt werden können, wird die Ableitung gebildet und gleich
null gesetzt

0 =

[
d

db
〈ψ(b)|H|ψ(b)〉 − E0

d

db
|〈φ0|ψ〉|2

] [
〈ψ(b)|ψ(b)〉 − |〈φ0|ψ〉|2

]
(127)

−
[
〈ψ(b)|H|ψ(b)〉 − E0|〈φ0|ψ〉|2

] [ d

db
〈ψ(b)|ψ(b)〉 −

(
d

db
|〈φ0|ψ〉|2

)]
. (128)

Da 〈ψ(b)|H|ψ(b)〉 und 〈ψ(b)|ψ(b)〉 schon im vorherigen Abschnitt berechnet wurden, muss
nur noch 〈φ0|ψ〉 betrachtet werden. Setzt man die approximierte Grundzustandswellenfunkti-
on φ0 ein, die nach N0 Summanden abgebrochen wird und die mit der Energie E0 berechneten
Koeffizienten γn besitzt, ergibt sich

|〈φ0|ψ〉| =
1

M0

∫ ∞
0

e−(b0+b)r[

N0∑
n=0

N∑
k=0

γnakr
n+k]rD−1dr (129)

=
1

M0

N0∑
n=0

N∑
k=0

γnak
(n+ k +D − 1)!

(b0 + b)n+k+D
, (130)

wobei M0 die Normierung der approximierten Grundzustandswellenfunktion

M2
0 = |〈φ0|φ0〉| =

N0∑
n=0

N0∑
k=0

akan
(n+ k +D − 1)!

(2b0)n+k+D
(131)
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ist. Die Ableitung nach b ergibt sich dann aus

d

db
(〈φ0|ψ〉)2 =

2

M0

〈φ0|ψ〉[−
N0∑
n=0

N∑
k=0

γnak
(n+ k +D)!

(b0 + b)n+k+D+1
(132)

+

N0∑
n=0

N∑
k=0

γn

(
d

db
ak

)
(n+ k +D − 1)!

(b0 + b)n+k+D
]. (133)

Das Variationsverfahren lieferte in diesem Fall nur Abschätzungen der Grundzustandsener-
gie. Dies könnte darauf zurückzuführen sein, dass die Anzahl der berechenbaren Summanden
N nicht groß genug ist um einen angeregten Zustand genau genug zu approximieren. Da beim
Coulombproblem die höheren Zustände wegen den zugeordneten Laguerre-Polynomen Sum-
manden mit höheren Potenzen enthalten, konvergieren vermutlich auch die Reihenentwick-
lungen der angeregten Zustände des Yukawa-Potentials langsamer als die des Grundzustands,
sodass auch ein größeres N genutzt werden müsste.

4.4 Bestimmung der Energieeigenwerte aus dem Konvergenzver-
halten

Wenn eine Reihenentwicklung C(r)
∑

k akr
k der Zustände vorliegt, können die Energieeigen-

werte, wie in [18] und [19] für das Morse-Potential erwähnt, durch die Konvergenz der Reihe
bei n → ∞ numerisch bestimmt werden. Da die Zustände normierbar sein müssen, muss
die Reihe entweder abbrechen, oder die Koeffizienten müssen genügend schnell gegen null
laufen. Diese Methode soll im folgenden Abschnitt auch auf das Yukawa-Potential mit (94)
angewendet werden.
Dazu werden mit Hilfe der Rekursionsrelation (95) die Koeffizienten ak für eine Energie E
berechnet und aufgezeichnet ab welchem k∗ die Koeffizienten mit k > k∗ numerisch nicht
mehr von null unterschieden werden können. Aufgrund der Normierbarkeitsbedingung geht
ak bei einem tatsächlichen Energieeigenwert Ex schneller gegen null und k∗ ist kleiner als bei
einer Energie Ex + ∆, die kein Energieeigenwert ist. Variiert man die Energie mit genügend
kleiner Schrittweite, kann man so theoretisch alle Energieeigenwerte mit beliebiger Genau-
igkeit bestimmen.
Hier werden die Eigenwerte mit Hilfe eines selbstgeschriebenen Programms berechnet. Dabei
werden Zahlen mit doppelter Maschinengenauigkeit genutzt, sodass Koeffizienten die kleiner
sind als ungefähr 10−306 nicht mehr von Null unterschieden werden können. Um Energiein-
tervalle zu erhalten, in denen sich ein Energieeigenwert befindet, werden die Koeffizienten
vom Programm mit (95) für verschiedene b =

√
−2E berechnet. Die Abbildung (4) zeigt

exemplarisch für ein Yukawa-Potential mit l = 0, B = 0.1 und µ = 0.001 in 3 Dimensionen
die Zahl der Koeffizienten k∗, nach denen die nachfolgenden Koeffizienten nicht mehr von
null unterscheidbar sind, in einem Energiebereich von E = −0.005 bis E = −0.0048 mit
einer Abtastrate von ∆b = 10−8. Für die beiden abgetasteten Energien E = −0.00490075
und E = −0.00490074 ist k∗ minimal, somit befindet sich zwischen den beiden Werten ein
Minimum für k∗, dass in diesem Fall den Grundzustand markiert. Der mit Hilfe des Va-
riationsverfahrens gewonnene Wert für den selben Zustand liegt genau innerhalb des hier
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Abbildung 4: Bestimmung der Grundzustandsenergie mit B = 0.1, D = 3 und µ = 0.001

bestimmten Intervalls. Da bei der Abtastung l = 0 vorgegeben wurde, wurde auch die An-
nahme bestätigt, dass die Grundzustandsenergie die Drehimpulsquantenzahl null besitzt.
Für die nachfolgende Bestimmung der Energieeigenwerte wird jeweils der Mittelwert eines
gefundenen Intervalls berechnet und als Fehler die halbe Intervallbreite angenommen.
Die Zuordnung, ob ein gefundenes Energieintervall zu dem Grundzustand oder zu einem
angeregten Zustand gehört, kann bei dieser Methode nur durch Vergleich mit der Energie
des entsprechenden Zustands eines ungestörten Coulomb-Potentials erfolgen. Da aber die
Quantenzahl l explizit in die Rekursionsrelation eingeht, kann gezielt nach Energieniveaus
mit entsprechendem l gesucht werden.
Weil die erforderliche Schrittweite ∆b, mit der b abgetastet wird, um einen Zustand er-
kennen zu können, in den meisten Fällen 10−8 oder kleiner ist und somit eine sehr große
Rechenzeit für ein gesamtes Energiespektrum benötigt wird, beschränken wir uns hier auf
die Bestimmung des Grundzustandes, des ersten angeregten Zustands mit l = 0 und des ers-
ten angeregten Zustands mit l = 1. Die Rechenzeit kann weiter verringert werden, wenn man
kleine Energieintervalle untersucht, in denen ein Zustand vermutet wird. Für den Grund-
zustand ist dabei durch das Variationsverfahren eine obere Schranke gegeben. Zusätzlich
existiert für alle Zustände mit der Energie des ungestörten Systems eine untere Schranke,
da die Energien des Yukawa-Potentials, wie vorher festgestellt, immer geringer sind als die
entsprechenden Energien des Coulomb-Potentials mit γ = B.
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µ Störungstheorie Variationsverfahren Konvergenz der Reihe
10−6 −1.99999000002 · 10−2 −1.59708758308 · 10−3[2] −1.9999906 · 10−2 ± 6 · 10−8

10−5 −1.99990000252 · 10−2 −1.59618787364 · 10−3[2] −1.9999001 · 10−2 ± 6 · 10−8

10−4 −1.99900025223 · 10−2 −1.58721691721 · 10−3[2] −1.9990003 · 10−2 ± 6.2 · 10−8

10−3 −1.99002516681 · 10−2 −1.50006147002 · 10−3[2] −1.9900251 · 10−2 ± 7.4 · 10−8

10−2 −1.90246157022 · 10−2 −8.36742977925 · 10−4[2] −1.9024400 · 10−2 ± 2.4 · 10−9

Tabelle 1: Grundzustandsenergie mit B = 0.1 und D = 2

µ Störungstheorie Variationsverfahren Konvergenz der Reihe
10−6 −4.99980000151 · 10−3 −4.99990000074 · 10−3[1] −4.9999005 · 10−3 ± 1.5 · 10−9

10−5 −4.99800015116 · 10−3 −4.99900007499 · 10−3[3] −4.9990005 · 10−3 ± 1.5 · 10−9

10−4 −4.98001510759 · 10−3 −4.99000749500 · 10−3[3] −4.9900079 · 10−3 ± 2 · 10−9

10−3 −4.80150175286 · 10−3 −4.90074506746 · 10−3[5] −4.9007451 · 10−3 ± 3.2 · 10−9

10−2 −3.14169326091 · 10−3 −4.07058030613 · 10−3[13] −4.0705803 · 10−3 ± 1.4 · 10−10

Tabelle 2: Grundzustandsenergie mit B = 0.1 und D = 3

4.5 Vergleich der Verfahren

In den Tabellen (1),(2), (3) und (4) werden die Energiewerte der verschiedenen Verfahren mit
B = 0.1 in verschiedenen Dimensionen und für verschiedene Abschirmungen µ miteinander
verglichen. Die Zahl in den Klammern hinter dem Energiewert gibt dabei die für das Varia-
tionsverfahren benötigte Anzahl an Summanden N an. Bei der Störungstheorie bezeichnet

”
/“entweder eine divergierende oder positive Energieschranke und beim Konvergenzverfah-

ren einen Zustand, der aufgrund zu geringer Genauigkeit nicht gefunden werden konnte.
Es zeigt sich, dass die mit dem Konvergenzverhalten berechneten Werte konsistent mit

den zuvor erhaltenen oberen Schranken sind. Die Energieeigenwerte aus dem Variationsver-
fahren sind entweder größer oder innerhalb der bestimmten Intervalle. Die Störungstheorie
liefert für Dimensionen größer als 2 immer größere und damit schlechtere obere Schranken
als das Variationsverfahren. Auffällig ist hingegen, dass das Variationsverfahren für D = 2
schlechtere Schranken als die Störungstheorie erster Ordnung liefert. Alle Verfahren sind
somit gegenüber der Größe der Abschirmung und der Dimension begrenzt. Beim Variations-
verfahren sinkt die Anzahl der berechenbaren Summanden N aufgrund der Fakultäten mit
der Dimension, während die Schranke bei der Störungstheorie mit zunehmender Dimension
immer schlechter wird. Bei dem Konvergenzverfahren muss eine wesentlich genauere Abtas-
tung bei großen Dimensionen genutzt werden, weil die Energien mit der Dimension immer

µ Störungstheorie Variationsverfahren Konvergenz der Reihe
10−6 −2.22162223124 · 10−3 −2.22212222372 · 10−3[3] −2.2221226 · 10−3 ± 6.7 · 10−10

10−5 −2.21622312389 · 10−3 −2.22122237220 · 10−3[3] −2.2212225 · 10−3 ± 6.7 · 10−10

10−4 −2.16231228856 · 10−3 −2.21223720352 · 10−3[5] −2.2122376 · 10−3 ± 6.7 · 10−9

10−3 −1.63112862951 · 10−3 −2.12370398079 · 10−3[7] −2.1237045 · 10−3 ± 2.6 · 10−9

10−2 / −1.35720439133 · 10−3[13] /

Tabelle 3: Grundzustandsenergie mit B = 0.1 und D = 4

23



µ Störungstheorie Variationsverfahren Konvergenz der Reihe
10−6 −1.24760006001 · 10−3 −1.24990000249 · 10−3[1] −1.24990024 · 10−3 ± 1.5 · 10−9

10−5 −1.22600600049 · 10−3 −1.24900024995 · 10−3[3] −1.24900046 · 10−3 ± 2 · 10−9

10−4 −1.01059897125 · 10−3 −1.24002495023 · 10−3[5] −1.24002524 · 10−3 ± 2.5 · 10−9

10−3 / −1.15245224090 · 10−3[9] −1.1524524 · 10−3 ± 2.7 · 10−8

Tabelle 4: Grundzustandsenergie mit B = 0.1 und D = 5

µ Formel Konvergenz der Reihe
10−6 −4.999899 · 10−3 ± 5 · 10−5 −4.9999005 · 10−3 ± 1.5 · 10−9

10−5 −4.998998 · 10−3 ± 5 · 10−5 −4.9990005 · 10−3 ± 1.5 · 10−9

10−4 −4.989991 · 10−3 ± 5 · 10−5 −4.9900079 · 10−3 ± 2 · 10−9

10−3 −4.900560 · 10−3 ± 5 · 10−5 −4.9007451 · 10−3 ± 3.2 · 10−9

10−2 −4.068054 · 10−3 ± 4.1 · 10−5 −4.0705803 · 10−3 ± 1.4 · 10−10

Tabelle 5: Vegleich der Grundzustandsenergie mit B = 0.1 und D = 3

kleiner werden.
Für die Berechnung der Energiewerte wird die Störungstheorie im folgendem Abschnitt nicht
verwendet, da man mit ihr vor allem für größere Störungen schlechtere Schranken erhält, die
mit zunehmender Dimension noch schlechter werden, wobei möglichst große Störungen für
die Dimensionsabhängigkeit berücksichtigt werden sollten. Gegen das Variationsverfahren
spricht, dass die Rechenzeit bei der Bestimmung der Energien meist größer ist, die Energie-
schranken für D = 2 nur eine schlechte Abschätzung liefern, keine Fehler angegeben werden
und keine höheren Zustände berechnet werden können. Deshalb wird das Verhalten des
Yukawa-Potentials in beliebigen Dimensionen mit Hilfe der aus dem Konvergenzverhalten
bestimmten Werten diskutiert. Die erhaltenen Energieeigenwerte für den 3 dimensionalen
Fall können noch mit Hilfe der in [20] und [21] angegebenen numerisch ermittelten Formel

En,l =
−µB
4N2

n,l

(
2B

µ
− gn,l)

2B
µ
− 2A(Nn,l + σ)2 + 2CN2

n,l

2B
µ
− gn,l + 2CN2

n,l

(134)

überprüft werden, wobei A = 1.9875, C = 1.2464 und σ = 0.003951 sind. Der Parameter gn,l
berechnet sich genähert aus [21]

gn,l = (1.248n+ 1.652l + 1.296)2. (135)

Nn,l = n+ l+1 entspricht der Definition der Hauptquantenzahl des Coulomb-Potentials. Die
Formel gibt die Energien für einen großen Bereich der Quantenzahlen n und l mit 1%iger
Genauigkeit an. Tabelle (5) zeigt, dass die ermittelten Werte im Rahmen der angegebenen
Fehler auch mit (134) übereinstimmen.

24



Abbildung 5: Grundzustandsenergie in Abhängigkeit von µ für D = 2 und B = 0.1

4.6 Diskussion der Dimensionsabhängigkeit

Grundzustandsenergie

Zunächst wird die Abhängigkeit der Grundzustandsenergie von der Abschirmung µ betrach-
tet. Dazu wird B = 0.1 gesetzt und µ in verschiedenen Dimensionen variiert. Dabei musste
bei größeren Abschirmungen und somit kleineren Energien die Abtastrate immer weiter
erhöht werden, sodass die benötigte Rechenzeit mit der Größe von µ zunimmt. Es konnten
abhängig von der jeweiligen Dimension die Energien für Abschirmungen von bis zu µ = 0.01
berechnet werden. Mögliche Ursachen dafür sind, dass ab einem bestimmten von der Di-
mension abhängigen Wert von µ keine stabilen Zustände mehr existieren, die numerische
Genauigkeit des Programms nicht ausreicht oder eine wesentlich kleinere Abtastung und da-
mit mehr Rechenzeit nötig ist. Die genaue Ursache konnte hier nicht ermittelt werden. Die
in zwei Dimensionen erhaltenen Werte sind in der Abbildung (5) aufgetragen.

Trägt man zusätzlich die aus der Reihenentwicklung des Yukawa-Potentials folgende lineare
Korrektur E0

0+Bµ der Grundzustandsenergie E0
0 des Coulomb-Potentials auf, zeigt sich, dass

die Energieeigenwerte für kleine Abschirmungen gut durch die lineare Korrektur approximiert
werden können. Mit zunehmendem µ weichen die numerisch bestimmten Daten immer weiter
von der linearen Korrektur ab, sodass die Daten durch eine Funktion mit einem zusätzlichem
in µ quadratischen Term gefittet werden. Die zum fitten genutzte Funktion hat somit die
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Abbildung 6: Grundzustandsenergie in Abhängigkeit von µ für D = 3 und B = 0.1

Dimension Parameter d
2 −0.24448± 1.925 · 10−4

3 −0.709079± 1.52 · 10−3

4 −1.42203± 2.526 · 10−2

5 −2.37606± 4.611 · 10−3

6 −3.57008± 1.51 · 10−2

Tabelle 6: Parameter d für B = 0.1

Form

E0 = E0
0 +Bµ+ dµ2. (136)

Für den Parameter d erhält man mit Gnuplot den Wert d = −0.24448 ± 1.925 · 10−4. Die
Grundzustandsenergie ist somit bei größeren Abschirmungen niedriger als man allein durch
die lineare Korrektur erwarten würde. Mit E0

0+Bµ erhält man somit im betrachteten Bereich
von µ eine obere Schranke. Trägt man, wie in den Abbildungen (6) und (7), die Energie in
anderen Dimensionen, aber für den selben Wert von B, gegen die Abschirmung auf, zeigt
sich, dass der Parameter d abhängig von der Dimension ist. In höheren Dimensionen wird die
Abweichung von der linearen Korrektur immer größer, was aus Tabelle (6) folgt. Die Differenz
zwischen den Grundzustandsenergien von Coulomb-Potential und Yukawa-Potential ist bei
gleicher Abschirmung in höheren Dimensionen geringer, betrachtet man aber den Quotienten
der Energien von dem gestörten und dem ungestörten System in der gleichen Dimension,
nimmt dieser mit zunehmender Dimension ab. Beträgt die Grundzustandsenergie mit µ =
0.001 in zwei Dimensionen noch 99.5% der ungestörten Energie, sind es in 6 Dimensionen
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Abbildung 7: Grundzustandsenergie in Abhängigkeit von µ für D = 6 und B = 0.1

B Parameter d
0.01 −0.709043± 1.693 · 10−4

0.1 −0.709079± 1.52 · 10−3

1 −0.745463± 1.69 · 10−3

Tabelle 7: Parameter d in D = 3 Dimensionen

nur noch 87.9%. Betrachtet man das Verhalten bei anderen Werten für B, ist das Verhalten
der Grundzustandsenergie sehr ähnlich (Abbildung (8)). Sie kann auch mit (136) gefittet
werden, wobei die Werte für d von B abhängig sind.

Aus den Tabellen (7) und (8) folgt, dass d mit zunehmendem B kleiner wird. Der Einfluss
von B auf den Parameter d scheint dabei auch von der Dimension abzuhängen. Um diesen
Zusammenhang genauer zu betrachten, sind mehr Daten erforderlich, wobei die benötigte
Rechenzeit für die Grundzustandsenergie sowohl für kleine als auch für große B zunimmt.
Für große B nimmt die Anzahl der numerisch von null unterscheidbaren Koeffizienten zu,
während bei kleinen B die Energie wesentlich genauer abgetastet werden muss.

B Parameter d
0.01 −3.48141± 7.29 · 10−3

0.1 −3.57008± 1.51 · 10−2

1 −3.67198± 2.949 · 10−3

Tabelle 8: Parameter d in D = 6 Dimensionen
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Abbildung 8: Grundzustandsenergie in Abhängigkeit von µ für D = 3 und B = 1

µ Energie des Zustands l = 0 Energie des Zustands l = 1
10−6 −1.249900229 · 10−3 ± 2.5 · 10−10 −1.249900422 · 10−3 ± 1.5 · 10−9

10−5 −1.249000179 · 10−3 ± 9.2 · 10−8 −1.249000399 · 10−3 ± 1.5 · 10−9

10−4 −1.240030187 · 10−3 ± 2.5 · 10−10 −1.240025207 · 10−3 ± 1.8 · 10−9

10−3 −1.152932879 · 10−3 ± 1.3 · 10−9 −1.152452216 · 10−3 ± 2.7 · 10−8

Tabelle 9: Vergleich der Energie für l = 0 und l = 1 mit B = 0.1 und D = 3

Setzt man die berechneten Grundzustandsenergien in die Reihenentwicklung (95) der Wel-
lenfunktion ein, erhält man eine alternierende Reihe, deren Koeffizienten ak mit größer wer-
dendem k schnell gegen null laufen. Dadurch zeigt sich wieder die Ähnlichkeit zum Cou-
lombproblem, da die Laguerre-Polynome (37) auch alternieren. Setzt man hingegen nicht
Energieeigenwerte ein, zeigen die Koeffizienten dieses Verhalten nicht.

Erste angeregte Zustände

In diesem Abschnitt werden die ersten beiden angeregten Zustände mit den Quantenzah-
len l = 0 und l = 1 untersucht, da die zufällige l Entartung vom Wasserstoffatom nicht
mehr beim Yukawa-Potential gelten sollte. Es zeigt sich wie für den dreidimensionalen Fall
in Tabelle (9) dargestellt, dass der erste angeregte Zustand mit l = 1 eine niedrigere Ener-
gie als der Zustand mit l = 0 besitzt. Dabei sind beide Zustände für kleine µ mit der hier
verwendeten Methode energetisch noch nicht unterscheidbar. Die Energiedifferenz zwischen
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Dimension Parameter d bei l = 0 Parameter d bei l = 1 ∆d
2 −1.5941± 5.573 · 10−3 −1.38403± 3.969 · 10−3 0.21±±6.984 · 10−3

3 −2.72095± 8.976 · 10−3 −2.4775± 1.676 · 10−3 0.24345± 9.131 · 10−3

4 −4.36447± 5.5116 · 10−3 −3.65587± 3.686 · 10−3 0.7086± 6.3 · 10−3

5 −5.99624± 9.724 · 10−3 −5.07323± 6.7 · 10−3 0.92301± 1.18 · 10−2

6 −7.89371± 1.534 · 10−2 −6.6999± 1.129 · 10−2 1.19381± 1.9 · 10−2

Tabelle 10: Parameter d der angeregten Zustände für B = 0.1

beiden Zuständen nimmt aber mit der Abschirmung zu und wird außerdem mit zunehmen-
der Dimension größer. Vergleicht man die Werte in 3 Dimensionen mit (134), kann man
den einzelnen Zuständen zusätzlich zur Quantenzahl l auch die Quantenzahl n zuordnen.
Für den hier bestimmten Energiebereich der beiden angeregten Zustände kommen nur die
beiden Zustände mit n = 0 und l = 1 sowie n = 1 und l = 0 in Frage. Die gefundenen
Energieintervalle gehören damit zu den Zuständen n = 0, l = 1 und n = 1, l = 0. Die er-
mittelten Werte stimmen dann auch im Rahmen der angegebenen Fehler mit (134) überein.
Die Energiewerte der beiden angeregten Zustände weisen dasselbe grundsätzliche Verhalten
wie die Grundzustandsenergie auf und werden ähnlich zu (136) mit

E1 = E0
1 +Bµ+ dµ2. (137)

approximiert, wobei E0
1 die Energie des ersten angeregten Zustands des Coulomb-Problems

ist. Die Energiedifferenz zwischen den beiden Zuständen ist dann durch (dl=1 − dl=0)µ
2 =

∆d · µ2 gegeben. In der Tabelle (10) werden die ermittelten Werte von d für beide Zustände
und ihre Differenz angegeben. Der Abstand zwischen den Energien für l = 0 und l = 1
wird mit zunehmender Dimension und mit zunehmender Abschirmung größer. Die in [22]
gegebene Beziehung

En,l < En−1,l+1 (138)

für die Energieeigenwerte eines Yukawa-Potentials in 3 Dimensionen scheint somit zumindest
für E1,0 und E0,1 auch in beliebigen Dimensionen zu gelten.
Die Energiedifferenz ∆E zwischen dem Energieniveau des Grundzustands und der angeregten
Zustände ergibt sich bei den hier betrachteten µ in guter Näherung nach (137) und (136)
durch ∆E = E0

1−E0
0 +(d2−d1)µ2, wobei d2 der Fit-Parameter des angeregten Zustandes und

d1 der Fit-Parameter des Grundzustandes ist. Da die angeregten Zustände größere Werte für
d als der jeweilige Grundzustand besitzen und somit für die Dimensionen zwei bis 6 immer
d2 < d1 gilt, wird der Abstand zwischen den Energien mit zunehmendem µ und zunehmender
Dimension geringer.

5 Zusammenfassung

Anhand des exakt lösbaren Coulombproblems zeigt sich, dass die Energieeigenwerte und
die Wellenfunktionen durch die Anzahl der räumlichen Dimensionen beeinflusst werden. So-
wohl die Energie eines gebundenen Zustands als auch der Abstand zwischen den einzelnen
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Energieniveaus verändern sich. Das grundsätzliche Verhalten der Energien und auch die
Charakterisierung der Niveaus mit Hilfe der Quantenzahl n bleibt aufgrund der selben Sym-
metrie in allen Dimensionen erhalten. Die mehrdimensionale Betrachtung ermöglicht auch
Verknüpfungen zu anderen quantenmechanischen Modellsystemen herzustellen, wie der Ab-
bildung des Coulombpotentials auf den harmonischen Oszillator.
Für das Yukawa-Potential konnte gezeigt werden, dass sich die Energieeigenwerte für klei-
ne Abschirmungen gut durch ein energetisch verschobenes Coulombpotential approximieren
lassen. Die Störung ist in diesem Fall auch in guter Näherung dimensionsunabhängig. Für
größere Störungen weichen die Energieeigenwerte mit zunehmender Dimension immer weiter
von der dimensionsunabhängigen Korrektur ab. Die Zustände des Yukawa-Potentials konn-
ten außerdem als Reihenentwicklung dargestellt werden.
Um die Energieeigenwerte zu bestimmen wurden drei verschiedene Verfahren genutzt und
die Ergebnisse miteinander verglichen. Die Störungstheorie erster und zweiter Ordnung lie-
fert für die Grundzustandsenergie für fast alle betrachteten Dimensionen schlechtere obere
Schranken als die beiden anderen Verfahren. Dabei wird die Abweichung von den anderen
Verfahren mit zunehmender Abschirmung und Dimension größer. Mit dem Variationsver-
fahren erhält man für höhere Dimensionen zuverlässig gute obere Schranken für die Grund-
zustandsenergie, obwohl die Rechenzeit mit zunehmender Abschirmung stark zunimmt. Im
zweidimensionalen Fall sind Energiewerte aber wesentlich schlechter als die der Störungstheo-
rie. Eine Abschätzung für den ersten angeregten Zustand war mit dem Variationsverfahren
nicht möglich. Mit Hilfe der Betrachtung der Konvergenz der Zustandsreihenentwicklung
konnten mit meist geringem Aufwand an Rechenzeit und mit abschätzbarem Fehler die
Eigenwerte bestimmt werden. Durch dieses Verfahren konnten auch die ersten angeregten
Zustände untersucht werden. Der erste angeregte Zustand mit l = 0 besitzt einen kleineren
Energieeigenwert als der Zustand mit l = 1, wobei die Differenz zwischen den beiden Energi-
en mit der Dimension und der Abschirmung größer wird. Die in 3 Dimensionen herrschende
Ordnung der Eigenwerte En,l < En−1,l+1 scheint damit auch in höheren Dimensionen zu
gelten.
In wie fern die in [20] gegebene numerisch bestimmte Formel für die Energieeigenwerte in drei
Dimensionen auch auf beliebige Dimensionen verallgemeinert werden kann, könnte aufgrund
der zu geringen Anzahl an Daten nicht beantwortet werden.
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6 Anhang

6.1 Leiteroperatoren

Die Herleitung erfolgt nach [23]. Um die Formel (53) herzuleiten, beginnt man mit den
Relationen [13] für die zugeordneten Laguerrepolynome

y
d

dy
Lαn = nLαn(y)− (n+ α)Lαn−1 (139)

und

(n+ 1)Lαn(y)− (2n+ α + 1− y)Lαn(y) + (n+ α)Lαn−1(y) = 0. (140)

Setzt man (140) in (139) ein erhält man

y
d

dy
Lαn = (−n− α− 1 + y)Lαn + (n+ 1)Lαn+1(y). (141)

Die Relation [13]

Lα−1n (y) = Lαn(y)− Lαn−1(y) (142)

eingesetzt in (140) ergibt

(n+ 1)Lαn+1(y)− (n+ α)Lαn(y)− (n+ α)Lα−1n (y) + (α + y − 1)Lαn = 0. (143)

Nutzt man (142) noch einmal, zeigt man, dass die Gleichung

(α− 1)Lαn+1(y) + (n+ α)[Lα−1n (y)− Lα−1n+1(y)]− (α + y − 1)Lαn(y) = 0 (144)

gilt. Wird (142) ein letztes Mal angewendet, gelangt man zu dem Ausdruck

(α− 1)Lαn+1(y)− (n+ α)Lα−2n+1(y)− (α + y − 1)Lαn = 0, (145)

der gemeinsam mit (141) die Formel (53)

(n+ 1)(n+ α)Lα−2n+1(y) = [α(α− 1)− y(α + n)]Lαn(y) + (α− 1)y
d

dy
Lαn(y) (146)

ergibt.
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