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1 Einleitung

Sowohl in der klassischen als auch in der Quantenmechanik ldsst sich nur eine be-
grenzte Klasse an Problemen analytisch exakt losen. Die Entwicklung zuverlédssiger
Néherungsverfahren ist daher notwendig, um die Theorie auf allgemeinere Syste-
me, wie sie in der Natur vorwiegend auftreten, anwenden zu kénnen. Ein wichtiges
Hilfsmittel der Quantenmechanik und insbesondere der Quantenchemie [1] stellt das
Rayleigh-Ritz-Verfahren dar, welches die ndherungsweise Berechnung von Grundzu-
standsenergien und in einigen Féllen auch der Energien angeregter Zusténde erlaubt.
Unabhéngig davon hat sich aus der Forschung zu quantenfeldtheoretischen Ansét-
zen jenseits des Standardmodells mit der supersymmetrischen Quantenmechanik ein
neuer Blickwinkel ercffnet, welcher weitreichende Verkniipfungen zwischen scheinbar
unzusammenhéngenden Systemen offenlegt. Es hat seit der Entwicklung durch H.
Nicolai [2] und E. Witten [3] viele Bestrebungen gegeben, diese Erkenntnisse zur
Verbesserung bekannter Approximationsverfahren nutzbar zu machen. Ich mochte
in dieser Arbeit insbesondere zwei Methoden zur Erweiterung des Rayleigh-Ritz-
Verfahrens darstellen, welche von Cooper et al. [4] und Mukharjee et al. [1] entwickelt

wurden, und deren Anwendung am anharmonischen Oszillator durchfiihren.

2 Grundlagen

2.1 Supersymmetrische Quantenmechanik

Beginnend in den siebziger Jahren des letzten Jahrhunderts wurde die Theorie einer
neuen, fundamentalen Symmetrie der Natur, der Supersymmetrie, entwickelt. Die
Symmetrie herrscht dabei zwischen Bosonen und Fermionen, wobei zu jedem Teil-
chen des Standardmodells ein neues Teilchen, der sogenannte Superpartner, postu-
liert wird. Bei exakter Supersymmetrie sollten sich die Teilchen also, unter Beriick-
sichtigung der iibrigen Erhaltungssitze, ohne Energieaufwand in ihre Superpartner
umwandeln lassen. Bislang konnte allerdings keines dieser SUSY-Teilchen beobach-
tet werden. Sofern die Supersymmetrie in der Natur realisiert ist, muss sie demnach
gebrochen sein. Die genaue Methode der Brechung ist derzeit Gegenstand intensiver
Forschung und kénnte letztendlich wohl nur mit der Beobachtung der Superpart-
ner eindeutig identifiziert werden. Schon 1976 {ibertrug H. Nicolai den Formalismus
auf nicht-relativistische Spin-Systeme [2]. und E. Witten nutzte 1981 eine Erweite-
rung dieser SUSY-Quantenmechanik (SUSYQM) zum Studium der Symmetriebre-



chung [3]. Davon ausgehend hat sich die SUSYQM zu einem eigenen Gegenstand
der Forschung entwickelt, aus dem sich, unabhéngig von Erfolg oder Miflerfolg der
supersymmetrischen Feldtheorie, elegante Methoden zum Umgang mit klassischen
quantenmechanischen Problemen ergeben. In der folgenden Einfiihrung folge ich im

wesentlichen der ausfiihrlichen Darstellung von Kalka und Soff [5].

2.1.1 Erzeugungs- und Vernichtungsoperatoren

In der Feldtheorie lassen sich die Teilchen nach ihrem Spin in Bosonen und Fermio-
nen einordnen. Dieser ldsst sich zwar durch die Konstruktion eines entsprechenden
Hamiltonoperators und Verwendung des Spinorformalismus in die Schrodingerglei-
chung integrieren, bleibt aber dennoch eine extrinsische Gréfle. Man verwendet zur
Klassifizierung der Systeme daher nicht den Spin, sondern die Erzeugungs- und Ver-

nichtungsoperatoren in der Besetzungszahldarstellung
V) = |nq,...,n;) . (1)

Handelt es sich um bosonische Teilchen, so konnen die Besetzungszahlen beliebige
Werte aus den natiirlichen Zahlen annehmen. Wir definieren die Erzeugungs- und

Vernichtungsoperatoren

IA)Z N1y Mgy ) = Vg + Lng,.oong + 1,00 0my) (2)
und
by [, o ke o) = /Mg N — 1oy (3)

Daraus ergibt sich unmittelbar der Besetzungszahloperator
Nk |11y o Mgy oy 0y) = (SZ(SI; |1y Mgy e ) = Mg [y e Mgy 2 ) (4)
Durch Einsetzen folgen auflerdem die Kommutatoren
0756 ] = o (5)

und

[13,;,13,;,} = [é,j,éﬂ =0. (6)



Fiir fermionische Teilchen lassen sich analoge Operatoren definieren. Zusétzlich ist
allerdings das Pauli-Prinzip zu beriicksichtigen, nach dem ein Zustand nicht von
mehreren Fermionen gleichzeitig besetzt werden kann. Damit folgt fiir die Erzeuger

und Vernichter

f]:_ |7’Ll,. Mgy . ,ni> = 5nk,0 |TL1,. .. ,1,. .. ,TLZ‘> (7)

sowie

fk_ |7’Ll,. Ny . ,’I’LZ’> = (57%1 |n1,. .. ,0,. .. ,ni> . (8)

Daraus lésst sich wieder der Besetzungszahloperator
ﬁk |’I’I,1,. BN LTI ,ni) = f,:rf]; ]nl,. Ny ,Tli> = Nk |n1,. BN LTI ,ni) (9)

konstruieren. Das Figenwertspektrum reduziert sich offensichtlich auf die Werte 1
und 0. Aus der zusétzlichen Einschrankung durch das Pauli-Prinzip ergeben sich
jetzt, statt der bosonischen Kommutatoren, Antikommutatorrelationen der fermio-

nischen Erzeuger und Vernichter. Durch Einsetzen zeigt sich
{ﬂ?, f;?} = O (10)
sowie
{fo g} ={fr0i} =0 (11)
2.1.2 Die SUSY-Transformation

Zu einem supersymmetrischen Modell gehéren nun wenigstens Transformationen,
welche Teilchen unterschiedlicher Statistik ineinander umwandeln, sowie ein dagegen

invarianter Hamiltonoperator. Wir beschrénken uns zunéchst auf ein System mit

einem bosonischen und einem fermionischen Zustand |¥) = |ny,ns) und suchen
Operatoren

Q+ |np,np) o Ons0 |npy — Lng+1) (12)
sowle

Q, [np,m5) OC 6y [+ Ly — 1) (13)

Aus den Erzeugungs- und Vernichtungsoperatoren lassen sich auf einfache Weise

Operatoren konstruieren, welche eine solche Umwandlung vornehmen. Wir werden

Qe =bf* (14)



und
Q- =b"f- (15)
im folgenden als SUSY-Operatoren bezeichnen. Von den fermionischen Erzeugern

und Vernichter erben sie die sogenannte Nilpotenz,
Q=0 =0. (16)

Der Vorfaktor ist zunéchst willkiirlich auf eins gesetzt und kann im Prinzip jeden
beliebigen Wert annehmen, solange er bei beiden Operatoren identisch gewéhlt wird.

Supersymmetrie bedeutet nun das Kommutieren der SUSY-Operatoren mit dem

Hamiltonoperator
Ein einfacher Ansatz fiir den Hamiltonoperator, welcher diese Bedingung erfiillt,
lautet
s ={Q..0 }. (18)
Da die SUSY-Operatoren selbst nicht hermitesch sind, bietet es sich an, die Opera-
toren
Qr=Q-+0Q; (19)
und
Q2 =i (Q— - @+> (20)
zu definieren. Es gilt dann
Q1 |np,0) o |y — 1,1) (21)
sowie
Q1 |ms,1) oc [my 4+ 1,0) . (22)

Diese bieten neben ihrer Hermitizitat den Vorteil, dass sie einen Zustand bei zwei-
maliger Anwendung wieder in sich selbst {iberfithren. Wir werden sie im folgenden
als SUSY-Generatoren bezeichnen. Sie sind im Gegensatz zu den SUSY-Operatoren

nicht nilpotent, geniigen aber der Antikommutatorrelation

{Q1,Q2} =0. (23)



Durch Einsetzen in den zuvor gewéhlten Ansatz (18) erhalten wir die Darstellung

des Hamiltonoperators
Hs = Q7 = Q3. (24)

Dieser kommutiert also auch mit den SUSY-Generatoren.

2.1.3 Der harmonische Oszillator

Der harmonische Oszillator mit dem Hamiltonoperator
Hp = — + —mw?3?, (25)

ist ein Standardmodell der Quantenmechanik und wird in praktisch jeder Einfithrung

des Themas eingehend untersucht. Er lédsst sich algebraisch mit Hilfe der Auf- und

~y mw [ . p
=4/ — 2
v 2h (w:me> (26)

l6sen, welche den Kommutatorrelationen

Absteigeoperatoren

[?)—,?ﬁ] —1 (27)

und

[if,if} - [6*,13*} — 0 (28)

geniigen. Mit der Definition n, = btb~ lasst sich der Hamiltonoperator dann um-

schreiben zu

Hp = hw (i +1/2). (29)

Offensichtlich lassen sich die Auf- und Absteigeoperatoren auch als Erzeuger und
Vernichter von Bosonen in einem Zustand auffassen. Jedes Boson besitzt dabei eine

Energie von hw, und die Energie des Gesamtsystems mit der Bosonenzahl n;, betrigt
Ey =hw(ny, +1/2). (30)

2.1.4 Der fermionische Oszillator

Es lédsst sich auch ein fermionisches Pendant konstruieren. Die Erzeugungs- und
Vernichtungsoperatoren

ft= (¢ F i) (31)

1
V2h



sollen jetzt den Antikommutatorrelationen (10) und (11) geniigen. Fiir die Fermio-

nischen Orts- und Impulsoperatoren 1[} und 7 folgen dann die Darstellungen

ENOES )

und
i=i g(ﬁ—f—) (33)
sowie die Antikommutatoren
{7} =0 (34)
und
{4} ={m 7} =h. (35)

Der einfache Ansatz fiir einen Hamiltonoperator
Hp = iwps (36)
fithrt schlieflich auf die Darstellung
fIF:hw(ﬁf*—yz):hw(ﬁf—l/m (37)

mit ny = f+ f ~. Diese besitzt ausreichend Ahnlichkeit mit dem Ergebnis des har-
monischen Oszillators, um hier guten Gewissens von einem fermionischen Oszillator
sprechen zu konnen. Wichtig ist festzustellen, dass die Grundzustandsenergie nun
den negativen Wert —hw besitzt. Insgesamt hat sich das Eigenwertspektrum auf die
Energien

By — 41w (39)

2

reduziert. Der fermionische Oszillator beschreibt also ein Zwei-Zustands-System, wie

es z.B. vom Zeeman-Effekt bekannt ist.

2.1.5 Der SUSY-Oszillator

Dass der harmonische und fermionische Oszillator die Grundlage des einfachsten

supersymmetrischen Modells bilden, zeigt sich, indem wir den Vorfaktor der beiden

SUSY-Operatoren zu v hw setzen:

Qr = Vhwb f*  Q_ = Vhwb* f~ (39)



Fiir den SUSY-Hamiltonoperator folgt dann

s ={Qu. Q- = hw (57 + f* ) = hw (o + ivp) = By + Hy. (40)
Die einfachen Ansétze aus 2.1.2 fithren offensichtlich direkt auf die Summe der Ha-
miltonoperatoren der beiden Oszillatoren. Wir bezeichnen das so gewonnene Sy-

stem als SUSY-Oszillator. In Abbildung 1 sind die niedrigsten Energieniveaus dar-

gestellt. Wir werden Zustdnde mit ny = 0 im folgenden als bosonische und solche

; m 5

1
: N 2. S )
1 ng=10
=07 777777 E=0
Ryp= 0 np= 1

Abbildung 1: Die niedrigsten Energieniveaus des SUSY-Oszillators. Kalka, Soff - Su-
persymmetrie, Teubner 1997

mit ny = 1 als fermionische Zustdnde bezeichnen. Offensichtlich sind alle Zustédnde
> 0 zweifach entartet und es gilt F,, 1=E,,+10. Die SUSY-

Transformationen wandeln also, wie erwartet, bosonische und fermionische Zusténde

mit der Energie F,

by f

gleicher Energie ineinander um.

2.2 Nichtlineare SUSYQM

Der Ansatz fiir die SUSY-Operatoren ldsst sich verallgemeinern, indem statt der
bosonischen Erzeuger und Vernichter eine Funktion dieser Operatoren verwendet

wird. Wir verwenden nun also
Q=B () # ()

und
O =Bt (i#,z}—) i (42)
Die Abhéngigkeit von den fermionischen Operatoren lésst sich aufgrund der Nilpo-

tenz nicht sinnvoll erweitern. Zusammen mit dem gewohnten Ansatz (18) fiir den



Hamiltonoperator folgt nun

~

Hs =B BYftf~+B*B~f f*. (43)
Aus der Hermitizitat des Hamiltonoperators ergibt sich die Bedingung

(B—)T — B (44)

Dieser Hamiltonoperator kommutiert zwar noch mit dem Fermionenzahloperator 7y,
aber im allgemeinen nicht mehr mit 7. Statt der Bosonenzahl verwenden wir daher

die Energie eines Zustandes als zweite Quantenzahl.

2.2.1 Kanonische Darstellung

Das bindre Eigenwertspektrum des Fermionenzahloperators legt es nun nahe, zu
einer Darstellung iiberzugehen, welche dem Spinorformalismus analog ist. Zustdnde
|E.ny) lassen sich als Spaltenvektor schreiben, in dem der erste Eintrag ny = 0 und

der zweite ny = 1 entspricht:

_( |E)0)
i) = ( ) ) (45)

Die fermionischen Erzeuger und Vernichter besitzen dann die Form

. (01 . (000
f_(o o) ¢ (1 o)’ (46)

Damit folgt fiir die SUSY-Transformationen
) A o -+ 4 [t A 0 B*
O =Q+Q-=Bf"+B7f = . (47)

sowie

Q2= —i(Qy — Q) =—i(B fT—Btf) =

N B*B~ 0
HS=Q§=< .

Der Hamiltonoperator besitzt dann die Diagonalform
0 B B* )



Eine weitere Darstellung ergibt sich aus den Kommutatoren und Antikommutatoren

der bosonischen Operatoren

~

1A » 1~ -
HS:§{B*,B+}]1—§ [B*,Bﬂ o3, (50)
Dabei bezeichnet das Symbol 1 die 2 x 2 Einheits- und ¢ die dritte Paulimatrix.

2.2.2 Das Superpotential

Um einen Ausdruck fiir die Operatoren B~ und BT zu erhalten, kann man auf die
Operatoren des harmonischen Oszillators (26) zuriickgreifen und die Ortskoordina-

ten durch das sogenannte Superpotential W (%) ersetzen:

. 1 D
Bf= -~ |W(@)F— 51
(@) 5 651)
Eine Verallgemeinerung der Impulsabhéngigkeit wiirde die gewohnte Form der ki-
netischen Energie im Hamiltonoperator zerstoren und scheint unphysikalisch. Auf
diesem, zunéchst von E. Witten [3] gewadhlten Ansatz, ruht das gesamte Gebdude
der supersymmetrischen Quantenmechanik. Fiir die Operatoren B~ und Bt gilt nun

in Ortsdarstellung
52

(5.5 —wes )
sowie
[B*,Bﬂ - \%%. (53)

Zusammen mit (50) folgt dann fiir den Hamiltonoperator

1 (p? 9 h dW o®
Ho=-[%4+W?)|1 - ———. 4
5 2(m+ ) vm dz 2 (54)

2.2.3 Superpotential und Grundzustand

Der Hamiltonoperator Hg zerfillt in der kanonischen Darstellung in zwei Hamilton-

operatoren ]:Il und I%:

A B+B_ 0 I:Il 0
He = )= ;
0 BBt 0 H,
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Fiir einen Grundzustand von Hg bei E=0 muss dabei gelten
Hy[00) =0 und H,|01)=0.

Es lédsst sich zeigen, dass diese beiden Gleichungen dquivalent sind zu Differential-

gleichungen ersten Grades:

Hy|00)=BTB7|00)=0 < B~[00)=0 (55)
H,|01) =B BT|01)=0 < B01)=0 (56)

Durch das Einsetzen der Operatoren aus (51) ergibt sich

N . hoo
B |oo>:ﬁ[w<x>+ﬁ%] Yoo () = 0 (57)
und . 59
B*|00>=E[W<x>—ﬁ%] Yor () = 0. (58)

Diese Differentialgleichungen lassen sich elementar integrieren. Das fiithrt auf die

Grundzustandswellenfunktionen

i frem PR [vend e

Damit diese normierbar sind, miissen sie zumindest an den Rédndern verschwinden.

Es gelten also die zusétzlichen Bedingungen

+oo
lim =0 = / dr'W (2') = £0 (60)
r—Fo0 0
und e
lim g =0 = / dz'W (2') = Foo. (61)
r—too 0

Da sich diese offensichtlich gegenseitig ausschliefen, ist gezeigt, dass, sofern ein
Grundzustand bei E=0 existiert, dieser nicht entartet sein kann. Ist eine der Bedin-
gungen allerdings erfiillt, so kann die Grundzustandswellenfunktion ohne weiteres
aus dem Superpotential berechnet werden. Interessanterweise ist auch der umge-
kehrte Weg moglich, und bei bekanntem, nicht entartetem Grundzustand, kann das

Superpotential aus der Grundzustandswellenfunktion berechnet werden. Dazu ge-
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niigt es, die Gleichungen (57) und (58) umzuformen, sodass

o hodh(e) B0
W(x) = i Gon (2) = m%lnwm (63)
folgt.

2.2.4 Eigenwerte und -zustinde von H; und H,

Grundlegend fiir die supersymmetrische Quantenmechanik sind die Zusammenhénge
zwischen den beiden Komponenten des Hamiltonoperators H S, H; und H,. Bei der
Untersuchung bietet sich nun eine neue Schreibweise der Zusténde an, wobei w,(f) die

n-te Energieeigenfunktion von H; darstellt. Es gelten dann die Eigenwertgleichungen

Y = BBy = EWypM (64)
und
A = B~ BHy® = EPyp@. (65)

Es zeigt sich nun, dass die bosonischen Operatoren Bt und B~ die Eigenzustédnde

von H; und H, ineinander tiberfiihren:

H\B*y® = B*B~B*y? = EDB+y? (66)
HyB~¢\) = B-B*B () = EN BV (67)

Da dies fiir alle Zustédnde gilt, besitzen I:_fl und ]:]2 fir £ > 0 auBerdem ein iden-
tisches Eigenwertspektrum. Aus dieser Feststellung lassen sich nun scheinbar un-
zusammenhéangende Potentiale miteinander in Verbindung bringen, indem man aus
einem bekannten Grundzustand das Superpotential berechnet und daraus wiederum

das zu H, gehorige Partnerpotential. Man bezeichnet

h awl (©8)

1
‘/ —_ — M/2 _—— = — ‘/‘/2 —_—
b 1 und 1 2[ T o

daher als Partnerpotentiale.
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2.3 Variationsrechnung

Der schweizer Physiker Walter Ritz veroffentlichte in seinem Todesjahr 1909 einen
Artikel iiber die approximative Losung von Randwertproblemen, welche auf die Ex-
tremalisierung eines Energieintegrals zuriickgefithrt werden konnten [6]. Die zunéchst
an Beispielen der klassischen Mechanik ausgefithrte Methode sollte spéter ein wich-
tiges Werkzeug fiir quantenmechanische Berechnungen werden. Fiir einen Hamilton-

operator H mit der Grundzustandsenergie E, gilt fiir beliebige Zustéinde |¢)

By < M (69)

— (9l ¢)

Dies liisst sich leicht beweisen, indem man |¢) nach den Eigenzusténden |¢;) von H

entwickelt. Eingesetzt ergibt sich unter Ausnutzung der Orthogonalitét

<¢|ﬁ|¢> _ ;Cj (il HZZ/CZ” |pir) _ ZL: lcil” E; (70)
(¢] &) 2 ¢ bl Xoci|gu) Slal*

1

Mit Ey < E; folgt dann die Behauptung. Der Ansatz der Variationsrechnung be-
steht nun darin, eine geeignete Testfunktion zu parametrisieren und die rechte Seite
von (69) zu minimieren. Daraus erhélt man eine obere Schranke fiir die Grundzu-
standsenergie des Systems. Typischerweise wird in Lehrbiichern der anharmonische
Oszillator als Beispiel behandelt und der Grundzustand des harmonischen Oszilla-

tors als Testfunktion verwendet. Mit der normierten Grundzustandswellenfunktion

(o) = () o (—C“Q) (71)

und dem Hamiltonoperator

~ 132 4
H=— 4\ 72
2m+ T (72)
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ergibt sich der Erwartungswert

9 oo
— 2:%\(;% / [a4x2 exp (—a2x2) — o’ exp (—a2x2)} dz (73)
3N h*a?

Diese Funktion besitzt ein Minimum bei a8, = 6Am/h? und

3\ ¢ (AR AR 8

3 Der Anharmonische Oszillator

Ich werde mich in dieser Arbeit auf die Behandlung des reinen anharmonischen

Oszillators -
A~ p 4
H=X_41)\ 76
2m A (76)

sowie des gestorten, harmonischen Oszillators
P gi?

5 Tt At (77)

a

I
|
+

beschrinken. Thre wichtige Bedeutung erlangen diese Systeme unter anderem da-
durch, dass sie die ersten drei Glieder der Taylorentwicklung eines beliebigen sym-
metrischen Potentials darstellen. In sémtlichen Gebieten der Physik, von der Optik
bis zur physikalischen Chemie, werden daher Ndherungen durch anharmonische Os-
zillatoren verwendet, und das theoretische Studium dieser Systeme wurde dement-
sprechend kontinuierlich vorangetrieben. Wahrend fiir die Energieniveaus des har-
monischen Oszillators ein analytischer Ausdruck existiert, ist dies bei anharmoni-
schen Oszillatoren in der Regel nicht der Fall. Ein besonderes Interesse gilt daher
der Herleitung handhabbarer Formeln, welche die Energien des Systems iiber einen

moglichst weiten Bereich der Kopplungskonstanten hinreichend genau beschreiben.
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3.1 Das rein anharmonische System

Systeme, bei denen der quadratische Term des Potentials verschwindet, lassen sich
naherungsweise durch den rein anharmonischen Oszillator beschreiben. Auflerdem
wurde von Chan und Stelman vorgeschlagen, die Eigenfunktionen als Basis zur li-
nearen Variation allgemeinerer Systeme zu verwenden, in denen der biquadratische

Term das Potential dominiert [7]. Der Hamiltonoperator

~ D 4
H=X_1) 78
2m+ T (78)

lasst sich durch die Variablensubstitutionen
1/3
T = (h/\/ Am) 2’ (79)

und

E = ()\h4>éE’ (80)

m?
auf die in der Literatur gebriduchliche Form

o 1 62 14
H' = 2027 i

(81)

bringen. Zusammen mit der Konvention h = 1 und m = 1 ergeben sich dann die
Energien des Systems in Einheiten von A\/3. Es geniigt also, die Eigenwerte des
Operators (81) zu tabellieren, aus denen dann fiir beliebige Kopplungskonstanten
die Energieniveaus einfach berechnet werden kénnen. Zur Berechnung wurde eine
ganze Reihe von Methoden, unter anderem die WKB-Néherung [8], Potenzreihen-
ansitze [9] und lineare Variation [7, 10], ins Feld gefiihrt. Besonders durch lineare
Variation, welche von Reid [10] mit bis zu 150 Basisfunktionen durchgefiihrt wur-
de, lieflen sich die unteren Energieniveaus mit hoher Genauigkeit berechnen. Da die
Menge der bendétigten Basisfunktionen mit der maximalen Quantenzahl, bis zu der
die Energien bestimmt werden, zunimmt, stot diese Methode allerdings selbst mit
heutiger Rechenkapazitét frither oder spéter an ihre Grenzen. Banerjee et al. haben
daher, durch die Entwicklung nach unterschiedlich skalierten Eigenfunktionen des
harmonischen Oszillators, eine Rekursionsformel hergeleitet, mit der die Eigenwerte
iiber das gesamte Spektrum hinweg mit beliebiger Genauigkeit berechnet werden

kénnen [11].
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3.1.1 Numerische Losung mit Schieflverfahren

Zunachst habe ich mit Hilfe des Schiefiverfahrens eine numerische Berechnung der
Energiecigenwerte des Systems durchgefiihrt. Die zehn niedrigsten Anregungsener-
gien sind in Tabelle 1 eingetragen. Der Vergleich mit [11] zeigt, dass die berechneten
Werte eine Genauigkeit von mindestens sechs Stellen aufweisen. Mit Runge-Kutta-

Verfahren lassen sich auch die Wellenfunktionen berechnen. In Abbildung 2 sind

Quantenzahl n | E,, Schiefiverfahren [A\'/?] | E,, Banerjee et al. [\!/?]
0 0,667986301 0,667986259
1 2,39364389 2,39364402
2 4,69679536 4,69679539
3 7,33573007 7,33573000
4 10,2443086 10,2443085
) 13,3793366 13,3793366
6 16,7118898 16,7118896
7 20,2208494 20,2208495
8 23,8899939 23,8899936
9 27,7063933 27,7063934

Tabelle 1: Numerisch berechnete Eigenwerte des rein anharmonischen Oszillators.

die normierten Wellenfunktionen des anharmonischen Ostzillators iiber das Potential
aufgetragen, wobei auf eine separate Skala fiir die Wahrscheinlichkeitsdichte ver-
zichtet wurde. Zum Vergleich ist in Abbildung 3 das Potential des harmonischen
Ostzillators mit den entsprechenden Wellenfunktionen dargestellt. Dabei habe ich
die Kopplungskonstante @ = 65 aus der Variation in Abschnitt 2.3 iibernommen,
um Vergleichbarkeit zu gewéhrleisten. Wie aufgrund des Potentialverlaufs zu er-
warten war, verdndert sich die rdumliche Ausdehnung der Wellenfunktionen beim
anharmonischen Oszillator mit zunehmender Quantenzahl wesentlich schwécher als
beim harmonischen System. Dies deutet darauf hin, dass eine lineare Variation mit
den Eigenfunktionen des harmonischen Oszillators, ohne zusétzliche Skalierung, bei

hoheren Quantenzahlen zunehmend schlechtere Ergebnisse liefern wird.

3.1.2 Ritzsche Variation und SUSYQM

In Abschnitt 2.3 wurde beispielhaft der Grundzustand des harmonischen Oszillators
variiert, um eine obere Grenze fiir die Grundzustandsenergie des rein anharmoni-
schen Oszillators zu gewinnen. Das Ergebnis E' = 0,68142 weicht um 2% von dem
exakten Wert E' = 0,66798 ab. Mit den Methoden der supersymmetrischen Quan-
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Abbildung 2: Wellenfunktionen des rein anharmonischen Oszillators.

tenmechanik haben Cooper et al. Ndherungen fiir die angeregten Energieniveaus

berechnet [4]. Dazu verwenden sie zunéchst, statt der Grundzustandswellenfunktion

) (52)

Ny = {2@1“ (1 + 2%]{)} 71/2. (83)

Der Energieerwartungswert betragt

des harmonischen Oszillators, die Testfunktion

$2

Ok

1
\If(()k) = Ny exp (—5

mit

0) wT(2-m)  T(s%)
\IJO >: Eg(po,no) 0 + 0 (84)

Po :
7 (a) ()

<qu0> ‘ i

Durch Minimierung iiber die Bedingungen

OE, OFE,
e~ Bne 0 (85)
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Abbildung 3: Wellenfunktionen des rein harmonischen Oszillators, o = 65.

ergeben sich die optimalen Parameter p, = 0,666721 und ny = 1,18346 sowie die
obere Grenze fiir die Grundzustandsenergie Fy = 0,66933. Die Abweichung von dem
exakten Wert konnte mit diesem Ansatz auf 0,2 % verringert werden. Aus der SU-
SYQM ist bekannt, dass die Testfunktion den exakten Grundzustand eines eigenen
» Testpotentials” beschreibt. Das entsprechende Superpotential ldsst sich mit (62)
aus der Testfunktion berechnen:

0

k
Wiy (x) = —%IH‘D(() )= o

nyx |2

(86)

Aufgrund des Verhaltens im Unendlichen lasst sich erkennen, dass ungebrochene Su-
persymmetrie vorliegt. Die Grundzustandsenergie des Partnerpotentials entspricht
dann der des ersten angeregten Zustands des Testpotentials. Cooper et al. haben
diese nun wieder durch Variation des Ansatzes (82),(83) approximiert und daraus
eine Rekursionsformel fiir die Absténde zwischen den Energieniveaus erhalten. Das

Partnerpotential lautet

(87)

ox

1 oW,
(k) _ 2 (k)
W= 5
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und die obere Schranke fiir die Energiedifferenz zum néchst hoheren Niveau

1 02 1

W)
T30 2

ox

ABgi1(pr+1,m041) = <‘1’<()k+1) [W(Qk) + } “I’ék+l)> = By — Ei.
(88)

Diese lasst sich elementar integrieren zu

AEp 1 (prs1,ne41) =

1 n dng—1
kg1 r (2 B 2”k+1> + i (pk+1>2 - <2n”i+1>
2011 T (_2 1 ) 2pk+1 \ Pr

Mk+1

ngt1—1 [ (%)

4 (2ny, — 1) <@) _ A\ ) (89)
2Pk P r ( 1 )

2Nk 41

Dieser Ausdruck muss nun jeweils beziiglich py.; und ng,; minimiert werden. Fiir

die ersten fiinf Energieniveaus sind die entsprechenden Parameter und Energieab-

stdnde in Tabelle 2 aufgefithrt. Wéhrend die ersten drei Energieabstédnde in relativ

Quantenzahl k Pk ny AFE, SUSYQM | AE), Numerisch
0 0,66672136 | 1,1834583 0,669330 0,667986
1 0,42982878 | 0,99583433 1,72758 1,72566
2 0,43560367 | 1,0005962 2,31640 2,30315
3 0,43477921 | 0,99991715 2,29708 2,63893
4 0,43489383 | 1,0000116 2,29982 2,90858
5 0,43487783 | 0,99999839 2,29944 3,13503

Tabelle 2: Energieabstéinde des rein anharmonischen Oszillators aus Ritz’scher Va-
riation mit SUSYQM.

guter Naherung mit dem beschriebenen Verfahren berechnet werden konnen, weicht
die Energie des vierten Anregungsniveaus schon in der ersten Nachkommastelle ab.
Eine numerische Auswertung fiir groffere Quantenzahlen zeigt, dass die Parameter
pr und ny gegen die Werte p = 0,43487979 und n = 1.0000000 konvergieren. Der
Energieabstand néhert sich damit dem Wert AFE, = 2,2994860 an. Die numeri-
sche Berechnung der tatsédchlichen Energieabstidnde zeigt, dass diese zumindest bis
k=400 streng monoton ansteigen und nicht konvergieren. Die Methode geht von zwei
wesentlichen Annahmen aus. Zunéchst wird vorausgesetzt, dass die Energieniveaus
des zur Testfunktion gehoérenden Potentials eine gute Approximation der Energien
des anharmonischen Oszillators darstellen. Dariiber hinaus wird angenommen, dass

der urspriingliche Ansatz (82),(83) auch fiir die Grundzustandswellenfunktionen der



19

Partnerpotentiale eine hinreichend genaue Beschreibung erlaubt. Die numerisch be-

stimmten Energieabstdnde des SUSY-Potentials

s aW(m] (90)

1
©) _
= 2 [W(O) Ox

sind in Tabelle 3 eingetragen. Nach Konstruktion liegt die Grundzustandsenergie

Quantenzahl k | AFE}
1 1,72717
2 2,31375
3 2,36094
4 2,56798

Tabelle 3: Energieabstéinde des SUSY-Potentials V(g).

bei Ey = 0. Der Vergleich mit den exakten Werten des anharmonischen Oszillators
zeigt tatséchlich fiir £ > 2 eine zunehmende Abweichung. Es stellt sich aulerdem
heraus, dass die Variation mit dem Ansatz (82) auch hier gute Ergebnisse liefert. Eine
Berechnung fiir hohere Quantenzahlen zeigt, dass auch fiir das SUSY-Potential die
Energieabstinde monoton zu steigen scheinen. Die beobachtete Konvergenz ergibt

sich also aus dem Verfahren der rekursiven Berechnung.

3.1.3 Variation nach Knotenverfahren

Ein anderes Verfahren zur Berechnung der Energien angeregter Zustande mit Hilfe
von SUSYQM und Variationsrechnung wurde von Mukharjee et. al. beschrieben [1].
Fiir das diskrete Spektrum eindimensionaler Bewegungen gilt der sogenannte Kno-
tensatz, der besagt, dass die Wellenfunktion des (n+1)-ten Energieeigenzustandes
n Knoten besitzt [12]. Man kann davon ausgehen, dass eine Testfunktion, welche
die Position dieser Knoten beriicksichtigt, zur Variation angeregter Zusténde ver-
wendet werden kann. Die Bedingung (69) ist dabei nicht erfiillt, so dass eine Ab-
schiatzung der Giite dieser Ndherung sich als schwierig erweist. Es zeigt sich jedoch,
dass mit einem solchen Vorgehen gute Ergebnisse erzielt werden kénnen. Uber die
SUSY-Partnerpotentiale werden nun nicht die Energieabstéinde, sondern die Kno-
tenpositionen bestimmt. Unter Ausnutzung der Relation (66) kénnen mit Hilfe der
SUSY-Operatoren B&) die Grundzustandswellenfunktionen der Partnerpotentiale
sukzessive in angeregte Wellenfunktionen des urspriinglichen Potentials {iberfiihrt

werden. Bezeichnet man mit wﬁf“) die n-te Wellenfunktion des k-ten Potentials, so
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gilt

VWO(x) = By .. By, (91)

Anschliefflend konnen die Knoten von 1/)7(10) bestimmt und in eine Testfunktion als

Linearfaktoren integriert werden:

(... rm) = (€ — xgo))-. (=2 flrr, ) (92)
Die Funktion f(x,ry,...,r,,) muss analog zu der Testfunktion der klassischen Va-

riation gewdhlt werden und kann im Prinzip iiber eine beliebige Menge variierbarer
Parameter verfiigen. Mukharjee et. al. empfehlen in ihrer Veroffentlichung, nicht we-
niger als drei Parameter zur Variation zu verwenden. Um die Ergebnisse mit den
zuletzt gewonnenen Werten vergleichen zu konnen, habe ich gegen diesen Rat ver-
stoflen und den Ansatz (82), (83) fiir f(x,p,n) gewahlt.

Die Rolle der Paritit Fiir den Spezialfall eines symmetrischen Potentials kom-
mutiert der Hamiltonoperator mit dem Paritétsoperator. Dies bedeutet, dass es ein
vollstdndiges System von Energieeigenzustdnden gibt, welche auch Eigenzustdnde
des Paritiatsoperators darstellen. Da im diskreten Spektrum eindimensionaler Be-
wegungen keine Entartung auftritt [12], besitzt dort jeder Energieeigenzustand eine
definierte Paritét. Beriicksichtigt man, dass bei einer Wellenfunktion mit n Knoten
genau n+1 Extremstellen auftreten und sich dabei Minima und Maxima abwechseln
miissen, so folgt aus dem Knotensatz, dass sich bei einer eindimensionalen Bewe-
gung im symmetrischen Potential die Paritdten der Energieeigenzustinde abwech-
seln, beginnend mit einem geraden Grundzustand. Da fiir ungerade Wellenfunktio-
nen ¥ (0) = 0 gilt, ist die einzige Nullstelle des ersten angeregten Zustands bekannt.
Dies wird von Mukharjee ausgenutzt, um das Schema (91) um einen Schritt zu
reduzieren auf

- A n—1
WO = BBl Y. (93)

Der erste angeregte Zustand des n-ten Potentials lédsst sich dann durch Variation der
Testfunktion

Ur(xr,. . rm) = - f(T,r1, 0 Tm) (94)

nahern.
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Anwendung Fiir den anharmonischen Oszillator kann damit die Energie des er-
sten angeregten Zustandes noch ganz ohne SUSYQM-Methoden varriiert werden.

Der Ansatz dazu lautet, unter Beriicksichtigung der Nullstelle bei z = 0,

) (95)

mit einem Normierungsfaktor N. Eine Variation des Energieerwartungswertes be-

1,2

p

1

Ur(z) =N -z -exp (—§

ziiglich des Hamiltonoperators (81) liefert das Ergebnis
E; < 2,39537 (96)

Die exakte Energie des ersten angeregten Zustandes ist dabei tatsdachlich kleiner oder
gleich dem ermittelten Wert, da ungerade und gerade Zusténde exakt orthogonal zu-
einander sind. Mit der schon berechneten Néherung fiir die Grundzustandsenergie
Ey < 0,669330 entspricht das einem Energieabstand von AFE; = 1,72604. Ein Ver-
gleich mit dem exakten Wert AF; = 1,72566 aus Tabelle 2 zeigt, dass dies eine
leichte Verbesserung gegeniiber dem vorherigen Ergebnis AF; = 1,72758 darstellt.
Um die Energie des zweiten angeregten Zustandes zu berechnen, kann nun das Part-
nerpotential (86) herangezogen werden. Das kann mit den Parametern py und ng
(Tabelle 2) und der Gleichung (87) aus dem Superpotential (86) berechnet werden.
Die Variation mit der Testfunktion (95) und Anwendung des Schemas (93) fiihrt
schliefllich auf eine Wellenfunktion @Z)ﬁo) () mit Nullstellen bei xy = £0,517911, in
guter Ubereinstimmung mit dem numerischen Ergebnis zo = 40,512667. Damit

lautet die Ansatzfunktion zur Variation des dritten Energieniveaus

n) . (97)

Die Variation des Energieerwartungswertes liefert damit Fy =~ 4,6994, was einem

2

P

1
dr(z) = N - (22 — 0,517911%) - exp <_§ i

Energieabstand von AFEy ~ 2,30457 entspricht. Ein Vergleich mit den Ergebnissen
des Cooper-Verfahrens zeigt hier eine deutliche Verbesserung. Die Ergebnisse bis
zum fiinften Energieniveau sind zusammen mit den vorherigen und numerischen
Ergebnissen in Tabelle 4 eingetragen. Es zeigt sich, dass die Giite der Néherung
fiir n=4 stark einbricht. N&herungsweise ergeben sich die Nullstellen der vierten
Wellenfunktion zu x(()l)/@) = +1,10783 und x(()3)/(4) = +0,365304, was noch in relativ
guter Ubereinstimmung mit den numerisch ermittelten Werten xél)/ @ +1,05097

)/ (4)

und xé?’ = +0,347037 zu sein scheint. Bessere Ergebnisse lassen sich demnach
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n | AE, Mukharjee | Rel. Fehler | AFE,, Cooper | Rel. Fehler | AE,, Numerisch
0 0,669330 0,0020 0,669330 0,0020 0,667986
1 1,72604 0,00022 1,72758 0,0011 1,72566
2 2,30457 0,00062 2,31640 0,0058 2,30315
3 2,56944 0,026 2,29708 0,13 2,63893
4 2,42095 0,16 2,29982 0,21 2,90858

Tabelle 4: Vergleich der Ergebnisse des Mukharjee- und Cooper-Verfahrens beim
rein anharmonischen Oszillator mit relativen Fehlern.

wahrscheinlich durch eine Testfunktion mit drei oder mehr Variationsparametern

erzielen.

3.2 Das biquadratische System

Ein allgemeineres System wird durch den Hamiltonoperator

~2 ~2
~ b gr a4
=2 9 )
o + 5 + AT (98)

beschrieben. Hier ist eine Substitution, welche den Hamiltonoperator von den Kopp-
lungskonstanten unabhéngig macht, nicht mehr moglich. Stattdessen werden in der
Literatur zwei Spezialfille unterschieden. Durch die Substitutionen z = (gm)™"/* #/,

E =+/g/mE und \ = (g5m)1/ * V' ldsst sich der Hamiltonoperator auf die Form

~12 12
i = % + % + Nt (99)

bringen. Eine Entwicklung nach A" entspricht nun einem leicht gestorten harmoni-
schen Ostzillator und wird als schwache Kopplung bezeichnet. Fiir den Fall star-
ker Kopplung kénnen die Substitutionen z = (mA)~Y/%2/, B = ( A )1/3 E’ und

m2

g = (m\)/%¢g" angewandt werden. Der resultierende Operator

g i,/?

2

2
i = % TR (100)
lasst sich anschlieBend nach ¢’ entwickeln und beschreibt ein System, in dem die Dy-
namik im wesentlichen durch den anharmonischen Anteil generiert wird. Ich werde
die Giite der zuvor besprochenen Néherungsverfahren an einem biquadratischen Os-
zillator mit den Kopplungskonstanten m = g = 1 und A = 1/2 testen, um die nume-

rischen Ergebnisse wieder mit denen von Banerjee et al. vergleichen zu kénnen [11].
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Diese Parameter liegen zwischen den Bereichen der starken und schwachen Kopplung
und sind damit storungstheoretisch nicht zuginglich. Der Ubersichtlichkeit halber
bietet es sich dennoch an, den Hamiltonoperator in der schwach gekoppelten Form
(99) zu verwenden. Die Energiecigenwerte werden daher im folgenden in Einheiten
von \/g/_m angegeben (h = 1). Die numerisch berechneten Energieeigenwerte sind in
Tabelle 5 eingetragen und die entsprechenden Wellenfunktionen in Abbildung 4 dar-

gestellt. Das von Cooper et al. beschriebene Verfahren kann mit dem Ansatz (82),

Quantenzahl n | E,, Schiefiverfahren | E, Banerjee et al.
0 0,69617579 0,69617582
1 2,3244064 2,3244064
2 4,3275249 4,3275249
3 6,5794019 6,5784019
4 9,0287787 9,0287787
5 11,648721 11,648721
6 14,417669 14,417669
7 17,320424 17,320424
8 20,345193 20,345193
9 23,482505 23,482505

Tabelle 5: Numerisch berechnete Eigenwerte des biquadratischen Oszillators.

(83) ohne weiteres auf das biquadratische System angewandt werden, da der rekursi-
ve Ausdruck fiir die Energieabstédnde 89 nur von der verwendeten Testfunktion und
nicht von der Form des Potentials abhéngt. Auch das Vorgehen bei der Anwendung

des Knotenkorrekturverfahrens ist im Wesentlichen identisch. Die Berechnung der

n | AFE, Mukharjee | Rel. Fehler | AE, Cooper | Rel. Fehler | AFE, Numerisch
0 0,696969 0,0011 0,696969 0,0011 0,696176
1 1,62859 0,00022 1,63179 0,0020 1,62823
2 2,00405 0,00047 1,98993 0,0066 2,00311
3 - - 1,96331 0,13 2,25088
4 - - 1,96712 0,20 2,45037

Tabelle 6: Vergleich der Ergebnisse des Mukharjee- und Cooper-Verfahrens beim
biquadratischen Oszillator mit relativen Fehlern.

Energie des vierten Niveaus ergab nach der Mukharjee Methode keinen realistischen
Wert, da das Energieintegral zwar ein Plateau, aber kein echtes Minimum zu besit-
zen scheint. Fiir das fiinfte Niveau lédsst sich die Energie interessanterweise wieder
sinnvoll berechnen. Es ergibt sich eine Energie von E, = 8,60311, welche allerdings

nur eine grobe Naherung des tatséchlichen Wertes von E, = 9,02877 darstellt. Fiir
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Abbildung 4: Wellenfunktionen und Potential des biquadratischen Oszillators mit
den Parametern g=m=1 und \ = 1/2.

die ersten drei Energieeigenzustiande liefert das Verfahren allerdings wieder eine Ab-
schitzung von bemerkenswerter Genauigkeit und stellt eine deutliche Verbesserung

gegeniiber dem von Cooper beschriebenen dar.

4 Zusammenfassung

Die Anwendung der von Cooper und Mukharjee vorgeschlagenen Techniken auf zwei
verschiedene Potentiale hat gezeigt, dass zumindest fiir die ersten angeregten Zustéan-
de gute bis sehr gute Naherungen der Energien durch Kombination des Rayleigh-
Ritz-Verfahrens mit dem Formalismus der supersymmetrischen Quantenmechanik
zu erwarten sind. Bei beiden Verfahren brach die Giite der Naherung ab einem be-
stimmten Energieniveau jedoch drastisch ein, was eine Anwendung ohne numerische
Vergleichswerte problematisch macht. Fiir die Berechnung der ersten zwei angeregten
Energieniveaus haben die Verfahren fiir beide Potentiale eine gute Néherung gelie-
fert, was fiir die Behandlung niedrig angeregter Systeme z.B. in der Quantenchemie,
ausreichen kann. Eine Besonderheit des Cooper-Verfahrens ist, dass die Rekursions-

formel fiir die Energieabsténde ausschliellich von der gewéhlten Testfunktion ab-
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héngt und die Form des eigentlichen Potentials nur durch zwei Variationsparameter
eingeht. Dass sich dennoch relativ gute Néherungen der Energieabstéinde ergeben,
ist erstaunlich. Eine weitergehende Untersuchung des Einflusses der Testfunktion
erscheint lohnenswert, geht aber iiber das Ziel dieser Arbeit hinaus. Das Mukharjee-
Verfahren erweist sich als dem Cooper-Verfahren durchweg iiberlegen, so lédsst sich
die Energie der ersten beiden Anregungszustidnde fiir beide Potentiale mit einem
relativen Fehler der GroSenordnung 10~* berechnen. Interessanterweise ist die Ge-
nauigkeit fiir die ersten beiden Anregungszustinde hoher als fiir den herkémmlich
variierten Grundzustand. Dies ldsst sich dadurch erklaren, dass die tatséchlichen
Energien keine unteren Schranken mehr darstellen und sich die Abweichungen des
Energieintegrals iiber den Verlauf der Testfunktion teilweise herausmitteln. Die An-
wendung des Cooper-Verfahrens auf das n-te Energieniveau erfordert insgesamt n,
die des Mukharjee-Verfahrens n+1 bzw. unter Ausnutzung der Symmetrie ebenfalls
n Variationsschritte. Im allgemeinen und auch fiir die in dieser Arbeit behandelten
Beispiele ldasst sich die Variation nicht mehr analytisch durchfithren und erfordert
numerische Verfahren, welche fiir Testfunktionen mit mehr als einem Parameter
einen nicht vernachlassigharen Rechenaufwand bedeuten. Im Prinzip lassen sich die
einzelnen Variationsschritte allerdings auch mit unterschiedlichen Testfunktionen
durchfithren. Bei dem Mukharjee-Verfahren koénnte also durchaus eine Variation
mit zwei Parametern zur Bestimmung der Knotenpositionen und anschliefend ei-
ne aufwendigere Variation der gesuchten Anregungsenergie angewandt werden. Sind
allerdings nur die Energieniveaus eines konkreten Systems von Interesse, so ist in

der praktischen Anwendung ein rein numerisches Verfahren wohl {iberlegen.
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