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1 Einleitung

Sowohl in der klassischen als auch in der Quantenmechanik lässt sich nur eine be-

grenzte Klasse an Problemen analytisch exakt lösen. Die Entwicklung zuverlässiger

Näherungsverfahren ist daher notwendig, um die Theorie auf allgemeinere Syste-

me, wie sie in der Natur vorwiegend auftreten, anwenden zu können. Ein wichtiges

Hilfsmittel der Quantenmechanik und insbesondere der Quantenchemie [1] stellt das

Rayleigh-Ritz-Verfahren dar, welches die näherungsweise Berechnung von Grundzu-

standsenergien und in einigen Fällen auch der Energien angeregter Zustände erlaubt.

Unabhängig davon hat sich aus der Forschung zu quantenfeldtheoretischen Ansät-

zen jenseits des Standardmodells mit der supersymmetrischen Quantenmechanik ein

neuer Blickwinkel eröffnet, welcher weitreichende Verknüpfungen zwischen scheinbar

unzusammenhängenden Systemen offenlegt. Es hat seit der Entwicklung durch H.

Nicolai [2] und E. Witten [3] viele Bestrebungen gegeben, diese Erkenntnisse zur

Verbesserung bekannter Approximationsverfahren nutzbar zu machen. Ich möchte

in dieser Arbeit insbesondere zwei Methoden zur Erweiterung des Rayleigh-Ritz-

Verfahrens darstellen, welche von Cooper et al. [4] und Mukharjee et al. [1] entwickelt

wurden, und deren Anwendung am anharmonischen Oszillator durchführen.

2 Grundlagen

2.1 Supersymmetrische Quantenmechanik

Beginnend in den siebziger Jahren des letzten Jahrhunderts wurde die Theorie einer

neuen, fundamentalen Symmetrie der Natur, der Supersymmetrie, entwickelt. Die

Symmetrie herrscht dabei zwischen Bosonen und Fermionen, wobei zu jedem Teil-

chen des Standardmodells ein neues Teilchen, der sogenannte Superpartner, postu-

liert wird. Bei exakter Supersymmetrie sollten sich die Teilchen also, unter Berück-

sichtigung der übrigen Erhaltungssätze, ohne Energieaufwand in ihre Superpartner

umwandeln lassen. Bislang konnte allerdings keines dieser SUSY-Teilchen beobach-

tet werden. Sofern die Supersymmetrie in der Natur realisiert ist, muss sie demnach

gebrochen sein. Die genaue Methode der Brechung ist derzeit Gegenstand intensiver

Forschung und könnte letztendlich wohl nur mit der Beobachtung der Superpart-

ner eindeutig identifiziert werden. Schon 1976 übertrug H. Nicolai den Formalismus

auf nicht-relativistische Spin-Systeme [2]. und E. Witten nutzte 1981 eine Erweite-

rung dieser SUSY-Quantenmechanik (SUSYQM) zum Studium der Symmetriebre-
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chung [3]. Davon ausgehend hat sich die SUSYQM zu einem eigenen Gegenstand

der Forschung entwickelt, aus dem sich, unabhängig von Erfolg oder Mißerfolg der

supersymmetrischen Feldtheorie, elegante Methoden zum Umgang mit klassischen

quantenmechanischen Problemen ergeben. In der folgenden Einführung folge ich im

wesentlichen der ausführlichen Darstellung von Kalka und Soff [5].

2.1.1 Erzeugungs- und Vernichtungsoperatoren

In der Feldtheorie lassen sich die Teilchen nach ihrem Spin in Bosonen und Fermio-

nen einordnen. Dieser lässt sich zwar durch die Konstruktion eines entsprechenden

Hamiltonoperators und Verwendung des Spinorformalismus in die Schrödingerglei-

chung integrieren, bleibt aber dennoch eine extrinsische Größe. Man verwendet zur

Klassifizierung der Systeme daher nicht den Spin, sondern die Erzeugungs- und Ver-

nichtungsoperatoren in der Besetzungszahldarstellung

|Ψ〉 = |n1,. . . ,ni〉 . (1)

Handelt es sich um bosonische Teilchen, so können die Besetzungszahlen beliebige

Werte aus den natürlichen Zahlen annehmen. Wir definieren die Erzeugungs- und

Vernichtungsoperatoren

b̂+k |n1,. . . ,nk,. . . ,ni〉 =
√
nk + 1 |n1,. . . ,nk + 1,. . . ni〉 (2)

und

b̂−k |n1,. . . ,nk,. . . ,ni〉 =
√
nk |n1,. . . ,nk − 1,. . . ni〉 . (3)

Daraus ergibt sich unmittelbar der Besetzungszahloperator

n̂k |n1,. . . ,nk,. . . ,ni〉 = b̂+k b̂
−
k |n1,. . . ,nk,. . . ,ni〉 = nk |n1,. . . ,nk,. . . ,ni〉 . (4)

Durch Einsetzen folgen außerdem die Kommutatoren[
b̂−k , b̂

+
k′

]
= δk,k′ (5)

und [
b̂−k , b̂

−
k′

]
=
[
b̂+k , b̂

+
k′

]
= 0. (6)
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Für fermionische Teilchen lassen sich analoge Operatoren definieren. Zusätzlich ist

allerdings das Pauli-Prinzip zu berücksichtigen, nach dem ein Zustand nicht von

mehreren Fermionen gleichzeitig besetzt werden kann. Damit folgt für die Erzeuger

und Vernichter

f̂+
k |n1,. . . ,nk,. . . ,ni〉 = δnk,0 |n1,. . . ,1,. . . ,ni〉 (7)

sowie

f̂−k |n1,. . . ,nk,. . . ,ni〉 = δnk,1 |n1,. . . ,0,. . . ,ni〉 . (8)

Daraus lässt sich wieder der Besetzungszahloperator

n̂k |n1,. . . ,nk,. . . ,ni〉 = f̂+
k f̂
−
k |n1,. . . ,nk,. . . ,ni〉 = nk |n1,. . . ,nk,. . . ,ni〉 (9)

konstruieren. Das Eigenwertspektrum reduziert sich offensichtlich auf die Werte 1

und 0. Aus der zusätzlichen Einschränkung durch das Pauli-Prinzip ergeben sich

jetzt, statt der bosonischen Kommutatoren, Antikommutatorrelationen der fermio-

nischen Erzeuger und Vernichter. Durch Einsetzen zeigt sich{
f̂−k , f̂

+
k′

}
= δk,k′ (10)

sowie {
f̂−k , f̂

−
k′

}
=
{
f̂+
k , f̂

+
k′

}
= 0. (11)

2.1.2 Die SUSY-Transformation

Zu einem supersymmetrischen Modell gehören nun wenigstens Transformationen,

welche Teilchen unterschiedlicher Statistik ineinander umwandeln, sowie ein dagegen

invarianter Hamiltonoperator. Wir beschränken uns zunächst auf ein System mit

einem bosonischen und einem fermionischen Zustand |Ψ〉 = |nb,nf〉 und suchen

Operatoren

Q̂+ |nb,nf〉 ∝ δnf ,0 |nb − 1,nf + 1〉 (12)

sowie

Q̂− |nb,nf〉 ∝ δnf ,1 |nb + 1,nf − 1〉 . (13)

Aus den Erzeugungs- und Vernichtungsoperatoren lassen sich auf einfache Weise

Operatoren konstruieren, welche eine solche Umwandlung vornehmen. Wir werden

Q̂+ = b̂−f̂+ (14)
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und

Q̂− = b̂+f̂− (15)

im folgenden als SUSY-Operatoren bezeichnen. Von den fermionischen Erzeugern

und Vernichter erben sie die sogenannte Nilpotenz,

Q̂2
+ = Q̂2

− = 0. (16)

Der Vorfaktor ist zunächst willkürlich auf eins gesetzt und kann im Prinzip jeden

beliebigen Wert annehmen, solange er bei beiden Operatoren identisch gewählt wird.

Supersymmetrie bedeutet nun das Kommutieren der SUSY-Operatoren mit dem

Hamiltonoperator [
Ĥ, Q̂+

]
=
[
Ĥ, Q̂−

]
= 0. (17)

Ein einfacher Ansatz für den Hamiltonoperator, welcher diese Bedingung erfüllt,

lautet

ĤS =
{
Q̂+, Q̂−

}
. (18)

Da die SUSY-Operatoren selbst nicht hermitesch sind, bietet es sich an, die Opera-

toren

Q̂1 = Q̂− + Q̂+ (19)

und

Q̂2 = i
(
Q̂− − Q̂+

)
(20)

zu definieren. Es gilt dann

Q̂1 |nb,0〉 ∝ |nb − 1,1〉 (21)

sowie

Q̂1 |nb,1〉 ∝ |nb + 1,0〉 . (22)

Diese bieten neben ihrer Hermitizität den Vorteil, dass sie einen Zustand bei zwei-

maliger Anwendung wieder in sich selbst überführen. Wir werden sie im folgenden

als SUSY-Generatoren bezeichnen. Sie sind im Gegensatz zu den SUSY-Operatoren

nicht nilpotent, genügen aber der Antikommutatorrelation{
Q̂1, Q̂2

}
= 0. (23)
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Durch Einsetzen in den zuvor gewählten Ansatz (18) erhalten wir die Darstellung

des Hamiltonoperators

ĤS = Q̂2
1 = Q̂2

2. (24)

Dieser kommutiert also auch mit den SUSY-Generatoren.

2.1.3 Der harmonische Oszillator

Der harmonische Oszillator mit dem Hamiltonoperator

ĤB =
p̂2

2m
+

1

2
mω2x̂2, (25)

ist ein Standardmodell der Quantenmechanik und wird in praktisch jeder Einführung

des Themas eingehend untersucht. Er lässt sich algebraisch mit Hilfe der Auf- und

Absteigeoperatoren

b̂± =

√
mω

2~

(
x̂∓ ip̂

mω

)
(26)

lösen, welche den Kommutatorrelationen[
b̂−, b̂+

]
= 1 (27)

und [
b̂−, b̂−

]
=
[
b̂+, b̂+

]
= 0 (28)

genügen. Mit der Definition n̂b = b̂+b̂− lässt sich der Hamiltonoperator dann um-

schreiben zu

ĤB = ~ω (n̂b + 1/2) . (29)

Offensichtlich lassen sich die Auf- und Absteigeoperatoren auch als Erzeuger und

Vernichter von Bosonen in einem Zustand auffassen. Jedes Boson besitzt dabei eine

Energie von ~ω, und die Energie des Gesamtsystems mit der Bosonenzahl nb beträgt

Eb = ~ω (nb + 1/2) . (30)

2.1.4 Der fermionische Oszillator

Es lässt sich auch ein fermionisches Pendant konstruieren. Die Erzeugungs- und

Vernichtungsoperatoren

f̂± =
1√
2~

(ψ ∓ iπ) (31)
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sollen jetzt den Antikommutatorrelationen (10) und (11) genügen. Für die Fermio-

nischen Orts- und Impulsoperatoren ψ̂ und π̂ folgen dann die Darstellungen

ψ̂ =

√
~
2

(
f̂+ + f̂−

)
(32)

und

π̂ = i

√
~
2

(
f̂+ − f̂−

)
(33)

sowie die Antikommutatoren

{ψ, π} = 0 (34)

und

{ψ, ψ} = {π, π} = ~. (35)

Der einfache Ansatz für einen Hamiltonoperator

ĤF = iωψ̂π̂ (36)

führt schließlich auf die Darstellung

ĤF = ~ω
(
f̂+f̂− − 1/2

)
= ~ω (n̂f − 1/2) (37)

mit nf = f̂+f̂−. Diese besitzt ausreichend Ähnlichkeit mit dem Ergebnis des har-

monischen Oszillators, um hier guten Gewissens von einem fermionischen Oszillator

sprechen zu können. Wichtig ist festzustellen, dass die Grundzustandsenergie nun

den negativen Wert −~ω besitzt. Insgesamt hat sich das Eigenwertspektrum auf die

Energien

Ef = ±~ω
2

(38)

reduziert. Der fermionische Oszillator beschreibt also ein Zwei-Zustands-System, wie

es z.B. vom Zeeman-Effekt bekannt ist.

2.1.5 Der SUSY-Oszillator

Dass der harmonische und fermionische Oszillator die Grundlage des einfachsten

supersymmetrischen Modells bilden, zeigt sich, indem wir den Vorfaktor der beiden

SUSY-Operatoren zu
√
~ω setzen:

Q̂+ =
√
~ωb̂−f̂+ Q̂− =

√
~ωb̂+f̂− (39)
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Für den SUSY-Hamiltonoperator folgt dann

ĤS =
{
Q̂+, Q̂−

}
= ~ω

(
b̂+b̂− + f̂+f̂−

)
= ~ω (n̂b + n̂f ) = Ĥb + Ĥf . (40)

Die einfachen Ansätze aus 2.1.2 führen offensichtlich direkt auf die Summe der Ha-

miltonoperatoren der beiden Oszillatoren. Wir bezeichnen das so gewonnene Sy-

stem als SUSY-Oszillator. In Abbildung 1 sind die niedrigsten Energieniveaus dar-

gestellt. Wir werden Zustände mit nf = 0 im folgenden als bosonische und solche

Abbildung 1: Die niedrigsten Energieniveaus des SUSY-Oszillators. Kalka, Soff - Su-
persymmetrie, Teubner 1997

mit nf = 1 als fermionische Zustände bezeichnen. Offensichtlich sind alle Zustände

mit der Energie Enb,nf
> 0 zweifach entartet und es gilt Enb,1=Enb+1,0. Die SUSY-

Transformationen wandeln also, wie erwartet, bosonische und fermionische Zustände

gleicher Energie ineinander um.

2.2 Nichtlineare SUSYQM

Der Ansatz für die SUSY-Operatoren lässt sich verallgemeinern, indem statt der

bosonischen Erzeuger und Vernichter eine Funktion dieser Operatoren verwendet

wird. Wir verwenden nun also

Q̂+ = B̂−
(
b̂+,b̂−

)
f̂+ (41)

und

Q̂− = B̂+
(
b̂+,b̂−

)
f̂−. (42)

Die Abhängigkeit von den fermionischen Operatoren lässt sich aufgrund der Nilpo-

tenz nicht sinnvoll erweitern. Zusammen mit dem gewohnten Ansatz (18) für den
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Hamiltonoperator folgt nun

ĤS = B̂−B̂+f̂+f̂− + B̂+B̂−f̂−f̂+. (43)

Aus der Hermitizität des Hamiltonoperators ergibt sich die Bedingung(
B̂−
)†

= B̂+. (44)

Dieser Hamiltonoperator kommutiert zwar noch mit dem Fermionenzahloperator n̂f ,

aber im allgemeinen nicht mehr mit n̂b. Statt der Bosonenzahl verwenden wir daher

die Energie eines Zustandes als zweite Quantenzahl.

2.2.1 Kanonische Darstellung

Das binäre Eigenwertspektrum des Fermionenzahloperators legt es nun nahe, zu

einer Darstellung überzugehen, welche dem Spinorformalismus analog ist. Zustände

|E,nf〉 lassen sich als Spaltenvektor schreiben, in dem der erste Eintrag nf = 0 und

der zweite nf = 1 entspricht:

|E,nf〉 =

(
|E,0〉
|E,1〉

)
(45)

Die fermionischen Erzeuger und Vernichter besitzen dann die Form

f̂− =

(
0 1

0 0

)
und f̂+ =

(
0 0

1 0

)
. (46)

Damit folgt für die SUSY-Transformationen

Q̂1 = Q̂+ + Q̂− = B̂−f̂+ + B̂+f̂− =

(
0 B̂+

B̂− 0

)
(47)

sowie

Q̂2 = −i(Q̂+ − Q̂−) = −i(B̂−f̂+ − B̂+f̂−) =

(
0 iB̂+

−iB̂− 0

)
. (48)

Der Hamiltonoperator besitzt dann die Diagonalform

ĤS = Q̂2
1 =

(
B̂+B̂− 0

0 B̂−B̂+

)
. (49)
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Eine weitere Darstellung ergibt sich aus den Kommutatoren und Antikommutatoren

der bosonischen Operatoren

ĤS =
1

2

{
B̂−, B̂+

}
1− 1

2

[
B̂−, B̂+

]
σ3. (50)

Dabei bezeichnet das Symbol 1 die 2× 2 Einheits- und σ3 die dritte Paulimatrix.

2.2.2 Das Superpotential

Um einen Ausdruck für die Operatoren B̂− und B̂+ zu erhalten, kann man auf die

Operatoren des harmonischen Oszillators (26) zurückgreifen und die Ortskoordina-

ten durch das sogenannte Superpotential Ŵ (x̂) ersetzen:

B̂± =
1√
2

[
Ŵ (x̂)∓ ip̂√

m

]
(51)

Eine Verallgemeinerung der Impulsabhängigkeit würde die gewohnte Form der ki-

netischen Energie im Hamiltonoperator zerstören und scheint unphysikalisch. Auf

diesem, zunächst von E. Witten [3] gewählten Ansatz, ruht das gesamte Gebäude

der supersymmetrischen Quantenmechanik. Für die Operatoren B̂− und B̂+ gilt nun

in Ortsdarstellung {
B̂−, B̂+

}
= W 2 +

p̂2

m
(52)

sowie [
B̂−, B̂+

]
=

~√
m

dW

dx
. (53)

Zusammen mit (50) folgt dann für den Hamiltonoperator

HS =
1

2

(
p̂2

m
+W 2

)
1− ~√

m

dW

dx

σ3

2
. (54)

2.2.3 Superpotential und Grundzustand

Der Hamiltonoperator ĤS zerfällt in der kanonischen Darstellung in zwei Hamilton-

operatoren Ĥ1 und Ĥ2:

ĤS =

(
B̂+B̂− 0

0 B̂−B̂+

)
=

(
Ĥ1 0

0 Ĥ2

)
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Für einen Grundzustand von ĤS bei E=0 muss dabei gelten

Ĥ1 |0 0〉 = 0 und Ĥ2 |0 1〉 = 0.

Es lässt sich zeigen, dass diese beiden Gleichungen äquivalent sind zu Differential-

gleichungen ersten Grades:

Ĥ1 |0 0〉 = B̂+B̂− |0 0〉 = 0 ⇔ B̂− |0 0〉 = 0 (55)

Ĥ2 |0 1〉 = B̂−B̂+ |0 1〉 = 0 ⇔ B̂+ |0 1〉 = 0 (56)

Durch das Einsetzen der Operatoren aus (51) ergibt sich

B̂− |0 0〉 =
1√
2

[
Ŵ (x) +

~√
m

∂

∂x

]
ψ00 (x) = 0 (57)

und

B̂+ |0 0〉 =
1√
2

[
Ŵ (x)− ~√

m

∂

∂x

]
ψ01 (x) = 0. (58)

Diese Differentialgleichungen lassen sich elementar integrieren. Das führt auf die

Grundzustandswellenfunktionen

ψ00 (x)

ψ01 (x)

}
= C exp

[
∓
√
m

~

∫ x

0

W (x′) dx′
]
. (59)

Damit diese normierbar sind, müssen sie zumindest an den Rändern verschwinden.

Es gelten also die zusätzlichen Bedingungen

lim
x→±∞

ψ00 = 0 ⇒
∫ ±∞
0

dx′W (x′) = ±∞ (60)

und

lim
x→±∞

ψ01 = 0 ⇒
∫ ±∞
0

dx′W (x′) = ∓∞. (61)

Da sich diese offensichtlich gegenseitig ausschließen, ist gezeigt, dass, sofern ein

Grundzustand bei E=0 existiert, dieser nicht entartet sein kann. Ist eine der Bedin-

gungen allerdings erfüllt, so kann die Grundzustandswellenfunktion ohne weiteres

aus dem Superpotential berechnet werden. Interessanterweise ist auch der umge-

kehrte Weg möglich, und bei bekanntem, nicht entartetem Grundzustand, kann das

Superpotential aus der Grundzustandswellenfunktion berechnet werden. Dazu ge-



11

nügt es, die Gleichungen (57) und (58) umzuformen, sodass

W (x) = − ~√
m

ψ′00 (x)

ψ00 (x)
= − ~√

m

∂

∂x
lnψ00 (62)

bzw.

W (x) =
~√
m

ψ′01 (x)

ψ01 (x)
=

~√
m

∂

∂x
lnψ01 (63)

folgt.

2.2.4 Eigenwerte und -zustände von H1 und H2

Grundlegend für die supersymmetrische Quantenmechanik sind die Zusammenhänge

zwischen den beiden Komponenten des Hamiltonoperators ĤS, Ĥ1 und Ĥ2. Bei der

Untersuchung bietet sich nun eine neue Schreibweise der Zustände an, wobei ψ
(i)
n die

n-te Energieeigenfunktion von Ĥi darstellt. Es gelten dann die Eigenwertgleichungen

Ĥ1ψ
(1)
n = B̂+B̂−ψ(1)

n = E(1)
n ψ(1)

n (64)

und

Ĥ2ψ
(2)
n = B̂−B̂+ψ(2)

n = E(2)
n ψ(2)

n . (65)

Es zeigt sich nun, dass die bosonischen Operatoren B̂+ und B̂− die Eigenzustände

von Ĥ1 und Ĥ2 ineinander überführen:

Ĥ1B̂
+ψ(2)

n = B̂+B̂−B̂+ψ(2)
n = E(2)

n B̂+ψ(2)
n (66)

Ĥ2B̂
−ψ(1)

n = B̂−B̂+B̂−ψ(1)
n = E(1)

n B̂+ψ(1)
n (67)

Da dies für alle Zustände gilt, besitzen Ĥ1 und Ĥ2 für E > 0 außerdem ein iden-

tisches Eigenwertspektrum. Aus dieser Feststellung lassen sich nun scheinbar un-

zusammenhängende Potentiale miteinander in Verbindung bringen, indem man aus

einem bekannten Grundzustand das Superpotential berechnet und daraus wiederum

das zu Ĥ2 gehörige Partnerpotential. Man bezeichnet

V1 =
1

2

[
W 2 − ~√

m

∂W

∂x

]
und V2 =

1

2

[
W 2 +

~√
m

∂W

∂x

]
(68)

daher als Partnerpotentiale.
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2.3 Variationsrechnung

Der schweizer Physiker Walter Ritz veröffentlichte in seinem Todesjahr 1909 einen

Artikel über die approximative Lösung von Randwertproblemen, welche auf die Ex-

tremalisierung eines Energieintegrals zurückgeführt werden konnten [6]. Die zunächst

an Beispielen der klassischen Mechanik ausgeführte Methode sollte später ein wich-

tiges Werkzeug für quantenmechanische Berechnungen werden. Für einen Hamilton-

operator Ĥ mit der Grundzustandsenergie E0 gilt für beliebige Zustände |φ〉

E0 ≤
〈φ| Ĥ |φ〉
〈φ| φ〉

. (69)

Dies lässt sich leicht beweisen, indem man |φ〉 nach den Eigenzuständen |φi〉 von Ĥ

entwickelt. Eingesetzt ergibt sich unter Ausnutzung der Orthogonalität

〈φ| Ĥ |φ〉
〈φ| φ〉

=

∑
i

c∗i 〈φi| Ĥ
∑
i′
ci′ |φi′〉∑

i

c∗i 〈φi|
∑
i′
ci′ |φi′〉

=

∑
i

|ci|2Ei∑
i

|ci|2
. (70)

Mit E0 ≤ Ei folgt dann die Behauptung. Der Ansatz der Variationsrechnung be-

steht nun darin, eine geeignete Testfunktion zu parametrisieren und die rechte Seite

von (69) zu minimieren. Daraus erhält man eine obere Schranke für die Grundzu-

standsenergie des Systems. Typischerweise wird in Lehrbüchern der anharmonische

Oszillator als Beispiel behandelt und der Grundzustand des harmonischen Oszilla-

tors als Testfunktion verwendet. Mit der normierten Grundzustandswellenfunktion

φ0 (x) =

(
α√
π

) 1
2

exp

(
−α

2x2

2

)
(71)

und dem Hamiltonoperator

Ĥ =
p̂2

2m
+ λx4 (72)
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ergibt sich der Erwartungswert

〈φ| Ĥ |φ〉
〈φ| φ〉

=
λα√
π

∞∫
−∞

x4 exp
(
−α2x2

)
dx

− ~2α
2m
√
π

∞∫
−∞

[
α4x2 exp

(
−α2x2

)
− α2 exp

(
−α2x2

)]
dx (73)

=
3λ

4α4
+

~2α2

4m
= E (α) . (74)

Diese Funktion besitzt ein Minimum bei α6
m = 6λm/~2 und

E (αm) =

(
3

4

) 4
3
(
λ~4

m2

) 1
3

≈ 0,68142

(
λ~4

m2

) 1
3

. (75)

3 Der Anharmonische Oszillator

Ich werde mich in dieser Arbeit auf die Behandlung des reinen anharmonischen

Oszillators

Ĥ =
p̂2

2m
+ λx̂4 (76)

sowie des gestörten, harmonischen Oszillators

Ĥ =
p̂2

2m
+
gx̂2

2
+ λx̂4 (77)

beschränken. Ihre wichtige Bedeutung erlangen diese Systeme unter anderem da-

durch, dass sie die ersten drei Glieder der Taylorentwicklung eines beliebigen sym-

metrischen Potentials darstellen. In sämtlichen Gebieten der Physik, von der Optik

bis zur physikalischen Chemie, werden daher Näherungen durch anharmonische Os-

zillatoren verwendet, und das theoretische Studium dieser Systeme wurde dement-

sprechend kontinuierlich vorangetrieben. Während für die Energieniveaus des har-

monischen Oszillators ein analytischer Ausdruck existiert, ist dies bei anharmoni-

schen Oszillatoren in der Regel nicht der Fall. Ein besonderes Interesse gilt daher

der Herleitung handhabbarer Formeln, welche die Energien des Systems über einen

möglichst weiten Bereich der Kopplungskonstanten hinreichend genau beschreiben.
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3.1 Das rein anharmonische System

Systeme, bei denen der quadratische Term des Potentials verschwindet, lassen sich

näherungsweise durch den rein anharmonischen Oszillator beschreiben. Außerdem

wurde von Chan und Stelman vorgeschlagen, die Eigenfunktionen als Basis zur li-

nearen Variation allgemeinerer Systeme zu verwenden, in denen der biquadratische

Term das Potential dominiert [7]. Der Hamiltonoperator

Ĥ =
p̂2

2m
+ λx̂4 (78)

lässt sich durch die Variablensubstitutionen

x =
(
~/
√
λm
)1/3

x′ (79)

und

E =

(
λ~4

m2

) 1
3

E ′ (80)

auf die in der Literatur gebräuchliche Form

Ĥ ′ = −1

2

∂2

∂x′2
+ x′4 (81)

bringen. Zusammen mit der Konvention ~ = 1 und m = 1 ergeben sich dann die

Energien des Systems in Einheiten von λ1/3. Es genügt also, die Eigenwerte des

Operators (81) zu tabellieren, aus denen dann für beliebige Kopplungskonstanten

die Energieniveaus einfach berechnet werden können. Zur Berechnung wurde eine

ganze Reihe von Methoden, unter anderem die WKB-Näherung [8], Potenzreihen-

ansätze [9] und lineare Variation [7, 10], ins Feld geführt. Besonders durch lineare

Variation, welche von Reid [10] mit bis zu 150 Basisfunktionen durchgeführt wur-

de, ließen sich die unteren Energieniveaus mit hoher Genauigkeit berechnen. Da die

Menge der benötigten Basisfunktionen mit der maximalen Quantenzahl, bis zu der

die Energien bestimmt werden, zunimmt, stößt diese Methode allerdings selbst mit

heutiger Rechenkapazität früher oder später an ihre Grenzen. Banerjee et al. haben

daher, durch die Entwicklung nach unterschiedlich skalierten Eigenfunktionen des

harmonischen Oszillators, eine Rekursionsformel hergeleitet, mit der die Eigenwerte

über das gesamte Spektrum hinweg mit beliebiger Genauigkeit berechnet werden

können [11].
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3.1.1 Numerische Lösung mit Schießverfahren

Zunächst habe ich mit Hilfe des Schießverfahrens eine numerische Berechnung der

Energieeigenwerte des Systems durchgeführt. Die zehn niedrigsten Anregungsener-

gien sind in Tabelle 1 eingetragen. Der Vergleich mit [11] zeigt, dass die berechneten

Werte eine Genauigkeit von mindestens sechs Stellen aufweisen. Mit Runge-Kutta-

Verfahren lassen sich auch die Wellenfunktionen berechnen. In Abbildung 2 sind

Quantenzahl n En Schießverfahren [λ1/3] En Banerjee et al. [λ1/3]
0 0,667986301 0,667986259
1 2,39364389 2,39364402
2 4,69679536 4,69679539
3 7,33573007 7,33573000
4 10,2443086 10,2443085
5 13,3793366 13,3793366
6 16,7118898 16,7118896
7 20,2208494 20,2208495
8 23,8899939 23,8899936
9 27,7063933 27,7063934

Tabelle 1: Numerisch berechnete Eigenwerte des rein anharmonischen Oszillators.

die normierten Wellenfunktionen des anharmonischen Oszillators über das Potential

aufgetragen, wobei auf eine separate Skala für die Wahrscheinlichkeitsdichte ver-

zichtet wurde. Zum Vergleich ist in Abbildung 3 das Potential des harmonischen

Oszillators mit den entsprechenden Wellenfunktionen dargestellt. Dabei habe ich

die Kopplungskonstante α = 6
1
6 aus der Variation in Abschnitt 2.3 übernommen,

um Vergleichbarkeit zu gewährleisten. Wie aufgrund des Potentialverlaufs zu er-

warten war, verändert sich die räumliche Ausdehnung der Wellenfunktionen beim

anharmonischen Oszillator mit zunehmender Quantenzahl wesentlich schwächer als

beim harmonischen System. Dies deutet darauf hin, dass eine lineare Variation mit

den Eigenfunktionen des harmonischen Oszillators, ohne zusätzliche Skalierung, bei

höheren Quantenzahlen zunehmend schlechtere Ergebnisse liefern wird.

3.1.2 Ritzsche Variation und SUSYQM

In Abschnitt 2.3 wurde beispielhaft der Grundzustand des harmonischen Oszillators

variiert, um eine obere Grenze für die Grundzustandsenergie des rein anharmoni-

schen Oszillators zu gewinnen. Das Ergebnis E ′ = 0,68142 weicht um 2 % von dem

exakten Wert E ′ = 0,66798 ab. Mit den Methoden der supersymmetrischen Quan-
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Abbildung 2: Wellenfunktionen des rein anharmonischen Oszillators.

tenmechanik haben Cooper et al. Näherungen für die angeregten Energieniveaus

berechnet [4]. Dazu verwenden sie zunächst, statt der Grundzustandswellenfunktion

des harmonischen Oszillators, die Testfunktion

Ψ
(k)
0 = Nk exp

(
−1

2

∣∣∣∣x2ρk
∣∣∣∣nk
)

(82)

mit

Nk =

[
2
√
ρkΓ

(
1 +

1

2nk

)]−1/2
. (83)

Der Energieerwartungswert beträgt

〈
Ψ

(0)
0

∣∣∣ Ĥ ′ ∣∣∣Ψ(0)
0

〉
= E0(ρ0,n0) =

n2
0

2ρ20

Γ
(

2− 1
2n0

)
Γ
(

1
2n0

) + ρ20

Γ
(

5
2n0

)
Γ
(

1
2n0

) . (84)

Durch Minimierung über die Bedingungen

∂E0

∂ρ0
=
∂E0

∂n0

= 0 (85)
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Abbildung 3: Wellenfunktionen des rein harmonischen Oszillators, α = 6
1
6 .

ergeben sich die optimalen Parameter ρ0 = 0,666721 und n0 = 1,18346 sowie die

obere Grenze für die Grundzustandsenergie E0 = 0,66933. Die Abweichung von dem

exakten Wert konnte mit diesem Ansatz auf 0,2 % verringert werden. Aus der SU-

SYQM ist bekannt, dass die Testfunktion den exakten Grundzustand eines eigenen

”
Testpotentials“ beschreibt. Das entsprechende Superpotential lässt sich mit (62)

aus der Testfunktion berechnen:

W(k)(x) = − ∂

∂x
ln Ψ

(k)
0 =

nkx |x2|nk−1

ρnk
(86)

Aufgrund des Verhaltens im Unendlichen lässt sich erkennen, dass ungebrochene Su-

persymmetrie vorliegt. Die Grundzustandsenergie des Partnerpotentials entspricht

dann der des ersten angeregten Zustands des Testpotentials. Cooper et al. haben

diese nun wieder durch Variation des Ansatzes (82),(83) approximiert und daraus

eine Rekursionsformel für die Abstände zwischen den Energieniveaus erhalten. Das

Partnerpotential lautet

V
(k)
2 =

1

2

[
W 2

(k) +
∂W(k)

∂x

]
(87)
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und die obere Schranke für die Energiedifferenz zum nächst höheren Niveau

∆Ek+1(ρk+1,nk+1) =
〈

Ψ
(k+1)
0

∣∣∣− 1

2

∂2

∂x2
+

1

2

[
W 2

(k) +
∂W(k)

∂x

] ∣∣∣Ψ(k+1)
0

〉
= Ek+1 − Ek.

(88)

Diese lässt sich elementar integrieren zu

∆Ek+1(ρk+1,nk+1) =
n2
k+1

2ρk+1

Γ
(

2− 1
2nk+1

)
Γ
(

1
2nk+1

) +
n2
k

2ρk+1

(
ρk+1

ρk

)2nk Γ
(

4nk−1
2nk+1

)
Γ
(

1
2nk+1

)
+

nk
2ρk+1

(2nk − 1)

(
ρk+1

ρk

)nk+1−1 Γ
(

2nk−1
2nk+1

)
Γ
(

1
2nk+1

) . (89)

Dieser Ausdruck muss nun jeweils bezüglich ρk+1 und nk+1 minimiert werden. Für

die ersten fünf Energieniveaus sind die entsprechenden Parameter und Energieab-

stände in Tabelle 2 aufgeführt. Während die ersten drei Energieabstände in relativ

Quantenzahl k ρk nk ∆Ek SUSYQM ∆Ek Numerisch
0 0,66672136 1,1834583 0,669330 0,667986
1 0,42982878 0,99583433 1,72758 1,72566
2 0,43560367 1,0005962 2,31640 2,30315
3 0,43477921 0,99991715 2,29708 2,63893
4 0,43489383 1,0000116 2,29982 2,90858
5 0,43487783 0,99999839 2,29944 3,13503

Tabelle 2: Energieabstände des rein anharmonischen Oszillators aus Ritz’scher Va-
riation mit SUSYQM.

guter Näherung mit dem beschriebenen Verfahren berechnet werden können, weicht

die Energie des vierten Anregungsniveaus schon in der ersten Nachkommastelle ab.

Eine numerische Auswertung für größere Quantenzahlen zeigt, dass die Parameter

ρk und nk gegen die Werte ρ = 0,43487979 und n = 1. 0000000 konvergieren. Der

Energieabstand nähert sich damit dem Wert ∆Ek = 2,2994860 an. Die numeri-

sche Berechnung der tatsächlichen Energieabstände zeigt, dass diese zumindest bis

k=400 streng monoton ansteigen und nicht konvergieren. Die Methode geht von zwei

wesentlichen Annahmen aus. Zunächst wird vorausgesetzt, dass die Energieniveaus

des zur Testfunktion gehörenden Potentials eine gute Approximation der Energien

des anharmonischen Oszillators darstellen. Darüber hinaus wird angenommen, dass

der ursprüngliche Ansatz (82),(83) auch für die Grundzustandswellenfunktionen der
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Partnerpotentiale eine hinreichend genaue Beschreibung erlaubt. Die numerisch be-

stimmten Energieabstände des SUSY-Potentials

V
(0)
1 =

1

2

[
W 2

(0) −
∂W(0)

∂x

]
(90)

sind in Tabelle 3 eingetragen. Nach Konstruktion liegt die Grundzustandsenergie

Quantenzahl k ∆Ek
1 1,72717
2 2,31375
3 2,36094
4 2,56798

Tabelle 3: Energieabstände des SUSY-Potentials V(0).

bei E0 = 0. Der Vergleich mit den exakten Werten des anharmonischen Oszillators

zeigt tatsächlich für k ≥ 2 eine zunehmende Abweichung. Es stellt sich außerdem

heraus, dass die Variation mit dem Ansatz (82) auch hier gute Ergebnisse liefert. Eine

Berechnung für höhere Quantenzahlen zeigt, dass auch für das SUSY-Potential die

Energieabstände monoton zu steigen scheinen. Die beobachtete Konvergenz ergibt

sich also aus dem Verfahren der rekursiven Berechnung.

3.1.3 Variation nach Knotenverfahren

Ein anderes Verfahren zur Berechnung der Energien angeregter Zustande mit Hilfe

von SUSYQM und Variationsrechnung wurde von Mukharjee et. al. beschrieben [1].

Für das diskrete Spektrum eindimensionaler Bewegungen gilt der sogenannte Kno-

tensatz, der besagt, dass die Wellenfunktion des (n+1)-ten Energieeigenzustandes

n Knoten besitzt [12]. Man kann davon ausgehen, dass eine Testfunktion, welche

die Position dieser Knoten berücksichtigt, zur Variation angeregter Zustände ver-

wendet werden kann. Die Bedingung (69) ist dabei nicht erfüllt, so dass eine Ab-

schätzung der Güte dieser Näherung sich als schwierig erweist. Es zeigt sich jedoch,

dass mit einem solchen Vorgehen gute Ergebnisse erzielt werden können. Über die

SUSY-Partnerpotentiale werden nun nicht die Energieabstände, sondern die Kno-

tenpositionen bestimmt. Unter Ausnutzung der Relation (66) können mit Hilfe der

SUSY-Operatoren B̂+
(k) die Grundzustandswellenfunktionen der Partnerpotentiale

sukzessive in angeregte Wellenfunktionen des ursprünglichen Potentials überführt

werden. Bezeichnet man mit ψ
(k)
n die n-te Wellenfunktion des k-ten Potentials, so
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gilt

ψ(0)
n (x) = B̂+

(1)·. . . ·B̂
+
(n)ψ

(n)
0 . (91)

Anschließend können die Knoten von ψ
(0)
n bestimmt und in eine Testfunktion als

Linearfaktoren integriert werden:

ψT (x,r1,. . . ,rm) = (x− x(0)1 )·. . . ·(x− x(0)n ) · f(x,r1,. . . ,rm) (92)

Die Funktion f(x,r1,. . . ,rm) muss analog zu der Testfunktion der klassischen Va-

riation gewählt werden und kann im Prinzip über eine beliebige Menge variierbarer

Parameter verfügen. Mukharjee et. al. empfehlen in ihrer Veröffentlichung, nicht we-

niger als drei Parameter zur Variation zu verwenden. Um die Ergebnisse mit den

zuletzt gewonnenen Werten vergleichen zu können, habe ich gegen diesen Rat ver-

stoßen und den Ansatz (82), (83) für f(x,ρ,n) gewählt.

Die Rolle der Parität Für den Spezialfall eines symmetrischen Potentials kom-

mutiert der Hamiltonoperator mit dem Paritätsoperator. Dies bedeutet, dass es ein

vollständiges System von Energieeigenzuständen gibt, welche auch Eigenzustände

des Paritätsoperators darstellen. Da im diskreten Spektrum eindimensionaler Be-

wegungen keine Entartung auftritt [12], besitzt dort jeder Energieeigenzustand eine

definierte Parität. Berücksichtigt man, dass bei einer Wellenfunktion mit n Knoten

genau n+1 Extremstellen auftreten und sich dabei Minima und Maxima abwechseln

müssen, so folgt aus dem Knotensatz, dass sich bei einer eindimensionalen Bewe-

gung im symmetrischen Potential die Paritäten der Energieeigenzustände abwech-

seln, beginnend mit einem geraden Grundzustand. Da für ungerade Wellenfunktio-

nen ψ(0) = 0 gilt, ist die einzige Nullstelle des ersten angeregten Zustands bekannt.

Dies wird von Mukharjee ausgenutzt, um das Schema (91) um einen Schritt zu

reduzieren auf

ψ(0)
n = B̂+

(1)·. . . ·B̂
+
(n−1)ψ

(n−1)
1 . (93)

Der erste angeregte Zustand des n-ten Potentials lässt sich dann durch Variation der

Testfunktion

ψT (x,r1,. . . ,rm) = x · f(x,r1,. . . ,rm) (94)

nähern.
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Anwendung Für den anharmonischen Oszillator kann damit die Energie des er-

sten angeregten Zustandes noch ganz ohne SUSYQM-Methoden varriiert werden.

Der Ansatz dazu lautet, unter Berücksichtigung der Nullstelle bei x = 0,

ψT (x) = N · x · exp

(
−1

2

∣∣∣∣x2ρ
∣∣∣∣n) (95)

mit einem Normierungsfaktor N. Eine Variation des Energieerwartungswertes be-

züglich des Hamiltonoperators (81) liefert das Ergebnis

E1 ≤ 2,39537 (96)

Die exakte Energie des ersten angeregten Zustandes ist dabei tatsächlich kleiner oder

gleich dem ermittelten Wert, da ungerade und gerade Zustände exakt orthogonal zu-

einander sind. Mit der schon berechneten Näherung für die Grundzustandsenergie

E0 ≤ 0,669330 entspricht das einem Energieabstand von ∆E1 = 1,72604. Ein Ver-

gleich mit dem exakten Wert ∆E1 = 1,72566 aus Tabelle 2 zeigt, dass dies eine

leichte Verbesserung gegenüber dem vorherigen Ergebnis ∆E1 = 1,72758 darstellt.

Um die Energie des zweiten angeregten Zustandes zu berechnen, kann nun das Part-

nerpotential (86) herangezogen werden. Das kann mit den Parametern ρ0 und n0

(Tabelle 2) und der Gleichung (87) aus dem Superpotential (86) berechnet werden.

Die Variation mit der Testfunktion (95) und Anwendung des Schemas (93) führt

schließlich auf eine Wellenfunktion ψ
(0)
n (x) mit Nullstellen bei x0 = ±0,517911, in

guter Übereinstimmung mit dem numerischen Ergebnis x0 = ±0,512667. Damit

lautet die Ansatzfunktion zur Variation des dritten Energieniveaus

ψT (x) = N · (x2 − 0,5179112) · exp

(
−1

2

∣∣∣∣x2ρ
∣∣∣∣n) . (97)

Die Variation des Energieerwartungswertes liefert damit E2 ≈ 4,6994, was einem

Energieabstand von ∆E2 ≈ 2,30457 entspricht. Ein Vergleich mit den Ergebnissen

des Cooper-Verfahrens zeigt hier eine deutliche Verbesserung. Die Ergebnisse bis

zum fünften Energieniveau sind zusammen mit den vorherigen und numerischen

Ergebnissen in Tabelle 4 eingetragen. Es zeigt sich, dass die Güte der Näherung

für n=4 stark einbricht. Näherungsweise ergeben sich die Nullstellen der vierten

Wellenfunktion zu x
(1)/(2)
0 = ±1,10783 und x

(3)/(4)
0 = ±0,365304, was noch in relativ

guter Übereinstimmung mit den numerisch ermittelten Werten x
(1)/(2)
0 = ±1,05097

und x
(3)/(4)
0 = ±0,347037 zu sein scheint. Bessere Ergebnisse lassen sich demnach
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n ∆En Mukharjee Rel. Fehler ∆En Cooper Rel. Fehler ∆En Numerisch
0 0,669330 0,0020 0,669330 0,0020 0,667986
1 1,72604 0,00022 1,72758 0,0011 1,72566
2 2,30457 0,00062 2,31640 0,0058 2,30315
3 2,56944 0,026 2,29708 0,13 2,63893
4 2,42095 0,16 2,29982 0,21 2,90858

Tabelle 4: Vergleich der Ergebnisse des Mukharjee- und Cooper-Verfahrens beim
rein anharmonischen Oszillator mit relativen Fehlern.

wahrscheinlich durch eine Testfunktion mit drei oder mehr Variationsparametern

erzielen.

3.2 Das biquadratische System

Ein allgemeineres System wird durch den Hamiltonoperator

Ĥ =
p̂2

2m
+
gx̂2

2
+ λx̂4 (98)

beschrieben. Hier ist eine Substitution, welche den Hamiltonoperator von den Kopp-

lungskonstanten unabhängig macht, nicht mehr möglich. Stattdessen werden in der

Literatur zwei Spezialfälle unterschieden. Durch die Substitutionen x = (gm)−1/4 x′,

E =
√
g/mE ′ und λ = (g5m)

1/4
λ′ lässt sich der Hamiltonoperator auf die Form

Ĥ ′ =
p̂′2

2
+
x̂′2

2
+ λ′x̂′4 (99)

bringen. Eine Entwicklung nach λ′ entspricht nun einem leicht gestörten harmoni-

schen Oszillator und wird als schwache Kopplung bezeichnet. Für den Fall star-

ker Kopplung können die Substitutionen x = (mλ)−1/6x′, E =
(
λ
m2

)1/3
E ′ und

g = (mλ)1/6g′ angewandt werden. Der resultierende Operator

Ĥ ′ =
p̂2

2
+
g′x̂′2

2
+ x̂4 (100)

lässt sich anschließend nach g′ entwickeln und beschreibt ein System, in dem die Dy-

namik im wesentlichen durch den anharmonischen Anteil generiert wird. Ich werde

die Güte der zuvor besprochenen Näherungsverfahren an einem biquadratischen Os-

zillator mit den Kopplungskonstanten m = g = 1 und λ = 1/2 testen, um die nume-

rischen Ergebnisse wieder mit denen von Banerjee et al. vergleichen zu können [11].
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Diese Parameter liegen zwischen den Bereichen der starken und schwachen Kopplung

und sind damit störungstheoretisch nicht zugänglich. Der Übersichtlichkeit halber

bietet es sich dennoch an, den Hamiltonoperator in der schwach gekoppelten Form

(99) zu verwenden. Die Energieeigenwerte werden daher im folgenden in Einheiten

von
√
g/m angegeben (~ = 1). Die numerisch berechneten Energieeigenwerte sind in

Tabelle 5 eingetragen und die entsprechenden Wellenfunktionen in Abbildung 4 dar-

gestellt. Das von Cooper et al. beschriebene Verfahren kann mit dem Ansatz (82),

Quantenzahl n En Schießverfahren En Banerjee et al.
0 0,69617579 0,69617582
1 2,3244064 2,3244064
2 4,3275249 4,3275249
3 6,5794019 6,5784019
4 9,0287787 9,0287787
5 11,648721 11,648721
6 14,417669 14,417669
7 17,320424 17,320424
8 20,345193 20,345193
9 23,482505 23,482505

Tabelle 5: Numerisch berechnete Eigenwerte des biquadratischen Oszillators.

(83) ohne weiteres auf das biquadratische System angewandt werden, da der rekursi-

ve Ausdruck für die Energieabstände 89 nur von der verwendeten Testfunktion und

nicht von der Form des Potentials abhängt. Auch das Vorgehen bei der Anwendung

des Knotenkorrekturverfahrens ist im Wesentlichen identisch. Die Berechnung der

n ∆En Mukharjee Rel. Fehler ∆En Cooper Rel. Fehler ∆En Numerisch
0 0,696969 0,0011 0,696969 0,0011 0,696176
1 1,62859 0,00022 1,63179 0,0020 1,62823
2 2,00405 0,00047 1,98993 0,0066 2,00311
3 - - 1,96331 0,13 2,25088
4 - - 1,96712 0,20 2,45037

Tabelle 6: Vergleich der Ergebnisse des Mukharjee- und Cooper-Verfahrens beim
biquadratischen Oszillator mit relativen Fehlern.

Energie des vierten Niveaus ergab nach der Mukharjee Methode keinen realistischen

Wert, da das Energieintegral zwar ein Plateau, aber kein echtes Minimum zu besit-

zen scheint. Für das fünfte Niveau lässt sich die Energie interessanterweise wieder

sinnvoll berechnen. Es ergibt sich eine Energie von E4 = 8,60311, welche allerdings

nur eine grobe Näherung des tatsächlichen Wertes von E4 = 9,02877 darstellt. Für
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Abbildung 4: Wellenfunktionen und Potential des biquadratischen Oszillators mit
den Parametern g=m=1 und λ = 1/2.

die ersten drei Energieeigenzustände liefert das Verfahren allerdings wieder eine Ab-

schätzung von bemerkenswerter Genauigkeit und stellt eine deutliche Verbesserung

gegenüber dem von Cooper beschriebenen dar.

4 Zusammenfassung

Die Anwendung der von Cooper und Mukharjee vorgeschlagenen Techniken auf zwei

verschiedene Potentiale hat gezeigt, dass zumindest für die ersten angeregten Zustän-

de gute bis sehr gute Näherungen der Energien durch Kombination des Rayleigh-

Ritz-Verfahrens mit dem Formalismus der supersymmetrischen Quantenmechanik

zu erwarten sind. Bei beiden Verfahren brach die Güte der Näherung ab einem be-

stimmten Energieniveau jedoch drastisch ein, was eine Anwendung ohne numerische

Vergleichswerte problematisch macht. Für die Berechnung der ersten zwei angeregten

Energieniveaus haben die Verfahren für beide Potentiale eine gute Näherung gelie-

fert, was für die Behandlung niedrig angeregter Systeme z.B. in der Quantenchemie,

ausreichen kann. Eine Besonderheit des Cooper-Verfahrens ist, dass die Rekursions-

formel für die Energieabstände ausschließlich von der gewählten Testfunktion ab-
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hängt und die Form des eigentlichen Potentials nur durch zwei Variationsparameter

eingeht. Dass sich dennoch relativ gute Näherungen der Energieabstände ergeben,

ist erstaunlich. Eine weitergehende Untersuchung des Einflusses der Testfunktion

erscheint lohnenswert, geht aber über das Ziel dieser Arbeit hinaus. Das Mukharjee-

Verfahren erweist sich als dem Cooper-Verfahren durchweg überlegen, so lässt sich

die Energie der ersten beiden Anregungszustände für beide Potentiale mit einem

relativen Fehler der Größenordnung 10−4 berechnen. Interessanterweise ist die Ge-

nauigkeit für die ersten beiden Anregungszustände höher als für den herkömmlich

variierten Grundzustand. Dies lässt sich dadurch erklären, dass die tatsächlichen

Energien keine unteren Schranken mehr darstellen und sich die Abweichungen des

Energieintegrals über den Verlauf der Testfunktion teilweise herausmitteln. Die An-

wendung des Cooper-Verfahrens auf das n-te Energieniveau erfordert insgesamt n,

die des Mukharjee-Verfahrens n+1 bzw. unter Ausnutzung der Symmetrie ebenfalls

n Variationsschritte. Im allgemeinen und auch für die in dieser Arbeit behandelten

Beispiele lässt sich die Variation nicht mehr analytisch durchführen und erfordert

numerische Verfahren, welche für Testfunktionen mit mehr als einem Parameter

einen nicht vernachlässigbaren Rechenaufwand bedeuten. Im Prinzip lassen sich die

einzelnen Variationsschritte allerdings auch mit unterschiedlichen Testfunktionen

durchführen. Bei dem Mukharjee-Verfahren könnte also durchaus eine Variation

mit zwei Parametern zur Bestimmung der Knotenpositionen und anschließend ei-

ne aufwendigere Variation der gesuchten Anregungsenergie angewandt werden. Sind

allerdings nur die Energieniveaus eines konkreten Systems von Interesse, so ist in

der praktischen Anwendung ein rein numerisches Verfahren wohl überlegen.
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