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1. Einleitung

1. Einleitung
In dieser Bachelorarbeit sollen Reaktionen im Rahmen der schwachen Wechselwirkung
zwischen Fermionen untersucht werden. Konzentriert wird sich dabei auf den Austausch
von einem Photon oder einem Z0-Boson.
Zu Beginn wird der theoretische Hintergrund erläutert. Dazu wird diskutiert, wie Wech-
selwirkungen im Standardmodell der Teilchenphysik beschrieben werden und wie diese
Beschreibung zu einem differentiellen Wirkungsquerschnitt führt. Mithilfe der Monte-Carlo-
Eventgenerierung kann dieser verwendet werden um realistische Daten für ein Experiment
zu erzeugen. Hierbei wird sich Bezug auf zwei konkrete Experimente genommen: Einen lep-
tonischen und einen hadronischen Speicherring. Da sich die Betrachtung des leptonischen
Speicherrings als weniger kompliziert darstellt, wird dieser als Erstes untersucht. Dabei
wird auf das Verhalten des differenziellen Wirkungsquerschnittes genauer eingegangen.
Im hadronischen Speicherring werden die bisherigen Methoden angepasst, da die reagie-
renden Teilchen die Konstituenten des eigentlichen Strahlteilchens sind. Infolgedessen
wird beschrieben, wie aus dem Detektorsignal auf die zugrundeliegende Wechselwirkung
geschlossen werden kann. In dem letzten Kapitel wird rekapituliert und als Ausblick
formuliert, in welcher Form man diese Arbeit weiterführen könnte.
Die theoretischen Vorbereitungen sind vielschichtig, weswegen einige Teile in dem

Anhang vorbereitet werden. Der erfahrene Leser, der mit Konzepten der Monte-Carlo-
Eventgenerierung, den Feynman-Diagrammen und -regeln, der invarianten Amplitude
und dem differentiellen Wirkungsquerschnitt vertraut ist, kann direkt mit dem Lesen
des nächsten Kapitels beginnen. Studenten im fünften oder sechsten Bachelorsemester
wird jedoch zunächst der Anhang A geraten. Hier wird nur Wissen über die Dirac-
Gleichung vorausgesetzt, da diese bereits in der Vorlesung behandelt worden sein sollte.
Die essentiellen Ergebnisse werden dennoch kurz wiederholt.
Die Monte-Carlo-Eventgenerierung wird mit der Programmiersprache Python vorge-

nommen. Um die Vorgehensweise beim Programmieren leichter nachvollziehbar zu machen,
werden die relevanten Teile des Codes eingebunden. Es wird jedoch von einer Darstellung
des gesamten Codes abgesehen, da dies den Lesefluss unterbrechen würde.
Die Feynman-Diagramme wurden mit dem Programm JaxoDraw [4] erstellt.
Ein weiteres wichtiges Thema sind die benutzten Konventionen. Um die Rechnung

übersichtlicher zu gestalten wird wie üblich das natürliche Einheitensystem mit c = ~ = 1
gewählt. Die relevanten Ergebnisse sind in SI-Einheiten angegeben. Des weiteren wird
mit Einsteinscher Summenkovention gerechnet. Dabei laufen griechische Indizes von 0 bis
3, wenn sie sich hoch- und niedrig-gestellt in der selben Zeile befinden. Offensichtliche
Multiplikationen von Vektoren und Matrizen werden nicht mit Indizes versehen, da sonst
die Übersichtlichkeit verloren geht und damit die Interpretation erschwert wird.
Bei der computergestützten Berechnung von Ergebnissen werden die numerischen Werte
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1. Einleitung

von Konstanten und Einheiten aus dem aktuellsten Satz der Daten der Paricle Data Group
[1] entnommen. Dabei wurden die Werte auf die letzte Nachkommastelle übernommen.
Die Werte sind hier angegeben:

alpha=1./137.035999139
sinW=0.23122 #sin**2 von dem Weinbergwinkel

cosW=1-sinW
MZ0=91.1876 #GeV/c**2

FWZ0 = 2.4952 #GeV/c**2, Gamma_Z -> Breite

MW=80.379 #GeV/c**2

FWW = 2.085 #GeV/c**2, Gamma_W -> Breite

h=6.582119514*10**(-16) #h/2pi in eVs

c=299792458. #m/s

Die Werte werden als exakt angenommen und deren Unsicherheiten werden nicht in die
Betrachtung miteinbezogen.
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2. Theoretische Vorbereitungen

2. Theoretische Vorbereitungen
Da diese Arbeit darauf abzielt, die elektromagnetische und die schwache Wechselwirkung
für verschiedene Speicherringe im Rahmen einer Monte-Carlo-Simulation zu untersuchen,
ist es sinnvoll zunächst die relevanten Prozesse, die für beide Arten von Experimenten
gleich sind, zu diskutieren. Dabei wird zu Beginn sowohl auf die Natur der Wechselwirkung,
als auch auf invariante Amplituden beider Wechselwirkungskanäle eingegangen. Daraus
wird der differentielle Wirkungsquerschnitt gewonnen, mit dem im weiteren Verlauf die
Monte-Carlo-Eventgenerierung für die Speicherringe vorgenommen wird.

In der Herleitung wird angenommen, dass eine Elektron-Positron-Kollision stattfindet.
Dieser Fall ist natürlich nicht richtig für einen hadronischen Speicherring. Dazu wird zu
Beginn von Abschnitt 4 gezeigt, wie aus einem Wirkungsquerschnitt einer leptonischen eine
hadronische Reaktion gewonnen werden kann. Das Endprodukt, ein Muon-Antimuon-Paar,
bleibt über den gesamten Verlauf erhalten.

2.1. Das Standardmodell der Teilchenphysik

Mit dem Standardmodell der Teilchenphysik lässt sich eine große Spanne der Beobach-
tungen auf Elementarteilchen-Ebene beschreiben. Im Rahmen des Standardmodells wird
jede Wechselwirkung über ein Austauschteilchen, ein sogenanntes Eichboson beschrieben.
Bosonen werden dabei Teilchen genannt, die einen ganzzahligen Spin besitzen. Abgesehen
von der Gravitation kann damit nachweislich jeder Wechselwirkung ein Austauschteil-
chen zugewiesen werden: Die elektromagnetische Wechselwirkung wird über Photonen
beschrieben, die starke Wechselwirkung über acht verschiedene Gluonen und die schwache
Wechselwirkung wird über drei sogenannten Vektorbosonen (W+−,W−− und Z0-Boson)
vermittelt. Im Rahmen der elektroschwachen Wechselwirkung ist es zusätzlich möglich
(wie der Name schon andeutet) die elektromagnetische und die schwache Wechselwirkung
zu vereinen.
Jeder Wechselwirkung wird dabei eine bestimmte Symmetriegruppe zugeordnet, das

bedeutet, dass die Austauschteilchen gewissermaßen als Symmetrieoperation in dieser
Symmetriegruppe angesehen werden und können ein Teilchen, also ein Objekt der Sym-
metriegruppe, in ein weiteres Teilchen, also ein anderes Objekt der Symmetriegruppe,
umwandeln. Die elektroschwache Wechselwirkung wird dabei als direktes Produkt von zwei
Symmetriegruppen gesehen, welche mit der sogenannten spontanen Symmetriebrechung
in zwei unterschiedliche Wechselwirkungen übergegangen sind.
Das Higgs-Feld weist über den Higgs-Mechanismus den Teilchen ihre Masse zu. Das
Higgsfeld selbst besitzt eine Anregung, das sogenannte Higgs-Boson mit dem Spin 0.
Fermionen sind Teilchen mit Spin 1

2 . Zu ihnen gehört jeweils ein komplementäres Antiteil-
chen, welches beschrieben werden kann, wie ein Teilchen, welches sich rückwärts durch
die Zeit bewegt. Fermionen sind die Teilchen, die untereinander über Austauschteilchen

- 3 -



2. Theoretische Vorbereitungen

e+ pB

e− pA

γ

q

kD µ+

kC µ−

Abbildung 1: Feynman-Diagramm für eine Elektron-Positron-Kollision, wobei als Austausch-
teilchen ein Photon und als Endprodukt ein Muon-Antimuon-Paar vorausgesetzt
wird.

wechselwirken. Sie bauen die gesamte bisher entdeckte Materie auf und treten in zwei
unterschiedlichen Kategorien auf: Quarks und Leptonen. Diese Kategorien besitzen jeweils
drei Familien mit zwei Mitgliedern, d.h. zwölf Teilchen plus ihr jeweiliges Antiteilchen.
Die Quarks werden von den Leptonen unterschieden, da diese an der starken Wechselwir-
kung teilhaben, also über Gluonen eine Farbladung austauschen. Sie treten nicht alleine
auf, sondern als farbneutrale Hadronen, welche gebundene Zustände von mindestens zwei
Quarks sind. Da die Gluonen jedoch auch mit sich selber wechselwirken, sind gebundene
Zustände von Quarks sehr kompliziert aufgebaut und besitzen eine Unterstruktur.
Die Leptonen sind jeweils drei verschiedene Teilchen mit negativer elektrischer Elementar-
ladung und drei neutrale Teilchen, sogenannte Neutrinos. Diese Teilchen nehmen nicht an
der Wechselwirkung mit Gluonen teil.

2.2. Elektromagnetische Wechselwirkung

Wie oben erwähnt wird angenommen, dass eine Elektron-Positron-Kollision stattfindet,
welche über ein Photon, das Austauschteilchen, in ein Muon-Antimuon-Paar übergeht.
Das zugehörige Feynman-Diagramm ist in Abb. 1 zu sehen. Eine Herleitung der Feynman-
Regeln für Photonen ist nicht mehr notwendig, da dies implizit in Anhang A.2 vorge-
nommen wurde. Zusammengefasst muss an jeden Vertex der Faktor ieγη multipliziert
werden und der Propagator wird über −igηθ

q2 parametrisiert. Daraus lässt sich die invariante
Amplitude gewinnen:

−iRγ = QeQµv̄(pB)ieγηu(pA)−ig
ηθ

q2 ū(kC)ieγθv(kD)

⇔ Rγ = −e
2QeQµ

q2 v̄(pB)γηu(pA)ū(kC)γηv(kD) (2.1)
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2. Theoretische Vorbereitungen

mit dem Impulsübertrag q = pA + pB und der Impulserhaltung pA + pB = kC + kD.
Als zusätzliche Faktoren wurde noch die Ladungszahl Qe,µ eingefügt, die die Ladung in
Anteilen der Elementarladung e parametrisiert, damit im späteren Verlauf der Arbeit
Teilchen mit unterschiedlicher Ladung zu Kollision gebracht werden können.

2.3. Die schwache Wechselwirkung

Das Ziel dieses Abschnittes ist es die relevanten Ströme für einen Prozess in der Art
von Abb. 3 zu finden, da daraus die Feynman-Regeln gewonnen werden können. Eine
Herleitung des Propagators wird nicht vorgenommen.
Die schwache Wechselwirkung wird von massiven, vektoriellen Austauschteilchen, den
beiden geladenen W+- und W−-Bosonen und dem neutralen Z0-Boson, vermittelt. Diese
Teilchen koppeln unterschiedlich an die beiden Chiralitätskomponenten (siehe Anhang A.1)
ΨL = Π−Ψ = 1

2(1 − γ5)Ψ und ΨR = Π+Ψ = 1
2(1 + γ5)Ψ. Beispielsweise koppeln die

W -Bosonen nur an den linkshändigen Anteil, während das Z0-Boson an beide (allerdings
unterschiedlich stark) koppelt.
Um die Wirkung von den W±-Bosonen auf Fermionen zu beschreiben, fasst man diese
Teilchen in sogenannte Isospin-Dubletts und -Singuletts zusammen. Die jeweils linkshändige
Komponente des Elektrons und des Elektroneutrinos bilden zusammen ein schwaches
Isospin-Dublett, während die rechtshändigen Komponenten jeweils ein schwaches Isospin
Singulett darstellen (mit t als der schwache Isospin):

 νe

e−


L

mit t = 1
2 und (e−)R (νe)R mit t = 0 (2.2)

Um eine vereinfachte Darstellung zu erhalten wurde für den Spinor des Elektrons (und für
das Neutrino analog) ue− ≡ e− geschrieben. Für die dritte Komponente t3 des schwachen
Isospin gilt für den oberen Eintrag des Dubletts t3 = 1

2 und für die untere t3 = −1
2 .

Der schwache Isospins ist also als Analogon des normalen Spins zu betrachten. Diese
Kategorisierung wird gewählt, weil bei der schwachen Wechselwirkung nur Prozesse
innerhalb einer Leptonenfamilie beobachtet wird. Das bedeutet, für die Muonen und den
Taus wird dieselbe Kategorisierung gewählt und für die Quark-Familien ebenfalls. Die
geladenen Vektorbosonen W± können nun ein Elektroneutrino in ein Elektron umwandeln
und vice versa.
Einzig notwendig bleibt es noch einen Ausdruck für Strom des schwachen Isospins zu
finden. Dazu werden die Eigenschaften und Wirkungen der W±-Bosonen genutzt. Zur
besseren Veranschaulichung wird die Situation aus Abb. 2 benutzt: Das abgestrahlte
W−-Boson hat das Muon in sein Neutrino umgewandelt. Da die W -Bosonen nur auf die
linkshändige Komponente der Spinoren wirkt, wird der schwache Isostrom J3 über den
Vertex mittels cJ3

η = cν̄LγηµL definiert. Wobei mit c der Kopplungsfaktor parametrisiert

- 5 -



2. Theoretische Vorbereitungen

νµ

µ− W−

Abbildung 2: Das Muon zerfällt in sein Neutrino und strahlt dabei ein W−-Boson ab.

wird. Mit einer kurzen Rechnung kann der Vertex-Faktor gewonnen werden:

ν̄µ,LγηµL = ν†µ,Lγ0γηµL

= ν†µ
1
2(1− γ5)†γ0γη

1
2(1− γ5)µ

= 1
4ν
†
µγ0γη(1− γ5)2µ

= 1
4 ν̄µγη(2− 2γ5)µ

= ν̄µγη
1
2(1− γ5)µ, (2.3)

wobei die Identitäten aus Gl. (B.4) bis (B.6) benutzt wurden. Der Kopplungsfaktor
c kann mittels der Kopplung der schwachen Wechselwirkung g ausgedrückt werden:
c = g√

2 . Für g kann jedoch mittels des Weinbergwinkels θW ein Zusammenhang zwischen
elektromagnetischer und schwacher Kopplungsstärke gefunden werden:

e = g sin(θW ) (2.4)

Letztlich ergibt sich der Vertexfaktor mit dem Vorfaktor −i, der Konvention bei der
Definition von Feynman-Regeln ist, zu: −i e√

2 sin(θW )γη
1
2(1− γ5).

Das neutrale Z0-Boson koppelt unterschiedlich stark an beide Komponenten. Um dies
beschreiben zu können, wird der neutrale Strom JN definiert. Er setzt sich aus dem Strom
des schwachen Isospins und der elektromagnetischen Wechselwirkung zusammen:

JN = J3 − sin2(θW )jem (2.5)

Diese Überlagerung von Strömen kann wieder durch den Weinbergwinkel ausgedrückt
werden. Die Kopplungsstärke des neutralen Stroms ist über g

cos(θW ) = e
cos(θW ) sin(θW ) para-

metrisiert.
Um nun den Vertexfaktor zu bestimmen, müssen die bekannten Ströme in Gl. (2.5)

- 6 -



2. Theoretische Vorbereitungen

Tabelle 1: Eine Auflistung der Quantenzahlen von Leptonen und Quarks, die für die schwache
Wechselwirkung von Relevanz sind. Für alle anderen Lepton- bzw. Quark-Familien
bleiben die Quantenzahlen gleich. Die rechtshändigen Neutrinos besitzen eine beson-
dere Stellung, da sie keine Quantenzahl ungleich Null besitzen und somit an keiner
Wechselwirkung des Standardmodels teilhaben.

Lepton t t3 Q Quark t t3 Q

νe,L
1
2

1
2 0 uL

1
2

1
2

2
3

e−L
1
2 -1

2 -1 dL
1
2 -1

2 -1
3

νe,R 0 0 0 uR 0 0 2
3

e−R 0 0 -1 dR 0 0 -1
3

eingesetzt werden. Es folgt:

JN
η = f̄

[
γη

1
2(1− γ5)t3 − sin2(θW )γηQ

]
f

= f̄
[
γη

(1
2t3 − sin2(θW )Q

)
− γη

1
2t3γ

5
]
f

= f̄
[
γη

1
2(cV − cAγ5)

]
f (2.6)

wobei die Umstellung in den letzten beiden Zeilen dazu benutzt wurde um die sogenannte
Vektor- und Axialvektorkopplung einzuführen. Die Vektorkopplung gibt an, wie groß der
Teil des Spinors ist, der sich unter Invertierung des Raumes negativ darstellt, während die
Axialvektorkopplung den Anteil angibt, der invariant unter Invertierung des Raumes ist.
Multipliziert man den Term in der großen Klammer mit der Kopplungsstärke und dem
Konvetionsfaktor −i erhält man den Vertexfaktor: −ie

cos(θW ) sin(θW )γη
1
2(cV − cAγ5).

Die Vektor- und Axialvektorkopplung

cV = t3 − 2 sin2(θW )Q (2.7)

cA = t3 (2.8)

können durch die Zusammenstellung der Quantenzahlen in Tabelle 1 ermittelt werden.
Der Propagator von Vektorbosonen wird in Unitär-Eichung besitzt folgende Form:

P ητ = M2gητ − qηqτ

M2(q2 −M2 + iMΓ) , (2.9)

wobei q der Impulsübertrag ist und Γ die Breite der Verteilung ist. Die Breite hängt über
1
Γ = τ mit der Lebensdauer τ zusammen. Es ist zu erkennen, dass der Wert des Propagators
für Impulsüberträge nahe der Masse M des Bosons groß wird. Eine weitere Besonderheit
ist, dass der Propagator unterscheidet, in welche Richtung der Impulsübertrag geschieht.
Folgt man den Feynman-Regeln aus Anhang A.3, ergibt sich für das Feynman-Diagramm

- 7 -



2. Theoretische Vorbereitungen

e+ pB

e− pA

q

kD µ+

kC µ−

Z0

Abbildung 3: Feynman-Diagramm für eine Elektron-Positron-Kollision, wobei als Austauschteil-
chen eine Z0-Boson und als Endprodukt ein Muon-Antimuon-Paar vorausgesetzt
wird.

Abb. 3 folgende Invariante Amplitude:

RZ0 = −e2

4s2
W c

2
W

v̄(pB)γη(ceV − ceAγ5)u(pA) M2
Zg

ητ − qηqτ

M2
Z(q2 −M2

Z + iMZΓZ) ū(pC)γτ (cµV − c
µ
Aγ

5)v(pD)

(2.10)
mit den Abkürzungen sW = sin(θW ) und cW = cos(θW ).

2.4. Kinematik I

Da in den obigen Kapiteln die relevanten invarianten Amplituden aufgestellt wurden, fällt
auf, dass diese abhängig von den Impulsen der Teilchen sind. Dieser Abschnitt soll nun
die Konvention für die Impulse festlegen.
In dieser Arbeit wird auf die häufig auftretende Situation eingegangen, dass in dem
Beschleuniger die Teilchen mit gleicher Energie, aber mit entgegengesetzter Bewegungs-
richtung zur Kollision gebracht werden. Hier wird angenommen, dass diese Teilchen dieselbe
Masse besitzen, so dass das Ruhesystem der Kollision gleichzeitig auch das Laborsystem ist.
Dies wird in Beschleunigern benutzt, da so die gesamte Bewegungsenergie in die Energie
der Kollision eingeht. Die Strahlen besitzen also eine Energie E und die Bewegungsrichtung
wird in bzw. entgegen der z-Achse gelegt. Es folgt mit der Schwerpunktsenergie

√
s = 2E:

pA =
 √

s
2

~p

 mit ~p =


0
0
√
s

2

 und pB =
 √

s
2

−~p



kC =
 √

s
2
~k

 mit |~k| =
√
s

2 und kD =
 √

s
2

−~k

 (2.11)

q = pA + pB = kC + kD =
 √s

~0

 .
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2. Theoretische Vorbereitungen

Hier wurden bereits die Massen vernachlässigt, weswegen |pA| = |pB| = |kC | = |kD| = 0
gilt. In Anhang A.4 wurde der Winkel θ als der Winkel zwischen ~pA und ~kC definiert.
Damit gilt:

pA · pB = s

2 & kC · kD = s

2 & q · q = s (2.12)

pA · kC = pB · kD = s

4(1− cos(θ)) & pA · kD = pB · kC = s

4(1 + cos(θ)) (2.13)

q · pA = q · pB = q · kC = q · kD = s

2 , (2.14)

wobei die Skalarprodukte nur noch von der Schwerpunktsenergie und θ abhängig sind.
Hierbei ist zu beachten, dass die Kinematik bei der Berechnung erst in den letzten Schritten
zur Vereinfachung der Terme eingesetzt wird. Die Ergebnisse davor gelten für eine beliebige
Wahl des Koordinatensystems.

2.5. Berechnung der quadrierten invarianten Amplitude

Wie aus Anhang A.4 deutlich wird, ist für den Wirkungsquerschnitt nur das Betragsquadrat
der invarianten Amplitude von Relevanz. Zusätzlich dazu ist es bei den Experimenten
üblich, dass die eingehenden Teilchenstrahlen unpolarisiert sind. Das bedeutet, dass es
nicht möglich ist, weder vor noch nach der Reaktion, festzustellen, in welchem Spinzustand
die beiden Teilchen waren, die am Prozess teilgenommen haben. Des Weiteren werden
die entstehenden Teilchen nicht nach ihrem Spinzustand sortiert. Um dies zu simulieren
wird über den Spinzustand der eingehenden Teilchen gemittelt und über die Spins der
ausgehenden Teilchen summiert. Diese Vorgehensweise vereinfacht die Rechnung, da die
Spin-Vollständigkeitsrelation [5, Kap. 5]

Spin∑
ū(p)u(p) = γηp

η +m ≡ p/+m, (2.15)

angewendet werden kann, wobei in diesem Fall durch die Näherung der Massenterm
wegfällt. Wie diese Relation angewendet wird, ist in den Unterkapiteln gezeigt.
Der in dieser Arbeit betrachtete Prozess kann über zwei Austauschteilchen vonstatten
gehen: ein Photon oder ein Z0-Boson. Die gesamte invariante Amplitude bestimmt sich
aus der Summe der einzelnen Amplituden aus Abschnitt 2.2 und Abschnitt 2.3. Damit
gilt für das Betragsquadrat:

|Rges|2 = |Rγ + RZ0 |2 = |Rγ|2 + 2Re[R∗γRZ0 ] + |RZ0 |2 (2.16)
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2. Theoretische Vorbereitungen

Mit ∗ wird eine komplexe Konjugation bezeichnet. Die Mittelung wird nun über 1
2
∑Spin

und die Summation über ∑Spin vorgenommen, d.h.

|Rges|2 ≡
1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

|Rges|2. (2.17)

Hier wurde mit dem Strich über Rges die gemittelte und summierte Version bezeichnet.
Diese Konvention wird im Folgenden beibehalten, ist aber streng von dem adjungierten
Spinor z.B. ū zu unterscheiden.
Im Folgenden sollen die Terme, die sich durch Einsetzen des Betragsquadrats (Gl. (2.16)) in
die Mittlung und Summation über die Spins von Gl. (2.17) ergeben, getrennt ausgerechnet
werden. Der erste Summand beinhaltet dabei die photonische Wechselwirkung, der Zweite
den Interferenzterm, der sich aus einer Kombination von photonischer und neutraler,
schwacher Wechselwirkung ergibt, und der Letzte die neutrale, schwache Wechselwirkung.
Der erste und der letzte Term würden sich auch jeweils (aber ohne den jeweils anderen)
ergeben, wenn nur photonische oder nur neutrale, schwache Wechselwirkung betrachtet
werden würde.

2.5.1. Photonische Wechselwirkung

Um die Wechselwirkung mit einem Photon als Austauschteilchen zu berechnen, wird
zunächst das komplex Konjugierte der invarianten Amplitude bestimmt, dann die Spin-
summation ausgeführt, was zu einer Spur von einem Produkt von Gamma-Matrizen führt.
Dieses kann über die Eigenschaften der Gamma-Matrizen ausgewertet werden und erhält
eine Summe von Skalarprodukten, die in Abschnitt 2.4 bereits angegeben wurden.
Der zu berechnende Term aus Gl. (2.17) lässt sich, wenn man in R die gesamte Abhängig-
keit von den Spinoren zusammenfasst, schreiben als:

|Rγ|2 = 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

RγR
∗
γ =

e4Q2
eQ

2
µ

q4
1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

RγR∗γ (2.18)

Rγ = −e
2QeQµ

q2 v̄(pB)γηu(pA)ū(kC)γηv(kD) ≡ −e
2QeQµ

q2 Rγ

Um die Rechnung durchzuführen, ist es zunächst notwendig die komplexe Konjugation
durchzuführen. v̄(pB)γηu(pA) ist offensichtlich ein Skalar. Dies bedeutet, möchte man
eine komplexe Konjugation durchführen, können die Skalare einzeln konjugiert werden.
Weiterhin hilfreich ist, dass komplexe und hermitesche Konjugation (bezeichnet mit †) für
ein Skalar äquivalent sind. Es folgt mit den Identitäten aus Anhang B.1:

[v̄(pB)γηu(pA)]† = [v†(pB)γ0γηu(pA)]† = u†(pA)γ†ηγ
†
0v(pB)

(B.3)= u†(pA)γ0γηγ
2
0v(pB) = ū(pA)γηv(pB) (2.19)
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2. Theoretische Vorbereitungen

Die komplexe Konjugation vertauscht in diesem Fall die Spinoren und deren Adjungation.
Setzt man dieses Ergebnis ein, lässt sich durch Umsortieren eine Struktur erkennen:

RγR∗γ = [v̄(pB)γηu(pA)][ū(kC)γηv(kD)][ū(pA)γϑv(pB)][v̄(kD)γϑu(kC)]

= [v̄(pB)γηu(pA)][ū(pA)γϑv(pB)][ū(kC)γηv(kD)][v̄(kD)γϑu(kC)] (2.20)

Die linken beiden Klammern hängen nur noch von den einfallenden Teilchen ab und
die rechten beiden Klammern nur noch von den Auslaufenden. Außerdem stehen u(pA)
und ū(pA) direkt nebeneinander, so dass mit der Spinsummation für das Elektron die
Spin-Vollständigkeitsrelation (2.15) eingesetzt werden kann. Die gleiche Argumentation
gilt für das Antimuon.

RγR∗γ = 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

[v̄(pB)γηu(pA)][ū(pA)γϑv(pB)][ū(kC)γηv(kD)][v̄(kD)γϑu(kC)]

= 1
4

Spin∑
e+

Spin∑
µ−

[v̄(pB)γηp/Aγϑv(pB)][ū(kC)γηk/Dγϑu(kC)] (2.21)

Die linke und die rechte Klammer sind weiterhin Skalare. Das bedeutet, dass die Matrizen,
die in den Klammern auftreten, nur in skalaren Komponenten auftreten. Dies wird
deutlicher, wenn beispielhaft die implizite Summierung explizit aufgeschrieben wird:

[v̄(pB)γηp/Aγϑv(pB)] = v̄κγ
κλ
η (p/A)λσγστϕ vτ (2.22)

Auf der rechten Seite wurde zur besseren Übersicht die Abhängigkeit von pB weggelassen.
Das bedeutet v̄(pB) kann auf die rechte Seite von v(pB) geschoben werden und die Spin-
Vollständigkeitsrelation kann eingesetzt werden, was den Term in die Bildung einer Spur
von Matrizen verwandelt.

⇒
Spin∑
e+

vτ v̄κγ
κλ
η (p/A)λσγστϕ = (p/B)τκγκλη (p/A)λσγστϕ = Tr [p/Bγηp/Aγϑ] (2.23)

Diese Spur ist in dem mittleren Teil der Gleichung mit dem Index τ zu erkennen, da dieser
die gesamte Multiplikation der Matrizen umfasst. Die Argumentation kann wieder analog
auf ū(kC) übertragen werden und es folgt:

RγR∗γ = 1
4Tr [p/Bγηp/Aγϑ] Tr

[
k/Cγ

ηk/Dγ
ϑ
]

(2.24)

Mit den Eigenschaften der Gamma-Matrizen innerhalb einer Spur kann diese Gleichung
weiter vereinfacht werden. Dazu schreibt man beide Spuren aus (2.24) um und verwendet
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2. Theoretische Vorbereitungen

Gl. (B.7), hier beispielsweise für die erste Spur:

Tr [p/Bγηp/Aγϑ] = pκBp
λ
ATr [γκγηγλγϑ] = pκBp

λ
A4 (gκηgλϑ + gκϑgηλ − gκλgηϑ)

= 4 [(pB)η(pA)ϑ + (pB)ϑ(pA)η − (pB · pA)gηϑ] (2.25)

Dies kann analog für die andere Spur benutzt werden und man erhält:

RγR∗γ = 16
4 [(pB)η(pA)ϑ + (pB)ϑ(pA)η − (pB · pA)gηϑ]

[
(kD)η(kC)ϑ + (kD)ϑ(kC)η − (kD · kC)gηϑ

]
(2.26)

Es ist leicht zu erkennen, dass in beiden Klammern jeweils der erste und der zweite Term
vertauschte Indizes besitzen. Damit und mit den Symmetrien der Skalarprodukte aus
Abschnitt 2.4 lässt sich diese Gleichung leicht vereinfachen, wobei der letzte Term seinen
Vorfaktor von gηϑgηϑ = 4 erhält:

RγR∗γ = 4 [2(pB · kD)(pA · kC) + 2(pB · kC)(pA · kD)− 4(pB · pA)(kD · kC) + 4(pB · pA)(kD · kC)]

= 8 [(pB · kD)(pA · kC) + (pB · kC)(pA · kD)]

= 8
[
s2

16(1− cos(θ))2 + s2

16(1 + cos(θ))2
]

= s2

2
[
2 + 2 cos2(θ)

]
= s2

(
1 + cos2(θ)

)
(2.27)

Damit bleibt nur noch das Einsetzen in die Ursprungsgleichung (2.18),

|Rγ|2 =
e4Q2

eQ
2
µ

s2 RγR∗γ =
e4Q2

eQ
2
µ

s2 s2
(
1 + cos2(θ)

)
= e4Q2

eQ
2
µ

(
1 + cos2(θ)

)
(2.28)

wobei für q2 = q · q = s eingesetzt wurde. Damit ist die Betrachtung des ausschließlich pho-
tonischen Teils der Wechselwirkung abgeschlossen. Wollte man ausschließlich photonische
Wechselwirkung betrachten, müsste dieser Term allein in die Formel für den Differentiellen
Wirkungsquerschnitt eingesetzt werden.

2.5.2. Interferenzterm

Die Vorgehensweise der Berechnung wird analog zum vorherigen Abschnitt (Ab-
schnitt 2.5.1) vorgenommen, wobei näher auf die Veränderungen durch die γ5-Matrix
eingegangen wird. Um die Rechnung übersichtlicher zu gestalten wird der Propagator
P ητ = M2

Zg
ητ−qηqτ

M2
Z(q2−M2

Z+iMZΓZ) in seinen Nenner und seinen Zähler P̃ ητ = M2
Zg

ητ − qηqτ zerlegt.
Ebenfalls werden die Spinoren folgendermaßen angegeben: u(pA)→ uA.
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2. Theoretische Vorbereitungen

Der zu berechnende Term ist

2Re[R∗γRZ0 ] = Re
 e4QeQµ

2q2s2
W c

2
WM

2
Z(q2 −M2

Z + iMZΓZ)
1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

R∗γRZ


R∗γ = −e

2QeQµ

q2 ūAγϑvB v̄Dγ
ϑuC = −e

2QeQµ

q2 R∗γ (2.29)

RZ = −e2

4s2
W c

2
W

v̄Bγη(ceV − ceAγ5)uA
M2

Zg
ητ − qηqτ

M2
Z(q2 −M2

Z + iMZΓZ) ūCγτ (c
µ
V − c

µ
Aγ

5)vD

= −e2

4s2
W c

2
WM

2
Z(q2 −M2

Z + iMZΓZ)RZ0 .

Dazu wird zunächst die Spinsummation ausgeführt. Mit den Argumenten aus Ab-
schnitt 2.5.1 wird deutlich, dass diese direkt vollzogen werden kann.

1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

R∗γRZ0

= 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

[ūAγϑvB][v̄DγϑuC ][v̄Bγη(ceV − ceAγ5)uA]P̃ ητ [ūCγτ (cµV − c
µ
Aγ

5)vD]

= 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

[ūAγϑvB][v̄Bγη(ceV − ceAγ5)uA]P̃ ητ [ūCγτ (cµV − c
µ
Aγ

5)vD][v̄DγϑuC ]

= 1
4Tr

[
p/Aγϑp/Bγη(ceV − ceAγ5)

]
P̃ ητTr

[
k/Cγτ (cµV − c

µ
Aγ

5)k/Dγϑ
]

(2.30)

Die erhaltenen Spuren können in zwei Teile zerlegt werden, da die Spur linear ist. Der
Teil ohne die γ5-Matrix wurde bereits in Gl. (2.25) berechnet. Der Teil mit der γ5-Matrix
kann über die Identität von Gl. (B.8) ausgewertet werden. Es folgt:

Tr [p/Aγϑp/BγηceV ] = 4ceV [(pB)ϑ(pA)η + (pB)η(pA)ϑ − (pB · pA)gϑη] ≡ 4ceV T 1
ϑη (2.31)

Tr
[
p/Aγϑp/Bγηγ

5(−ceV )
]

= −4iceAεκϑλη pκApλB ≡ −4iceAT 2
ϑη (2.32)

Tr
[
k/Cγτc

µ
V k/Dγ

ϑ
]

= 4cµV
[
(kC)τ (kD)ϑ + (kC)ϑ(kD)τ − (kC · kD)gϑτ

]
≡ 4cµV T 3,ϑ

τ (2.33)

Tr
[
k/Cγτ (−cµA)γ5k/Dγ

ϑ
]

= −cµATr
[
k/Cγτk/Dγ

ϑγ5
]

= −4icµAεκ ϑλτ kκCkλD ≡ −4icµAT 4,ϕ
τ ,

(2.34)

wobei die letzte Zeile durch die Vertauschungsrelation (B.5) erhalten wird. Das bedeutet,
dass durch unterschiedliche Kopplung an den linkshändigen Anteil der Spinoren erhält
man zusätzliche Terme mit dem Levi-Civita-Symbol. Mit den Abkürzungen T 1→4 lässt
sich Gl. (2.30) zu

R∗γRZ0
= 4

[
ceV T

1
ϑη − iceAT 2

ϑη

]
P̃ ητ

[
cµV T

3,ϑ
τ − icµAT 4,ϑ

τ

]
(2.35)
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2. Theoretische Vorbereitungen

zusammenfassen. Bei genauerer Betrachtung des Tensors T 2
ϑη wird deutlich, dass das

Levi-Civita-Symbol über pA und pB summiert. Die Summe aus diesen Vektoren bildet
den Impulsübertrag q, der in dem Propagator P̃ = M2

Zg
ητ − qηqτ auftaucht. Der Index η

summiert über genau diesen Impulsübertrag, weswegen linear abhängige Vektoren über
das Levi-Civita-Symbol summiert werden. Eine zentrale Eigenschaft dieses Symbols ist
jedoch, dass die Summation über linear abhängige Vektoren Null ergibt. Deswegen gilt für
beide Tensoren T 2 und T 4, dass die Summation über den hinteren Teil des Propagators
Null ergibt. Das Produkt aus T 2

ϑηM
2
Zg

ητT 3,ϑ
τ , also T 2 mit T 3 und dem vorderen Teil des

Propagators, beinhaltet entweder eine Summation über das Levi-Civita-Symbol mit allen
vier Vektoren, die auch linear abhängig sind, oder es werden zwei Indizes des Symbols
gleichgesetzt (über gϑτ gητ = gηϑ und dieser Term gibt nur einen Wert ungleich Null, wenn
η = ϑ gilt), was das Symbol per Definition Null setzt. Analoges gilt für das Produkt aus
T 1 und T 4.
Zusammengefasst bleiben nach diesen Überlegungen nur noch zwei Terme übrig:

R∗γRZ0
= 4

[
ceV c

µ
V T

1
ϑηP̃

ητT 3,ϑ
τ − ceAc

µ
AT

2
ϑηP̃

ητT 4,ϑ
τ

]
. (2.36)

Unter Ausnutzung der Symmetrien in den Skalarprodukten und dass der Propagator
bei Vertauschung der Indizes gleich bleibt, können die Produkte in kürzere Schreibwei-
se zusammengefasst werden. Eine Auswertung der notwendigen Tensorprodukte ist in
Anhang B.2 zu finden. Mit Gl. (B.15) bis (B.18) folgt:

T 1
ϑηP̃

ητT 3,ϑ
τ = P̃ ητ

[
2(pA · kC)pB,ηkD,τ + 2(pA · kD)pB,ηkC,τ − 4(kC · kD)pA,ηpB,τ + (pA · pB)2gητ

]
= 2

[
s

4(1− cos(θ))
(
M2

Zs

4 (1− cos(θ))− s2

4

)
+ s

4(1 + cos(θ))
(
M2

Zs

4 (1 + cos(θ))− s2

4

)

−4s2

(
M2

Zs

2 − s2

4

)
+ s2

4 (4M2
Z − s)

]

= 2
[
M2

Zs
2

16 (2 + 2 cos2(θ))− s3

8

]
+ s3

4

= M2
Zs

2

4 (1 + cos2(θ)) (2.37)

und mit Gl. (B.19):

T 2
ϑηP̃

ητT 4,ϑ
τ =

(
M2

Zg
ητ − qηqτ

)
εκϑλη εφ

ϑ
ρτ p

κ
Ap

λ
Bk

φ
Ck

ρ
D

= −M
2
Zs

2

2 cos(θ) (2.38)

Damit wurde die Spinsummation erfolgreich durchgeführt. Es gilt

R∗γRZ0
= ceV c

µ
VM

2
Zs

2(1 + cos2(θ)) + 2ceAc
µ
AM

2
Zs

2 cos(θ) (2.39)
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2. Theoretische Vorbereitungen

und kann in die Anfangsgleichung (Gl. (2.29)) eingesetzt werden. Da die Spinsummation
keine komplexen Terme produziert hat, muss nur der Realteil des Propagators genommen
werden. Mit

Re
[

1
s−M2

Z + iMZΓZ

]
= s−M2

Z

(s−M2
Z)2 +M2

ZΓ2
Z

, (2.40)

wobei q2 = s eingesetzt wurde, folgt

2Re[R∗γRZ0 ] = e4QeQµ(s−M2
Z)

2s2
W c

2
WM

2
Zs((s−M2

Z)2 +M2
ZΓ2

Z)
[
ceV c

µ
VM

2
Zs

2(1 + cos2(θ)) + 2ceAc
µ
AM

2
Zs

2 cos(θ)
]

= e4QeQµ(s−M2
Z)s

s2
W c

2
W ((s−M2

Z)2 +M2
ZΓ2

Z)

[
ceV c

µ
V

2 (1 + cos2(θ)) + ceAc
µ
A cos(θ)

]
(2.41)

Damit wurde der Interferenzterm vollständig bestimmt. Analog zu der photonischen
Wechselwirkung ist der erhaltene Term nur von dem Winkel zwischen ~pA und ~kC und
der Schwerpunktsenergie abhängig. Ebenfalls ist eine [1 + cos2(θ)]-Struktur zu erkennen,
jedoch ist durch die γ5-Matrix, also durch die unterschiedliche Kopplung des Z0-Bosons
an die links- bzw. rechtshändige Komponente des Spinors, ein weiterer Term, der nur von
cos(θ) abhängt, entstanden.

2.5.3. Schwache Wechselwirkung

In diesem Teil wird der letzte Term der invarianten Amplitude quadriert. Zunächst wird
die komplexe Konjugation angegangen und über die Spinsummation in eine Tensorstruktur
gebracht. Die auftretenden Tensorprodukte werden zwei Propagatoren beinhalten. Die
Konventionen aus Abschnitt 2.5.2 wurden übernommen.
Der zu berechnende Term ist

|RZ0|2 = 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

RZ0R
∗
Z0 (2.42)

RZ0 = −e2

4s2
W c

2
W

v̄Bγη(ceV − ceAγ5)uA
M2

Zg
ητ − qηqτ

M2
Z(q2 −M2

Z + iMZΓZ) ūCγτ (c
µ
V − c

µ
Aγ

5)vD

= −e2

4s2
W c

2
WM

2
Z(q2 −M2

Z + iMZΓZ)RZ0 .

Zunächst muss die komplexe Konjugation vorgenommen werden. Da für die fünfte Gamma-
Matrix gilt (γ5)† = γ5, ist die Konjugation für die Spinoren analog zu der aus Ab-
schnitt 2.5.1; die Spinoren müssen vertauscht werden. Im Propagator ändert sich das
Vorzeichen vor dem komplexen Teil des Nenners, damit folgt:

|RZ0|2 = e4

16s4
W c

4
WM

4
Z((q2 −M2

Z)2 +M2
ZΓ2

Z)RZ0R∗Z0 (2.43)

R∗Z0 = ūAγκ(ceV − ceAγ5)vBP̃ κλv̄Dγλ(cµV − c
µ
Aγ

5)uC (2.44)
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2. Theoretische Vorbereitungen

Damit sind alle Vorbereitungen für die Spinsummation abgeschlossen. Analog zu Ab-
schnitt 2.5.2 wird diese durchgeführt:

RZ0R∗Z0 = 1
2

Spin∑
e−

1
2

Spin∑
e+

Spin∑
µ−

Spin∑
µ+

[
v̄Bγη(ceV − ceAγ5)uA

]
P̃ ητ

[
ūCγτ (cµV − c

µ
Aγ

5)vD
]

×
[
ūAγκ(ceV − ceAγ5)vB

]
P̃ κλ

[
v̄Dγλ(cµV − c

µ
Aγ

5)uC
]

= 1
4Tr

[
γη(ceV − ceAγ5)p/Aγκ(ceV − ceAγ5)p/B

]
P̃ ητ P̃ κλ

× Tr
[
γτ (cµV − c

µ
Aγ

5)k/Dγλ(cµV − c
µ
Aγ

5)k/C
]

(2.45)

Um diese Spuren in die Form aus dem oben genannten Abschnitt zu bringen, wird
die Invarianz der Spur unter zyklischer Vertauschung ausgenutzt. Mit den Relationen
(γ5)2 = I4 und γ5γµ = −γµγ5 kann weiter umgeformt werden:

Tr
[
γη(ceV − ceAγ5)p/Aγκ(ceV − ceAγ5)p/B

]
= Tr

[
p/Aγκ(ceV − ceAγ5)p/Bγη(ceV − ceAγ5)

]
= Tr

[
p/Aγκp/Bγη(ceV − ceAγ5)(ceV − ceAγ5)

]
= Tr

[
p/Aγκp/Bγη

(
(ceV )2 + (ceA)2 − 2ceV ceAγ5

)]
Diese Rechnung kann analog für die zweite Spur übernommen werden und mit der
Einführung der Tensoren T 5→8 wie folgt:

Tr
[
p/Aγκp/Bγη

(
(ceV )2 + (ceA)2

)]
= 4

(
(ceV )2 + (ceA)2

)
[(pB)κ(pA)η + (pB)η(pA)κ − (pB · pA)gκη]

≡ 4
(
(ceV )2 + (ceA)2

)
T 5
κη (2.46)

Tr
[
p/Aγκp/Bγηγ

5(−2ceV ceA)
]

= −8iceV ceAεϕκχη p
ϕ
Ap

χ
B ≡ −8iceV ceAT 6

κη (2.47)

Tr
[
k/Dγλk/Cγτ

(
(cµV )2 + (cµA)2

)]
= 4

(
(cµV )2 + (cµA)2

)
[(kD)λ(kC)τ + (kD)τ (kC)λ − (kC · kD)gλτ ]

≡ 4
(
(cµV )2 + (cµA)2

)
T 7
λτ (2.48)

Tr
[
k/Cγλk/Dγτγ

5(−2cµV c
µ
A)
]

= −8icµV c
µ
Aεϕλχτ k

ϕ
Ck

χ
D ≡ −8icµV c

µ
AT

8
λτ (2.49)

Zusammengefasst erhält man eine weitaus kompliziertere Struktur, als noch in Ab-
schnitt 2.5.2:

RZR∗Z = 4
[(

(ceV )2 + (ceA)2
)
T 5
κη − 2iceV ceAT 6

κη

]
P̃ κλP̃ ητ

[(
(cµV )2 + (cµA)2

)
T 7
λτ − 2icµV c

µ
AT

8
λτ

]
,

(2.50)
jedoch gelten dieselben Argumentationen, was dazu führt, dass nur die Terme mit
T 5
κηP̃

κλP̃ ητT 7
λτ und T 6

κηP̃
κλP̃ ητT 8

λτ ausgewertet werden müssen. Somit fallen alle kom-
plexwertigen Terme weg, was auch der Fall sein muss, da dieser Teil der invarianten
Amplitude ein vollständiges Betragsquadrat ist, und daher keine komplexwertigen Terme
auftreten dürfen. Die Auswertung der Tensoren ist in Anhang B.2 (Gl. (B.20) bis (B.23)
für T 5T 7 und Gl. (B.24) für T 6T 8) vorgerechnet. Weiterhin werden wieder die Symmetrien
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2. Theoretische Vorbereitungen

der Vektoren aus Abschnitt 2.4 benutzt.

T 5
κηP̃

κλP̃ ητT 7
λτ = P̃ κλP̃ ητ [2pB,κpA,ηkD,λkC,τ + 2pB,ηpA,κkD,λkC,τ

−4(pB · pA)gκηkD,λkC,τ + 4(pB · pA)2gκηgλτ
]

=
2
(
M2

Zs

4 (1− cos(θ))− s2

4

)2

+ 2
(
M2

Zs

4 (1 + cos(θ))− s2

4

)2

−4s2

(
M4

Zs

2 − M2
Zs

2

2 + s3

4

)
+ 4s

2

4
(
4M4

Z − 2M2
Zs+ s2

)]

= s2

8
[
2M4

Z

(
1 + cos2(θ)

)
− 4M2

Zs+ 2s2
]

+ M2
Zs

3

2 − s4

4

= M4
Zs

2

4 (1 + cos2(θ)) (2.51)

T 6
κηP̃

κλP̃ ητT 8
λτ = P̃ κλP̃ ητεϕκχη εϕλχτ p

ϕ
Ap

χ
Bk

ϕ
Ck

χ
D

= −M
4
Zs

2

2 cos(θ) (2.52)

Es ergibt sich das Ergebnis:

RZR∗Z = 4
[(

(ceV )2 + (ceA)2
) (

(cµV )2 + (cµA)2
)M4

Zs
2

4 (1 + cos2(θ)) + 4ceV ceAc
µ
V c

µ
A

M4
Zs

2

2 cos(θ)
]

= M4
Zs

2
[(

(ceV )2 + (ceA)2
)(

(cµV )2 + (cµA)2
)
(1 + cos2(θ)) + 8ceV ceAc

µ
V c

µ
A cos(θ)

]
Die Spinsummation wurde damit abgeschlossen und die obige Gleichung kann in die
Anfangsgleichung (2.42) eingesetzt werden, wobei sich der Faktor M4

Z kürzt und es gilt:

|RZ0|2 = e4s2

16s4
W c

4
W ((s−M2

Z)2 +M2
ZΓ2

Z)
[(

(ceV )2 + (ceA)2
)(

(cµV )2 + (cµA)2
)
(1 + cos2(θ))

+8ceV ceAc
µ
V c

µ
A cos(θ)] (2.53)

Damit wurde der Term der schwachen Wechselwirkung bestimmt. Analog zu dem Inter-
ferenzterm ergibt sich ein [1 + cos2(θ)]-Term und ein Term der proportional zu cos(θ)
ist. Dieser zweiter Term sorgt für eine Asymmetrie zwischen Vorwärts- und Rückwärts-
streuung, da ~pA parallel zu ~kC bevorzugt wird, wenn der Vorfaktor positiv ist. Wollte
man die invariante Amplitude für eine Wechselwirkung mit einem geladenem W -Boson
bestimmen, müsste man diese invariante Amplitude benutzen und (abgesehen von den
Anfangs- und Endteilchen) alle Vektor- und Axialvektorkomponenten auf den Wert Eins
setzen, wobei natürlich zusätzlich noch die Masse des W -Bosons im Propagator benutzt
werden müsste, anstatt der Masse des neutralen Vektorbosons. Es ändert sich ebenfalls
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2. Theoretische Vorbereitungen

die Kopplungsstärke, was lediglich den Vorfaktor ändert. Damit folgt:

|RW± |2 = e4s2

32s4
W ((s−M2

W )2 +M2
WΓ2

W )
[
4(1 + cos2(θ)) + 8 cos(θ)

]
(2.54)

2.6. Differentieller Wirkungsquerschnitt

Eine Herleitung des differentiellen Wirkungsquerschnittes ist in Anhang A.4 gegeben. Das
allgemeine Ergebnis für eine Berechnung in dem Schwerpunktsystem der Reaktion ist

dσ
dΩ

∣∣∣∣∣
cm

= |~kC |
64π2s|~pA|

|R|2 (2.55)

Mit der Kinematik (Abschnitt 2.4) lässt sich der Bruch |~kC ||~pA|
zu Eins kürzen. Des Weiteren

ist es üblich den Wirkungsquerschnitt in Abhängigkeit der Feinstrukturkonstante α = e2

4π

auszudrücken. Es folgt:
dσ
dΩ

∣∣∣∣∣
cm

= α2

4e4s
|R|2, (2.56)

wobei die invariante Amplitude aus dem Abschnitt 2.5 eingesetzt werden muss. Da in
jedem einzelnen Term der Amplitude ein e4 vorkommt, kann dieser Faktor gekürzt werden.
Der besseren Übersicht wegen werden für die Vorfaktoren vor den einzelnen Amplituden
folgende Abkürzungen eingeführt:

Fγ = Q2
eQ

2
µ (2.57)

FInt = QeQµ

s2
W c

2
W

(2.58)

FZ0 = 1
16s4

W c
4
W

(2.59)

und für die Terme innerhalb:

A1 = ceV c
µ
V

2 A2 = ceAc
µ
A (2.60)

A3 =
(
(ceV )2 + (ceA)2

) (
(cµV )2 + (cµA)2

)
A4 = 8ceV ceAc

µ
V c

µ
A. (2.61)

Damit lässt sich der Wirkungsquerschnitt zusammenfassen zu

dσ
dΩ

∣∣∣∣∣
cm

= α2

4

[
Fγ
s

(1 + cos2(θ))

+ s−M2
Z

(s−M2
Z)2 +M2

ZΓ2
Z

FInt
(
A1(1 + cos2(θ)) + A2 cos(θ)

)
+ s

(s−M2
Z)2 +M2

ZΓ2
Z

FZ0

(
A3(1 + cos2(θ)) + A4 cos(θ)

)]
(2.62)
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2. Theoretische Vorbereitungen

Der differentielle Wirkungsquerschnitt ist nur noch von der Schwerpunktsenergie s der
Kollision und dem Winkel θ zwischen ~pA und ~kC abhängig. Falls die Schwerpunktsenergie
genau die Masse MZ des Z0-Bosons erreicht, ist eine Resonanz zu erkennen. Ansonsten
fällt auf, dass es eine Asymmetrie durch die Terme mit cos(θ) zwischen Vorwärts- und
Rückwärtsstreuung gibt. Das bedeutet, es ist wahrscheinlicher, dass das entstehende
Muon in Richtung des einfallenden Elektronenstahls abgestrahlt wird, als dass es in die
entgegengesetzte Richtung, also die Richtung des Positronstrahls, abgestrahlt wird.
Eine Einheitenanalyse zeigt, dass, wenn man den Wirkungsquerschnitt in SI-Einheiten
haben möchte, dieser noch mit dem Faktor c2~2 multipliziert werden muss, damit die
Einheit m2 erhalten wird.
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3. Leptonischer Speicherring
Ziel dieses Kapitels ist es für einen Elektron-Positron-Speicherring Vorhersagen über das
Endprodukt von einem Muon-Antimuon-Paar zu machen, vorausgesetzt, dass nur Photonen
oder Z0-Bosonen als Austauschteilchen fungieren. Der dazu relevante Wirkungsquerschnitt
wurde oben in dem Abschnitt 2.6 berechnet, wobei letztlich die Schwerpunktsenergie
und der Winkel zwischen einfallendem und ausgehendem Teilchen die einzigen beiden
Parameter eingehen. Um somit einen Überblick über das Spektrum in dem Detektor
zu erhalten, wird zunächst bei konstanter Energie die Winkelverteilung untersucht und
im weiteren Verlauf über den Winkel integriert und das Verhalten unter Variation der
Schwerpunktsenergie betrachtet. Im Zuge dieser Erörterung werden Elemente der Monte-
Carlo-Eventgenerierung benutzt. Zu Beginn wird die Kinematik im Speicherring näher
erläutert.

3.1. Kinematik II

Bei einem leptonischem Speicherring kann für eine Messung nur eine konstante Energie
eingestellt werden. Das bedeutet, Untersuchungen zur Variation der Schwerpunktsenergie
können in dieser Art von Experiment nicht kontinuierlich gemacht werden, sondern nur
schrittweise abgetastet werden.
Das Koordinatensystem und die daraus folgenden Impulse aus Abschnitt 2.4 werden hier
weiter verwendet. Die einzige zu spezifizierende Größe ist der räumliche Impulsvektor ~kC
des ausgehenden Muons. Allgemein kann der Vektor über

~kC =
√
s

2


sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 (3.1)

ausgedrückt werden, wobei der neue Winkel ϕ in der Ebene, die senkrecht zum Strahl
steht, liegt. Während θ der Wahrscheinlichkeitsverteilung des differentiellen Wirkungs-
querschnittes folgt, ist ϕ unspezifiziert, d.h. für alle Werte gleich verteilt. Im Folgenden
wird der Wirkungsquerschnitt über diesen Winkel integriert, was für das Experiment
bedeutet, dass nicht nach diesem Winkel ϕ unterteilt wird. Die Integration kann elementar
ausgeführt werden und resultiert in einem Faktor von 2π.

3.2. Winkelverteilung bei konstanter Schwerpunktsenergie

Da alle Vorbereitungen bereits abgeschlossen sind, kann die Untersuchung der Winkelver-
teilung direkt begonnen werden. Dazu wird mit Hilfe von Monte-Carlo-Eventgenerierung
(siehe Anhang A.6) das analytische Ergebnis des Wirkungsquerschnittes (Gl. (2.62)) aus
Abschnitt 2.6 in eine statistische Verteilung verarbeitet. Von einer Betrachtung der Detek-
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3. Leptonischer Speicherring

toreffizienz wird abgesehen. Als Schwerpunktsenergie wird
√
s = 34 GeV gewählt.

Um eine Eventgenerierung vorzunehmen, muss zunächst das Maximum der Funktion in
dem gegebenem Intervall gefundene werden. Um dies zu erhalten, wird eine Monte-Carlo-
Integration (siehe Anhang A.5) vorgenommen und der maximale Wert gespeichert. Die zu
berechnende Integration über den Wirkungsquerschnitt, der im Code mit DW gekennzeich-
net wird, läuft über θ von x1=0 bis x2=π. Die Werte für θ werden zufällig im Intervall
[x1, x2] gewählt.

def xi(x):
return (x2-x1)*x + x1

for i in range(N):
rho = np.random.random()
x = xi(rho)
W[i] = np.abs(x2-x1)*DW(s,x)
if W[i] > Wmax:

Wmax = W[i]
I += W[i]
Qabw += W[i]**2
I = I/float(N)
sigma = np.sqrt((Qabw/float(N) - I**2)/float(N))

Dabei wurde der maximale gewichtete Funktionswert in Wmax gespeichert. Die Integration
wurde über eine Millionen Iterationen durchgeführt und es wurde ein Integralwert von
I = (133,135± 0,034) pB erhalten.
Um eine statistische Verteilung für die Muonen zu gewinnen, werden im Folgenden
Events erzeugt. Es wird für jedes Teilchen ein zufälliger Winkel x gewählt und seine
korrespondierende Wahrscheinlichkeit (x2-x1)DW(x)

Wmax mit einer weiteren Zufallszahl zwischen 0
und 1 verglichen. Ist die korrespondierende Wahrscheinlichkeit größer als die Zufallszahl,
wird das Teilchen als Event akzeptiert. Diese Iteration wird solange fortgeführt bis
die gewünschte Anzahl an Events erreicht wurde; in diesem Fall 500.000. Mit dem
Programmcode

Wi = np.zeros(Nevents)
i=0
while i<Nevents:

rho = np.random.random()
x = xi(rho)
Wtest = np.abs(x2-x1)*DW(s,x)
if Wtest/Wmax > np.random.random():

Wi[i] = xi(rho)
i +=1
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(b) Analytische Verteilung.

Abbildung 4: Vergleich der eventgenerierten und analytischen Verteilung des Wirkungsquer-
schnittes bei einer Schwerpunktsenergie von 34 GeV.

wird dies realisiert. Die entstehende Verteilung ist in Abb. 4 zu sehen. Die Monte-Carlo-
Eventgenerierung besitzt eine Verteilung, die direkt der analytischen Verteilung folgt.
Des Weiteren ist zu erkennen, dass eine Asymmetrie zwischen der Erzeugung der Muonen
in Richtung der Elektronen (θ = 0) und entgegengesetzt (θ = π) vorliegt. Dies liegt den
Termen, in welchen der cos(θ) linear eingeht, zu Grunde. In diesem Energiebereich besitzt
der Interferenzterm einen größeren Einfluss als der Term der schwachen Wechselwirkung.
Und da der Interferenzterm mit einem Faktor s−M2

Z eingeht, wird in diesem Energiebereich
(s < M2

Z) das Vorzeichen vor dem cos(θ) gedreht, was dazu führt, dass ein Muon weniger
wahrscheinlich mit einem Impuls in Richtung des Elektronenstrahls erzeugt wird. Für das
Antimuon gilt entsprechend das Gegenteil.

3.3. Variation der Schwerpunktsenergie

Eine weitere Anwendung eines leptonischen Speicherrings ist die Untersuchung des Wir-
kungsquerschnittes bei Veränderung der Schwerpunktsenergie. Dazu wird über die Win-
kelabhängigkeit von 0 bis π integriert, wobei die Terme mit cos(θ) wegfallen, da diese in
dem gegebenem Intervall asymmetrisch sind. Es folgt:

σ|cm = α2

4

[
8Fγ
3s + FInt

8A1(s−M2
Z)

3((s−M2
Z)2 +M2

ZΓ2
Z) + FZ0

8A3s

3((s−M2
Z)2 +M2

ZΓ2
Z)

]

= 2α2

3

[
Fγ
s

+ FInt
A1(s−M2

Z)
(s−M2

Z)2 +M2
ZΓ2

Z

+ FZ0

A3s

(s−M2
Z)2 +M2

ZΓ2
Z

]
(3.2)

Diese Terme sind wegen der Resonanz bei s = M2
Z nicht ohne Vorbereitung zur Generation

von Events geeignet, da die Fläche, die die Funktion einschließt, nur ein kleiner Teil von
dem Rechteck ist, in dem die Events zufällig erzeugt werden. Um den Integrationsbereich
flacher zu gestalten, bietet sich eine Substitution der Form s = MZΓZ tan(ρ) + M2

Z an
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Abbildung 5: Vergleich der Integrationsbereich vor und nach der Substitution. Nach der
Substitution nimmt die Funktion einen größeren Bereich der Fläche ein, womit
die Eventgenerierung schneller abgeschlossen werden kann.

(siehe Anhang A.6), da damit die Resonanz verschwindet. Der Integrand wird damit zu

σ̃|cm = 2α2

3

Fγ 1 + tan2(ρ)
MZ

ΓZ + tan(ρ)
+ FIntA1 tan(ρ) + FZ0A3

(
tan(ρ) + Mz

ΓZ

) . (3.3)

Wie an dem ersten Term auffällt, ist diese Substitution nicht für geringe Energien geeignet,
also in dem Bereich, in welchem die elektromagnetische Wechselwirkung den größten
Beitrag liefert. Um dieses Problem zu umgehen, wird nur ein Energieintervall von 70 bis
110 GeV betrachtet. Damit folgt für die Substitution ρmax = 1.51 und ρmin = −1.5. Ein
Vergleich der Integrationsbereiche vor und nach der Substitution ist in Abb. 5 zu sehen.
Bei niedrigeren Energien divergiert die linke Flanke von Abb. 5b stärker, was die relative
Fläche unter dem Integranden verringert, bei höheren Energien analog.
Die Integration und Eventgenerierung wird analog zu Abschnitt 3.2 vorgenommen, nur dass
anstatt des Winkels über die Schwerpunktsenergie integriert und generiert wird. Nachdem
die Events generiert wurden, müssen die gespeicherten ρ-Werte wieder resubstituiert
und nach der Schwerpunktsenergie in ein Histogramm sortiert werden. Das Ergebnis
für 500.000 Events ist in Abb. 6 zu sehen. Ein Vergleich mit Abb. 5a zeigt, dass die
Eventgenerierung dasselbe Verhalten zeigt wie die analytische Lösung. Die Resonanz ist
leicht asymmetrisch bezüglich der MasseMZ = 91,19 GeV des Z0-Bosons. Dies kann damit
erklärt werden, dass der Interferenzterm einen Faktor s−M2

Z im Zähler besitzt und damit
den Wirkungsquerschnitt nach Überschreiten der Resonanz leicht anhebt, dominiert wird
das Verhalten von dem Betragsquadrat des Z0-Boson Übergangs. Der elektromagnetische
Teil spielt in diesem Bereich wegen seiner 1

s
Abhängigkeit nur eine kleine Rolle.

Die meisten Events werden bei der Resonanz, also der Masse des Z0-Bosons erwartet. Das
bedeutet für das Experiment, dass, wenn man die Schwerpunktsenergie erhöht und in die
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Abbildung 6: Die Monte-Carlo-Eventgenerierung für einen Energiebereich von 70 bis 110 GeV.
Die meisten Events werden für Resonanz bei der Masse des Z0-Bosons erwartet.

Nähe von 91,19 GeV kommt, die Reaktionsrate im Detektor stark ansteigen sollte.

3.4. Zusammenfassung

Es wurden anhand eines Leptonischen Speicherringes die grundlegenden Anwendungen
der Monte-Carlo-Eventgenerierung gezeigt und das Verhalten des differentiellen Wirkungs-
querschnittes erläutert.
Dazu wurde bei fester Energie auf die Vorwärts-Rückwärts-Asymmetrie bei der Erzeugung
der Muonen eingegangen und aufgezeigt, wie aus einer analytischen Verteilung eine sta-
tistische Verteilung der Events gewonnen werden kann. Des Weiteren wurde anhand der
Variation der Schwerpunktsenergie ein Vorgehen erklärt, wie bei einer starken Resonanz
die Effizienz der Monte-Carlo-Eventgenerierung gesteigert werden kann.
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4. Hadronischer Speicherring
In diesem Kapitel soll gezeigt werden, wie aus den bisherigen Ergebnissen und Methoden
die Eventgenerierung auf einen hadronischen Speicherring angewendet werden kann. Die
erste grundlegende Änderung zu einem leptonischen Speicherring ist, dass nicht mehr
darauf rückgeschlossen werden kann, welche Teilchen an der Reaktion teilgenommen
haben, da Protonen und Neutronen ein Zusammenschluss aus mehreren Quarks sind.
Des Weiteren ist der Schwerpunkt der reagierenden Teilchen nicht mehr automatisch im
Ruhesystem des Labors, da die Quarks unterschiedliche Anteile der Energien des Hadrons
besitzen. Eine definierte Energie kann jedoch nur den Hadronen zugewiesen werden. Die
jeweiligen Anteile der Energien pro Quark werden über Wahrscheinlichkeitsverteilungen,
den sogenannten Parton-Verteilungsfunktionen, modelliert. Das Muon-Antimuon-Paar
besitzt dadurch nicht mehr das Laborsystem als Schwerpunktsystem und wird von dem
Laborsystem mit einem Lorentz-Boost detektiert.
Es wird außerdem gezeigt, wie das Detektorsignal über eine geeignete Filterung so darge-
stellt werden kann, dass trotzdem auf die zugrundelegende Wechselwirkung geschlossen
werden kann. Dabei wird sich auf den Fall eines Proton-Proton-Speicherrings bezogen,
aber die Ergebnisse lassen sich leicht auf einen Proton-Antiproton-Speicherring anwenden.

4.1. Phänomenologie

Im Falle eines Proton-Proton-Speicherringes werden die Strahlen mit sehr hohen Energien
zur Kollision gebracht. Da die Konstituenten des Protons jedoch jeweils nur einen Anteil
der Energie besitzen, ist die Schwerpunktsenergie der reagierenden Teilchen, im Folgenden
mit ŝ bezeichnet, variabel. Das führt dazu, dass, obwohl eine definierte Strahlenenergie
angegeben werden kann, die entstehenden Muon-Antimuon-Paare mit den unterschied-
lichsten Energien erzeugt werden und dass das Schwerpunktsystem des Paares nicht mit
dem Ruhesystem des Labors übereinstimmt. Der Wirkungsquerschnitt wird jedoch im
Schwerpunktsystem der Quarks berechnet und wird deswegen im Folgenden mit dσ̂

dcos(θ)

bezeichnet.
Um das Verhalten zu beschreiben, werden verschiedene Größen eingeführt: Mit S wird die
Schwerpunktsenergie der Protonen-Kollision bezeichnet, mit x1 und x2 soll der Energiean-
teil der beiden Quarks q1 und q2 von den jeweiligen kollidierenden Protonen angegeben
werden, wobei die Bedingung

ŝ
!= x1x2S (4.1)

erfüllt sein muss. Auf die Wahrscheinlichkeitsdichten fq(x1, ŝ) für die einzelnen Quarks
wird im folgenden Abschnitt (4.2) eingegangen.
Für den oben bestimmten Wirkungsquerschnitt kann nur eine Reaktion von Quark und
Antiquark desselben Flavours stattfinden. Da jedoch die Quarks der dritten Generation
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(Top- und Bottom-Quark) sehr große Massen besitzen und die Massen vernachlässigbar
klein sein sollten, werden diese von der Betrachtung ausgeschlossen. Damit folgt, dass die
Reaktion über vier verschiedene Anfangsteilchen laufen kann und aus dem Endprodukt
nicht mehr zu entscheiden ist, welche diese waren.
Eine weitere Unbekannte bei der Reaktion ist die Farbladung der Quarks. Da jedoch
die hier betrachtete Wechselwirkung nicht von der Farbladung abhängt, kann diese über
eine Mittelung ausgedrückt werden. Der resultierende Faktor ergibt sich zu 1

3 , da die
Wahrscheinlichkeit für ein Quark eine bestimmte Farbladung zu haben jeweils 1

3 ist, es
aber drei Möglichkeiten gibt für das Quark-Paar farbneutral zu bleiben. Diese letzte
Forderung muss erfüllt sein, da das resultierende Muon-Antimuon-Paar farbneutral ist.
Alle Effekte zusammengefasst, gelangt man zu folgendem Wirkungsquerschnitt:

dσ
dcos(θ) = 1

3
∑
q,q̄

S∫
Smin

dŝ
1∫

0

dx1

1∫
0

dx2 δ(Sx1x2 − ŝ)fq(x1, ŝ)fq̄(x2, ŝ)
dσ̂(ŝ, cos(θ))

dcos(θ) (4.2)

Während die Parton-Verteilungsfunktionen für die richtige Gewichtung bei den unter-
schiedlichen Energieanteilen sorgt, stellt die δ-Funktion sicher, dass Gl. (4.1) erfüllt ist.
Die Summe über die Quark-Antiquark-Paare läuft über die vier möglichen Quarktypen:
Up-, Down-, Charm- und Strange-Quark. Die minimale Energie Smin wurde wie zuvor
eingeführt, damit der Photon-Übergang nicht divergiert.
Eine finale Komplikation ist, dass es keine Möglichkeit gibt zu entscheiden, aus welchen
der beiden Protonen das Antiteilchen entstammt. Da jedoch der Winkel θ entgegengesetzt
zu der Bewegungsrichtung des Antiteilchens definiert wurde, muss für den Fall q̄q, bei dem
das Antiquark dem ersten Proton entstammt, der cos(θ) zu − cos(θ) gedreht werden. Wie
später deutlich wird, kürzt sich damit die Vorwärts-Rückwärts-Asymmetrie der erzeugten
Muonen aus Abschnitt 3.2 weg. Bei einer Proton-Antiproton Kollision würde sich die
Asymmetrie bemerkbar machen, da in diesem Fall eine ausgezeichnete Strahlrichtung
vorliegt und das Antiquark mit einer größeren Wahrscheinlichkeit aus dem Antiproton
entstammt.

4.2. Parton-Verteilungsfunktionen

Die Parton-Verteilungsfunktionen (PDF) geben die Wahrscheinlichkeitsdichte fq(x,Q2)
an, ein Quark in einem Hadron mit der Energie Q zu finden, wenn diese genau der Anteil
x der Energie des Protons ist. Hierbei wird angenommen, dass das Proton eine sehr hohe
Energie besitzt, damit die Quarks als masselos angenommen werden können und sich
Energie und Impuls des Quarks ausgleichen.
Durch die PDF’s lassen sich hadronische Prozesse bei großer Energie vollständig mit
Subprozessen der Konstituenten des Hadrons beschreiben [7]. Die Dichten multipliziert
mit den Energieanteilen sind in Abb. 7 für ein Proton abgebildet. Zur Implementierung
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(b) Verteilungen für Anti-Quarks.

Abbildung 7: Die Parton-Verteilungsfunktionen für verschiedene Flavours und ihre korrespon-
dierenden Anti-Teilchen bei Q = 90 GeV. Als PDF-Set wurde ’CT14nlo’ [3]
verwendet.

der Verteilungsfunktionen wurde ’LHAPDF6’ [2] verwendet. Das benutzte PDF-Set ist
’CT14nlo’ [3].
Bei großen Energieanteilen dominieren im Proton die Up- und Down-Quarks, die sogenann-
ten Valenzquarks. Bei geringen Anteilen steigen jedoch ebenfalls die Quarks der anderen
Flavours an, was für den Speicherring von enormer Bedeutung ist, da die Protonen mit
Energien im Bereich von TeV kollidieren, während die Reaktion zum größten Teil (siehe
Abschnitt 3.3) im Bereich von 90 GeV stattfindet.
Würde man einen Proton-Antiproton-Speicherring simulieren wollen, müsste man anstatt
der Proton-Verteilungsfunktionen Antiproton-Verteilungsfunktionen benutzen, was ef-
fektiv bedeutet, dass alle Teilchenfunktionen von den Proton-Verteilungsfunktionen zu
Antiteilchenfunktionen werden und vice versa.

4.3. Kinematik III

Da im folgenden zwischen zwei Lorentz-Systemen gewechselt wird, werden die Impulse im
Labor-System mit Großbuchstaben und im Schwerpunktsystem der Quarks mit kleinen
Buchstaben bezeichnet. Das Koordinatensystem wird so eingeführt, dass die kollidierenden
Protonen sich in z-Richtung sich mit den Impulsen PA,B bewegen. Die Massen werden
vernachlässigt. Die Quarks besitzen nun einen Impuls p1 = x1PA und p2 = x2PB, was
dazu führt, dass diese sich mit einem Gesamtimpuls P in dem Laborsystem bewegen.

PA =



√
S

2

0
0
√
S

2

 PB =



√
S

2

0
0
−
√
S

2

 P =


(x1 + x2)

√
S

2

0
0

(x1 − x2)
√
S

2

 (4.3)
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Somit ist die Geschwindigkeit β = v
c
gegeben durch β = |~p|

p0 = x1−x2
x1+x2

und der Lorentz-Boost
kann berechnet werden. Da die Bewegung nur in Richtung der z-Achse liegt, bleiben
die ersten und zweiten Komponenten davon unbeeinflusst. Dies ist praktisch, wenn die
Impulsvektoren des entstehenden Muon-Antimuon-Paares in dem Laborsystem berechnet
werden sollen. Die allgemeinen Vektoren für ein Muon und ein Antimuon besitzen in dem
Schwerpunktsystem der Quarks folgende Form:

pµ =
√
ŝ

2


1

cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

 pµ̄ =
√
ŝ

2


1

− cos(ϕ) sin(θ)
− sin(ϕ) sin(θ)
− cos(θ)

 (4.4)

mit θ, ϕ in der üblichen Definition. Mittels einer Lorentz-Transformation können nun die
Impulse in dem Laborsystem berechnet werden. Mit γ = 1√

1−β2
folgt:

Pµ =
√
ŝ

2


γ(1− β cos(θ))
cos(ϕ) sin(θ)
sin(ϕ) sin(θ)
γ(cos(θ)− β)

 Pµ̄ =
√
ŝ

2


γ(1 + β cos(θ))
− cos(ϕ) sin(θ)
− sin(ϕ) sin(θ)
−γ(cos(θ) + β)

 (4.5)

Bemerkenswert ist hierbei, dass die transversalen Komponenten der Muonen-Impulse nicht
von der Lorentz-Transformation betroffen sind und somit die volle Information über die
Reaktion in sich tragen. Diese Eigenschaft wird später enorme Wichtigkeit erhalten.

4.4. Monte-Carlo-Integration

Das Ziel ist es Gl. (4.2) zu integrieren, um eine Eventgenerierung zu ermöglichen. Zunächst
kann über die δ-Funktion integriert werden. Um später geschickt substituieren zu können,
wird x2 gewählt. Mit δ(f(x))⇒ ∑

i |f ′(x)|−1 folgt:

dσ
dcos(θ) = 1

3
∑
q,q̄

S∫
Smin

dŝ
1∫

ŝ/S

dx1
1
ŝx1

fq(x1, ŝ)fq̄
(

ŝ

Sx1
, ŝ

)
dσ̂(ŝ, cos(θ))

dcos(θ) , (4.6)

wobei sich die untere Grenze von x1 geändert hat, da sonst die Bedingung nicht erfüllt wird
und somit die δ-Funktion nicht gelöst werden kann . Um nun den Bruch 1

ŝx1
zu eliminieren,

wird ŝ = τS (also τ = x1x2) substituiert und die Rapidität y mit der Definition von P
aus Abschnitt 4.3 via

y = 1
2 ln

(
P 0 + Pz
P 0 − Pz

)
= 1

2 ln
(
x1

x2

)
(4.7)
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eingeführt. Somit ergeben sich x1,2 =
√
τe±y und die gewünschte Jacobi-Determinante so,

dass dŝdx1 = ŝx1dτdy gilt. Die Integrale transformieren sich zu:

dσ
dcos(θ) = 1

3
∑
q,q̄

1∫
Smin/S

dτ
− 1

2 ln(τ)∫
1
2 ln(τ)

dy fq(
√
τey, τS)fq̄(

√
τe−y, τS)

dσ̂
(
τ
S
, cos(θ)

)
dcos(θ) , (4.8)

wobei sich die Grenzen von y durch 1
2 ln

(
x2

1
τ

)
mit xmax

1 = 1 und xmin
1 = ŝ

S
= τ ergeben.

Hier tritt der Spezialfall auf, dass die Grenzen von y von τ abhängig sind. In der Monte-
Carlo-Integration wird dies gelöst, indem zuerst der Wert von τ zufällig generiert wird
und damit der Wert von y erzeugt wird.
Damit sind alle Vorbereitungen abgeschlossen und die Monte-Carlo-Integration kann durch-
geführt werden. Um eine bessere Eventgenerierung zu erhalten, wird die Resonanz bei MZ

wieder mit der bekannten Substitution aus dem leptonischen Speicherring (Abschnitt 3.3)
substituiert. Das bedeutet für diesen Fall:

τ = ŝ

S
= MZΓZ tan(ρ) +M2

Z

S
. (4.9)

Diese Substitution transformiert den Integranden durch die Divergenzen von der elektroma-
gnetischen Wechselwirkung und zusätzlich der Parton-Verteilungsfunktionen bei niedrigen
Impulsanteilen nicht in eine optimal flache Funktion, weswegen die Integration eine starke
Varianz aufweist, die sich hier nur durch besonders viele Iterationen abschwächen lässt.
Deswegen wurde bei der Verwendung dieses Codes N=100.000.000 gewählt:

Smin =20.**2
S = 8000.**2
Einheiten = (alpha*h*c)**2/(3.*S*10**18)
RHOminZ = np.arctan((Smin-MZ0**2)/(FWZ0*MZ0))
RHOmaxZ = np.arctan((S-MZ0**2)/(FWZ0*MZ0))
Integralgrenzen = 2.*np.pi*(1-(-1))*(RHOmaxZ-RHOminZ)

for i in range(N):
cos = 2.*np.random.random() - 1.
rho = RHOminZ + (RHOmaxZ-RHOminZ)*np.random.random()
t = (MZ0*FWZ0*np.tan(rho)+MZ0**2)/S
ymax = -0.5*np.log(t)
y = (2.*np.random.random()-1)*ymax
x1 = np.sqrt(t)*np.exp(y)
x2 = np.sqrt(t)*np.exp(-y)
W[i] = 2.*ymax*Integralgenzen*DW(x1,x2,t*S,rho,cos)
if W[i] > Wmax:
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Wmax = W[i]
I += W[i]
Qabw += W[i]**2

I *= 1./float(N)
sigma = Einheiten*np.sqrt(np.abs(Qabw/float(N) - I**2)/float(N))
I *= Einheiten

Die Integralgrenzen ergeben sich durch die Integration über ϕ von 0 bis 2π und cos(θ)
von -1 bis 1.
Die Funktion DW beinhaltet die Summation über die Flavours. Eine Parton-
Verteilungsfunktion wird über die Methode proton.xfxQ2(#Flavour,x,s) aufgerufen,
was die Verteilungsfunktion, multipliziert mit ihrem Impulsanteil x, zurückgibt. Deswegen
wird in jeder Zeile nochmal durch x1x2 geteilt. Wie im letzten Absatz von Abschnitt 4.1
beschrieben, muss über die Möglichkeiten summiert werden, dass das Quark von dem
ersten Proton oder dem zweiten Proton gestellt wird. Dies dreht den cos(θ) zu − cos(θ).

def DW(x1,x2,s,rho,cos):
#up- & charm-Quarks -> quark=1

value = hatDW(rho,cos,1)*(proton.xfxQ2(2,x1,s)*proton.xfxQ2(-2,x2, s)
+ proton.xfxQ2(4,x1,s)*proton.xfxQ2(-4,x2,s))/(x1*x2)

value += hatDW(rho,-cos,1)*(proton.xfxQ2(2,x2,s)*proton.xfxQ2(-2,x1,s)
+ proton.xfxQ2(4,x2,s)*proton.xfxQ2(-4,x1,s))/(x1*x2)

#down- & strange- & bottom-Quarks -> quark=2

value += hatDW(rho,cos,2)*(proton.xfxQ2(1,x1,s)*proton.xfxQ2(-1,x2,s)
+ proton.xfxQ2(3,x1,s)*proton.xfxQ2(-3,x2,s))/(x1*x2)

value += hatDW(rho,-cos,2)*(proton.xfxQ2(1,x2,s)*proton.xfxQ2(-1,x1,s)
+ proton.xfxQ2(3,x2,s)*proton.xfxQ2(-3,x1,s))/(x1*x2)

return value

Als letztes wird noch die Methode hatDW aufgerufen. Diese ruft den berechneten Wirkungs-
querschnitt für die unterschiedlichen Quark-Typen auf, da sich von Up- zu Down-Quark
(und von Charm- zu Strange-Quark) die Vektor- (cV ) und Axialvektorkopplungen (cA)
ändern.
Insgesamt ergibt sich ein Integralwert von (1319,36± 2,03) pB. Die große Unsicherheit bei
Einhundertmillionen Iterationen zeigt deutlich, dass der Integrationsbereich nicht optimal
flach ist.

4.5. Eventgenerierung und -filterung

Der Code für die Eventgenerierung ergibt sich fast analog zu dem Code zur Berechnung des
Integrals. Eine weitere Besonderheit ist, dass für jedes Teilchen alle generierten Parameter
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gespeichert werden, damit die angesprochene Lorentz-Transformation aus Abschnitt 4.3
durchgeführt und das reale Detektorsignal gewonnen werden kann. Die Generierung wird
über diesen Code vorgenommen:

Wi = np.zeros((Nevents,4)) # Aufbau: [x1,x2,cos(theta),sin(phi)]

Ecm = np.zeros(Nevents) # Energie CMS der Quarks

i=0
while i<Nevents:

cos = 2.*np.random.random() - 1.
sin = np.sin(2.*np.pi*np.random.random())
rho = RHOminZ + (RHOmaxZ-RHOminZ)*np.random.random()
t = (MZ0*FWZ0*np.tan(rho)+MZ0**2)/S
ymax = -0.5*np.log(t)
y = (2.*np.random.random()-1)*ymax
x1 = np.sqrt(t)*np.exp(y)
x2 = np.sqrt(t)*np.exp(-y)
Wtest = 2.*ymax*Integralgenzen*DW(x1,x2,t*S,rho,cos)
if Wtest/Wmax > np.random.random():

Wi[i,0]=x1
Wi[i,1]=x2
Wi[i,2]=cos
Wi[i,3]=sin
Ecm[i]=np.sqrt(t*S)
i +=1

Es wurden Einhunderttausend Events generiert. Die Ergebnisse sind in zwei Histogrammen,
einmal die Energie in dem Schwerpunktsystem der Quarks und einmal die detektierbare
Energie im Labor-System, in Abb. 8 dargestellt. Man beachte, dass die gesamte Energie
des Muon-Antimuon-Paares aufgetragen ist und nicht nur die von einem Muon. Damit
wäre die Resonanz nicht bei 91,19 GeV sondern bei 45,6 GeV. Da die Events nur bis zu
einer Minimalenergie von 20 GeV generiert wurden, ist der Bereich für kleinere Energien
von der Auswertung auszuschließen.
In der Grafik ist deutlich zu erkennen, dass die Events in dem Schwerpunktsystem der
Quarks genau der erwarteten Verteilung folgen, aber das Signal im Labor-System nicht
mehr deutlich zu erkennen ist. Würde noch Detektoreffizienz und Untergrundrauschen
hinzugefügt werden, wäre das Signal in keiner Weise zu erkennen. Um dennoch beispiels-
weise auf die Masse des Z0-Bosons schließen zu können, wird das Signal geeignet gefiltert.
In Abschnitt 4.3 wurde bereits angedeutet, dass es sinnvoll ist, die Impulse der Muonen
in einen longitudinalen und einen transversal Anteil zur ursprünglichen Strahlrichtung zu
zerlegen, da nur der longitudinale Impulsanteil von der Lorentz-Transformation beeinflusst
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Abbildung 8: Die generierten Events nach ihrer Energie im Schwerpunktsystem der Quarks
und im Labor-Frame in einem Histogramm dargestellt. In dem Energiebereich
unterhalb von 20 GeV werden keine Events erzeugt, weswegen dieser Bereich für
die Auswertung ausgeklammert werden muss.

wird. Es wird definiert:

~Pµ,long = ŝ

2


0
0

γ(cos(θ)− β)

 ~Pµ,trans = ŝ

2


cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

0

 (4.10)

Mit den gespeicherten Daten aus der Generierung lassen sich die Beträge und somit
die Energien in longitudinaler und transversaler Richtung bestimmen. Die transversale
Komponente beinhaltet noch die unveränderte Wechselwirkung der Reaktion, weswegen
in ihr das beste Signal zu erwarten ist. Die Ergebnisse sind in Abb. 9 abgebildet, wo in
der longitudinalen Energiekomponente keine Struktur zu erkennen ist, während in der
transversalen Komponente eine deutlich Resonanz bei 91,19 GeV zu erkennen ist, die kurz
dahinter zu beinahe Null abfällt. Dies ist das typische Verhalten für eine Resonanz in
einem hadronischen Speicherring.
Ein weiterer Punkt der Auswertung ist die Verteilung des cos(θ)’s. Hierzu werden von allen
produzierten Muonen (unabhängig von der Schwerpunktsenergie) die Winkelinformationen
in einem Histogramm zusammengetragen. Dies ist zulässig, da die Terme des Wirkungs-
querschnittes, die die Winkelverteilung beschreiben, nicht untereinander unterschiedlich
mit der Energie gewichtet werden. Das bedeutet, die Winkelverteilung ist für alle Energien
gleich. In Abb. 10 ist die bisher beobachtete Asymmetrie zwischen Vorwärts- und Rück-
wärtsstreuung nicht zu erkennen. Dies ist dem Fakt geschuldet, dass im Detektor nicht
unterschieden werden kann, in welchem Proton das Antiteilchen erzeugt wurde. Deswegen
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Abbildung 9: Die longitudinale und transversale Impulskomponente des erzeugten Muon-
Antimuon-Paares im Labor-System. Mit dieser Filterung ist die Resonanz der
Reaktion deutlich zu erkennen.

mussten beide Möglichkeiten, wobei diese mit gedrehten cos(θ) zu berücksichtigen sind,
mit einbezogen werden. Damit kürzt sich effektiv der ungerade Teil (also der Term mit
linearem cos(θ)), der die Asymmetrie gewährleistet, raus.
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Abbildung 10: Die Verteilung von cos(θ). Es ist keine Asymmetrie zwischen cos(θ) = 1 und
cos(θ) = −1 zu erkennen. Dies ist damit zu erklären, dass nicht unterschieden
werden kann, ob das Antiteilchen aus dem ersten oder zweiten Proton entstammt
und damit beide Fälle gleich, aber mit gedrehtem Cosinus (also cos(θ) ↔
− cos(θ)) berücksichtigt werden.
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4.6. Produktion von W-Bosonen

Es gibt eine weitere Teilchenreaktion, die in einem hadronischen Speicherring auftritt
und mit einer leichten Anpassung der bisherigen Methoden simuliert werden kann: eine
Teilchenreaktion, bei der ein virtuelles W -Boson ausgetauscht wird. In Abschnitt 2.5.3
wurde bereits erläutert, wie aus der quadrierten invarianten Amplitude mit einem Z0-Boson
als Austauschteilchen die hier gewünschte Amplitude erhalten werden kann. Im Folgenden
wird sich auf ein W−-Boson beschränkt. Um ein W+-Boson zu beschreiben, müsste nur
bei den Anfangs- und Endteilchen eine Konjugation von Teilchen zu Antiteilchen und vice
versa vorgenommen werden.
Da hier eine Proton-Proton-Kollision betrachtet wird, kommen als Anfangsteilchen ūd
und c̄s vor. Auch hier kann nicht unterschieden werden, welches Proton das Antiteilchen
stellt. Beide Möglichkeiten müssen mit 180 ◦ gedrehtem Winkel berücksichtigt werden
und die Asymmetrie zwischen Vorwärts- und Rückwärtsstreuung ist nicht zu erkennen.
Als Endteilchen wird ein Muon und ein Antimuon-Neutrino gewählt. Zu bemerken ist,
dass bis auf die Partonverteilungsfunktionen keine teilchenspezifischen Parameter in die
Reaktion mit dem Wirkungsquerschnitt (aus Gl. (2.54) und (2.56))

dσ
dΩ

∣∣∣∣∣
cm

= α2s

32s4
W ((s−M2

W )2 +M2
WΓ2

W )
[
(1 + cos2(θ)) + 2 cos(θ)

]
(4.11)

eingehen. Das zu berechnende Integral ist der gleichen Form wie in Abschnitt 4 und die
Vorgehensweise der Monte-Carlo-Integration und -Eventgenerierung wird analog durchge-
führt.
Die Integrationsparameter (Schwerpunktsenergie und minimale Schwerpunktsenergie der
Quarks) werden zur Vergleichbarkeit mit Abschnitt 4.5 genauso gewählt. Mit einer Mil-
lionen Iterationen wurde der Wirkungsquerschnitt zu (215,42± 0,15) pB berechnet. Hier
ist bereits auffällig, dass trotz geringerer Iterationen der Wirkungsquerschnitt genauer
bestimmt werden kann. Dies liegt daran, dass keine 1

ŝ
Divergenz durch ein Photon als

Austauschteilchen existiert und die Substitution effektiver ist. Trotzdem werden nicht mehr
Events als im vorherigen Abschnitt generiert, um die Vergleichbarkeit hoch zu halten.
Die Ergebnisse sind ungefiltert in Abb. 11 und gefiltert in Abb. 12 zu sehen. Es ist zu
erkennen, dass auch in diesem Fall die Filterung nach longitudinalen und transversalen
Energiekomponenten die Deutlichkeit der Resonanz enorm verbessern. Im Gegensatz zu
den bisherigen Ergebnissen steigt die Zählrate bei kleinen Energien nicht an, da hier
keine Divergenz des Photons zu berücksichtigen ist. Dies verbessert zusätzlich die Deut-
lichkeit der Resonanz. Für ein W+-Boson als Austauschteilchen ergeben sich in dieser
Betrachtungsweise bis auf Anfangs- und Endteilchen keine Unterschiede.
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Abbildung 11: Die Energien des Muon-Antimuon-Neutrino-Paares in ihrem Schwerpunktsys-
tem und in dem Laborsystem.

0 20 40 60 80 100 120 140
Longitudiale Energie im Labor-Frame

0

100

200

0 20 40 60 80 100 120 140
Transversale Energie im Labor-Frame

0

500

1000

Abbildung 12: Die gefilterten longitudinalen und transversalen Energien für ein W−-Boson
als Austauschteilchen.
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5. Schlussfolgerung
Im Rahmen dieser Bachelorarbeit wurde gezeigt, wie der differentielle Wirkungsquerschnitt
für eine Reaktion mit einem Photon oder einem Z0-Boson aus einem Feynman-Diagramm
erhalten werden kann. Dazu wurde erörtert, wie die relevanten Wechselwirkungen im
Standardmodell beschrieben werden und die daraus folgende Rechnung wurde im Detail
durchgeführt.
Zur Auswertung des erhaltenen Wirkungsquerschnittes wurden zwei relevante Experi-
mente aus theoretischer Sicht aufbereitet und es wurde gezeigt, wie man mit Methoden
der Monte-Carlo-Integration und -Eventgenerierung aus der theoretischen Beschreibung
mit dem Experiment vergleichbare Ergebnisse produzieren kann. Als erstes Experiment
wurde die Reaktion in einem leptonischen Speicherring untersucht und im Rahmen dessen
die Winkelverteilung bei konstanter Strahlenenergie und die Resonanz des Propagators
eines massiven Vektorbosons mittels Variation der Strahlenenergie analysiert. Mit diesen
Ergebnissen und Methoden konnte ein hadronischer Speicherring simuliert werden. Mit
Hilfe von Parton-Verteilungsfunktionen konnte eine Proton-Proton-Kollision in der Art
beschrieben werden, dass nur die Teilchenreaktionen stattfinden, die mit dem berechne-
ten Wirkungsquerschnitt wiedergegeben werden. Des Weiteren wurde gezeigt, wie durch
Zerlegung in longitudinale und transversale Impulskomponenten das Signal im Detektor
so aufbereitet werden kann, dass Aussagen über die zugrundeliegende Wechselwirkung
getroffen werden können.
Im Verlauf dieser Arbeit wurden verschiedene Näherungen und Vereinfachungen vorgenom-
men, die im Nachhinein noch korrigiert werden könnten. Bei der Berechnung des Wirkungs-
querschnittes wurde der Prozess auf niedrigster Ordnung untersucht. Eine Untersuchung
der höheren Ordnungen der Störungsreihe würde die berechneten Wirkungsquerschnitte
korrigieren. Des Weiteren wurden in der Berechnung die Massen aller Anfangs- und End-
teilchen vernachlässigt. Dies würde ebenfalls die Berechnung des Wirkungsquerschnittes
verändern. Bei der Beschreibung der Detektoren wurden weder Anpassungen hinsichtlich
der Detektoreffizienz getroffen, noch wurde Rauschen im Detektor miteinbezogen. Um
eine realistisches Detektorsignal zu erhalten, müssten diese Effekte miteinbezogen werden.
Ebenfalls hat sich bei der Monte-Carlo-Eventgenerierung des hadronischen Speicherringes
die Vorgehensweise als ineffizient erwiesen, da die minimale Schwerpunktsenergie des
Quark-Paares so gering gewählt wurde, für eine dauerhafte Anwendung würde es sich
empfehlen eine andere Methode des ’Importance Sampling’s zu finden.
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A. Theoretische Grundlagen
In diesem Kapitel sollen die Grundlagen, die für das Verständnis der Arbeit essentiell
sind, erläutert werden.

A.1. Dirac-Gleichung

Die Dirac-Gleichung ist die Zustandsgleichung für relativistische Fermionen und lautet
mit den Gamma-Matrizen γµ für ein freies Teilchen

(i~γµ∂µ −mc)ψ = 0. (A.1)

Die Gamma-Matrizen sind über die Vertauschungsrelation γµγν + γνγµ = 2gµνI4, mit gµν

als Minkowskimetrik mit Signatur (+,−,−,−) definiert. Da die Vertauschungsrelation
eine Freiheit in der Wahl der Basis besitzen, wird im Folgenden die Dirac-Basis gewählt.
Damit gilt für die Matrizen (σi sind die Pauli-Matrizen):

γ0 =
 I2 0

0 −I2

 γi =
 0 σi

−σi 0

 γ5 = iγ0γ1γ2γ3 =
 0 I2

I2 0


Die γ5-Matrix ist das Produkt aus den vier Gamma-Matrizen und wird im späteren Verlauf
für die Behandlung der Chiralität benötigt.
Die allgemeine Lösung der Dirac-Gleichung für ein freies Teilchen lautet ψ = u(p)e− i

~p
µxµ

mit dem Spinor u(p), der nach Einsetzen der Lösung in die Dirac-Gleichung

(p/−mc)u(p) ≡ (γµpµ −mc)u(p) = 0 (A.2)

erfüllen muss. Daraus ergibt sich, aufgeteilt in die verschiedenen Spinzustände s = 1
oder 2 (für Spin ’up’ oder ’down’) und Teilchen von Antiteilchen (mit v(p, s) bezeichnet)
getrennt folgende Lösung:

u(p, s = 1) = N


1
0
p3

E+mc2

p1+ip2
E+mc2

 u(p, s = 2) = N


0
1

p1−ip2
E+mc2

−p3
E+mc2

 für E > 0 (A.3)

v(p, s = 1) = N



p1−ip2
E+mc2

−p3
E+mc2

0
1

 v(p, s = 2) = N



p3
E+mc2

p1+ip2
E+mc2

1
0

 für E < 0 (A.4)
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N ist jeweils die Normierungskonstante, welche, wenn man die Norm einer Wellenfunktion
mit 2E gleichsetzt, zu N =

√
E +mc2 berechnet werden kann. Die Norm soll 2E ergeben,

damit sich die Gesamtwahrscheinlichkeit bei einer Lorentz-Transformation nicht ändert. Zu
beachten ist, dass hier nur der Spinor normiert wurde und nicht die Exponentialfunktion,
da diese nicht normierbar ist. Eine genauere Betrachtung würde die Verwendung von
Wellenpaketen verlangen. Jedoch ergeben sich dadurch für den Rahmen dieser Arbeit
keine entscheidenden Unterschiede.
Die Wahrscheinlichkeitsdichte ist nach obiger Betrachtung eine Energie, was nützlich ist,
weil sie so als nullte Komponente des Wahrscheinlichkeitsstroms aufgefasst werden kann.
Dieser kann wie folgt definiert werden:

jµ = ψγµψ (A.5)

ψ = ψ†γ0 ist der adjungierte Spinor.
Da die schwache Wechselwirkung zwischen den Chiralitätskomponenten eines Spinors
unterscheidet, ist es sinnvoll ebenfalls die Chiralität zu diskutieren. Es ist möglich einen
Zustand in seine Chiralitätskomponenten ΨL und ΨR zu zerlegen. Diese werden als links-
bzw. rechtshändig bezeichnet und sind Eigenzustände der bereits erwähnten γ5-Matrix.
Es gilt:

γ5ΨR = ΨR und γ5ΨL = −ΨL (A.6)

Da die γ5-Matrix für Teilchen mit Masse nicht mit dem Dirac-Hamiltonian vertauscht,
sind die Chiralitätskomponenten keine Eigenzustände der Dirac-Gleichung. Über den
Projektionsoperator Π± = 1

2(I4±γ5) lässt sich aus einem allgemeinen Spinor Ψ seine links-
bzw. rechtshändige Komponente gewinnen. So gilt beispielsweise:

Π−Ψ = ΨL (A.7)

Mit Π+ + Π− = I4 und Π+Π− = 0 genügen die Operatoren den Vollständigkeitsrelationen
von Projektionsoperatoren, so dass sich jeder Spinor vollständig in sein chiralen Kompo-
nenten zerlegen lässt: Ψ = ΨR + ΨL. Diese Komponenten haben die spezielle Eigenschaft
unter Raumspiegelung ineinander überzugehen. So wird beispielsweise die linkshändige
Komponente unter Raumspiegelung zur rechtshändigen Komponente und vice versa. Das
bedeutet, dass wenn ein Prozess unterschiedlich an ΨL und ΨR koppelt, eine Asymmetrie
unter Raumspiegelung auftritt.

A.2. Herleitung der invarianten Amplitude

Das Ziel ist es, die Übergangsamplitude in erster Ordnung Störungstheorie für einen
Wechselwirkungsprozess auf Teilchenebene zu bestimmen. Die Schwierigkeit hierbei ist,
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e−

µ−

γ q

pi pf

ki kf

Abbildung 13: Feynman-Diagramm für Elektron-Muon-Streuung. Der Impuls q wird über
ein virtuelles Photon übertragen, wobei gilt q = ki − kf = pf − pi (eigene
Darstellung).

dass die Dirac-Gleichung eine Einteilchen-Theorie ist, die Übergangsamplitude jedoch (in
diesem Fall) zwei verschiedenen Teilchen beinhaltet. Die Übergangsamplitude ist mit dem
Störpotential Aµ definiert als:

Tfi = ie
∫

Ψ̄e
fγρA

ρΨe
id4x = −i

∫
je,fiρ Aρd4x (A.8)

Die Situation, die beschrieben werden soll, ist in Abb. 13 zu sehen und die Bezeichnungen
aus der Grafik wurden übernommen. Analog zu (A.5) wurde der geladene Elektronenstrom
je,fi eingeführt. Da diese Herleitung im Rahmen der Störungstheorie vorgenommen wird,
werden für die Spinoren der Elektronen die Lösungen der Dirac-Gleichung für freie Teilchen
aus Anhang A.1 angesetzt.
Das Störpotential, dass von dem Muon erzeugt wird und auf das Elektron wirkt, kann über
die Maxwell-Gleichungen gewonnen werden. Der geladene Muon-Strom jµ,fiλ = −eΨ̄µ,fγλΨi

muss (in Lorenz-Eichung)
∂ν∂νAλ = jµ,fiλ (A.9)

erfüllen. Für die Spinoren des Muons werden ebenfalls die Lösungen der Dirac-Gleichung
für freie Teilchen angesetzt. Damit lässt sich die Differentialgleichung lösen:

∂ν∂νAλ = −eū(kf )γλu(ki)e−i(k
ν
i −k

ν
f )xν

⇒ Aλ = e
ū(kf )γλu(ki)

(ki − kf )2 e−i(k
ν
i −k

ν
f )xν = jµ,fiλ

(ki − kf )2 (A.10)

In der zweiten Zeile wurde ausgenutzt, dass die einzige Ortsabhängigkeit der rechten
Seite in der Exponentialfunktion steckt und zusätzlich ∂ν∂νe−iq

σxσ = −q2e−iq
σxσ gilt. Das

bedeutet, dass das Störpotential direkt von dem Impulsübertrag qν = (ki − kf )ν abhängt.
Mit diesem Ergebnis lässt sich nun die Integration (A.8) ausführen und damit die Über-
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gangsamplitude bestimmen.

Tfi = −i
∫
je,fiρ Aρd4x

= i

q2

∫ (
−eΨ̄e

fγρΨe
i

) (
−eΨ̄µ

fγ
ρΨµ

i

)
d4x

= ie2

q2

∫
ū(pf )γρu(pi)e−i(p

ν
i−p

ν
f )xν ū(kf )γρu(ki)e−i(k

ν
i −k

ν
f )xνd4x

= ū(pf )γρu(pi)
ie2

q2 ū(kf )γρu(ki)
∫
e−i(p

ν
i−p

ν
f+kνi −k

ν
f )xνd4x

= ū(pf )γρu(pi)
ie2

q2 ū(kf )γρu(ki)(2π)4δ(4)(pi − pf + ki − kf ) (A.11)

Um von der vierten zur letzten Zeile zu kommen wurde ein zentrales Ergebnis der Fou-
rieranalyse benutzt: Die Fouriertransformierten einer Konstanten ist eine Delta-Funktion
im Ursprung. Damit besteht für diesen Prozess die Impulserhaltung. Der Impuls des
Elektrons muss nach der elektromagnetischen Wechselwirkung mit dem Muon genau dem
Impulsgewinn/-verlust entsprechen, den das Muon verloren/gewonnen hat. Das Photon
überträgt als den Impuls q = ki − kf = pf − pi, wie bereits in Abb. 13 eingezeichnet.
Es zeigt sich, dass die Übergangsamplitude symmetrisch bezüglich Elektron und Muon ist.
Das bedeutet, es ist irrelevant gewesen, dass in diesem Fall das Elektron ein Störpotential
von dem Muon gespürt hat. Die Herleitung wäre zu demselben Ergebnis gekommen, wenn
man das Muon ein Störpotential des Elektrons hätte spüren lassen.
Die invariante Amplitude ist nun definiert als:

Tfi = −i(2π)4δ(4)(pi − pf + ki − kf )R (A.12)

⇒ −iR = [ū(pf )ieγρu(pi)]
−iqρη

q2 [ū(kf )ieγηu(ki)] (A.13)

Die -invariante für diesen Prozess wurde deswegen so kompliziert aufgeschrieben, da
man so die Struktur besser erkennen kann: Für eine Wechselwirkung mit einem Photon
wird zwischen die Spinoren ein sogenannter Vertexfaktor ieγρ bzw. ieγη multipliziert und
die dadurch entstehenden Ströme werden mittels eines Propagators −igρη

q2 miteinander
verknüpft. Diese Amplitude ließe sich einfacher durch Anwendung der Feynman-Regeln
gewinnen.

A.3. Feynman-Regeln

Mit den Feynman-Regeln lassen sich die invarianten Amplituden sehr einfach bilden. Die
Regeln sind sehr eng mit den Feynman-Diagrammen verknüpft, welche bildliche Veran-
schaulichungen eines Wechselwirkungsprozesses (mit üblicherweise horizontaler Zeitachse
und vertikaler Ortsachse) sind.
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e−

e+

µ−

µ+

pA

pB kD

kC

γ

q = pA + pB = kC + kD

(a) Feynman-Diagramm in Darstellung der
Impulse.

e−

e+

µ−

µ+

u(pA)

v̄(pB) v(kD)

ū(kC)

γ

−igηθ

q2
ieγη ieγθ

(b) Feynman-Diagramm in Darstellung der
multiplikativen Faktoren.

Abbildung 14: Feynman-Diagramm für Elektron-Positron-Annihilation, dessen Energie über
photonische Wechselwirkung zur Erzeugung eines Muon-Antimuon-Paares
führt. Das linke Bild ist die übliche Darstellung des Prozesses und verweist
auf die relevanten Impulse. Das rechte Bild zeigt die mathematische Inter-
pretation, welche durch Multiplikation zur invarianten Amplitude −iR =
v̄(pB)ieγηu(uA)−ig

ηθ

q2 ū(kC)ieγθv(kD) führt (eigene Darstellung).

Die generelle Vorgehensweise um eine Amplitude zu bestimmen, ist das zugehörige
Feynman-Diagramm zu skizzieren, was für den beispielhaften Prozess e+e− → µ+µ− in
Abb. 14 zu sehen ist. Dazu wird für jedes ein- und ausfallende Teilchen eine Linie gemalt
und deren Impuls festgelegt. Für diese Teilchen muss ein Ende der Linie frei bleiben. Das
andere Ende wird mit zwei weiteren Linien zu einem Vertex verbunden, sodass ein Vertex
immer aus drei Linien besteht. Um dies zu vollführen, müssen interne Linien gezogen
werden. An jedem Vertex bleiben alle Quantenzahlen und der Impuls erhalten. Auf "tree
level", das bedeutet in niedrigster Ordnung Störungstheorie, sind damit alle Impulse
definiert. Höhere Ordnungen werden hier nicht verwendet, aber deren Behandlung in
Feynman-Diagrammen ist beispielsweise von M. Srednicki [10, Kap. 10] diskutiert worden.
Es ist üblich für unterschiedliche Typen von Teilchen unterschiedliche Arten von Linien
zu verwenden. Das Photon beispielsweise wird mit einer Sinuswelle dargestellt, während
Quarks und Fermionen durch einfache und massive Vektorbosonen (Z0- und W±-Boson)
durch gestrichelte Linien gekennzeichnet werden.
Die invariante Amplitude lässt sich nun erhalten, indem ein Feynman-Diagramm als ma-
thematische Operation verstanden wird. Da diese Arbeit nur die Grundlagen verwendet,
wird in dieser Diskussion nicht auf alle möglichen Situationen eingegangen. Falls die ein-
bzw. auslaufenden Teilchen nur Spin-1

2 sind und nur die niedrigste Ordnung Störungs-
rechnung berechnet wird, bestimmt sich die invariante Amplitude folgendermaßen: Über
die Vertices der ein- und ausfallenden Teilchen wird mittels ihrer Spinoren ein Strom
definiert. Die Natur des Stroms wird durch die Kopplung und damit implizit durch das
Wechselwirkungsteilchen bestimmt. Die Kopplung wird über einen Vertexfaktor (zu sehen
beispielsweise in Gl. (A.13)) parametrisiert. Interne Linien erhalten je nach Natur ihrer
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Wechselwirkung einen Propagator, der die beiden Vertices miteinander verknüpft, an
denen die interne Linie anschließt.
Kann ein Prozess über mehrere nicht äquivalente Feynman-Diagramme ausgedrückt wer-
den, muss für jedes Diagramm die invariante Amplitude bestimmt werden und zu einer
gesamten invarianten Amplitude summiert werden.

A.4. Herleitung des differentiellen Wirkungsquerschnitts

Der Wirkungsquerschnitt σ – mit Einheit m2 – ist die wichtigste Größe bei der Berechnung
von Streuprozessen. Um für ein Experiment in einem Teilchenbeschleuniger die Reaktions-
rate zu erhalten, muss der Wirkungsquerschnitt nur noch mit der Luminosität (die Anzahl
der Teilchen, die pro Einheitszeit und Einheitsstrahlquerschnitt aneinander im Reaktions-
punkt vorbei bewegen) multipliziert werden [7]. Möchte man diese raumwinkelaufgelöst,
mit dem Raumwinkelelement Ω, haben, muss der differentielle Wirkungsquerschnitt dσ

dΩ

bestimmt werden. Da die Wirkungsquerschnitte für Elementarteilchen in Größenordnun-
gen von 10−40 m2 auftreten, wird die in der Teilchenphysik übliche Einheit "Barn"(=̂
ßcheune") verwendet. Dabei gilt: 1 pB =̂ 10−40 m2.
dσ ist definiert als [6, Kap. 3.6]:

dσ = Übergangsrate
Einheitsvolumen ×

1
anfänglicher Teilchenfluss ×

Anzahl Endzustände
Zielteilchendichte (A.14)

Da für diese Arbeit nur ’zwei nach zwei’-Prozesse (zwei Anfangs- und zwei Endteilchen
mit A,B bzw. C,D bezeichnet) von Bedeutung sind, wird eine Analyse in diesem Rahmen
vorgestellt. Dabei wird vorausgesetzt, dass die Reaktion innerhalb eines Zeitintervalls T
und einem Volumen V abläuft, also in dem sogenannten Einheitsvolumen TV . Dies ist
für den ersten Teil der Rechnung notwendig, im späteren Verlauf geht diese Abhängigkeit
verloren.
Die Übergangsrate (=̂ |Tfi|2) beinhaltet letztlich die Natur der Wechselwirkung und ist mit
ihrer Abhängigkeit von der invarianten Amplitude die wichtigste und am schwierigsten zu
bestimmende Größe des Wirkungsquerschnittes. Aus Anhang A.2 kann die Übergangsrate
ohne Beschränkung der Allgemeinheit geschrieben werden als

|Tfi|2 =
[
(2π)4δ(4)(pin − pout)

]2
|R|2 = (2π)8δ(4)(pin − pout)δ(4)(0)|R|2, (A.15)

wobei zum zweiten Gleichheitszeichen eine Eigenschaft der Delta-Funktion genutzt wurde.
Die Delta-Funktion wurde in der Übergangsamplitude als Fourier-Transformation einer
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Konstanten erhalten, das bedeutet δ(4)(0) kann auch formuliert werden als:

δ(4)(0) = 1
(2π)4

∫
e−i0·xd4x

= TV

(2π)4 (A.16)

Die Integration wurde über das Raumzeitelement TV ausgeführt. Damit kann als Ergebnis
für die Übergangsrate festgehalten werden:

|Tfi|2 = (2π)4TV δ(4)(pin − pout)|R|2 (A.17)

Der anfängliche Teilchenfluss zweier Teilchen ist durch das Produkt der Normen mit dem
Volumen und der relativen Geschwindigkeit definiert. Aus Anhang A.1 ist bekannt, dass
die Norm gerade zwei mal der Energie des Teilchens entspricht. Damit folgt: Anfänglicher
Teilchenfluss =̂ 4|~vA − ~vB|EAEBV 2. Mit ~vA,B = ~pA,B

EA,B
lässt sich der Term umschreiben zu:

anfänglicher Teilchenfluss =̂ 4|~pAEB − ~pBEA| (A.18)

Die Anzahl der Endzustände in einem Volumen V eines freien Teilchens sind V d3p
(2π)3 , ein

Ergebnis der statistischen Physik.
Alles in (A.14) eingesetzt liefert (die Impulse der ausgehenden Teilchen mit k bezeichnet):

dσ = (2π)4TV δ(4)(pin − pout)|R|2
TV

× 1
4|~pAEB − ~pBEA|V 2 ×

V 2d3kCd3kD
(2π)64ECED

= δ(4)(pA + pB − kC − kD)d3kCd3kD
64π2|~pAEB − ~pBEA|ECED

|R|2 (A.19)

Wie oben erwähnt, hängt der Wirkungsquerschnitt nicht mehr von dem Einheitsvolumen
ab. An diesem Punkt ist es sinnvoll die Impulse zu spezifizieren. Im Schwerpunktsystem
("cm") gilt ~pA + ~pB = 0 und EA + EB =

√
s mit dem Quadrat der Schwerpunktsenergie

s. Damit vereinfacht sich die Delta-Funktion zu δ(
√
s− EC − ED)δ(3)(~kC + ~kD) und die

Integration über d3kD kann mit der dreidimensionalen Delta-Funktion zu einer effektiven
Eins ausgeführt werden:

dσ = δ(
√
s− EC − ED)|R|2d3kC
64π2|~pA|

√
sECED

mit ~kC = −~kD (A.20)

Hier wurde ebenfalls |pAEB − pBEA| = |~pA|
√
s eingesetzt. Da eine Delta-Funktion ver-

bleibt, kann eine weitere Variable eliminiert werden. Dazu ist es sinnvoll für d3kC in
Kugelkoordinaten überzugehen.

d3kC = |~kC |2d|~kC |dcos(θ)dϕ = |~kC |2d|~kC |dΩcm (A.21)
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θ ist hierbei der Winkel zwischen ~pA und ~kC . Mit einer weiteren Eigenschaft der Delta-
Funktion δ(f(x)) ⇒ ∑

i |f ′(x)|−1, wobei über die Nullstellen von f(x) summiert wird,
kann die Integration über den Betrag des Impulses ausgeführt werden. Die Funktion in
der Delta-Funktion hat nur eine Nullstelle: EC + ED =

√
s und für EC und ED gilt nach

der relativistischen Energie-Impuls-Beziehung, unter Beachtung von (A.20):

EC =
√
|~kC |2 +m2

C ED =
√
|~kC |2 +m2

D (A.22)

∂

∂|~kC |
(
√
s− EC − ED) =− |

~kC |
EC
− |

~kC |
ED

=− |~kC |
EC + ED
ECED

=− |~kC |
√
s

ECED
mit

√
s = EC + ED (A.23)

Betraglich invers in (A.20) eingesetzt folgt:

dσ = δ(
√
s− EC − ED)|~kC |2|R|2d|~kC |dΩcm

64π2|~pA|
√
sECED

= |~kC ||R|2

64π2s|~pA|
dΩcm

⇔ dσ
dΩ

∣∣∣∣∣
cm

= |~kC |
64π2s|~pA|

|R|2 (A.24)

Damit wurde eine allgemein gültige Form des differentiellen Wirkungsquerschnittes gefun-
den.

A.5. Ein Überblick über die Monte-Carlo-Integration

Das zugrundelegende Prinzip der Monte-Carlo-Integration ist, dass ein Integral als Mittlung
über den Integranden berechnet werden kann:

I =
x2∫
x1

dx f(x) = (x2 − x1)〈f(x)〉. (A.25)

Um eine Mittelung zu approximieren, wird der Integrand an N zufälligen Stellen ausgewer-
tet, summiert und durch N geteilt. Die Positionen xi können mit Hilfe einer Zufallszahl
ρi im Intervall [0, 1] über

xi = (x2 − x1)ρi + x1 (A.26)

generiert werden. Bei dieser Form der Integralapproximation kann der Fehler als Varianz
einer Normalverteilung abgeschätzt werden, da die Bedingungen des Zentralen Grenzwert-
satzes erfüllt sind [9, Kap. 3]. Die Varianz berechnet sich aus σMC = σ/

√
N , wobei σ die
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Standardabweichung von f(xi) ist:

σ2 = (x2 − x1)2

N

∑
i

f 2(xi)−
1
N

(∑
i

f(xi)
)2


= 1
N

∑
i

W 2
i −

[
1
N

∑
i

Wi

]2

mit Wi = (x2 − x1)f(xi) (A.27)

In der zweiten Zeile wurden die gewichteten Funktionswerte Wi eingeführt. Das gesamte
Integral kann somit geschrieben werden als

I ≈ x2 − x1

N

N∑
i

f(xi)±
σ√
N
≡ IN ±

σ√
N
. (A.28)

Die Genauigkeit dieser Integration kann verbessert werden, indem zum Einen eine größere
Anzahl von Auswertungspunkten gewählt wird oder zum Anderen die Standardabweichung
σ reduziert wird. Um Letzteres zu erreichen, wird eine Methode verwendet, die ’Importance
Sampling’ [8] genannt wird. Hierbei wird der Integrand so substituiert, dass eine möglichst
konstante Funktion zu integrieren ist. Das bedeutet, wenn die Stammfunktion bekannt
ist, kann mittels ’Importance Sampling’ die Varianz zu Null reduziert werden. Diese
Vorgehensweise wird im folgenden Abschnitt (Anhang A.6) ebenfalls von hoher Bedeutung
sein.
Das Prinzip der Monte Carlo Integration kann mit Leichtigkeit auf höherdimensionale
Integrale verallgemeinert werden: Für jede einzelne Integrationsvariable wird in dem
Integrationsintervall ein zufälliger Wert ausgewählt, in die Funktion eingesetzt und zuletzt
mit dem Integrationsintervall gewichtet.

A.6. Monte-Carlo-Eventgenerierung

Die Monte-Carlo-Eventgenerierung wird dazu verwendet, um aus theoretischen Vorher-
sagen Daten zu gewinnen, die direkt mit den experimentellen Daten verglichen werden
können. Die zugrundeliegende Idee ist, dass versucht wird, die stochastische Natur der
individuellen Events zu simulieren, anstatt die Eigenschaften von einer großen Summe an
Events zu untersuchen [9, Kap. 3].
Ab hier wird eine positive Funktion f(x) gefordert, da ansonsten eine Eventgenerierung
in dieser Form weder möglich noch sinnvoll ist.
Um Events nach ihrer Wahrscheinlichkeit, mit der sie auftreten, zu generieren, ist es
(offensichtlicherweise) zunächst notwendig ihre Wahrscheinlichkeit zu berechnen. Dies kann
getan werden, indem der gewichtete Funktionswert an der Stelle x mit dem gewichteten
Maximalwert der Funktion innerhalb des gegebenen Intervalls normiert wird. Um ein
Event an dieser Stelle x zu akzeptieren, muss seine Wahrscheinlichkeit größer sein als eine
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A. Theoretische Grundlagen

Abbildung 15: Eine Breit-Wigner-Resonanz mit Parametern M = 90 und Γ = 2. Die Funk-
tion schließt eine vergleichsweise geringe Fläche der Abbildung ein (eigene
Darstellung).

Zufallszahl im Intervall [0, 1]:

Wx

Wmax

> R mit R ∈ [0, 1] (A.29)

Ist die Wahrscheinlichkeit des Events kleiner als R, wird das Event verworfen. Eine
Iteration über dieses Vorgehen bis die gewünschte Anzahl an Events erreicht ist, liefert
eine stochastische Verteilung an Events in der Form der erzeugenden Funktion f(x), wenn
man sie mittels eines Histogramms darstellt.
Äquivalent ausgedrückt wird die Funktion in dem relevanten Intervall auf einen maximalen
Wert von Eins normiert und es werden zufällige Punkte in diesem Rechteck ausgewählt
und mit der Funktion verglichen. Diese Vorgehensweise ist sehr ineffizient für eine Funktion
mit einer starken Resonanz in dem Intervall, oder allgemein wenn sie eine geringe Fläche
in dem Intervall einschließt. Eine Eventgenerierung kann deshalb viel Zeit in Anspruch
nehmen. Um diesen Prozess zu beschleunigen, wird für die Generierung wieder die Methode
des Ïmportance Samplingäus Anhang A.5 benutzt. Die Substitution sollte dabei so gewählt
werden, dass die resultierende Funktion möglichst flach ist.
Ein sinnvolles Beispiel ist eine Breit-Wigner-Resonanz, da diese Form der Resonanz im
Verlaufe dieser Arbeit zu integrieren ist. Sie wird über

fBW (x) = 1
(x−M2)2 +M2Γ2 (A.30)
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definiert und ist in Abb. 15 zu sehen. Während M die Position der Resonanz bestimmt,
beeinflusst Γ die Breite. Eine Substitution der Form x = MΓ tan(ρ) +M2 vereinfacht die
Integration:

I =
xmax∫
xmin

dx 1
(x−M2)2 +M2Γ2

=
ρmax∫
ρmin

dρMΓ(1 + tan2(ρ)) 1
M2Γ2(1 + tan2(ρ))

= 1
MΓ

ρmax∫
ρmin

dρ (A.31)

Der resultierende Integrand ist eine Konstante, und damit wird jeder zufällig generierte
Punkt als Event akzeptiert. Damit die Events die Form der Resonanz widerspiegeln,
müssen sie bezüglich der ursprünglichen Variablen (in diesem Fall x) in einem Histogramm
dargestellt werden.

B. Identitäten und Rechnungen

B.1. Identitäten der Gamma-Matrizen

Relevante Identitäten bzgl. der Gamma-Matrizen.

(γ0)2 = I4 (B.1)

(γk)2 = −γk k = 1, 2, 3 (B.2)

(γµ)† = γ0γµγ0 (B.3)

(γ5)† = γ5 (B.4)

γ5γµ = −γµγ5 (B.5)

(γ5)2 = I4 (B.6)

Tr [γκγηγλγϑ] = 4 (gκηgλϑ + gκϑgηλ − gκλgηϑ) (B.7)

Tr [γκγηγλγϑ] = 4iεκηλϑ ε ist das 4D Levi-Civita-Symbol (B.8)
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B.2. Tensorauswertungen für die Berechnung der invarianten
Amplitude

Ein Nachweis der Behauptungen aus Abschnitt 2. Zunächst benutzte Identitäten des
Levi-Civita-Symbols ε und des verallgemeinerten Kronecker-Deltas δ.

ε...i...j... = −ε...j...i... (B.9)

ε...i...i... = 0 (B.10)

εµνητp
µkνqηxτ = 0 falls linear abhängig (B.11)

εi1...ikik+1...in ε
i1...ikjk+1...jn = k!δjk+1...jn

ik+1...in
(B.12)

δi1...inj1...jn = det


δi1j1 . . . δi1jn
... . . . ...
δinj1 . . . δinjn

 (B.13)

Notwendige Tensorauswertungen mit dem Propagator P̃ ητ = M2
Zg

ητ−qηqτ . Zur Erinnerung:
pA + pB = kC + kD = q und die Skalarprodukte folgen aus der Kinematik (Abschnitt 2.4).

P̃ ητ = P̃ τη (B.14)

P̃ ητpB,ηkD,τ = M2
Z(pB · kD)− (q · pB)(q · kD) = M2

Zs

4 (1− cos(θ))− s2

4 (B.15)

P̃ ητpB,ηkC,τ = M2
Z(pB · kC)− (q · pB)(q · kC) = M2

Zs

4 (1 + cos(θ))− s2

4 (B.16)

P̃ ητpA,ηpB,τ = M2
Z(pA · pB)− (q · pA)(q · pB) = M2

Zs

2 − s2

4 (B.17)

P̃ ητgητ = 4M2
Z − (q · q) = 4M2

Z − s (B.18)
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P̃ ητεκϑλη εφ
ϑ
ρτ p

κ
Ap

λ
Bk

φ
Ck

ρ
D =

(
M2

Zg
ητ − qηqτ

)
εκϑλη εφ

ϑ
ρτ p

κ
Ap

λ
Bk

φ
Ck

ρ
D

=M2
Zεκϑλη εφ

ϑ
ρτ p

κ
Ap

λ
Bk

φ
Ck

ρ
Dg

ητ

=M2
Zεκϑλη εφ

ϑ
ρ
η pκAp

λ
Bk

φ
Ck

ρ

=M2
Zεϑηκλ ε

ϑη
φρ p

κ
Ap

λ
Bk

φ
Ck

ρ
D

=M2
Z2! δφρκλ pκApλBkC,φkD,ρ

=2M2
Z(δφκ δ

ρ
λ − δρκ δ

φ
λ) pκApλBkC,φkD,ρ

=2M2
Z [(pA · kC)(pB · kD)− (pA · kD)(pB · kC)]

=2M
2
Zs

2

16 [(1− cos(θ))2 − (1 + cos(θ))2]

=− M2
Zs

2

2 cos(θ) (B.19)

Ab hier mit zwei Propagatoren:

P̃ κλP̃ ητ2pB,κpA,ηkD,λkC,τ
(B.15)=

(
M2

Zs

4 (1− cos(θ))− s2

4

)2

(B.20)

P̃ κλP̃ ητ2pB,ηpA,κkD,λkC,τ
(B.16)=

(
M2

Zs

4 (1 + cos(θ))− s2

4

)2

(B.21)

P̃ κλP̃ ητgκηkD,λkC,τ =
(
M2

Zk
η
C − (q · kC)qη

) (
M2

Zg
λ
η − qηqλ

)
kD,λ

=
(
M2

Zk
η
C − (q · kC)qη

) (
M2

ZkD,η − (q · kD)qη
)

= M4
Z(kC · kD)− 2M2

Z(q · kC)(q · kD) + (q · kC)(q · kD)(q · q)

= M4
Zs

2 − M2
Zs

2

2 + s3

4 (B.22)

P̃ κλP̃ ητgκηgλτ =
(
M2

Zg
λ
η − qηqλ

) (
M2

Zg
η
λ − qηqλ

)
= 4M4

Z − 2M2
Zs+ s2 (B.23)

P̃ κλP̃ ητεϕκχη εϕλχτ p
ϕ
Ap

χ
Bk

ϕ
Ck

χ
D =

(
M2

Zg
κλ − qκqλ

) (
M2

Zg
ητ − qηqτ

)
εϕκχη εϕλχτ p

ϕ
Ap

χ
Bk

ϕ
Ck

χ
D

= M4
Zεϕκχη εϕλχτ g

κλgητpϕAp
χ
Bk

ϕ
Ck

χ
D

= M4
Zεϕκχηεϕ

κ
χ
η pϕAp

χ
Bk

ϕ
Ck

χ
D

(B.19)= −M
4
Zs

2

2 cos(θ) (B.24)
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