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1. Einleitung

1. Einleitung

In dieser Bachelorarbeit sollen Reaktionen im Rahmen der schwachen Wechselwirkung
zwischen Fermionen untersucht werden. Konzentriert wird sich dabei auf den Austausch
von einem Photon oder einem Zj-Boson.

Zu Beginn wird der theoretische Hintergrund erlautert. Dazu wird diskutiert, wie Wech-
selwirkungen im Standardmodell der Teilchenphysik beschrieben werden und wie diese
Beschreibung zu einem differentiellen Wirkungsquerschnitt fithrt. Mithilfe der Monte-Carlo-
Eventgenerierung kann dieser verwendet werden um realistische Daten fiir ein Experiment
zu erzeugen. Hierbei wird sich Bezug auf zwei konkrete Experimente genommen: Einen lep-
tonischen und einen hadronischen Speicherring. Da sich die Betrachtung des leptonischen
Speicherrings als weniger kompliziert darstellt, wird dieser als Erstes untersucht. Dabei
wird auf das Verhalten des differenziellen Wirkungsquerschnittes genauer eingegangen.
Im hadronischen Speicherring werden die bisherigen Methoden angepasst, da die reagie-
renden Teilchen die Konstituenten des eigentlichen Strahlteilchens sind. Infolgedessen
wird beschrieben, wie aus dem Detektorsignal auf die zugrundeliegende Wechselwirkung
geschlossen werden kann. In dem letzten Kapitel wird rekapituliert und als Ausblick
formuliert, in welcher Form man diese Arbeit weiterfithren konnte.

Die theoretischen Vorbereitungen sind vielschichtig, weswegen einige Teile in dem
Anhang vorbereitet werden. Der erfahrene Leser, der mit Konzepten der Monte-Carlo-
Eventgenerierung, den Feynman-Diagrammen und -regeln, der invarianten Amplitude
und dem differentiellen Wirkungsquerschnitt vertraut ist, kann direkt mit dem Lesen
des néchsten Kapitels beginnen. Studenten im fiinften oder sechsten Bachelorsemester
wird jedoch zunéchst der Anhang |A| geraten. Hier wird nur Wissen iiber die Dirac-
Gleichung vorausgesetzt, da diese bereits in der Vorlesung behandelt worden sein sollte.
Die essentiellen Ergebnisse werden dennoch kurz wiederholt.

Die Monte-Carlo-Eventgenerierung wird mit der Programmiersprache Python vorge-
nommen. Um die Vorgehensweise beim Programmieren leichter nachvollziehbar zu machen,
werden die relevanten Teile des Codes eingebunden. Es wird jedoch von einer Darstellung
des gesamten Codes abgesehen, da dies den Lesefluss unterbrechen wiirde.

Die Feynman-Diagramme wurden mit dem Programm JaxoDraw [4] erstellt.

Ein weiteres wichtiges Thema sind die benutzten Konventionen. Um die Rechnung
iibersichtlicher zu gestalten wird wie iiblich das natiirliche Einheitensystem mit ¢ = h =1
gewahlt. Die relevanten Ergebnisse sind in SI-Einheiten angegeben. Des weiteren wird
mit Einsteinscher Summenkovention gerechnet. Dabei laufen griechische Indizes von 0 bis
3, wenn sie sich hoch- und niedrig-gestellt in der selben Zeile befinden. Offensichtliche
Multiplikationen von Vektoren und Matrizen werden nicht mit Indizes versehen, da sonst
die Ubersichtlichkeit verloren geht und damit die Interpretation erschwert wird.

Bei der computergestiitzten Berechnung von Ergebnissen werden die numerischen Werte
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von Konstanten und Einheiten aus dem aktuellsten Satz der Daten der Paricle Data Group
1] entnommen. Dabei wurden die Werte auf die letzte Nachkommastelle ibernommen.

Die Werte sind hier angegeben:

alpha=1./137.035999139

sinW=0.23122 #sin**2 von dem Weinbergwinkel
cosW=1-sinW

MZ0=91.1876 #GeV/c**2

FWZ0 = 2.4952 #GeV/c**2, Gamma_Z -> Breite
Mw=80.379 #GeV/c**2

FWWw = 2.085 #GeV/c**2, Gamma_W —-> Breite
h=6.582119514*10%*(-16) #h/2pi in elVs
€c=299792458. #m/s

Die Werte werden als exakt angenommen und deren Unsicherheiten werden nicht in die

Betrachtung miteinbezogen.
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2. Theoretische Vorbereitungen

Da diese Arbeit darauf abzielt, die elektromagnetische und die schwache Wechselwirkung
fiir verschiedene Speicherringe im Rahmen einer Monte-Carlo-Simulation zu untersuchen,
ist es sinnvoll zundchst die relevanten Prozesse, die fiir beide Arten von Experimenten
gleich sind, zu diskutieren. Dabei wird zu Beginn sowohl auf die Natur der Wechselwirkung,
als auch auf invariante Amplituden beider Wechselwirkungskanéle eingegangen. Daraus
wird der differentielle Wirkungsquerschnitt gewonnen, mit dem im weiteren Verlauf die
Monte-Carlo-Eventgenerierung fiir die Speicherringe vorgenommen wird.

In der Herleitung wird angenommen, dass eine Elektron-Positron-Kollision stattfindet.
Dieser Fall ist natiirlich nicht richtig fiir einen hadronischen Speicherring. Dazu wird zu
Beginn von Abschnitt |4| gezeigt, wie aus einem Wirkungsquerschnitt einer leptonischen eine
hadronische Reaktion gewonnen werden kann. Das Endprodukt, ein Muon-Antimuon-Paar,

bleibt iiber den gesamten Verlauf erhalten.

2.1. Das Standardmodell der Teilchenphysik

Mit dem Standardmodell der Teilchenphysik lasst sich eine grofle Spanne der Beobach-
tungen auf Elementarteilchen-Ebene beschreiben. Im Rahmen des Standardmodells wird
jede Wechselwirkung iiber ein Austauschteilchen, ein sogenanntes Eichboson beschrieben.
Bosonen werden dabei Teilchen genannt, die einen ganzzahligen Spin besitzen. Abgesehen
von der Gravitation kann damit nachweislich jeder Wechselwirkung ein Austauschteil-
chen zugewiesen werden: Die elektromagnetische Wechselwirkung wird iiber Photonen
beschrieben, die starke Wechselwirkung tiber acht verschiedene Gluonen und die schwache
Wechselwirkung wird tiber drei sogenannten Vektorbosonen (W — W~— und Zy-Boson)
vermittelt. Im Rahmen der elektroschwachen Wechselwirkung ist es zuséatzlich moglich
(wie der Name schon andeutet) die elektromagnetische und die schwache Wechselwirkung
Zu vereinen.

Jeder Wechselwirkung wird dabei eine bestimmte Symmetriegruppe zugeordnet, das
bedeutet, dass die Austauschteilchen gewissermafien als Symmetrieoperation in dieser
Symmetriegruppe angesehen werden und koénnen ein Teilchen, also ein Objekt der Sym-
metriegruppe, in ein weiteres Teilchen, also ein anderes Objekt der Symmetriegruppe,
umwandeln. Die elektroschwache Wechselwirkung wird dabei als direktes Produkt von zwei
Symmetriegruppen gesehen, welche mit der sogenannten spontanen Symmetriebrechung
in zwei unterschiedliche Wechselwirkungen iibergegangen sind.

Das Higgs-Feld weist iiber den Higgs-Mechanismus den Teilchen ihre Masse zu. Das
Higgsfeld selbst besitzt eine Anregung, das sogenannte Higgs-Boson mit dem Spin 0.

Fermionen sind Teilchen mit Spin % Zu ihnen gehort jeweils ein komplementéres Antiteil-
chen, welches beschrieben werden kann, wie ein Teilchen, welches sich rickwarts durch

die Zeit bewegt. Fermionen sind die Teilchen, die untereinander iiber Austauschteilchen
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Abbildung 1: Feynman-Diagramm fiir eine Elektron-Positron-Kollision, wobei als Austausch-
teilchen ein Photon und als Endprodukt ein Muon-Antimuon-Paar vorausgesetzt
wird.

wechselwirken. Sie bauen die gesamte bisher entdeckte Materie auf und treten in zwei
unterschiedlichen Kategorien auf: Quarks und Leptonen. Diese Kategorien besitzen jeweils
drei Familien mit zwei Mitgliedern, d.h. zwolf Teilchen plus ihr jeweiliges Antiteilchen.
Die Quarks werden von den Leptonen unterschieden, da diese an der starken Wechselwir-
kung teilhaben, also iiber Gluonen eine Farbladung austauschen. Sie treten nicht alleine
auf, sondern als farbneutrale Hadronen, welche gebundene Zusténde von mindestens zwei
Quarks sind. Da die Gluonen jedoch auch mit sich selber wechselwirken, sind gebundene
Zustande von Quarks sehr kompliziert aufgebaut und besitzen eine Unterstruktur.

Die Leptonen sind jeweils drei verschiedene Teilchen mit negativer elektrischer Elementar-
ladung und drei neutrale Teilchen, sogenannte Neutrinos. Diese Teilchen nehmen nicht an

der Wechselwirkung mit Gluonen teil.

2.2. Elektromagnetische Wechselwirkung

Wie oben erwahnt wird angenommen, dass eine Elektron-Positron-Kollision stattfindet,
welche tiber ein Photon, das Austauschteilchen, in ein Muon-Antimuon-Paar iibergeht.
Das zugehorige Feynman-Diagramm ist in Abb. |1 zu sehen. Eine Herleitung der Feynman-
Regeln fiir Photonen ist nicht mehr notwendig, da dies implizit in Anhang vorge-
nommen wurde. Zusammengefasst muss an jeden Vertex der Faktor i¢ey” multipliziert
werden und der Propagator wird tiber % parametrisiert. Daraus lasst sich die invariante

Amplitude gewinnen:

—iqg"?

—iR, = QuQ,0(ps)iervyu(pa) qZ alke)ievov(kp)
2
& 9, = == ) u(pa)ilho) (ko) (2.)
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mit dem Impulsibertrag ¢ = pa + pp und der Impulserhaltung ps + pg = k¢ + kp.
Als zusatzliche Faktoren wurde noch die Ladungszahl @), eingefiigt, die die Ladung in
Anteilen der Elementarladung e parametrisiert, damit im spéateren Verlauf der Arbeit

Teilchen mit unterschiedlicher Ladung zu Kollision gebracht werden kénnen.

2.3. Die schwache Wechselwirkung

Das Ziel dieses Abschnittes ist es die relevanten Strome fiir einen Prozess in der Art
von Abb. 3| zu finden, da daraus die Feynman-Regeln gewonnen werden kénnen. Eine
Herleitung des Propagators wird nicht vorgenommen.

Die schwache Wechselwirkung wird von massiven, vektoriellen Austauschteilchen, den
beiden geladenen W*- und W~ -Bosonen und dem neutralen Zy-Boson, vermittelt. Diese
Teilchen koppeln unterschiedlich an die beiden Chiralitdtskomponenten (siehe Anhang
U, =11"0 = (1 —9°)¥ und ¥ = ITT¥ = (1 + ~°)¥. Beispielsweise koppeln die
W-Bosonen nur an den linkshéndigen Anteil, wihrend das Z;-Boson an beide (allerdings
unterschiedlich stark) koppelt.

Um die Wirkung von den W*-Bosonen auf Fermionen zu beschreiben, fasst man diese
Teilchen in sogenannte Isospin-Dubletts und -Singuletts zusammen. Die jeweils linkshédndige
Komponente des Elektrons und des Elektroneutrinos bilden zusammen ein schwaches
[sospin-Dublett, wihrend die rechtshandigen Komponenten jeweils ein schwaches Isospin

Singulett darstellen (mit ¢ als der schwache Isospin):

( ;f ) mit ¢ = ; und (e )r (Ve)g mit t =0 (2.2)
L

Um eine vereinfachte Darstellung zu erhalten wurde fiir den Spinor des Elektrons (und fiir
das Neutrino analog) u.- = e~ geschrieben. Fiir die dritte Komponente t3 des schwachen
Isospin gilt fiir den oberen Eintrag des Dubletts t3 = % und fiir die untere t3 = —%.
Der schwache Isospins ist also als Analogon des normalen Spins zu betrachten. Diese
Kategorisierung wird gewéhlt, weil bei der schwachen Wechselwirkung nur Prozesse
innerhalb einer Leptonenfamilie beobachtet wird. Das bedeutet, fiir die Muonen und den
Taus wird dieselbe Kategorisierung gewéhlt und fiir die Quark-Familien ebenfalls. Die
geladenen Vektorbosonen W¥ konnen nun ein Elektroneutrino in ein Elektron umwandeln
und vice versa.

Einzig notwendig bleibt es noch einen Ausdruck fiir Strom des schwachen Isospins zu
finden. Dazu werden die Eigenschaften und Wirkungen der W*-Bosonen genutzt. Zur
besseren Veranschaulichung wird die Situation aus Abb. 2] benutzt: Das abgestrahlte
W~-Boson hat das Muon in sein Neutrino umgewandelt. Da die W-Bosonen nur auf die
linkshiandige Komponente der Spinoren wirkt, wird der schwache Isostrom J?2 iiber den

Vertex mittels CJ;;)) = cvYppr definiert. Wobei mit ¢ der Kopplungsfaktor parametrisiert
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Abbildung 2: Das Muon zerfillt in sein Neutrino und strahlt dabei ein W~-Boson ab.

wird. Mit einer kurzen Rechnung kann der Vertex-Faktor gewonnen werden:

Dy Ll = V) 1 Y0 VullL
1
= V5 (1= 075 (1= 7"

1
= vl = 7")

1
= V(2= 2" )n

1
= oz (1= ), (2.3)

wobei die Identitdten aus Gl. (B.4) bis benutzt wurden. Der Kopplungsfaktor
¢ kann mittels der Kopplung der schwachen Wechselwirkung ¢ ausgedriickt werden:
c= %. Fiir g kann jedoch mittels des Weinbergwinkels #y ein Zusammenhang zwischen

elektromagnetischer und schwacher Kopplungsstiarke gefunden werden:
e = gsin(fw) (2.4)

Letztlich ergibt sich der Vertexfaktor mit dem Vorfaktor —i, der Konvention bei der
Definition von Feynman-Regeln ist, zu: —im%%(l — ).

Das neutrale Zy-Boson koppelt unterschiedlich stark an beide Komponenten. Um dies
beschreiben zu koénnen, wird der neutrale Strom JY definiert. Er setzt sich aus dem Strom

des schwachen Isospins und der elektromagnetischen Wechselwirkung zusammen:
JN = J3 — sin? (0w ) j™ (2.5)

Diese Uberlagerung von Strémen kann wieder durch den Weinbergwinkel ausgedriickt

werden. Die Kopplungsstarke des neutralen Stroms ist iiber COS(%W) = cos(@w)esin(GW) para-

metrisiert.

Um nun den Vertexfaktor zu bestimmen, miissen die bekannten Strome in Gl. (2.5)
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Tabelle 1: Eine Auflistung der Quantenzahlen von Leptonen und Quarks, die fiir die schwache
Wechselwirkung von Relevanz sind. Fiir alle anderen Lepton- bzw. Quark-Familien
bleiben die Quantenzahlen gleich. Die rechtshdndigen Neutrinos besitzen eine beson-
dere Stellung, da sie keine Quantenzahl ungleich Null besitzen und somit an keiner
Wechselwirkung des Standardmodels teilhaben.

Lepton t t3 Q| Quark t t3 Q
1 1 1 1 2

Ve,L 3 2 0w 3 2 3
— 1 1 1 1 1
er 3 2 l|de 3 "2 3
Ver 0 0 0| ug 0 0 2
€r 0 0 -1|dg 0 0 -3

eingesetzt werden. Es folgt:

Jy=f :%;(1 — )t — Sin2(9w)%Q] f
:% (;ts - Sin2(9w)Q) — %;tzﬂ f

; f (2.6)

I
Y

f Yo (cv — cav’)
wobei die Umstellung in den letzten beiden Zeilen dazu benutzt wurde um die sogenannte
Vektor- und Axialvektorkopplung einzufithren. Die Vektorkopplung gibt an, wie grofl der
Teil des Spinors ist, der sich unter Invertierung des Raumes negativ darstellt, wihrend die
Axialvektorkopplung den Anteil angibt, der invariant unter Invertierung des Raumes ist.
Multipliziert man den Term in der groflen Klammer mit der Kopplungsstarke und dem

—ie

Konvetionsfaktor —i erhélt man den Vertexfaktor: m%%(w —ca7).

Die Vektor- und Axialvektorkopplung

cy =tz — 2sin’(0y)Q (2.7)
Cp = t3 (28)

konnen durch die Zusammenstellung der Quantenzahlen in Tabelle [1| ermittelt werden.

Der Propagator von Vektorbosonen wird in Unitér-Eichung besitzt folgende Form:

_ M2gn7— _ qan
M?(q? — M2 + iMT)’

pr (2.9)

wobei ¢ der Impulsiibertrag ist und I' die Breite der Verteilung ist. Die Breite hangt tiber

1 — 7 mit der Lebensdauer 7 zusammen. Es ist zu erkennen, dass der Wert des Propagators

T
fir Impulsiibertrage nahe der Masse M des Bosons grof§ wird. Eine weitere Besonderheit
ist, dass der Propagator unterscheidet, in welche Richtung der Impulstibertrag geschieht.

Folgt man den Feynman-Regeln aus Anhang[A.3] ergibt sich fiir das Feynman-Diagramm
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Abbildung 3: Feynman-Diagramm fiir eine Elektron-Positron-Kollision, wobei als Austauschteil-
chen eine Zy-Boson und als Endprodukt ein Muon-Antimuon-Paar vorausgesetzt
wird.

Abb. 3| folgende Invariante Amplitude:

2 29" ’
—e — e _ e 5 MZgn — qnq
(pB)Ym(cy — 4y )U(PA)M%(qz — M2 +iMyl'y

9:tZo )ﬂ(pc)’%'(cl\i/ - Cﬁlﬁyg))v(pD)

(2.10)

~ U2 2
4syc

mit den Abkiirzungen sy = sin(fy ) und ¢y = cos(fw ).

2.4. Kinematik |

Da in den obigen Kapiteln die relevanten invarianten Amplituden aufgestellt wurden, fallt
auf, dass diese abhingig von den Impulsen der Teilchen sind. Dieser Abschnitt soll nun
die Konvention fir die Impulse festlegen.

In dieser Arbeit wird auf die hdufig auftretende Situation eingegangen, dass in dem
Beschleuniger die Teilchen mit gleicher Energie, aber mit entgegengesetzter Bewegungs-
richtung zur Kollision gebracht werden. Hier wird angenommen, dass diese Teilchen dieselbe
Masse besitzen, so dass das Ruhesystem der Kollision gleichzeitig auch das Laborsystem ist.
Dies wird in Beschleunigern benutzt, da so die gesamte Bewegungsenergie in die Energie
der Kollision eingeht. Die Strahlen besitzen also eine Energie E und die Bewegungsrichtung

wird in bzw. entgegen der z-Achse gelegt. Es folgt mit der Schwerpunktsenergie /s = 2E:

ﬁ
pa = mit p= und pp=| 2%
—-p
. NG
ke = mit  |k| = und kp=| 2 (2.11)

K
S
C]:pAvLPB:k?C—FkD:(\/_).

SSTIS S

w1y
[ S vl © ©

0]



2. Theoretische Vorbereitungen

Hier wurden bereits die Massen vernachléssigt, weswegen |pa| = |ps| = |kc| = |kp| =0
gilt. In Anhang wurde der Winkel 6 als der Winkel zwischen 74 und k¢ definiert.
Damit gilt:

S S
Pa*PB =3 & kC'kD:§ & q-q=s (2.12)
S S
pa - l{?c =PB - ]{ID = 1(1 - COS(@)) & pa - k)D = PB - ]{?C = 1(1 + COS(@)) (213)
S
Q'pAZQ'pBZQ‘kCZQ'szg, (2.14)

wobei die Skalarprodukte nur noch von der Schwerpunktsenergie und 6 abhéngig sind.
Hierbei ist zu beachten, dass die Kinematik bei der Berechnung erst in den letzten Schritten
zur Vereinfachung der Terme eingesetzt wird. Die Ergebnisse davor gelten fiir eine beliebige

Wahl des Koordinatensystems.

2.5. Berechnung der quadrierten invarianten Amplitude

Wie aus Anhang[A.4]deutlich wird, ist fiir den Wirkungsquerschnitt nur das Betragsquadrat
der invarianten Amplitude von Relevanz. Zusétzlich dazu ist es bei den Experimenten
iiblich, dass die eingehenden Teilchenstrahlen unpolarisiert sind. Das bedeutet, dass es
nicht moglich ist, weder vor noch nach der Reaktion, festzustellen, in welchem Spinzustand
die beiden Teilchen waren, die am Prozess teilgenommen haben. Des Weiteren werden
die entstehenden Teilchen nicht nach ihrem Spinzustand sortiert. Um dies zu simulieren
wird tiber den Spinzustand der eingehenden Teilchen gemittelt und iiber die Spins der
ausgehenden Teilchen summiert. Diese Vorgehensweise vereinfacht die Rechnung, da die
Spin-Vollstandigkeitsrelation [5, Kap. 5]

zplflﬂ(p)U(p) =wp" +m=p+m, (2.15)

angewendet werden kann, wobei in diesem Fall durch die Naherung der Massenterm
wegfillt. Wie diese Relation angewendet wird, ist in den Unterkapiteln gezeigt.

Der in dieser Arbeit betrachtete Prozess kann tiber zwei Austauschteilchen vonstatten
gehen: ein Photon oder ein Zy-Boson. Die gesamte invariante Amplitude bestimmt sich
aus der Summe der einzelnen Amplituden aus Abschnitt [2.2] und Abschnitt [2.3] Damit
gilt fiir das Betragsquadrat:

|%968|2 = |9{7 + S)L{Zo|2 = |%’Y|2 + QRG[%:%Zo] + |£RZ0|2 (2‘16)
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Mit * wird eine komplexe Konjugation bezeichnet. Die Mittelung wird nun iiber %Zsmn

und die Summation iiber > P vorgenommen, d.h.

Spm Spin Spin Spin

Rl =32 5 X35 el (217)

— et w

Hier wurde mit dem Strich tber JRy., die gemittelte und summierte Version bezeichnet.
Diese Konvention wird im Folgenden beibehalten, ist aber streng von dem adjungierten
Spinor z.B. # zu unterscheiden.

Im Folgenden sollen die Terme, die sich durch Einsetzen des Betragsquadrats (Gl. (2.16)) in
die Mittlung und Summation tiber die Spins von Gl. (2.17) ergeben, getrennt ausgerechnet
werden. Der erste Summand beinhaltet dabei die photonische Wechselwirkung, der Zweite
den Interferenzterm, der sich aus einer Kombination von photonischer und neutraler,
schwacher Wechselwirkung ergibt, und der Letzte die neutrale, schwache Wechselwirkung.
Der erste und der letzte Term wiirden sich auch jeweils (aber ohne den jeweils anderen)
ergeben, wenn nur photonische oder nur neutrale, schwache Wechselwirkung betrachtet

werden wirde.

2.5.1. Photonische Wechselwirkung

Um die Wechselwirkung mit einem Photon als Austauschteilchen zu berechnen, wird
zunichst das komplex Konjugierte der invarianten Amplitude bestimmt, dann die Spin-
summation ausgefiithrt, was zu einer Spur von einem Produkt von Gamma-Matrizen fiihrt.
Dieses kann iiber die Eigenschaften der Gamma-Matrizen ausgewertet werden und erhalt
eine Summe von Skalarprodukten, die in Abschnitt bereits angegeben wurden.

Der zu berechnende Term aus Gl. ldsst sich, wenn man in R die gesamte Abhingig-

keit von den Spinoren zusammenfasst, schreiben als:

=19 1 Spln Spin Spin Spin 4@ Q2 Spm Spin Spin Spin
AP =523 ZZZ%W— ZZZRR* (2.18)
e~ et u— — o
RGO ; 0.0
Ry =—2 vlep)wmulpa)ulke)y"v(kp) = — =R,

Um die Rechnung durchzufiihren, ist es zunédchst notwendig die komplexe Konjugation
durchzufithren. v(pp)y,u(pa) ist offensichtlich ein Skalar. Dies bedeutet, méchte man
eine komplexe Konjugation durchfithren, kénnen die Skalare einzeln konjugiert werden.
Weiterhin hilfreich ist, dass komplexe und hermitesche Konjugation (bezeichnet mit ) fiir
ein Skalar dquivalent sind. Es folgt mit den Identitdten aus Anhang|B.1}

[0(pB)ymu(pa)]

[ "(pB)v0mu(pa)]” = ul (pa)virv(ps)

=
”!

' (pa) 10760 (P5) = (pa) 1m0 (PB) (2.19)
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2. Theoretische Vorbereitungen

Die komplexe Konjugation vertauscht in diesem Fall die Spinoren und deren Adjungation.

Setzt man dieses Ergebnis ein, ldsst sich durch Umsortieren eine Struktur erkennen:

=i
e
S
3
53
<
—~
x>~
Q
P

R, RY = [0(ps)vyu(pa)l[u(ke)y™v(kp)|[u(pa)yvov(ps)]l
= [0(pB)vqu(pa)]lu(pa)ysv(ps)][u(kc)y v (kp)]l

=i
™
S
3
>
I
—~
5
Q
P

(2.20)

Die linken beiden Klammern hdngen nur noch von den einfallenden Teilchen ab und
die rechten beiden Klammern nur noch von den Auslaufenden. Auflerdem stehen u(pa)
und u(pa) direkt nebeneinander, so dass mit der Spinsummation fiir das Elektron die
Spin-Vollstandigkeitsrelation (2.15) eingesetzt werden kann. Die gleiche Argumentation

gilt fir das Antimuon.

1 Spln Spin Spin Spin

R,R% Z Z Z > [0(ps)yulpa)l[w(pa)vov(ps)][u(ke)y"v (kp)][0(kp)y ulke)]

SplnSpm
1 Z > [0(ps)rmparov(pe))lulke)y ko ulko)] (2.21)

e*,u

Die linke und die rechte Klammer sind weiterhin Skalare. Das bedeutet, dass die Matrizen,
die in den Klammern auftreten, nur in skalaren Komponenten auftreten. Dies wird

deutlicher, wenn beispielhaft die implizite Summierung explizit aufgeschrieben wird:

[Z_}(pB)lyn}éA'Yﬂv(pB)] = 1_)&'7S>\(]§A)>\U/VZTUT (2'22)

Auf der rechten Seite wurde zur besseren Ubersicht die Abhéngigkeit von pp weggelassen.
Das bedeutet v(pg) kann auf die rechte Seite von v(pg) geschoben werden und die Spin-
Vollstandigkeitsrelation kann eingesetzt werden, was den Term in die Bildung einer Spur
von Matrizen verwandelt.

Spin

S > A BareS = )t BT = Te Bpbarel  (2.23)

Diese Spur ist in dem mittleren Teil der Gleichung mit dem Index 7 zu erkennen, da dieser
die gesamte Multiplikation der Matrizen umfasst. Die Argumentation kann wieder analog

auf u(kc) ibertragen werden und es folgt:

RORS = 1T [hopharal Tr [ForFon) (2.24)

Mit den Eigenschaften der Gamma-Matrizen innerhalb einer Spur kann diese Gleichung

weiter vereinfacht werden. Dazu schreibt man beide Spuren aus (2.24) um und verwendet

- 11 -



2. Theoretische Vorbereitungen

Gl. (B.7), hier beispielsweise fiir die erste Spur:

Tr [P yapays] = PEPATE Ve 1avs] = P0ad (Grngro + GroGnr — Gerdns)
= 4[(pB)n(Pa)e + (PB)9(PA)y — (DB - PA)Gns] (2.25)

Dies kann analog fiir die andere Spur benutzt werden und man erhélt:

16

RoRS = — [(p8)n(pa)o + (pB)o(pa)y — (p5 - pa)gy] |(k)"(ke)” + (kp)’(ke)" = (kp - ko)g™ |

4
(2.26)

Es ist leicht zu erkennen, dass in beiden Klammern jeweils der erste und der zweite Term
vertauschte Indizes besitzen. Damit und mit den Symmetrien der Skalarprodukte aus
Abschnitt lasst sich diese Gleichung leicht vereinfachen, wobei der letzte Term seinen

Vorfaktor von g,pg™ = 4 erhilt:

R,R:

42(p - kp)(pa - ke) +2(ps - ke)(pa - kp) — 4(ps - pa)(kp - ke) + 4(ps - pa)(kp
81(pB - kp)(pa - ko) + (pB - kc)(pa - kp)]

=38 1Z(l —cos(9))* + fé(l + cos(&))ﬂ
= 522 [2 + 20052(9)} =s? (1 + cos2(0)> (2.27)

Damit bleibt nur noch das Einsetzen in die Ursprungsgleichung (2.18)),

422 422
, €QIQi_—  e'Q
IR, 7= ; “RWR: = Z :

; - s (1 + 0082(9))

= 'Q?Q’ (1 + cos(0)) (2.28)

wobei fiir ¢> = ¢-q = s eingesetzt wurde. Damit ist die Betrachtung des ausschliefllich pho-
tonischen Teils der Wechselwirkung abgeschlossen. Wollte man ausschliefllich photonische
Wechselwirkung betrachten, miisste dieser Term allein in die Formel fiir den Differentiellen

Wirkungsquerschnitt eingesetzt werden.

2.5.2. Interferenzterm

Die Vorgehensweise der Berechnung wird analog zum vorherigen Abschnitt (Ab-
schnitt ) vorgenommen, wobei niaher auf die Verinderungen durch die v5-Matrix

eingegangen wird. Um die Rechnung iibersichtlicher zu gestalten wird der Propagator
. M2 g""fq"q"'
P = M%(qZZ—Mngz'MZrZ)

Ebenfalls werden die Spinoren folgendermafien angegeben: u(pa) — wa.

in seinen Nenner und seinen Zihler P = MZg"™ — q"q" zerlegt.

- 12 -
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2. Theoretische Vorbereitungen

Der zu berechnende Term ist

64Q Qu Spm Spin Spin Spin
Re[* MR, | = R ¢ R'R
e[RIR 7] © 2¢2 sty iy Mz(q2 — M% +iMzlz) 2 ; ; HZ 2 z
* _62 EQ _62Qe *
M = Q — R AyvBUDY ue = 5 Q”RﬂY (2.29)
—62 Mzg9" — q"q"
R, = ~ e e b Z — . [N T
Z 4812/1/612/‘/1}3777(0‘/ CA7 )UA M%(qQ . M% _'_ ZMZFZ)'U/C’}/ (CV CA’}/ )/UD
2
—€
Ry,

T 42,2 M2(q2 — M2 + iMyT )

Dazu wird zunédchst die Spinsummation ausgefithrt. Mit den Argumenten aus Ab-
schnitt wird deutlich, dass diese direkt vollzogen werden kann.

Spln Spin Spin Spin

332 L L

Spln Spin Spin Spin

5 Z Z > Z @av0B)[0pY uc)[Upyy(ch — ¢4y Jual P [y, (e — ciy®)up]
et u—

Spln Spin Spin Spm

5 Z Z S S [aavovs][Us7a(c5 — 47" ual P (e, (¢fr — ¢4y°)op)[opy uc]

- et pm opt
_ lTr BaroBsm(ch — 527)] P [fers (el — ™) (2.30)
1 AYV9PB Yn\Cy A7 cVr(Cy A7 kDY .

Die erhaltenen Spuren konnen in zwei Teile zerlegt werden, da die Spur linear ist. Der
Teil ohne die v*-Matrix wurde bereits in Gl. (2.25) berechnet. Der Teil mit der 7°-Matrix
kann tiber die Identitdt von Gl. (B.8)) ausgewertet werden. Es folgt:

Tr [pavobsracy] = 4 [(0B)o(Pa)y + (P)n(Pa)s — (DB - Pa)gon) = 4¢3 Ty, (2.31)
Tr [parabprny’(—c5)| = —dicSeunn pipyy = —4ici T3, (2.32)
Tr {%’c%cl(/kDVﬂ = 4oy |:(kC>T(kD>19 + (ko) (kp)- — (ke - lfD)gT} =4y (2.33)

T [fove () kD" | = —ciTr [kevekpn'7°] = —diches s kiky = —4ici T,
(2.34)

wobei die letzte Zeile durch die Vertauschungsrelation (B.5]) erhalten wird. Das bedeutet,
dass durch unterschiedliche Kopplung an den linkshandigen Anteil der Spinoren erhélt

man zusétzliche Terme mit dem Levi-Civita-Symbol. Mit den Abkiirzungen 7" 7* lisst

sich Gl. 71

RER, =4 [c) Ty, —icyT3,| P77 [T —ici T2 (2.35)

- 13 -



2. Theoretische Vorbereitungen

zusammenfassen. Bei genauerer Betrachtung des Tensors Tgn wird deutlich, dass das
Levi-Civita-Symbol tiber p4 und pp summiert. Die Summe aus diesen Vektoren bildet
den Impulsiibertrag ¢, der in dem Propagator P = M 29" — q"q" auftaucht. Der Index n
summiert tiber genau diesen Impulsiibertrag, weswegen linear abhangige Vektoren iiber
das Levi-Civita-Symbol summiert werden. Eine zentrale Eigenschaft dieses Symbols ist
jedoch, dass die Summation iiber linear abhéngige Vektoren Null ergibt. Deswegen gilt fiir
beide Tensoren 7?2 und 7%, dass die Summation iber den hinteren Teil des Propagators
Null ergibt. Das Produkt aus T, MZg"T2”, also T? mit 7% und dem vorderen Teil des
Propagators, beinhaltet entweder eine Summation iiber das Levi-Civita-Symbol mit allen
vier Vektoren, die auch linear abhéngig sind, oder es werden zwei Indizes des Symbols
gleichgesetzt (iiber g%¢"" = ¢"? und dieser Term gibt nur einen Wert ungleich Null, wenn
n = v gilt), was das Symbol per Definition Null setzt. Analoges gilt fir das Produkt aus
T und T4

Zusammengefasst bleiben nach diesen Uberlegungen nur noch zwei Terme {ibrig:
RiR, =4 |y Ty, PTTY — 4Ty, PTH (2.36)

Unter Ausnutzung der Symmetrien in den Skalarprodukten und dass der Propagator
bei Vertauschung der Indizes gleich bleibt, konnen die Produkte in kiirzere Schreibwei-

se zusammengefasst werden. Eine Auswertung der notwendigen Tensorprodukte ist in

Anhang B.2 zu finden. Mit GL bis folgt:

TénP”TTf’ﬂ =P [2(]9A ~ke)peankps +2(pa - kp)ppokcr — 4(ke - kp)panpsr + (pa 'pB)ng}

2

s (Mzs s st
—45 9 —4> +Z(4MZ—S)
M2 82 3 53
=22 (2+2cos’(0)) — —| + =
[ 16 (2 + 2 cos”(0)) ] + 1
M2 2
- is (1 + cos2()) (2.37)

und mit Gl (B.19):

T3, P T = (M3g" = 40" €xonn € or DAPBKERD,

-
M2s?

cos(f) (2.38)
Damit wurde die Spinsummation erfolgreich durchgefiihrt. Es gilt

R:R, = &k M2s*(1 4 cos?(0)) + 2¢5 ¢y M 25 cos(6) (2.39)
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2. Theoretische Vorbereitungen

und kann in die Anfangsgleichung (GlI. ) eingesetzt werden. Da die Spinsummation
keine komplexen Terme produziert hat, muss nur der Realteil des Propagators genommen
werden. Mit

Re

! ] =1 s — My (2.40)

s—M%—l—zMZFZ S—M%)2+M%F2Z’

wobei ¢? = s eingesetzt wurde, folgt

e'QcQ,u(s — M3)
2s%,c3, M2s((s — M2)2 + MZT%,
OQQus—MY)s [k
siyciy((s — MZ)? + M3T%) | 2

2Re[RI MRy, ] = ) [CVCVM 2(1 4 cos?()) + 2¢5 ¢ M2 s? COS(@)}

(14 cos?(0)) + 54 005(9)1 (2.41)

Damit wurde der Interferenzterm vollstdndig bestimmt. Analog zu der photonischen
Wechselwirkung ist der erhaltene Term nur von dem Winkel zwischen p4 und EC und
der Schwerpunktsenergie abhéngig. Ebenfalls ist eine [1 + cos?(#)]-Struktur zu erkennen,
jedoch ist durch die y°-Matrix, also durch die unterschiedliche Kopplung des Z,-Bosons
an die links- bzw. rechtshindige Komponente des Spinors, ein weiterer Term, der nur von

cos(f) abhangt, entstanden.

2.5.3. Schwache Wechselwirkung

In diesem Teil wird der letzte Term der invarianten Amplitude quadriert. Zunéchst wird
die komplexe Konjugation angegangen und iiber die Spinsummation in eine Tensorstruktur
gebracht. Die auftretenden Tensorprodukte werden zwei Propagatoren beinhalten. Die
Konventionen aus Abschnitt wurden ibernommen.

Der zu berechnende Term ist

Spln Spin Spin Spin

Rz = Z Z > Z Rz, (2.42)

- et u~
i 2 Nt _ o MAT
. s Mzg q'q
UBYy(c — 47 )ua M2(q? — MZ +iMzT4
2
B —e
dsiycly M7(q* — M7 +iMzT'z)

)ﬁc%(cl(/ — 47 )vp

Rz, =
© 4stcdy,

Rz,

Zunéchst muss die komplexe Konjugation vorgenommen werden. Da fiir die fiinfte Gamma-
Matrix gilt (7°)7 = 4, ist die Konjugation fiir die Spinoren analog zu der aus Ab-
schnitt die Spinoren miissen vertauscht werden. Im Propagator dandert sich das

Vorzeichen vor dem komplexen Teil des Nenners, damit folgt:

64

165y ey Mz((¢> — M3)* + M3ZI%)
R, = @ave(ch, — 47" )op P oo (el — iy’ Jue (2.44)

|%Zo |2 R‘ZOR*ZO (243)
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2. Theoretische Vorbereitungen

Damit sind alle Vorbereitungen fiir die Spinsummation abgeschlossen. Analog zu Ab-
schnitt 2.5.2| wird diese durchgefiihrt:

1 Spm Spin Spin Spin

RaRE =53 5 zzz[vfm ¢ — Y] B [aom(ch — i)

e~ et p—

X [UA%-s(CV — Y )UB} P [UD'Y)\<CIXL/ - CZVE))UC}
1 e e e e DNT DK
= ZTI" [’Yn(cv — 47" )hava(cy — CA’YS)?éB] PP

X T [, (el — iy pm(el — iy ko] (2.45)
Um diese Spuren in die Form aus dem oben genannten Abschnitt zu bringen, wird

die Invarianz der Spur unter zyklischer Vertauschung ausgenutzt. Mit den Relationen

(7°)? =1 und v°v, = —v,,7° kann weiter umgeformt werden:

Tr |y (cfr — 47" )are(cs — <47 0pm| = Tr [Pl — ") BB (el — ¢47)]
= Tr [pavebs (e — 5°)(cy — ¢an®)| = Tr [Pavubsry ((€9)? + (c2)* — 2¢5.¢47°) |

Diese Rechnung kann analog fiir die zweite Spur iibernommen werden und mit der

Einfiihrung der Tensoren 7°78 wie folgt:

T [pavatsrn ()7 + (¢2)?)] = 4 ((¢6)* + (60)?) [()s(a)y + (PB)n(Pa)x — (DB - PA)Gn)
=4((c, )2 +(c3)?) 15, (2.46)
Tr [pavebpyny’(=2¢i¢i)| = —8ic§ e pmnn PADYS = —8ic§ 4TS, (2.47)

Tr [Fonkore () + (2)?)] = 4 () + (¢4)?) [(kp)alke)r + (kp)-(ke)s — (ke - kp)gar]
=4 ((h)* + (4)) T, (2.48)
Tr [fenkpry®(—2dich)| = =8ic chepns kERY = —8ic 4TS, (2.49)

Zusammengefasst erhédlt man eine weitaus kompliziertere Struktur, als noch in Ab-
schnitt 2.5.2¢

RzRG = 4[((c5)? + (¢4)?) T2, = 25, S T8 | PP [((ch)? + (¢4)?) T, = 2ich 4Ty, |
(2.50)
jedoch gelten dieselben Argumentationen, was dazu fithrt, dass nur die Terme mit
T PP und TS P PTS . ausgewertet werden miissen. Somit fallen alle kom-
plexwertigen Terme weg, was auch der Fall sein muss, da dieser Teil der invarianten
Amplitude ein vollstadndiges Betragsquadrat ist, und daher keine komplexwertigen Terme
auftreten diirfen. Die Auswertung der Tensoren ist in Anhang (GL. (B.20) bis (B.23)
fiir 7577 und GL fiir TOT®) vorgerechnet. Weiterhin werden wieder die Symmetrien
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2. Theoretische Vorbereitungen

der Vektoren aus Abschnitt benutzt.

To PAPTTY = PP 2pp pankpakc: + 20Bqparkp ke

_4<pB : pA)gm]kD,)\kC,q— + 4<pB : pA)%Qer)vr}
M?2s s2\ 2 M?2s 52\ 2
= |2 —2(1- - = 2 —22(1 - =
[ < 1 (1 — cos(0)) 4> + ( 1 (1 + cos(6)) 4)

M4 M22 3 2
_4S< zS  Mzs +3> 48(4M§—2M§s+32)]

2 2 4 4

2 M2s3 ¢t
= % [2M§ (1 + COSZ(9)> — 4M72s + 252} + gs — SZ
M4 2
= 2% (1 4 cos?(6)) (2.51)
TS PRAPTTS — PP, € ARk ERY
KN AT wrxn CoAxT PAPBRCRD
M4 2
=— gs cos(6) (2.52)

Es ergibt sich das Ergebnis:

482 M482

R,Rj =4 [((&V)? +(c2)?) () + (¢)?) MZ (1 + cos®()) + 4@;@;@5@%# cos(@)]

= Mys” [((03)2 + (02)2)((0’(/)2 + (cj)2>(1 + cos*(0)) + 8¢5 ¢Syl i cos(@)}

Die Spinsummation wurde damit abgeschlossen und die obige Gleichung kann in die
Anfangsgleichung (2.42) eingesetzt werden, wobei sich der Faktor M7 kiirzt und es gilt:

Tl = Tere o I L6+ (@)((e) + (7)1 + co(0))

+8¢ ¢l cos(0)] (2.53)

Damit wurde der Term der schwachen Wechselwirkung bestimmt. Analog zu dem Inter-
ferenzterm ergibt sich ein [1 + cos?(#)]-Term und ein Term der proportional zu cos(f)
ist. Dieser zweiter Term sorgt fiir eine Asymmetrie zwischen Vorwérts- und Riickwérts-
streuung, da ps parallel zu ke bevorzugt wird, wenn der Vorfaktor positiv ist. Wollte
man die invariante Amplitude fiir eine Wechselwirkung mit einem geladenem W -Boson
bestimmen, miisste man diese invariante Amplitude benutzen und (abgesehen von den
Anfangs- und Endteilchen) alle Vektor- und Axialvektorkomponenten auf den Wert Eins
setzen, wobei natiirlich zusatzlich noch die Masse des W-Bosons im Propagator benutzt

werden miisste, anstatt der Masse des neutralen Vektorbosons. Es dndert sich ebenfalls
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2. Theoretische Vorbereitungen

die Kopplungsstarke, was lediglich den Vorfaktor &ndert. Damit folgt:

ets?

32sh, ((s — M3)? + ME,T%,)

Ry=]? = [4(1+ cos®(9)) + 8 cos(0)| (2.54)

2.6. Differentieller Wirkungsquerschnitt

Eine Herleitung des differentiellen Wirkungsquerschnittes ist in Anhang gegeben. Das

allgemeine Ergebnis fiir eine Berechnung in dem Schwerpunktsystem der Reaktion ist

do
dQ

|EC| 2
=——R 2.55
647T28|]3A|| | (2.55)

cm

Mit der Kinematik (Abschnitt lisst sich der Bruch ¢l zu Eins kiirzen. Des Weiteren

[Pl
62

ist es iiblich den Wirkungsquerschnitt in Abhangigkeit der Feinstrukturkonstante o = £~

auszudriicken. Es folgt:
o2
’2

do N2, (2.56)

ol =

4ets
cm

wobei die invariante Amplitude aus dem Abschnitt eingesetzt werden muss. Da in
jedem einzelnen Term der Amplitude ein e* vorkommt, kann dieser Faktor gekiirzt werden.
Der besseren Ubersicht wegen werden fiir die Vorfaktoren vor den einzelnen Amplituden

folgende Abkiirzungen eingefiihrt:

F, = QX (2.57)
Flnt == % (258)
Swlw
1

Fy; = 2.

%o 163?;1,0%‘, ( 59)
und fir die Terme innerhalb:
ey ¢ u

Al - T A2 - CACA (260)
Ay = () +()°) ()’ +(h)?)  As=8ccachcs (2.61)

Damit ldsst sich der Wirkungsquerschnitt zusammenfassen zu

do o? [F
ol T {;(1 + cos?(0))
s — M2
+ (s — M2)? +ZM§F2Z Frp (Al(l + cos?(0)) + A cos(&))
s
+ (s — M2+ M%FQZFZO (Ag(l + cos?(0)) + Ay cos(G))] (2.62)
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2. Theoretische Vorbereitungen

Der differentielle Wirkungsquerschnitt ist nur noch von der Schwerpunktsenergie s der
Kollision und dem Winkel 6 zwischen ps und ko abhingig. Falls die Schwerpunktsenergie
genau die Masse My des Zy-Bosons erreicht, ist eine Resonanz zu erkennen. Ansonsten
fallt auf, dass es eine Asymmetrie durch die Terme mit cos(f) zwischen Vorwérts- und
Riickwartsstreuung gibt. Das bedeutet, es ist wahrscheinlicher, dass das entstehende
Muon in Richtung des einfallenden Elektronenstahls abgestrahlt wird, als dass es in die
entgegengesetzte Richtung, also die Richtung des Positronstrahls, abgestrahlt wird.

Eine Einheitenanalyse zeigt, dass, wenn man den Wirkungsquerschnitt in SI-Einheiten
haben mochte, dieser noch mit dem Faktor ¢?A? multipliziert werden muss, damit die

Einheit m? erhalten wird.
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3. Leptonischer Speicherring

3. Leptonischer Speicherring

Ziel dieses Kapitels ist es fiir einen Elektron-Positron-Speicherring Vorhersagen iiber das
Endprodukt von einem Muon-Antimuon-Paar zu machen, vorausgesetzt, dass nur Photonen
oder Zy-Bosonen als Austauschteilchen fungieren. Der dazu relevante Wirkungsquerschnitt
wurde oben in dem Abschnitt berechnet, wobei letztlich die Schwerpunktsenergie
und der Winkel zwischen einfallendem und ausgehendem Teilchen die einzigen beiden
Parameter eingehen. Um somit einen Uberblick iiber das Spektrum in dem Detektor
zu erhalten, wird zunéchst bei konstanter Energie die Winkelverteilung untersucht und
im weiteren Verlauf iber den Winkel integriert und das Verhalten unter Variation der
Schwerpunktsenergie betrachtet. Im Zuge dieser Erorterung werden Elemente der Monte-
Carlo-Eventgenerierung benutzt. Zu Beginn wird die Kinematik im Speicherring naher

erlautert.

3.1. Kinematik Il

Bei einem leptonischem Speicherring kann fiir eine Messung nur eine konstante Energie
eingestellt werden. Das bedeutet, Untersuchungen zur Variation der Schwerpunktsenergie
konnen in dieser Art von Experiment nicht kontinuierlich gemacht werden, sondern nur
schrittweise abgetastet werden.

Das Koordinatensystem und die daraus folgenden Impulse aus Abschnitt werden hier
weiter verwendet. Die einzige zu spezifizierende Grofe ist der rdumliche Impulsvektor IZC

des ausgehenden Muons. Allgemein kann der Vektor tiber

. - sin(0) cos(p)
ke = 5 sin(#) sin(p) (3.1)
cos(0)

ausgedriickt werden, wobei der neue Winkel ¢ in der Ebene, die senkrecht zum Strahl
steht, liegt. Wahrend 6 der Wahrscheinlichkeitsverteilung des differentiellen Wirkungs-
querschnittes folgt, ist ¢ unspezifiziert, d.h. fiir alle Werte gleich verteilt. Im Folgenden
wird der Wirkungsquerschnitt iiber diesen Winkel integriert, was fiir das Experiment
bedeutet, dass nicht nach diesem Winkel ¢ unterteilt wird. Die Integration kann elementar

ausgefiihrt werden und resultiert in einem Faktor von 2.

3.2. Winkelverteilung bei konstanter Schwerpunktsenergie

Da alle Vorbereitungen bereits abgeschlossen sind, kann die Untersuchung der Winkelver-

teilung direkt begonnen werden. Dazu wird mit Hilfe von Monte-Carlo-Eventgenerierung

(siche Anhang |A.6) das analytische Ergebnis des Wirkungsquerschnittes (Gl. (2.62))) aus
Abschnitt in eine statistische Verteilung verarbeitet. Von einer Betrachtung der Detek-
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toreffizienz wird abgesehen. Als Schwerpunktsenergie wird /s = 34 GeV gewiahlt.

Um eine Eventgenerierung vorzunehmen, muss zunachst das Maximum der Funktion in
dem gegebenem Intervall gefundene werden. Um dies zu erhalten, wird eine Monte-Carlo-
Integration (siehe Anhang vorgenommen und der maximale Wert gespeichert. Die zu
berechnende Integration tiber den Wirkungsquerschnitt, der im Code mit DW gekennzeich-
net wird, lauft iber § von x1=0 bis x2=n. Die Werte fiir § werden zuféllig im Intervall
[x1,x2] gewéhlt.

def xi(x):
return (x2-x1)*x + x1
for i in range(N):
rho = np.random.random()
x = xi(rho)
W[i] = np.abs(x2-x1)*DW(s,x)
if W[i] > Wmax:
Wmax = W[i]
I += Wil
Qabw += W[i]**2
I = I/float(N)
sigma = np.sqrt((Qabw/float(N) - I**2)/float(N))

Dabei wurde der maximale gewichtete Funktionswert in Wmax gespeichert. Die Integration
wurde iiber eine Millionen Iterationen durchgefithrt und es wurde ein Integralwert von
I = (133,135 £ 0,034) pB erhalten.

Um eine statistische Verteilung fiir die Muonen zu gewinnen, werden im Folgenden

Events erzeugt. Es wird fir jedes Teilchen ein zufalliger Winkel x gewahlt und seine
(x2-x1)DW(x)
Wmax
und 1 verglichen. Ist die korrespondierende Wahrscheinlichkeit grofler als die Zufallszahl,

korrespondierende Wahrscheinlichkeit mit einer weiteren Zufallszahl zwischen 0
wird das Teilchen als Event akzeptiert. Diese Iteration wird solange fortgefiihrt bis
die gewiinschte Anzahl an Events erreicht wurde; in diesem Fall 500.000. Mit dem

Programmcode

Wi = np.zeros(Nevents)
i=0
while i<Nevents:
rho = np.random.random()
x = xi(rho)
Wtest = np.abs(x2-x1)*DW(s,x)
if Wtest/Wmax > np.random.random() :
Wil[i] = xi(rho)

i+=1
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Abbildung 4: Vergleich der eventgenerierten und analytischen Verteilung des Wirkungsquer-
schnittes bei einer Schwerpunktsenergie von 34 GeV.

wird dies realisiert. Die entstehende Verteilung ist in Abb. |4/ zu sehen. Die Monte-Carlo-
Eventgenerierung besitzt eine Verteilung, die direkt der analytischen Verteilung folgt.

Des Weiteren ist zu erkennen, dass eine Asymmetrie zwischen der Erzeugung der Muonen
in Richtung der Elektronen (f = 0) und entgegengesetzt (# = m) vorliegt. Dies liegt den
Termen, in welchen der cos(f) linear eingeht, zu Grunde. In diesem Energiebereich besitzt
der Interferenzterm einen groferen Einfluss als der Term der schwachen Wechselwirkung.
Und da der Interferenzterm mit einem Faktor s— M eingeht, wird in diesem Energiebereich
(s < M%) das Vorzeichen vor dem cos(f) gedreht, was dazu fiihrt, dass ein Muon weniger
wahrscheinlich mit einem Impuls in Richtung des Elektronenstrahls erzeugt wird. Fiir das

Antimuon gilt entsprechend das Gegenteil.

3.3. Variation der Schwerpunktsenergie

Eine weitere Anwendung eines leptonischen Speicherrings ist die Untersuchung des Wir-
kungsquerschnittes bei Verdnderung der Schwerpunktsenergie. Dazu wird tiber die Win-
kelabhéngigkeit von 0 bis 7 integriert, wobei die Terme mit cos(f) wegfallen, da diese in

dem gegebenem Intervall asymmetrisch sind. Es folgt:

a’cm =

Oé72 % + 8A1(S - M%) + 8A38
4 [3s T UM3((s — M2)2+ M2TZ) T 73((s — M2)? + M2I2)
202 [ F, Ai(s— M32) Aszs
=% |7 Tl 212 5o + 1% 212 272
3 | s (s — M2)?>+ M2T%, (s — M%)+ M2T%,

(3.2)

Diese Terme sind wegen der Resonanz bei s = M2 nicht ohne Vorbereitung zur Generation
von Events geeignet, da die Flache, die die Funktion einschlielt, nur ein kleiner Teil von
dem Rechteck ist, in dem die Events zuféllig erzeugt werden. Um den Integrationsbereich

flacher zu gestalten, bietet sich eine Substitution der Form s = M, tan(p) + M2 an
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Abbildung 5: Vergleich der Integrationsbereich vor und nach der Substitution. Nach der
Substitution nimmt die Funktion einen gréferen Bereich der Fléche ein, womit
die Eventgenerierung schneller abgeschlossen werden kann.

(siehe Anhang , da damit die Resonanz verschwindet. Der Integrand wird damit zu

202 1 + tan?(p) M.
0 |em FriAit F, A <t ) . 3.3
7| 3 W\FLZZ T tan(p) + FrpeArtan(p) + Fz,As ( tan(p) + T, (3.3)

Wie an dem ersten Term auffallt, ist diese Substitution nicht fiir geringe Energien geeignet,
also in dem Bereich, in welchem die elektromagnetische Wechselwirkung den grofiten
Beitrag liefert. Um dieses Problem zu umgehen, wird nur ein Energieintervall von 70 bis
110 GeV betrachtet. Damit folgt fiir die Substitution p,.. = 1.51 und pp, = —1.5. Ein
Vergleich der Integrationsbereiche vor und nach der Substitution ist in Abb. |5/ zu sehen.
Bei niedrigeren Energien divergiert die linke Flanke von Abb. |5b|stéirker, was die relative
Flache unter dem Integranden verringert, bei hoheren Energien analog.

Die Integration und Eventgenerierung wird analog zu Abschnitt[3.2|vorgenommen, nur dass
anstatt des Winkels iiber die Schwerpunktsenergie integriert und generiert wird. Nachdem
die Events generiert wurden, miissen die gespeicherten p-Werte wieder resubstituiert
und nach der Schwerpunktsenergie in ein Histogramm sortiert werden. Das Ergebnis
far 500.000 Events ist in Abb. [6] zu sehen. Ein Vergleich mit Abb. [5al zeigt, dass die
Eventgenerierung dasselbe Verhalten zeigt wie die analytische Losung. Die Resonanz ist
leicht asymmetrisch beztiglich der Masse Mz = 91,19 GeV des Zy-Bosons. Dies kann damit
erklirt werden, dass der Interferenzterm einen Faktor s — M% im Zéhler besitzt und damit
den Wirkungsquerschnitt nach Uberschreiten der Resonanz leicht anhebt, dominiert wird
das Verhalten von dem Betragsquadrat des Z;-Boson Ubergangs. Der elektromagnetische
Teil spielt in diesem Bereich wegen seiner % Abhéngigkeit nur eine kleine Rolle.

Die meisten Events werden bei der Resonanz, also der Masse des Zy-Bosons erwartet. Das

bedeutet fiir das Experiment, dass, wenn man die Schwerpunktsenergie erhoht und in die
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Abbildung 6: Die Monte-Carlo-Eventgenerierung fiir einen Energiebereich von 70 bis 110 GeV.
Die meisten Events werden fiir Resonanz bei der Masse des Zp-Bosons erwartet.

Néhe von 91,19 GeV kommt, die Reaktionsrate im Detektor stark ansteigen sollte.

3.4. Zusammenfassung

Es wurden anhand eines Leptonischen Speicherringes die grundlegenden Anwendungen
der Monte-Carlo-Eventgenerierung gezeigt und das Verhalten des differentiellen Wirkungs-
querschnittes erlautert.

Dazu wurde bei fester Energie auf die Vorwarts-Riickwarts-Asymmetrie bei der Erzeugung
der Muonen eingegangen und aufgezeigt, wie aus einer analytischen Verteilung eine sta-
tistische Verteilung der Events gewonnen werden kann. Des Weiteren wurde anhand der
Variation der Schwerpunktsenergie ein Vorgehen erklért, wie bei einer starken Resonanz

die Effizienz der Monte-Carlo-Eventgenerierung gesteigert werden kann.
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4. Hadronischer Speicherring

In diesem Kapitel soll gezeigt werden, wie aus den bisherigen Ergebnissen und Methoden
die Eventgenerierung auf einen hadronischen Speicherring angewendet werden kann. Die
erste grundlegende Anderung zu einem leptonischen Speicherring ist, dass nicht mehr
darauf riickgeschlossen werden kann, welche Teilchen an der Reaktion teilgenommen
haben, da Protonen und Neutronen ein Zusammenschluss aus mehreren Quarks sind.
Des Weiteren ist der Schwerpunkt der reagierenden Teilchen nicht mehr automatisch im
Ruhesystem des Labors, da die Quarks unterschiedliche Anteile der Energien des Hadrons
besitzen. Eine definierte Energie kann jedoch nur den Hadronen zugewiesen werden. Die
jeweiligen Anteile der Energien pro Quark werden iiber Wahrscheinlichkeitsverteilungen,
den sogenannten Parton-Verteilungsfunktionen, modelliert. Das Muon-Antimuon-Paar
besitzt dadurch nicht mehr das Laborsystem als Schwerpunktsystem und wird von dem
Laborsystem mit einem Lorentz-Boost detektiert.

Es wird aulerdem gezeigt, wie das Detektorsignal tiber eine geeignete Filterung so darge-
stellt werden kann, dass trotzdem auf die zugrundelegende Wechselwirkung geschlossen
werden kann. Dabei wird sich auf den Fall eines Proton-Proton-Speicherrings bezogen,

aber die Ergebnisse lassen sich leicht auf einen Proton-Antiproton-Speicherring anwenden.

4.1. Phanomenologie

Im Falle eines Proton-Proton-Speicherringes werden die Strahlen mit sehr hohen Energien
zur Kollision gebracht. Da die Konstituenten des Protons jedoch jeweils nur einen Anteil
der Energie besitzen, ist die Schwerpunktsenergie der reagierenden Teilchen, im Folgenden
mit § bezeichnet, variabel. Das fithrt dazu, dass, obwohl eine definierte Strahlenenergie
angegeben werden kann, die entstehenden Muon-Antimuon-Paare mit den unterschied-
lichsten Energien erzeugt werden und dass das Schwerpunktsystem des Paares nicht mit

dem Ruhesystem des Labors iibereinstimmt. Der Wirkungsquerschnitt wird jedoch im

dé
dcos(0)

Schwerpunktsystem der Quarks berechnet und wird deswegen im Folgenden mit
bezeichnet.

Um das Verhalten zu beschreiben, werden verschiedene Groflen eingefithrt: Mit .S wird die
Schwerpunktsenergie der Protonen-Kollision bezeichnet, mit z; und x5 soll der Energiean-
teil der beiden Quarks ¢; und ¢» von den jeweiligen kollidierenden Protonen angegeben

werden, wobei die Bedingung

erfiillt sein muss. Auf die Wahrscheinlichkeitsdichten f,(x;, §) fiir die einzelnen Quarks
wird im folgenden Abschnitt (4.2) eingegangen.
Fiir den oben bestimmten Wirkungsquerschnitt kann nur eine Reaktion von Quark und

Antiquark desselben Flavours stattfinden. Da jedoch die Quarks der dritten Generation
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(Top- und Bottom-Quark) sehr grole Massen besitzen und die Massen vernachléssigbhar
klein sein sollten, werden diese von der Betrachtung ausgeschlossen. Damit folgt, dass die
Reaktion tiber vier verschiedene Anfangsteilchen laufen kann und aus dem Endprodukt
nicht mehr zu entscheiden ist, welche diese waren.

Eine weitere Unbekannte bei der Reaktion ist die Farbladung der Quarks. Da jedoch
die hier betrachtete Wechselwirkung nicht von der Farbladung abhangt, kann diese iiber
eine Mittelung ausgedriickt werden. Der resultierende Faktor ergibt sich zu %, da die
Wabhrscheinlichkeit fiir ein Quark eine bestimmte Farbladung zu haben jeweils % ist, es
aber drei Moglichkeiten gibt fiir das Quark-Paar farbneutral zu bleiben. Diese letzte
Forderung muss erfiillt sein, da das resultierende Muon-Antimuon-Paar farbneutral ist.

Alle Effekte zusammengefasst, gelangt man zu folgendem Wirkungsquerschnitt:

do 1 / 1 / dé (8, cos(0))
deos(6) 3%3 / ds 0/ dzy 0/ g 6(Sz1s — §)fq(x1,§)fq(:c2,§)w (4.2)

min

Wiéhrend die Parton-Verteilungsfunktionen fiir die richtige Gewichtung bei den unter-
schiedlichen Energieanteilen sorgt, stellt die 6-Funktion sicher, dass Gl. erfiillt ist.
Die Summe tiber die Quark-Antiquark-Paare lauft iiber die vier moglichen Quarktypen:
Up-, Down-, Charm- und Strange-Quark. Die minimale Energie S,,;, wurde wie zuvor
eingefiihrt, damit der Photon-Ubergang nicht divergiert.

Eine finale Komplikation ist, dass es keine Moglichkeit gibt zu entscheiden, aus welchen
der beiden Protonen das Antiteilchen entstammt. Da jedoch der Winkel 0 entgegengesetzt
zu der Bewegungsrichtung des Antiteilchens definiert wurde, muss fiir den Fall gq, bei dem
das Antiquark dem ersten Proton entstammt, der cos(f) zu — cos(#) gedreht werden. Wie
spater deutlich wird, kiirzt sich damit die Vorwérts-Riickwarts-Asymmetrie der erzeugten
Muonen aus Abschnitt weg. Bei einer Proton-Antiproton Kollision wiirde sich die
Asymmetrie bemerkbar machen, da in diesem Fall eine ausgezeichnete Strahlrichtung
vorliegt und das Antiquark mit einer grofleren Wahrscheinlichkeit aus dem Antiproton

entstammt.

4.2. Parton-Verteilungsfunktionen

Die Parton-Verteilungsfunktionen (PDF) geben die Wahrscheinlichkeitsdichte f,(z, Q?)
an, ein Quark in einem Hadron mit der Energie @) zu finden, wenn diese genau der Anteil
x der Energie des Protons ist. Hierbei wird angenommen, dass das Proton eine sehr hohe
Energie besitzt, damit die Quarks als masselos angenommen werden konnen und sich
Energie und Impuls des Quarks ausgleichen.

Durch die PDF’s lassen sich hadronische Prozesse bei grofier Energie vollstandig mit
Subprozessen der Konstituenten des Hadrons beschreiben [7]. Die Dichten multipliziert

mit den Energieanteilen sind in Abb. [7| fiir ein Proton abgebildet. Zur Implementierung
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Abbildung 7: Die Parton-Verteilungsfunktionen fiir verschiedene Flavours und ihre korrespon-
dierenden Anti-Teilchen bei @@ = 90 GeV. Als PDF-Set wurde ’CT14nlo’ [3]
verwendet.

der Verteilungsfunktionen wurde 'LHAPDF6’ [2] verwendet. Das benutzte PDF-Set ist
'CT14nlo’ [3].

Bei grofien Energieanteilen dominieren im Proton die Up- und Down-Quarks, die sogenann-
ten Valenzquarks. Bei geringen Anteilen steigen jedoch ebenfalls die Quarks der anderen
Flavours an, was fiir den Speicherring von enormer Bedeutung ist, da die Protonen mit
Energien im Bereich von TeV kollidieren, wahrend die Reaktion zum gréfiten Teil (siehe
Abschnitt |3.3) im Bereich von 90 GeV stattfindet.

Wiirde man einen Proton-Antiproton-Speicherring simulieren wollen, miisste man anstatt
der Proton-Verteilungsfunktionen Antiproton-Verteilungsfunktionen benutzen, was ef-
fektiv bedeutet, dass alle Teilchenfunktionen von den Proton-Verteilungsfunktionen zu

Antiteilchenfunktionen werden und vice versa.

4.3. Kinematik Il

Da im folgenden zwischen zwei Lorentz-Systemen gewechselt wird, werden die Impulse im
Labor-System mit Grolbuchstaben und im Schwerpunktsystem der Quarks mit kleinen
Buchstaben bezeichnet. Das Koordinatensystem wird so eingefiihrt, dass die kollidierenden
Protonen sich in z-Richtung sich mit den Impulsen P4 g bewegen. Die Massen werden
vernachléssigt. Die Quarks besitzen nun einen Impuls p; = x1P4 und py = x5 Pg, was

dazu fithrt, dass diese sich mit einem Gesamtimpuls P in dem Laborsystem bewegen.

8 s (21 + 72) %
0 0 0
Py = Py — j 43
A 0 B 0 0 (4:3)
5 5 (01~
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Somit ist die Geschwindigkeit 8 = ¥ gegeben durch 8 = @ = o und der Lorentz-Boost
kann berechnet werden. Da die Bewegung nur in Richtung der z-Achse liegt, bleiben
die ersten und zweiten Komponenten davon unbeeinflusst. Dies ist praktisch, wenn die
Impulsvektoren des entstehenden Muon-Antimuon-Paares in dem Laborsystem berechnet
werden sollen. Die allgemeinen Vektoren fiir ein Muon und ein Antimuon besitzen in dem

Schwerpunktsystem der Quarks folgende Form:

1 1
B V5 | cos(y)sin(f) B V5 | —cos(p)sin(6)
Pn="y sin(¢p) sin(0) Pr="37] _ sin(¢p) sin(6) (44)
cos(0) — cos(0)

mit 0, ¢ in der iiblichen Definition. Mittels einer Lorentz-Transformation kénnen nun die

Impulse in dem Laborsystem berechnet werden. Mit v = \/11_? folgt:

(1 = Bcos(h)) (14 Bcos(8))
P, - ﬁ C?S( ©) sin(0) - ﬁ —c?s( ©) sin(0) (4.5)
2 sin(¢p) sin(0) 2 — sin(yp) sin(6)

7(cos(6) — ) —7(cos(6) + 7)

Bemerkenswert ist hierbei, dass die transversalen Komponenten der Muonen-Impulse nicht
von der Lorentz-Transformation betroffen sind und somit die volle Information tiber die

Reaktion in sich tragen. Diese Eigenschaft wird spater enorme Wichtigkeit erhalten.

4.4. Monte-Carlo-Integration

Das Ziel ist es Gl. (4.2) zu integrieren, um eine Eventgenerierung zu ermdglichen. Zunéchst
kann iiber die 6-Funktion integriert werden. Um spéter geschickt substituieren zu kénnen,
wird zy gewdhlt. Mit §(f(z)) = ¥, |f/(z)|~"! folgt:

dcos Z / ds/d:rq (w1, 8)Ja (Sih S) d(%éi’ocs(zz()e))’ (4.6)

qu

wobei sich die untere Grenze von x; gedndert hat, da sonst die Bedingung nicht erfiillt wird
und somit die d-Funktion nicht geldst werden kann . Um nun den Bruch i zu eliminieren,

wird § = 75 (also 7 = z125) substituiert und die Rapiditat y mit der Definition von P

aus Abschnitt [4.3] via PO p
1 P\ _ 1 (m
1 L (m 1,
y 2n<P0—PZ> 2n<x2) o
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eingefiihrt. Somit ergeben sich 215 = /7€ und die gewiinschte Jacobi-Determinante so,

dass dsdz; = Sx1drdy gilt. Die Integrale transformieren sich zu:

1 —5 In(7) R
do 1 2 do (5, cos(0))
S v (Ve V. 78—y
dcos(®) 3 qEqS //S dr /() dy fo(V7e?, 78) fa(\/Te™¥, 7S) dcos(8) (4.8)
’ min %h‘l T

wobei sich die Grenzen von y durch 3 In (?) mit 2 = 1 und 2" = % = T ergeben.
Hier tritt der Spezialfall auf, dass die Grenzen von y von 7 abhéngig sind. In der Monte-
Carlo-Integration wird dies gelost, indem zuerst der Wert von 7 zuféllig generiert wird
und damit der Wert von y erzeugt wird.

Damit sind alle Vorbereitungen abgeschlossen und die Monte-Carlo-Integration kann durch-
gefithrt werden. Um eine bessere Eventgenerierung zu erhalten, wird die Resonanz bei My
wieder mit der bekannten Substitution aus dem leptonischen Speicherring (Abschnitt

substituiert. Das bedeutet fiir diesen Fall:

§  Myl'ytan(p) 4+ M3

s = (4.9)

T =
Diese Substitution transformiert den Integranden durch die Divergenzen von der elektroma-
gnetischen Wechselwirkung und zusatzlich der Parton-Verteilungsfunktionen bei niedrigen
Impulsanteilen nicht in eine optimal flache Funktion, weswegen die Integration eine starke
Varianz aufweist, die sich hier nur durch besonders viele Iterationen abschwéchen lésst.
Deswegen wurde bei der Verwendung dieses Codes N=100.000.000 gewahlt:

Smin =20.%*2

S = 8000.*x*2

Einheiten = (alphaxh#*c)**2/(3.*S*10%*18)

RHOminZ = np.arctan((Smin-MZ0**2)/(FWZ0*MZ0))
RHOmaxZ = np.arctan((S-MZ0**2)/(FWZ0*MZ0) )
Integralgrenzen = 2.*np.pi*(1-(-1))*(RHOmaxZ-RHOminZ)

for i in range(N):
cos = 2.*np.random.random() - 1.
rho = RHOminZ + (RHOmaxZ-RHOminZ)*np.random.random()
t = (MZO*FWZO*np.tan(rho)+MZ0**2) /S
ymax = -0.5*np.log(t)

y = (2.#*np.random.random()-1)*ymax

x1
x2 = np.sqrt(t)*np.exp(-y)

W[i] = 2.*xymax*Integralgenzen*DW(x1,x2,t*S,rho,cos)
if W[i] > Wmax:

np.sqrt (t)*np.exp(y)
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Wmax = W[i]
I += W[i]
Qabw += W[i]**2
I *= 1./float(N)
sigma = Einheiten*np.sqrt(np.abs(Qabw/float(N) - I*x*2)/float(N))

I *= Einheiten

Die Integralgrenzen ergeben sich durch die Integration iiber ¢ von 0 bis 27 und cos(6)
von -1 bis 1.

Die Funktion DW beinhaltet die Summation iiber die Flavours. Eine Parton-
Verteilungsfunktion wird iiber die Methode proton.xfxQ2(#Flavour,x,s) aufgerufen,
was die Verteilungsfunktion, multipliziert mit ihrem Impulsanteil z, zurtickgibt. Deswegen
wird in jeder Zeile nochmal durch x,z, geteilt. Wie im letzten Absatz von Abschnitt
beschrieben, muss iiber die Moglichkeiten summiert werden, dass das Quark von dem

ersten Proton oder dem zweiten Proton gestellt wird. Dies dreht den cos(f) zu — cos(0).

def DW(x1,x2,s,rho,cos):

#up—- & charm-Quarks —> quark=1

value = hatDW(rho,cos,1)*(proton.xfxQ2(2,x1,s)*proton.xfxQ2(-2,x2, s)
+ proton.xfxQ2(4,x1,s)*proton.xfxQ2(-4,x2,s))/(x1*x2)

value += hatDW(rho,-cos,1)*(proton.xfxQ2(2,x2,s)*proton.xfxQ2(-2,x1,s)
+ proton.xfxQ2(4,x2,s)*proton.xfxQ2(-4,x1,s))/(x1*x2)

#douwn—- & strange- & bottom—Quarks -> quark=2

value += hatDW(rho,cos,2)*(proton.xfxQ2(1,x1,s)*proton.xfxQ2(-1,x2,s)
+ proton.xfxQ2(3,x1,s)*proton.xfxQ2(-3,x2,s))/(x1*x2)

value += hatDW(rho,-cos,2)*(proton.xfxQ2(1,x2,s)*proton.xfxQ2(-1,x1,s)
+ proton.xfxQ2(3,x2,s)*proton.xfxQ2(-3,x1,s))/(x1*x2)

return value

Als letztes wird noch die Methode hatDW aufgerufen. Diese ruft den berechneten Wirkungs-
querschnitt fiir die unterschiedlichen Quark-Typen auf, da sich von Up- zu Down-Quark
(und von Charm- zu Strange-Quark) die Vektor- (¢y) und Axialvektorkopplungen (c4)
andern.

Insgesamt ergibt sich ein Integralwert von (1319,36 + 2,03) pB. Die groBe Unsicherheit bei
Einhundertmillionen Iterationen zeigt deutlich, dass der Integrationsbereich nicht optimal
flach ist.

4.5. Eventgenerierung und -filterung

Der Code fiir die Eventgenerierung ergibt sich fast analog zu dem Code zur Berechnung des

Integrals. Eine weitere Besonderheit ist, dass fiir jedes Teilchen alle generierten Parameter
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gespeichert werden, damit die angesprochene Lorentz-Transformation aus Abschnitt
durchgefithrt und das reale Detektorsignal gewonnen werden kann. Die Generierung wird

iiber diesen Code vorgenommen:

Wi = np.zeros((Nevents,4)) # Aufbau: [z1,z2,cos(theta),sin(phi)]
Ecm = np.zeros(Nevents) # Energie CMS der Quarks

i=0

while i<Nevents:

cos = 2.#*np.random.random() - 1.

sin = np.sin(2.#*np.pi*np.random.random())
RHOminZ + (RHOmaxZ-RHOminZ)*np.random.random()
t = (MZO*FWZO*np.tan(rho)+MZ0**2) /S

ymax = -0.5+%np.log(t)

rho

y = (2.#np.random.random()-1)*ymax
x1 = np.sqrt(t)+*np.exp(y)
x2 = np.sqrt(t)*np.exp(-y)
Wtest = 2.*ymax*Integralgenzen*DW(x1l,x2,t*S,rho,cos)
if Wtest/Wmax > np.random.random() :
Wili,0]=x1
Wili,1]=x2
Wili,2]=cos
Wi[i,3]=sin
Ecm[il=np.sqrt (t*S3)

i+=1

Es wurden Einhunderttausend Events generiert. Die Ergebnisse sind in zwei Histogrammen,
einmal die Energie in dem Schwerpunktsystem der Quarks und einmal die detektierbare
Energie im Labor-System, in Abb. |8 dargestellt. Man beachte, dass die gesamte Energie
des Muon-Antimuon-Paares aufgetragen ist und nicht nur die von einem Muon. Damit
ware die Resonanz nicht bei 91,19 GeV sondern bei 45,6 GeV. Da die Events nur bis zu
einer Minimalenergie von 20 GeV generiert wurden, ist der Bereich fiir kleinere Energien
von der Auswertung auszuschlielen.

In der Grafik ist deutlich zu erkennen, dass die Events in dem Schwerpunktsystem der
Quarks genau der erwarteten Verteilung folgen, aber das Signal im Labor-System nicht
mehr deutlich zu erkennen ist. Wiirde noch Detektoreffizienz und Untergrundrauschen
hinzugefiigt werden, ware das Signal in keiner Weise zu erkennen. Um dennoch beispiels-
weise auf die Masse des Zy-Bosons schlieen zu konnen, wird das Signal geeignet gefiltert.
In Abschnitt wurde bereits angedeutet, dass es sinnvoll ist, die Impulse der Muonen
in einen longitudinalen und einen transversal Anteil zur urspriinglichen Strahlrichtung zu

zerlegen, da nur der longitudinale Impulsanteil von der Lorentz-Transformation beeinflusst
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Abbildung 8: Die generierten Events nach ihrer Energie im Schwerpunktsystem der Quarks
und im Labor-Frame in einem Histogramm dargestellt. In dem Energiebereich
unterhalb von 20 GeV werden keine Events erzeugt, weswegen dieser Bereich fiir
die Auswertung ausgeklammert werden muss.

wird. Es wird definiert:

. [ cos(yp)sin(0)
P,u,long = 5 P,LL,tI‘aIlS = i sm(gp) Sln(@) (410)
7 (cos(6) — B) 0

Mit den gespeicherten Daten aus der Generierung lassen sich die Betrage und somit
die Energien in longitudinaler und transversaler Richtung bestimmen. Die transversale
Komponente beinhaltet noch die unverdnderte Wechselwirkung der Reaktion, weswegen
in ihr das beste Signal zu erwarten ist. Die Ergebnisse sind in Abb. [9) abgebildet, wo in
der longitudinalen Energiekomponente keine Struktur zu erkennen ist, wihrend in der
transversalen Komponente eine deutlich Resonanz bei 91,19 GeV zu erkennen ist, die kurz
dahinter zu beinahe Null abfaillt. Dies ist das typische Verhalten fiir eine Resonanz in
einem hadronischen Speicherring.

Ein weiterer Punkt der Auswertung ist die Verteilung des cos(6)’s. Hierzu werden von allen
produzierten Muonen (unabhéngig von der Schwerpunktsenergie) die Winkelinformationen
in einem Histogramm zusammengetragen. Dies ist zulassig, da die Terme des Wirkungs-
querschnittes, die die Winkelverteilung beschreiben, nicht untereinander unterschiedlich
mit der Energie gewichtet werden. Das bedeutet, die Winkelverteilung ist fiir alle Energien
gleich. In Abb. [10]ist die bisher beobachtete Asymmetrie zwischen Vorwéarts- und Riick-
wértsstreuung nicht zu erkennen. Dies ist dem Fakt geschuldet, dass im Detektor nicht

unterschieden werden kann, in welchem Proton das Antiteilchen erzeugt wurde. Deswegen
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Abbildung 9: Die longitudinale und transversale Impulskomponente des erzeugten Muon-
Antimuon-Paares im Labor-System. Mit dieser Filterung ist die Resonanz der
Reaktion deutlich zu erkennen.

mussten beide Moglichkeiten, wobei diese mit gedrehten cos(f) zu berticksichtigen sind,
mit einbezogen werden. Damit kiirzt sich effektiv der ungerade Teil (also der Term mit

linearem cos(#)), der die Asymmetrie gewahrleistet, raus.

1200 -
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-1.0 -0.5 0.0 0.5 1.0

Abbildung 10: Die Verteilung von cos(f). Es ist keine Asymmetrie zwischen cos(f) = 1 und
cos() = —1 zu erkennen. Dies ist damit zu erkliren, dass nicht unterschieden
werden kann, ob das Antiteilchen aus dem ersten oder zweiten Proton entstammt
und damit beide Félle gleich, aber mit gedrehtem Cosinus (also cos(f)
— cos(#)) beriicksichtigt werden.
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4.6. Produktion von W-Bosonen

Es gibt eine weitere Teilchenreaktion, die in einem hadronischen Speicherring auftritt
und mit einer leichten Anpassung der bisherigen Methoden simuliert werden kann: eine
Teilchenreaktion, bei der ein virtuelles W-Boson ausgetauscht wird. In Abschnitt
wurde bereits erlautert, wie aus der quadrierten invarianten Amplitude mit einem Z,-Boson
als Austauschteilchen die hier gewiinschte Amplitude erhalten werden kann. Im Folgenden
wird sich auf ein W~ -Boson beschrankt. Um ein W*-Boson zu beschreiben, miisste nur
bei den Anfangs- und Endteilchen eine Konjugation von Teilchen zu Antiteilchen und vice
versa vorgenommen werden.

Da hier eine Proton-Proton-Kollision betrachtet wird, kommen als Anfangsteilchen ud
und ¢s vor. Auch hier kann nicht unterschieden werden, welches Proton das Antiteilchen
stellt. Beide Moglichkeiten miissen mit 180° gedrehtem Winkel berticksichtigt werden
und die Asymmetrie zwischen Vorwérts- und Riickwartsstreuung ist nicht zu erkennen.
Als Endteilchen wird ein Muon und ein Antimuon-Neutrino gewéhlt. Zu bemerken ist,

dass bis auf die Partonverteilungsfunktionen keine teilchenspezifischen Parameter in die

Reaktion mit dem Wirkungsquerschnitt (aus Gl. (2.54) und (2.56))

do B a’s

{(1 + cos?(6)) + 2 cos(@)} (4.11)

eingehen. Das zu berechnende Integral ist der gleichen Form wie in Abschnitt 4| und die
Vorgehensweise der Monte-Carlo-Integration und -Eventgenerierung wird analog durchge-
fiihrt.

Die Integrationsparameter (Schwerpunktsenergie und minimale Schwerpunktsenergie der
Quarks) werden zur Vergleichbarkeit mit Abschnitt genauso gewéhlt. Mit einer Mil-
lionen Iterationen wurde der Wirkungsquerschnitt zu (215,42 £+ 0,15) pB berechnet. Hier
ist bereits auffallig, dass trotz geringerer Iterationen der Wirkungsquerschnitt genauer
bestimmt werden kann. Dies liegt daran, dass keine % Divergenz durch ein Photon als
Austauschteilchen existiert und die Substitution effektiver ist. Trotzdem werden nicht mehr
Events als im vorherigen Abschnitt generiert, um die Vergleichbarkeit hoch zu halten.
Die Ergebnisse sind ungefiltert in Abb. [11) und gefiltert in Abb. [12]| zu sehen. Es ist zu
erkennen, dass auch in diesem Fall die Filterung nach longitudinalen und transversalen
Energickomponenten die Deutlichkeit der Resonanz enorm verbessern. Im Gegensatz zu
den bisherigen Ergebnissen steigt die Zahlrate bei kleinen Energien nicht an, da hier
keine Divergenz des Photons zu berticksichtigen ist. Dies verbessert zusatzlich die Deut-
lichkeit der Resonanz. Fiir ein W*-Boson als Austauschteilchen ergeben sich in dieser

Betrachtungsweise bis auf Anfangs- und Endteilchen keine Unterschiede.
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Abbildung 11: Die Energien des Muon-Antimuon-Neutrino-Paares in ihrem Schwerpunktsys-
tem und in dem Laborsystem.
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Abbildung 12: Die gefilterten longitudinalen und transversalen Energien fiir ein W~-Boson
als Austauschteilchen.
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5. Schlussfolgerung

Im Rahmen dieser Bachelorarbeit wurde gezeigt, wie der differentielle Wirkungsquerschnitt
fiir eine Reaktion mit einem Photon oder einem Zy-Boson aus einem Feynman-Diagramm
erhalten werden kann. Dazu wurde erortert, wie die relevanten Wechselwirkungen im
Standardmodell beschrieben werden und die daraus folgende Rechnung wurde im Detail
durchgefiihrt.

Zur Auswertung des erhaltenen Wirkungsquerschnittes wurden zwei relevante Experi-
mente aus theoretischer Sicht aufbereitet und es wurde gezeigt, wie man mit Methoden
der Monte-Carlo-Integration und -Eventgenerierung aus der theoretischen Beschreibung
mit dem Experiment vergleichbare Ergebnisse produzieren kann. Als erstes Experiment
wurde die Reaktion in einem leptonischen Speicherring untersucht und im Rahmen dessen
die Winkelverteilung bei konstanter Strahlenenergie und die Resonanz des Propagators
eines massiven Vektorbosons mittels Variation der Strahlenenergie analysiert. Mit diesen
Ergebnissen und Methoden konnte ein hadronischer Speicherring simuliert werden. Mit
Hilfe von Parton-Verteilungsfunktionen konnte eine Proton-Proton-Kollision in der Art
beschrieben werden, dass nur die Teilchenreaktionen stattfinden, die mit dem berechne-
ten Wirkungsquerschnitt wiedergegeben werden. Des Weiteren wurde gezeigt, wie durch
Zerlegung in longitudinale und transversale Impulskomponenten das Signal im Detektor
so aufbereitet werden kann, dass Aussagen iiber die zugrundeliegende Wechselwirkung
getroffen werden konnen.

Im Verlauf dieser Arbeit wurden verschiedene Naherungen und Vereinfachungen vorgenom-
men, die im Nachhinein noch korrigiert werden konnten. Bei der Berechnung des Wirkungs-
querschnittes wurde der Prozess auf niedrigster Ordnung untersucht. Eine Untersuchung
der hoheren Ordnungen der Storungsreihe wiirde die berechneten Wirkungsquerschnitte
korrigieren. Des Weiteren wurden in der Berechnung die Massen aller Anfangs- und End-
teilchen vernachléssigt. Dies wiirde ebenfalls die Berechnung des Wirkungsquerschnittes
verdndern. Bei der Beschreibung der Detektoren wurden weder Anpassungen hinsichtlich
der Detektoreffizienz getroffen, noch wurde Rauschen im Detektor miteinbezogen. Um
eine realistisches Detektorsignal zu erhalten, miissten diese Effekte miteinbezogen werden.
Ebenfalls hat sich bei der Monte-Carlo-Eventgenerierung des hadronischen Speicherringes
die Vorgehensweise als ineffizient erwiesen, da die minimale Schwerpunktsenergie des
Quark-Paares so gering gewéhlt wurde, fir eine dauerhafte Anwendung wiirde es sich

empfehlen eine andere Methode des 'Importance Sampling’s zu finden.
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A. Theoretische Grundlagen

In diesem Kapitel sollen die Grundlagen, die fiir das Verstdndnis der Arbeit essentiell

sind, erlautert werden.

A.1. Dirac-Gleichung

Die Dirac-Gleichung ist die Zustandsgleichung fiir relativistische Fermionen und lautet

mit den Gamma-Matrizen ~* fiir ein freies Teilchen
(thy"0, — me)y = 0. (A1)

Die Gamma-Matrizen sind iiber die Vertauschungsrelation v#v” + y*~4* = 2¢"*1,, mit g"”
als Minkowskimetrik mit Signatur (4, —, —, —) definiert. Da die Vertauschungsrelation
eine Freiheit in der Wahl der Basis besitzen, wird im Folgenden die Dirac-Basis gewéhlt.

Damit gilt fiir die Matrizen (0" sind die Pauli-Matrizen):

I 0 . 0 o 0 I

0 2 i 5 . 0.1.2.3 2
= = ) = =

7 (0 —Ig) 7 (—0’ O) 7 T (Ig O)

Die y°-Matrix ist das Produkt aus den vier Gamma-Matrizen und wird im spéteren Verlauf
fir die Behandlung der Chiralitat benotigt.
Die allgemeine Losung der Dirac-Gleichung fiir ein freies Teilchen lautet ¢ = u(p)e™ #?"®x

mit dem Spinor u(p), der nach Einsetzen der Losung in die Dirac-Gleichung
(p — mc)u(p) = (v"'pu — me)u(p) =0 (A.2)

erfiillen muss. Daraus ergibt sich, aufgeteilt in die verschiedenen Spinzustinde s = 1
oder 2 (fiir Spin 'up’ oder ’"down’) und Teilchen von Antiteilchen (mit v(p, s) bezeichnet)

getrennt folgende Losung:

1 0
0 1 .
u(p,s=1)=N by u(p,s=2)=N . fir E >0 (A.3)
E+mc? E+mc?
P1+ip2 —P3
E+mc? E+mc?
P1—1p2 D3
E+mc? E+mc?
—Dp3 p1tip2
v(p,s=1)=N E%ﬂCZ v(p,s=2)=N ETCQ fir E<0  (A4)
1 0
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N ist jeweils die Normierungskonstante, welche, wenn man die Norm einer Wellenfunktion
mit 2F gleichsetzt, zu N = /E + mc2 berechnet werden kann. Die Norm soll 2E ergeben,
damit sich die Gesamtwahrscheinlichkeit bei einer Lorentz-Transformation nicht &ndert. Zu
beachten ist, dass hier nur der Spinor normiert wurde und nicht die Exponentialfunktion,
da diese nicht normierbar ist. Eine genauere Betrachtung wiirde die Verwendung von
Wellenpaketen verlangen. Jedoch ergeben sich dadurch fiir den Rahmen dieser Arbeit
keine entscheidenden Unterschiede.

Die Wahrscheinlichkeitsdichte ist nach obiger Betrachtung eine Energie, was niitzlich ist,
weil sie so als nullte Komponente des Wahrscheinlichkeitsstroms aufgefasst werden kann.

Dieser kann wie folgt definiert werden:

gt =yt (A.5)

1 = 1Y ist der adjungierte Spinor.
Da die schwache Wechselwirkung zwischen den Chiralitatskomponenten eines Spinors
unterscheidet, ist es sinnvoll ebenfalls die Chiralitdt zu diskutieren. Es ist moglich einen
Zustand in seine Chiralitatskomponenten ¥, und Vg zu zerlegen. Diese werden als links-
bzw. rechtshindig bezeichnet und sind Eigenzustinde der bereits erwihnten ~°-Matrix.
Es gilt:

YUr=Vp und AV, = -V, (A.6)

Da die v°-Matrix fiir Teilchen mit Masse nicht mit dem Dirac-Hamiltonian vertauscht,

sind die Chiralitidtskomponenten keine Eigenzustinde der Dirac-Gleichung. Uber den
1
2
bzw. rechtshindige Komponente gewinnen. So gilt beispielsweise:

Projektionsoperator I+ = (I, £+5) lisst sich aus einem allgemeinen Spinor ¥ seine links-

0=, (A.7)

Mit ITt 4+ 11~ = I, und IITTI~ = 0 geniigen die Operatoren den Vollstandigkeitsrelationen
von Projektionsoperatoren, so dass sich jeder Spinor vollsténdig in sein chiralen Kompo-
nenten zerlegen lasst: ¥ = Ui + U, Diese Komponenten haben die spezielle Eigenschaft
unter Raumspiegelung ineinander tiberzugehen. So wird beispielsweise die linkshandige
Komponente unter Raumspiegelung zur rechtshéindigen Komponente und vice versa. Das
bedeutet, dass wenn ein Prozess unterschiedlich an ¥y und Wg koppelt, eine Asymmetrie

unter Raumspiegelung auftritt.

A.2. Herleitung der invarianten Amplitude

Das Ziel ist es, die Ubergangsamplitude in erster Ordnung Stérungstheorie fiir einen

Wechselwirkungsprozess auf Teilchenebene zu bestimmen. Die Schwierigkeit hierbei ist,
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Abbildung 13: Feynman-Diagramm fiir Elektron-Muon-Streuung. Der Impuls ¢ wird iiber
ein virtuelles Photon iibertragen, wobei gilt ¢ = k; — ky = py — p; (eigene
Darstellung).

dass die Dirac-Gleichung eine Einteilchen-Theorie ist, die Ubergangsamplitude jedoch (in
diesem Fall) zwei verschiedenen Teilchen beinhaltet. Die Ubergangsamplitude ist mit dem
Storpotential A* definiert als:

Ty =ie [ Wiy, Arwidte = —i [ joliavaty (A8)

Die Situation, die beschrieben werden soll, ist in Abb. |13 zu sehen und die Bezeichnungen
aus der Grafik wurden iibernommen. Analog zu wurde der geladene Elektronenstrom
5" eingefithrt. Da diese Herleitung im Rahmen der Stérungstheorie vorgenommen wird,
werden fiir die Spinoren der Elektronen die Losungen der Dirac-Gleichung fiir freie Teilchen
aus Anhang angesetzt.

Das Storpotential, dass von dem Muon erzeugt wird und auf das Elektron wirkt, kann tiber
die Maxwell-Gleichungen gewonnen werden. Der geladene Muon-Strom j4 = _egmf e

muss (in Lorenz-Eichung)

88, Ay = il (A.9)

erfilllen. Fiir die Spinoren des Muons werden ebenfalls die Losungen der Dirac-Gleichung

fiir freie Teilchen angesetzt. Damit lasst sich die Differentialgleichung losen:

00, A\ = —eiilky)pulky)e 4D
u(kp)yau(ki) o —w) i
= A, =~ 2L 12 T mWE TRy  JA A.10
ST i~ P 0
In der zweiten Zeile wurde ausgenutzt, dass die einzige Ortsabhéngigkeit der rechten
Seite in der Exponentialfunktion steckt und zusétzlich 970,e~%"% = —q¢?e~%"% gilt. Das
bedeutet, dass das Storpotential direkt von dem Impulsiibertrag ¢¥ = (k; — ky)” abhéngt.

Mit diesem Ergebnis ldsst sich nun die Integration (A.8) ausfiihren und damit die Uber-
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gangsamplitude bestimmen.
Ty = —i / joliAndly

= ;/(—G\I/;%‘l’f) (—e\if’;’ypllif) d*z

2
1€ _ —i(pY —p*)xy — —i(kY —k%)x,
o e il e
— Z62_ —i(pY —pY V_ Vg
- “(pfwfo“(pi)qzu(kf)V'DU(ki)/e (Y =Pk =R 4y,

-2
= i(py ) Sy ulk) @) S =y ki~ k) (AD)
Um von der vierten zur letzten Zeile zu kommen wurde ein zentrales Ergebnis der Fou-
rieranalyse benutzt: Die Fouriertransformierten einer Konstanten ist eine Delta-Funktion
im Ursprung. Damit besteht fiir diesen Prozess die Impulserhaltung. Der Impuls des
Elektrons muss nach der elektromagnetischen Wechselwirkung mit dem Muon genau dem
Impulsgewinn /-verlust entsprechen, den das Muon verloren/gewonnen hat. Das Photon
tbertrdgt als den Impuls ¢ = k; — ky = py — p;, wie bereits in Abb. [13] eingezeichnet.
Es zeigt sich, dass die Ubergangsamplitude symmetrisch beziiglich Elektron und Muon ist.
Das bedeutet, es ist irrelevant gewesen, dass in diesem Fall das Elektron ein Storpotential
von dem Muon gespiirt hat. Die Herleitung wére zu demselben Ergebnis gekommen, wenn
man das Muon ein Storpotential des Elektrons hatte spiiren lassen.

Die invariante Amplitude ist nun definiert als:

Ty = —i(2m) W (p; — py + ki — k)R (A.12)
= iR = [a(py)ier,ulp)] ‘qq (ks ieyyu(h)] (A13)

Die -invariante fiir diesen Prozess wurde deswegen so kompliziert aufgeschrieben, da
man so die Struktur besser erkennen kann: Fiir eine Wechselwirkung mit einem Photon
wird zwischen die Spinoren ein sogenannter Vertexfaktor ievy, bzw. iev, multipliziert und
die dadurch entstehenden Strome werden mittels eines Propagators %;pn miteinander
verkniipft. Diese Amplitude lieBe sich einfacher durch Anwendung der Feynman-Regeln

gewinnen.

A.3. Feynman-Regeln

Mit den Feynman-Regeln lassen sich die invarianten Amplituden sehr einfach bilden. Die
Regeln sind sehr eng mit den Feynman-Diagrammen verkntipft, welche bildliche Veran-
schaulichungen eines Wechselwirkungsprozesses (mit iiblicherweise horizontaler Zeitachse

und vertikaler Ortsachse) sind.
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(a) Feynman-Diagramm in Darstellung der (b) Feynman-Diagramm in Darstellung der
Impulse. multiplikativen Faktoren.

Abbildung 14: Feynman-Diagramm fiir Elektron-Positron-Annihilation, dessen Energie iiber
photonische Wechselwirkung zur Erzeugung eines Muon-Antimuon-Paares
fuhrt. Das linke Bild ist die tibliche Darstellung des Prozesses und verweist
auf die relevanten Impulse. Das rechte Bild zeigt die mathematische Inter-

pretation, welche durch Multiplikation zur invarianten Amplitude —iR =

—_ . —q 6
o(pp)iergu(ua) 4

u(kc)ieygu(kp) fithrt (eigene Darstellung).

Die generelle Vorgehensweise um eine Amplitude zu bestimmen, ist das zugehorige
Feynman-Diagramm zu skizzieren, was fiir den beispielhaften Prozess ete™ — u™p™ in
Abb. (14| zu sehen ist. Dazu wird fir jedes ein- und ausfallende Teilchen eine Linie gemalt
und deren Impuls festgelegt. Fiir diese Teilchen muss ein Ende der Linie frei bleiben. Das
andere Ende wird mit zwei weiteren Linien zu einem Vertex verbunden, sodass ein Vertex
immer aus drei Linien besteht. Um dies zu vollfiihren, miissen interne Linien gezogen
werden. An jedem Vertex bleiben alle Quantenzahlen und der Impuls erhalten. Auf "tree
level", das bedeutet in niedrigster Ordnung Storungstheorie, sind damit alle Impulse
definiert. Hohere Ordnungen werden hier nicht verwendet, aber deren Behandlung in
Feynman-Diagrammen ist beispielsweise von M. Srednicki [10, Kap. 10] diskutiert worden.
Es ist iiblich fiir unterschiedliche Typen von Teilchen unterschiedliche Arten von Linien
zu verwenden. Das Photon beispielsweise wird mit einer Sinuswelle dargestellt, wiahrend
Quarks und Fermionen durch einfache und massive Vektorbosonen (Zo- und W*-Boson)
durch gestrichelte Linien gekennzeichnet werden.

Die invariante Amplitude ldsst sich nun erhalten, indem ein Feynman-Diagramm als ma-
thematische Operation verstanden wird. Da diese Arbeit nur die Grundlagen verwendet,
wird in dieser Diskussion nicht auf alle méglichen Situationen eingegangen. Falls die ein-
bzw. auslaufenden Teilchen nur Spin—% sind und nur die niedrigste Ordnung Storungs-
rechnung berechnet wird, bestimmt sich die invariante Amplitude folgendermafen: Uber
die Vertices der ein- und ausfallenden Teilchen wird mittels ihrer Spinoren ein Strom
definiert. Die Natur des Stroms wird durch die Kopplung und damit implizit durch das
Wechselwirkungsteilchen bestimmt. Die Kopplung wird tiber einen Vertexfaktor (zu sehen
beispielsweise in Gl. (A.13)) parametrisiert. Interne Linien erhalten je nach Natur ihrer
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Wechselwirkung einen Propagator, der die beiden Vertices miteinander verkniipft, an
denen die interne Linie anschlief3t.

Kann ein Prozess tiber mehrere nicht dquivalente Feynman-Diagramme ausgedriickt wer-
den, muss fiir jedes Diagramm die invariante Amplitude bestimmt werden und zu einer

gesamten invarianten Amplitude summiert werden.

A.4. Herleitung des differentiellen Wirkungsquerschnitts

Der Wirkungsquerschnitt o — mit Einheit m? — ist die wichtigste Grofie bei der Berechnung
von Streuprozessen. Um fir ein Experiment in einem Teilchenbeschleuniger die Reaktions-
rate zu erhalten, muss der Wirkungsquerschnitt nur noch mit der Luminositét (die Anzahl
der Teilchen, die pro Einheitszeit und Einheitsstrahlquerschnitt aneinander im Reaktions-
punkt vorbei bewegen) multipliziert werden [7]. M6chte man diese raumwinkelaufgelost,
mit dem Raumwinkelelement €2, haben, muss der differentielle Wirkungsquerschnitt g—g
bestimmt werden. Da die Wirkungsquerschnitte fiir Elementarteilchen in Groéflenordnun-
gen von 1074 m? auftreten, wird die in der Teilchenphysik iibliche Einheit "Barn"(=
SScheune") verwendet. Dabei gilt: 1pB = 1071 m?.

do ist definiert als [6, Kap. 3.6]:

Ubergangsrate 1 Anzahl Endzustande

do —
’ Einheitsvolumen  anfanglicher Teilchenfluss % Zielteilchendichte

(A.14)

Da fiir diese Arbeit nur zwei nach zwei’-Prozesse (zwei Anfangs- und zwei Endteilchen
mit A, B bzw. C, D bezeichnet) von Bedeutung sind, wird eine Analyse in diesem Rahmen
vorgestellt. Dabei wird vorausgesetzt, dass die Reaktion innerhalb eines Zeitintervalls T’
und einem Volumen V' ablduft, also in dem sogenannten Einheitsvolumen T'V. Dies ist
fiir den ersten Teil der Rechnung notwendig, im spéteren Verlauf geht diese Abhéngigkeit
verloren.

Die Ubergangsrate (= |T’;|?) beinhaltet letztlich die Natur der Wechselwirkung und ist mit
ihrer Abhéngigkeit von der invarianten Amplitude die wichtigste und am schwierigsten zu
bestimmende Grofie des Wirkungsquerschnittes. Aus Anhang kann die Ubergangsrate

ohne Beschréankung der Allgemeinheit geschrieben werden als
2
Tyl = [(2m)'5 (s — pour)]” 19 = (20069 (pin — pout) SO (O)RP,  (A.15)

wobei zum zweiten Gleichheitszeichen eine Eigenschaft der Delta-Funktion genutzt wurde.

Die Delta-Funktion wurde in der Ubergangsamplitude als Fourier-Transformation einer
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Konstanten erhalten, das bedeutet §*)(0) kann auch formuliert werden als:

5(4)(0) = (271r)4 /e’io'xd4x
TV
= @) (A.16)

Die Integration wurde iiber das Raumzeitelement T'V ausgefithrt. Damit kann als Ergebnis

fiir die Ubergangsrate festgehalten werden:
|sz’2 = (27T)4TV5(4) (pln - pout)|m|2 (Al?)

Der anfangliche Teilchenfluss zweier Teilchen ist durch das Produkt der Normen mit dem
Volumen und der relativen Geschwindigkeit definiert. Aus Anhang ist bekannt, dass
die Norm gerade zwei mal der Energie des Teilchens entspricht. Damit folgt: Anfénglicher

Teilchenfluss = 4|04 — Up|EaEgV?. Mit a5 = Zf‘—i lasst sich der Term umschreiben zu:
anfanglicher Teilchenfluss = 4|paEp — ppEa| (A.18)

Die Anzahl der Endzustande in einem Volumen V eines freien Teilchens sind ein

Vd3p
(27T)3 Y

Ergebnis der statistischen Physik.
Alles in (A.14) eingesetzt liefert (die Impulse der ausgehenden Teilchen mit & bezeichnet):

(27T)4TV6(4) (pzn - pout)|m|2 « 1 % V2d3k’0d3/{3D
TV 4|ﬁAEB —ﬁBEAH/Q (271')64E0ED
5O (pa+ pp — ke — kp)Bked3kp

= = - R|? A.19
64m2|psaEp — ppEA|EcEp ] ( )

do =

Wie oben erwéhnt, hangt der Wirkungsquerschnitt nicht mehr von dem Einheitsvolumen
ab. An diesem Punkt ist es sinnvoll die Impulse zu spezifizieren. Im Schwerpunktsystem
("em") gilt pa + pp =0 und E4 + Ep = /s mit dem Quadrat der Schwerpunktsenergie
s. Damit vereinfacht sich die Delta-Funktion zu 6(v/s — Ec — Ep)d® (k¢ + kp) und die
Integration iiber d®kp kann mit der dreidimensionalen Delta-Funktion zu einer effektiven

Eins ausgefiihrt werden:

55 — Ec — Ep)RPdke . = o
do = t Fo=—k A.20
7 6472[ja|v/sEc Ep e (4.20)

Hier wurde ebenfalls [paEp — pgFEa| = |Paly/s eingesetzt. Da eine Delta-Funktion ver-
bleibt, kann eine weitere Variable eliminiert werden. Dazu ist es sinnvoll fiir d®k¢ in

Kugelkoordinaten iiberzugehen.

Pke = |ke|?d|ke|deos(0)dp = |ke|*d|ke|dQem (A.21)
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6 ist hierbei der Winkel zwischen p)4 und I;C. Mit einer weiteren Eigenschaft der Delta-
Funktion 6(f(x)) = >, |f'(z)|™", wobei tiber die Nullstellen von f(x) summiert wird,
kann die Integration iiber den Betrag des Impulses ausgefiihrt werden. Die Funktion in
der Delta-Funktion hat nur eine Nullstelle: Ec + Ep = /s und fiir Ec und Ep gilt nach
der relativistischen Energie-Impuls-Beziehung, unter Beachtung von (A.20):

Eo=|kclP+mg  Ep=\lkc|?+m3 (A.22)

0 |Ec| |EC|
——(Vs—Ec— Ep)=— <1 24
a|kc|(\/_ ¢ D> EC ED
_—‘E ‘Ec—l-ED
“E.E
= — |k¢| VS it Vs = E¢ + Ep (A.23)
EcEp

Betraglich invers in (A.20) eingesetzt folgt:

Vs = Ec = Ep)|kc*|R2d|kg|dQem

o
do’ = -
647T2|pA|\/§EcED

I 2
6472s| P

do o |EC‘ | |2

— == A.24
dQ2| =~ 64m%s|p4| ( )

Damit wurde eine allgemein giiltige Form des differentiellen Wirkungsquerschnittes gefun-

den.

A.5. Ein Uberblick iiber die Monte-Carlo-Integration

Das zugrundelegende Prinzip der Monte-Carlo-Integration ist, dass ein Integral als Mittlung

iiber den Integranden berechnet werden kann:
1= [z f(@) = (22— 2){(@)). (A.25)
x1

Um eine Mittelung zu approximieren, wird der Integrand an N zufalligen Stellen ausgewer-
tet, summiert und durch N geteilt. Die Positionen z; konnen mit Hilfe einer Zufallszahl
p; im Intervall [0, 1] iiber

x; = (xe — 1) p; + 11 (A.26)

generiert werden. Bei dieser Form der Integralapproximation kann der Fehler als Varianz
einer Normalverteilung abgeschéitzt werden, da die Bedingungen des Zentralen Grenzwert-
satzes erfiillt sind [9, Kap. 3]. Die Varianz berechnet sich aus oy ¢ = /v N, wobei o die
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Standardabweichung von f(x;) ist:
0—2—7@2_%)2 Z:JCQ(SC')—i > fla) 2
= N - 1 N - 2

— ]1]21212[/12 — l;f 21: I/VZ] mit W, = (x9 — 1) f(x;) (A.27)

In der zweiten Zeile wurden die gewichteten Funktionswerte W; eingefiihrt. Das gesamte

Integral kann somit geschrieben werden als
T2 o

—ZL‘lN g
I~ Zi:f(xi):tﬁ:bvj:m

(A.28)

Die Genauigkeit dieser Integration kann verbessert werden, indem zum Einen eine groflere
Anzahl von Auswertungspunkten gewahlt wird oder zum Anderen die Standardabweichung
o reduziert wird. Um Letzteres zu erreichen, wird eine Methode verwendet, die 'Importance
Sampling’ [8] genannt wird. Hierbei wird der Integrand so substituiert, dass eine moglichst
konstante Funktion zu integrieren ist. Das bedeutet, wenn die Stammfunktion bekannt
ist, kann mittels Tmportance Sampling’ die Varianz zu Null reduziert werden. Diese
Vorgehensweise wird im folgenden Abschnitt (Anhang ebenfalls von hoher Bedeutung
sein.

Das Prinzip der Monte Carlo Integration kann mit Leichtigkeit auf héherdimensionale
Integrale verallgemeinert werden: Fiir jede einzelne Integrationsvariable wird in dem
Integrationsintervall ein zufélliger Wert ausgewéhlt, in die Funktion eingesetzt und zuletzt

mit dem Integrationsintervall gewichtet.

A.6. Monte-Carlo-Eventgenerierung

Die Monte-Carlo-Eventgenerierung wird dazu verwendet, um aus theoretischen Vorher-
sagen Daten zu gewinnen, die direkt mit den experimentellen Daten verglichen werden
konnen. Die zugrundeliegende Idee ist, dass versucht wird, die stochastische Natur der
individuellen Events zu simulieren, anstatt die Eigenschaften von einer groflen Summe an
Events zu untersuchen [9, Kap. 3].

AD hier wird eine positive Funktion f(z) gefordert, da ansonsten eine Eventgenerierung
in dieser Form weder moglich noch sinnvoll ist.

Um Events nach ihrer Wahrscheinlichkeit, mit der sie auftreten, zu generieren, ist es
(offensichtlicherweise) zunachst notwendig ihre Wahrscheinlichkeit zu berechnen. Dies kann
getan werden, indem der gewichtete Funktionswert an der Stelle x mit dem gewichteten
Maximalwert der Funktion innerhalb des gegebenen Intervalls normiert wird. Um ein

Event an dieser Stelle x zu akzeptieren, muss seine Wahrscheinlichkeit grofier sein als eine
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Abbildung 15: Eine Breit-Wigner-Resonanz mit Parametern M = 90 und I' = 2. Die Funk-
tion schlieft eine vergleichsweise geringe Fliache der Abbildung ein (eigene
Darstellung).

Zufallszahl im Intervall [0, 1]:

Wa
Wmax

>R  mit Rel0,1] (A.29)

Ist die Wahrscheinlichkeit des Events kleiner als R, wird das Event verworfen. Eine
Iteration tiber dieses Vorgehen bis die gewiinschte Anzahl an Events erreicht ist, liefert
eine stochastische Verteilung an Events in der Form der erzeugenden Funktion f(z), wenn
man sie mittels eines Histogramms darstellt.

Aquivalent ausgedriickt wird die Funktion in dem relevanten Intervall auf einen maximalen
Wert von Eins normiert und es werden zuféllige Punkte in diesem Rechteck ausgewéahlt
und mit der Funktion verglichen. Diese Vorgehensweise ist sehr ineffizient fiir eine Funktion
mit einer starken Resonanz in dem Intervall, oder allgemein wenn sie eine geringe Fléche
in dem Intervall einschlielt. Eine Eventgenerierung kann deshalb viel Zeit in Anspruch
nehmen. Um diesen Prozess zu beschleunigen, wird fiir die Generierung wieder die Methode
des Importance Samplingius Anhang benutzt. Die Substitution sollte dabei so gewahlt
werden, dass die resultierende Funktion moglichst flach ist.

Ein sinnvolles Beispiel ist eine Breit-Wigner-Resonanz, da diese Form der Resonanz im

Verlaufe dieser Arbeit zu integrieren ist. Sie wird tiber

1
(x — M?)? + M2I2

few(x) = (A.30)
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definiert und ist in Abb. [15/zu sehen. Wahrend M die Position der Resonanz bestimmt,
beeinflusst T' die Breite. Eine Substitution der Form x = MT tan(p) + M? vereinfacht die

Integration:

I:/dx

Tmin

1
(x — M?)? + M?I?

Pmax
- /dpMF(1+tan2(p))
Pmin
B 1
- MT

1
M?T2(1 + tan®(p))

ngw
/ dp (A.31)

Pmin

Der resultierende Integrand ist eine Konstante, und damit wird jeder zuféllig generierte
Punkt als Event akzeptiert. Damit die Events die Form der Resonanz widerspiegeln,
miissen sie beziiglich der urspriinglichen Variablen (in diesem Fall x) in einem Histogramm

dargestellt werden.

B. ldentitaten und Rechnungen

B.1. Identitaten der Gamma-Matrizen

Relevante Identitdten bzgl. der Gamma-Matrizen.

(90)* =1L B.1

(Ww)?=—-m k=123 (B.2)

(%" = 20770 (B.3)

(") =77 (B.4)

VY = =17 (B.5)

(V) =L (B.6)

Tr [y vl = 4 (Gen9ro + Grognr — Grrgno) (B.7)

Tr [y A y9] = 4i€e € ist das 4D Levi-Civita-Symbol (B.8)
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B.2. Tensorauswertungen fiir die Berechnung der invarianten

Amplitude

Ein Nachweis der Behauptungen aus Abschnitt [2, Zunédchst benutzte Identitaten des

Levi-Civita-Symbols € und des verallgemeinerten Kronecker-Deltas 0.

€umrP"'k’q"e" = 0 falls linear abhangig

R S R g kldikﬂ-dn

Eil...ikik+1...ln Zk+1-~~in
i1 11
6]1 DY 5‘7’"‘
11...0n —
in in
6]1 DY 5]71

(B.13)

Notwendige Tensorauswertungen mit dem Propagator P77 = MZg"™—q"q". Zur Erinnerung:
pa + P = k¢ + kp = q und die Skalarprodukte folgen aus der Kinematik (Abschnitt .

P pr

P ppakp. = Mz(pg - kp) — (¢-ps)(q- kp) = M%Sﬂ — cos(0)) — 842

P pp ke, = My(pp - ke) — (q-pB)(q- ke) = M%S(l +cos(0)) — 842
P panpps = My(pa-ps) — (a-pa)(q-ps) = M2§s N i

P gy = 4My — (q-q) = 4M3 — s
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]5’776,“9,\,] €6 ﬁpf pﬁp’gkgkfj = (M%gm — q"qT) €xry € ﬁpT pﬁp%k?}kﬁ)
=M enony €6 pr DAPBEEKD G
=Mewmnn€s” p " PAPEKEK
=M €gyrn €5 DADERERD
=M32! 628 piphke.okp.,
—=2M3(67 0% — 60.63) plapkc.skp,,
=2M7[(pa - ke)(ps - kp) — (pa - kp) (5 - ko)

M2 2
) 1265 [(1 — cos(8))2 — (1 + cos(6))]
M2 2
= — gs cos(f) (B.19)
Ab hier mit zwei Propagatoren:

S TS ®15) (M2 2\?
PP pankpakics ( Z2(1 - cos(0)) - 54) (B.20)
BA B @6) [ M2 2\?
P'{AP"TQmepA’,JﬁD’)\kC’T " ( 4Z$(1 + COS(Q)) — Z) (B21)

PHAPnTgnnkD,)\kC,T = (Mékg‘ - (q : kC)qn) (Még:\] - qu)\) kD,)\
= (ML — (q- ke)q") (MZkp,y — (q-kp)ay)
= My(kc - kp) = 2M3(q - ko)(q - kp) + (¢ ke)(a - kp)(a - q)
B Mys _ Mis* §3

— B.22
2 2 * 4 ( )

PHAPm—gmyg)n— - (M%g;\ - q77q)\> (M%gg - qnqA>
=4My —2M%s + s* (B.23)

PP g o PAPSRERS = (M39™ = 0°0™) (MB9" = 47 €qmn o PAPERERT
A nT
= Méesmxn €onr 979" PAPEREED
4 K
= My€puynte "x ”pf‘p)ékgkig

M4 2
() (B.24)

- 49 -



Literatur

Literatur

1]

[10]

M. Tanabashi et al. (Particle Data Group). ,,2018 Review of Particle Physics“. In:
Physical Review D98.030001 (2018).

Andy Buckley et al. . LHAPDFG6: parton density access in the LHC precision era“. In:
European Physical Journal C75 (2015). URL: http://arxiv.org/abs/1412.7420.

Sayipjamal Dulat et al. ,New parton distribution functions from a global analysis
of quantum chromodynamics“. In: Physical Review D93.033006 (2016). URL: https:
//arxiv.org/abs/1506.07443.

L. Theufll D. Binosi. ,,JaxoDraw: A graphical user interface for drawing Feynman
diagrams®. In: Computer Physics Communications 161 (Aug. 2004). URL: https:
//doi.org/10.1016/j.cpc.2004.05.001.

Alan Martin Francis Halzen. Quarks and Leptons: An Introductory Course in Modern

Particle Physics. John Wiley und Sons, 1984.

Mike Guidry. Gauge Field Theories - An Introduction With Applications. Wiley
Science Paperback Series, 1999.

Tao Han. ,Collider Phenomenology - Basic Knowledge an Techiques®“. In: High
Energy Physics - Phenomenology (2005). URL: https://arxiv.org/abs/hep-
ph/0508097.

Andreas Papaefstathiou. ,,How to write your own Monte Carlo event generator.
In: Journal of High Energy Physics (2014). URL: http://www.physik.uzh.ch/
~andreasp/mchowto . pdf.

Michael Seymour. , Predictions for Higgs and Electroweak Boson Production®. Diss.
University of Cambridge, 1992.

Mark Srednicki. Quantum Field Theory. Cambridge University Press, 2006. URL:
https://web.physics.ucsb.edu/~mark/qft.html.

- 50 -


http://arxiv.org/abs/1412.7420
https://arxiv.org/abs/1506.07443
https://arxiv.org/abs/1506.07443
https://doi.org/10.1016/j.cpc.2004.05.001
https://doi.org/10.1016/j.cpc.2004.05.001
https://arxiv.org/abs/hep-ph/0508097
https://arxiv.org/abs/hep-ph/0508097
http://www.physik.uzh.ch/~andreasp/mchowto.pdf
http://www.physik.uzh.ch/~andreasp/mchowto.pdf
https://web.physics.ucsb.edu/~mark/qft.html

Plagiatserklarung der / des Studierenden

Hiermit versichere ich, dass die vorliegende Arbeit uber

selbststandig verfasst worden ist,

dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt
worden sind und dass die Stellen der Arbeit, die anderen Werken - auch
elektronischen Medien - dem Wortlaut oder Sinn nach entnommen

wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich

gemacht worden sind.

(Datum, Unterschrift)

Ich erklare mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Ubereinstimmungen sowie mit einer zu diesem Zweck
vorzunehmenden Speicherung der Arbeit in eine Datenbank

einverstanden.

(Datum, Unterschrift)



	Einleitung
	Theoretische Vorbereitungen
	Das Standardmodell der Teilchenphysik
	Elektromagnetische Wechselwirkung
	Die schwache Wechselwirkung
	Kinematik I
	Berechnung der quadrierten invarianten Amplitude
	Photonische Wechselwirkung
	Interferenzterm
	Schwache Wechselwirkung

	Differentieller Wirkungsquerschnitt

	Leptonischer Speicherring
	Kinematik II
	Winkelverteilung bei konstanter Schwerpunktsenergie
	Variation der Schwerpunktsenergie
	Zusammenfassung

	Hadronischer Speicherring
	Phänomenologie
	Parton-Verteilungsfunktionen
	Kinematik III
	Monte-Carlo-Integration
	Eventgenerierung und -filterung
	Produktion von W-Bosonen

	Schlussfolgerung
	Theoretische Grundlagen
	Dirac-Gleichung
	Herleitung der invarianten Amplitude
	Feynman-Regeln
	Herleitung des differentiellen Wirkungsquerschnitts
	Ein Überblick über die Monte-Carlo-Integration
	Monte-Carlo-Eventgenerierung

	Identitäten und Rechnungen
	Identitäten der Gamma-Matrizen
	Tensorauswertungen für die Berechnung der invarianten Amplitude

	Literatur

