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1 Introduction

As of our current understanding, the atomic nucleus consists of protons and neutrons.
These nucleons are in turn made up of quarks and gluons (collectively referred to as
partons), held together by the strong interaction. A central goal of modern nuclear physics
is understanding the partons within the nucleus in terms of Quantum Chromodynamics
(QCD), a renormisable non-abelian gauge theory [1, 2].
The cleanest way to study QCD experimentally is deep inelastic scattering (DIS), where

a beam of high-energy leptons is scattered off hadrons (i.e. particles composed of quarks).
The reaction proceeds via an exchange of a virtual photon with the virtuality Q2, which
dissociates the hadron target. The DIS cross section depends on the structure functions
F1 and F2, which are related to the partonic components of the hadron.
Before the advent of QCD, the parton model was proposed to explain the experimentally

observed approximate Bjorken scaling (independence of Q2) of the structure functions.
Within this model, F1 and F2 can be expressed in terms of process-independent parton
distribution functions (PDFs) corresponding to the probability that a parton carries a
fraction x of the total hadron momentum [1]. These PDFs depend only on x as a conse-
quence of the assumed limited values of parton transverse momenta.
The QCD factorisation theorem implies such PDFs can also be introduced in QCD [3].

The probabilistic interpretation of the parton model is strictly applicable only at leading
order though, and the parton emission processes of QCD give rise to a dependence on the
resolution scale Q2. The associated coefficient functions can be obtained using perturba-
tion theory (due to the asymptotic freedom of QCD), but the PDFs themselves cannot
be calculated from first principles (except in lattice QCD). Nevertheless, it is possible to
derive equations describing how the PDFs evolve when Q2 changes.
To achieve this, the QCD emission processes are usually evaluated using the leading log-

arithmic approximation, where only “ladder” Feynman diagrams contribute. Assuming the
momenta of the emitted partons are strongly ordered and summing up the corresponding
collinear divergences leads to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations which govern the Q2 evolution of the PDFs [4, 5, 6]. They have been studied
extensively and applied to various global PDF fits since their derivation.
The DGLAP equations are not the complete picture though, especially at very high

energies or at very small x. For instance, one QCD process that the DGLAP equations
don’t account for is gluon recombination. At small x, the gluon density becomes high
and there is a large probability for two gluons to fuse together, leading to a reduction of
the gluon density. This can be addressed by analysing “fan” diagrams where two gluon
ladders merge into a gluon or a quark-antiquark pair, resulting in the Gribov-Ryskin-
Levin-Mueller-Qiu (GLR-MQ) equations [7, 8]. They act as a correction to the DGLAP
equations and contain extra terms that are quadratic in the gluon distribution.
In this thesis, the DGLAP and the GLR-MQ equations are solved numerically at next-

to-leading order (NLO) with python 3.8, using the same “brute force” method as the
program QCDNUM16 [9]. The main focus is the impact of different parameters (i.e. the
evolution direction, the presence of parton mixing and the nuclear mass number A) on the
evolution. Furthermore, F2 and FL ≡ F2 − 2xF1 are calculated with the resulting PDFs
and compared to accelerator data from HERA, and predictions concerning the scattering
of heavy nuclei at the future facilities EIC and LHeC are made.
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2 Background

The basic terms and concepts needed to understand parton evolution are introduced in
this section. It is based on refs. [1], [2], [10] and [11].

2.1 Quantum Field Theory

Quantum field theory (QFT) is the modern framework of relativistic quantum mechanics.
In QFT, particles are described by fields φi(x), the dynamics of which are dictated by the
Euler-Lagrange equations of classical field theory. They are given by

∂L

∂φi
− d

dxµ
∂L

∂(∂µφi)
= 0, (2.1)

where L (φ, ∂νφ) is the Lagrangian, a central object of any QFT.
The transition to a quantum theory can be achieved via the canonical quantisation,

where the fields (and their conjugated momenta) are replaced by operators satisfying a
canonical commutation relation. Generally such theories cannot be solved exactly, which
means perturbation theory must be applied in order to derive predictions.
Free spin 1/2 particles are described by the Dirac Lagrangian

L0 = Ψ(x)
(
i6∂ −m

)
Ψ(x), (2.2)

where Ψ,Ψ are four-component spinors and the “Feynman-slash” notation is defined as
6a = γµaµ for any four-vector. Here and in the following, natural units with c = ~ = 1 are
used. Inserting L0 into the Euler-Lagrange field equations yields the Dirac equation. To
derive interaction terms for these particles, certain symmetry (“gauge”) transformations
can be used, leading to the theories of Quantum Electrodynamics (QED) and Quantum
Chromodynamics (QCD).
To obtain the Lagrangian for QED, one demands L0 to be invariant under local U(1)

phase transformations. This is achieved by combining it with the Lagrangian of classical
electrodynamics and including an interaction term, giving

LQED = Ψ(x)
(
i 6D −m

)
Ψ(x)− 1

4
FµνF

µν . (2.3)

Here, Dµ = ∂µ+igAµ is the covariant derivative and Fµν = ∂µAν−∂νAµ is the electromag-
netic field strength tensor. The QED Lagrangian describes electrically charged fermions
interacting through electromagnetic spin 1 fields (photons in the quantised theory).
A similar procedure gives rise to QCD, this time using the group SU(3) instead of U(1).

The resulting Lagrangian (for one quark flavor) is

LQCD = Ψ(x)(i 6D −m)Ψ(x)− 1

4
Ga
µνG

µν
a , (2.4)

with the covariant derivative Dµ = ∂µ−igsAaµT a (where Aaµ are the gluon fields and T a the
generators of SU(3)) and the gluon field strength tensor Ga

µν = ∂µA
a
ν−∂νAaµ+gsfabcA

b
µA

c
ν .

It corresponds to colored quarks and gluons and the strong interaction between them.
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Despite the similar structure of these Lagrangians, there are great qualitative differ-
ences between the two theories. The non-Abelian nature of SU(3) introduces gluon self-
interaction, which has no QED analogue. This leads to a logarithmic decrease of the QCD
coupling parameter when the momentum transfer Q2 increases: At NLO, αs ≡ g2s/4π is
given by [3]

αs(Q
2)

4π
=

1

β1 ln(Q2/Λ2)
− β2 ln (ln(Q2/Λ2))

β3
1 ln2(Q2/Λ2)

, (2.5)

with the beta functions β1 = 11−2NF/3 and β2 = 102−38NF/3, where NF is the number
of active flavors (i.e. of quarks with m < Q). The QCD scale parameter Λ also depends
on NF . From here on the Q2 dependence of αs won’t be written explicitly.
The behavior of αs gives rise to the important phenomena of asymptotic freedom and

confinement. The former means that the coupling is weak at highQ2, which enables the use
of perturbation theory in this region; the latter expresses the fact that free quarks don’t
occur in nature because the coupling becomes stronger when the separation r2 ∝ 1/Q2

between quarks increases.
The predictions of QCD and other quantum field theories are most commonly tested in

scattering experiments, where particles are accelerated to very high speeds before colliding
with each other. The corresponding theoretical quantity is the differential cross section,
i.e. the rate at which a certain interaction between particles occurs. It can be written as

dσ =
1

F
|M|2 dLips , (2.6)

where F is the flux of incoming particles, dLips the Lorentz invariant phase space element
of the final state particles andM the invariant amplitude. The latter is closely related to
the scattering matrix, which connects incoming and outgoing particle states.
The invariant amplitude can be obtained from a Feynman diagram, a pictorial repre-

sentation of the scattering process in question. This is done using Feynman rules, which
follow from the quantised Lagrangian and assign a factor to every line and vertex of the
diagram.

2.2 Electron-Proton DIS

The inner structure of a proton can be probed by scattering a beam of high-energy elec-
trons off it. If the momentum transfer is high enough, the proton breaks apart into its
constituent particles, which is known as deep inelastic scattering (DIS). The Feynman
diagram of this process is shown in fig. 1, where X denotes the unknown many-particle
final state of the proton.
For the evaluation of the diagram, the invariant kinematic variables

Q2 = −q2, x =
Q2

2(p · q) , y =
p · q
p · k (2.7)

are used, which can be interpreted as follows: Q2 is the photon virtuality and serves as the
hard resolution scale for the collision; x is the Bjorken variable, which (within the parton
model, see sec. 2.3) is equal to the longitudinal fraction of p carried by the interacting
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X

k k′

q = k − k′

p

Fig. 1: Feynman diagram of electron-proton deep inelastic scattering, where X stands for all possible
proton final states.

parton; y is the longitudinal fraction of k carried by the photon. In the proton rest frame,
the involved four-momenta can be written as

p = (M, 0, 0, 0), (2.8)
k = (E, 0, 0, E), (2.9)
k′ = (E ′, E ′ sin θ cosϕ,E ′ sin θ sinϕ,E ′ cos θ), (2.10)

where M is the invariant mass of the proton. The electron mass m is neglected since it is
very small compared to M and Q. The kinematic variables in this frame are

Q2 = 2EE ′(1− cos θ), x =
Q2

2Mν
, y =

ν

E
, (2.11)

with ν = E − E ′.
To calculate the cross section for this process with eq. (2.6), F = 4(k · p) and

dLips = Π3k′
∑
N

∫ N∏
n=1

(
Π3pn

)
(2π)4δ(4)

(
p+ q −

N∑
n=1

pn

)
(2.12)

= Π3k′
∑
X

Π3pX(2π)4δ(4)(p+ q − pX), (2.13)

are used, where the “sum” in dLips takes all possible N -particle proton final states into
account. The Lorentz invariant integral measure Π3ki is given by

Π3ki =
d3ki

(2π)32E(ki)
(2.14)

for any four-momentum ki. The QED Feynman rules yield

M =
e2

q2
u(k′)γµu(k) 〈X|Jµ|p〉 , (2.15)

where the expression for the proton vertex is kept very general since no assumptions
have been made about its inner structure. In the following, unpolarised scattering is
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considered, i.e. |M|2 is averaged over initial state polarisations and summed over final
state polarisations (denoted by si and sf ).
Inserting F, dLips andM into eq. (2.6) gives

dσ =
1

4(k · p)
e4

q4
4πMLµνWµν Π3k′, (2.16)

where Lµν ,Wµν are the leptonic and hadronic tensor. They contain the terms associated
with the electron and proton vertex in the diagram respectively, i.e.

Lµν =
1

2

∑
si,sf

u(k)γνu(k′)u(k′)γµu(k), (2.17)

Wµν =
1

4πM

∑
X

Π3pX(2π)4δ(4)(p+ q − pX)
1

2

∑
si,sf

〈p|J†µ|X〉〈X|Jν |p〉 . (2.18)

The spin sums in Lµν can be written as a trace using the completeness relations for
Dirac spinors, and Wµν can be expressed in terms of independent Lorentz structures and
simplified by demanding current conservation at the proton vertex. This results in

Lµν =
1

2
tr(6k′γµ6kγν) = 2

(
k′µkν + k′νkµ − (k′ · k)gµν

)
, (2.19)

Wµν =
F1

M

(
−gµν +

qµqν
q2

)
+

F2

νM2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
, (2.20)

where F1 and F2 are parameters known as structure functions, which express the lack of
knowledge about the constituent particles of the proton. The tensors Lµν and Wµν can
now be contracted. Furthermore, using the transformation (x,Q2)→ (E ′, cos θ) given by
eq. (2.11), the phase space factor Π3k′ is rewritten in terms of the variables x and Q2.
Evaluating the corresponding Jacobian gives

d3k′ = E ′2 dE ′ d cos θ dϕ = 2π
M

Q2
EE ′y2 dx dQ2 , (2.21)

where dϕ = 2π since the results of unpolarised scattering are independent of the angle ϕ.
Taking all this into account, the cross section in eq. (2.16) becomes

dσ

dxdQ2
=

e4

2πxQ4

[
xy2F1 +

(
1− y − x2y2M2

Q2

)
F2

]
. (2.22)

To derive predictions for scattering experiments from this equation, F1 and F2 must be
computed, so a model for the inner structure of the proton is needed.

2.3 Parton Model

The parton model predates QCD, and its basic assumption is that the proton consists
of non-interacting partons. This can be justified by using the infinite momentum frame,
where the interaction time between partons is large compared to that of the incoming
photon. The partons were later identified with the quarks observed in hadron spectroscopy
experiments; within QCD, the term parton refers to both quarks and gluons.

6
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ξp

q

(1− ξ)p

(a)

k k′

q

p̂ p̂′

(b)

Fig. 2: (a) Interpretation of the PDFs, (b) elastic electron-quark scattering.

The parton model allows the electron-proton DIS cross section to be expressed in terms
of parton distribution functions (PDFs) qi(ξ), which correspond to the probability that
quark i has momentum p̂ = ξp, see fig. 2a. The transverse component of the parton
momentum is neglected, which implies the PDFs don’t depend on Q2 in the parton model.
An important constraint on the PDFs is given by the sum rule

∑
i

1∫
0

dξ ξqi(ξ,Q
2) = 1, (2.23)

which follows from momentum conservation.
With the PDFs, the DIS cross section can be written as

dσ

dxdQ2
=
∑
i

1∫
0

dξ qi(ξ)
dσ̂i

dxdQ2
, (2.24)

where the last term is the cross section for elastic electron-quark scattering, which can
be derived from the diagram in fig. 2b using the Feynman rules of QED. The necessary
elements are

F = 4(k · p̂), (2.25)

M =
e2ei
q2

u(k′)γµu(k)u(p̂′)γµu(p̂), (2.26)

dLips = Π3k′ Π3p̂′ (2π)4δ(4)(p̂+ q − p̂′). (2.27)

Inserting them into eq. (2.6), using

d3p̂′

2E(p̂′)
= δ(p̂′2) Θ

(
E(p̂′)

)
d4p̂′ (2.28)

and (p̂ + q)2 ≈ Q2/x(ξ − x) to evaluate the delta function in dLips and again neglecting
the electron mass gives

dσ̂i
dxdQ2

=
e4e2i

4πQ4

[
1− y + y2

(
1

2
− x2M2

Q2

)]
δ(ξ − x). (2.29)

7
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The remaining delta function implies that ξ is equal to the variable x from the previous
section, fixed by external kinematics.
With this, one obtains

dσ

dxdQ2
=

e4

4πQ4

[
1− y + y2

(
1

2
− x2M2

Q2

)]∑
i

e2i qi(x) (2.30)

≡ dσ̂0
dxdQ2

∑
i

e2i qi(x) (2.31)

from eq. (2.24). Comparing eqs. (2.30) and (2.22) yields the Callan-Gross relation

2xF1(x) = F2(x) = x
∑
i

e2i qi(x), (2.32)

which shows that the structure functions only depend on x in the parton model, a property
known as Bjorken scaling. Eq. (2.32) follows from the assumption that partons have spin
1/2 and agrees well with experimental data, confirming the identification of partons with
quarks. Bjorken scaling is violated when QCD interactions between quarks are taken into
account.
The calculations of this section can be generalised to the case of heavier nuclei with

mass number A > 1. However, the corresponding PDFs aren’t simple superpositions of
free proton and neutron PDFs [12]. This observation is known to be caused by effects such
as nuclear shadowing/antishadowing, EMC suppression and Fermi motion [13, 14].

8
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3 Evolution Equations in QCD

In this section, QCD corrections to the parton model are discussed. Most importantly,
the derivation of the DGLAP and the GLR-MQ equations is sketched.

3.1 DGLAP Equations

Partons interact via the QCD processes pictured in fig. 3, leading to a Q2 dependence of
the PDFs. This effect is usually evaluated in the leading logarithmic approximation (LLA).
In this framework, only terms proportional to (αs logQ2)n are considered, neglecting those
where αs isn’t compensated by a large logarithm [15]. This corresponds to resumming the
divergences caused by collinear parton emission.
To evaluate processes like this, the axial gauge is commonly used since it only involves

physical gluon polarisations, so there is no need to introduce ghost particles [3]. In this
gauge, “ladder” type diagrams are the only ones contributing to the LLA [11, 15], and the
gluon propagator is given by

Dµν(k) =
−iδab
k2 + iε

Pµν(k), (3.1)

Pµν(k) = gµν −
kµην − kνηµ

η · k , (3.2)

where η is a light-cone four-vector. The cut diagram notation, where both M and M∗

are combined in a single diagram [3], is used to simplify the calculations.
Fig. 4 contains three gluon emission diagrams. Only fig. 4a is a ladder diagram, so only

it must be evaluated. The invariant amplitude matrix element follows from the Feynman
rules for QCD and can be written as [11]

|M|2µν = g2s
2(1− z)

−k2⊥
PFF (x)

e2i
2

tr(6 p̂′γµ6 p̂γν), (3.3)

where PFF (x) = CF (1 + x2)/(1 − x) is the leading order quark-quark splitting function
(with the color factor CF = 4/3). The singularity at x = 1 is canceled by virtual gluon
emission diagrams [1, 11], giving a slightly different expression which can be found in the
appendix (sec. 7.1).
Calculating the corresponding modification to the DIS cross section and adding it to

the parton model result from eq. (2.30) yields [11]

dσ

dxdQ2
=

dσ̂0
dxdQ2

∑
i

e2i

[
δ(1− x) +

αs
2π

ln

(
Q2

m2

)
PFF (x)

]
⊗ qi(x), (3.4)

Fig. 3: QCD vertices that influence DGLAP parton evolution [10].

9
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q

p̂′

p̂
k

(a) (b) (c)

Fig. 4: Gluon emission diagrams (in the cut diagram notation): (a) ladder diagram contributing to
the LLA, (b)&(c) non-ladder diagrams [11].

where the convolution ⊗ is defined as

f(x)⊗ g(x) =

1∫
x

dz

z
f(z) g

(x
z

)
= g(x)⊗ f(x). (3.5)

The logarithmic term originates from the integral

Q2∫
m2

dk2
⊥

k2
⊥

= ln

(
Q2

m2

)
, (3.6)

which is related to the collinear divergence of the quark propagator due to gluon radiation.
Eq. (3.4) suggests (αs/2π) ln(Q2/m2)PFF (x) can be understood as the probability density
that the quark emits a gluon with momentum (1− x)p̂ [1, 11].
It is also possible for the quark to emit multiple gluons before interacting with the

photon, as shown in fig. 5a. To obtain a LLA contribution from this Feynman diagram,
the transverse momenta of the n emitted gluons must be strongly ordered,

−k2⊥1 � −k2⊥2 � . . .� −k2⊥n � Q2. (3.7)

The momentum fractions xi decrease similarly with each emission. When taking all such
ladder diagrams into account, one obtains an exponential series [11], i.e.

dσ

dxdQ2
=

dσ̂0
dxdQ2

∑
i

e2i exp

[
αs
2π

ln

(
Q2

m2

)
PFF (x)

]
⊗ qi(x). (3.8)

This corresponds to making the replacement

qi(x)→ qi(x,Q
2) = exp

[
αs
2π

ln

(
Q2

m2

)
PFF (x)

]
⊗ qi(x) (3.9)

in eq. (2.30), which implies the DGLAP equation of q-q splitting [11]:

∂

∂ lnQ2
qi(x,Q

2) =
αs
2π
PFF (x)⊗ qi(x,Q2). (3.10)

10
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q

kn

k1

p̂

(a)

q

kn

k1

p̂

(b)

q

kn

k1

p̂

(c)

Fig. 5: Ladder diagrams illustrating different contributions to the LLA (in the cut diagram notation):
(a) three q-q splitting cells, (b) q-g, g-q and q-q cells, (c) q-g, g-g and g-q cells [15, 11].

The Feynman diagrams for g-q, q-g and g-g splitting can be evaluated similarly, intro-
ducing the respective splitting functions PFG, PGF and PGG (see sec. 7.1) and the gluon
PDF g(x,Q2). Combinations of different emission processes are also possible, as illustrated
in figs. 5b and 5c. This can be adressed by defining qi(x,Q2) and g(x,Q2) as the exponen-
tial of a matrix containing all splitting functions, a generalisation of eq. (3.9) resulting in
the full DGLAP evolution equations [11],

∂

∂ lnQ2
qi(x,Q

2) =
αs
2π

[∑
j

PFF (x)⊗ qj(x) + PFG(x)⊗ g(x,Q2)

]
(3.11)

∂

∂ lnQ2
g(x,Q2) =

αs
2π

[∑
j

PGF (x)⊗ qj(x) + PGG(x)⊗ g(x,Q2)

]
. (3.12)

As mentioned before, the functions PAB are related to the probabilities of the different
parton emission processes. This shows how the DGLAP equations can be interpreted in
terms of fig. 3: The convolution integrals on the r.h.s. give the total amount of partons
with momentum fraction x emitted by other partons with fractions z > x.
The equations can be written in a compact form by introducing the singlet quark

distribution

Σ(x,Q2) =

NF∑
i=1

(
qi(x,Q

2) + qi(x,Q
2)
)

(3.13)

as well as the nonsinglet distributions

q−i (x,Q2) = qi(x,Q
2)− qi(x,Q2) (3.14)

q+i (x,Q2) = qi(x,Q
2) + qi(x,Q

2)− 1

NF

Σ(x,Q2), (3.15)

11
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where qi denotes the antiquark PDFs. The DGLAP equations in terms of these linear
combinations are given by [16]

∂

∂ lnQ2

(
Σ(x,Q2)

g(x,Q2)

)
=
αs
2π

(
PFF (x) PFG(x)
PGF (x) PGG(x)

)
⊗
(

Σ(x,Q2)
g(x,Q2)

)
, (3.16)

∂

∂ lnQ2
q±i (x,Q2) =

αs
2π
P±(x)⊗ q±i (x,Q2). (3.17)

It is important to note that PDFs are non-perturbative, so some external input is always
required to compute solutions of the DGLAP equations. In this thesis, PDFs from the
nCTEQ15 collaboration (generated with the LHAPDF6 library [17]) are used as initial
conditions for the evolution, which were obtained by using the DGLAP equations as well
as various experimental data [13].
Evolving the initial values upward (towards higher Q2) with the DGLAP equations

corresponds to increasing the “resolution” of the scattering experiment. The interactions
between partons affect the PDFs more the higher Q2 is [1]. Conversely, evolving downward
from high Q2 corresponds to a decrease in resolution. The non-interacting picture of the
nucleus must be reproduced at low Q2, so the downward evolution can be interpreted as
the parton interactions happening in reverse.
Eq. (3.17) (the nonsinglet evolution equation) is independent of the gluon distribution.

Since it also doesn’t receive corrections due to gluon recombination [8], the nonsinglet
PDFs can mostly be ignored in the context of this thesis. For convenience, the remaining
DGLAP equations will be used in terms of the momentum densities Ω(x,Q2) = xΣ(x,Q2)
and G(x,Q2) = xg(x,Q2) from here on, i.e. [9]

∂Ω

∂ lnQ2
(x,Q2) =

αs
2π

1∫
x

dz

z2
x
[
PFF

(x
z

)
Ω(z,Q2) + PFG

(x
z

)
G(z,Q2)

]
(3.18)

∂G

∂ lnQ2
(x,Q2) =

αs
2π

1∫
x

dz

z2
x
[
PGF

(x
z

)
Ω(z,Q2) + PGG

(x
z

)
G(z,Q2)

]
. (3.19)

3.2 GLR-MQ Equations

Apart from the processes discussed in the previous section (where one parton turns into
two partons), it is also possible for two gluons to recombine into a single gluon or into a
quark-antiquark pair. This affects the PDFs, especially in the limit of high gluon densities,
when the wavefunctions spatially overlap.
One approach to address this fact leads to the GLR-MQ equations, where the merging

of two DGLAP gluon ladders into a bare gluon or fermion cut vertex (“fan diagrams”)
is considered [7, 8]. This corresponds to graphs as those shown in fig. 6. They can be
analysed with the QCD Feynman rules, analogously to the DGLAP equations. In the
following, the central steps taken in the paper by Mueller and Qiu [8] to evaluate g-g
recombination effects are presented.
First, the LLA contribution of the diagram in fig. 6a is derived, again using the axial

12
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gauge (see eq. (3.1)). The part of the diagram with momentum labels gives

V =
k⊥1µk

⊥
2νk
⊥
2ρk
⊥
1σ

η · k1η · k2η · (k2 + δ) η · (k1 − δ)
g4

(2π)4
C2
G

N2 − 1
(3.20)

×
∫

d4l
−2πδ

[
(k1 + k2 − l)2

]
[l2 + iε] [l2 − iε]

[
(k1 − l)2 + iε

] [
(k1 − l − δ)2 − iε

]
× ΓαγµPγδΓδξνPξζΓζερPελΓλβσ

−ηαηβl2
(η · l)2 xδ

(
x− η · l

η · p

)
,

where Γ denotes a three-gluon vertex, and the approximation

−2kαPαβ(l) ≈ 2η · k
η · l l

⊥
β (3.21)

is used to obtain the first term. The final term corresponds to the gluon cut vertex. In
addition, the diagrams related to fig. 6a through the exchanges k1 ↔ k2, k1− δ ↔ k2 + δ,
and both of those at once must be taken into account, resulting in

V =
k21k

2
2

[
η · (k1 + k2)

2 + η · k1 η · (k1 − δ) + η · k2 η · (k2 + δ)
]

η · (k1 + k2) [η · k1 η · k2 η · (k1 − δ) η · (k2 + δ)]2
(3.22)

×
{

2
[
η · (k1 + k2)

2 − η · k1 η · (k2 + δ)
]

×
[
η · (k1 + k2)

2 − η · k2 η · (k1 − δ)
]

+ [η · δ η · (k1 + k2)]
2}

× α2
s

2C2
G

N2 − 1

1

η · l

Q2∫
dl2[
l2
]2 .

This expression is then integrated over k1−, k2− and δ− (using light-cone coordinates
(v−, v+, v) with η · v = v−), yielding

I = α2
s64π4 C2

G

N2 − 1

k21k
2
2

η · l

Q2∫
dl2[
l2
]2 ∫

x

du

u
. (3.23)

Other g-g recombination diagrams were examined by Mueller and Qiu, but the corre-
sponding integrals are equal to zero. Eq. (3.23) is now multiplied with

1 =

∫
dk1−

η · p
(η · k1)2

u2δ

(
u− η · k1

η · p

)∫
dk2−

η · p
(η · k2)2

u2δ

(
u− η · k2

η · p

)
, (3.24)

where

u =
η · (k1 + k2)

2η · p . (3.25)

By applying the logarithmic derivative ∂/∂ lnQ2 to the result, one obtains the new con-
tribution to the gluon evolution equation:

∂G

∂ lnQ2
(x,Q2) = −4πα2

s

C2
G

N2 − 1

1

Q2

∫ 1

x

dz

z
z2g(2)(z,Q2), (3.26)

13
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k1

k2 k2 + δ

k1 − δ

l l

(a)

k1 k2 k2 + δ k1 − δ

l l

(b)

Fig. 6: Two diagrams used in the derivation of the GLR-MQ equations [8]: (a) g-g recombination,
(b) g-q recombination.

where g(2) is the two-gluon distribution. In a low-density model of the nucleus, it is given
by [18]

x2g(2)(x,Q2) =
9

8

1

πR2

(
G(x,Q2)

)2
, (3.27)

with the target radius R.
Similar calculations can be done for g-q recombination diagrams as illustrated in fig.

6b, leading to a correction to the quark singlet equation. The full GLR-MQ evolution
equations can be written as [19]

∂Ω

∂ lnQ2
(x,Q2) =

∂Ω

∂ lnQ2
(x,Q2)

∣∣∣∣
lin
− 27

160

α2
s

R2Q2

(
G(z,Q2)

)2 (3.28)

∂G

∂ lnQ2
(x,Q2) =

∂G

∂ lnQ2
(x,Q2)

∣∣∣∣
lin
− 81

16

α2
s

R2Q2

1∫
x

dz

z

(
G(z,Q2)

)2
, (3.29)

where the first terms on the r.h.s. are given by the DGLAP equations. The positive g-q
recombination term containing GHT given by Mueller and Qiu is neglected here. Both
of the new terms are nonlinear in the gluon distribution, so the resulting dynamics are
expected to be quite different from the linear DGLAP equations.
The radius R can be approximated by R = 1.25 fm · A1/3 (or R = 6.34 GeV−1 · A1/3 in

natural units), where A is the mass number of the nucleus. For convenience, the shorthand
notation

f(Q2) =
α2
s

R2Q2
(3.30)

is introduced. If the input PDFs are given in the form Ω/A and G/A (as is the case with
the nCTEQ15 parametrisation), f(Q2) has to be multiplied by an additional factor A in
the numerical evaluation.

14
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There are other ways to analyse DIS in the high parton density limit. For example, the
Balitsky-Kovchegov (BK) evolution equation can be obtained by treating the incoming
photon as a quark-antiquark dipole. The structure of the BK equation is similar to GLR-
MQ (the linear terms correspond to the BFKL equation and the nonlinear terms to parton
ladder merging), and it has the same physical interpretation [20].
Another approach is to determine the change to the nuclear wave function (“color glass

condensate”) caused by an increase in energy. This leads to the Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation, which corresponds to the same
processes as the BK equation [20].

3.3 NLO Structure Functions

As explained in section 2.3, the original purpose of PDFs is to enable the calculation of
the nuclear structure functions F1, F2. This is still true in QCD, even though the parton
model formula is replaced by a more general expression through the QCD factorisation
theorem [3].
The NLO structure functions (in the MS factorisation scheme and assuming Q2

f = Q2)
can be written as [11]

2xF1(x,Q
2) = F2(x,Q

2)− x
NF∑
i=1

e2i (qi + qi)⊗
(αs

2π
C

(1)
Lq

)
− x 〈e2〉 g ⊗

(αs
2π
C

(1)
Lg

)
, (3.31)

F2(x,Q
2) = x

NF∑
i=1

e2i (qi + qi)⊗
(
δ(1− x) +

αs
2π
C

(1)
2q

)
+ x 〈e2〉 g ⊗

(αs
2π
C

(1)
2g

)
, (3.32)

where the coefficient functions C(1)
ij are given in sec. 7.2 and

〈e2〉 =
1

NF

NF∑
i=1

e2i (3.33)

is the average of the squared quark charges. The leading order δ-term in F2 corresponds to
the Callan-Gross relation, see eq. (2.32). In most applications, the longitudinal structure
function FL ≡ F2 − 2xF1 is used instead of F1.
To express F2, FL in terms of singlet and nonsinglet quark distributions, the (qi + qi)

terms are rewritten with eq. (3.15). One obtains [9]

F2(x,Q
2) = N(x,Q2) +

αs
2π

1∫
x

dz

z2
xC

(1)
2q

(x
z

)
N(z,Q2) (3.34)

+ 〈e2〉Ω(x,Q2) + 〈e2〉 αs
2π

1∫
x

dz

z2
xC

(1)
2q

(x
z

)
Ω(z,Q2)

+ 〈e2〉 αs
2π

1∫
x

dz

z2
xC

(1)
2g

(x
z

)
G(z,Q2)
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FL(x,Q2) =
αs
2π

1∫
x

dz

z2
xC

(1)
Lq

(x
z

)
N(z,Q2) (3.35)

+ 〈e2〉 αs
2π

1∫
x

dz

z2
xC

(1)
Lq

(x
z

)
Ω(z,Q2)

+ 〈e2〉 αs
2π

1∫
x

dz

z2
xC

(1)
Lg

(x
z

)
G(z,Q2),

where

N(x,Q2) = x

NF∑
i=1

e2i q
+
i (x,Q2). (3.36)

With this, the PDFs calculated in this thesis can be related to the structure functions,
DIS cross sections and experimental data. The nonlinear gluon recombination corrections
enter the structure functions implicitly through Ω(x,Q2) and G(x,Q2).
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4 Numerical Method

The approach used by the program QCDNUM16 [9] to solve the DGLAP equations is
explained and extended to the GLR-MQ equations.

4.1 Basic Principle

To solve the evolution equations, they are evaluated numerically on an x-Q2-grid. Given
the parton distributions at a starting value Q 2

0 , the distributions at other values of Q2 are
determined by solving a set of four equations at each grid point. In the following, these
equations are derived using spline interpolation between grid points.
The grid consists of n+ 1 values of x bounded by x0 and 1, i.e. x0 < . . . < xn = 1, and

m+ 1 values of Q2 which are all above or below Q2
0. Around 50 values are used for both x

and Q2 in this thesis, spaced logarithmically because the region of low x and Q2 is most
relevant here. In the following, D(xc, Q

2
r) = Drc refers to Ω(x,Q2) or G(x,Q2) evaluated

at the grid point (xc, Q
2
r), and the logarithmic derivative ∂D/∂ lnQ2 is written as D′. At

x = 1, D is set to zero, so Drn = 0 for all r.
In order to compute the integrals in eqs. (3.18), (3.19) and (3.29), D is interpolated

linearly between x-values,

Dx(x,Q
2
r) = a1x+ a0 with x ∈ [xk, xk+1]. (4.1)

By imposing the continuity condition Dx(xi, Q
2
r) = Dri for i = k, k + 1, one obtains

Dx(x,Q
2
r) = (1− tk)Drk + tkDr(k+1) with tk =

x− xk
xk+1 − xk

∈ [0, 1]. (4.2)

With this, the integrals can be written as weighted sums over Drk, where k runs from c
to n. Assuming Drk is known for k > c (condition 1), the only unknowns in the DGLAP
equations are Ωrc,Ω

′
rc, Grc and G′rc.

Two more equations relating these unknowns can be obtained by using a quadratic
interpolation between Q2-values,

DQ(xc, Q
2) = a2

(
lnQ2

)2
+ a1 lnQ2 + a0 with Q2 ∈

[
Q2
r−1, Q

2
r

]
. (4.3)

The requirements DQ(xc, Q
2
i ) = Dic and D′Q(xc, Q

2
i ) = D′ic for i = r − 1, r imply

Drc = D(r−1)c +
∆r

2

(
D′(r−1)c +D′rc

)
, (4.4)

with ∆r = lnQ2
r− lnQ2

r−1. If D(r−1)c and D′(r−1)c have been calculated during the previous
evolution steps (condition 2), eq. (4.4) and the DGLAP equations can be solved for the
four unknowns.
The path through the grid must now be chosen such that conditions 1 and 2 are satisfied

for any grid point (xc, Q
2
r) where D is being evaluated. This is achieved by starting at

xn = 1 for every value of Q2 and proceeding towards smaller x, as illustrated in fig. 7.
Throughout the numerical analysis, the coupling αs is computed with eq. (2.5). The

scale parameter Λ in that equation is calculated before the evolution by using the starting
value αs(M2

Z) = 0.118 (with the Z boson mass MZ = 91.2 GeV) and requiring αs(Q2) to
be continuous at the flavor thresholds mc = 1.3 GeV and mb = 4.5 GeV.
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x0 x1 x2 x3 x4 x5

Q 2
0

Q 2
1

Q 2
2

Q 2
3

Fig. 7: The evolution path through a grid with n = 5 and m = 3. Every row is evaluated from the
right to the left, starting at the bottom and going to the top. The orange dots indicate the
starting values of D.

4.2 DGLAP

Using the linear interpolation in eq. (4.2), the convolution integrals in the DGLAP equa-
tions can be written as

1∫
xc

dz

z2
xcPAB

(xc
z

)
D(z,Q2

r) =
n−1∑
k=c

wAB(xk, xc)Drk, (4.5)

where

wAB(xk, xc) =

{
S1 (fc+1, fc) if k = c

S1 (fk+1, fk)− S2 (fk, fk−1) else
(4.6)

with fk = xc/xk and

Si(u, v) =
ai

v − u

v∫
u

dz

z
(z − bi)PAB(z), (4.7)

a1 = b2 = v, a2 = b1 = u.

The weights wAB(xk, xc) are calculated numerically at program initialisation.
The discretised DGLAP equations can then be expressed as

Ω′rc = WFFΩrc +WFGGrc +MF (4.8)
G′rc = WGFΩrc +WGGGrc +MG, (4.9)

where WAB = (αs/2π)wAB(xc, xc) and MF ,MG contain the summands with k > c mul-
tiplied by (αs/2π). Together with eq. (4.4), they form a system of four linear equations
with four unknowns. This system is solved numerically at every step in the evolution.
In order to test its accuracy, the evolution was done with nCTEQ15 PDFs [13] for

different nuclei at Q0 = 2 GeV, evolving up to Qm = 10 GeV (n = 50, m = 40). The
evolution results for Au -197 at Q = 4 GeV, 10 GeV obtained with python are in almost
perfect agreement with the corresponding nCTEQ15 parametrisation at those values, see
fig. 8. The average relative discrepancy for Q = Qm and 10−5 ≤ x ≤ 10−3 is around 1.2%
for both the quark singlet and the gluon distribution.
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Fig. 8: Results of the (upward) DGLAP evolution using nCTEQ15 PDFs [13] at Q0 = 2GeV as
input, compared with the PDFs at 4GeV and 10GeV.

4.3 GLR-MQ

Inserting eq. (4.2) into the GLR-MQ correction term in the gluon evolution in eq. (3.29)
yields

1∫
xc

dz

z
G2(z,Q2

r) =
n−1∑
k=c

w1(xk)G
2
rk +

n−2∑
k=c

2w2(xk)Gr(k+1)Grk, (4.10)

with

w1(xk) =

{
T1(xc, xc+1) if k = c

T1(xk, xk+1) + T2(xk−1, xk) else
(4.11)

w2(xk) = −T3(xk, xk+1) (4.12)

and

Ti(u, v) =
1

(v − u)2

v∫
u

dz

z

(
cidi − (ci + di)z + z2

)
, (4.13)

c1 = d1 = d3 = v, c2 = d2 = c3 = u.

The computation of w1(xk) and w2(xk) can be done much faster than that of the DGLAP
weights wAB(xk, xc): Only O(n) integrals must be calculated instead of O(n2), and the
integrand in eq. (4.13) is a great deal simpler than the splitting functions in eq. (4.7).
With this and the results from the previous section, the GLR-MQ equations become

Ω′rc = WFFΩrc − V1G2
rc +WFGGrc +MF (4.14)

G′rc = WGFΩrc − V2G2
rc + (WGG − V3)Grc +MG −NG, (4.15)

where V1 = (27/160)f(Q2
r), V2 = (81/16)f(Q2

r)w1(xc), V3 = (81/16)f(Q2
r)2w2(xc)Gr(c+1).

The term NG contains the remainder of the sums in eq. (4.10) multiplied by (81/16)f(Q2
r).

Eq. (4.4) still applies, so again there are four equations relating Drc and D′rc that can be
solved at each grid point when using the evolution path in fig. 7.
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4.4 Python Code

All computation times listed in this section were recorded with timeit for a 50×40-grid
on a PC using 600-800 MB of RAM.
The central part of the code written for this thesis is a python class which handles the

whole evolution. At initialisation, the weights for the convolution integrals are calculated
using the module scipy.integrate. This is the most computationally intensive step
and takes comparatively long (around 3.3 min) since O(n2) integrals over the splitting
functions in sec. 7.1 need to be evaluated, but it only has to be done once for a given grid.
It can also be avoided completely by saving the weight tables after calculating them once.
After loading the input PDFs, the evolution proceeds as shown in fig. 7. The equations

derived in the previous sections are solved with scipy.optimize at every grid point, and
the results for any row (or column) of the grid can be extracted at the end. The evolution
takes about 0.5 s for the DGLAP equations and 0.7 s for GLR-MQ.
Three booleans (mix,nlo,nonlin) are passed to the class to switch quark-gluon mixing,

the NLO contributions to the splitting functions and the nonlinear terms on or off inde-
pendently. This allows comparing the impact of different contributions to the GLR-MQ
equations. Also, the weight calculation runs much faster at LO (around 5.6 s) or without
mixing (around 1.4 min), which can be useful when qualitative results are sufficient.
Objects of the python class have the following attributes:

• x,q - 1D arrays containing x0, . . . , xn and Q2
0, . . . , Q

2
m respectively

• nx,nq - equal to n+ 1 and m+ 1

• mix,nlo - booleans, as explained above

• Qu,Gl - 3D arrays containing Drc and D′rc for each grid point

• wff,wfg,wgf,wgg - 3D arrays containing the DGLAP integral weights for every
combination (xk, xc) with k ≥ c and every value of Q2

r

• w1,w2 - 1D arrays containing the GLR-MQ integral weights for each xc
The methods provided by the class are:

• __init__(self,x,q,mixing,nlo) - initialises the class object; x and q are 1D
arrays containing the desired values of x and Q2

• weights(self) - calculates the convolution weights

• load_values(self,array_Qu,array_Gl,nonlin,A) - loads the 1D arrays array_Qu
and array_Gl as starting values and calculates D′0c for all c; A is the mass number
corresponding to the input PDFs

• evolve(self,r,nonlin,A) - runs the evolution step Qr−1 → Qr

• evolve_all(self,nonlin,A) - runs the complete evolution

• res(self,r,D) - returns a PDF at Qr as a 1D array; D is a string determining if G
(D = ’Gluon’) or Σ (D = ’Quark singlet’) is returned

• __str__(self) - prints the parameters of the class object
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5 Results

The numerical solutions of the DGLAP and the GLR-MQ equations obtained with python
are presented and discussed in this section.

5.1 Evolution Direction

The quadratic terms in the GLR-MQ equations are proportional to 1/Q2, so they can be
neglected at high Q. This is supported by the fact that the difference between the GLR-
MQ and the DGLAP PDFs is very small above Q = 10 GeV, see fig. 9. As a consequence,
the evolution should give a more accurate picture of the quadratic terms’ effect when
evolving downward from high Q0 (since the input doesn’t take gluon recombination into
account). Still, both evolution directions will be discussed here.
The results of the upward and downward nonlinear evolutions for Au-197 are shown in

fig. 10. Au-197 was chosen since the gluon recombination effects are more pronounced for
heavy nuclei, see section 5.3. Here and in the following, nCTEQ15 PDFs [13] are always
used as starting values, on a grid with n = 50 and m = 40.
In the case of the upward evolution, both Ω(x,Q2) and G(x,Q2) at Qm = 10 GeV are

below the corresponding nCTEQ15 PDFs at low x. This shows that gluon recombination
contributes to taming down the asymptotic growth of the PDFs in this region, as discussed
in other papers [21, 22, 23].
Physically, the decrease in G(x,Q2) can be explained with the recombination of low-x

gluons into high-x gluons. The g-q splitting function PFG(x/z) is positive for x ≤ z ≤ 1,
so the lower gluon PDFs lead to a smaller rate of change Ω′(x,Q2) and consequently to the
observed decrease in Ω(x,Q2). The absolute difference between GLR-MQ and DGLAP
PDFs is generally smaller for the quark distribution though.
For the downward evolution, Ω(x,Q2) at Qm = 2 GeV and low x is decreased compared

to the nCTEQ15 PDFs, while G(x,Q2) is increased. The relative discrepancy between
python and nCTEQ15 results is also notably bigger than with the upward evolution,
especially at low x. This is because the DGLAP PDFs are much smaller at Qm = 2 GeV;
the absolute difference between GLR-MQ and DGLAP PDFs at x = 10−5 and Q = Qm

is similar for both directions.
The gluon distribution at the end of the downward evolution can be seen as a conse-

quence of reversed g-g recombination, i.e. the migration of high-x gluons towards low x. As
before, the change in G(x,Q2) affects Ω(x,Q2), mostly through PFG(x/z). The reversed
g-q splitting behaves like quark-antiquark pairs recombining into gluons, which explains
the decrease in Ω(x,Q2).

5.2 Parton Mixing

Mixing (q-g and g-q splitting) is the mechanism that drives the interaction between
G(x,Q2) and Ω(x,Q2) in the DGLAP equations. The GLR-MQ equations can be solved
without mixing, i.e. for PFG ≡ PGF ≡ 0 (mix = False in python), to isolate the gluon
recombination effects.
The results are shown in fig. 11. The quark distribution barely changes during the evo-

lution, so the combined effect of the q-q splitting and the g-q recombination is very small
compared to that of the neglected g-q splitting. Consequently, the differences between the
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Fig. 9: Ratio of the GLR-MQ (nlin) and DGLAP (lin) PDFs after the evolution from Q0 = 10GeV
to Qm = 16GeV with input from nCTEQ15 [13].
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Fig. 10: Results of the GLR-MQ evolution for Au -197: (a,b) upward, (c,d) downward evolution.
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Fig. 11: Results of the evolution with PFG ≡ PGF ≡ 0.

GLR-MQ and the DGLAP PDFs can mainly be attributed to the quadratic term in eq.
(3.29). This is consistent with the predictions made by Mueller and Qiu [8].
The gluon distribution also differs from the full result in fig. 10 significantly, especially

in the low-x region. This is because the absence of q-g splitting leads to a decrease of
G′(x,Q2), and thus to an increase or decrease of G(x,Q2) (depending on the evolution
direction). Still, the combined g-g splitting and g-g recombination causes G(x,Q2) to
change noticeably during the evolution, showing these effects aren’t negligible compared
to the q-g splitting.

5.3 A Dependence

When using the approximation R ∝ A1/3, the nonlinear terms in the GLR-MQ equations
fall as A−2/3. On the other hand, the nCTEQ15 gluon PDFs grow considerably with A,
which counteracts the A−2/3 behavior. In particular, assuming the nuclear PDFs scale as
A (neglecting nuclear modifications of PDFs), the GLR-MQ terms scale as A4/3.
The GLR-MQ/DGLAP ratios for the free proton as well as the nuclei C -12, Ca -40, Hs -

108 and Au -197 are shown in fig. 12. As expected, they clearly differ more from one with
increasing A. The upward evolution result for the proton gluon distribution is modified
by about 4.5% at x = 10−5, and the Au -197 distribution by about 15%.
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Fig. 12: Ratio of the GLR-MQ/DGLAP evolution results for different nuclei.

10−5 10−4 10−3 10−2 10−1 100

0

3

6

9

12

15

18

21

24

27

Ω
/A

Quark singlet, nonlinear (Au197)

nCTEQ, 2 GeV

nCTEQ, 10 GeV

naive, 2 GeV

naive, 10 GeV

python, 10 GeV

10−5 10−4 10−3 10−2 10−1 100

0

10

20

30

40

50

60

70

G
/A

Gluon, nonlinear (Au197)

nCTEQ, 2 GeV

nCTEQ, 10 GeV

naive, 2 GeV

naive, 10 GeV

python, 10 GeV

Fig. 13: Results of the nonlinear upward evolution with naive superpositions as input (Q0 = 2GeV).
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Fig. 14: Results of the nonlinear downward evolution with nCTEQ15 PDFs as input (Q0 = 10GeV).
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Fig. 15: Structure functions F2 and FL compared to data from HERA [24].
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For x ≥ 10−1, the difference between the GLR-MQ and DGLAP PDFs is close to zero,
and it grows steadily toward low x. This behavior matches the approximate analytical
solutions of other groups [21, 22, 23]. It is also apparent that the nonlinear terms have a
much bigger relative impact on the downward evolution, as explained in sec. 5.1.
The initial values from the nCTEQ15 parametrisation are based on experimental data,

and hence affected by small-x nuclear effects like shadowing [13]. To investigate how these
effects compete with gluon recombination, a “naive” superposition of free proton and
neutron PDFs was considered, i.e.

ΣA(x,Q2
0) = Z · Σp(x,Q

2
0) +N · Σn(x,Q2

0) = A · Σp(x,Q
2
0) (5.1)

gA(x,Q2
0) = Z · gp(x,Q2

0) +N · gn(x,Q2
0) = A · gp(x,Q2

0). (5.2)

The proton/neutron PDFs are related through isospin symmetry [1], implying Σn ≡ Σp

and gn ≡ gp. At low x, the superpositions ΣA and gA are increased compared to the PDFs
with nuclear modifications, which amplifies the impact of gluon recombination.
The “naive” PDFs were used as input for an upward evolution, see fig. 13. The low-x

results at Qm = 10 GeV are closer to the actual nCTEQ15 PDFs than ΩA ≡ xΣA and
GA ≡ xgA at that value, especially for G(x,Q2). This suggests other nuclear effects have
a bigger impact on the quark distribution. Still gluon recombination appears to be a
significant contribution to the suppression of nuclear PDFs observed in experiments.
This can be probed further by using a nonlinear downward evolution with nCTEQ15

PDFs as input (which corresponds to reversing gluon recombination effects), and com-
paring the results to ΩA(x,Q2) and GA(x,Q2). This is shown in fig. 14. As one would
expect, the evolved gluon distribution at low x is closer to GA(x,Q2) than to the actual
nCTEQ15 PDF. The same isn’t true for the quark distribution, again supporting the idea
that other effects are more important here.

5.4 Structure Functions

The GLR-MQ PDFs can be related to experimental data by computing the corresponding
structure functions F2 and FL with eqs. (3.34) and (3.35). The convolution integrals in
these equations have exactly the same structure as those in the DGLAP equations, so the
method explained in sec. 4.2 can be used to evaluate them. The non-singlet PDFs N(x,Q2)
are taken directly from nCTEQ15 since their evolution is independent of G(x,Q2).
Using N(x,Q2) and the quark singlet and gluon PDFs calculated with python, the

structure functions in fig. 15 were obtained. Experimental data from the particle acceler-
ator HERA [24] for the proton is also shown. The difference between the DGLAP and the
GLR-MQ structure functions is quite small, which makes sense considering the same is
true for the proton PDFs (see fig. 12). Still it appears the nonlinear corrections improve
the agreement between theory and data, if only slightly.
The ratio of the GLR-MQ/DGLAP structure functions for different nuclei is shown in

fig. 16. It mirrors the A dependence of the PDFs in fig. 12, where F2 is apparently dom-
inated by Ω(x,Q2) and FL by G(x,Q2). The nonlinear effects are again most important
for heavy nuclei, and their impact is larger for FL than for F2, so it should be easier to
observe them experimentally when measuring FL. For instance, when evolving upward
the structure function FL for the proton is modified by about 3.5% at x = 10−5, see fig.
16b. A similar-size discrepancy can already be observed at x = 4 · 10−3 for Au- 197.
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Fig. 16: Ratio of the GLR-MQ/DGLAP structure functions for different nuclei.

It will be possible to obtain lepton-nucleus DIS data for x ∼ 10−4 at low perturbative
values of Q2 (around 1 GeV2) at the EIC [25], and even for x ∼ 10−6 at the LHeC [26].
Together with fig. 16, this implies gluon recombination effects should be detectable at
those facilities.

27



Bachelor’s thesis 6 SUMMARY March 2022

6 Summary

The cross section for lepton-nucleus DIS can be expressed in terms of universal PDFs using
the QCD factorisation theorem. Due to parton emission processes the PDFs depend on
the momentum transfer Q2, an effect described by the DGLAP evolution equations. Gluon
recombination effects lead to corrections to those equations, culminating in the nonlin-
ear GLR-MQ equations. Both DGLAP and GLR-MQ equations were solved numerically
with python for this thesis, and the influence of various parameters on the results was
investigated.
The numerical evolution was done both with increasing and decreasing Q2, and the

physical implications were discussed. Among other things, it was concluded that the im-
pact of the recombination terms on the results becomes larger towards low x, is negligibly
small above Q = 10 GeV, and is greater when evolving downwards (relative to the regular
DGLAP PDFs).
It was also investigated how the absence of parton mixing affects the evolution. The

results show that the importance of g-q recombination is very small compared to g-q
splitting and g-g recombination.
The ratio GLR-MQ/DGLAP was compared for different nuclei, with A ranging between

1 (proton) and 197 (Au -197). The recombination effects are more prominent for heavy
nuclei. For example, the nonlinear corrections decrease G(x = 10−5, Q2 = 100 GeV2) by
4.5% for A = 1 and by 15% for A = 197 (when starting the evolution at Q0 = 2 GeV). The
relative difference is generally much bigger when evolving downward from Q0 = 10 GeV.
The interplay between gluon recombination and other nuclear effects (e.g. shadowing) was
also discussed briefly.
Finally, the structure functions F2 and FL were calculated with the PDFs from the GLR-

MQ evolution. Experimental data from HERA indicates that the nonlinear corrections
slightly increase the accuracy of the theoretical prediction. It was also shown that gluon
recombination effects in heavy nuclei should be observable at the EIC and the LHeC,
especially when measuring FL: Using GLR-MQ instead of DGLAP PDFs leads to a 12%
decrease in FL(x = 10−5, Q2 = 100 GeV2) for A = 197 (again using Q0 = 2 GeV).
The results of this thesis could be used to include the GLR-MQ corrections in global

PDF analyses like nCTEQ15. This should improve the resulting fits, especially for heavy
nuclei in the low-Q2 regime.
Further research could look into how the NNLO corrections to the splitting functions

PAB and the coupling parameter αs alter the numerical GLR-MQ evolution. Also, the
higher-twist contribution to g-q recombination given by Mueller and Qiu could be imple-
mented to observe how it affects the results. Potential gluon recombination corrections to
F2, FL could be adressed as well.
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7 Appendix

7.1 Splitting Functions

The splitting functions PAB can be written as a perturbation series in αs, here up to NLO:

PAB(x) = P
(0)
AB(x) +

αs
2π
P

(1)
AB(x). (7.1)

The LO contributions are given by [9, 27]

P
(0)
FF (z) = CF

[
pFF (z)

]
+

P
(0)
FG(z) = CF pFG(z) (7.2)

P
(0)
GF (z) = 2TRNF pGF (z) P

(0)
GG(z) = 2CG

1

z

[
z pGG(z)

]
+
− δ(1− x)

2

3
TRNF (7.3)

where

pFF (z) =
1 + z2

1− z pFG(z) =
2

z
− 2 + z (7.4)

pGF (z) = z2 + (1− z)2 pGG(z) =
1

1− z +
1

z
− 2 + z − z2. (7.5)

(Note: Ref. [27] uses a different index convention where PFG and PGF are swapped.) The
group factors are given by CG = N = 3, CF = 4/3 and TR = 1/2, and the so-called plus
prescription is defined as

[
f(x)

]
+

= f(x)− δ(1− x)

1∫
0

dy f(y). (7.6)

The NLO terms for spacelike processes (i.e. for Q2 > 0, as is the case in DIS) are [27]

P
(1,s)
AA (z) =

1

z

[
zP̂

(1,s)
AA (z)

]
+
− δ(1− z)

1∫
0

dy yP̂
(1,s)
AB (y) (7.7)

P
(1,s)
AB (z) = P̂

(1,s)
AB (z) for A 6= B, (7.8)

with

P̂
(1,s)
FF = C2

F

[
−1 + x+

(
1

2
− 3

2
x

)
lnx− 1

2
(1 + x) ln2 x (7.9)

−
(
3

2
lnx+ 2 lnx ln(1− x)

)
pFF (x) + 2pFF (−x)S(x)

]
+ CFCG

[
14

3
(1− x) +

(
67

18
− π2

6
+

11

6
lnx+

1

2
ln2 x

)
pFF (x)− pFF (−x)S(x)

]
+ CFTRNF

[
−16

3
+

40

3
x+

(
2 + 10x+

16

3
x2
)
lnx− 112

9
x2

+
40

9
· 1
x
− 2(1 + x) ln2 x−

(
10

9
+

2

3
lnx

)
pFF (x)

]
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P̂
(1,s)
FG = C2

F

[
−5

3
− 7

2
x+

(
2 +

7

2
x

)
lnx+

(
−1 + 1

2
x

)
ln2 x− 2x ln(1− x) (7.10)

+
(
−3 ln(1− x)− ln2(1− x)

)
pFG(x)

]
+ CFCG

[
28

9
+
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18
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9
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(
12 + 5x+
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lnx+ (4 + x) ln2 x+ 2x ln(1− x)

+
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1

2
− π2

6
− 2 lnx ln(1− x) + 1

2
ln2 x+
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3
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]
+ CFTRNF
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3
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(
20
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+

4

3
ln(1− x)

)
pFG(x)

]
P̂

(1,s)
GF = CFTRNF

[
4− 9x+ (−1 + 4x) lnx+ (−1 + 2x) ln2 x+ 4 ln(1− x) (7.11)

+

(
10− 2

3
π2 + 4 lnx− 4 lnx ln(1− x) + 2 ln2 x− 4 ln(1− x) + 2 ln2(1− x)

)
pGF (x)

]
+ CGTRNF

[
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9
+
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9
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x
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(
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3
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(
π2

3
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9
+
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3
lnx+ 4 ln(1− x)− ln2 x− 2 ln2(1− x)

)
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P̂
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GG = CFTRNF
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3
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4

3
· 1
x
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+ CGTRNF
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pGG(x)

]
+ C2

G

[
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x
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(
−25

3
+

11

3
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3
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lnx+ 4(1 + x) ln2 x
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9
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3
− 4 lnx ln(1− x) + ln2 x
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pGG(x) + 2pGG(−x)S(x)
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,

where

S(x) =

1/(1+z)∫
z/(1+z)

dx

x
ln

(
1− x
x

)
(7.13)

= −2Li2(−x)− 2 lnx ln(1 + x) +
1

2
ln2 x− π2

6
.

7.2 Coefficient Functions

The coefficient functions for calculating the structure functions F2 and FL are [9, 16]

C
(1)
2q (x) = CF

[
1 + x2

1− x

(
ln

1− x
x
− 3

4

)
+

1

4
(9 + 5x)

]
+

(7.14)

C
(1)
2g (x) = 2NFTR

[(
x2 + (1− x)2

)
ln

1− x
x

+ 8x(1− x)− 1

]
(7.15)

C
(1)
Lq (x) = 2CFx (7.16)

C
(1)
Lg (x) = 8NFTRx(1− x). (7.17)

The plus-prescription used in C(1)
2q was defined in the previous section.
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7.3 Deutsche Zusammenfassung

Nach unserem aktuellen Erkenntnisstand besteht der Atomkern aus Protonen und Neutro-
nen, die wiederum Quarks und Gluonen (kollektiv Partonen genannt) enthalten. Partonen
sowie die starke Wechselwirkung zwischen ihnen können mit einer renormierbaren, nicht-
abelschen Eichtheorie namens Quantenchromodynamik (QCD) beschrieben werden.
Der sauberste Weg den Atomkern experimentell zu untersuchen ist die tief-inelastische

Lepton-Nukleus-Streuung, bei der hochenergetische Leptonen von Hadronen gestreut wer-
den, was zur Dissoziation des Targets führt. Der zugehörige Wirkungsquerschnitt kann
mit dem QCD-Faktorisierungstheorem über universelle Partondichtefunktionen (PDFs)
ausgedrückt werden, die (in erster Ordnung Störungstheorie) als Impulsverteilungen der
Partonen verstanden werden können.
Aufgrund von partonischen Emissionsprozessen hängen die PDFs vom Impulsübertrag

Q2 der Kollision ab. Die Entwicklung der PDFs mit Q2 wird von den DGLAP-Gleichungen
beschrieben, die sich aus „Leiter“ -Emissionsdiagrammen ergeben. Die Rekombination von
Gluonen führt zu Korrekturen dieser Gleichungen, die in Form der nichtlinearen GLR-
MQ-Gleichungen zusammengefasst werden können.
Sowohl die DGLAP- als auch die GLR-MQ-Gleichungen wurden im Rahmen dieser

Arbeit mit python 3.8 numerisch gelöst. Der Fokus lag dabei auf dem Einfluss unter-
schiedlicher Parameter (die Richtung der Entwicklung, das Mischen von Quarks und Glu-
onen sowie die Massenzahl A) auf die Ergebnisse.
Zudem wurden mit den erhaltenen PDFs die Strukturfunktionen F2 und FL berech-

net und mit HERA-Daten verglichen, und es wurden Vorhersagen zu Streuprozessen mit
schweren Nuklei an den zukünftigen Einrichtungen EIC und LHeC getroffen.
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