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1 Introduction
The existence of dark matter was proposed almost ninety years ago. Since then many
observations confirmed this hypothesis, however without determining the nature of dark
matter. As Standard Model physics alone cannot explain all observations connected to
dark matter, there are plenty of suggestions of new physics to account for the observations.
The most convincing extensions of the Standard Model are also able to present solutions
for other phenomena the Standard Model cannot describe.
One well-known extension is the Supersymmetry, which is based on a symmetry between
bosonic and fermionic states. This theory predicts quite a number of new fields which
come along with a great number of free parameters. When opting for a parameter constel-
lations, where one of the neutralinos happens to be the lightest supersymmetric particle,
this offers a viable dark matter candidate. In addition to that, Supersymmetry is well mo-
tivated by plenty theoretical reasons. In chapter 2 the concept of supersymmetric theories
will be illustrated by presenting some simplified models. These will lead to the particle
content of the Minimal Supersymmetric Standard Model (MSSM).
Chapter 3 lists some observational evidences for dark matter and introduces the ΛCDM
model. It follows a discussion of possible dark matter candidates. Assuming dark mat-
ter consists of WIMPs (as for example the LSP) the production of dark matter can be
described by the freeze-out mechanism. Depending on the choice of parameters not only
the cross sections of LSP annihilation is relevant for the relic density predicted by the
freeze-out mechanism, but also coannihilations and annihilations of other supersymmetric
particles. For this thesis we want to assume that the mass of the gluino is only slightly
higher than the mass of the LSP. In this case the annihilation of gluinos into gluons affects
the dark matter relic density significantly.
To test certain parameter scenarios to match the dark matter abundance measured by the
Planck observatory, cross sections of the relevant processes have to be known to a certain
precision. The goal of DM@NLO is to provide all those cross sections at next to leading
order.
In chapter 6 the color basis for the gluino annihilation into gluons is deduced. Then the
thesis focuses on how to deal with the virtual divergencies appearing in NLO calculations.
Chapter 7 discusses the principles of dimensional regularization, Passarino-Veltman reduc-
tion and the renormalization of the fields and masses relevant for this thesis. At the end
the contributions of the different NLO corrections are shown graphically for one specific
scenario of parameters.
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2 Supersymmetry
Today’s Standard Model is doing an excellent job with describing numerous phenomena of
particle physics with great precision. However there are some open questions that cannot
be answered using the Standard Model, e.g. the Hierarchy Problem or the existence
of Dark Matter. Due to the great success of building a theory based upon symmetries
(namely space-time and gauge symmetries) the idea is to embed the Standard Model into
a larger symmetry.
How to construct a suitable algebra as the basis of supersymmetry is shown in the first
section of this chapter. Then the Wess-Zumino model, describing how to supersymmetrize
spinor and scalar fields, will be considered. After presenting also how a supersymmetric
gauge field is designed, we can combine those concepts to set up the MSSM (based on [1]).
At the end of the chapter the mass eigenstates of the sparticles relevant for this thesis are
summarized.

2.1 Supersymmetric Algebra

When thinking about extending the Standard Model, it is instructive to consider possible
extensions of the corresponding algebra, i.e. the Poincaré algebra. The known generators
of the Poincaré group are the 4-momentum operator Pµ which generates space-time trans-
lations and Mµν which generates the boosts and rotations of Lorentz transformations. The
Coleman-Mandula theorem states that (under some general assumptions) the combination
of the Poincaré group and an internal symmetry group has to be the direct product of
both. In other words all conserved quantities other than Pµ and Mµν have to be scalars,
the generators of the gauge symmetries. This result is therefore also known as the No-go
theorem.
Later Haag, Lopuszanski and Sohnius found a loop-hole and proved that you can add
fermionic (2 component spinor) generators Qα instead of bosonic (scalar) ones. These
supersymmetry generators satisfy the anticommutation relation

{Qα, Q̄β} = 2γµ
αβPµ. (2.1)

Notice that the anticommutator of the two fermionic operators leads to a bosonic opera-
tor, which establishes the connection between fermionic and bosonic parts of the algebra.
Supersymmetry algebra is obviously not a direct product of the Poincaré group and an
internal symmetry group, as Q on the one hand affects gauge symmetries, while its anti-
commutator has an impact on space-time. Since the introduction of the supersymmetry
generator Qα requires additional degrees of freedom, one has to extend the known 4-
dimensional space-time to superspace, where the Qα then act on the four ’new’ fermionic
dimensions.
As Qα generates a conserved symmetry and is of spinorial nature, also the following com-
mutation relations hold:

[Qα,H] = 0 (2.2)
[Qα,Mµν ] = (σµν)αβ Qβ (2.3)
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One can show, that the SUSY operator acting on a particle state changes the spin of the
field by 1

2 . Therefore applying Q to fermions of the Standard Model will create the scalar
sfermions, applying Q to the SM gauge bosons creates fermionic gauginos. These super-
partners possess all properties of their corresponding SM particle, except for their spin of
course. In the Standard Model left chiral fields form SU(2)L doublets, while right chiral
fields are singlets under SU(2)L. Thus also the superpartners of left (right) chiral fields are
arranged in SU(2)L doublets (singlets), the so called left (right) chiral supermultiplets.
Before introducing the full particle content of the MSSM, we take a short step-by-step
approach describing the supersymmetric models for chiral fields and gauge fields indepen-
dently.

2.2 Wess-Zumino model

In 1974 Wess and Zumino developed the first supersymmetric quantum field theory con-
sisting of a Weyl spinor, a real scalar and a pseudoscalar field. In a free theory those
transform under the following SUSY transformations:

δA = ε̄Ψ (2.4)
δB = iεγ5Ψ (2.5)
δΨ = −i�µ (A+ iγ5B) ε (2.6)

where ε is a constant infinitesimal Majorana spinor. If one now defines the SUSY generator
as δA = ε̄QA, this will yield to the same anticommutation relation already stated in
equation (2.1).
When taking also interactions into account, one introduces two more auxiliary real scalar
fields F and G to adapt the degrees of freedom to those of the off-shell fermion. After
applying the Euler-Lagrange equations to these fields, the equations of motion will remove
the unphysical auxiliary fields from the Lagrangian, which then reads

L = 1
2 (∂µA) (∂µA) + 1

2 (∂µB) (∂µB) + i

2Ψ̄�∂Ψ︸ ︷︷ ︸
kinetic terms

−1
2mΨ̄Ψ − 1

2m
2
(
A2 +B2

)
︸ ︷︷ ︸

mass terms

−m λ√
2
A
(
A2 +B2

)
− λ2

4
(
A2 +B2

)2
− λ√

2
Ψ̄ (A− iγ5B) Ψ︸ ︷︷ ︸

interaction terms

(2.7)

Notice that all fields have the same mass m and all interactions have the same coupling
constant λ.
As the model should describe a pair of fermion and sfermion, it is useful to combine the
two real fields A and B to one complex scalar field

φ = 1√
2

(A+ iB). (2.8)
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In addition we now use the Weyl notation Ψ =
(
ψ
χ

)
, where now Ψ represents the fermion

and φ the sfermion. The SUSY transformations then read

δφ = εχ (2.9)
δχ = −iσµiσ2ε

∗∂µφ+ εF. (2.10)

This illustrates the transition from the scalar field φ to the chiral spinor field χ under SUSY
transformation and vice versa, so thatQ connects the SM multiplets to the supermultiplets.
The whole Lagrangian can then also be expressed as

Lchiral = (∂µφ) (∂µφ) + χiσ̄µ∂µχ︸ ︷︷ ︸
kintic terms

−m2φ2 − 1
2
(
mχT (−iσ2)χ+ h.c.

)
︸ ︷︷ ︸

mass terms

−1
2
(
my∗φφ†2 + h.c.

)
︸ ︷︷ ︸
cubic sfermion interaction

−1
4y

2φ2φ†2︸ ︷︷ ︸
quartic sfermion interaction

−1
2 (yφχ · χ+ h.c.)︸ ︷︷ ︸

Yukawa-type interaction

.
(2.11)

2.3 Supersymmetric gauge theory

In analogue to the Wess-Zumino model the next goal is to build a supersymmetric model
for a gauge field A and its superpartner, the gaugino λ. As usual we define the field
strength tensor for the non-abelian SU(N) gauge theory as

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gεabcAb

µA
c
ν (2.12)

where a, b, c run from 1 to N2 − 1 and ε denotes the corresponding structure constant
of the gauge group. Considering also the off-shell case, the gauge field acquires a third,
longitudinal degree of freedom in addition to the two transverse ones. This leads again to
the introduction of an auxiliary real scalar field D, which is in line with the third degree
of freedom. The SUSY transformation of the gauge and the gaugino fields are

δAµ,a = ε†σ̄µλa + λa†σ̄µε (2.13)

δλa = 1
2 iσ

µσ̄νεF a
µν + εDa. (2.14)

This shows how the gauge field transits into a Majorana spinor describing the gaugino and
vice versa. The fields come together in the Lagrangian as

Lgauge = −1
4F

a
µνF

µν,a + iλa†σ̄µ(Dµλ)a + 1
2D

aDa (2.15)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ). The covariant derivate has to be chosen to
Dµ = ∂µ + igεabcAµ to preserve the gauge invariance of the Lagrangian.

As a next step towards the MSSM we now want to combine the fermions and sfermion
of the Wess-Zumino model with the gauge fields and gauginos. In order to maintain
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gauge invariance the partial derivative in the Wess-Zumino Lagrangian (2.11) is substi-
tuted by the covariant derivative Dµ = ∂µ + igAa

µT
a, which leads to interaction terms

between the fermions/sfermions and the gauge fields. Possible interaction terms between
the fermions/sfermions and the gauginos have to respect not only Lorentz and gauge in-
variance, but also renormalizability and invariance under SUSY transformations, which
restricts those couplings. The combined Lagrangian of chiral and gauge fields therefore
looks like

Lchiral & gauge =Lchiral(∂µ → Dµ) + Lgauge

−
√

2g
(
(φ†T aχ) · λa + λa† · (χ†T aφ)

)
− g(φ†T aφ)Da.

(2.16)

The arbitrary field D can be eliminated by using the equation of motion obtained by the
Euler-Lagrange equation.

2.4 Minimal Supersymmetric Standard Model

The MSSM now is the supersymmetric extension of the Standard Model that needs least
possible new fields, which means introducing just one SUSY generator Q. This assigns a
supersymmetric bosonic degree of freedom to every fermionic one of the Standard Model
and vice versa. For every gauge boson this leads to one gaugino. The fermions however
come together with two sfermions respectively, labeled after the chirality of their partners.
Additional to that we have to assume a second complex Higgs doublet, instead of just one
as in the SM. All those supermultiplet fields are displayed in Table 1 and 2.

Let us now consider Spontaneous Symmetry Breaking in the MSSM. As in the Standard
Model the Higgs mechanism produces three Goldstone bosons that give mass to the W
and Z bosons, which leaves five massive Higgs fields. The charged ones we call H± while
the neutral ones are h0, H0 and A0. The mass of the lightest Higgs field h0 should of
course fit the measured Higgs mass of mh = 125 GeV to give a reasonable model.
The mass eigenstates of gauginos and Higgsinos are gained by mixing fields with the same
quantum numbers. Hence the charged fields H̃+

u , H̃−
d , W̃+ and W̃− mix to charginos χ̃±

1,2,
while the neutral fields H̃0

u, H̃0
d , W̃ 0 and B̃ mix to neutralinos χ̃0

1,2,3,4. The latter are of
Majorana nature.
Another important aspect of the MSSM is the conservation of R-parity

R = (−1)3B+L+2s, (2.17)

where B is the baryon number, L the lepton number and s the spin of the particle. With
this definition all Standard Model particles (including the second Higgs doublet) have
R = 1 and all SUSY partners have R = −1. If this quantity is now conserved, it follows
that sparticles can only be created and annihilated in pairs. After the decay of one single
SUSY particle, there has to be one (or a higher odd number of) lighter sparticles among the
decay products. For the lightest supersymmetric particle (LSP) this implicates stability.
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names symbol spin 0 spin 1
2

squarks, quarks Q (ũL, d̃L) (uL, dL)
(×3 families) ū ũR (uR)c

d̄ d̃R dR)c

sleptons, leptons L (ν̃L, ẽL) (νL, eL)
(×3 families) ē ẽR (eR)c

higgs, higgsinos Hu (H+
u ,H

0
u) (H̃+

u , H̃
0
u)

Hd (H0
d ,H

−
d ) (H̃0

d , H̃
−
d )

Table 1: Chiral supermultiplet fields in the MSSM. Taken from [2]
names spin 1

2 spin 1

gluinos, gluons g̃ g

winos, W bosons W̃±, W̃ 0 W±, W 0

bino, B boson B̃ B

Table 2: Gauge supermultiplet fields in the MSSM. Taken from [2]

2.5 Soft SUSY Breaking

If SUSY would be an exact symmetry, supersymmetric partners of SM particles should
have been measured in experiments by now, as their mass would be at the same scale. Since
this is not the case, one introduces SUSY breaking terms in the Lagrangian of the MSSM.
In order to avoid additional divergencies one limits oneself to super-renormalizable terms
(also called soft), which still leaves a number of 105 parameters for forming all possible
soft SUSY breaking terms.
By taking also phenomenological constraints into account one can reduce the number of
free parameters. The pMSSM is fixed by 19 parameters under the assumptions of no new
sources of CP-violation, no Flavor Changing Neutral Currents and universality of first and
second generation. Those1 are listed in table 3.

2.6 Mass matrices

2.6.1 Gluino sector

The masses of gluinos are easy to extract from the Lagrangian as gauge eigenstates and
mass eigenstates are the same in this case. The corresponding soft SUSY-breaking term
is

Lgluino mass = −1
2(M3g̃

ag̃a + h.c.) (2.18)

1Note, that there are several possibilities for choosing this parameter set. In some of the literature used
for the mass matrices other conventions were used.
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tan(β) ratio of the VEVs of the two Higgs doublets
mA0 mass of the pseudoscalar Higgs boson
µ Higgsino mass parameter
M1 bino mass parameter
M2 wino mass parameter
M3 gluino mass parameter

Mq̃L , MũR , Md̃R
first and second generation squark masses

Ml̃L
, Ml̃R

first and second generation slepton masses
Mq̃3L , Mt̃R

, Mb̃R
third generation squark masses

Mτ̃L , Mτ̃R third generation slepton masses
At, Ab, Aτ third generation trilinear couplings

Table 3: The 19 parameters of the pMSSM

with a = 1, ..., 8 and g̃a being a L-type spinor. So the gluino mass parameter |M3| is the
gluino mass itself.

2.6.2 Squark sector

The mass eigenstates of the quarks are defined as(
q̃1
q̃2

)
=
(

cos θq sin θq

− sin θq cos θq

)(
q̃L

q̃R

)
(2.19)

where the mixing angle is defined such that the mass matrix diagonalizes(
cos θq sin θq

− sin θq cos θq

)(
m2

q̃L
m2

q̃LR

mq̃2∗
LR

m2
q̃R

)(
cos θq sin θq

− sin θq cos θq

)
=
(
m2

q̃1 0
0 m2

q̃2

)
. (2.20)

The entries of the mixing matrix are often also denoted as(
cos θq sin θq

− sin θq cos θq

)
=
(
R1L R1R

R2L R2R

)
=
(
R11 R12
R21 R22

)
. (2.21)

For identifying the mass matrix of squarks several terms of the MSSM-Lagrangian have
to be considered (those can be looked up in e.g. [13]). Since one of the premises of the
pMSSM is to introduce no Flavor Changing Neutral Currents, the only possible mixing of
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squarks is the one of q̃L and q̃R. The relevant terms of the Lagrangian read

Lq̃ mass = −
∑

q

m2
q (q̃∗

Lq̃L + q̃∗
Rq̃R) (2.22)

Lq̃q̃ = −M2
Z cos 2β

[(
T3q − sin2 θWQq

)
q̃∗

Lq̃L + sin2 θWQq q̃
∗
Rq̃R

]
(2.23)

Lq̃Lq̃R = mu µ cotβ (ũ∗
RũL + ũ∗

LũR) +md µ tan β
(
d̃∗

Rd̃L + d̃∗
Ld̃R

)
(2.24)

Lsoft = −
∑
q̃i

m̃2
q̃i
q̃∗

i q̃i +muAuũ
∗
RũL +mdAdd̃

∗
Rd̃L + h.c. + [...] (2.25)

where T3q is the third component of the weak isospin, θW the Weinberg angle, Qq the
electric charge of the quark, m̃2

q̃i
the soft SUSY breaking mass terms and Au,d the trilinear

coupling constants. These lead to the following mass matrix

M2
q̃ =

(
m2

q̃L
m2

q̃LR

mq̃2∗
LR

m2
q̃R

)
(2.26)

with

m2
q̃L

= m̃2
q̃L

+m2
q +M2

Z cos 2β
(
T3q − sin2 θWQq

)
(2.27)

m2
q̃R

= m̃2
q̃R

+m2
q +M2

Z cos 2β sin2 θWQq (2.28)
m2

ũLR
= −mu (µ cotβ +A∗

u) (2.29)
m2

d̃LR
= −md (µ tan β +A∗

d) (2.30)

To gain the masses of q̃1 and q̃2 like in equation (2.20) one can use

mq̃1,2 =
√

1
2

(
TrM2

q̃ ±
√

Tr2M2
q̃ − 4 detM2

q̃

)
(2.31)
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3 Dark matter
The concept of dark matter was first suggested by Fritz Zwicky in 1933, whose observation
of the Coma cluster revealed the problem of the missing mass. Even though many other
evidences for the existence of dark matter have been found during the last decades, the
nature of dark matter is still unknown up to the present. In the following sections we will
briefly recapitulate some of the observational evidences, discuss the most famous ideas
trying to explain dark matter and then focus on the production mechanism of WIMPs.

3.1 Observational evidence

As mentioned above Zwicky studied the velocity of galaxies in galaxy clusters based on
their red shifts. By estimating the number of nebulas in the Coma cluster and their masses
he got an estimate for the visible mass of the whole cluster. Supposing a homogeneous mass
distribution over the cluster and using the virial theorem one can calculate the expected
velocity of the objects on the edge of the cluster. When comparing this to the measured
red shift, Zwicky found a huge discrepancy. Zwicky calculated that the total mass of the
cluster would have to be 400 times bigger than the visible mass to match the velocities
[19]. Today we know that this result is quantitatively quite inaccurate, but the fact that
the matter in our universe is in large part dark still holds today.
A similar approach is to study the rotation curves of galaxies. These show the circular

Figure 1: Galactic rotation curve for NGC 6503 showing disk and gas contribution plus
the dark matter halo contribution needed to match the data[7]

velocity of the galaxy depending on the distance of the galactic center. In figure 1 the
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line fitting the data points represents the velocity of the galaxy NGC 6503. The two
lines labeled ’gas’ and ’disk’ shows the velocity that the visible matter would cause due to
Kepler’s gravitational laws. As one quickly realizes those two don’t add up to the observed
velocity. This is another evidence for the existence of dark matter. If one assumes a dark
matter halo surrounding the galaxy, as indicated by the corresponding line in the plot, all
contributions then add up to match the actual velocity.
Furthermore there are ways to determine the dark matter density in the universe without
using kinetic analysis. The effect of gravitational lensing resulting from General Relativity
provides the possibility to check the dark matter mass distribution predicted by other
methods. So far they are in good agreement [14].
Also the process of structure formation needs the underlying assumption of dark matter
to explain the large structures like galaxy clusters we observe today. In the early state
of the universe energy was distributed homogeneously with only very small anisotropies,
as we know by observation of the cosmic microwave background (CMB). However the
domination of radiation in the early universe continuously diminished the anisotropies
of visible matter. So if there would not have been any dark matter at the beginning of
universe, no large scale structures could have been formed. But as dark matter does not
interact with radiation dark structures developed under the influence of gravitation. In
a later state of the universe matter gained domination about radiation, so visible matter
formed structures on the basis of the dark matter structures.

ΛCDM model

The most acknowledged cosmological model today is the ΛCDM model, consisting of the
cosmological constant Λ, cold dark matter (CDM) and the visible matter of the Standard
Model of particle physics. When speaking of ’cold’ in this context, one means particles
with non-relativistic energies. The model is determined by six free parameters, two of them
being the physical baryonic density Ωbh

2 and the physical dark matter density Ωch
2. By

measuring the CMB one can estimate the values of those parameters. The most accurate
measurement of the CMB today is the one by the Planck satellite. When fitting those data
with the ΛCDM model one receives Ωbh

2 = 0.02237±0.00015 and Ωch
2 = 0.1200±0.0012

[9]. These results show that the abundance of dark matter is nearly six times as big as
the one of visible matter. They also illustrate that the dark matter density is known quite
accurately.

3.2 Candidates

Most of the existing suggestions for the constitution of dark matter can be categorized as
either baryonic/non-baryonic and regarding their energy at the early universe as cold or
hot dark matter.
Baryonic candidates are often summarized with the expression MACHOs (Massive Com-
pact Halo Objects), including e.g. neutron stars, brown dwarfs and non-primordial black
holes. Those could in principle contribute to the missing mass of rotation curves, but
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obviously cannot explain structure formation in the early universe.
Hot dark matter is moving with ultrarelativistic velocities. Therefore only the larger fluc-
tuations from the early universe would have outlived the radiation dominated stage. But
to form the galactic structures we observe today also small scaled anisotropies had to be
retained by dark matter. Hence the current scientific consent is that CDM accounts best
for most of the observations.
There also exist theories fitting into none of these categories as they don’t assume some
kind of dark matter, but try to explain the evidences mentioned above by using alternate
gravitational theories (e.g. MOND, Modified Newtonian Dynamics). However none of
these theories is able to describe all observations with missing mass problems without
proposing some amount of dark matter.

Non-baryonic cold dark matter candidates

As no particle within the Standard model qualifies as a reasonable dark matter candidate,
one has to consider extensions of the Standard model to find an eligible candidate. Well
known proposals are WIMPs (Weakly Interacting Massive Particles), Axions and sterile
neutrinos.
To qualify as a WIMP, a particle has to be stable and only interact via weak and gravita-
tional force. The candidate which motivates this thesis is the neutralino in the role of the
lightest supersymmetric particle (LSP). It is massive, stable (because R-parity forbids a
decay into SM-particles) and does not interact electromagnetically (as its neutral).
Axions are particles constructed to solve the strong CP problem. They also happen to be
electrically neutral and if one chooses an adequate mass range they could be CDM con-
stituents. Sterile neutrinos are the right-chiral extension to the left-chiral SM-neutrinos.
Apart from completing the chiral structure that exists in the remaining part of the Stan-
dard Model, sterile neutrinos could also explain the small SM-neutrino mass and account
for CDM, as they interact only via gravitation.
In the following sections we will consider the dark matter abundance assuming a super-
symmetric model with a neutralino χ as LSP.

3.3 Boltzmann equation and freeze-out mechanism

Assuming a number of N supersymmetric particles χi their number density ni can be
described by the following differential equation (see e.g. [6] or [8]):

dni

dt
= − 3Hni −

N∑
j=1

〈σijvij〉 (ninj − neq
i n

eq
j )

−
∑
j 6=i

[〈σ′
Xijvij〉 (ninX − neq

i n
eq
X ) − 〈σ′

Xjivij〉 (njnX − neq
j n

eq
X )]

−
∑
j 6=i

[Γij(ni − neq
i ) − Γji(nj − neq

j )]

(3.1)
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The particles are sorted in ascending order of their masses m1 ≤ m2 ≤ ... ≤ mN . There
are four quantities that determine the decrease of the number density ni over time:

• The expansion rate H of the universe,

• the direct annihilation cross section of two SUSY particles into ordinary matter

σij =
∑
X

σ(χiχj → X),

• the scattering cross section with ordinary matter

σ′
Xij =

∑
Y

σ(χiX → χjY ),

• the decay rate into other supersymmetric particles with lower mass and SM particles

Γij =
∑
X

Γ(χi → χjX).

The equilibrium density is defined as integral over the equilibrium distribution function.
Assuming that (mi − µi)/T � 1, it is reasonable to use Maxwell-Boltzmann statistics as
an approximation:

neq
i = gi

(2π)3

∫
d3~pie

− Ei
T (3.2)

The computation of the relic density can be simplified by taking into account that all
supersymmetric particles not wiped out by annihilation will end up as LSP. So the LSP
abundance n can be understood as the sum of the number densities of all supersymmetric
particles. Now summing up equation (3.1) over all supersymmetric particles i = 1, ..., N
cancels the scattering cross sections σ′

Xij and decay rates Γij and just leaves us with:

dn

dt
= −3Hn−

∑
i,j

〈σijvij〉
(
ninj − neq

i n
eq
j

)
(3.3)

A further simplification can be achieved by assuming that the supersymmetric particles
stay in thermal equilibrium during their scatterings:

ni

n
' neq

i

neq
(3.4)

Plugging this relation and the definition of the Hubble parameter H = 1
a

da
dt into equation

(3.3) this yields:
dn

dt
+ 3
a

da

dt
n =

∑
i,j

〈σijvij〉 n
eq
i

neq

neq
j

neq︸ ︷︷ ︸
〈σeff v〉

(
n2

eq − n2
)

(3.5)
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The thermal average of the effective cross section 〈σeff v〉 now includes all possible anni-
hilation cross sections of supersymmetric particles. We will have a closer look at it later.
Before further analyzing the time evolution of the number density n it is instructive to
introduce the dimensionless quantities2 [17]

comoving number density: Y = n

T 3 (3.6)

mass temperature ratio: x = m

T
(3.7)

and rewrite the left hand side of equation (3.5), using that in the early radiation dominated
universe a ∼ 1

T , so d(aT )
dt = 0. That leads to

dn

dt
+ 3
a

da

dt
n = 1

a3
d(na3)
dt

=
d
(

n
T 3

)
dt

T 3 (3.8)

and we can straightforwardly plug in the comoving number density:

dY

dt
= T 3 〈σeff v〉

(
Y 2

eq − Y 2
)

(3.9)

The advantage of using Y instead of n is that it cancels the expansion term of the orig-
inal equation. The definition of Y is chosen such that it takes into account the Hubble
expansion exactly, meaning that a constant comoving number density equals a constant
number of WIMPs in the universe.
To incorporate also x into the equation, we need the time evolution dx

dt = H(T )x. Since in
the radiation dominated era the relations H(T )2 ∼ ρT ∼ T 4 hold, the Hubble parameter
as a function of mass m reads H(T ) = H(m)

x2 and therefore equation (3.9) results in

dY

dx
= dY

dt

1
dx
dt

= T 3 〈σeff v〉
(
Y 2

eq − Y 2
) 1

H(m)
x

(3.10)

= m3

H(m)x2 〈σeff v〉
(
Y 2

eq − Y 2
)

(3.11)

We now want to estimate the time evolution of the comoving number density by examining
equation (3.11). The prefactor m3〈σeff v〉

H(m) on the right hand side of the equation represents
the ratio of effective annihilation rate and expansion rate of the universe Γ

H . In the early
universe the annihilation rate exceeds the expansion rate Γ � H, so that the comoving
number density Y traces the equilibrium density Yeq very closely. The evolution of Yeq is
shown in figure 2 by the solid line. When the Hubble parameter grows gradually up to
H ≈ Γ, the prefactor in the evolution equation decreases. This leads Y to deviate from
Yeq. When finally H � Γ, the comoving number density remains constant. In the figure
this stagnancy is illustrated by the dashed lines. The whole mechanism is called ’freeze

2There also exists the definition of Y = n/s with s being the antropy. Note that these to definitions
just differ by a factor, as s ∼ T 3 assuming radiation domination.
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out’ and proceeds completely in the radiation dominated era of the universe. As one can
see in the figure, the final comoving number density (relic density) depends on the thermal
average of the effective annihilation cross section (called 〈σA v〉 in the figure). If this term
is larger, it takes a longer time for H to reach Γ, so Y can follow Yeq for a longer period of
time. Since the equilibrium density declines with time, this leads to a lower relic density.

Figure 2: Solid line: expansion rate H never exceeds annihilation rate Γ.
Dashed lines: freeze out of number density, when H > Γ.
Red area: thermal equilibrium; Purple area: production rate exceeds annihilation rate;
Blue area: expansion rate exceeds annihilation rate. Taken from [11]

To calculate the effective annihilation cross section

〈qeff v〉 =
∑
i,j

〈σijvij〉 n
eq
i

neq

neq
j

neq
(3.12)

introduced in equation (3.5) one theoretically needs to compute all possible cross sec-
tions σij . In practice however most of them are negligible, as one can see by recalling
equation (3.2) for the equilibrium number density. Since WIMPs are cold dark matter
candidates and therefore non-relativistic, the number density ratios appearing in 〈qeff v〉
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are proportional to
neq

i

neq
∼ e− mi−mχ

T . (3.13)

So only cross sections σij with (mi − mχ) � 1 and (mj − mχ) � 1 are not heavily
suppressed by the Boltzmann factor above. In this thesis we assume (mg̃ −mχ) � 1 and
study the cross section σ(g̃g̃ → gg).
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4 DM@NLO

Figure 3: Software chain used to compute the relic density using DM@NLO, taken from
[10]

As pointed out in the previous chapter one needs to now the cross sections of all
relevant annihilations and co-annihilations of SUSY particles to estimate relic density of
the LSP. DM@NLO (Dark Matter at Next To Leading Order) now is a code calculating
the next-to-leading order cross sections for all those processes. Figure 3 illustrates how the
program is integrated into the software chain. As input one inserts the MSSM parameters
describing the scenario of interest. These are evaluated by a spectrum calculator (in this
work SPheno [15] was used) to gain the masses of the SUSY particles.
Then micrOMEGAs calculates the relic density of the LSP using the sparticle masses and
cross sections as input. Instead of just using the tree level cross sections given by CalcHEP,
DM@NLO now delivers the one loop corrections to yield a more accurate relic density.
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5 Gluino Annihilation into Gluons
As argued before the cross section of the gluino annihilation into gluons can be relevant
for calculating the relic density assuming that the gluino mass is just slightly bigger than
the LSP mass. In this chapter first the cross section at tree level will be presented. Then
there will be an overview of all first order corrections including propagator and vertex
corrections, box and triangle diagrams and infrared radiation.

5.1 Leading Order Contributions

There are three tree level diagrams to be considered: annihilation via s-, t- and u-channel.
Their Feynman diagrams are illustrated in figure 4.

p2

p1
g

k1

k2
g̃b

g̃a gµ
c

gν
d

(a) s-channel
(b) t-channel (c) u-channel

Figure 4: Tree level diagrams of gluino annihilation into gluons

When calculating the squares and interferences of the amplitudes there are two differ-
ent possibilities for evaluating the polarization sums:

Physical polarization sum:
Use the gluon propagator in the lightcone gauge

Πµν
Rξ

(p, n) = 1
p2

(
−gµν + nµpν + pµnν

n · p

)
(5.1)

where n has to be chosen such that n · p 6= 0 and n2 = 0.Further use the physical
polarization sum ∑

εµ(k1)εν∗(k2) = −gµν + kµ
1k

ν
2 + kµ

2k
ν
1

k1 · k2
. (5.2)

In this case only the two physical polarizations transverse to the r-p-plane are taken
into account. There is no need for ghosts to cancel unphysical modes.

Faddeev-Popov ghosts:
Use the gluon propagator of the form

Πµν
Rξ

(p) = 1
p2

(
−gµν + (1 − ξ)p

µpν

p2

)
(5.3)
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where ξ fixes the gauge (e.g. ξ = 1 for Feynman gauge) and use the full polarization
sum ∑

εµ(k1)εν∗(k2) = −gµν . (5.4)

In this case we sum over all four polarizations although two of them are not physical.
In order to cancel those, ghosts are introduced. These are anti-commuting Lorentz
scalars and thus they violate spin-statistics. This fact leads to the possibility of
negative production probabilities which is necessary to compensate for the unphysical
probabilities of the longitudinal modes.

In the end both methods should lead to the same result. When using ghost the following
two diagrams have to be added to the tree level amplitude:

p2

p1
g

k1

k2
g̃b

g̃a ηµ
c

ην
d

p2

p1
g

k1

k2
g̃b

g̃a ηµ
c

ην
d

The associated amplitudes in Feynman gauge then read (all Feynman rules used for this
thesis are listed in the Appendix):

Ms =v̄(p2) (−gsfebaγρ)u(p1)
(

− igρσδef

(p1 + p2)2

)
(−gsffcd) (5.5)

[(2k1 + k2)νgµσ + (k2 − k1)σgµν − (k1 + 2k2)µgνσ] εµ∗(k1)εν∗(k2) (5.6)

Mt =v̄(p2) (−gsfdbfγν) i
(
��p1 −��k1 +mg̃

)
δef

(p1 − k1)2 −m2
g̃

(−gsfceaγµ)u(p1)εµ∗(k1)εν∗(k2) (5.7)

Mu =v̄(p2) (−gsfcbfγν) i
(
��p1 −��k2 +mg̃

)
δef

(p1 − k2)2 −m2
g̃

(−gsfdeaγµ)u(p1)εν∗(k1)εµ∗(k1) (5.8)

Mghost1 =v̄(p2) (−gsfebaγρ)u(p1)
(

− igρσδef

(p1 + p2)2

)
(−gsffdck2σ) (5.9)

Mghost2 =v̄(p2) (−gsfebaγρ)u(p1)
(

− igρσδef

(p1 + p2)2

)
(−gsffcdk1σ) (5.10)

Both squares of the ghost amplitudes can be pictorialized as

|Mghost1|2 = |Mghost2|2 =
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Figure 5: Corrections to the gluon propagator

since the loop direction does not matter in this case3. Therefore the full squared tree level
amplitude can be written as

|Mtree|2 = |Ms|2 + |Mt|2 + |Mu|2 + 2Re
(
MsM

†
t +MsM

†
u +MtM

†
u

)
+ 2|Mghost|2. (5.11)

Those contributions read

|Ms|2 = −N2
C(N2

C − 1)4g4
s

s2

(
27mg̃4 − 19m2

g̃(t+ u) + 4(t2 + u2) + 3tu
)

(5.12)

|Mt|2 = −N2
C(N2

C − 1)8g4
s

t2

(
m4

g̃ +m2
g̃(3t+ u) − tu

)
(5.13)

|Mu|2 = −N2
C(N2

C − 1)8g4
s

u2

(
m4

g̃ +m2
g̃(3u+ t) − tu

)
(5.14)

MsM
†
t = − N2

C(N2
C − 1)
2

8g4
s

st

(
3m4

g̃ −m3
g̃(3t+ u) + t2

)
(5.15)

MsM
†
u = − N2

C(N2
C − 1)
2

8g4
s

su

(
3m4

g̃ −m3
g̃(3u+ t) + u2

)
(5.16)

MsM
†
t = − N2

C(N2
C − 1)
2

8g4
s

tu
m2

g̃

(
2m2

g̃ + t+ u
)

(5.17)

|Mghost|2 =N2
C(N2

C − 1)2g4
s

s2

(
m2

g̃ − t
) (
m2

g̃ − u
)

(5.18)

5.2 Next-to-leading order contributions

For the computation at one-loop level there are several contributions to be considered.
In the tree-level diagrams the gluon and the gluino propagator are used, so both of them
have to be corrected. For the gluon propagator there are six possible loops diagrams4,
shown in figure 5. The gluino propagator has to be corrected by three loop diagrams (see
figure 6). The corrected propagators are then incorporated into the tree level diagrams,
as shown in figure 7.

Further there are three vertices to be corrected: the triple gluon vertex, the gluino-
gluino-gluon vertex and the ghost-ghost-gluon vertex. All possible one-loop diagrams for

3You can also observe that switching between the two ghost diagrams is just a change of t ↔ u. Thus
the result should be t-u-symmetric.

4The loop diagram with a four-point gluon vertex is already neglected here, as its amplitude vanishes.
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Figure 6: Gluino propagator corrections

Figure 7: Contributions of propagator corrections to NLO

the triple gluon vertex can be found in [18]. The gluino-gluino-gluon vertex possesses
six possible loop diagrams (figure 8), respecting different lepton number flow directions.
The two loops of the ghost-ghost-gluon vertex are displayed in figure 9. All those vertex
corrections are also computed off-shell and then inserted into the tree-level diagrams, as
you can see in figure 10.

In a final step also those diagrams have to be considered, that do not factorize with
tree level diagrams, namely triangle and box diagrams. When constructing box diagrams
for the gluino annihilation into gluons, there has to be a fermion chain running through
the loop connecting the two incoming gluinos. This chain can either consist of gluinos or

Figure 8: Gluino-gluino-gluon vertex corrections
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Figure 9: Ghost-ghost-gluon vertex corrections

Figure 10: Contributions of vertex corrections to NLO

21



Figure 11: Ghost box diagrams

Figure 12: Triangle diagrams

quarks. Since in a box (and also in ’hourglass shaped’ diagrams) there are always four
propagators, either one, two or three of them can contribute to the fermion chain. When
one now also considers the two possible lepton number flow directions in the loop and
the possibility to exchange the two gluons in the final state, one counts 18 box/hourglass
diagrams, as shown in figure 13.
When using the Faddeev-Popov formalism, one also has to take those box diagrams into
account, that have ghost in the final states. Those four diagrams (figure 11) only differ in
the direction of the ghost flow and the exchange of the two ghosts.
The last one-loop contributions to consider are the three triangle diagrams, displayed in
figure 12
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Figure 13: Box diagrams
1.+2. row: one fermion in the loop
3.+4. row: two fermions in the loop
5.+6. row: three fermions in the loop.
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6 Color decomposition
As both gluons and gluinos carry color, it is important to characterize the color structure
of the gluino annihilation process. In general, a two particle state corresponds to the
tensor product of two representations, which can be decomposed using the Clebsch-Gordan
decomposition:

Ra1 ⊗Ra2 =
⊕

α

Rα (6.1)

The corresponding Clebsch-Gordan coefficients C translate elements from the basis of the
tensor product ea1a2 to the basis of the irreducible representations eRα

α :

ea1a2 =
∑
Rα

CRα
αa1a1e

Rα
α (6.2)

Here Rα describes the irreducible representation and α represents all required indices for
the basis of this representation. This will become clear considering the simple example
of a quark-antiquark state. As quarks are NC-dimensional fundamental representation of
the SU(NC) the Clebsch-Gordan decomposition looks like

3 ⊗ 3̄ = 1 ⊕ 8. (6.3)

The corresponding Clebsch-Gordan coefficients are (see e.g. [18] for a calculation method)

C1
33̄;ij = 1√

NC
δij i, j ∈ {1, 2, 3} (6.4)

C8;a
33̄;ij =

√
2T a

ij a ∈ {1, ..., 8} (6.5)

Considering now a two gluon or two gluino state, which live in the (N2
C − 1)-dimensional

adjoint represenatation of the SU(NC) the tensor product decomposes to

8 ⊗ 8 = 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 10 ⊕ 27. (6.6)

The Clebsch-Gordan coefficients for the first three irreducible representations read:

C1
88;ab = 1√

N2
C − 1

δab (6.7)

C8A;c
88;ab = 1√

NC
ifabc (6.8)

C8S ;c
88;ab =

√
NC

N2
C − 4

dabc (6.9)

The calculation of the remaining Clebsch-Gordan coefficients however is much more com-
plicated, than for those above. We will follow [3]/[4] which involves using propagators to
settle this later.
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For the characterization of the color structure of a 2 to 2 process, the equivalent rep-
resentations of initial (r) and finial (R) state decompositions are paired up:

{(rα, Rα), (rβ, Rβ), ...} (6.10)

For a quark-antiquark scattering (3 ⊗ 3̄ → 3 ⊗ 3̄) this would mean

{(1, 1), (8, 8)} (6.11)

while for the gluino annihilation into gluons (8 ⊗ 8 → 8 ⊗ 8) this yields

{(1, 1), (8S , 8S), (8A, 8S), (8A, 8A), (8S , 8A), (10, 10), (10, 10), (27, 27)}. (6.12)

Multiplying the corresponding Clebsch-Gordan coefficients of those paired up representa-
tions leads to an orthogonal color basis of the process. By deviding by the square root of
the dimension of the representation an orthonormal color basis is obtained5:

ci
a1a2a3a4 = 1√

dim(Rα)
Crα

αa1a2C
Rα
αa3a4 (6.13)

Therefore the two color basis vectors for the quark-antiquark scattering are

c
(1,1)
ijkl = 1

NC
δijδkl (6.14)

c
(8,8)
ijkl = 2√

N2
C − 1

T c
ijT

c
lk. (6.15)

Analogously the first five color basis vectors for the gluino annihilation into gluons read

c
(1,1)
abcd = 1

N2
C − 1

δabδcd (6.16)

c
(8S ,8S)
abcd = NC

(N2
C − 4)

√
N2

C − 1
dabedcde (6.17)

c
(8A,8S)
abcd = 1√

(N2
C − 4)(N2

C − 1)
ifabedcde (6.18)

c
(8A,8A)
abcd = 1

NC

√
N2

C − 1
ifabeifdce (6.19)

c
(8S ,8A)
abcd = 1√

(N2
C − 4)(N2

C − 1)
dabeifdce (6.20)

5Notice, that the normalization factors for the color basis elements depend on the prefactors of the
Clebsch-Gordan coeffiecients. For my choice of Clebsch-Gordan coefficients (6.13) is the suitable normal-
ization
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To derive the remaining part of the color basis, it is useful, to introduce color projectors.
They are defined as the product of two Clebsch-Gordan coefficients of identical represen-
tations:

PRα
abcd = CRα

αabC
Rα
αcd (6.21)

Color projectors possess some useful properties:

completeness:
∑

α

PRα
abcd = δacδbd = 1 (6.22)

orthogonality: PRα · PRβ
= 0 (6.23)

idempotence: PRα · PRα = PRα , (6.24)

where the application of one projector to another is defined by

Pabcd · Pefgh = Pabcd Pcdgh. (6.25)

For the completeness of 8 ⊗ 8 → 8 ⊗ 8 you need to sum over all six possible projectors (see
Clebsch-Gordan decomposition in (6.6)):

1 = δacδbd = P1 + P8A + P8S + P10 + P10 + P27 (6.26)

The first three projectors you can read off the known Clebsch-Gordan coefficients (6.7) -
(6.9):

P1 = 1
N2

C − 1
δabδcd (6.27)

P8A = 1
NC

ifabeifdce (6.28)

P8S = NC

N2
C − 4

dabedcde (6.29)

For deriving the missing three projectors we introduce the tensors

Πu
d = 1

4 (δacδbd + ud δadδbc) + uTr[T aT cT bT d] + dTr[T aT dT bT c] (6.30)

where u, d ∈ {+,−} and notice that

Π+
+ + Π−

− + Π+
− + Π−

+ = δacδbd = 1. (6.31)

Furthermore, we notice that Π±
± are symmetric under exchange of a ↔ b while Π±

∓ are
antisymmetric under exchange of a ↔ b. By projecting the (anti)symmetric tensors Πu

d

onto the known (anti)symmetric projectors and subtracting those from the original tensors
Πu

d the remaining projectors can be found6:

P10 = Π+
− − Π+

− · P8A (6.32)
P10 = Π−

+ − Π−
+ · P8A (6.33)

P27 = Π+
+ − Π+

+ − Π+
+ · P1 − Π+

+ · P8S (6.34)
6One might wonder, why one does not consider P0 = Π−

− − Π−
− − Π−

− · P1 − Π−
− · P8S . In a general

SU(NC) you indeed would have to include this one as well, but for NC = 3 it happens that the dimension
of that representation is zero, as the index indicates.
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After doing these calculations (see appendix C) one obtains the following projectors:

P10 =1
4(δacδbd − δadδbc) + 1

4 (daceifbde + ifacedbde) − 1
2

1
NC

ifabeifdce (6.35)

P10 =1
4(δacδbd − δadδbc) − 1

4 (daceifbde + ifacedbde) − 1
2

1
NC

ifabeifdce (6.36)

P27 =1
4(δacδbd + δadδbc) + 1

4 (daceifbde + ifacedbde) (6.37)

− NC − 1
2NC

1
N2

C − 1
δabδcd − NC − 2

2NC

NC

N2
C − 4

dabedcde (6.38)

By including the normalization factors (see eq. (6.13)) the three remaining color basis
vectors read

c
(10,10)
abcd = 2√

(N2
C − 4)(N2

C − 1)
P10 (6.39)

c
(10,10)
abcd = 2√

(N2
C − 4)(N2

C − 1)
P10 (6.40)

c
(27,27)
abcd = 2

NC

√
(NC + 3)(NC − 1)

P27. (6.41)

6.1 Color of tree level

Now that we derived the eight color basis vectors that span the color space in which the
process takes place, it might be interesting to look at the tree level contributions again.
By projecting the color basis vectors on the color part of the tree level amplitudes one can
find the following linear combinations:

M color
s =

√
2NC

√
NCCF c

(8A,8A)
abcd (6.42)

M color
t = NC c

(1,1)
abcd +NC

√
NCCF

2
(
c

(8S ,8S)
abcd + c

(8A,8A)
abcd

)
(6.43)

− NC

2

√
(NC − 1)(NC + 3) c(27,27)

abcd (6.44)

M color
u = NC c

(1,1)
abcd +NC

√
NCCF

2
(
c

(8S ,8S)
abcd − c

(8A,8A)
abcd

)
(6.45)

− NC

2

√
(NC − 1)(NC + 3) c(27,27)

abcd (6.46)

The proportionality of M color
s and c(8A,8A) should not be surprising. Both color structures

consist of two anti-symmetric structure constants and differ just by a normalization factor.
The expressions of M color

t and M color
u are equal apart from the sign in front of c(8A,8A). This

is because the change of u ↔ t does not alter the symmetric part of the color structure,
but inverses the anti-symmetric one.
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7 Next-to-leading order computations
While the computation of the squared tree level amplitudes is straightforward after de-
riving all necessary Feynman rules, the calculation of higher orders is more involved, as
different types of divergencies appear on the way.
On one hand there are ultra-violet divergencies originating from unbounded integrals over
loop momenta. How to deal with those is the main topic of this chapter. First we define
the superficial degree of divergence. Then we use dimensional regularization to quantify
the divergencies in the amplitudes explicitly. To simplify this process, Passarino-Veltman
reduction is introduced. In the end we can renormalize the theory in order to prevent the
divergencies from appearing in the result.
On the other hand different phenomena lead to infrared divergencies. When the energy of
a massless particle in the final state is smaller then the detection threshold, this implicates
a pole in the equations and therefore a divergence. Since those massless low-energetic par-
ticles are called soft, one often refers to this as soft singularity. Another possibility for
gaining a pole is a massless particle in the final state, that is emitted in the same direction
as another particle. Here one speaks about a collinear singularity.
Infrared divergencies emerge from loop integrals as well as from 2 → 3 processes with an
additional massless gauge boson. In the case of gluino annihilation into gluons g̃g̃ → gg
one has to consider the diagrams for g̃g̃ → ggg and g̃g̃ → qq̄g in order to cancel the
infrared divergencies appearing in the loop calculations.
This chapter is mainly based on [12] and [16].

7.1 Superficial degree of divergence

For simplification we only consider one-particle irreducible (1PI) diagrams in this section.
In these diagrams all internal momenta have a loop momentum going through them.
Pictorially this means one cannot split the diagram by cutting just one line. The loop
integrals of those diagrams look in a very simplified form like

iM ∼
∫

d4q

(2π)4
1
qn

(7.1)

where q is the momentum running in the loop and n depends on the specific diagram. We
have neglected any on-shell momenta, masses and other constants here. The superficial
degree of divergence D is defined as the overall power of loop momenta qi in the loop
integrals, including those in the differentials d4qi, so in case of 1PI diagrams this means
D = 4 − n. As one can see in equation (7.1) the integral converges for D < 0. In the case
of D ≥ 0 there are two diverging behaviors to distinguish:

∫
d4q

qn
=


lim

q→∞
(ln q) ,D = 0

lim
q→∞

(
1/qD

)
,D > 0

(7.2)
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7.2 Dimensional Regularization

To somehow eliminate those divergencies one first has to parametrize them. A straightfor-
ward way to do this is by introducing a cut-off (meaning an upper bound of integration)
Λ. Then the divergence is contained in a direct form in ln Λ or 1/ΛD respectively by
Λ → ∞. However this method does not preserve Lorentz covariance, so usually another
regularization technique is used.
The idea of dimensional regularization is to consider the loop integral in D dimensions
first and take the limit D → 4 in the end. As we saw above, the integral converges for
D < 0, so if now the dimension is chosen D < 4, the diverging behavior of the integral
will vanish. In the calculation one uses

D = 4 − 2ε with ε → 0 (7.3)

for dimensional regularization. This way the divergence is retained in an 1/ε pole. For
equation (7.1) the approach of dimensional regularization looks like∫

d4q

(2π)4
1
qn

→ µ2ε
∫

dDq

(2π)D

1
qn

(7.4)

where µ is called the renormalization scale. It’s dimension is mass, so that the overall
dimension of the integral is conserved:

[µ]2ε [dDq]
[q]n = m4−Dm

D

mn
= [d4q]

[q]n (7.5)

To show how dimensional regularization works, the following QED vacuum polarization
diagram will be considered:

p
q + p

q

p

The corresponding amplitude reads:

iMab = −(−ie)2µ2ε
∫

dDq

(2π)D

i

(q + p)2 −m2
q

i

q2 −m2
q

× Tr[γµ(�q + �p+mq)γν(�q +mq)]
(7.6)

After evaluating the trace, using Feynman parametrization, variable shifts and some spe-
cial integrals including Γ-functions one will eventually end up with

iMab = −8e2

(4π)D/2µ
2ε(p2gµν − pµpν)Γ

(
2 − D

2

)∫ 1

0
dx x(1 − x)

( 1
m2

e − p2x(1 − x)

)2−D/2

(7.7)
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Figure 14: General one-loop integral. Taken from [12]

In the limit ε → 0 this simplifies to

iMab = −i
(
gµν − pµpν

p2

)
Π2(p2) (7.8)

with
Π2(p2) = e2p2

2π2

∫ 1

0
dx x(1 − x)

[
1
ε

+ ln
(

4πµ2

m2
e − p2x(1 − x)

)
− γE

]
(7.9)

Under the assumption of high energies m2
q � −p2, electrons can be considered massless

and this integral can simply be solved analytically. As one can see the divergence is now
present explicitly in the 1/ε-pole while the rest of the amplitude is finite.
However performing this whole procedure (which was left out here for the sake of brevity)
for every single one-loop process is not an efficient way of calculating the corrections. The
next section presents a method to write every possible NLO-diagram as a function of some
well classified scalar and tensor integrals with known divergencies and finite parts.

7.3 Passarino-Veltman integrals

Let us consider a general one-loop integral as shown in figure 14:

Tn
µ1,...,µm

(p1, ..., pn−1,m1, ...,mn−1) = (2πµ)4−D

iπ2∫
dDq

qµ1 ...qµm

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε]...[(q + pn−1)2 −mn−1 + iε]

(7.10)

where n is the number of propagators in the loop and m the number of loop momenta in
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the nominator of the integral. Now we rename those integrals as following:

T 1 = A0 T 1
µν = Aµν

T 2 = B0 T 2
µ = Bµ T 2

µν = Bµν

T 3 = C0 T 3
µ = Cµ T 3

µν = Cµν T 3
µνρ = Cµνρ

T 4 = D0 T 4
µ = Dµ T 4

µν = Dµν T 4
µνρ = Dµνρ

The integrals in the first column are called scalar integrals, as there nominator is just a
scalar. All the others are tensor integrals and can be completely reformulated as functions
of the four scalar integrals and the momenta.

7.3.1 Scalar integrals

First we consider a general form of scalar integrals:

In(A) =
∫
dDq

1
(q2 −A+ iε) (7.11)

Every scalar integral can be brought into this form by using Feynman parametrization
and shifting the integration variable in a clever way. One can show that

In(A) = i(−1)nπD/2 Γ(n−D/2)
Γ(n) (A− iε)D/2−n (7.12)

and use this result to calculate the specific scalar integrals.
With this knowledge the first integral is computed straightforwardly:

A0(m2) = (2πµ)4−D

iπ2

∫
dDq

1
q2 −m2 + iε

= (2πµ)4−D

iπ2 I1(m2)

= −(m2 − iε)
(

4πµ2

m2 − iε

)ε

Γ (ε− 1)

= m2

 1
εUV

− γE + ln 4π︸ ︷︷ ︸
∆

− ln
(
m2

µ2

)
+ 1 + O(εUV )


Here D = 4 − 2ε was used7. In the last step a Taylor expansion around ε = 0 was
performed. The Euler-Mascharoni constant is γE = −Γ′(1). Sometimes the 1/ε-pole is
summed up together with the constants that always appear in dimensional regularization
as ∆. This will become clear when discussing different subtraction schemes for renormal-
ization. For now we keep in mind that A0(m2) = m2∆ + finite terms + O(εUV ).

7To avoid confusion between the iε part in the denominator of propagators and the ε = (4 − D)/2 used
in dimensional regularization, the subscripts εUV (or εIR respectively) are sometimes used for the latter.
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The second scalar integral has the following form

B0(p2
1,m

2
0,m

2
1) = (2πµ)4−D

iπ2

∫
dDq

1
(q2 −m2

0 + iε)[(q + p1)2 −m2
1 + iε]

(7.13)

and can be depicted as in the following Feynman diagram:

p
q + p

q

p

To recover the generic integral In from equation (14) Feynman parametrization (see A.3)
is used:

B0(p2
1,m

2
0,m

2
1) = (2πµ)4−D

iπ2

∫ 1

0
dx

∫
dDq

1
(q + xp1)2 − x2p2

1 + x(p2
1 −m2

1 +m2
0) −m2

0 + iε
(7.14)

Since we integrate over all q the variable shift q → q − xp1 simply leads to

B0(p2
1,m

2
0,m

2
1) = (2πµ)4−D

iπ2

∫ 1

0
dx

∫
dDq

1
q2 − x2p2

1 + x(p2
1 −m2

1 +m2
0) −m2

0 + iε

= (2πµ)4−D

iπ2

∫ 1

0
dx I2(−x2p2

1 + x(p2
1 −m2

1 +m2
0) −m2

0)

= (4πµ)2−D/2Γ
(4 −D

2

)∫ 1

0
dx
(
x2p2

1 − x(p2
1 −m2

1 +m2
0) +m2

0

)D/2−2

= 1
εUV

− γE + ln 4π −
∫ 1

0
dx ln

(
x2p2

1 − x(p2
1 −m2

1 +m2
0) +m2

0 − iε

µ2

)
+ O(ε)

(7.15)

Again we used the integral from equation (7.12), properties of the Γ-function and expanded
around ε = 0. The first observation is that B0 = ∆ + finite terms + O(ε). A special
characteristic of the B0 function is that the argument of the logarithm can be negative,
which is why the latter has to be considered complex. By exploiting several identities for
complex logarithms (see [12] for details) one can reformulate the result in a form, which
separates real and imaginary part of B0:

B0(p2
1,m

2
0,m

2
1) = 1

εUV
− γE + ln 4π − ln

(
m0m1
µ2

)
+ 2 + m0 −m2

1
p2

1
ln
(
m1
m0

)
√
λ(p2

1,m
2
0,m

2
1) + 4ip2

1ε

2p2
1

[
ln
(

1 − 1
x1

)
− ln

(
1 − 1

x2

)] (7.16)

with the Källeén function

λ(p2
1,m

2
0,m

2
1) =

(
p2

1 − (m0 −m1)2
) (
p2

1 − (m0 +m1)2
)

(7.17)
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and the roots of the quadratic polynomial in the argument of the logarithm in (7.15)

x1,2 = 1
2p2

1

(
p2

1 −m2
1 +m2

0 ±
√(

p2
1 −m2

1 +m2
0
)2 − 4m2

0m
2
1 + i4p2

1ε

)
. (7.18)

When one (or more) of the arguments of B0 vanish one quickly notices that the result
(7.15) is no longer defined. For those cases one has to deduce the integrals separately.
For determining the renormalization constants later there is also need for the derivative
of some of the integrals. The most important one is

Ḃ0 =∂B0(p2
1,m

2
0,m

2
1)

∂p2
1

= 1
p2

1(x1 − x2)
·

·
[
(x2 − x1) + x1(1 − x1) ln

(
1 − 1

x1

)
− x2(1 − x2) ln

(
1 − 1

x− 2

)] (7.19)

This expression is ultraviolet convergent, but for special argument sets an infrared diver-
gence appears. When one of the particles in the loop is massless m2

1 = 0 and the incoming
momentum approaches the remaining mass p2

1 = m2
0, the derivative of B0 can be evaluated

to
∂B0(m2,m2, 0)

∂p2
1

= 1
2m2

(
∆IR + ln m

2

µ2 − 2 + O(ε)
)

(7.20)

with
∆IR = − 1

εIR
+ γR − ln 4π (7.21)

The third scalar integral depends on six parameters:

C0(p2
1, (p1 − p2)2, p2

2,m
2
0,m

2
1,m

2
2) =

(2πµ)4−D

iπ2

∫
dDq

1
(q2 −m2

0 + iε)[(q + p1)2 −m2
1 + iε][(q + p2)2 −m2

2 + iε]
(7.22)

The corresponding Feynman diagram is:

p2

q + p2

q + p1

p1

q
p2 − p1
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After using a more complicated version of the Feynman parametrization (A.3) and ma-
nipulating the terms, one can again recover the general integral:

C0 = (2πµ)4−D

iπ2 2
∫ 1

0
dx

∫ x

0
dyI3

(
x2p2

1 + y2p2
2 + xy(p2

0 − p2
1 − p2

2)

+x(m2
0 − p2

1 −m2
1) + y(p2

1 − p2
0 +m2

2 −m2
0) +m2

1 − iε
) (7.23)

When now exploiting again (7.12) the important thing to notice is that In converges for
n ≥ 3. So while A0 and B0 possess divergent parts we wrote as 1/εUV , the integrals C0
and D0 will have only finite terms. The computation of those is even more involved as the
one of B0, so we refer to [12] to study the results.

7.3.2 Tensor integrals and reduction

After reproducing the calculations of the scalar integrals, let us have another look at the
general tensor integral from the beginning:

Tn
µ1,...,µm

(p1, ..., pn−1,m1, ...,mn−1) = (2πµ)4−D

iπ2∫
dDq

qµ1 ...qµm

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε]...[(q + pn−1)2 −mn−1 + iε]

(7.24)

The integral is obviously symmetric under exchange of all Lorentz indices µ1, ..., µm.
Therefore the result can contain only symmetric tensor structures made up of the metric
tensor gµν and the 4-vectors pµ

1 , ..., p
µ
n−1. When combining all possible tensor structures
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for every tensor integral one ends up with:

Aµν =gµνA2

Bµ =pµ
1B1

Bµν =gµνB00 + pµ
1p

ν
1B11

Cµ =pµ
1C1 + pµ

2C2

Cµν =gµνC00 + pµ
1p

ν
1C11 + (pµ

1p
ν
2 + pµ

2p
µ
1 )C12 + pµ

2p
ν
2C22

Cµνρ =(pµ
1g

νρ + pν
1g

µρ + pρ
1g

µν)C001 + (pµ
2g

νρ + pν
2g

µρ + pρ
2g

µν)C002

+ pµ
1p

ν
1p

ρ
1C111 + (pµ

1p
ν
1p

ρ
2 + pµ

1p
ν
2p

ρ
1 + pµ

2p
ν
1p

ρ
1)C112

+ (pµ
1p

ν
2p

ρ
2 + pµ

2p
ν
2p

ρ
1 + pµ

2p
ν
1p

ρ
2)C122 + pµ

2p
ν
2p

ρ
2C222

Dµ =pµ
1D1 + pµ

2D2 + pµ
3D3

Dµν =gµνD00 + pµ
1p

ν
1D11 + (pµ

1p
ν
2 + pµ

2p
ν
1)D12 + (pµ

1p
ν
3 + pµ

3p
ν
1)D13

+ pµ
2p

ν
2D22 + (pµ

2p
ν
3 + pµ

3p
ν
2)D23 + pµ

3p
ν
3D33

Dµνρ =(pµ
1g

νρ + pν
1g

µρ + pρ
1g

µν)D001 + (pµ
2g

νρ + pν
2g

µρ + pρ
2g

µν)D002

+ (pµ
3g

νρ + pν
3g

µρ + pρ
3g

µν)D003 + pµ
1p

ν
1p

ρ
1D111

+ (pµ
1p

ν
1p

ρ
2 + pµ

1p
ν
2p

ρ
1 + pµ

2p
ν
1p

ρ
1)D112 + (pµ

1p
ν
2p

ρ
2 + pµ

2p
ν
2p

ρ
1 + pµ

2p
ν
1p

ρ
2)D122

+ (pµ
1p

ν
1p

ρ
3 + pµ

1p
ν
3p

ρ
1 + pµ

3p
ν
1p

ρ
1)D113 + (pµ

1p
ν
3p

ρ
3 + pµ

3p
ν
1p

ρ
3 + pµ

3p
ν
3p

ρ
1)D133

+ pµ
2p

ν
2p

ρ
2D222 + (pµ

2p
ν
2p

ρ
3 + pµ

2p
ν
3p

ρ
2 + pµ

3p
ν
2p

ρ
2)D223

+ (pµ
2p

ν
3p

ρ
3 + pµ

3p
ν
2p

ρ
3 + pµ

3p
ν
3p

ρ
2)D233 + pµ

3p
ν
3p

ρ
3D333

All the scalar coefficients B1, C00, ... can be expressed through a combination of the scalar
integrals described in the previous section. In the following this reduction of tensor inte-
grals into scalar ones will be demonstrated using the example of B1.
We start with pµ

1B1 = Bµ and multiply both sides of the equation with p1µ:

p2
1B1 = (2πµ)4−D

iπ2

∫
dDq

p1 · q
(q2 −m2

0 + iε)[(q + p1)2 −m2
1 + iε]

(7.25)

Now p1 ·q is rewritten by adding some zeros such that terms in nominator and denominator
cancel:

p2
1B1 =(2πµ)4−D

iπ2

∫
dDq

1
2

[(q + p1)2 −m2
1 + iε] − (q2 −m2

0 + iε) − (p2
1 −m2

1 +m2
0)

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε]

=(2πµ)4−D

iπ2
1
2

∫
dDq

[ 1
q2 −m2

0 + iε
− 1

[(q + p1)2 −m2
1 + iε]

− p2
1 −m2

1 +m2
0

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε]

]

=1
2
[
A0(m2

0) −A0(m2
1) − (p2

1 −m2
1 +m2

0)B0(p2
1,m

2
0,m

2
1)
]

35



In the last step we found the scalar integrals A0 and B0 depending on different parameters.
Using the results from the previous section leads to

B1 = 1
2p2

1

(
m2

0∆ −m2
1∆ − (p2

1 −m2
1 +m2

0)∆
)

+ finite terms + O(ε)

= − 1
2∆ + finite terms + O(ε)

(7.26)

For computing the other scalar coefficients one can proceed in a similar way. The following
table summarizes the UV-divergent parts of the scalar integrals relevant for this thesis:

Integral UV divergence

A0(m2) m2∆

B0 ∆

B1 −1
2∆

B00(p2,m2
0,m

2
1) −

(
p2

12 − 1
4(m2

0 +m2
1)
)

∆

B11
1
3∆

C00
1
4∆

C00i − 1
12∆

7.4 Renormalization

By using dimensional regularization the divergencies of the integrals are expressed explic-
itly. The next goal is to subtract those divergencies by reformulating the theory. There
are different subtraction schemes for that purpose that differ in their conventions about
the finite terms.
The basic idea is to insert renormalization constants Z into the bare Lagrangian L0 of the
theory to gain the renormalized Lagrangian LR and expand Z in the coupling constant.
In lowest order Z = 1 and one regains the bare Lagrangian, which is valid for tree-level
calculations. For one-loop calculations we expand up to first order Z = 1 + δZ. Thereby
the renormalized Lagrangian obtains a second term aside from the tree level term: the
so called counterterm which contains δZ. The key point is now to choose δZ such that
the contribution from the counterterms cancels the divergent part of the loop calculations
exactly.
The example of the photon field will illustrate the procedure. First a renormalization
constant for the field is introduced and inserted into the Lagrangian:

Aµ →
√
Z3A

a
µ (7.27)

L0 = −1
4 (∂µAν − ∂νAµ)2 → LR = −1

4Z3 (∂µAν − ∂νAµ)2 (7.28)
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In this case the square root of the renormalization constant is used as a prefactor for the
field, such that it appears linearly in the Lagrangian. Then the renormalization constant
is expanded:

LR = −1
4 (∂µAν − ∂νAµ)2 − 1

8δZ3 (∂µAν − ∂νAµ)2 (7.29)

The first term describes the photon field at tree level, while the second term is the coun-
terterm. To determine the suitable δZ3 one has to compute the contribution of the vacuum
polarization diagram, as done in (7.8).

7.4.1 Minimal subtraction

In the minimal subtraction scheme (MS) the renormalization constant δZ is just the sum
of the 1/ε contributions of each loop. When choosing the modified minimal subtraction
(MS), also the ln 4π− γE is eliminated by δZ. Looking back to the previous chapter, this
is now the reason for introducing the variable ∆ = 1

ε + ln 4π − γE , so that one can easily
subtract the ∆-parts of the contributing diagrams in MS.
The renormalization constant for the photon field in the different schemes read

δZMS
3 = − e2

16π2
1
ε

(7.30)

δZMS
3 = − e2

16π2

(1
ε

+ ln 4π − γE

)
= − e2

16π2 ∆ (7.31)

7.4.2 On-shell subtraction

The corrected photon propagator at first order is the sum of the tree level propagator, the
polarization diagram and the counterterm, which can be expressed as

iGµν = − i

p2

(
gµν − pµpν

p2

)(
1 − Π(p2)

p2

)
. (7.32)

with
Π(p2) = Π2(p2) + p2δZ3 (7.33)

, where Π2 describes the one-loop contribution as defined in (7.8). The on-shell scheme now
requires the renormalized mass to agree with the physical mass and further the residuum
to match unity:

Re [Π(p2)]
∣∣∣
p2=m2

= 0 (7.34)

lim
p2→m2

Π(p2)
p2 −m2 = 1 (7.35)

By expanding Π(p2) around m2 and using the first condition one can reformulate the
second condition to

Re
[
∂

∂p2 Π(p2)
]∣∣∣∣

p2=m2
= 0. (7.36)
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In the exemplary case of the massless photon this leads to

Re
[
∂

∂p2

(
Π2(p2) + p2δZ3

)]∣∣∣∣
p2=0

= Re
[
Π̇2(p2)

]∣∣∣
p2=0

+ δZ3 = 0 (7.37)

so the photon renormalization constant in the on-shell scheme is defined as

δZ3 = −Re
[
Π̇2(p2)

]∣∣∣
p2=0

(7.38)

In the following section all renormalization constants used for this thesis are listed. These
can be looked up for example in [5].

7.4.3 Gluon sector

The renormalization constant for the gluon field is introduced in a similar way the one for
the photon field in the previous section.

Aa
µ →

√
ZgA

a
µ =

(
1 + 1

2δZg

)
Aa

µ (7.39)

The kinetic gluon term in the Lagrangian also gains a counterterm:

LR = −1
4
(
∂µAν − ∂νAµ + gfabcAb

µA
c
ν

)2
− 1

8δZg

(
∂µAν − ∂νAµ + gfabcAb

µA
c
ν

)2
(7.40)

which leads to the propagator counterterm

= iδZgδab

(
p2gµν − pµpν

)
To determine the renormalization constant δZg one has to compute all diagrams contribut-
ing to the gluon vacuum polarization. The general form used to express those self energies
is

Πµν
ab = − i

4π2 δab

[(
gµν − pµpν

p2

)2
ΠT (p2) + pµpν

p2 ΠL(p2)
]

(7.41)

The advantage of this expression is, that the longitudinal part vanishes when being sand-
wiched between the propagators, so that the renormalized two-point function reduces to
the same as in the photon case (7.32) with

Π(p2) = ΠT (p2) + p2δZg (7.42)

The individual contributions for the gluon self energy can be found in D.1.1. The on-shell
renormalization conditions are the same as in the photon case

Re
[
Π(p2)

]∣∣∣
p2=0

= 0 and (7.43)

∂

∂p2 Π(p2)p2=0 = 0 (7.44)
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and therefore lead to the gluon renormalization constant

δZg̃ = −Re
[
∂

∂p2 ΠT (p2)
]

p2=0
(7.45)

In the code of DM@NLO the gluon propagator counterterm is implemented via the formula

M = −iεµ(p)
(
gµνA(p2) + pµpν

p2 B(p2)
)
ε∗

ν (7.46)

with

A = δZgp
2 (7.47)

B = −δZg. (7.48)

7.4.4 Ghost sector

For renormalizing the ghost-gluon-vertex later we also need a renormalization constant for
the ghost and anti-ghost field:

ca →
√
Zca =

(
1 + 1

2δZc

)
ca (7.49)

c̄a →
√
Zc̄a =

(
1 + 1

2δZc

)
c̄a (7.50)

There is only one contribution to the ghost self energy, which can be generally written as

Πab = δabiΠc(p2) (7.51)

which leads to the renormalization constant

δZc = −Re
[
∂

∂p2 ΠT (p2)
]

p2=0
(7.52)

7.4.5 Gluino sector

Renormalizing the gluino field is a bit more involved as one has to pay attention to the
left and right handed parts of the field:

ψg̃ →
(

1 + 1
2δZ

L
g̃ PL + 1

2δZ
R
g̃ PR

)
ψg̃ (7.53)

Since gluinos are massive particles, there is also need for mass renormalization constant:

mg̃ →
(

1 + δmg̃

mg̃

)
mg̃ = mg̃ + δmg̃ (7.54)
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Note the different definition for the increment of the mass renormalization constant δmg̃,
which already includes the gluino mass itself.
Inserting those two definitions into the kinetic and the mass term of the Lagrangian yields:

LR = i

2Ψ̄a
g̃�∂Ψa

g̃ + i

4
(
δZL

g̃ PL + δZR
g̃ PR

)
Ψ̄a

g̃�∂Ψa
g̃ − 1

2mg̃Ψ̄a
g̃Ψa

g̃ − 1
2δmg̃Ψ̄a

g̃Ψa
g̃ (7.55)

The two-point functions can be written as

Πab(p2) = δabi
[
ΠSL

ab (p2)PL + ΠSR
ab (p2)PR + ΠV L

ab (p2)�pPL + ΠV R
ab (p2)�pPR

]
(7.56)

and to receive the gluino propagator counterterm one chooses

ΠSL
ab = −(δmg̃ + δZL

g̃ ) (7.57)

ΠSR
ab = −

(
δmg̃ + δZR

g̃

)
(7.58)

ΠV L
ab = δZL

g̃ (7.59)
ΠV R

ab = δZR
g̃ . (7.60)

The two renormalization conditions in this case read

Re
[
Π(p2)

]∣∣∣
p2=m2

g̃

= 0 (7.61)

Re
[
d

d�p
Π(p2)

∣∣∣∣
p2=m2

g̃

 = 0 (7.62)

with

Π(p2) = Πab(p2) + 1
2�p
[(
δZL

g̃ + δZL†
g̃

)
PL +

(
δZR

g̃ + δZR†
g̃

)
PR

]
− 1

2
[(
δZL

g̃ + δZR†
g̃

)
PL +

(
δZR

g̃ + δZL†
g̃

)
PR

]
mg̃ − δmg̃

(7.63)

Those lead to the following renormalization constants:

δZL
g̃ = Re

[
−ΠV L

ab −m2
g̃

(
Π̇V L

ab + Π̇V R
ab

)
−mg̃

(
Π̇SL

ab + Π̇SR
ab

)]
(7.64)

δZR
g̃ = Re

[
−ΠV R

ab −m2
g̃

(
Π̇V L

ab + Π̇V R
ab

)
−mg̃

(
Π̇SL

ab + Π̇SR
ab

)]
(7.65)

δmg̃ = 1
2Re

[
ΠSL

ab (p2) + ΠSR
ab (p2) +mg̃

(
ΠV L

ab (p2) + ΠV R
ab (p2)

)]
(7.66)

In the appendix D.1.3 all 1-loop contributions to the gluino self energy are given. Studying
those one recognizes ΠSL

ab (p2) = ΠSR
ab (p2) as well as ΠV L

ab (p2) = ΠV R
ab (p2) when summing

over both squark „chirality states„ i = 1, 2. This implies δZL
g̃ = δZR

g̃ after the summation.
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7.4.6 Correction of αs

Also the strong coupling constant has to be renormalized properly by introducing a renor-
malization constant

gs → (1 + δgs) gs (7.67)

with the following divergent contribution:

δgs = g2
s

32π2 (nf − 3CV )∆ (7.68)

7.4.7 Vertex counterterms

After having derived the renormalization constants for the relevant fields, masses, cou-
plings and propagators it is time to think about the counterterms for the propagators and
vertices.
For most of the vertices one can make use of the fact, that the counterterm factorizes the
vertex at tree level. The triple gluon vertex counterterm can therefore be written as

M3g,counter = δZ3gM3g,tree (7.69)

with the factor
δZ3g = δgs + 3

2δZg. (7.70)

The counterterm of the ghost-gluon-vertex is build up in a similar way using the factor

δZηηg = δgs + δZC + 1
2δZg (7.71)

in front of the tree-level amplitude.
Again the vertex including gluinos is a bit more involved. First one has to split up the
tree-level amplitude of the gluino-gluon-vertex in its left and right-chiral parts:

Mg̃g̃g,tree = PLMg̃g̃g,tree,L + PRMg̃g̃g,tree,R (7.72)

Then the left and right-chiral parts of the counterterm factorize the corresponding parts
of the tree level:

Mg̃g̃g,counter = δZL
g̃g̃gPLM

L
g̃g̃g,tree + δZR

g̃g̃gPRM
R
g̃g̃g,tree (7.73)

The respective factors read:

δZL
g̃g̃g = δgs + 1

2
(
δZg + δZL

g̃ + δZL∗
g̃

)
δZR

g̃g̃g = δgs + 1
2
(
δZg + δZR

g̃ + δZR∗
g̃

) (7.74)

But as the tree-level vertex itself is not sensitive to chirality (ML
g̃g̃g,tree = MR

g̃g̃g,tree) and
we learned that δZL

g̃ = δZR
g̃ earlier, one can simplify the counterterm to

Mg̃g̃g,counter = δZL,R
g̃g̃g Mg̃g̃g,tree (7.75)
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Figure 15: g̃g̃ → ggg for real corrections

7.5 Infrared divergencies

As mentioned before there appear not only ultraviolet divergencies in the one-loop correc-
tions, but also infrared divergencies. Those cancel by including the 2 → 3 process with
an additional massless gauge boson and considering it soft or collinear with another final
state particle (or both).
In the case of gluino annihilation into gluons it is not sufficient to just examine the process
of g̃g̃ → ggg (see figure 15). As the infrared divergencies also occur through corrections
with quark/squark-loops, they will depend on the fermion number Nf , which can not be
matched by a process involving no quarks. So in addition one also has to include the
soft and collinear divergencies of g̃g̃ → qq̄g (see figure 16) and therefore also all one-loop
corrections of g̃g̃ → qq̄. For a detailed derivation of a similar case see [18].
When using ghost, one also has to take all possible g̃g̃ → cc̄g processes into account. As
there are two possibilities for the ghost directions for all of the three options of the gluon
final state, that gives a total of six different final state possibilities that all have to be
considered. The corresponding diagrams of this six classes are depicted in figures 17 to
22.
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Figure 16: g̃g̃ → qq̄g

Figure 17: First class of g̃g̃ → cc̄g
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Figure 18: Second class of g̃g̃ → cc̄g

Figure 19: Third class of g̃g̃ → cc̄g

Figure 20: Fourth class of g̃g̃ → cc̄g
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Figure 21: Fifth class of g̃g̃ → cc̄g

Figure 22: Sixth class of g̃g̃ → cc̄g
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8 Numerical results
After calculating all virtual corrections at NLO for the gluino annihilation into gluons and
implementing them into DM@NLO, the cross sections of the NLO contributions can be
calculated. As an exemplary case we use the following parameter scenario:

tan β M1 M2 M3 At Ab Aτ

Szenario I 1.55 1430,00 2093,52 1267,80 2755,29 2320,90 -1440,33

µ mA0 Ml̃L
Mτ̃L Ml̃R

Mτ̃R Mq̃L

Szenario I -3952,55 3624,81 3134,07 1503,88 2102,53 1780,39 3796,00

Mq̃3L
MũR Mt̃R

Md̃R
Mb̃R

QSUSY

Szenario I 2535,04 3995,01 1620,00 3133,22 3303,77 1784,638

This scenario leads to a MSSM with a neutralino as the LSP and the gluino as the
NLSP being just slightly heavier. Furthermore this parameter constellation predicts the
relic density measured by Planck.
The upper part of figure 15 plots the tree level cross section of the process in black and the
corrections through propagators, vertices and box diagrams in the respective colors. The
plot beneath shows the relative values of the corrections in comparison to the tree level
cross section. Disregarding the diverging behavior for small momenta, all contributions
can be observed to be smaller than the tree level cross section as they should. The sign
of the box corrections changes with increasing momentum.
One should keep in mind that those are only preliminary results, as they are UV-convergent
but still contain infrared divergencies. The divergence of vertex and box corrections for
small momenta is caused by diagrams with a gluon exchange. To fix this behavior the
resummation of this soft gluons at next-to-leading logarithmic accuracy is necessary.
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Figure 23: Total virtual corrections at NLO for g̃g̃ → gg and ratio of corrections to tree
level contribution

9 Conclusion
In this thesis the virtual corrections of gluino annihilation into gluons at next-to-leading
order were derived. By using Passarino-Veltman integrals all propagator and vertex cor-
rections as well as box diagrams were set up. After calculating the self-energies of gluon
and gluino the required renormalization constants for the fields were derived. With these
the counterterms for all propagators and box diagrams could be written. By implementing
all those results in the code of DM@NLO, one is enabled to calculate the cross section of
the process with higher accuracy than before. However one should consider, that the full
NLO calculation is still incomplete. As next steps the cancellation of infrared divergencies
would have to be ensured, followed by the resummation of the soft gluons.
The counterterms, self energies, vertex corrections and box diagrams derived for this thesis
can all be found in the appendix.
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A Collection of Formulas

A.1 Dirac Algebra in D Dimensions

A.1.1 Dirac Matrices

{γµ, γν} = 2gµν (A.1)
γµp

µ = �p (A.2)
γµγµ = D (A.3)

γαγµγα = (2 −D)γµ (A.4)
γαγµγνγα = 4gµν − (4 −D)γµγν (A.5)

γαγµγνγργα = −2γργνγµ + (4 −D)γµγνγρ (A.6)

A.1.2 Completeness Relations

∑
s

us(p)ūs(p) = �p+m (A.7)∑
s

vs(p)v̄s(p) = �p−m (A.8)

4∑
λ=1

εµ(λ)(k) · ε∗ν
(λ)(k) = −gµν (A.9)

A.1.3 Traces

Tr[γαγβγµ] = 0 (A.10)
Tr[γαγβγµγνγλ] = 0 (A.11)

Tr[γµγν ] = 4gµν (A.12)
Tr[γαγβγµγν ] = 4(gαβgµν − gαµgβν + gανgβµ) (A.13)

A.1.4 Dirac Equation

(�p−m)u(p) = 0 (A.14)
(�p+m)v(p) = 0 (A.15)
ū(p)(�p−m) = 0 (A.16)
v̄(p)(�p+m) = 0 (A.17)
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A.2 SU(N) Algebra

[T a, T b] = fabcT c (A.18)

CF = N2
C − 1
2NC

(A.19)

TF =1
2 (A.20)

δii = NC (A.21)
δaa = N2

C − 1 (A.22)
fabefecd + fcbefaed + fdbeface = 0 (Jacobi identity) (A.23)
fabedcde + facedbde + fadedbce = 0 (A.24)

feab · fgab = Nδeg (A.25)

dabcdabd = N2
C − 4
NC

δcd (A.26)

fabc = −2iTr(T a[T b, T c]) (A.27)∑
a

T a
ijT

a
kl = 1

2

(
δilδjk − 1

N
δijδkl

)
(A.28)

Tr[T aT b] = 1
2δ

ab (A.29)

Tr[T aT bT c] = 1
4(dabc + ifabc) (A.30)

Tr[T aT bT cT d] = 1
4N δabδcd + 1

8 (dabe + ifabe) (dcde + ifcde) (A.31)

dcafdfbdddec = N2
C − 12
2NC

dabe (A.32)

dcafdfbdifdec = N2
C − 4
2NC

ifabe (A.33)

dcaf iffbdifdec = NC

2 dabe (A.34)

ifcaf iffbdifdec = NC

2 ifabe (A.35)

A.3 Feynman parametrization

1
AB

=
∫ 1

0
dx

1
[A+ (B −A)x]2 (A.36)

1
ABC

= 2
∫ 1

0
dx

∫ x

0
dy

1
[a(x− y) + b(1 − x) + cy]3

(A.37)
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B Feynman rules

B.1 Propagators

Gluon propagator (when using ghosts)

p

gµ
a gν

b
= iδab

−gµν + (1 − ξ)pµpν

p2

p2 + iε
(B.1)

Ghost propagator

p

ca cb = iδab

p2 + iε
(B.2)

Gluino propagator

p

g̃a g̃b
= iδab

�p+mg̃

p2 −m2
g̃ + iε

(B.3)

Quark propagator

p

qα
s qβ

t
= iδstδ

αβ �p+mqα

p2 −m2
qα + iε

(B.4)

Squark propagator

p

q̃α
i,s q̃β

j,t
= iδijδstδ

αβ

p2 −mq̃α
i

+ iε
(B.5)

B.2 Couplings

Triple-gluon vertex

k2

k3

k1
gν

b

gρ
c

gµ
a = ifabcigs [(k1 − k2)ρgµν + (k2 − k3)µgνρ + (k3 − k1)νgµρ] (B.6)

2-ghost-gluon vertex

k
c̄b

cc

gµ
a = ifabcigsk

µ (B.7)
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2-gluino-gluon vertex

¯̃gb

g̃c

gµ
a = ifabc igsγ

µ (B.8)

2-quark-gluon vertex

q̄β
s

qα
r

gµ
a = −Tα

rsigsδ
αβγµ (B.9)

2-squark-gluon vertex

k1

k2

q̃β∗
j,s

q̃α
i,r

gµ
a = −Tα

rsigsδ
αβδij(k1 − k2)µ (B.10)

Quark-squark-gluon vertices

q̃β∗
i,s

qα
r

gµ
a = −Tα

rsi
√

2gsδ
αβ (Rα

i1PR −Rα
i2PL) (B.11)

q̃β
i,s

q̄α
r

gµ
a = −Tα

rsi
√

2gsδ
αβ (Rα

i1PL −Rα
i2PR) (B.12)
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2-squark-2-gluon vertex

gµ
a

gν
b

q̃β∗
j,s

q̃α
i,r

= {T a, T b}srig
2
sδ

αβδij (B.13)

4-gluon vertex

gµ
a

gρ
c

gν
b

gσ
d

= −ig2
s [fabefcde (gµρgνσ − gµσgνρ)
+facefbde (gµνgρσ − gµσgνρ)
+fadefbce (gµνgρσ − gµρgνσ)]

(B.14)

B.3 Counterterms

Gluon propagator

p

gµ
a gν

b
= −iδab

(
p2gµν − pµpν

)
δZg (B.15)

Gluino propagator

p

g̃a g̃b
= iδab

[
−
(
δmg̃ + δZL

g̃

)
PL −

(
δmg̃ + δZR

g̃

)
PR + �p

(
δZL

g̃ PL + δZR
g̃ PR

)]
(B.16)

Triple-gluon vertex

k2

k3

k1
gν

b

gρ
c

gµ
a = ifabcigs [(k1 − k2)ρgµν + (k2 − k3)µgνρ + (k3 − k1)νgµρ] δZ3g (B.17)

with
δZ3g = δgs + 3

2δZg (B.18)
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2-gluino-gluon vertex

¯̃gb

g̃c

gµ
a = δZ

L/R
g̃g̃g ifabcigsγ

µ (B.19)

with
δZ

L/R
g̃g̃g = δgs + 1

2
(
δZg + δZ

L/R
g̃ + δZ

L/R∗
g̃

)
(B.20)

C Calculations for color basis
These results of these calculations are used to derive the color basis in chapter 6.

Tr[T aT cT bT d] + Tr[T cT aT dT b] =
( 1

4NC
δacδbd + 1

8(dacedbde + daceifbde + ifacedbde + ifaceifbde)
)

(C.1)

+
( 1

4NC
δcaδdb + 1

8(dcaeddbe + dcaeifdbe + ifcaeddbe + ifcaeifdbe)
)

(C.2)

= 1
2NC

δacδbd + 1
4 (dacedbde + ifaceifbde) (C.3)

Tr[T aT cT bT d] − Tr[T cT aT dT b] =
( 1

4NC
δacδbd + 1

8(dacedbde + daceifbde + ifacedbde + ifaceifbde)
)

(C.4)

−
( 1

4NC
δcaδdb + 1

8(dcaeddbe + dcaeifdbe + ifcaeddbe + ifcaeifdbe)
)

(C.5)

= 1
4 (daceifbde + ifacedbde) (C.6)

Π±
± · P1 =

(1
4(δacδbd + δadδbc) ± Tr[T aT cT bT d] ± Tr[T aT dT bT c]

) 1
N2

C − 1
δcdδfg (C.7)

=
(1

4(δacδbd + δadδbc) ± 1
2NC

δacδbd ± 1
4 (dacedbde + ifaceifbde)

) 1
N2

C − 1
δcdδfg

(C.8)

=
(

1
4(δab + δab) ± 1

2NC
δab ± 1

4

(
N2

C − 4
NC

−NC

)
δab

)
1

N2
C − 1

δfg (C.9)

=NC ∓ 1
2NC

P1 (C.10)
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Π±
∓ · P8A =

(1
4(δacδbd − δadδbc) ± Tr[T aT cT bT d] ∓ Tr[T aT dT bT c]

) 1
NC

ifcdeifgfe (C.11)

=
(1

4(δacδbd − δadδbc) ± 1
4 (dachifbdh + ifachdbdh)

) 1
NC

ifcdeifgfe (C.12)

=1
4(fabe − fbae) ± 1

4

(
NC

2 dabe − NC

2 dabe

) 1
NC

ifgfe (C.13)

=1
2P8A (C.14)

Π±
± · P8S =

(1
4(δacδbd + δadδbc) ± Tr[T aT cT bT d] ± Tr[T aT dT bT c]

)
NC

N2
C − 4

dcdedgfe

(C.15)

=
(1

4(δacδbd + δadδbc) ± 1
2NC

δacδbd ± 1
4 (dachdbdh + ifachifbdh)

)
NC

N2
C − 4

dcdedgfe

(C.16)

=
(

1
4(dabe + dabe) ± 1

2NC
dabe ± 1

4

(
N2

C − 12
2NC

− NC

2

)
dabe

)
NC

N2
C − 4

dgfe (C.17)

=NC ∓ 2
2NC

P8S (C.18)

P10 =Π+
− − 1

2P8A (C.19)

=1
4(δacδbd − δadδbc) + 1

4 (daceifbde + ifacedbde) − 1
2

1
NC

ifabeifdce (C.20)

P10 =Π−
+ − 1

2P8A (C.21)

=1
4(δacδbd − δadδbc) − 1

4 (daceifbde + ifacedbde) − 1
2

1
NC

ifabeifdce (C.22)

P27 =Π+
+ − NC − 1

2NC
P1 − NC − 2

2NC
P8S (C.23)

=1
4(δacδbd + δadδbc) + 1

4 (daceifbde + ifacedbde) (C.24)

− NC − 1
2NC

1
N2

C − 1
δabδcd − NC − 2

2NC

NC

N2
C − 4

dabedcde (C.25)

D Virtual corrections
Here all self energies, vertex corrections and amplitudes of the box diagrams are listed.
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D.1 Self energies

To retain the definition of the Passarino-Veltman integrals use

µ4−D
∫

dDq

(2π)D
= i

(4π)2
(2πµ)4−D

iπ2

∫
dDq (D.1)

for the self energies.

D.1.1 Gluon self energy

The general amplitude can be written as

Πµν
ab = − δab

i

(4π)2

[(
gµν − pµpν

p2

)2
ΠT (p2) + pµpν

p2 ΠL(p2)
]

(D.2)

= − iFcolorδab

(
gµνA(p2) + pµpν

p2 B(p2)
)

(D.3)

ΠT and ΠB can be regained from A,B by

ΠT (p2) = Fcolor(4π)2A (D.4)
ΠB(p2) = Fcolor(4π)2(A+B) (D.5)

Quark loop

µ, a ν, b

p

p+ q

q

p

M = µ4−D
∫

dDq

(2π)D
(−1)T a

sr(−igsγ
µ) i(�p+ �q +mq)

(p+ q)2 −m2
q

T b
rs(−igsγ

ν) i(�q +mq)
q2 −m2

q

(D.6)

A(p2) = g2
s

(4π)2

(
8B00 − 4p2B1 − 4A0(m2

q)
)

(D.7)

B(p2) = g2
s

(4π)2 8p2(B1 +B11) (D.8)

Fcolor =TF (D.9)
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Gluino loop

µ, a ν, b

p

p+ q

q

p

M = µ4−D
∫

dDq

(2π)D

1
2(−1)ifacdigsγ

µ i(�p+ �q +mq)
(p+ q)2 −m2

q

ifbdcigsγ
ν i(�q +mq)
q2 −m2

q

(D.10)

The factor of 1
2 in the amplitude is a sammetry factor due to the Majorana nature of gluino.

A(p2) =1
2

g2
s

(4π)2

(
8B00 − 4p2B1 − 4A0(m2

g̃)
)

(D.11)

B(p2) =1
2

g2
s

(4π)2 8p2(B1 +B11) (D.12)

Fcolor =NC (D.13)

Squark loop

µ, a ν, b

p

p+ q

q

p

M = µ4−D
∫

dDq

(2π)D
T a

sr (−igs(p+ 2q)µ) i

(p+ q)2 −m2
q̃

T b
rs(−igs(p+ 2q)ν) i

q2 −m2
q̃

(D.14)

A(p2) = g2
s

(4π)2 (−4B00) (D.15)

B(p2) = g2
s

(4π)2 (−p2)(4B11 + 4B1 +B0) (D.16)

Fcolor = TF (D.17)

56



Ghost loop

µ, a ν, b

p

p+ q

q

p

M = µ4−D
∫

dDq

(2π)D
(−1)ifacdigs(p+ q)µ i

(p+ q)2 −m2
q̃

ifdcbigsq
ν i

q2 −m2
q̃

(D.18)

A(p2) = g2
s

(4π)2B00 (D.19)

B(p2) = g2
s

(4π)2 p
2(B1 +B11) (D.20)

Fcolor =NC (D.21)

Gluon loop

µ, a ν, b

p

p+ q

q

p

M = µ4−D
∫

dDq

(2π)D

1
2 ifdcbigs (gµρ(p− q)σ + gρσ(p+ 2q)µ − gσµ(2p+ q)ρ)

−i
(p+ q)2 ifdcbigs

(
gν

ρ(p− q)σ + gρσ(p+ 2q)ν − gν
σ(2p+ q)ρ

) −i
q2

(D.22)

A(p2) =1
2

g2
s

(4π)2

(
−10B00 − p2(2B1 + 5B0 + 2

3)
)

(D.23)

B(p2) =1
2

g2
s

(4π)2 (−p2)(10B11 + 10B1 − 2B0 − 2
3) (D.24)

Fcolor =NC (D.25)
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4-point vertex squark loop

µ, a ν, b

p

q

p

M = µ4−D
∫

dDq

(2π)D
{T a, T b}rrig

2
sg

µν i

q2 −m2
q̃

(D.26)

A(p2) = g2
s

(4π)2A0(m2
q) (D.27)

B(p2) =0 (D.28)
Fcolor =2TF (D.29)

4-point vertex gluon loop

µ, a ν, b

p

q

p

M = 0 (D.30)

A(p2) =0 (D.31)
B(p2) =0 (D.32)

D.1.2 Ghost

The general form of the ghost self energy reads

Πab = δabiΠc(p2) (D.33)
= FcolorδabiA(p2) (D.34)

Gluon-ghost loop

a b
p

q

p+ q p

M = µ4−D
∫

dDq

(2π)D
ifcdaigsγµ

−i
q2

i

(p+ q)2 ifcbdigsγ
µ (D.35)

A(p2) = − g2
s

(4π)2
1
2p

2B0 (D.36)

Fcolor = NC (D.37)
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D.1.3 Gluino self energy

The general form of the gluino self energy reads

Πab = δabi
[
ΠSL

ab PL + ΠSR
ab PR + ΠV L

ab �pPL + ΠV R
ab �pPR

]
(D.38)

= Fcolorδabi [ALPL +ARPR +BL�pPL +BR�pPR] (D.39)

Gluon-gluino loop

a b
p

q

p+ q p

M = µ4−D
∫

dDq

(2π)D
ifdcbigsγµ

−i
q2
i(�p+ �q +mg̃)
(q + p)2 −m2

g̃

ifacdigsγ
µ (D.40)

AL = AR = − g2
s

(4π)2mg̃(4B0 − 2) (D.41)

BL = BR = g2
s

(4π)2 (2B0 + 2B1 − 1) (D.42)

Fcolor =NC (D.43)

Antisquark-quark loop

a b
p

q

p+ q p

M = µ4−D
∫

dDq

(2π)D
T b

rs(−i
√

2gs(Ri1PR −Ri2PL)) −i
q2 −m2

q̃

i(�p+ �q +mq)
(q + p)2 −m2

q

T a
sr(i

√
2gs(Ri1PR −Ri2PL))

(D.44)

AL = AR = − g2
s

(4π)2 2mqRi1Ri2B0 (D.45)

BL = g2
s

(4π)2R
2
i22(B0 +B1) (D.46)

BR = g2
s

(4π)2R
2
i12(B0 +B1) (D.47)

Fcolor =TF (D.48)
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Squark-antiquark loop

a b
p

q

p+ q p

M = µ4−D
∫

dDq

(2π)D
T b

sr(−i
√

2gs(Ri1PL −Ri2PR)) −i
q2 −mq̃

i(�p+ �q +mq)
(q + p)2 −m2

q

T a
rs(i

√
2gs(Ri1PL −Ri2PR))

(D.49)

AL = AR = − g2
s

(4π)2 2mqRi1Ri2B0 (D.50)

BL = g2
s

(4π)2R
2
i12(B0 +B1) (D.51)

BR = g2
s

(4π)2R
2
i22(B0 +B1) (D.52)

Fcolor =TF (D.53)

D.2 Vertex Corrections

For the vertex correction the following equation can be used to regain the definition of the
Passarino-Veltman integrals:

µ4−Dµ
4−D

2

∫
dDq

(2π)D
= µ

4−D
2

i

(4π)2
(2πµ)4−D

iπ2

∫
dDq (D.54)

D.2.1 Gluino-gluon Vertex

The Gluino-gluon vertex at NLO can generally by written as:

M =Fcolorµ
4−D

2
i

4π2

[
γµ
(
A1

LPL +A1
RPR

)
+ (p1 − p3)µ

(
A2

LPL +A2
RPR

)
+ (p1 + p3)µ

(
A3

LPL +A3
RPR

)
+ γµ

(
B1

LPL +B1
RPR

)
(��p1 −mg̃)

+ (p1 − p3)µ
(
B2

LPL +B2
RPR

)
(��p1 −mg̃) + (p1 + p3)µ

(
B3

LPL +B3
RPR

)
(��p1 −mg̃)

+ (��p3 −mg̃)γµ
(
C1

LPL + C1
RPR

)
+ (��p3 −mg̃)(p1 − p3)µ

(
C2

LPL + C2
RPR

)
+ (��p3 −mg̃)(p1 + p3)µ

(
C3

LPL + C3
RPR

)
+ (��p3 −mg̃)γµ

(
D1

LPL +D1
RPR

)
(��p1 −mg̃)

+ (��p3 −mg̃)(p1 − p3)µ
(
D2

LPL +D2
RDR

)
(��p1 −mg̃)

+ (��p3 −mg̃)(p1 + p3)µ
(
D3

LPL +D3
RPR

)
(��p1 −mg̃)

]
(D.55)
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The use of this notation is, that the B coefficients vanish, if p1 is on-shell and the C coef-
ficients vanish, if p3 is on-shell.

Gluino-gluon loops

p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
ifebdigsγν

i(��p3 − �q +mg̃)
(p3 − q)2 −m2

g̃

ifadf igsγµ
i(��p1 − �q +mg̃)
(p1 − q)2 −m2

g̃

ifefcigsγ
ν −i
q2

(D.56)

A1
L = A1

R = g3
s

(
2B0 − 2m2

g̃C0 + (4p1 · p3 + 2m2
g̃)(C0 + C1 + C2) − 4C00 + 2p1

1C1 + 2p2
3C2 − 1

)
(D.57)

A2
L = A2

R = (4mg̃(C1 − C2) + (−2)mg̃(C1 − C2 + C11 − C22)) (D.58)
A3

L = A3
R = g3

s(−2)mg̃(C1 + C2 + C11 + 2C12 + C22) (D.59)
B1

L = B1
R = g3

s2mg̃(C0 + C1 + C2) (D.60)
B2

L = B2
R = g3

s2(C0 + C2 − C11 + C12) (D.61)
B3

L = B3
R = g3

s(−2)(C0 + 2C1 + C2 + C11 + C12) (D.62)
C1

L = C1
R = g3

s2mg̃(C0 + C1 + C2) (D.63)
C2

L = C2
R = g3

s2(−C0 − C1 − C12 + C22) (D.64)
C3

L = C3
R = g3

s(−2)(C0 + C1 + 2C2 + C12 + C22) (D.65)
D1

L = D1
R = g3

s2(C0 + C1 + C1) (D.66)
D2

L = D2
R = D3

L = D3
R = 0 (D.67)

Fcolor = NC

2 (D.68)
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p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
ifdbeigsγρ

i(�q +mg̃)
q2 −m2

g̃

iffecigsγν
−i

(p3 − q)2
−i

(p1 − q)2

ifadf igs (gµν(p3 − 2pq + q)ρ + gνρ(p1 + p3 − 2q)µ + gρµ(p1 − 2p3 + q)ν)
(D.69)

A1
L = A1

R = − g3
s

(
2B0 + 8m2

g̃C0 + (4p1·3 −3m2
g̃)(C1 + C2) + p2

1C1 + p2
3C2 + 4C00 − 1

)
(D.70)

A2
L = A2

R = − g3
s (4mg̃(C1 − C2) + 2mg̃(C11 − C22)) (D.71)

A3
L = A3

R = − g3
s(2mg̃(C1 + C3) + 2mg̃(C11 + 2C12 + C22)) (D.72)

B1
L = B1

R = − g3
s(3mg̃(C0 + C1 + C2) (D.73)

B2
L = B2

R = − g3
s(2C1 + C2 + 2(C11 − C12)) (D.74)

B3
L = B3

R = − g3
s(−C2 + 2(C11 + C22)) (D.75)

C1
L = C1

R = − g3
s3mg̃(C0 + C1 + C2) (D.76)

C2
L = C2

R = − g3
s(−C1 − 2C2 + 2(C12 − C22)) (D.77)

C3
L = C3

R = − g3
s(−C1 + 2(C12 + C22)) (D.78)

D1
L = D1

R = − g3
s3(C1 + C2) (D.79)

Fcolor = − NC

2 (D.80)
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Quark-squark loops

p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
T b

rs(−igs

√
2)(Ri1PL −Ri2PR) i(��p3 − �q +mq)

(p3 − q)2 −m2
q

T a
st(−igsγ

µ)

i(��p1 − �q +mq)
(p1 − q)2 −m2

q

T c
tr(−igs

√
2)(Ri1PR −Ri2PL) i

q2 −m2
q̃

(D.81)

A1
L = g3

s

[(
(2C00 −B0) + (m2

q −m2
q̃)C0 −m2

g̃(C1 + C2)
)
R2

i2 (D.82)

−m2
g̃(C0 + C1 + C2)R2

i1 − 2mg̃mqC0Ri1Ri2

]
(D.83)

A1
R = g3

s

[(
(2C00 −B0) + (m2

q −m2
q̃)C0 −m2

g̃(C1 + C2)
)
R2

i1 (D.84)

−m2
g̃(C0 + C1 + C2)R2

i2 − 2mg̃mqC0Ri1Ri2

]
(D.85)

A2
L = g3

s

[
mg̃(C12 − C22 − C2)R2

i2 +mg̃(C11 − C12 + C1)R2
i1 −mq(C1 − C2)Ri1Ri2

]
(D.86)

A2
L = g3

s

[
mg̃(C12 − C22 − C2)R2

i1 +mg̃(C11 − C12 + C1)R2
i2 −mq(C1 − C2)Ri1Ri2

]
(D.87)

A3
L = g3

s

[
mg̃(C12 + C22 + C2)R2

i2 +mg̃(C11 + C12 + C1)R2
i1 −mqC1C2Ri1Ri2

]
(D.88)

A3
R = g3

s

[
mg̃(C12 + C22 + C2)R2

i1 +mg̃(C11 + C12 + C1)R2
i2 −mqC1C2Ri1Ri2

]
(D.89)
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B1
L = g3

s

[
mg̃(C0 + C1 + C2)R2

i1 −mqC0Ri1Ri2
]

(D.90)

B1
R = g3

s

[
mg̃(C0 + C1 + C2)R2

i2 −mqC0Ri1Ri2
]

(D.91)

B2
L = g3

s(C11 − C12 + C1)R2
i1 (D.92)

B2
R = g3

s(C11 − C12 + C1)R2
i2 (D.93)

B3
L = g3

s(C11 + C12 + C1)R2
i1 (D.94)

B3
R = g3

s(C11 + C12 + C1)R2
i2 (D.95)

C1
L = g3

s

[
mg̃(C0 + C1 + C2)R2

i1 −mqC0Ri1Ri2

]
6 (D.96)

C1
R = g3

s

[
mg̃(C0 + C1 + C2)R2

i2 −mqC0Ri1Ri2

]
(D.97)

C2
L = g3

s(C11 − C12 + C2)R2
i2 (D.98)

C2
R = g3

s(C11 − C12 + C2)R2
i1 (D.99)

C3
L = g3

s(C11 + C12 + C2)R2
i2 (D.100)

C3
R = g3

s(C11 + C12 + C2)R2
i1 (D.101)

D1
L = g3

s(C0 + C1 + C2)R2
i1 (D.102)

D1
R = g3

s(C0 + C1 + C2)R2
i2 (D.103)

D2
L = D2

R = D3
L = D3

R (D.104)

Fcolor = −1
4 (D.105)
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p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
T b

sr(−igs

√
2)(Ri1PR −Ri2PL) i(��p3 − �q +mq)

(p3 − q)2 −m2
q

T a
tsigsγ

µ

i(��p1 − �q +mq)
(p1 − q)2 −m2

q

T c
rt(−igs

√
2)(Ri1PL −Ri2PR) i

q2 −m2
q̃

(D.106)

A1
L = − g3

s

[(
(2C00 −B0) + (m2

q −m2
q̃)C0 −m2

g̃(C1 + C2)
)
R2

i1 (D.107)

−m2
g̃(C0 + C1 + C2)R2

i2 − 2mg̃mqC0Ri1Ri2

]
(D.108)

A1
R = − g3

s

[(
(2C00 −B0) + (m2

q −m2
q̃)C0 −m2

g̃(C1 + C2)
)
R2

i2 (D.109)

−m2
g̃(C0 + C1 + C2)R2

i1 − 2mg̃mqC0Ri1Ri2

]
(D.110)

A2
L = − g3

s

[
mg̃(C12 − C22 − C2)R2

i1 +mg̃(C11 − C12 + C1)R2
i2 −mq(C1 − C2)Ri1Ri2

]
(D.111)

A2
L = − g3

s

[
mg̃(C12 − C22 − C2)R2

i2 +mg̃(C11 − C12 + C1)R2
i1 −mq(C1 − C2)Ri1Ri2

]
(D.112)

A3
L = − g3

s

[
mg̃(C12 + C22 + C2)R2

i1 +mg̃(C11 + C12 + C1)R2
i2 −mqC1C2Ri1Ri2

]
(D.113)

A3
R = − g3

s

[
mg̃(C12 + C22 + C2)R2

i2 +mg̃(C11 + C12 + C1)R2
i1 −mqC1C2Ri1Ri2

]
(D.114)
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B1
L = −g3

s

[
mg̃(C0 + C1 + C2)R2

i2 −mqC0Ri1Ri2
]

(D.115)

B1
R = −g3

s

[
mg̃(C0 + C1 + C2)R2

i1 −mqC0Ri1Ri2
]

(D.116)

B2
L = −g3

s(C11 − C12 + C1)R2
i2 (D.117)

B2
R = −g3

s(C11 − C12 + C1)R2
i1 (D.118)

B3
L = −g3

s(C11 + C12 + C1)R2
i2 (D.119)

B3
R = −g3

s(C11 + C12 + C1)R2
i1 (D.120)

C1
L = −g3

s

[
mg̃(C0 + C1 + C2)R2

i2 −mqC0Ri1Ri2

]
(D.121)

C1
R = −g3

s

[
mg̃(C0 + C1 + C2)R2

i1 −mqC0Ri1Ri2

]
(D.122)

C2
L = −g3

s(C11 − C12 + C2)R2
i1 (D.123)

C2
R = −g3

s(C11 − C12 + C2)R2
i2 (D.124)

C3
L = −g3

s(C11 + C12 + C2)R2
i1 (D.125)

C3
R = −g3

s(C11 + C12 + C2)R2
i2 (D.126)

D1
L = −g3

s(C0 + C1 + C2)R2
i2 (D.127)

D1
R = −g3

s(C0 + C1 + C2)R2
i1 (D.128)

D2
L = D2

R = D3
L = D3

R (D.129)

Fcolor = 1
4 (D.130)
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p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
T b

rs(−i
√

2gs)(Ri1PR −Ri2PL) i(�q +mq)
q2 −m2

q

T c
tr(−i

√
2gs)(Ri1PL −Ri2PR)

T a
stgs(p1 + p3 − 2q)µ i

(p3 − q)2
i

(p1 − q)2

(D.131)

A1
L = g3

s(−4R2
i1)C00 (D.132)

A1
R = g3

s(−4R2
i2)C00 (D.133)

A2
L = g3

s

(
2mq(C2 − C1)Ri1Ri2 − 2mg̃(C11 − C12)R2

i2 − 2mg̃(C12 − C22)R2
i1

)
(D.134)

A2
R = g3

s

(
2mq(C2 − C1)Ri1Ri2 − 2mg̃(C11 − C12)R2

i1 − 2mg̃(C12 − C22)R2
i2

)
(D.135)

A3
L = g3

s

(
−2mq(C0 + C1 + C2)Ri1Ri2 − 2mg̃(C1 + C11 + C12)R2

i2 − 2mg̃(C2 + C12 + C22)R2
i1

)
(D.136)

A3
R = g3

s

(
−2mq(C0 + C1 + C2)Ri1Ri2 − 2mg̃(C1 + C11 + C12)R2

i1 − 2mg̃(C2 + C12 + C22)R2
i2

)
(D.137)

B1
L = B1

R = 0 (D.138)
B2

L = − g3
s2(C11 − C12)R2

i2 (D.139)
B2

R = − g3
s2(C11 − C12)R2

i1 (D.140)
B3

L = − g3
s2(C1 + C11 + C12)R2

i2 (D.141)
B3

R = − g3
s2(C1 + C11 + C12)R2

i1 (D.142)
C1

L = C1
R = 0 (D.143)

C2
L = − g3

s2(C12 − C22)R2
i1 (D.144)

C2
R = − g3

s2(C12 − C22)R2
i2 (D.145)

C3
L = − g3

s2(C2 + C12 + C22)R2
i1 (D.146)

C3
R = − g3

s2(C2 + C12 + C22)R2
i2 (D.147)

D1
L = D1

R = D2
L = D2

R = D3
L +D3

R = 0 (D.148)
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p2
q

p1

p3

µ, a

c

b

M = µ
4−D

2

∫
dDq

(2π)D
T b

sr(−i
√

2gs)(Ri1PL −Ri2PR) i(�q +mq)
q2 −m2

q

T c
rt(−i

√
2gs)(Ri1PR −Ri2PL)

T a
ts(−gs(p1 + p3 − 2q)µ) i
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D.3 Box diagrams

As the contributions of the box diagrams were computed via FeynCalc, here follows a list
of all box amplitudes without the declaration of any coefficients. Note that all those boxes
also have to be taken into account with exchanged final states. To regain the form of the
definition of Passarino-Veltman integrals, one can use:

µ2(4−D)
∫

dDq

(2π)D
= µ4−D i

4π2
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Ghost boxes
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