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A B S T R A C T

In this thesis, we introduced the phenomenological MSSM (pMSSM) as a model with
the LSP neutralino ̃𝜒0

1 as a WIMP dark matter candidate. We defined a pMSSM in
which the neutralino thermal relic density Ω ̃𝜒0

1
ℎ2 = 0.125 is in accordance with the

Planck 2018 results [7] and showed that a mostly bino-wino like neutralino can be the
(sole) darkmatter particle. As themain part of this thesis, the coannihilation of neutralino
with an NLSP gluino was calculated using four- and two-component spinor technique
and it was shown that two-component calculations are more preferable in chiral theories
such as SUSY. The results were then implemented in the programme DM@NLO, which
integrates the differential cross-sections and – in combination with other dark matter
software – calculates the mass parameters and Ω ̃𝜒0

1
regarding the specified pMSSM. This

thesis’ process contributes with 0.2 % to Ω ̃𝜒0
1
. We have also shown that, in addition to the

correct relic density, the chosen scenario – and thus, by extension, SUSY – is in agreement
with recent experimental data from ATLAS and CMS.

K U R Z FA S S U N G

In dieser Arbeit haben wir das phänomenologische MSSM (pMSSM) als ein Modell, mit
dem LSP-Neutralino ̃𝜒0

1 als WIMP-Kandidaten für dunkle Materie, eingeführt. Wir defi-
nierten ein pMSSM, in dem die thermische Reliktdichte des Neutralinos Ω ̃𝜒0

1
ℎ2 = 0.125

mit den Planck 2018 Ergebnissen [7] übereinstimmt und zeigten, dass ein hauptsächlich
Wino-Bino ähnliches Neutralino ein guter dunkleMaterie Kandidat ist. Als Hauptteil die-
ser Arbeit berechneten wir die Koannihilation des Neutralinos mit einem NLSP-Gluino
unter Verwendung der Vier- und Zweikomponenten-Spinor-Technik und zeigten die
Vorteile von Zweikomponenten-Rechnungen in chiralen Theorien wie SUSY. Die Ergeb-
nisse wurden dann in das Programm DM@NLO implementiert, welches die differentiellen
Wirkungsquerschnitte integriert und – in Kombination mit anderen Programmen für
dunkle Materie – die Massenparameter und Ω ̃𝜒0

1
für das spezifizierte pMSSM berechnet.

Der Prozess dieser Arbeit trägt mit 0, 2 % zu Ω ̃𝜒0
1
bei. Wir haben außerdem gezeigt, dass

neben der richtigen Reliktdichte das gewählte Szenario – und damit im weiteren Sinne
auch SUSY – in Übereinstimmung mit neuesten experimentellen Daten von ATLAS und
CMS steht.

iii
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N OTAT I O N A N D C O N V E N T I O N

Following, applied conventions and notations will be introduced.
The metric tensor 𝑔 of Minkowski space, as used here, is

𝑔𝜇𝜈 = 𝑔𝜇𝜈 = 𝜂𝜇𝜈𝐼4 = diag(+1, −1, −1, −1),

where 𝜂 is the Minkowski metric, 𝐼𝑁 denotes the 𝑁-dimensional unit matrix and 𝜇, 𝜈 ∈
{0, 1, 2, 3} are the four-dimensional spacetime vector indices1.

Contravariant four-vectors are denoted with raised indices and covariant four-vectors
with lowered indices, like

𝑥𝜇 = (𝑡; ⃗𝑥) 𝑝𝜇 = (𝐸; ⃗𝑝) 𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇 = (𝜕/𝜕𝑡; ∇⃗).

Through the complete thesis natural units will be used

ℏ = 𝑐 = 𝜀0 = 𝑘𝐵 = 1.

The totally antisymmetric pseudo-tensor is defined as

𝜀0123 = −𝜀0123 = +1.

Two useful abbreviation conventions are for four-component spinors

̄𝑢 ≡ 𝑢†𝛾0

and four four-momenta

/𝑝 ≡ 𝑝𝜇𝛾𝜇.

Hermitian sigma matrices 2 𝜎𝜇
𝑎�̇� and �̄�𝜇 ̇𝑎𝑏, with 𝑎, 𝑏 ∈ {1, 2}, as defined by [47, 49] are

𝜎0 = �̄�0 = ⎛⎜⎜
⎝

1 0
0 1

⎞⎟⎟
⎠

𝜎1 = −�̄�1 = ⎛⎜⎜
⎝

0 1
1 0

⎞⎟⎟
⎠

𝜎2 = −�̄�2 = ⎛⎜⎜
⎝

0 −𝑖
𝑖 0

⎞⎟⎟
⎠

𝜎3 = −�̄�3 = ⎛⎜⎜
⎝

1 0
0 −1

⎞⎟⎟
⎠
,

or equivalently

𝜎𝜇 = (𝐼2, �⃗�) and �̄�𝜇 = (𝐼2, −�⃗�),

where �⃗� are the Pauli matrices. The sigma matrices, and all other four vectors, can be
transformed between contra- and covariant vectors like usual

𝜎𝜇 = 𝑔𝜇𝜈𝜎𝜈 = (𝐼2, −�⃗�) and �̄�𝜇 = 𝑔𝜇𝜈�̄�𝜈 = (𝐼2, �⃗�).

1 Greek indices like 𝜇, 𝜈, 𝜌, 𝜎 run from 0 to 3 and Roman indices like 𝑖, 𝑗 from 1 to 3, unless otherwise stated.
2 See van der Waerden notation below.
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notation and convention vii

Generators of the (1
2 , 0) and (0, 1

2) Lorentz group are

𝜎𝜇𝜈 ≡
𝑖
4(𝜎𝜇�̄�𝜈 − 𝜎𝜈�̄�𝜇) �̄�𝜇𝜈 ≡

𝑖
4(�̄�𝜇𝜎𝜈 − �̄�𝜈𝜎𝜇).

With the definition of the sigma matrices the Dirac or gamma matrices can be defined

𝛾𝜇 = ⎛⎜⎜
⎝

𝜎𝜇

�̄�𝜇
⎞⎟⎟
⎠

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3.

Last but not least we employ the convention to (mostly) dismiss the “⋅” between
vectors or matrices.

van der waerden notation

We will now briefly introduce a notation that will be more convenient to use when one
needs to distinguish between left and right chirality of spinors. Before, we only had
four-component Dirac spinors

Ψ⃗ = ⎛⎜⎜
⎝

𝜓
𝜒

⎞⎟⎟
⎠

in the (1
2 , 1

2)3 representation of the Lorentz group O(1, 3), where the 𝜓-part transforms
according to the (1

2 , 0) representation (left chiral Weyl spinor) and 𝜒 according to the
(0, 1

2) representation (right chiral Weyl spinor)4.
Since one has to distinguish and keep in mind their respective transformative repre-

sentations, we will use the conventional notation of van der Waerden [47], which states
that 𝜒-like spinors have lower, undotted indices

𝜒 = ⎛⎜⎜
⎝

𝜒1

𝜒2

⎞⎟⎟
⎠

→ 𝜒𝑎

and left-chiral, 𝜓-like spinors have upper, dotted indices

𝜓 = ⎛⎜⎜
⎝

𝜓1̇

𝜓2̇
⎞⎟⎟
⎠

→ 𝜓 ̇𝑎,

in index notation and where 𝑎 ∈ {1, 2}.
Next to that we can, from now on closely following [8], define a 𝜒-like, left chiral,

spinor with upper indices via

⎛⎜⎜
⎝

𝜒1

𝜒2
⎞⎟⎟
⎠

≡ 𝑖𝜎2𝜒 = ⎛⎜⎜
⎝

𝜒2

−𝜒1

⎞⎟⎟
⎠
.

This allows us, with a second left chiral spinor 𝜉, to create a Lorentz invariant via

(𝑖𝜎2𝜒)𝑇𝜉 = 𝜒𝑎𝜉𝑎

3 ( 1
2 , 1

2 ) = ( 1
2 , 0) ⊗ (0, 1

2 )
4 Both representations are irreducible. More background can be found in e.g. [31, 45].



notation and convention viii

and identify this with the spin scalar-product analogue to the dot-product 𝑥𝜇𝑦𝜇 from
special relativity. We can introduce a metric tensor, the spinor metric 𝜖 via 5

𝜖𝑎𝑏 ≡ 𝑖𝜎𝑎𝑏
2 = ⎛⎜⎜

⎝

0 1
−1 0

⎞⎟⎟
⎠

and 𝜖𝑎𝑏 ≡ −𝑖𝜎2𝑎𝑏0 ⎛⎜⎜
⎝

0 −1
1 0

⎞⎟⎟
⎠
.

It follows that

𝜒𝑎 = 𝜖𝑎𝑏𝜒𝑏 and 𝜒𝑎 = 𝜖𝑎𝑏𝜒𝑏.

Nowwe can do the same for 𝜓-like spinors and get, with the same definition of the spinor
metric 𝜖 but with dotted indices, the same exact relations from above (but with dotted
indices). Then, to be able to abbreviate e.g. a spinor product like 𝜓 ̇𝑎𝜉 ̇𝑎 as 𝜓𝜉 without
loosing the information of their transforming representation, we define

𝜓 ̇𝑎 ≡ ̄𝜓 ̇𝑎.

Here we will introduce the convention from [24] that only descending undotted indices
and ascending dotted indices, like 𝑎

𝑎 and ̇𝑎
̇𝑎 , may be suppressed.

From here on one can see that the complex conjugate of a left chiral spinor tranforms
exactly like a right chiral spinor with lowered indices. With this and the abililty to raise
lowered indices via 𝜖, we can then define

̄𝜒 ̇𝑎 ≡ 𝜒∗
𝑎 and 𝜓𝑎 ≡ ̄𝜓 ̇𝑎∗.

As an enclosure we can write the Dirac spinor we started with in the new notation

Ψ⃗ = ⎛⎜⎜
⎝

̄𝜓 ̇𝑎

𝜒𝑎

⎞⎟⎟
⎠
,

following the convention from [8].

𝜒-type Spinor Convention

Wewill follow the usual convention to (mostly) only use 𝜒-type spinors to describe Dirac
spinors. Therefore, we define charge conjugation at two-component level by

𝜒𝑐 ≡ 𝑖𝜎2𝜒∗, 𝜓𝑐 ≡ −𝑖𝜎2𝜓∗

and can then write a general field of a particle 𝑝 as

Ψ⃗(𝑝) = ⎛⎜⎜
⎝

𝜒𝑐
�̄�

𝜒𝑝

⎞⎟⎟
⎠
,

where ̄𝑝 denotes the antiparticle of 𝑝. Particle fields can be named as 𝑝𝐿 = 𝜒𝑝 and ̄𝑝𝑐
𝐿 = 𝜒𝑐

�̄�.

5 Here the analogue would be the space time tensor 𝑔𝜇𝜈, but with the important difference that 𝜖 is antisym-
metric under interchange of the indices.



1 I N T R O D U C T I O N

The standardmodel (SM) is the most successful andmost fundamental theory of particle
physics to date. It yields great use by providing precise experimental predictions. Further
confirmation lies in the observations of the top-quark [3, 4] in 1995, the tau-neutrino [33]
in 2001 and the Higgs-boson [1] in 2012. Which were the remaining theorised, yet to be
experimentally determined, elementary particles in the SM.

But the SM is not perfect. Despite the great achievements there are some flaws and
concepts not understood. First of all, the SM inherits features that are added ad hoc.
Two of them being the hierarchy problem and the strong CP problem. Further, the SM
consists of 19 numerical parameters. But next to the need to experimentally measure
their values, their origin and relations are unknown. There are experimental deviations
that can not be explained by the SM as well. One prime example being the muon g-2-
experiment measuring the anomalous magnetic dipole moment of the muon with a
standard deviation 𝜎 of 4.2 [5] in comparison to the SM.

For the SM to be an inherently complete theory it needs to be extended. It fails to
explain gravity, which is described by general relativity. It further delivers no explanation
for the asymmetry of matter to antimatter (the missing baryon problem, solvable through
the ad hoc added strong CP breaking). Next to that the SM yields little to no answers to
what dark matter and dark energy are, but which, following cosmological observations
from the recent years, should contribute with circa 26% and 69% to the total energy in
the universe, respectively.

This thesis focuses on the last pointmade.Wewill introduce theminimal supersymmetric
standard model (MSSM) as a supersymmetry (SUSY) extension to the SM.1 This model
proposes newparticles next to the SM-oneswith one being the neutralino. The neutralino,
as a weakly interactive massive particle (WIMP), is a great candidate for dark matter. Main
component of this thesis is the analytical calculation of the cross-section of the neutralino-
gluino coannihilation (the gluino being another SUSY particle). This annihilation carries
a missing contribution to the relic density of the neutralino in the programme DM@NLO 2,
where the cross-section will be implemented and the relic density will be calculated
numerically.

w e p r o c e e d a s f o l l o w s : In Chapter 2 wewill start with a theoretical overview of
dark matter. There, evidence for dark matter and possible candidates with an emphasis
onWIMPs like the neutralino are listed. Further, we introduce the concept of relic density
and derive its calculation. After that SUSY is introduced and motivated in Chapter 3.
In this chapter, we will give an elementary but nonetheless technical introduction to
SUSY. Main goal of the introduction to the SUSY framework will be to craft the SUSY
Lagrangian. Last the MSSM and its most important aspects, such as the neutralino, with
a focus on why it is a good candidate for dark matter, 𝑅-parity and soft SUSY breaking
are described. After this theoretical introduction to the main concepts needed for this
thesis, the actual calculations will be done. In Chapter 4 we compute the cross-section

1 The MSSM and more general SUSY allows for a lot of applications in theories beyond the SM. Some of them
will be shortly stated next to the introduction and motivation of SUSY.

2 See Appendix B.

1



introduction 2

for the neutralino-gluino coannihilation in the usual four-component or Dirac spinor
presentation. The next chapter, Chapter 5, features the same calculation but with a two-
component spinor technique, which is introduced there as well. The last part of this
thesis is the numerical analysis of the found results for the cross-section in the last two
chapters. This and the calculation of the relic density – via integration of the Boltzmann
equation – for the neutralino will be done in Chapter 6, where we implement the process
in DM@NLO. There we will get information about the relevance of this specific annihilation
process and discuss scenarios inside of the MSSM.

The programme DM@NLO and the software chain including other dark matter software
is described in Appendix B. In Appendix C we summarize – for the sake of clarity – the
Feynman rules and in Appendix D the relations useful for the cross-section calculations
from Chapter 4 and Chapter 5.



2 DA R K M AT T E R

In this first chapter, we will briefly introduce the idea behind dark matter, why we need
it and state answers to what exactly dark matter could be. For this chapter is mainly
meant to be a short primer with the main concepts and, therefore, will often direct to
sources going into more detail.

We already introduced dark matter with the fact that baryonic matter only accounts
for a very small amount of total energy in the Universe. The Planck 2018 results [7] from
the Planck collaboration yield

Ω𝐷𝑀ℎ2 = 0.120 ± 0.001 and Ω𝐵𝑀ℎ2 = 0.0224 ± 0.0001 (2.1)

for the density of dark matter and baryonic matter in the Universe today, respectively. ℎ
is the Hubble parameter. This lets us conclude that most of matter in the Universe is dark
matter. The astonishing fact is, we can not see or interact with it directly. Therefore, trying
to answer the question of what dark matter is, is a very theoretical one. Experiments
only provide lower bounds which must be adhered to by theories wanting to solve the
dark matter problem. In the next Chapter 3 we will introduce the MSSM, which is one
possible theoretical framework with a possible candidate.

2.1 evidence

The first examination of gravitational anomaly can be contributed to Fritz Zwicky in
1933. While examining the Coma galaxy cluster he calculated the gravitational attraction
from the observed rotational velocities from said cluster. By calculating the attraction
again, but with luminous matter only, he obtained an around 400 times smaller value
and, thus, concluded there has to be some kind of dark matter. [50]

In the following century, muchmore pieces of evidencewere to come. On galactic-scale,
it was and is done by the observation of rotation curves of galaxies, one example work
being [15]. On galaxy-cluster-scale it is done by calculating the real mass of clusters via
for example the virial theorem and comparing it to its “luminous mass”, following the
procedure from Zwicky. One more recent example for this procedure is [13]. The last
scale, the cosmological scale, which promises to deliver not only local densities but the
total amount of dark matter in the Universe, can be examined by analysing the Cosmic
Microwave Background (CMB). One often recited data set is delivered by theWMAP[6].
For a richer and more detailed summary of evidential approaches consult Chapter 2 in
[17].

The Planck collaboration – mentioned above – took the most promising results from all
these different approaches, most recently 2018, and combined them to get the distribution
with confidence limits stated in (2.1).What should be clear by now is that the evidence for
dark matter is compelling and astonishingly mostly coherent between all astrophysical
scales.

3
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2.2 candidates

With clear proof of matter missing in the Universe, the next step is to find candidates that
can be the dark matter particle. There are many theories of many different candidates.
For we cannot list all of them, we will introduce only two candidates and refer once more
to [17], the particle dark matter report from Gianfranco Bertone et al., for a more complete
enumeration.

One of the first and most promising candidates was the SM neutrino. The neutrino
only interacts via the weak-interaction and via gravity. Therefore, it is a dark particle – as
it should be for a dark matter candidate. A strong argument in favour of the neutrino was
the fact that its existence is known compared to many hypothetical candidates. But recent
updates to the neutrino’s mass via CMB and geometrical analysis yield ∑ 𝑚𝜈 < 0.2 eV
as an upper bound (see e.g. [17]). A simple calculation from [51]

Ω𝜈ℎ2 =
∑ 𝑚𝜈

93.14 eV ≲ 0.002, (2.2)

derived by taking the relative contribution of neutrino density 𝜌𝜈 to the critical density
𝜌𝑐 – needed to halt the Universe’s expansion, shows that neutralinos are simply not
abundant enough to be the main contribution to dark matter. As a result, we need to
find other particles to fully explain dark matter.

Today the most studied dark matter candidates are WIMPs. The next section will be
fully devoted to their description.

2.3 wimps

Weakly Interactive Massive Particles (WIMPs) are hypothetical particles that only interact
via the weak force and via gravity – like the neutrino – but are supposed to have masses
in the range of tenth GeV to several TeV. Most WIMPs can, in their theoretical model, be
adjusted to exactly the right constant density, the so-called relic density, to be dark matter.
Further, they can be detected in many ways and deliver doable calculations of their relic
density.

WIMPs are categorized as cold matter and are so-called thermal relics. They are assumed
to have been in local thermodynamic equilibrium at the early stages of the Universe. The
equilibrium abundance of a WIMP depends on the ratio of its mass to temperature relative
to some density. This relative density is often chosen to be the entropy density 𝑠 ∝ 𝑇3.
Therefore, we can define a new variable, the comoving number density

𝑌 ≡
𝑛𝑋
𝑠 , (2.3)

where 𝑛𝑋 corresponds to the number density of theWIMPwithmass 𝑚𝑋. A particle in the
early Universe will follow its equilibrium abundance if its interaction rate is sufficiently
high to keep it in thermodynamic equilibrium. Roughly one can say that the interaction
rate needs to be greater than the expansion rate of the Universe 𝐻. If not, the particle can
not stay in equilibrium and it decouples, 𝑌 will be constant from thereon. This process is
called freeze-out. An illustration of this process can be seen in Figure 2.1.

One most promising candidate for a WIMP is the SUSY particle neutralino. We will
come back to the neutralino in the next chapter, where we will introduce SUSY in general.
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Figure 2.1: The comoving number density 𝑌 (left) and resulting thermal relic density Ω𝑋 (right)
of a 100GeV, P-wave annihilating dark matter particle as a function of temperature
𝑇 (bottom) and time 𝑡 (top). The solid contour is for an annihilation cross-section
that yields the correct relic density, and the shaded regions are for cross-sections that
differ by 10, 102, and 103 from this value. The dashed contour is the number density
of a particle that remains in thermal equilibrium. [27]

2.3.1 Relic Density

The thermal relic density Ω𝑋 of the WIMP 𝑋, as seen in Figure 2.1, is the value one needs
to find for a particle 𝑋 to be able to make a statement whether 𝑋 is dark matter or if 𝑋 is
at least carrying a substantial contribution to (2.1). Therefore, in this section, we will
shortly state a rough analysis and derivation of Ω𝑋.

We start with the Boltzmann equation and manipulate it to be an equation for the
number density 𝑛 of a particle 1

𝑑𝑛
𝑑𝑡 = −3𝐻𝑛 − ⟨𝜎𝐴𝑣⟩ (𝑛2 − 𝑛2

𝑒𝑞) , (2.4)

where 𝜎𝐴 is the total annihilation cross-section, 𝑣 is the velocity and the brackets ⟨⋯ ⟩
denote the thermal averaged value of some quantity. 𝑛𝑒𝑞 is the number density at thermal
equilibrium, which under the assumption of a heavy particle yields in the Maxwell-
Boltzmann approximation

𝑛𝑒𝑞 ∼ (
𝑚𝑋𝑇
2𝜋 )

3/2
𝑒−𝑚𝑋/𝑇. (2.5)

Usually one calculates (2.4) numerically. We will in the following introduce some ap-
proximations so that we get analytical solvable expressions.

Now we can make use of the comoving number density 𝑌 as defined in (2.3) and
exploit the conservation of entropy per comoving volume 𝑠𝑅3 to get 2

𝑠�̇� = ̇𝑛 + 3𝐻𝑛. (2.6)

1 Consult [34] for a detailed derivation. From here on we will for convenience neglect the 𝑋 in 𝑛𝑋.
2 This equivalence can be easily checked by remembering that 𝐻=�̇�/𝑅 and the fact that 𝑛 ∝ 1/𝑅3, with 𝑅

the scale factor of the Universe. See e.g. [34].
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With that and substituting (2.3) in (2.4) we get

𝑠�̇� = −⟨𝜎𝐴𝑣⟩𝑠2 (𝑌2 − 𝑌2
𝑒𝑞) , (2.7)

where 𝑌𝑒𝑞 = 𝑛𝑒𝑞/𝑠. From here on we will only sketch the remaining procedure as
described in [34]. The idea is to expand ⟨𝜎𝐴𝑣⟩ in terms of 𝑣2 and introduce a new
variable Δ = 𝑌 − 𝑌𝑒𝑞. Then (2.7) can be solved analytically in the two extreme regions
where 𝑇 ≪ 𝑇𝑓 and 𝑇 ≫ 𝑇𝑓, with 𝑇𝑓 being the freeze-out temperature of the specific
particle. Integrating the latter one of these equations from 𝑇𝑓 to 𝑇0, the temperatur today,
gives a result for the comoving number density for today, namely 𝑌0. Then we can use
𝑌0 to calculate the density of particle 𝑋 via

𝜌𝑋 = 𝑚𝑋𝑛0 = 𝑚𝑋𝑠0𝑌0, (2.8)

where 𝑠0 is the entropy density for 𝑇 = 𝑇0. Using the definition of Ω and inserting 𝜌𝑋
then yields

Ω𝑋ℎ2 =
𝜌𝑋
𝜌𝑐

∼
1

⟨𝜎𝐴𝑣⟩ , (2.9)

where in the last step we made an order-of-magnitude estimate using an approximation
from [32]. And note that the thermal relic density is inversely proportional to the
annihilation cross-section. If 𝑚𝑋 is the only mass scale then we can write the cross-
section as 𝜎𝐴𝑣 ∝ 𝑚−2

𝑋 , see [27], and can construct the graph shown in Figure 2.1 for
𝑚𝑋 = 100GeV.

Last it is needed to state that till now we only considered annihilation but no coan-
nihilation processes for the WIMP. As it was shown in [28] the calculation of the relic
abundance fails for other particles having masses close to 𝑚𝑋. Then coannihilation of 𝑋
with that particle can contribute substantially to the relic density. The main difference is
now that we need to include all possible coannihilations and (2.4) changes to

𝑑𝑛
𝑑𝑡 = −3𝐻𝑛 −

𝑁
∑

𝑖,𝑗=1
⟨𝜎𝑖𝑗𝑣𝑖𝑗⟩(𝑛𝑖𝑛𝑗 − 𝑛𝑒𝑞

𝑖 𝑛𝑒𝑞
𝑗 ) (2.10)

for 𝑖, 𝑗 = {1, ⋯ , 𝑁} particles. Following that, one needs to do different approximations
or numerical computations that will not be discussed here, but can be looked up in e.g.
[17]. Nevertheless, one can achieve an expression dependant on the cross-section, like
shown prior to (2.9). Nowadays all numerical codes, such as MicrOMEGAs [16], include
coannihilations.

Concluding we can say that the goal will be to calculate the cross-sections of annihi-
lation and coannihilation processes of WIMP 𝑋 (with some partner particle 𝑃 for the
coannihilations). The effective cross-section – given by [14] – is

𝜎eff =
𝑔2

𝑋
𝑔2
eff

[𝜎𝑋𝑋 + 2𝜎𝑋 𝑃
𝑔𝑃
𝑔𝑋

(1 + Δ)3/2𝑒−𝑥Δ

+ 𝜎𝑃𝑃
𝑔2

𝑃
𝑔2

𝑋
(1 + Δ)3𝑒−2𝑥Δ], (2.11)

where 𝑥 = 𝑚𝑋/𝑇 and Δ = (𝑚𝑃 − 𝑚𝑋)/𝑚𝑋 denotes the mass splitting between the masses
of WIMP and coannihilation partner. 𝑔𝑋 and 𝑔𝑃 are the numbers of degrees of freedom
of 𝑋 and 𝑃, respectively. The effective coupling is given by

𝑔eff = 𝑔𝑋 + 𝑔𝑃(1 + Δ)3/2 exp(−𝑥Δ). (2.12)

By assuming that 𝑋 and 𝑃 are in chemical equilibrium the problem reduces to solving a
single Boltzmann equation via the effective cross-section (2.11).
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2.3.2 Detection

Last we will very briefly talk about the detection of WIMPs. As mentioned above, it
is highly recommended to consult [17], alternatively Section 2.3 in [25] gives a good
overview too.

thermal freeze-out
indirect detection

di
re
ct

de
te
ct
io
n 𝑆𝑀

𝑋 𝑆𝑀

𝑋

collider

Figure 2.2: The different ways to search for WIMP dark matter candidates demonstrated by a
scattering of WIMP 𝑋 with SM particles.

There are three different channels for the detection of darkmatter, as listed in Figure 2.2.
We will focus on WIMPs that interact not only gravitational with SM particles:

• Direct detection tries to measure the interactions between the WIMP candidate 𝑋
and a SM nucleus. Two prime examples being XENON[10] and EDELWEISS [11].

• Indirect detection searches for SM final states of 𝑋, 𝑋 → 𝑆𝑀, 𝑆𝑀 annihilations and
coannihilations mostly from massive stellar areas such as centres of galaxies. This
is the process that happened at the freeze-out, as mentioned above. IceCube [2]
and Super-Kamiokande [48] detect neutralinos in hindsight to them being viable
end-products from dark matter annihilations.

• Collider rely on scattering two SM particles and measuring anomalies like missing
energy, which lead to conclude there are 𝑋 final states not detected.

This thesis’ process is one possible freeze-out (or indirect detection) coannihilation of
the neutralino as the WIMP with another theoretical particle, the so-called gluino. The
next chapter is devoted to the theoretical introduction of the neutralino (and gluino)
in SUSY. After that, in Chapter 6 we will come back to the discussion about the relic
density, where we actually calculate the cross-section and discuss the process and the
neutralino as a dark matter candidate.



3 S U P E R S Y M M E T R Y

The framework in which we will be working is supersymmetry (SUSY). As we will see,
SUSY (with some regulations) yields a very promising candidate for a WIMP and dark
matter, the neutralino. In this chapter, SUSY is introduced, and a phenomenological
framework with neutralino dark matter is crafted.

3.1 motivation

We start by giving hints on the motivation of SUSY. For this was done many times we
restrict this section to two brief examples. But we refer to [38] for a theoretical and more
complete overview.

The most important motivation for SUSY in our case is the possibility for a great dark
matter candidate. We will come back to this discussion at the end of this chapter when
we have introduced a special SUSY theory, the MSSM, in which the neutralino actually
fulfils the requirements of being a WIMP.

Next to the two following points, there are several more quantitative indications, such
as the SM being unable to restrict the Higgs mass, the possibility of SUSY extensions
allowing for unification of the three coupling constants and, therefore, hoping for a
grand unified theory (GUT) and SUSY being able to explain electroweak symmetry breaking
(EWSB).

3.1.1 The fine-tuning Problem

The Higgs self-interaction potential is

𝑉 = −𝜇2𝜙†𝜙 +
𝜆
4 (𝜙†𝜙)2, (3.1)

with 𝜙 = (𝜙+, 𝜙0) the SU(2) doublet “Higgs” field and 𝜇2 > 0, 𝜆 > 0 the interaction
strengths. 𝜇 is

𝜇2 = 𝜇2
tree − 𝜆Λ2 (3.2)

a combination of a tree-level value 𝜇tree and a one-loop correction term that is dependant
on the energy cut-off Λ, which depicts the upper loop-integration bound. Λ can theoreti-
cally go up to infinity because of the SM being renormizable. But then we encounter a
problem: the vacuum expectation value of the neutral Higgs field VEV = ⟨0|𝜙0|0⟩ is in the
order of hundreds of GeV and the mass of the Higgs boson is proportional to 𝜇 (and,
therefore, all masses in the SM are). If now Λ grows to very large GeV scales, we can
only save physics by fine-tuning. This means we need an equally huge value for 𝜇tree so
that in (3.2) they cancel nearly completely but to a rest, which is physically acceptable.

This is in fact no “natural” behaviour. This problem can be solved by SUSY in the way
that we will get new particles and, hence, new loop-interactions for the Higgs particle
that can help with cancelling the divergence given by Λ. In Figure 3.1 this is depicted
with two new scalars 𝑆 and 𝑆′ that couple to the Higgs boson.

8
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𝐻0 𝐻0

𝑆, 𝑆′

Figure 3.1: Self-energy Higgs graph contribution with SUSY-scalars 𝑆, 𝑆′.

Here it has to be stated that this motivation for SUSY is becoming less and less im-
portant. Because of new searches not finding evidence for SUSY particles the masses of
the possible interaction superpartners are gaining lower bounds in the range of several
hundred GeV to one thousand GeV (see PDG[51]). By masses going higher than the
VEV value the correction of SUSY grows smaller. Up to a point, at which one again needs
to have fine-tuning of significant scale.

3.1.2 Theoretical Considerations

We will state a consideration, following Section 1.3 in [8], that SUSY is the most general
extension of the Poincaré group underlying the SM and, hence, of great theoretical
relevance.1

All SM symmetry charges 𝑄, such as the electromagnetic or the isospin charge, are
Lorentz scalars. Therefore, they do not alter a state’s spin 𝑗

𝑄|𝑗⟩ = |𝑗⟩. (3.3)

But we know that the generators of the Poincaré group, the momentum operator 𝑃𝜇
that generates translations and the generator of rotations and boosts 𝑀𝜇𝜈, behave like
space-time displacements. So are there any spin altering (non Lorentz scalar), conserved
operators? The Coleman-Mandula-Theorem states – very roughly – that there are no al-
lowed non-trivial 2 conserved quantities, apart from the generators of the Poincaré group.
Luckily it turns out that charges which transform spinor-like under Lorentz transforma-
tion are not actually excluded. By defining such a charge as 𝑄𝑎 with spinor component 𝑎
one can see that it will change the spin

𝑄𝑎|𝑗⟩ = |𝑗 ± 1
2⟩. (3.4)

So the newfound operator can be used to transform between bosonic and fermionic
particles.3

The important next step is to now create a new super-algebra describing our system.
𝑄𝑎, as a conserved quantity, has to commute with the Hamilton operator

[𝑄𝑎, 𝐻] = 0 and [{𝑄𝑎, 𝑄𝑏}, 𝐻] = 0. (3.5)

Furthermore, the anticommutator {𝑄𝑎, 𝑄𝑏} has to be conserved too. By seeing that said
commutator inherits 3 degrees of freedom we can say that it transforms like a spin-1

1 It is highly recommended to consult Part II of [45] for a good, comprehensive introduction to the Lorentz
and Poincaré group and, in later chapters, for an introduction of quantum field theory (QFT) and the SM
building upon these.

2 Not Lorentz scalar.
3 Far more groundbreaking than this is the fact that (3.4) predicts new superpartners to the known SM

particles with the same characteristics but with different spin! This means, if SUSY in any form turns out to
be physically true, we only know half of the particles in the universe. Furthermore, the new superparticles
can be useful as we will see with the neutralino as a dark matter candidate. This discussion of superpartner
particles will be continued in the MSSM in Section 3.3.
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object. Following the Coleman-Mandula-Theorem, the only conserved four-vector that
can describe this new symmetric object is 𝑃𝜇. Therefore,

{𝑄𝑎, 𝑄𝑏} ∼ 𝑃𝜇, (3.6)

where the “∼” states constants and proper matrices for contracting the “𝜇” are missing.
(3.6) now tells us that we have a connection and interaction between space-time

symmetry and internal symmetries.4 We have successfully extended the Poincaré algebra
and – more strikingly – space-time itself by now being able to take the square root of
derivatives in the form of 𝑄𝑎. In Section 3.2.2 we will extend space-time by the newfound
fermionic degrees of freedom in terms of the so called superspace.

3.2 framework

We will now start to build the framework for SUSY, the main goal being the construction
of the SUSY Lagrangian ℒSUSY. For a more sophisticated review of SUSY see e.g. the
lecture notes by Quevedo [37].

3.2.1 Algebra

The super-algebra we partially derived in Section 3.1.2 can be completed to be 5

[𝑃𝜇, 𝑄𝑎] = 0 (3.7)

[𝑃𝜇, �̄��̇�] = 0 (3.8)
[𝑀𝜇𝜈, 𝑄𝑎] = −(𝜎𝜇𝜈) 𝑏

𝑎 𝑄𝑏 (3.9)

[𝑀𝜇𝜈, �̄� ̇𝑎] = 𝑖(�̄�𝜇𝜈) ̇𝑎
�̇��̄��̇� (3.10)

and

{𝑄𝑎, �̄��̇�} = (𝜎𝜇𝜈)𝑎�̇�𝑃𝜇 (3.11)

with the generators of (1
2 , 0) and (0, 1

2) Lorentz groups 𝜎𝜇𝜈 being the missing matrix
from (3.6).

One important consequence originates from (3.7) and (3.8), namely that 𝑄𝑎 commutes
with 𝑃2. This means physically that all particles within one irreducible representation
of the superalgebra, a supermultiplet, have to have the same mass. This, however, can
not be true for the supersymmetric partners with the same mass as the SM particles
should have been already experimentally discovered by now. This is a hint at the need
for symmetry-breaking of SUSY. This, in hindsight on its need to adjust ℒSUSY, will be
discussed in Section 3.3.1.

3.2.2 Superfields

To be able to build ℒSUSY we need all possible field interactions for our supermultiplets.
These, so called superfields, which not only are dependant on 𝑥𝜇 but also on new fermionic

4 See the Haag-Łopuszański-Sohnius-Theorem for more detail.
5 Taken from [18]. The algebra was originally derived following the Haag-Łopuszański-Sohnius-Theorem.
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degrees, will be constructed in the superspace-formalism, which will now be introduced
as a first step.

Remember the well-known unitary space-time translation operator 𝑈(𝑥) = exp(−𝑖𝑥𝑃)
with generator 𝑃𝜇. Analogue to 𝑃𝜇 we should think of 𝑄 as generating shifts in the spinor
argument. Like 𝑥𝑃 we can define the new fermionic degrees of freedom by 𝜃𝑄 and 𝜃∗𝑄†,
namely 𝜃 and 𝜃∗. This will now allow us to build a (unitary) SUSY transformation

𝑈(𝑥, 𝜃, 𝜃∗) ≡ e𝑖𝑥𝑃e𝑖𝜃𝑄e𝑖 ̄𝜃�̄�, (3.12)

which achieves space-time and spinorial translations. If a field 𝜙(0) transforms under
(3.12) we can define it as a superfield Φ that obeys

Φ(𝑥, 𝜃, 𝜃∗) = 𝑈(𝑥, 𝜃, 𝜃∗)Φ(0)𝑈−1(𝑥, 𝜃, 𝜃∗). (3.13)

Consider now

𝑈(𝑦, 𝜉 , 𝜉∗)𝑈(𝑥, 𝜃, 𝜃∗), (3.14)

which should induce transformations in space-time as well as in 𝜃, 𝜃∗, just like 𝑈(𝑦)𝑈(𝑥)
induces the shift 𝑥 → 𝑦 in only 𝑥𝜇. (3.14) can be evaluated using the famous Baker-
Campbell-Hausdorff-Identity (see [8]) and we can identify the induced transformations
as

0 → 𝜃 → 𝜃∗ + 𝜉∗ (3.15)
0 → 𝜃∗ → 𝜃∗ + 𝜉∗ (3.16)

0 → 𝑥𝜇 → 𝑥𝜇 + 𝑦𝜇 − 𝑖𝜃𝑎(𝜎𝜇)𝑎𝑏 ̄𝜉 �̇�, (3.17)

where in the last equation we see the, already phenomenological mentioned, fact of
interaction between internal (spinorial) symmetries and space-time.

We can write 𝑄 in superspace representation via

𝑄𝑎 = −𝑖
𝜕

𝜕𝜃𝑎
− 𝜎𝜇

𝑎�̇�
̄𝜃�̇�𝜕𝜇 (3.18)

�̄� ̇𝑎 = 𝑖
𝜕

𝜕 ̄𝜃 ̇𝑎 + 𝜃𝑏𝜎𝜇
𝑏 ̇𝑎𝜕𝜇, (3.19)

which can be achieved by considering infinitesimal displacements.6 As a small sanity
check one can insert the new 𝑄’s into (3.7)-(3.11) and see that it indeed does satisfy the
superalgebra.

Let us now consider a superfield 𝐹. In general 𝐹 can be highly reducible. But to identify
the supermultiplets we need irreducible representations. Therefore, we need to constrain
𝐹. This can be done by defining – very similiar to 𝑄 – new covariant chiral derivatives

𝒟𝑎 ≡
𝜕

𝜕𝜃𝑎
+ 𝑖𝜎𝜇

𝑎�̇�
̄𝜃�̇�𝜕𝜇 (3.20)

�̄� ̇𝑎 ≡ −
𝜕

𝜕 ̄𝜃 ̇𝑎 + 𝑖𝜃𝑏𝜎𝜇
𝑏 ̇𝑎𝜕𝜇, (3.21)

which do satisfy the SUSY algebra (3.7)-(3.11) and are, hence, valid SUSY transforma-
tions. Then, possible constraints on 𝐹 can be choosen to be

�̄� ̇𝑎𝐹 = 0 (3.22)
𝒟𝑎𝐹† = 0 (3.23)
𝐹 = 𝐹†, (3.24)

6 See for derivation Section 6.2 in [8]. Recall the analogue procedure for e.g. the angular momentum operator.
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where, if 𝐹 obeys them, 𝐹 is a supermultiplet.
(3.22)-(3.24) now tell us that we should have three different behaving superfields. A

superfield transforming like (3.22) is called a left chiral superfield Φ(𝑥, 𝜃) and a superfield
transforming like (3.23) is called a right chiral superfield Φ†(𝑥, 𝜃∗). Because of the fields
only depending on either 𝜃 or 𝜃∗ they contain only 𝜒 or 𝜓-like spinors, respectively, and,
therefore, we are right to call them left or right fields. The most general left and right
chiral superfields can, in terms of their expansion in 𝜃 or 𝜃∗, be written as 7

Φ(𝑥, 𝜃) = 𝜙(𝑥) + 𝜃𝜒(𝑥) +
1
2𝜃𝜃𝐹(𝑥) (3.25)

Φ†(𝑥, 𝜃∗) = 𝜙∗(𝑥) + 𝜃∗𝜓(𝑥) +
1
2𝜃𝜃𝐹∗(𝑥), (3.26)

where we have included three component fields, namely a complex scalar 𝜙(𝑥) trans-
forming in the (0, 0) representation, a complex (left or right) two-spinor 𝜒(𝑥) or 𝜓(𝑥)
transforming in the (1

2 , 0) or (0, 1
2) representation and again a complex scalar, the auxil-

iary field 𝐹(𝑥). This choice is mandatory to ensure Φ transforms like a Lorentz scalar and
we, thus, have a superfield consisting of fermionic and bosonic fields.8

The SUSY transformation of these component fields, exemplary for the left chiral field,
can be evaluated to be 9

𝛿𝜖𝜙 ∼ 𝜖𝜒 (3.27)
𝛿𝜖𝜓 ∼ 𝑖𝜕𝜇𝜙𝜎𝜇𝜖∗ − 𝐹𝜖 (3.28)
𝛿𝜖𝐹 ∼ 𝑖𝜕𝜇𝜓𝜎𝜇𝜖∗ (3.29)

and we, as a result, have a transformation between fermionic and bosonic components.
One more thing to notice is that (3.29) states 𝐹 transforms like a total derivative and is,
hence, Lorentz invariant. The 𝐹 containing, so called 𝐹-term, of Φ is, therefore, the part
we later need for constructing the (Lorentz invariant) Lagrangians.

Before we start to construct the SUSY Lagrangian the last possible superfield as defined
by (3.24) has to be discussed. These vector superfields are dependant on 𝜃 and 𝜃∗. Similiar
to Φ a general vector superfield 𝑉 can be found (see e.g. [38]). 𝑉 has double the terms
of the chiral superfields. We can, however, by postulating gauge invariance and taking a
suited supergauge, reduce the free component fields to three again. One possible choice
is the Wess-Zumino gauge. Then, the general vector field 𝑉 can be found to be

𝑉WZ(𝑥, 𝜃, 𝜃∗) = 𝜃𝜎𝜇𝜃∗𝐴𝜇(𝑥) + 𝜃𝜃𝜃∗𝜆∗(𝑥) +
1
4𝜃𝜃𝜃𝜃𝐷(𝑥), (3.30)

with the real vectorfield 𝐴𝜇(𝑥), its fermionic superpartner 𝜆(𝑥) and an auxiliary scalar
field 𝐷(𝑥). Via the transformation behaviour of 𝐷

𝛿𝜖𝐷 ∼ 𝑖𝜕𝜇(𝜆𝜎𝜇𝜖∗ + 𝜆∗�̄�𝜇𝜖) (3.31)

we can again see that the auxiliary field 𝐷 is Lorentz invariant and, therefore, the 𝐷-term
of 𝑉 is the important part to build Lagrangians.

7 There can not be higher orders of 𝜃, because of their fermionic nature, which states that 𝜃2
𝑎 = 0. The factor

of 1/2 is convention.
8 In other words, we already have the description of an SM particle and its superpartner in the form of

superfields, where they are described by the 𝜙 and 𝜒 fields.
9 The “∼” denotes the lack of conventional prefactors.
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3.2.3 Lagrangians

To now build the SUSY Lagrangian, we need to consider interactions of all superfields.
We begin with only chiral superfields and will then adapt the chiral Lagrangian to
include vector superfields in non-abelian supermultiplets.

Before we start counting all Φ interactions we can reduce this number by a large
margin. This can be done by remembering that the Lagrangian has to have dimension of
𝐷 = 4. Because the dimensions of the component fields 𝜙, 𝜒 and 𝐹 are set by (3.25), we
only have four possibilities to combine Φ superfields while remaining four-dimensional
(See [37]). The first possibility, with only showing the significant 𝐹-term, is 10

Φ𝑖Φ𝑗∣𝐹 = 𝜙𝑖𝐹𝑗 + 𝜙𝑗𝐹𝑖 − 𝜒𝑖𝜒𝑗, (3.32)

the product of two left chiral superfields, where 𝑖 and 𝑗 denote different types of super-
fields. The second one is the three-product, namely

Φ𝑖Φ𝑗Φ𝑘∣
𝐹

=
cyclic

∑
𝑖,𝑗,𝑘

𝜙𝑖𝜙𝑗𝐹𝑘 −
cyclic

∑
𝑖,𝑗,𝑘

𝜒𝑖𝜒𝑗𝜙𝑘. (3.33)

With the last missing chiral product being the trivial single Φ𝑖, we can now define the so
called superpotential

𝒲 ≡ ℎ𝑖Φ𝑖 +
1
2𝑀𝑖𝑗Φ𝑖Φ𝑗 +

1
6𝑦𝑖𝑗𝑘Φ𝑖Φ𝑗Φ𝑘, (3.34)

which consists of all chiral superfield interactions mentioned before plus some coupling
constants to supress the indices.

The last possibility is the product of 𝜒 and 𝜓-type superfields

Φ†Φ∣
𝐷

= 𝐹𝐹∗ − 𝜙𝜕𝜇𝜕𝜇𝜙∗ − 𝑖𝜓𝜎𝜇𝜕𝜇𝜒, (3.35)

which behaves like a vector superfield and we, therefore, have to consider only the
𝐷-term.

With the superpotential (3.34) and (3.35) we can then write a first SUSY invariant
Lagrangian describing chiral interactions

ℒchiral = Φ†
𝑖 Φ𝑖∣𝐷 + [𝒲 + h.c.]

𝐹
(3.36)

=
𝑖
2𝜕𝜇𝜙∗

𝑖 𝜕𝜇𝜙𝑖 + ̄𝜒𝑖𝑖�̄�𝜇𝜕𝜇𝜒𝑖 + 𝐹∗
𝑖 𝐹𝑖 +

𝜕𝒲
𝜕𝜙𝑖

𝐹𝑖 −
1
2

𝜕2𝒲
𝜕𝜙𝑖𝜕𝜙𝑗

𝜒𝑖𝜒𝑗 + h.c., (3.37)

where the second equation is just the Lagrangian written out in component fields. There
we can, in the first two terms, identify the Klein-Gordon equation and the Weyl equation,
describing massless scalars and spinors. Furthermore, 𝐹(𝑥) can – via the equations of
motion – be expressed in terms of 𝜙(𝑥), so that we have a supermultiplet only consisting
of bosonic degrees of freedom given by 𝜙 and fermionic degrees of freedom given by 𝜒.

We now have to include missing vector superfields, that is we need to consider gauge
interactions. For this part, we will follow a shortened procedure taken from [38] for
non-abelian gauge supermultiplets.11

10 From now on omitting “(𝑥)” from component fields.
11 Non-abelian means that the generators of the gauge group do not commute. We can afterwards re-establish

the abelian case by letting the generators commute again.
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A possible general gauge transformation acting on a left and right chiral superfield is

Φ𝑖
′ ≡ exp(−𝑖Λ̂𝑖𝑗)Φ𝑗 (3.38)

Φ†
𝑖
′ ≡ Φ𝑗 exp(−𝑖Λ̂†

𝑗𝑖), (3.39)

with Λ̂𝑖𝑗 = 2𝑔(Λ𝑎(𝑥, 𝜃)𝑇𝑎)𝑖𝑗 and 𝑖, 𝑗 now indexing superfield (particle) type and gauge
group. The gauge group generator 𝑇 and the chiral superfield Λ have to obey

�̄� ̇𝑎Λ̂ = 0 (3.40)
𝒟𝑎Λ̂† = 0 (3.41)

so that the chirality does not change under the gauge transformation. The gauge group
transformation for a vector superfield 𝑉 is

e𝑉′ = e−𝑖Λ†e𝑉e𝑖Λ (3.42)

e−𝑉′ = e−𝑖Λe𝑉e𝑖Λ†. (3.43)

Further, we need to include the supersymmetric analogue to the field strength tensor
𝐹𝜇𝜈 and, therefore, an analogue to the Maxwell-term from quantum electro dynamics
(QED). This can be achieved by defining the supersymmetric field strength as

𝑊𝑎 = −
1
4𝒟𝒟e−𝑉𝒟𝑎e𝑉 (3.44)

�̄� ̇𝑎 = −
1
4𝒟𝒟e𝑉�̄� ̇𝑎e−𝑉. (3.45)

So that the Maxwell-term analogue would be 1/16(𝑊𝑎𝑊𝑎 + �̄� ̇𝑎�̄� ̇𝑎), which transforms
as left- and right-handed superfields and we, thus, need to consider only the 𝐹-term for
the Lagrangian.

With that and the considerations from before we can finally write down a SUSY
Lagrangian including chiral and gauge supermultiplets

ℒ ′
SUSY = Φ†

𝑖 e
𝑉𝑖𝑗Φ𝑗∣𝐷 +

1
16[𝑊𝑎𝑊𝑎 + �̄� ̇𝑎�̄� ̇𝑎]

𝐹
+ [𝒲 + h.c.]

𝐹
. (3.46)

However, ℒ ′
SUSY is not complete in the sense that it includes unphysical degrees of

freedom originating in certain gauges from the gauge superfields. This can be solved
by including additional terms into the Lagrangian, via so called ghost-fields, which add
“negative” degrees of freedom to compensate for the unphysical degrees.12

With all that in mind we can construct the full SUSY Lagrangian as

ℒSUSY = ℒ ′
SUSY + ℒghosts. (3.47)

Wewill not state ℒghosts here explicitly, but refer to e.g. [38]. It will be sufficient for future
discussion to know that no relevant parameters describing the model occur in ℒghosts.

3.3 the mssm

Theminimal supersymmetric standardmodel (MSSM) is theminimal field-containing, 𝑁 = 1
and 𝑅-parity conserving (more on that in Section 3.3.3) SUSY extension to the SM. To

12 This idea comes from Faddeev and Popov [26] and holds for general gauge quantum field theories.
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build this minimal extension we can construct a supermultiplet per SM particle. The SM
fermions, corresponding to their chirality, are either embedded into the chiral superfield
(3.25) or (3.26) in form of the left and right chiral spinors 𝜒 or 𝜓.13 The scalar superfield
𝜙 then is the bosonic superpartner of each fermionic SM particle. These scalar particles 14

(sparticles) only differ in spin and are listed in the second column in the first two rows
of Table 3.1. All SUSY partner particles will be denoted by a tilde. The 𝜒 parts of SM

particles spin 0 spin 1/2 SU(3)𝑐, SU(2)𝐿, SU(1)𝑦

squarks, quarks 𝑄 ( ̃𝑢𝐿, ̃𝑑𝐿) (𝑢𝐿, 𝑑𝐿) 3, 2, 1/3
(×3 generations) ̄𝑢 ̃̄𝑢𝐿 = ̃𝑢†

𝑅 ̄𝑢𝐿 = 𝑢𝑐
𝑅 ̄3, 1, −4/3

̄𝑑 ̃̄𝑑𝐿 = ̃𝑑†
𝑅

̄𝑑𝐿 = 𝑑𝑐
𝑅 3̄, 1, 2/3

sleptons, leptons 𝐿 ( ̃𝜈𝑒𝐿, ̃𝑒𝐿) (𝜈𝑒𝐿, 𝑒𝐿) 1, 2, −1
(×3 generations) ̄𝑒 ̃̄𝑒𝐿 = ̃𝑒†

𝑅 ̄𝑒𝐿 = 𝑒𝑐
𝑅 1̄, 1, 2

Higgs, Higgsinos 𝐻𝑢 (𝐻+
𝑢 , 𝐻0

𝑢) (�̃�+
𝑢 , �̃�0

𝑢) 1, 2, 1
𝐻𝑑 (𝐻0

𝑑 , 𝐻−
𝑑 ) (�̃�0

𝑑 , �̃�−
𝑑 ) 1, 2, −1

Table 3.1: Chiral supermultiplet fields in the MSSM. [8]

fermions are SU(2)𝐿 doublets, whereas the 𝜓 parts are SU(2)𝐿 singlets. Furthermore, we
remember our convention to write everything in terms of (antiparticle) left chiral spinors,
by charge conjugation of the right chiral ones, as it is depicted in the third column for
fermions. The sparticles carry the index 𝐿 or 𝑅 just for being able to differentiate them
(corresponding to the superpartners chirality).15

Next, in the third row of Table 3.1, the two Higgs supermultiplets are listed, with weak
hypercharge 𝑦 = ±1. We need two (chiral) supermultiplets because the superpotential
can only depend on 𝜙 but not on 𝜙† to uphold SUSY invariance (see Chapter 5 in [8]).
That is we can not, like in the SM, use the Higgs doublet and its charge conjugate (related
to 𝜙†), but we instead are forced to implement two Higgs doublets. This yields a new
parameter tan𝛽, which is the ratio of VEVs of the two Higgs.16 The superpartners are
the so called Higgsinos.17 In contrast to the SM fermions here we have a boson (𝜙 in Φ)
in the SM but get a fermionic superpartner (𝜒 in Φ).

In Table 3.2, one can find the SMvector bosonswith their corresponding superpartners,
the gauginos. They have to reside in vector supermultiplets, defined in (3.30). There one
can see that the superpartners, related to 𝜆, are fermions. Like in the SM, after EWSB,
the gauginos �̃�0 and �̃�0 mix to give mass eigenstates for the respective superpartners of
𝑍-boson and photon, the zino (�̃�0) and the photino (�̃�).

Now it is only left to specify an MSSM superpotential with the new supermultiplets
from Table 3.1. It is by choice 18

𝑊MSSM = 𝑦𝑖𝑗
𝑢 ̄𝑢𝑖𝑄𝑗𝐻𝑢 − 𝑦𝑖𝑗

𝑑
̄𝑑𝑖𝑄𝑗𝐻𝑑 − 𝑦𝑖𝑗

𝑒 ̄𝑒𝑖𝐿𝑗𝐻𝑑 + 𝜇𝐻𝑢𝐻𝑑, (3.48)

13 They can not be members of the vector supermultiplet because their left and right chirality parts transform
differently under the gauge group.

14 Nomenclature is to prepend an “s~” for scalar SUSY particles, so squarks, sleptons etc.
15 As a notation we write as the spinor name the particle abbreviation, e.g. �̄�𝐿 instead of 𝜒�̄�.
16 This will not add a new parameter since we can use tan𝛽 instead of the VEV of the Higgs like in the SM.
17 The general nomenclature will be to append an “~ino” for the superpartners with spin 1/2.
18 In fact most other choices for the superpotential are forbidden by 𝑅-parity, which will be discussed in

Section 3.3.3.
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names spin 1/2 spin 1 SU(3)𝑐, SU(2)𝐿, SU(1)𝑦

gluinos, gluons ̃𝑔 𝑔 8, 1, 0
winos, W boson �̃�±, �̃�0 𝑊±, 𝑊0 1, 3, 0
bino, B boson �̃� 𝐵 1, 1, 0

Table 3.2: Gauge supermultiplet fields in the MSSM. [8]

where 𝑦 are the SMYukawa couplings, and 𝜇 is the SUSYmass term of theHiggs doublets.
This is surprisingly nice as we only get one new parameter, namely 𝜇, in comparison to
the SM.

To build the MSSM Lagrangian we, next to 𝑊MSSM, should consider how the gauge
superfield 𝑉 is specified and how it interacts with the left and right chiral superfields.
This will not be done here, for it is merely technical.

Last but not least we shortly introduce one of the reasonswhy theMSSM is so attractive.
The three scale-dependant (running) gauge couplings SU(3)𝑐 × SU(2)𝐿 × SU(1)𝑦 of the
SM do not converge or unify. But if one believes in a grand unified theory (GUT), one
(mostly) needs these to unify to a more fundamental single force describing all forces.19
However, in the MSSM as we have defined it, this unification is fulfilled (see Figure 3.2).

Figure 3.2: (a) Failure of the SM couplings to unify. (b) Gauge coupling unification in theMSSM.
The blob represents model-dependant threshold corrections at the GUT scale.[8]

3.3.1 SUSY Breaking

As stated above, SUSY can be broken, and in fact, it should be. This is due to the fact
that till now no supersymmetric particles (like stated in Table 3.1) have been found in
experiment. If SUSY would not be broken all particle masses inside a supermultiplet
would be equal,20 suggesting that the superpartners should be found in collider experi-
ments.21 For that not being the case, we need to assume the superpartners are heavier
than the SM particles, and, therefore, need to break the (mass-) symmetry.

19 Often it is believed that the three running couplings from above were unified shortly after the Big Bang.
20 Recall (3.7) and (3.8).
21 E.g. the selectron would have the same 511keV mass as the electron.
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Oneway to do this is spontaneous breaking, like theHiggsmechanism for the electroweak
symmetry.22 The other way is to add a symmetry-breaking term to the Lagrangian. This
is the far more general approach and, till we do not know how exactly SUSY is broken,
the more suitable one.

More precisely we will introduce SUSY soft-breaking. This means the Lagrangian
should have only positive mass dimension terms, like “𝑀𝜒𝜒”. Terms like these are
needed because they do not create new divergencies and, therefore, do not spoil the
solving of the mass fine-tuning problem. The Lagrangian soft-breaking term, which will
result in superpartners having different masses than their SM counterparts, can be found
to be 23

ℒsoft
MSSM ∼ − 𝑀3 ̃𝑔𝑎 − 𝑀2�̃�𝑎�̃�𝑎 − 𝑀1�̃��̃� (3.49)

− 𝑚2
̃𝑞𝑖𝑗�̃�†

𝑖 �̃�𝑗 − 𝑚2
̃�̄�𝑖𝑗

̃̄𝑢†
𝐿𝑖 ̃̄𝑢𝐿𝑗 − 𝑚2

̃̄𝑑𝑖𝑗
̃̄𝑑

†
𝐿𝑖

̃̄𝑑𝐿𝑗 (3.50)

− 𝑚2
�̃�𝑖𝑗�̃�

†
𝑖 �̃�𝑗 − 𝑚2

̃̄𝑒𝑖𝑗
̃̄𝑒†
𝐿𝑖 ̃̄𝑒𝐿𝑗 (3.51)

− 𝑚2
𝐻𝑢

𝐻†
𝑢𝐻𝑢 − 𝑚2

𝐻𝑑
𝐻†

𝑑𝐻𝑑 − 𝜇𝐻𝑢𝐻𝑑 (3.52)

− 𝐴𝑖𝑗
𝑢 ̃̄𝑢𝐿𝑖�̃�𝑗𝐻𝑢 + 𝐴𝑖𝑗

𝑑
̃̄𝑑𝐿𝑖�̃�𝑗𝐻𝑑 + 𝐴𝑖𝑗

𝑒 ̃̄𝑒𝐿𝑖�̃�𝑗𝐻𝑑. (3.53)

Each of the four first rows is responsible for the masses of all the MSSM particles in the
order: gauginos (3.49) (𝑀𝑖 are the gaugino masses), squarks (3.50), sleptons (3.51) and
Higss’ (3.52). The last row (3.53) is the scalar mixing term with the triple scalar couplings
𝐴. With that, we finally have found an extension of SUSY that could be physically true.
However, two new problems occur. First, we now have not only one new parameter in
comparison to the standard model (𝜇 from the superpotential Higgs interaction term)
but 105 new ones that fully stem from (3.49)-(3.53). Although not practically a problem,
so many degrees of freedom make it unpredictable for it is nearly impossible to know
all parameters in detail. The second problem originates from the huge impact of higher
order corrections in ℒsoft

MSSM to observables in the SM. To solve these, we will in the next
section introduce a phenomenological model of the MSSM.

3.3.2 Phenomenological Model

The phenomenological minimal supersymmetric standard model (pMSSM) tries to be in
agreement with phenomenological constraints by introducing three assumptions in the
known MSSM:

• No new sources of CP-violation.
(soft breaking parameters ⇒real)

• No flavour changing neutral currents.
(mass matrices and trilinear couplings ⇒diagonal)

• First and second generation universality.
(soft breaking sfermion-mass ⇒universal between first two generations)

After implementing these assumptions the pMSSM is again, even in higher orders, in
agreement with the SM and reduces the parameter space to only 19, which are depicted
in Table 3.3. These are (with one exception) exactly the same parameters we will need

22 This is done by giving the Higgs a non-vanishing VEV.
23 Taken from [8]. Surprisingly the construction is quite limited by needing to be SUSY invariant and the

demand to be soft (see above). The “∼” denotes missing factors and h.c.-terms.
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parameter description

tan𝛽 Ratio of the Higgs VEVs
𝑀𝐻3 Pseudoscalar Higgs boson mass

𝜇 Higgs-higgsino mass parameter
𝑀1, 𝑀2, 𝑀3 Bino, wino and gluino masses

𝑚 ̃𝑒𝐿
, 𝑚 ̃𝑒𝑅

, 𝑚 ̃𝑞𝐿1
, 𝑚�̃�𝑅

, 𝑚 ̃𝑑𝑅
1st and 2nd generation 𝐿𝐿, 𝑒𝑅, 𝑄𝐿, 𝑢𝑅 and 𝑑𝑅 masses

𝑚�̃�𝐿
, 𝑚�̃�𝐿

, 𝑚 ̃𝑞𝐿3
, 𝑚 ̃𝑡𝑅

, 𝑚�̃�𝑅
3rd generation 𝐿𝐿, 𝑒𝑅, 𝑄𝐿, 𝑢𝑅 and 𝑑𝑅 masses

𝐴𝑡, 𝐴𝑏, 𝐴𝜏 Trilinear couplings for 𝑡-, 𝑏- and 𝜏-quark

Table 3.3: The 19 free parameters of the pMSSM.

to implement for the model of MSSM in which the numerical calculation of the relic
density will take place (Chapter 6).

3.3.3 𝑅-Parity

We already said that the MSSM is 𝑅-parity conserving. This is due to the fact that the
proton will not decay into SUSY particles if 𝑅-parity is conserved, and the proton is
stable – as it should be. Hence, this new parity is defined as

𝑅 ≡ (−1)3𝐵+𝐿+2𝑆, (3.54)

where 𝐵 and 𝐿 are the baryon and lepton number, respectively. 𝑅 from (3.54), therefore,
has to be conserved for all SUSY-SM particle interactions. This, however, yields new
phenomenological implications:

• The lightest supersymmetric particle (LSP) is absolutely stable.

• All sparticles decay into products containing an odd number of LSP’s.

• Sparticles can only be produced in pairs.

In addition to a new parity, one needs to conserve when building SM and SUSY interac-
tions, we get the most important fact that the LSP – if it is electrically neutral – is a very
promising candidate for a WIMP and dark matter. The LSP is in fact the neutralino, and
so we finally have made the connection from dark matter to SUSY.

3.3.4 The Neutralino

After finding that the neutralino is a great candidate for dark matter we will, in this last
section to SUSY, introduce the neutralino.
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The masses of the wino �̃�0 and bino �̃� are just given by (3.49) and do not mix.
However, with non-vanishing Higgs VEV they do mix with �̃�𝑢 and �̃�𝑑.24 Therefore, we
can write the corresponding gauge eigenstate basis as

̃𝐺0 =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

�̃�
�̃�0

�̃�0
𝑑

�̃�0
𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.55)

The mass term in the MSSM Lagrangian involving the fields in ̃𝐺0 then reads as

ℒMSSM∣�̃�0
= −

1
2

̃𝐺0𝑇𝑀�̃�0 ̃𝐺0 + h.c., (3.56)

where

𝑀�̃�0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑀1 0 − cos𝛽 sin 𝜃𝑊𝑚𝑍 sin𝛽 sin 𝜃𝑊𝑚𝑍

0 𝑀2 cos𝛽 cos 𝜃𝑊𝑚𝑍 − sin𝛽 cos 𝜃𝑊𝑚𝑍

− cos𝛽 sin 𝜃𝑊𝑚𝑍 cos𝛽 cos 𝜃𝑊𝑚𝑍 0 −𝜇
sin𝛽 sin 𝜃𝑊𝑚𝑍 − sin𝛽 cos 𝜃𝑊𝑚𝑍 −𝜇 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.57)

Now, to get the mass eigenstates (the physical particles), we can diagonalize 𝑀�̃�0 and
we get

𝑚𝜒0
𝑖

= (𝑀𝐷
�̃�0)

𝑖𝑖
(3.58)

the masses from the four gaugino and higgsino mixed states, the neutralinos 𝜒0
𝑖 . Where

𝑖 = 1 denotes the lightest one and all heavier ones decay into it.
Likewise to this procedure, one can get all new masses from the superpartners we

introduced via the soft SUSY breaking.

t o s u m m a r i z e : We have extended the Poincaré group (in the most general way
possible) and got a new symmetry connecting fermions and bosons. The new funda-
mental degrees of freedom allowed us to build new superfields, which, if irreducible,
are supermultiplets. We built the new Lagrangian for SUSY and introduced a physical
minimal SUSY extension of the SM, the MSSM. In the phenomenological version of the
MSSM we then concluded that SM particles have to lie in supermultiplets with their
corresponding superpartners. Finally, we constructed the neutralino as the LSP as a
mixed state of gauginos and higgsinos.

In the next chapters, we will calculate the annihilation (more precise the invariant
amplitude, but more on that in the next chapter) of neutralino with gluino, the super-
multiplet partner of the gluon.

24 This can be seen in the Φ†e𝑉Φ term, which we did not state, see instead Section 7.3 in [8].



4 D I R A C C A LC U L AT I O N

We will now, in this and the following chapter, calculate the neutralino-gluino coannihi-
lation analytically on tree-level 1. The gluino has, in most pMSSM spectra, a very similar
mass compared to the neutralino. Aswe already stated in Section 2.3.1, the coannihilation
of the WIMP with other equal-mass particles can contribute to the relic density (see
(2.11)). Therefore, this specific process should be considered. For this is to this point
no process included in the programme DM@NLO (see Appendix B) our task will be to
calculate the corresponding invariant amplitude analytically and then, in Chapter 6,
implement it in DM@NLO, in which the total cross-section will be calculated and further
used in connected software to calculate the neutralino relic density.

In the current chapter, we will follow the standard technique for computing scattering
processes and their cross-sections, namely squaring the scattering-matrix (𝑆-matrix)
amplitude, summing over all possible states, such as spin and colour, and then calculating
the traces of 𝛾-matrix products. Here we will use the four-component spinor formalism
from Dirac 2.

In comparison to that, in Chapter 5, we will make use of a technique created by
Dreiner, Haber and Martin which uses two-component (or Weyl-) spinors, that works
with helicity amplitudes. The benefits and motivation for this different approach will be
described in that chapter as well.

4.1 cross-section

To be able to analyse a scattering process one needs to compute the cross-section of
that process. The differential cross-section of a general two-particle collision can be
constructed via the 𝑆-matrix elements ⟨𝑓 |𝑆|𝑖⟩, where |𝑖⟩ is the two-particle initial state,
⟨𝑓 | is the 𝑛-particle final state and 𝑆 is the time evolution operator and describes the
particle’s transitions. Following [44] the differential cross-section can be found to be

𝑑𝜎 =
1

(2𝐸1)(2𝐸2)| ⃗𝑣1 − ⃗𝑣2|
|𝑀|2𝑑Π𝐿𝐼𝑃𝑆, (4.1)

where 𝐸1,2 and ⃗𝑣1,2 are the energies and velocities of the two initial particles, respectively,
𝑀 is the nontrivial part of the 𝑆-matrix called invariant amplitude and

𝑑Π𝐿𝐼𝑃𝑆 ≡ (2𝜋)4𝛿4(Σ𝑝) × ∏
final states 𝑗

𝑑3𝑝𝑗

(2𝜋)3
1

2𝐸𝑝𝑗

(4.2)

is called the Lorentz-invariant phase space or LIPS, where the Dirac delta distribution
ensures conservation of momenta.

One can define the denominator in (4.1) as the incident flux

𝐹 ≡ (2𝐸1)(2𝐸2)| ⃗𝑣1 − ⃗𝑣2| = 4((𝑝1𝑝2)2 − 𝑚2
1𝑚2

2)
1
2 , (4.3)

1 This means that no loops in the Feynman diagrams (no higher perturbation order) will be included.
2 Consult e.g. [46].
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where the second equality holds for a collinear collision between particles 1 and 2.3 𝑝1,2
and 𝑚1,2 are the particle’s momentum and mass, respectively.

In the centre-of-mass frame and for a 2 → 2 scattering, the cross-section simplifies to

(
𝑑𝜎
𝑑Ω)

𝐶𝑀
=

1
64𝜋2𝐸2

𝐶𝑀

𝑝𝑓

𝑝𝑖
|𝑀|2𝜃(𝐸𝐶𝑀 − 𝑚′

1 − 𝑚′
2), (4.4)

with the solid angle element 𝑑Ω, the centre-of-mass energy 𝐸𝐶𝑀, the momentum of final
and initial state particles 𝑝𝑓 ,𝑖 and the final state particle masses 𝑚′

1,2. This expression just
needs to be integrated over 𝑑Ω to get the total cross-section.

In (4.4) the momenta and the centre-of-mass energy can be measured, such that the
whole physics takes place in the invariant amplitude 𝑀 and, thence, 𝑀 will be the main
focus of the following calculations. Furthermore, the actual cross-section calculation will
be done inside DM@NLO, in which we (mostly) only implement the invariant amplitude.

4.2 feynman diagrams

Our goal now is to compute the invariant amplitude 𝑀. To achieve this, we will follow
the Feynman-diagram approach4. This means we need to find all possible paths from
the initial particles that contribute to the total amplitude 𝑀, construct their associated
Feynman diagrams and compute their amplitudes and then, as the last step, combine
them for the total amplitude of the process.

𝑝1 𝑘1

̃𝑞𝑖,𝑡

𝑘2𝑝2

̃𝜒0
𝑗 𝑞𝑡

𝑞𝑠̃𝑔𝑎

(a) t-channel

𝑝1 𝑘2

̃𝑞𝑖,𝑡

𝑘1𝑝2

̃𝜒0
𝑗 𝑞𝑡

𝑞𝑠̃𝑔𝑎

(b) u-channel

Figure 4.1: Feynman diagrams for neutralino-gluino coannihilation. Initial state particles are
neutralino ̃𝜒0

𝑗 (𝑝1), with 𝑗 ∈ {0, 1, 2, 3} the composition state, and gluino ̃𝑔𝑎(𝑝2), with
𝑎 the colour charge. Propagator is the squark ̃𝑞𝑖,𝑡(𝑞 = 𝑝1 − 𝑝3) with 𝑖 the squark
generation index and 𝑡 the color charge. Final state particles are quark 𝑞𝑡(𝑘1), with
the same color charge 𝑡 like the propagator, and antiquark 𝑞𝑠(𝑘2), with, because of the
gluino strong coupling, from the propagator different color charge 𝑠. The arrows on
the particle lines mark the direction of fermion number flow and the floating arrows
represent the chosen fermion flow 5.

We start by setting both our initial states, neutralino and gluino, as the incoming
particles with momenta 𝑝1 and 𝑝2, respectively. First, one notices that neutralino and

3 For a derivation see [29].
4 The more general technique would be to craft the interaction Lagrangians for the coupling of the individual

particles. This is way more time-consuming but just equally physically true, because of the Feynman rules
originating from the Lagrangians. In Appendix C, however, the respective Lagrangians for the particle
interactions are listed for the sake of completeness (but not derived).

5 Listed preemptively for completeness, for an explanation see Section 4.2.1.
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gluino do not couple to each other and, therefore, we only have to consider processeswith
a propagator in between them, namely 𝑡 and 𝑢-channel amplitudes. The gluino interacts
via the strong force and, thereby, couples to quarks and their respective supersymmetric
analogues, the squarks. Due to R-parity conservation (see Section 3.3.3) and the need to
get a standard model particle as the final state, the only possibility is the gluino-squark
to quark interaction, where the colour of the quark and squark needs to differ, through
the gluino interaction.

The neutralino can interact via either its gaugino part and, hence, the weak interaction
or via the higgsino part (Yukawa coupling). Combining this with the propagating squark
we need from the gluino vertex, the only possible standard model final state from the
neutralino-squark coupling is a quark whose colour is equal to the squark’s.

Last, one needs to consider the fermion number flow, which has to be continuous. This
means we need to set one final state particle as antiquark and henceforth the other one
as a quark, propagating forward in time.

All these result in the Feynman diagrams sketched in Figure 4.1. As we said, we do
not have an s-channel diagram and the t and u-channel diagrams only differ in the final
state positions, or more precisely in their respective momenta.

4.2.1 Fermion Number Violation

Till now we did not take into account the fact that we are dealing with Majorana 6 type
particles, the neutralino and gluino. Their self-conjugacy results in different contractions
which, through the anticommutativity of fermionic operators, get different signs. This
results in a change of the relative sign of interfering Feynman graphs. One can, using
e.g. Wick’s theorem, do some extra work to determine the relative sign, but this is
cumbersome and does not relate to the simplicity one gets from Feynman diagrams.
Therefore, wewill follow an approach byDenner et. al. [21] that presents simple Feynman
rules for fermion-number-violating interactions and introduce it here briefly.

The main difference is the replacement of the usual fermion number flow in Feynman
graphs with a continuous fermion flow. The difference is that one then needs to consider
two expressions for each vertex, the fermion flow parallel and antiparallel to the flow
of fermion number. From this, one gets multiple amplitudes from each graph for every
fermion flow possibility. If the achieved amplitudes differ in their relative sign one needs
to consider them separately.

Following [21], from the Majorana-Dirac Lagrangian, one gets multiple new expres-
sions, with the two for our process relevant ones being

Γ′ = 𝐶Γ𝑇𝐶−1 = 𝜂Γ with 𝜂 =
⎧{
⎨{⎩

+ 1 for Γ ∈ {1, 𝑖𝛾5, 𝛾𝜇𝛾5}
− 1 for Γ ∈ {𝛾𝜇, 𝜎𝜇𝜈}

, (4.5)

where Γ is a general fermionic interaction term with 𝛾 matrices and the corresponding
coupling constant 7 and

𝑣(𝑝, 𝑠) = 𝐶 ̄𝑢(𝑝, 𝑠)𝑇, (4.6)

with 𝑢 and 𝑣 the usual Dirac spinors. 𝐶 is the charge-conjugation matrix that fulfils

𝐶−1 = 𝐶𝑇 = −𝐶. (4.7)

6 Majorana particles fulfil Ψ𝑀 = (𝜓, 𝜓𝑐) and are, therefore, their own antiparticles.
7 Here already, from the second equation, one can identify the equivalence for vertices if the vertex-term only

contains e.g. 𝛾5-matrices. For a pure Majorana coupling Γ′ = Γ holds.
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From these Denner et. al. derived a whole new set of Feynman rules. Most of them are
not relevant for our process, so – for the sake of clarity – are not stated here explicitly.
The three relevant ones can be found in Section C.1.3. With these, we can now compute
the different amplitudes we get for all fermion flow permutations.

We begin the application of this new ruleset by first realising that our propagator is
scalar and, therefore, does not need to be changed. Secondly, we identify that we have
two permutations for each vertex and can now calculate these separately.

̃𝜒0
𝑗 𝑞

̃𝑞𝑖

(a)

̃𝜒0
𝑗 𝑞

̃𝑞𝑖

(b)

Figure 4.2: The two possible fermion flow permutations (floating arrows) for one specific
fermion number flow direction (arrows on lines).

The neutralino-quark-squark vertex has two fermion flow permutations for each
fermion number flow. Examplary this is shown in Figure 4.2 for the u-channel up-
per vertex. We can now construct, following the rules from Section C.1.3, the invariant
amplitude for Figure 4.2a (parallel fermion flow)

𝑖𝑀 = 𝑖 ̄𝑢 ̃𝜒Γ𝑣𝑞 (4.8)

and Figure 4.2b (antiparallel fermion flow)

𝑖𝑀′ = (−1)𝑖 ̄𝑢𝑞Γ′𝑣 ̃𝜒, (4.9)

where the minus-sign originates from the inverted permutation order ̃𝜒 → 𝑞 in compari-
son to the arbitrary reference order set by the first graph 𝑞 → ̃𝜒. To get the relative sign
for these two amplitudes we can follow steps similar to Example 3.1 from [21].8 First we
need to convert (4.6) to

̄𝑢(𝑝, 𝑠) = 𝑣(𝑝, 𝑠)𝑇𝐶, (4.10)

via taking the transpose, using the property 𝐶𝑇 = 𝐶−1 from (4.7) and multiplying by 𝐶
from the left. Then we can substitute this and the original expression for the spinors ̄𝑢𝑞
and 𝑣 ̃𝜒 into (4.8) and get

𝑖𝑀′ = −𝑖𝑣𝑇
𝑞 𝐶Γ′𝐶 ̄𝑢𝑇

̃𝜒 (4.11)

= 𝑖𝑣𝑇
𝑞 Γ𝑇 ̄𝑢𝑇

̃𝜒 (4.12)

= 𝑖 ̄𝑢 ̃𝜒Γ𝑣𝑞, (4.13)

where in (4.12) we made use of the relation −𝐶 = 𝐶−1 from (4.7) and (4.5). This finally
shows us that the graphs with different fermion flow from Figure 4.2 have the same
relative sign and are, therefore, equivalent.

Because we did not specify Γ and can identify the spinors freely with every fermionic
particle, we can conclude that the derivation of 𝑖𝑀′ = 𝑖𝑀 holds for all interactions of a

8 This was the exact reason why the explicit setup from Figure 4.2 was chosen, to get an easy comparison.



4.3 evaluation of squared amplitudes 24

Majorana fermion with a Dirac fermion and a scalar boson, regardless of the fermion
number flow. As a very important bottom line, we get the fact that we do not need to
think about the relative sign in our Feynman graphs and can choose the fermion flow
freely because all permutations are the same.

As a result, the definition of choice of spinors 𝑢 or 𝑣 depends on the direction of
fermion flow we choose and not – anymore – on the fermion number flow like usual.9
As a result, we can choose the fermion flows in Figure 4.1 free of any restrictions and for
convenience took the same direction as the fermion number flow. Furthermore, we only
need to consider one permutation and, thence, only one Feynman diagram. One last
thing to state is that the fermion number flow still determines the interaction Lagrangian,
so the choice of fermion flow really only changes 𝑢 and 𝑣 and one has to take the same
couplings for every permutation.

4.2.2 Invariant Amplitude

From Figure 4.1 we can see that we can deconstruct the total invariant amplitude 𝑀 in
two part-amplitudes belonging to the t- and u-channel diagrams, respectively. In order
to get the cross-section from (4.4), we need the magnitude square of 𝑀, so we have to
include their amount squares and we get the real part of the interference term from
multiplying out the square

|𝑀|2 = |𝑀𝑡|2 + |𝑀𝑢|2 + 2Re𝑀𝑡𝑀†
𝑢. (4.14)

Till now we did not include e.g. spin or colour and, therefore, we only computed the
unpolarized cross-section. To allow the scattering to be in all possible spin and colour
configurations, we need to make the replacement

|𝑀|2 ⟶ |𝑀|2 =
1

2𝑠𝑖 + 1
1

𝑁2 − 1
∑

spin,colour
|𝑀|2, (4.15)

where we have to average over the initial state particle spins 𝑠𝑖 and colours in SU(𝑁) and
sum over the spins and colours of the final state particles, the invariant amplitude 𝑀.

Combining (4.14) and (4.15) we get

|𝑀|2 = |𝑀𝑡|
2 + |𝑀𝑢|2 + 2Re𝑀𝑡𝑀†

𝑢. (4.16)

From here on the task will be to calculate the three averaged amplitudes |𝑀𝑡|
2, |𝑀𝑢|2

and Re𝑀𝑡𝑀†
𝑢, where we can, following the Feynman rules listed in Appendix C, build

the underlying amplitudes 𝑀𝑡 and 𝑀𝑢 from the Feynman diagrams in Figure 4.1.

4.3 evaluation of squared amplitudes

9 This yields some interesting consequences we will make use of later on.
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4.3.1 T-Channel

We begin by calculating the t-channel amplitude |𝑀𝑡|
2 in (4.16). From the corresponding

Feynman diagram Figure 4.1a we can, using the Feynman rules from Appendix C,
construct the invariant amplitude

𝑖𝑀𝑡 = ̄𝑢(𝑘1)( − 𝑖(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅))𝑢(𝑝1)(
𝑖

𝑡 − 𝑚2
̃𝑞𝑖

)

× ̄𝑣(𝑝2)(√2𝑖𝑔𝑠𝑇𝑎
𝑠𝑡(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿))𝑣(𝑘2) (4.17)

=
𝑖√2 𝑔𝑠
𝑡 − 𝑚2

̃𝑞𝑖

𝑇𝑎
𝑠𝑡[ ̄𝑢(𝑘1)(𝑏 ̃𝑞

𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝑅)𝑢(𝑝1)][ ̄𝑣(𝑝2)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)𝑣(𝑘2)], (4.18)

where in the last step we exploited the fact that we can drag the coupling constants, the
propagator term and the matrix element 𝑇𝑎

𝑠𝑡 in front of the four-vector spinor terms. To
get |𝑀𝑡|2 we then need to form the transpose conjugate of (4.18) 10

−𝑖𝑀†
𝑡 =

−𝑖√2 𝑔𝑠
𝑡 − 𝑚2

̃𝑞𝑖′

𝑇𝑎∗
𝑠𝑡 [ ̄𝑢(𝑝1)(𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝐿)𝑢(𝑘1)][ ̄𝑣(𝑘2)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)𝑣(𝑝2)].

(4.19)

The calculation to get the Hermitian transpose of the terms in square brackets is to
be found in Section A.1.1. The rest consists of constants or matrix elements only and,
therefore, just has to be complex conjugated. Now we can construct the spin and colour
averaged magnitude-square of 𝑖𝑀𝑡 and get

|𝑀𝑡|
2 = ∑

𝑖,𝑖′

2𝑔2
𝑠

(𝑡 − 𝑚 ̃𝑞𝑖
)(𝑡 − 𝑚 ̃𝑞𝑖′

)𝑀𝑡,𝑐 𝑀𝑡,𝑠, (4.20)

where 𝑀𝑡,𝑐 and 𝑀𝑡,𝑠 are the amplitude parts with colour and spin dependencies, re-
spectively. Furthermore, it is needed to take the sum of all possible propagating squark
generations, 𝑖 and 𝑖′.

The colour-dependant part consists of the sum over the colour indices 𝑎, 𝑠, 𝑡 of the 𝑇𝑎
𝑠𝑡

matrix elements from the gluino vertices and the colour-averaging factor in colour-SU(𝑁)

𝑀𝑡,𝑐 =
1

𝑁2 − 1
∑
𝑎,𝑠,𝑡

𝑇𝑎
𝑠𝑡𝑇𝑎

𝑡𝑠 =
1

𝑁2 − 1
𝐶𝐹𝛿𝑎

𝑎 =
1
2 , (4.21)

where we used 𝑇𝑎∗
𝑠𝑡 = 𝑇𝑎

𝑡𝑠 in the first equation and the SU(𝑁) relations from Section D.3
and the fact that 𝛿𝑎

𝑎 = 𝑁 in the last two steps. As a result, the 𝑁’s cancel and we get a
constant prefactor of 1/2.

The following calculation of the spin-dependant amplitude 𝑀𝑡,𝑠 requires a little more
work. First of all, it consists of an averaging factor of 1/4 for the two spin 1/2 initial
particles. Next, we have the sum over all external particle spins 𝑠1, 𝑠2, 𝑠3 and 𝑠4 (of

10 Here it is needed to set a new variable for the squark generation index, namely 𝑖′, to include the fact that we
are dealing with two different processes (the other one being (4.18)) and, thus, two different possibilities
for the generation of the propagating squark (The external particles are the ones to be measured and have,
thereby, set generations).
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neutralino, gluino, quark and antiquark in that exact order), where we need to sum the
external spinors 𝑢 and 𝑣. The calculation of the spin-amplitude evaluates to

𝑀𝑡,𝑠 =
1
4 ∑

𝑠1,𝑠2𝑠3,𝑠4

[ ̄𝑢(𝑘1)(𝑠3)
𝛼 (𝑏 ̃𝑞

𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝑅)𝛼𝛽𝑢(𝑝1)(𝑠1)

𝛽 ]

× [ ̄𝑣(𝑝2)(𝑠2)
𝛾 (𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)𝛾𝛿𝑣(𝑘2)(𝑠4)

𝛿 ]

× [ ̄𝑢(𝑝1)(𝑠1)
𝜉 (𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝐿)𝜉𝜂𝑢(𝑘1)(𝑠3)

𝜂 ]

× [ ̄𝑣(𝑘2)(𝑠4)
𝜅 (𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)𝜅𝛾𝑣(𝑝2)(𝑠2)

𝛾 ] (4.22)

=
1
4[(/𝑘1 + 𝑚′

1)𝜂𝛼(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)𝛼𝛽(/𝑝1 + 𝑚1)𝛽𝜉(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝐿)𝜉𝜂]

× [(/𝑝2 − 𝑚2)𝜆𝛾(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)𝛾𝛿(/𝑘2 − 𝑚′
2)𝛿𝜅(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)𝜅𝜆] (4.23)

=
1
4𝐿 ̃𝜒

𝜂𝜂𝐿�̃�
𝜆𝜆. (4.24)

To get (4.23) we can separate the square-bracket terms in two sums, one over 𝑠1 and 𝑠3
and the other over 𝑠2 and 𝑠4, and then use the completeness relations, see Section D.1.3.
We can identify the resulting expressions in square brackets in (4.23) as two traces 11

𝐿 ̃𝜒
𝜂𝜂 and 𝐿�̃�

𝜆𝜆 corresponding to the two neutralino and gluino vertices and can then, as a
next step, calculate them separately.

Calculation of the first trace for the neutralino vertex coupling yields

𝐿 ̃𝜒
𝜂𝜂 = Tr [(/𝑘1 + 𝑚′

1)(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)(/𝑝1 + 𝑚1)(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝐿)] (4.25)

= 𝑚1𝑚′
1 Tr [(𝑏 ̃𝑞

𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝑅)(𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝐿)]

+ Tr [/𝑘1(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)/𝑝1(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝐿)] (4.26)

= 2𝑝1𝑘1(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗 + 𝑎 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗) + 2𝑚1𝑚′
1(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗 + 𝑏 ̃𝑞∗
𝑖′𝑗𝑎

̃𝑞
𝑖𝑗), (4.27)

where in (4.25) we multiplied out and used the commutating properties of the chiral-
ity operator 12. The two resulting traces in (4.27) can then be calculated via the trace-
calculations I (see Section A.1.2) and II (see Section A.1.3), respectively.

To calculate the second trace 𝐿�̃�
𝜆𝜆 the procedure is very similar and, again using I and

II, yields as a result (4.30)

𝐿�̃�
𝜆𝜆 = Tr [(/𝑝2 − 𝑚2)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)(/𝑘2 + 𝑚′

2)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)] (4.28)

= 𝑚2𝑚′
2 Tr [(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]

+ Tr [/𝑝2(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)/𝑘2(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)] (4.29)

= 2𝑝2𝑘2(𝑅𝑖2𝑅𝑖′2 + 𝑅𝑖1𝑅𝑖′1) − 2𝑚2𝑚′
2(𝑅𝑖2𝑅𝑖′1 + 𝑅𝑖′2𝑅𝑖1). (4.30)

This together with the other trace (4.27) can then be used to get the spin-amplitude
𝑀𝑡,𝑠 of (4.24). Next to that we take the result from the colour-dependant amplitude

11 To clarify: with Einstein’s summation convention, we calculate the diagonal entries of two matrices corre-
sponding to the summation over each of 𝜂 and 𝜆 in (4.23).

12 See Section D.1.2.
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(4.21) and substituting both in (4.20) will then yield the final result for the t-channel
amplitude

|𝑀𝑡|
2 = 𝑔2

𝑠 ∑
𝑖,𝑖′

1
(𝑡 − 𝑚 ̃𝑞𝑖

)(𝑡 − 𝑚 ̃𝑞𝑖′
)[𝑝1𝑘1(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗 + 𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗) + 𝑚1𝑚′

1(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗)]

× [𝑝2𝑘2(𝑅𝑖2𝑅𝑖′2 + 𝑅𝑖1𝑅𝑖′1) − 𝑚2𝑚′
2(𝑅𝑖2𝑅𝑖′1 + 𝑅𝑖′2𝑅𝑖1)]. (4.31)

4.3.2 U-Channel

The second amplitude part we need – in order to get the complete invariant amplitude
for the scattering process – can be constructed in a very similar way compared to the
preceding t-channel amplitude. Again, using the Feynman rules listed in Appendix C and
applying them to the u-channel Feynman diagram Figure 4.1b, the invariant amplitude
of the u-channel can be found and simplified as follows 13

𝑖𝑀𝑢 = ̄𝑣(𝑝1)( − 𝑖(𝑏 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝐿))𝑣(𝑘2)(
𝑖

𝑢 − 𝑚2
̃𝑞𝑖

)

× ̄𝑢(𝑘1)(√2𝑖𝑔𝑠𝑇𝑎
𝑠𝑡(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅))𝑢(𝑝2) (4.32)

=
𝑖√2 𝑔𝑠

𝑢 − 𝑚2
̃𝑞𝑖

𝑇𝑎
𝑠𝑡[ ̄𝑣(𝑝1)(𝑏 ̃𝑞

𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝐿)𝑣(𝑘2)][ ̄𝑢(𝑘1)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)𝑢(𝑝2)].

(4.33)

The associated Hermitian transpose of (4.33) is

−𝑖𝑀†
𝑢 =

−𝑖√2 𝑔𝑠
𝑢 − 𝑚2

̃𝑞𝑖′

𝑇𝑎∗
𝑠𝑡 [ ̄𝑣(𝑘2)(𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅)𝑣(𝑝1)][ ̄𝑢(𝑝2)(𝑅𝑖′2𝑃𝑅 − 𝑅𝑖′1𝑃𝐿)𝑢(𝑘1)],

(4.34)

where again, the calculation from Section A.1.1 for the transpose conjugation of the terms
in square brackets and the complex conjugate of the remaining constants has been used.
Then, with these results, we can construct the amplitude-square of 𝑀𝑢

|𝑀𝑢|2 = ∑
𝑖,𝑖′

2𝑔2
𝑠

(𝑢 − 𝑚 ̃𝑞𝑖
)(𝑢 − 𝑚 ̃𝑞𝑖′

)𝑀𝑢,𝑐 𝑀𝑢,𝑠 (4.35)

and again identify and define new amplitudes with only spin (𝑀𝑢,𝑠) or colour depen-
dency (𝑀𝑢,𝑐) to calculate them separately.

The colour amplitude is equivalent to the t-channel analogue (4.21) and results in

𝑀𝑢,𝑐 =
1

𝑁2 − 1
∑
𝑎,𝑠,𝑡

𝑇𝑎
𝑠𝑡𝑇𝑎

𝑡𝑠 =
1
2 . (4.36)

13 Again, just dragging the constants and matrix elements in front of the spinor expressions, like in (4.18).
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Next we need to calculate the spin-dependant part

𝑀𝑢,𝑠 =
1
4 ∑

𝑠1,𝑠2𝑠3,𝑠4

[ ̄𝑣(𝑝1)(𝑠1)
𝛼 (𝑏 ̃𝑞

𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝐿)𝛼𝛽𝑣(𝑘2)(𝑠4)

𝛽 ]

× [ ̄𝑢(𝑘1)(𝑠3)
𝛾 (𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)𝛾𝛿𝑢(𝑝2)(𝑠2)

𝛿 ]

× [ ̄𝑣(𝑘2)(𝑠4)
𝜉 (𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅)𝜉𝜂𝑣(𝑝1)(𝑠1)

𝜂 ]

× [ ̄𝑢(𝑝2)(𝑠2)
𝜅 (𝑅𝑖′2𝑃𝑅 − 𝑅𝑖′1𝑃𝐿)𝜅𝛾𝑢(𝑘1)(𝑠3)

𝛾 ] (4.37)

=
1
4[(/𝑝1 − 𝑚1)𝜂𝛼(𝑏 ̃𝑞

𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝐿)𝛼𝛽(/𝑘2 − 𝑚′

2)𝛽𝜉(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝐿 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝑅)𝜉𝜂]

× [(/𝑘1 + 𝑚′
1)𝜆𝛾(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)𝛾𝛿(/𝑝2 + 𝑚2)𝛿𝜅(𝑅𝑖′2𝑃𝑅 − 𝑅𝑖′1𝑃𝐿)𝜅𝜆] (4.38)

=
1
4𝐿 ̃𝜒

𝜂𝜂𝐿�̃�
𝜆𝜆, (4.39)

where we again needed to sum over the external particle spins 𝑠 and used the complete-
ness relations from Section D.1.3 in (4.37). We can then identify two traces, belonging to
the two vertices for the neutralino- and gluino-quark-squark coupling and denote them
𝐿 ̃𝜒

𝜂𝜂 and 𝐿�̃�
𝜆𝜆 in the last step in (4.39).

We begin by calculating the trace corresponding to the neutralino vertex. Here it can be
exploited that this and the following gluino trace are, under exchange of constants, equal
to the traces (4.27) and (4.30) from the t-channel. As a result, the already calculated
traces can be used under the exchange of certain constants, e.g. as listed in (4.41). The
first trace then yields

𝐿 ̃𝜒,𝑢
𝜂𝜂 = Tr [(/𝑝1 − 𝑚1)(𝑏 ̃𝑞

𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝐿)(/𝑘2 − 𝑚′

2)(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝐿 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝑅)] (4.40)

=̂ 𝐿 ̃𝜒,𝑡
𝜂𝜂 with

⎧{
⎨{⎩

/𝑘1 → /𝑝1, 𝑚′
1 → −𝑚1, 𝑏 ̃𝑞

𝑖𝑗 → 𝑎 ̃𝑞
𝑖𝑗, 𝑎 ̃𝑞

𝑖𝑗 → 𝑏 ̃𝑞
𝑖𝑗,

/𝑝1 → /𝑘2, 𝑚1 → −𝑚′
2, 𝑏 ̃𝑞∗

𝑖′𝑗 → 𝑎 ̃𝑞∗
𝑖′𝑗 , 𝑎 ̃𝑞∗

𝑖′𝑗 → 𝑏 ̃𝑞∗
𝑖′𝑗

(4.41)

= 2𝑝1𝑘1(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗 + 𝑎 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗) + 2𝑚1𝑚′
1(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗 + 𝑏 ̃𝑞∗
𝑖′𝑗𝑎

̃𝑞
𝑖𝑗). (4.42)

And equally for the gluino vertex trace

𝐿�̃�,𝑢
𝜆𝜆 = Tr [(/𝑘1 + 𝑚′

1)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)(/𝑝2 + 𝑚2)(𝑅𝑖′2𝑃𝑅 − 𝑅𝑖′1𝑃𝐿)] (4.43)

=̂ 𝐿 ̃𝜒,𝑡
𝜆𝜆 with

⎧{
⎨{⎩

/𝑝1 → /𝑝2, 𝑚1 → 𝑚2, 𝑏 ̃𝑞
𝑖𝑗 → 𝑅𝑖2,

𝑎 ̃𝑞
𝑖𝑗 → −𝑅𝑖1, 𝑏 ̃𝑞∗

𝑖′𝑗 → 𝑅𝑖′2, 𝑎 ̃𝑞∗
𝑖′𝑗 → −𝑅𝑖′1

(4.44)

= 2𝑝2𝑘1(𝑅𝑖2𝑅𝑖′1 + 𝑅𝑖1𝑅𝑖′1) − 2𝑚2𝑚′
1(𝑅𝑖2𝑅𝑖′1 + 𝑅𝑖′2𝑅𝑖1), (4.45)

with the change of constants as in (4.41).
As a result we can substitute the calculated traces in (4.38) and get, together with

the colour amplitude (4.36) and the prefactors listed in (4.35), the final result for the
u-channel amplitude

|𝑀𝑢|2 = 𝑔2
𝑠 ∑

𝑖,𝑖′

1
(𝑢 − 𝑚 ̃𝑞𝑖

)(𝑢 − 𝑚 ̃𝑞𝑖′
)[𝑝1𝑘2(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗 + 𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗) + 𝑚1𝑚′

2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗)]

× [𝑝2𝑘1(𝑅𝑖2𝑅𝑖′2 + 𝑅𝑖1𝑅𝑖′1) − 𝑚′
1𝑚2(𝑅𝑖2𝑅𝑖′1 + 𝑅𝑖′2𝑅𝑖1)]. (4.46)
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4.3.3 Interference

The last part from (4.16) we need to calculate – in order to get the total amplitude – is
the mixterm, or interference, Re𝑀𝑡𝑀†

𝑢 of the t- and u-channel diagrams from Figure 4.1.
Usually one only needs to take the already calculated amplitudes 𝑀𝑡 from (4.18) and
the hermitian conjugate of 𝑀𝑢 from (4.34) and compute their multiplication. But, if
we take this approach with the mixed amplitudes, we will get a problem that prevents
us from going any further. In the step where one usually can use the completeness
relations to solve the spin-dependant amplitude, like in (4.22) for the t-channel or in
(4.37) for the u-channel, the spinors for the same particle from the different diagrams
have opposite fermion flow. As a result, they connote different spinors 𝑢 and 𝑣 and it is
then not possible to use the completeness relation 14. To address this problem we need

𝑝1 𝑘1

̃𝑞𝑖,𝑡

𝑘2𝑝2

̃𝜒0
𝑗 𝑞𝑡

𝑞𝑠̃𝑔𝑎

(a) t-channel

𝑝1 𝑘2

̃𝑞𝑖,𝑡

𝑘1𝑝2

̃𝜒0
𝑗 𝑞𝑡

𝑞𝑠̃𝑔𝑎

(b) u-channel

Figure 4.3: Feynman diagrams for the computation of the interference-term of t- and u-channel,
where only the fermion flow has changed, so one can use the completeness relations.
The rest, like particles and generations, is the same as before in Figure 4.1.

to use the result from our evaluation of Feynman rules for fermion number violating
interactions in Section 4.2.1. As a reminder, we got that for our Feynman graphs all
fermion flow directions are equal and we, therefore, only need to compute one specific
fermion flow permutation and can choose the fermion flow freely. This second fact can
now be exploited by us to achieve a configuration of spinors that will allow us to use
the completeness relation again. This specific set of fermion flow directions is shown in
Figure 4.3. At this point, we will just set the fermion flow arbitrary like shown because
nothing prevents us from doing so.

After the adjustment of the fermion flow, and, hence, the Feynman diagrams, we
can build the corresponding invariant amplitudes following Appendix C as usual.15
The resulting amplitudes for the interference of the last missing third term of the total
amplitude in (4.16) are then found to be

𝑖𝑀𝑡 =
𝑖√2 𝑔𝑠
𝑡 − 𝑚2

̃𝑞𝑖

𝑇𝑎
𝑠𝑡[ ̄𝑢(𝑘1)(𝑏 ̃𝑞

𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝑅)𝑢(𝑝1)][ ̄𝑢(𝑘2)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)𝑢(𝑝2)] (4.47)

14 Both spinors need to be either 𝑢- or 𝑣-like, see Section D.1.3.
15 Remember that the fermion flow only tells us wether to take 𝑢 or 𝑣 but we have to take the same couplings

and propagator terms.
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for the t-channel and

𝑖𝑀𝑢 =
𝑖√2 𝑔𝑠

𝑢 − 𝑚2
̃𝑞𝑖′

𝑇𝑎
𝑠𝑡[ ̄𝑢(𝑘2)(𝑎 ̃𝑞

𝑖′𝑗𝑃𝐿 + 𝑏 ̃𝑞
𝑖′𝑗𝑃𝑅)𝑢(𝑝1)][ ̄𝑢(𝑘1)(𝑅𝑖′1𝑃𝐿 − 𝑅𝑖′2𝑃𝑅)𝑢(𝑝2)]

(4.48)

for the u-channel diagram from Figure 4.3. These vary only in the direction of the
coupling vertices and in the interchange of the 𝑢- and 𝑣-spinors, compared to their
analogues (4.18) and (4.33).

To form the squared magnitude we then need the Hermitian conjugate of any one of
these too. Let us choose 𝑀𝑢 and we will get

−𝑖𝑀†
𝑢 =

−𝑖√2 𝑔𝑠
𝑢 − 𝑚2

̃𝑞𝑖′

𝑇†𝑎
𝑠𝑡 [ ̄𝑣(𝑘2)(𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝐿 + 𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝑅)𝑣(𝑝1)][ ̄𝑢(𝑝2)(𝑅𝑖′1𝑃𝑅 − 𝑅𝑖′2𝑃𝐿)𝑢(𝑘1)],

(4.49)

where again, the matrix element 𝑇𝑎
𝑠𝑡 and the constants just need to be complex conjugated

and Section A.1.1 was used to get the conjugate transpose of the spinor terms. The
combination of these results yields

|𝑀𝑡𝑀†
𝑢| = ∑

𝑖,𝑖′

2𝑔2
𝑠

(𝑡 − 𝑚2
̃𝑞𝑖
)(𝑢 − 𝑚2

̃𝑞𝑖′
)
𝑀𝑖𝑛𝑡,𝑐 𝑀𝑖𝑛𝑡,𝑠, (4.50)

whereby, as it is already known from before, we can identify parts only dependant on
spin or colour, respectively.

The colour-amplitude gives

𝑀𝑖𝑛𝑡,𝑐 =
1

𝑁2 − 1
∑
𝑎,𝑠,𝑡

𝑇𝑎
𝑠𝑡𝑇𝑎

𝑡𝑠 =
1
2 , (4.51)

as above, only a factor.
The spin amplitude differs from previous calculations in that the spinor terms can no

longer be divided into two spin sums and we, therefore, get a single large expression
that must be summed over all external spins. To simplify the following calculations we
will introduce two short forms for the significant parts of the vertex coupling terms of

neutralino: 𝑉 ̃𝜒
𝑖𝑗 ≡ 𝑏 ̃𝑞

𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞
𝑖𝑗𝑃𝑅 and gluino: 𝑉�̃�

𝑖 ≡ 𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿. (4.52)
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With that, the spin-dependant amplitude follows as

𝑀𝑖𝑛𝑡,𝑠 =
1
4 ∑

𝑠1,𝑠2,𝑠3,𝑠4

[ ̄𝑢(𝑘1)(𝑠3)
𝛼 (𝑉 ̃𝜒

𝑖𝑗)𝛼𝛽
𝑢(𝑝1)(𝑠1)

𝛽 ][ ̄𝑢(𝑘2)(𝑠4)
𝛾 (𝑉�̃�

𝑖 )
𝛾𝛿

𝑢(𝑝2)(𝑠2)
𝛿 ]

× [ ̄𝑢(𝑝1)(𝑠1)
𝜉 (𝑉 ̃𝜒

𝑖′𝑗)𝜉𝜂
𝑢(𝑘2)(𝑠4)

𝜂 ][ ̄𝑢(𝑝2)(𝑠2)
𝜅 (𝑉�̃�

𝑖′)𝜅𝜆
𝑢(𝑘1)𝑠3

𝜆 ] (4.53)

=
1
4[(/𝑘1 + 𝑚′

1)𝜆𝛼(𝑉 ̃𝜒
𝑖𝑗)𝛼𝛽

(/𝑝1 + 𝑚1)𝛽𝜉(𝑉 ̃𝜒
𝑖′𝑗)𝜉𝜂

(/𝑘2 + 𝑚′
2)𝜂𝛾(𝑉�̃�

𝑖 )
𝛾𝛿

(/𝑝2 + 𝑚2)𝛿𝜅(𝑉�̃�
𝑖′)𝜅𝜆

] (4.54)

=
1
4{Tr [/𝑘1𝑉 ̃𝜒

𝑖𝑗/𝑝1𝑉 ̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 /𝑝2𝑉�̃�
𝑖′] + 𝑚1𝑚′

1 Tr [𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 /𝑝2𝑉�̃�
𝑖′]

+ 𝑚′
1𝑚′

2 Tr [𝑉 ̃𝜒
𝑖𝑗/𝑝1𝑉 ̃𝜒

𝑖′𝑗𝑉
�̃�
𝑖 /𝑝2𝑉�̃�

𝑖′] + 𝑚2𝑚′
1 Tr [𝑉 ̃𝜒

𝑖𝑗/𝑝1𝑉 ̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 𝑉�̃�
𝑖′]

+ 𝑚1𝑚′
2 Tr [/𝑘1𝑉 ̃𝜒

𝑖𝑗𝑉
̃𝜒

𝑖′𝑗𝑉
�̃�
𝑖 /𝑝2𝑉�̃�

𝑖′] + 𝑚1𝑚2 Tr [/𝑘1𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 𝑉�̃�
𝑖′]

+ 𝑚2𝑚′
2 Tr [/𝑘1𝑉 ̃𝜒

𝑖𝑗/𝑝1𝑉 ̃𝜒
𝑖′𝑗𝑉

�̃�
𝑖 𝑉�̃�

𝑖′] + 𝑚1𝑚2𝑚′
1𝑚′

2 Tr [𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗𝑉

�̃�
𝑖 𝑉�̃�

𝑖′]}.

(4.55)

Here we can see that our random choice of the fermion flow was not so random at all
and we can, like wanted, use the completeness relations from Section D.1.3 in (4.53) to
solve the spin sum. In (4.54) we could then identify a trace and as the last step in (4.55)
break that trace in eight smaller ones by multiplying out the momentum-and-mass terms
like (/𝑘1 + 𝑚′

1). There we already simplified by applying the trace theorem that an odd
number of 𝛾-matrices (or in our case slashed momenta) will vanish.16 And so the only
traces left have either zero, two or four slashed momenta.

In the following, the task is to separately calculate the traces obtained. The first one,
with all four slashed momenta, yields

Tr [/𝑘1𝑉 ̃𝜒
𝑖𝑗/𝑝1𝑉 ̃𝜒

𝑖′𝑗/𝑘2𝑉�̃�
𝑖 /𝑝2𝑉�̃�

𝑖′] (4.56)

= Tr [/𝑘1/𝑝1/𝑘2/𝑝2(𝑏 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝐿)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)(𝑅𝑖′1𝑃𝐿 − 𝑅𝑖′2𝑃𝑅)]
(4.57)

=
1
2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′1)Tr [/𝑘1/𝑝1/𝑘2/𝑝2]

+
1
2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′2 − 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′1)Tr [/𝑘1/𝑝1/𝑘2/𝑝2𝛾5] (4.58)

= 2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1)[𝑘1𝑝1𝑘2𝑝2 − 𝑘1𝑘2𝑝1𝑝2 + 𝑘1𝑝2𝑝1𝑘2]

+ 2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2 − 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1)𝑖𝜀𝑘1𝑘2𝑝1𝑝2, (4.59)

where to get (4.58), we dragged the momenta in front of the rest and used the commu-
tation relations of the chirality operators (see Section D.1.1) and are then left with two
traces with and without one 𝛾5-matrix. In the last step we then made use of the two
trace theorems (D.13) and (D.15) to be able to solve the two traces from before and as a
result, get (4.59).

The, now following, six traceswith two slashedmomenta from(4.55) are very similar 17

to each other and, hence, for the sake of clarity – only the first one is stated here explicitly.

16 See trace theorems in Section D.1.4.
17 They only vary in momenta and their position inside the trace and, thence, by shifting the momenta in

front and using the commutation relations, only have different momenta and left or right handed chirality
operators.
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See Section A.1.4 for the other calculations and results. The trace with momenta /𝑘1 and
/𝑝1 yields

Tr [/𝑘1𝑉 ̃𝜒
𝑖𝑗/𝑝1𝑉 ̃𝜒

𝑖′𝑗𝑉
�̃�
𝑖 𝑉�̃�

𝑖′] (4.60)

= Tr [/𝑘1/𝑝1(𝑏 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝐿)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)(𝑅𝑖′1𝑃𝐿 − 𝑅𝑖′2𝑃𝑅)]
(4.61)

= −
1
2(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2)Tr [/𝑘1/𝑝1] (4.62)

= −2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′2)𝑘1𝑝1, (4.63)

where in the first step we dragged /𝑝1 to the left of 𝑉 ̃𝜒
𝑖𝑗 and, therefore, needed to switch

the chirality operators from left to right and vice versa. Then, in (4.61), we can make use
of the fact that, after multiplying out, all terms with an odd number of 𝛾5-matrices will
vanish. After that we can pull the constants out of the trace and get the trace of the two
slashed momenta, which can be calculated via the trace theorem (D.12). As a result we
get (4.63).

Last but not least, it remains to calculate the trace without momenta

Tr [𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗𝑉

�̃�
𝑖 𝑉�̃�

𝑖′] (4.64)

= −2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖′1𝑅2 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗𝑅𝑖2𝑅𝑖′2), (4.65)

whereby we had to substitute the definitions of (4.52), to use the chirality operator
commutation relations and to multiply out and neglect all traces with an odd number of
𝛾5’s.18

Finally we can, with the results from the colour dependant amplitude (4.51) and
the eight calculated traces that, together, form the spin-amplitude, construct the total
amplitude of the interference of t- and u-channel

Re𝑀𝑡𝑀†
𝑢 =

𝑔2
𝑠
2 ∑

𝑖,𝑖′

1
(𝑡 − 𝑚2

̃𝑞𝑖
)(𝑢 − 𝑚2

̃𝑞𝑖′
)
{

(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1)[𝑘1𝑝1𝑘2𝑝2 − 𝑘1𝑘2𝑝1𝑝2 + 𝑘1𝑝2𝑝1𝑘2]

+ 𝑚1𝑚′
1𝑘2𝑝2(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞∗
𝑖′𝑗𝑎

̃𝑞
𝑖𝑗𝑅𝑖1𝑅𝑖′2) + 𝑚′

1𝑚′
2𝑝1𝑝2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2)

− 𝑚2𝑚′
1𝑘2𝑝1(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖′1𝑅𝑖1 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′2) + 𝑚1𝑚′

2𝑘1𝑝2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗𝑅𝑖2𝑅𝑖′1)

− 𝑚1𝑚2𝑘1𝑘2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗𝑅𝑖′1𝑅𝑖1) − 𝑚2𝑚′
2𝑘1𝑝1(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖′1𝑅𝑖1)

− 𝑚1𝑚′
1𝑚2𝑚′

2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖′1𝑅𝑖1 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑎
̃𝑞

𝑖𝑗𝑅𝑖2𝑅𝑖′2)}. (4.66)

t o c o n c l u d e : By analyzing (4.31) and (4.46) one can see that these are per forma
equal, and only the momenta are either in t or u configuration. For we do not expect the
masses to differ very much and can already theorize that the cross-sections too should
be very similar.

The invariant amplitudeswere additionally checked via the programme FeynCalc [39],
which is integrated as a package in Mathematica. For this we implemented the “starting
amplitudes” for t-channel (4.18), u-channel (4.33) and for the interference term (4.47)
and (4.48) into FeynCalc. FeynCalc then, after running the same computation steps

18 See Equation D.14 for the corresponding trace theorem and Section D.1.1 for the commutation relations of
the chirality operator and 𝛾-matrices.
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we did, delivers the same results for the averaged and amplitude squared invariant
amplitudes (4.31), (4.46) and (4.66).

After the two-component spinor calculation in the next chapter, we will in Chapter 6
implement these into DM@NLO, where we can discuss the three amplitudes and analyze
the then computed cross-sections further.



5 W E Y L C A LC U L AT I O N

In Chapter 4, we calculated the invariant amplitude in the usual four-component spinor
technique. As stated, in this chapter we will follow a different approach that will make
use of calculations with two-component spinors.

We will begin by giving some background and motivation. First, one can notice that
Weyl spinors are more elementary in that sense, that they transform like irreducible rep-
resentations, whereas Dirac spinors do not. In SUSY, Weyl spinors are included naturally
through the symmetry generators of supersymmetric field theories. Supplementary, the
chirality in the SM plays a crucial role in the form of fermionic quantum numbers and
interactions. Because left and right chiral spinors are combined in the four-component
notation, one needs to extract the information about their respective chiral transforma-
tion cumbersome with the help from the chirality operators 𝑃𝐿 and 𝑃𝑅.1 Although the
last point is neglectable if one is working in quantum electro dynamics (QED) or quantum
chromo dynamics (QCD), because of them being parity conserving, at the point of EWSB
it will be more natural to work with Weyl spinors.

All this, and the consideration that the couplingswedealwith only have Parity operator
dependencies,2 let us conclude that the two-component fermion ansatz should be of
interest for the neutralino-gluino coannihilation.

Therefore, in the next step, the said techniquewill be introduced and shortly illustrated.
After that, we will compute the cross-section using the two-component formalism and
check whether we get the same result as in the four-component Dirac calculation.

5.1 technique

The used two-component spinor formalism only differs from the “usual” technique in
the actual computation step. The general procedure, such as squaring the amplitude,
averaging over states followed by computing traces of matrices, remains the same and
takes place in four-component notation. Only the fact if either two or four component
spinors, and, thence, traces of either 𝛾- or 𝜎-matrices, are being calculated is different in
said step. One gets new relations for solving the spin (helicity) and colour sums and
for computing the traces, yet the overall technique stays similar and is comparable. But
applying only the formalism to change the spinors from four to two components without
further adjustment, will yield calculations that become impractical very fast because of
the drastic increase in the number of diagrams one needs to compute.

Therefore, in [24], Dreiner et. al. introduced the idea to use the helicity amplitude
technique 3 alongside the two-component formalism for spinors. The amplitudes are
then decomposed into simpler helicity-eigenstate graphs, which then can be calculated.
Because of their calculations being in terms of Lorentz scalar invariants, it is more
convenient and one usually needs only a set of the same schematics for solving all
amplitudes. Resulting, all amplitudes can be simply put together.

1 See Section D.1.2.
2 With the rest being constants and matrix elements, see the coupling terms in Appendix C.
3 For an overview consult e.g. [22].

34
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Furthermore, instead of using four-component spinor wave functions that are distin-
guished by particle or antiparticle status, here the two-component spinors are discerned
by their respective Lorentz group transformation properties. This explains the advantage
in handling theories with Majorana particles and theories, where left chiral fermions
transform differently than right chiral fermions.

t o s h o r t l y s t a t e t h e f i n a l p r o c e d u r e : (Following [24]) One starts ana-
logue to the machinery used in four-component formalism. This is to construct the
corresponding Feynman graphs but with helicity flow instead of the usual fermion
number flow. Here one has to include the fact that there are multiple permutations and,
therefore, multiple Feynman diagrams for each left or right chiral interaction. Thereby,
one can take the same amplitudes as in four-component and just needs to include the
correct transforming part of the vertex coupling terms regarding either a 𝜒- or 𝜓-like
interaction. This is accompanied by changing the four-spinor wave functions 𝑢 and 𝑣
with the two-spinor ones, namely 𝑥 and 𝑦 for left or right chiral spinor, respectively.
The then following part, where one has to sum over all particle states such as spin and
colour, can be solved via the new trace theorems and relations for helicity sums for
two-component fermions. As a last step the amplitudes just have to be added together
and, as a result, one will get the same presentation of the final amplitude.

In our process, we will make use of a computing aid. The squark will be given a
chirality handling. This of course will not change anything physically, but it will ease
differentation and naming of the 16 amplitudes we will get. Furthermore, it will be of
great help to examine which components of the Lagrangians will couple later on. The
squark’s chirality will be denoted by ̃𝑞𝐿 or ̃𝑞𝑅, respectively.

5.2 feynman diagrams

We will now begin by constructing the helicity amplitudes and their corresponding
Feynman diagrams which, summed together, will yield the total invariant amplitude of
the neutralino-gluino coannihilation. Here the main difference is that we will have, as
stated before, way more amplitudes compared to the four-component formalism. As a
second difference, we do not need to calculate traces with more than two 𝜎-matrices. This
is because the couplings from the vertices between neutralino-quark-squark and gluino-
quark-squark only depend on the chirality operator that vanishes in two-component
notation. Nevertheless, we, therefore, need to consider which part of the couplings
transform 𝜒- or 𝜓-like. As a result, we get not only four but eight vertices and need to
include their permutations as well. So we get not two diagrams but four.4

In addition to that, we now need to discern whether the squark couples to gaugino
or higgsino component of the neutralino.5 This can be seen by recognising the different
dependencies of squark mixing matrices 𝑅 ̃𝑞

𝑖1 and 𝑅 ̃𝑞
𝑖2 in the Lagrangians of the two

interactions. The gluino, as a gaugino, connects the left-chiral mixing matrix 𝑅 ̃𝑞
𝑖1 with the

right-chiral parity operator 𝑃𝑅, see (C.8). Hence, the coupling quark needs to be right-
chiral. In the neutralino-squark-quark interaction Lagrangian (C.2) we now immediately
see that we need to differentiate between gaugino and higgsino components. In the
gaugino part of the coupling matrices 𝑎 ̃𝑞

𝑖𝑗 and 𝑏 ̃𝑞
𝑖𝑗 the combination of squark mixing

4 Including t- and u-channel already, see Figure 4.1.
5 Recall that the neutralino ̃𝜒0 is a mixing state of gauginos �̃�0 and �̃� and higgsinos �̃�0

𝑢 and �̃�0
𝑑 .
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matrices with chirality operators corresponds to the gluino one. But the neutralino
parts have the exact opposite composition. Therefore, we need to include two more
possible permutations of helicity states from neutralino and quark for every existing one.
Resulting, we get eight amplitudes.

The coupling matrices corresponding to a gaugino- or higgsino-like transformation
are denoted with upper 𝑔 or ℎ, respectively. It follows that

𝑎 ̃𝑞
𝑖𝑗 = 𝑎𝑔

𝑖𝑗 + 𝑎ℎ
𝑖𝑗 and 𝑏 ̃𝑞

𝑖𝑗 = 𝑏𝑔
𝑖𝑗 + 𝑏ℎ

𝑖𝑗. (5.1)

Last, we have to note that the two vertices can be different chiral-coupled. In referring
to our computing aid, to let the squark carry chirality, this means that we need to consider
chiralitymixing states of the squark.With this inmind, the number of amplitudes doubles
and we now get 16 amplitudes, as we mentioned before.

Following these considerations we begin by setting the four first Feynman graphs
for the squark coupling to the gaugino component of the neutralino. Here we do not
consider ̃𝑞𝐿- ̃𝑞𝑅 mixing. With the two-component Feynman rules from Appendix C we
get Figure 5.1. We then can build the corresponding invariant amplitudes corresponding

̃𝑞𝐿

𝑞(𝑘1)̃𝜒0†(𝑝1)

𝑞†(𝑘2)̃𝑔(𝑝2)

(a)

̃𝑞∗
𝑅

̄𝑞†(𝑘1)̃𝜒0(𝑝1)

̄𝑞(𝑘2)̃𝑔†(𝑝2)
(b)

̃𝑞𝐿

𝑞†(𝑘2)̃𝜒0(𝑝1)

𝑞(𝑘1)̃𝑔†(𝑝2)
(c)

̃𝑞∗
𝑅

̄𝑞(𝑘2)̃𝜒0†(𝑝1)

̄𝑞†(𝑘1)̃𝑔(𝑝2)

(d)

Figure 5.1: Feynman diagrams for gaugino coupling without ̃𝑞𝐿,𝑅 mixing.

to the four diagrams. Here we recall the convention to differentiate the amplitudes by
the squark’s chirality. Using only the gaugino parts of the vertex terms constructed in
(C.6), (C.7), (C.9), and (C.10) we get

𝑖𝑀�̃�𝐿
𝑡,𝑔 = (−) − Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑏
𝑔
𝑖𝑗𝑅𝑖1(𝑦†

̃𝜒𝑥†
𝑞1

)(𝑥�̃�𝑦𝑞2
) (5.2)

𝑖𝑀�̃�𝑅
𝑡,𝑔 = (−)Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑎
𝑔
𝑖𝑗𝑅𝑖2(𝑥 ̃𝜒𝑦𝑞1

)(𝑦†
�̃�𝑥†

𝑞2
) (5.3)

𝑖𝑀�̃�𝐿
𝑢,𝑔 = −Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑏
𝑔
𝑖𝑗𝑅𝑖1(𝑥 ̃𝜒𝑦𝑞2

)(𝑦†
�̃�𝑥†

𝑞1
) (5.4)

𝑖𝑀�̃�𝑅
𝑢,𝑔 = Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑎
𝑔
𝑖𝑗𝑅𝑖2(𝑦†

̃𝜒𝑥†
𝑞2

)(𝑥�̃�𝑦𝑞1
), (5.5)

where, the (−) originates from the rule from Appendix C that one needs to impose a
relative minus sign for odd, relative permutations of the spinors. E.g. in (5.2) and in
(5.3) we have one permutation in comparison to our arbitrary chosen fixed order of
external particles ( ̃𝜒, ̃𝑔, 𝑞1, 𝑞2). Further, for the sake of clarity, we defined

Ω(𝑡,𝑢),𝑖 ≡
𝑖√2𝑔𝑠

(𝑡, 𝑢) − 𝑚2
̃𝑞𝑖

. (5.6)
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As a next step we do the same but for the squark coupling to the higgsino component.
Here we only need to change the helicities from the upper vertex compared to Figure 5.1.
Except for this and the different constants one gets, the graphs are similar. The Feynman
diagrams can be seen in Figure 5.2. Taking now the higgsino components of the vertex

̃𝑞𝐿

̄𝑞†(𝑘1)̃𝜒0(𝑝1)

𝑞†(𝑘2)̃𝑔(𝑝2)

(a)

̃𝑞∗
𝑅

𝑞(𝑘1)̃𝜒0†(𝑝1)

̄𝑞(𝑘2)̃𝑔†(𝑝2)
(b)

̃𝑞𝐿

̄𝑞(𝑘2)̃𝜒0†(𝑝1)

𝑞(𝑘1)̃𝑔†(𝑝2)
(c)

̃𝑞∗
𝑅

𝑞†(𝑘2)̃𝜒0(𝑝1)

̄𝑞†(𝑘1)̃𝑔(𝑝2)

(d)

Figure 5.2: Feynman diagrams for higgsino coupling without ̃𝑞𝐿,𝑅 mixing.

terms in (C.6)-(C.10) the resulting amplitudes, thence, are

𝑖𝑀�̃�𝐿
𝑡,ℎ = (−) − Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑎ℎ
𝑖𝑗𝑅𝑖1(𝑥 ̃𝜒𝑦𝑞1

)(𝑥�̃�𝑦𝑞2
) (5.7)

𝑖𝑀�̃�𝑅
𝑡,ℎ = (−)Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑏ℎ
𝑖𝑗𝑅𝑖2(𝑦†

̃𝜒𝑥†
𝑞1

)(𝑦†
�̃�𝑥†

𝑞2
) (5.8)

𝑖𝑀�̃�𝐿
𝑢,ℎ = −Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑎ℎ
𝑖𝑗𝑅𝑖1(𝑦†

̃𝜒𝑥†
𝑞2

)(𝑦†
�̃�𝑥†

𝑞1
) (5.9)

𝑖𝑀�̃�𝑅
𝑢,ℎ = Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑏ℎ
𝑖𝑗𝑅𝑖2(𝑥 ̃𝜒𝑦𝑞2

)(𝑥�̃�𝑦𝑞1
). (5.10)

Halfway done, we regard the ̃𝑞𝐿- ̃𝑞𝑅 mixing permutations in the following.
With the same coupling from squark to gaugino part, we can take the same graphs as in

Figure 5.1 and just need to change the combination of left- and right-chiral couplings from
the vertices. The resulting diagrams can be seen in Figure 5.3. And the corresponding

̃𝑞𝐿

̃𝑞∗
𝑅

𝑞(𝑘1)̃𝜒0†(𝑝1)

𝑞†(𝑘2)̃𝑔†(𝑝2)
(a)

̃𝑞∗
𝑅

̃𝑞𝐿

̄𝑞†(𝑘1)̃𝜒0(𝑝1)

̄𝑞(𝑘2)̃𝑔(𝑝2)
(b)

̃𝑞𝐿

̃𝑞∗
𝑅

𝑞†(𝑘2)̃𝜒0(𝑝1)

𝑞(𝑘1)̃𝑔(𝑝2)
(c)

̃𝑞∗
𝑅

̃𝑞𝐿

̄𝑞(𝑘2)̃𝜒0†(𝑝1)

̄𝑞†(𝑘1)̃𝑔†(𝑝2)
(d)

Figure 5.3: Feynman diagrams for gaugino coupling with ̃𝑞𝐿,𝑅 mixing.
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amplitudes are

𝑖𝑀�̃�𝐿,𝑅
𝑡,𝑔 = (−)Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑏
𝑔
𝑖𝑗𝑅𝑖2(𝑦†

̃𝜒𝑥†
𝑞1

)(𝑦†
�̃�𝑥†

𝑞2
) (5.11)

𝑖𝑀�̃�𝑅,𝐿
𝑡,𝑔 = (−) − Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑎
𝑔
𝑖𝑗𝑅𝑖1(𝑥 ̃𝜒𝑦𝑞1

)(𝑥�̃�𝑦𝑞2
) (5.12)

𝑖𝑀�̃�𝐿,𝑅
𝑢,𝑔 = Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑏
𝑔
𝑖𝑗𝑅𝑖2(𝑥 ̃𝜒𝑦𝑞2

)(𝑥�̃�𝑦𝑞1
) (5.13)

𝑖𝑀�̃�𝑅,𝐿
𝑢,𝑔 = −Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑎
𝑔
𝑖𝑗𝑅𝑖1(𝑦†

̃𝜒𝑥†
𝑞2

)(𝑦†
�̃�𝑥†

𝑞1
). (5.14)

Last, we need to construct the graphs for squark coupling to the higgsino part of ̃𝜒0.
From the Feynman diagrams in Figure 5.4 we build – the same way as before – the

̃𝑞𝐿

̃𝑞∗
𝑅

̄𝑞†(𝑘1)̃𝜒0(𝑝1)

𝑞†(𝑘2)̃𝑔†(𝑝2)
(a)

̃𝑞∗
𝑅

̃𝑞𝐿

𝑞(𝑘1)̃𝜒0†(𝑝1)

̄𝑞(𝑘2)̃𝑔(𝑝2)
(b)

̃𝑞𝐿

̃𝑞∗
𝑅

̄𝑞(𝑘2)̃𝜒0†(𝑝1)

𝑞(𝑘1)̃𝑔(𝑝2)
(c)

̃𝑞∗
𝑅

̃𝑞𝐿

𝑞†(𝑘2)̃𝜒0(𝑝1)

̄𝑞†(𝑘1)̃𝑔†(𝑝2)
(d)

Figure 5.4: Feynman diagrams for higgsino coupling with ̃𝑞𝐿,𝑅 mixing.

invariant amplitudes corresponding to the squark helicity mixing state

𝑖𝑀�̃�𝐿,𝑅
𝑡,ℎ = (−)Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑎ℎ
𝑖𝑗𝑅𝑖2(𝑥 ̃𝜒𝑦𝑞1

)(𝑦†
�̃�𝑥†

𝑞2
) (5.15)

𝑖𝑀�̃�𝑅,𝐿
𝑡,ℎ = (−) − Ω𝑡,𝑖𝑇𝑎

𝑠𝑡𝑏ℎ
𝑖𝑗𝑅𝑖1(𝑦†

̃𝜒𝑥†
𝑞1

)(𝑥�̃�𝑦𝑞2
) (5.16)

𝑖𝑀�̃�𝐿,𝑅
𝑢,ℎ = Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑎ℎ
𝑖𝑗𝑅𝑖2(𝑦†

̃𝜒𝑥†
𝑞2

)(𝑥�̃�𝑦𝑞1
) (5.17)

𝑖𝑀�̃�𝑅,𝐿
𝑢,ℎ = −Ω𝑢,𝑖𝑇𝑎

𝑠𝑡𝑏ℎ
𝑖𝑗𝑅𝑖1(𝑥 ̃𝜒𝑦𝑞2

)(𝑦†
�̃�𝑥†

𝑞1
). (5.18)

One can already see that, as promised, the amplitudes (5.2)-(5.18), that we get in
two-component spinor calculation, are plainer than their Dirac counterparts. We do
not have any matrices to consider and just need to evaluate the helicity sums of the
external particle spinors. Although this simplification is pretty beautiful, the amount of
amplitudes one needs to calculate is getting way bigger. The good thing is, as stated by
[24], the summation of the amplitudes can be done fairly simply numerically. Here we
will not do that. This is due to the fact that for comparison we only need the amplitudes
corresponding to the ones we computed via Dirac calculation.

The total amplitude we need for the cross section is given by the composition

|𝑀|2 = |𝑀𝑡|
2 + |𝑀𝑢|2 + 2Re𝑀𝑡𝑀†

𝑢, (5.19)

equal to (4.16). In the following we will compute the total invariant amplitude by com-
bining all the amplitudes we got to this point. This will be done in separate steps. Namely
to calculate the averaged and summed amplitudes for t-channel and u-channel and their
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interference individually, like in (5.19). The reason for this, next to simplicity, is the easier
comparison to the amplitudes we calculated earlier, using standard four-component
technique.

5.3 evaluation of squared amplitudes

5.3.1 T-Channel

We begin by computing the pure t-channel squared amplitude |𝑀𝑡|
2 from (5.19). The

total invariant amplitude for the t-channel is the sum of all t-channel helicity amplitudes
from (5.2)-(5.18)

𝑖𝑀𝑡 = 𝑖𝑀�̃�𝐿
𝑡,𝑔 + 𝑖𝑀�̃�𝑅

𝑡,𝑔 + 𝑖𝑀�̃�𝐿
𝑡,ℎ + 𝑖𝑀�̃�𝑅

𝑡,ℎ + 𝑖𝑀�̃�𝐿,𝑅
𝑡,𝑔 + 𝑖𝑀�̃�𝑅,𝐿

𝑡,𝑔 + 𝑖𝑀�̃�𝐿,𝑅
𝑡,ℎ + 𝑖𝑀�̃�𝑅,𝐿

𝑡,ℎ . (5.20)

By averaging over helicity and colour

|𝑀𝑡|
2 = |𝑀 ̃𝑞𝐿

𝑡,𝑔|
2

+ |𝑀 ̃𝑞𝑅
𝑡,𝑔|

2
+ ⋯ + 2Re (𝑀 ̃𝑞

𝑡,𝑔𝑀 ̃𝑞𝑅
𝑡,𝑔) + 2Re (𝑀 ̃𝑞

𝑡,𝑔𝑀 ̃𝑞𝐿
𝑡,𝑔) + ⋯ (5.21)

we obtain not only magnitude squares but interference terms as well.
There are 36 amplitudes in (5.21). The underlying techniques and calculations do not

vary much, one only needs to take different helicity-sum relations6 and trace theorems.
As a conclusion, only one magnitude square and one interference term out of the 36
amplitudes are computed exemplary in the following.

First, the magnitude square example is calculated. Here we will take the amplitude
𝑖𝑀 ̃𝑞𝐿

𝑡,𝑔, whose corresponding Feynman diagram is Figure 5.1a. Taking (5.2), multiplying
it with its conjugate transpose7 and the final averaging over spin and colour yields

|𝑀 ̃𝑞𝐿
𝑡,𝑔|

2
= −

1
2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑡,𝑖′𝑏

𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 𝑅𝑖1𝑅𝑖′1

1
4 ∑

𝑠1,𝑠3

(𝑦†
̃𝜒𝑥†

𝑞1
)(𝑥𝑞1

𝑦 ̃𝜒) ∑
𝑠2,𝑠4

(𝑥�̃�𝑦𝑞2
)(𝑦†

𝑞2
𝑥†

�̃�).

(5.22)

Here we took advantage of the fact that the colour dependant term is the same as in the
Dirac calculation and we can take the result directly from (4.21). Next to that, 1

4 is – as
before – the averaging factor we get from two initial spin 1/2 particles.

In (5.22) we already ordered the spinors according to their helicity in the correspond-
ing helicity sums. This now simplifies the calculation by allowing us to compute the
sums individually. Here we again show the explicit chirality indices in van der Waerden
notation.8 This will help us to identify the resulting traces. The first sum over helicities
𝑠1 and 𝑠3 from ̃𝜒0 and 𝑞1 simplifies under utilization of the “completeness relations for
two-spinors”, the helicity sum relations from [24], from Section D.2.2 to

∑
𝑠1,𝑠3

(𝑦†
̃𝜒 ̇𝛼𝑥† ̇𝛼

𝑞1
)(𝑥𝛽

𝑞1𝑦 ̃𝜒𝛽) = (𝑝1 ⋅ 𝜎𝛽 ̇𝛼)(𝑘1 ⋅ �̄� ̇𝛼𝛽) (5.23)

= 𝑝1𝜇𝑘1𝜈 Tr [𝜎𝜇�̄�𝜈] (5.24)

= 2𝑝1𝑘1, (5.25)

6 As the counterpart to four-component completeness relations.
7 This will just complex conjugate the constants and invert the order of the helicity spinors 𝑥 and 𝑦, next to

taking their hermitian conjugate.
8 To not get confused with the colour index 𝑎 and because [21] uses the same notation, we swap 𝑎, 𝑏 – as

used before – for greek indices starting from 𝛼, 𝛽, ⋯ .
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where in the second step we see that with summation convention we calculate the trace
of the sigma matrices. The final step is just solving the trace via trace theorem (D.24).
The procedure for calculating the second helicity sum over 𝑠2 and 𝑠4 follows nearly
equivalent. The only difference is that we have now other momenta and the indices are
contracted the other way around. First the 𝜒-like and then the 𝜓-like components of the
sigma matrices. This does not change anything physical and so we get

∑
𝑠2,𝑠4

(𝑥 𝛼
�̃� 𝑦𝑞2𝛼)(𝑦†

𝑞2 ̇𝛽𝑥† ̇𝛽
�̃� ) = (𝑝2 ⋅ �̄� ̇𝛽𝛼)(𝑘2 ⋅ 𝜎𝛼 ̇𝛽) (5.26)

= 𝑝2𝜇𝑘2𝜈 Tr [�̄�𝜇𝜎𝜈] (5.27)

= 2𝑝2𝑘2. (5.28)

Combining (5.33) and (5.36) and substituting them into (5.22) yields

|𝑀 ̃𝑞𝐿
𝑡,𝑔|

2
= −

1
2𝑝1𝑘2𝑝2𝑘2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑡,𝑖′𝑏

𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 𝑅𝑖1𝑅𝑖′1 (5.29)

as a result for the first computed invariant amplitude.
The second example calculation is one of the interference terms. We take the ampli-

tudes 𝑀 ̃𝑞𝐿
𝑡,𝑔 and 𝑀 ̃𝑞𝑅

𝑡,𝑔 from (5.2) and (5.3), respectively. From their Feynman diagrams
Figure 5.1a and Figure 5.1b we can immediately see that the spinor terms like (𝑦†

̃𝜒𝑥†
𝑞1

) now
do not combine with their respective hermitian conjugate. By substituting the known
results for the averaging factors and taking the sum over all squark generations we get

Re (𝑀 ̃𝑞𝐿
𝑡,𝑔𝑀 ̃𝑞𝑅†

𝑡,𝑔 ) =
−1
2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑡,𝑖′𝑏

𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 𝑅𝑖′2𝑅𝑖1

1
4 ∑

𝑠1,𝑠3

(𝑦†
̃𝜒𝑥†

𝑞1
)(𝑦†

𝑞1
𝑥†

̃𝜒) ∑
𝑠2,𝑠4

(𝑥�̃�𝑦𝑞2
)(𝑥𝑞2

𝑦�̃�),

(5.30)

with the averaging factors already embedded. Again, we now can separate by helicities
and calculate the corresponding parts in the van der Waerden notation. The sum over
helicities from ̃𝜒0 and 𝑞1 yields

∑
𝑠1,𝑠3

(𝑦†
̃𝜒 ̇𝛼𝑥† ̇𝛼

𝑞1
)(𝑦†

𝑞1 ̇𝛽𝑥† ̇𝛽
̃𝜒 ) = ( − 𝑚1𝛿 ̇𝛽

̇𝛼)( − 𝑚′
1𝛿 ̇𝛼

̇𝛽) (5.31)

= 𝑚1𝑚′
1 Tr [I2] (5.32)

= 2𝑚1𝑚′
1, (5.33)

where we used the – by now well known – completeness relation for Weyl-spinors in
(5.31). In the next step we identified, with Einstein’s summation convention, a trace of
the 2𝐷-unit-matrix.

The remaining helicity-sum can be derived nearly equivalently

∑
𝑠2,𝑠4

(𝑥𝛼
�̃�𝑦𝑞2𝛼)(𝑥𝛽

𝑞2𝑦�̃�𝛽) = ( − 𝑚2𝛿 𝛼
𝛽 )( − 𝑚′

2𝛿 𝛽
𝛼 ) (5.34)

= 𝑚2𝑚′
2 Tr [I2] (5.35)

= 2𝑚2𝑚′
2. (5.36)

Taking the results from (5.33) and (5.36) and substituting them into (5.30) we get the
invariant amplitude

Re (𝑀 ̃𝑞𝐿
𝑡,𝑔𝑀 ̃𝑞𝑅†

𝑡,𝑔 ) = −
1
2𝑚1𝑚′

1𝑚2𝑚′
2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑡,𝑖′𝑏

𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 𝑅𝑖′2𝑅𝑖1. (5.37)
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These two example calculations have shown the general procedure in calculating
amplitudes for the t-channel of the process. The omitted amplitudes, which are not
explicitly stated here, can be derived very closely to those calculated above.

With all 36 amplitudes, squared- and interference-terms, we can, by adding them as
in (5.21), construct the total t-channel amplitude 9

|𝑀𝑡|
2 =

𝑔2
𝑠

𝑁 ∑
𝑖,𝑖′

1
(𝑡 − 𝑚2

̃𝑞𝑖
)(𝑡 − 𝑚2

̃𝑞𝑖′
)

× [𝑝1𝑘1(𝑎𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 + 2𝑎𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )

+ 𝑚1𝑚′
1(2𝑎𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 2𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )]

× [𝑝2𝑘2(𝑅1𝑖𝑅1𝑖′ + 𝑅2𝑖𝑅2𝑖′) − 𝑚2𝑚′
2(𝑅1𝑖𝑅2𝑖′ + 𝑅2𝑖𝑅1𝑖′)]. (5.38)

5.3.2 U-Channel

Next the u-channel amplitude |𝑀𝑡|
2 from (5.19) needs to be calculated. The total invariant

amplitude for the u-channel is now the sum of the 36 u-channel helicity amplitudes in
(5.2)-(5.18)

𝑖𝑀𝑢 = 𝑖𝑀�̃�𝐿
𝑢,𝑔 + 𝑖𝑀�̃�𝑅

𝑢,𝑔 + 𝑖𝑀�̃�𝐿
𝑢,ℎ + 𝑖𝑀�̃�𝑅

𝑢,ℎ + 𝑖𝑀�̃�𝐿,𝑅
𝑢,𝑔 + 𝑖𝑀�̃�𝑅,𝐿

𝑢,𝑔 + 𝑖𝑀�̃�𝐿,𝑅
𝑢,ℎ + 𝑖𝑀�̃�𝑅,𝐿

𝑢,ℎ . (5.39)

And we again get pure and interference terms by building the magnitude square

|𝑀𝑢|2 = |𝑀 ̃𝑞𝐿
𝑢,𝑔|

2
+ |𝑀 ̃𝑞𝑅

𝑢,𝑔|
2

+ ⋯ + 2Re (𝑀 ̃𝑞
𝑢,𝑔𝑀 ̃𝑞𝑅†

𝑢,𝑔 ) + 2Re (𝑀 ̃𝑞
𝑢,𝑔𝑀 ̃𝑞𝐿†

𝑢,𝑔 ) + ⋯ . (5.40)

The independant contributions in (5.40) can be constructed via the same techniques
showed in the previous section. Only the constants and matrix elements differ. Therefore,
we will not state their calculations but will just give the final result in form of the squared
u-channel amplitude

|𝑀𝑢|2 =
𝑔2

𝑠
𝑁 ∑

𝑖,𝑖′

1
(𝑢 − 𝑚2

̃𝑞𝑖
)(𝑢 − 𝑚2

̃𝑞𝑖′
)

× [𝑝1𝑘2(𝑎𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 + 2𝑎𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )

+ 𝑚1𝑚′
2(2𝑎𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 2𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 2𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )]

× [𝑝2𝑘1(𝑅1𝑖𝑅1𝑖′ + 𝑅2𝑖𝑅2𝑖′) − 𝑚′
1𝑚2(𝑅1𝑖𝑅2𝑖′ + 𝑅2𝑖𝑅1𝑖′)]. (5.41)

5.3.3 Interference

To build the complete amplitude for this scattering we now only need to compute the last
remaining contribution from (5.19). Namely, all 64 interference terms of u- and t-channel
in (5.2)-(5.18)

Re (𝑀𝑡𝑀†
𝑢) = Re (𝑀�̃�𝐿

𝑡,𝑔𝑀�̃�𝐿†
𝑢,𝑔 ) + Re (𝑀�̃�𝐿

𝑡,𝑔𝑀�̃�𝑅†
𝑢,𝑔 ) + ⋯ + Re (𝑀�̃�𝑅

𝑡,𝑔𝑀�̃�𝐿†
𝑢,𝑔 ) + ⋯ . (5.42)

9 Remember that we only need the invariant amplitude 𝑀 to build the cross section following the procedure
from Section 4.1.
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Here we encounter some differences. First of all, we now get different combinations of
helicity spinors, and because of only interfering amplitudes, we can no longer separate
the helicity sum and we, therefore, need to sum all spinors together.

Here we will only explicitly show the calculation of two examples out of the 64. These
two need different relations compared to the computation of (5.22) and (5.30).

The first one being the interference of graphs Figure 5.1a and Figure 5.1c with their
respective amplitudes (5.2) and (5.4)

Re (𝑀 ̃𝑞𝐿
𝑡,𝑔𝑀 ̃𝑞𝐿†

𝑢,𝑔 ) = −
1
2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑢,𝑖′𝑏

𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 𝑅𝑖2𝑅𝑖′2

1
4 ∑

𝑠1,𝑠2𝑠3,𝑠4

(𝑦†
̃𝜒𝑥†

𝑞1
)(𝑥�̃�𝑦𝑞2

)(𝑦†
𝑞2

𝑥†
̃𝜒)(𝑥𝑞1

𝑦�̃�),

(5.43)

where again averaging factors are already calculated and the summation is over helicities
𝑠𝑛 of all four particles. This sum can be derived as follows, again using the van der
Waerden-notation,

∑
𝑠1,𝑠2𝑠3,𝑠4

(𝑦†
̃𝜒 ̇𝛼𝑥† ̇𝛼

𝑞1
)(𝑥𝛽

𝑞1𝑦�̃�𝛽)(𝑥𝛾
�̃�𝑦𝑞2𝛾)(𝑦†

𝑞2 ̇𝛿𝑥† ̇𝛿
̃𝜒 ) (5.44)

= ( − 𝑚1𝛿 ̇𝛿
̇𝛼)(𝑘1 ⋅ �̄� ̇𝛼𝛽)( − 𝑚2𝛿 𝛾

𝛽 )(𝑘2 ⋅ 𝜎𝛾 ̇𝛿) (5.45)

= 𝑚1𝑚2𝑘1𝜇𝑘2𝜈 Tr [�̄�𝜇𝜎𝜈] (5.46)

= 2𝑚1𝑚2𝑘1𝑘2. (5.47)

Here we used the completeness relations for helicity spinors from Section D.2.2 in (5.44).
Following the usual procedure we then identify a trace with diagonal elements 𝑀 ̇𝛿

̇𝛿 with
𝑀 = �̄�𝜇𝜎𝜈. In the final step in (5.46) trace theorem (D.24) was used. With this result
we can write (5.43) as

Re (𝑀 ̃𝑞𝐿
𝑡,𝑔𝑀 ̃𝑞𝐿†

𝑢,𝑔 ) = −
1
4𝑚1𝑚2𝑘1𝑘2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑢,𝑖′𝑏

𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 𝑅𝑖2𝑅𝑖′2. (5.48)

The second example will provide an illustration of a trace theorem for four sigma
matrices. For this we choose the interference of graphs Figure 5.2a and Figure 5.2d with
amplitudes (5.7) and (5.10), respectively. Again, we construct the combined invariant
amplitude with averaging factors

Re (𝑀 ̃𝑞𝐿
𝑡,ℎ𝑀 ̃𝑞𝑅†

𝑢,ℎ ) =
1
2 ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑢,𝑖′𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 𝑅𝑖1𝑅𝑖′2

1
4 ∑

𝑠1,𝑠2𝑠3,𝑠4

(𝑥 ̃𝜒𝑦𝑞1
)(𝑥�̃�𝑦𝑞2

)(𝑦†
𝑞2

𝑥†
̃𝜒)(𝑦†

𝑞1
𝑥†

�̃�).

(5.49)

To solve the helicity sum we (using the van der Waerden-notation) exploit the helicity
completeness relations and get a trace of now four 𝜎-matrices

∑
𝑠1,𝑠2𝑠3,𝑠4

(𝑥𝛼
̃𝜒𝑦𝑞1𝛼)(𝑦†

𝑞1 ̇𝛽𝑥† ̇𝛽
�̃� )(𝑥𝛾

�̃�𝑦𝑞2𝛾)(𝑦†
𝑞2 ̇𝛿𝑥† ̇𝛿

̃𝜒 ) (5.50)

= (𝑝1 ⋅ �̄� ̇𝛿𝛼)(𝑘1 ⋅ 𝜎𝛼 ̇𝛽)(𝑝2 ⋅ �̄� ̇𝛽𝛾)(𝑘2 ⋅ 𝜎𝛾 ̇𝛿) (5.51)

= 𝑝1𝜇𝑘1𝜈𝑝2𝜌𝑘2𝜎 Tr [�̄�𝜇𝜎𝜈�̄�𝜌𝜎𝜎] (5.52)

= 2(𝑝1𝑘1𝑝2𝑘2 − 𝑝1𝑝2𝑘1𝑘2 + 𝑝1𝑘2𝑘1𝑝2 − 𝑖𝜀𝑝1𝑘2𝑝2𝑘2), (5.53)
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where in (5.52), we used the trace theorem (D.26) to solve the trace. This yields for
(5.49)

Re (𝑀 ̃𝑞𝐿
𝑡,ℎ𝑀 ̃𝑞𝑅†

𝑢,ℎ ) =
1
4(𝑝1𝑘1𝑝2𝑘2 − 𝑝1𝑝2𝑘1𝑘2 + 𝑝1𝑘2𝑘1𝑝2) ∑

𝑖,𝑖′
Ω𝑡,𝑖Ω𝑢,𝑖′𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 𝑅𝑖1𝑅𝑖′2.

(5.54)

With calculating all 64 corresponding to the scheme and technique demonstrated on
the two example calculations (5.43) and (5.49) we get, as a final result for the magnitude
square of the interference of u- and t-channel graphs,

Re (𝑀𝑡𝑀†
𝑢) =

𝑔2
𝑠
2 ∑

𝑖,𝑖′

1
(𝑡 − 𝑚2

̃𝑞𝑖
)(𝑢 − 𝑚2

̃𝑞𝑖′
)
{

× [(𝑏𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 )𝑅𝑖1𝑅𝑖′2

+ (𝑎𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′1]

× [𝑘1𝑝1𝑘2𝑝2 − 𝑘1𝑘2𝑝1𝑝2 + 𝑘1𝑝2𝑝1𝑘2]

+ 𝑚1𝑚′
1𝑘2𝑝2[(𝑏𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′1

+ (𝑎𝑔∗
𝑖′𝑗 𝑎

𝑔
𝑖𝑗 + 𝑎𝑔∗

𝑖′𝑗 𝑎
ℎ
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎
𝑔
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎ℎ
𝑖𝑗)𝑅𝑖1𝑅𝑖′2]

+ 𝑚′
1𝑚′

2𝑝1𝑝2[(𝑏𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′1

+ (𝑎𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖1𝑅𝑖′2]

− 𝑚2𝑚′
1𝑘2𝑝1[(𝑏𝑔

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 )𝑅𝑖′1𝑅𝑖1

+ (𝑎𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′2]

+ 𝑚1𝑚′
2𝑘1𝑝2[(𝑏𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖1𝑅𝑖′2

+ (𝑎𝑔∗
𝑖′𝑗 𝑎

𝑔
𝑖𝑗 + 𝑎𝑔∗

𝑖′𝑗 𝑎
ℎ
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎
𝑔
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎ℎ
𝑖𝑗)𝑅𝑖2𝑅𝑖′1]

− 𝑚1𝑚2𝑘1𝑘2[(𝑏𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′2

+ (𝑎𝑔∗
𝑖′𝑗 𝑎

𝑔
𝑖𝑗 + 𝑎𝑔∗

𝑖′𝑗 𝑎
ℎ
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎
𝑔
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎ℎ
𝑖𝑗)𝑅𝑖′1𝑅𝑖1]

− 𝑚2𝑚′
2𝑘1𝑝1[(𝑏𝑔

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 )𝑅𝑖2𝑅𝑖′2

+ (𝑎𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖′1𝑅𝑖1]

− 𝑚1𝑚′
1𝑚2𝑚′

2[(𝑏𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 )𝑅𝑖′1𝑅𝑖1

+ (𝑎𝑔∗
𝑖′𝑗 𝑎

𝑔
𝑖𝑗 + 𝑎𝑔∗

𝑖′𝑗 𝑎
ℎ
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎
𝑔
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑎ℎ
𝑖𝑗)𝑅𝑖2𝑅𝑖′2]}. (5.55)

5.3.4 Comparison to Four-Component

In the following we will compare the results we achieved via the two-component calcu-
lation with their counterparts from the Dirac calculation. For this to work we need to do
some preliminary work. First of all we see that, using (5.1),

𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗 = 𝑎𝑔

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑎
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 (5.56)

= 𝑎𝑔
𝑖𝑗𝑎

𝑔∗
𝑖′𝑗 + 2𝑎𝑔

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑎ℎ∗
𝑖′𝑗 , (5.57)
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𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗 = 𝑏𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 (5.58)

= 𝑏𝑔
𝑖𝑗𝑏

𝑔∗
𝑖′𝑗 + 2𝑏𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑏ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 , (5.59)

𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗 = 𝑎𝑔

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎𝑔

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏
𝑔∗
𝑖′𝑗 + 𝑎ℎ

𝑖𝑗𝑏ℎ∗
𝑖′𝑗 , (5.60)

𝑎 ̃𝑞∗
𝑖′𝑗𝑏

̃𝑞
𝑖𝑗 = 𝑎𝑔∗

𝑖′𝑗 𝑏
𝑔
𝑖𝑗 + 𝑎𝑔∗

𝑖′𝑗 𝑏
ℎ
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑏
𝑔
𝑖𝑗 + 𝑎ℎ∗

𝑖′𝑗 𝑏ℎ
𝑖𝑗, (5.61)

where in (5.57) and (5.59) we simplified by using the fact that 𝑎 ̃𝑞
𝑖𝑗 = 𝑎 ̃𝑞∗

𝑖′𝑗 ∀𝑖 = 𝑖′ and,
thence, 𝑎𝑔

𝑖𝑗 = 𝑎𝑔∗
𝑖′𝑗 and 𝑎ℎ

𝑖𝑗 = 𝑎ℎ∗
𝑖′𝑗 ∀𝑖 = 𝑖′ and equivalently for 𝑏 ̃𝑞

𝑖𝑗 because the coupling
matrices are real. By using the relations above in the results for t- u- and interference-
term (5.38), (5.41) and (5.55) the expressions simplify and we can see that they are
identical to the results from the preceding four-component calculation in (4.31), (4.46)
and (4.66).

t o s u m u p : In this chapter, we presented an alternate way to calculate Feynman
graphs and showed the physical equivalence to the usual four-component technique
by computing this thesis’ coannihilation in both ways. We have seen the advantage in
hindsight to processes where one has to take into account the particles chiralities. The
disadvantage, as stated in the beginning, would be the huge amount of amplitudes
one has to compute, but with a suited numerical programme this can be bypassed and,
because of simpler calculations and numerical summation of these, the error-proneness
would be reduced significantly.

After this more technical chapter, we will finally implement the obtained results for
the invariant amplitudes from this and the last chapter, into DM@NLO in the next chapter.
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Finally, we can now implement (4.31), (4.46) and (4.66) – the invariant amplitudes for u-
and t-channel and their interference of the neutralino-gluino coannihilation – into DM@NLO.
There, as described in Appendix B, the corresponding cross-section will be calculated
and given to MicrOMEGAs, where the neutralino relic density will be computed.

The implementation with the most important results regarding the relic density and
some SUSY masses will be described at first. Then, in the following section, we will give
the numerical results of the calculated cross-sections in the implemented scenario. There,
we also discuss the optional coannihilation of a chargino (the linear combination of the
charged wino and the charged higgsino) with a gluino. Finally, we discuss the numerical
results and their physical meaning via consideration of experimental and theoretical
bounds.

6.1 implementation

In order to get numerical results we need to define one specific pMSSM scenario via the
19 parameters from Table 3.3.

We have to add four new parameters, namely the three SM Yukawa couplings 𝑦𝑡, 𝑦𝑏
and 𝑦𝜏 and the SUSY soft breaking scale 𝑄SUSY, which depicts the scale where we have to
define the other parameters. The Yukawa couplings are needed for a slight adjustment
compared to the SM values to get more sophisticated results. The chosen values for the
now 24 parameters, we need to describe our model, are selected with hindsight on giving
the most contribution possible to the neutralino relic density Ω ̃𝜒0

1
but to still remain

in a plausible range of the results from the Planck collaboration in (2.1) and so that
the resulting masses of the SUSY particles will be in a range not excluded by collider
experiments. Next to that, we need to get gluino and neutralino to have very similar
masses (Δ𝑚 = small), so that the coannihilation process really is contributing to the
total relic density (see the explanation in Section 2.3.1).

tan𝛽 𝑀1 𝑀2 𝑀3 𝐴𝑡 𝐴𝑏 𝐴𝜏 𝜇

45.27 1005.54 1088.51 868 −2795.76 2160.9 −2445.45 −2290.38
𝑚𝐻3 𝑚 ̃𝑒𝐿

𝑚�̃�𝐿
𝑚 ̃𝑒𝑅

𝑚�̃�𝑅
𝑚 ̃𝑞𝐿1

𝑚 ̃𝑞𝐿3
𝑚�̃�𝑅

3781.1 1883.29 3327.81 2905.44 3400.69 2657.91 3401.05 2326.09
𝑚 ̃𝑡𝑅

𝑚 ̃𝑑𝑅
𝑚�̃�𝑅

𝑦𝑡 𝑦𝑏 𝑦𝜏 𝑄SUSY

1108.72 2808.38 3661.15 0.819286779 0.616429865 0.438025671 3146.951

Table 6.1: The 23 DM@NLO-parameters and their values for the scenario used. Dimensionful quan-
tities are given in GeV.

These restrictions in combination with the goal to get a high contribution from this
process yield the scenario parameter values stated in Table 6.1. Immediately we can state

45
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two interesting facts emerging from the chosen parameters. First of all, the neutralino is
a mostly bino and wino mixed state, but less higgsino like, which can be seen via the
relation |𝑀1| ≃ |𝑀2| ≪ |𝜇|. Secondly, 𝜇 ≫ 𝑚𝑍, which again leads to a necessary fine-
tuning. These will be further discussed in Section 6.3 and the so-called “little” hierarchy
problem in Section 6.3.3.

The parameters are then given to SPheno, which calculates the SUSY mass spectrum
and mixing matrices. We will only state the most important masses here. The Higgs
sector masses are

𝑚ℎ0 = 123.33GeV, 𝑚𝐻0 = 3781.10GeV and 𝑚𝐻+ = 3782.08GeV. (6.1)

The lightest quark is important for bounds set by collider searches. In our scenario this
is the scalar top quark or stop ̃𝑡 with

𝑚 ̃𝑡 = 1173.4GeV. (6.2)

The masses for neutralino, chargino and gluino are

𝑚 ̃𝜒0
1

= 994.5GeV, 𝑚 ̃𝜒±
1

= 1133.8GeV and 𝑚�̃� = 1071.4GeV. (6.3)

As it should be, the neutralino is the LSP and the gluino’s mass is similar to the neu-
tralino’s and is, therefore, the next-to-lightest supersymmetry particle (NLSP). Especially
𝑚 ̃𝜒0

1
will be the main point for discussing the validity of this scenario and SUSY in

general.1 Then MicrOMEGAs takes the values from SPheno and cross-sections from DM@NLO

and CalcHEP (see Appendix B) and calculates the relic density for the neutralino. In our
scenario the relic density evaluates to

Ω ̃𝜒0
1
ℎ2 = 0.125. (6.4)

One can see that this value is not in the confidence interval of the Planck result (2.1).
However, the chosen scenario corresponds only to a single point in the mass spectrum
and should be, as it is, near to the measured dark matter relic density. For further
research one can then investigate the area around that point with slight adjustments
to the parameters from Table 6.1. Secondly, the stated uncertainty is merely dependant
on the integrated measurement techniques and should not be taken for absolute. And
finally, some not yet in DM@NLO included cross-sections could decrease Ω ̃𝜒0

1
.

With that in mind, we can further compute the processes contributing to (6.4). These
are listed in Table 6.2. We can see that one of this thesis’ processes – with the final state
quarks being top and anti-top – contributes to the total relic density with 0.2 %.

6.2 cross-sections

Let us now present this thesis’ results in form of the cross-section from the neutralino-
gluino coannihilation. The cross-section is calculated in DM@NLO by integrating the differ-
ential cross-section set by the invariant amplitude we derived and the initial particle flux
(see Appendix B). In DM@NLO (and in our specific scenario set by Table 6.1) we can then
specify the final state products, which we deliberately set to a general quark and anti-
quark throughout this thesis, as two specific quarks and state a specific centre-of-mass
(CM) momentum 𝑝cm. With this, all possible quark final states can be computed. These
are depicted in Figure 6.1.

1 This too will be (briefly) done in Section 6.3.
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contr. initial final

60.7 % ̃𝑔, ̃𝑔 𝑔, 𝑔
8.4 % ̃𝑔, ̃𝑔 𝑏, ̄𝑏
6.6 % ̃𝑔, ̃𝑔 𝑑, ̄𝑑
6.6 % ̃𝑔, ̃𝑔 𝑠, ̄𝑠
5.8 % ̃𝑔, ̃𝑔 𝑢, ̄𝑢
5.8 % ̃𝑔, ̃𝑔 𝑐, ̄𝑐
4.2 % ̃𝑔, ̃𝑔 𝑡, ̄𝑡
1.2 % ̃𝑔, ̃𝑡 𝑔, 𝑡
0.2 % ̃𝜒0

1 , ̃𝑔 𝑡, ̄𝑡
0.1 % ̃𝜒0

1 , ̃𝜒0
1 𝑡, ̄𝑡

Table 6.2: Contributions of (co)annihilation processes to the neutralino relic density Ω�̃�0
1
.

We can see that, as seen in Table 6.2, the top 𝑡 and antitop ̄𝑡 final state possibility
contributes the most. Especially at low 𝑝cm this scattering makes up nearly 100 % of the
total cross-section. The up/antiup 𝑢 ̄𝑢 and charm/anticharm 𝑐 ̄𝑐 final state sectors carry
some significance at higher 𝑝cm but are smaller than 0.1 % even then. The other final
state sectors can be omitted without doubt. For 𝑡 ̄𝑡 being most significant, let us calculate
the cross-sections for the three channels of this specific process separately (via each
calculated invariant ampliudes (4.31), (4.46) and (4.66)).

The three-channel cross-sections, as in Figure 6.2, yield the interesting fact that t- and
u-channel are – at least to numerical precision – exactly equal. Furthermore, one can see
that both the interference term and the t- and u-channel cross-sections are up to two
orders higher than the total cross-section 𝜎𝑡𝑜𝑡. That is, they cancel each other out, except
for the small amount 𝜎𝑡𝑜𝑡. But this cancellation decreases drastically with higher 𝑝cm.
We see that all three amplitudes are significant for the total cross-section and one needs
to consider all of them. Interestingly, 𝜎𝑡𝑜𝑡 declines rather rapidly and does not show
signs of why this behaviour would change. Furthermore, leading-order calculation (loop
interactions) could reign significant change for the cross-section at low 𝑝cm via the high
susceptibility of the channels due to the cancellation of the individual cross-sections.But,
because of the equal t- and u-channel cross-sections and because of their high order
cancellation with the interference term, we suspect an unphysical symmetry originating
in the calculation procedure. This symmetry could be feasible at higher orders too so that
even then, the cancellation holds, and 𝜎𝑡𝑜𝑡 would not experience a significant change.

It is to note that the computed cross-sections by DM@NLO deliver results deviating
around 3 % compared to the same particle tree-level cross-sections from CalcHEP. This
small deviation can originate in constants set by the programmes which differ slightly.
Therefore, we will interpret this variance in such a way that our results can be assessed
with a high degree of certainty.

6.2.1 Chargino-Gluino Coannihilation

We can, as an interludum, analyse the coannihilation of chargino and gluino. This will
only change the constants and matrix elements and restrict the final state quarks colour
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Figure 6.1: Cross-sections for all possible neutralino-gluino scatterings with quark final states.
The solid, coloured lines state multiple cross-sections with exactly the same or at least
not distinguishable courses. The subordinate figure gives the relative contribution
(rel. contr) of specific final state to the total cross-section 𝜎𝑡𝑜𝑡.

by the chargino interacting strongly and, hence, changing the colour charge of the upper
final state quark. The initial and final states, the propagator and the overall structure
of the invariant amplitudes and, therefore, the cross-section, will stay the same. This is
because the chargino-squark-quark interaction Lagrangian has also the same structure
as the neutralino one (which is fitting because chargino and neutralino only differ so
much).

With the constants being swapped and the regulations for the final state colours having
changed, we can integrate the same three invariant amplitudes as before in DM@NLO. The
resulting cross-sections – for all final state possibilities – can be seen in Figure 6.3.

As before one can identify that there is one most significant final state colour permuta-
tion, namely bottom 𝑏 and stop ̃𝑡. Second to that, we see that the chargino cross-section
is higher to one or two orders of magnitude compared to the neutralino one.

This process is, as it is, not relevant to our dark matter problem. However, it shows the
simple transfer to be able to do only one calculation – for either chargino or neutralino –
and get both. 2

6.3 discussion

First of all, we can discuss the low contribution of the neutralino-gluino coannihilation
to the relic density of the neutralino. From Table 6.2 we can see that especially gluino
pair annihilations are the most dominant processes.

This was investigated by [41]. There, Profumo and Yaguna showed that for a bino like
neutralino 3 with a quasi-degenerate gluino indeed the threemain contributing processes
are gluino-gluino, neutralino-gluino and neutralino-neutralino (co)annihilations. As

2 As a last note, we can state that the chargino gains importance in specific scenarios either being the NLSP
for the neutralino LSP or for a gravitino LSP, as it was done in e.g. [36].

3 This mainly holds for wino and higgsino too. More precisely, the transition zone between gluino and
neutralino pair annihilation dominance in Figure 6.4 would shift to smaller Δ𝑚.
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Figure 6.2: Relative channel-contributions for the significant 𝑡 ̄𝑡-process. The solid, coloured
line states multiple channel cross-sections with exactly the same or at least not
distinguishable courses.

depicted in Figure 6.4, for neutralino-gluino mass splittings Δ𝑚 ≃ 10 %, the distribution
of the contribution of the three processes is very similar to what we computed. So even at
higher Δ𝑚 we should not be expecting a more significant contribution of the neutralino-
gluino coannihilation. This, in fact, is a unique property of gluino coannihilations. Other
coannihilation partners would always make up the dominant process in the transition
zone between both pair annihilations, at around Δ𝑚 ∼ (10-20)%. In comparison to [41],
we have a very light stop quark which is contributing too – in form of coannihilation
with the gluino (see Table 6.2).

Furthermore, we see here and from Figure 6.1 that the top-antitop final state is the
most relevant one. This is to be explained via the large top Yukawa coupling 𝑦𝑡.

Next to that, it is to be mentioned that the gluino pair annihilation would be dominant
for all tan𝛽, for the gluinos interacting strong and, therefore, not depending on tan𝛽.
The dominance of this annihilation is interesting because it suppresses the relic density.
As shown in [41], this is especially the case for bino dark matter.

6.3.1 Neutralino Composition

We can now shortly discuss the bino-wino like nature of the neutralino in our pMSSM
scenario.4 We saw in Table 6.2 that the bino-wino like neutralino pair annihilation seems
to be small. This is true and in fact leads – like all bino darkmatter – to an over-abundance
in the relic density. In our scenario, we suppressed the over-abundant relic density via two
factors. First, we have 𝑀2 not much bigger than 𝑀1 and the wino part of our neutralino
results in more reactive interactions and a greater cross-section. Secondly, we deliberately
created an NLSP – in form of the gluino having near neutralino mass – and, therefore, we

4 Actually we only have a “mostly” bino-wino mixed state. Because of 𝜇 not much greater than 1-2TeV, hig-
gsino couplings are possible. These so-called funnels yield additional annihilation channels via a propagator.
This propagator could, in our case, be one of the heavier MSSM Higgs bosons.
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Figure 6.3: Cross-sections for all possible chargino-gluino scatterings with quark final states. The
solid, coloured line states multiple cross-sections with exactly the same or at least
not distinguishable courses. The subordinate figure gives the relative contribution
(rel. contr) of specific final state to the total cross-section 𝜎𝑡𝑜𝑡.

allowed coannihilations of the LSP with the NLSP, which too suppresses the abundance
of relic neutralinos.5

However, this means that we have to restrict our available parameter space significantly.
We need to have very specific masses and couplings to get the abundance right to fit
experimental data.6 This too is shown in e.g. [23], where one solution to this problem
is given as well. Their ansatz is to investigate an early matter-dominated universe as a
cosmological scenario that widens the available MSSM parameter space.

We saw that (pure) bino dark matter is not the best candidate, but we needed to fine-
tune the parameter space narrowly in combination with amixedwino-bino to achieve the
required relic density. Let us shortly – for the sake of completeness – state some thoughts
about wino and higgsino. We will follow a review on higgsino dark matter, namely
[35]. The wino like neutralino is the only dark matter candidate SU(2) triplet (whereas
bino and higgsino are singlet and doublet, respectively), which emerges after EWSB
if |𝑀2| ≪ |𝑀1|, |𝜇|. Wino, as higgsino, dark matter often carries an under-abundance.
Adding to this,many annihilation channels of thewino have been excluded by experiment
by now, further reducing the density, and, when including the Sommerfeld enhancement,
the wino like neutralino is only able to saturate the relic density if 𝑚 ̃𝜒1

0
≳ 2.7TeV. The

higgsino like neutralino, on the other hand, is a very promising candidate. It can be
shown that, if 𝑚 ̃𝜒1

0
≃ 1.1TeV, the correct relic density would be achieved. Furthermore,

a higgsino with this mass often yields a large 𝑄SUSY, and corresponding models are,
thence, not very constrained by experiment.

So, to conclude the discussion about the composition of the neutralino, we can say that
our chosen scenario – bino-wino dark matter – provides just the right relic density with a
high enough SUSY breaking-scale so that this model should be phenomenological viable.
Next to that, we should have a wider parameter space by the inclusion of wino mixture
and funnels via higgsino couplings. For we have computed only one not significant cross-

5 In addition, as mentioned above, the stop also has low mass and can serve as an additional coannihilation
partner.

6 Because of this fine-tuning we again have a problem of naturalness.
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Figure 6.4: Relative contributions to Ω�̃�0
1
by ̃𝜒 ̃𝜒, ̃𝜒 ̃𝑔 and ̃𝑔 ̃𝑔 (co)annihilations as a function of

Δ𝑚.[41]

section, we are not able to plot meaningful or representative parameter spaces. Here it
must suffice to have a look upon bounds for the parameters by theory and experiment,
and assess them qualitatively.

6.3.2 Experimental Mass Bounds

Let us now discuss some experimental restrictions to the SUSY parameter space from
the CERN experiments ATLAS [19] and CMS[20]. For these experiments presenting
their SUSY searches in so-called simplified models, we will shortly describe them here.
Simplified models often are like a pMSSM, but assume only some – for the experiment
necessary – production or decay processes. This can be achieved by defining parameter
space only for the relevant particles. Other particles, assumed to have no impact, are,
therefore, not restricted in parameter space but should in the subordinate model be
e.g. too heavy to be produced. This yields the advantage of only having to define a
limited amount of parameters and gain more generality, wherein models with way more
parameters one could easily change physical results by changing some parameters that
can not be restricted with current knowledge or experiment. The disadvantage, of course,
is that search limits tend to be overly strict because of the too strong branch ratios of
SUSY decays in simplified models.

We will have a look at bounds for the gluino mass and squark masses in dependency
on the neutralino mass. In Figure 6.5 the gluino-neutralino parameter space is shown,
as restricted by the √𝑠 = 13TeV CMS run.7 The corresponding simplified models are
depicted by the process listed there. As we can see, the area corresponding to our chosen
scenario at ca. 𝑚 ̃𝜒1

0
≃ 1000GeV and 𝑚�̃� ≃ 1000GeV (see (6.3)) is close to the limit but

not excluded. Further, interesting to state is that gluino masses beyond ∼ 2.3TeV are
excluded and for neutrinos above ∼ 1.5TeV the gluino mass is unrestricted.

Next to the gluino mass bounds, we can discuss limits given to squark and particular
the stau quark in a √𝑠 = 13TeV run by ATLAS and CMS, respectively. The resulting
limits in neutralino parameter space are depicted in Figure 6.6. In the ATLAS run, left

7 ATLAS provides the same limits, see [51]
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Figure 6.5: Lower mass limits, at 95% C.L., on gluino pair production for various decay chains
in the framework of simplified models. Left: ̃𝑔 → 𝑏�̄� ̃𝜒0

1 . Right: ̃𝑔 → 𝑡 ̄𝑡 ̃𝜒0
1 . Results of

the CMS collaboration.[51]

in Figure 6.6, it is assumed that the ̃𝑢, ̃𝑑, ̃𝑠 and ̃𝑐 squarks are degenerate in mass. This is
somewhat fitting for our scenario since their masses are arranged very sharply around
about 3300GeV and could, via slight parameter tuning, be adjusted to become truly
degenerate. Next to that, a second assumption is that the gluino should be very heavy
so one is able to neglect t-channel contributions to squark pair production. As this is
not the case for the gluino mass we set to a low value at around 1TeV, we, therefore,
must not give too much credence to the limits set by this experiment. Nevertheless, with
𝑚 ̃𝜒1

0
≃ 1000GeV and 𝑚 ̃𝑞 ≃ 3300GeV we are well above the bounds as given by ATLAS,

even for some significant parameter shifts and, presumably, also for a too low gluino
mass. The CMS experiment in the right panel only probed the stau’s mass 𝑚 ̃𝑡 in hindsight
on the neutralino’s. As we can see, our scenario is again far beyond the set limits (see
(6.2)).

Concluding, we can say that the exemplary experimental bounds provided by ATLAS
and CMS at CERN, do not give strong indications that our chosen pMSSM scenario
is excluded or (yet) unphysically. Even so, our scenario point in parameter space lies
rather close to the bounds given by Figure 6.5, we assume the simplified models used
are too strict. Additionally, we can adjust masses slightly to once again concur with the
experiment if newer limits arise – atleast to some extent.

6.3.3 The “little” Hierarchy Problem

As a last step, wewill briefly discuss one theoretical “bound” or restriction, which directly
loops back to one of our motivations for SUSY, namely the solution to the fine-tuning or
hierarchy problem.

In comparison to the “big” hierarchy problem, which we discussed in Section 3.1.1, a
new need to fine-tune occurs for high 𝜇. We can visualize this in the following way:
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Figure 6.6: Left: 95% C.L. exclusion contours in the squark-neutralino mass plane defined in the
framework of simplified models assuming a single decay chain of ̃𝑞 → 𝑞 ̃𝜒0

1 , obtained
by ATLAS. Right: the 95% C.L. exclusion contours in the stop-neutralino mass plane
defined in the framework of a simplified model assuming a single decay chain of
̃𝑡 → 𝑡 ̃𝜒0

1 as obtained by CMS.[51]

Via the minimization conditions on the Higgs potential one can get an expression for
the 𝑍 boson mass, namely 8

1
2𝑚2

𝑍 =
𝑚2

𝐻𝑑
+ ∑𝑑

𝑑 −(𝑚2
𝐻𝑢

+ ∑𝑢
𝑢) tan2 𝛽

tan2 𝛽 − 1
− 𝜇2, (6.5)

where ∑𝑑
𝑑 and ∑𝑢

𝑢 represent the 1-loop corrections for the Higgs doublet masses. If then,
for simplicity, we neglect loop corrections and consider, as in our case, large tan𝛽, (6.5)
becomes

1
2𝑚2

𝑍 = −𝜇2 − 𝑚2
𝐻𝑢

. (6.6)

We can see that if 𝜇2 ≫ 𝑚2
𝑍, 𝑚𝐻𝑢

needs to fine-tune 𝜇 to a degree, where the experimental
measured 𝑍 boson mass is achieved. Because the 𝑍 mass is small at around 90GeV, one
could argue that |𝜇| ≃ 2290GeV, as in our scenario, yields again unnaturalness for the
model. Even without the above simplifications, in (6.5) one still needs large cancellations
between 𝜇 and one or several of the other contributing terms.

So is the SUSY a viable solution to the (big) hierarchy problem of the SM at all? Even
so, we need to fine-tune, the magnitude of the degree of fine-tuning is many orders
smaller than in the SM if the superpartner masses only go up to a few TeV because
scalar masses do not carry quadratic sensitivity at high scale if SUSY is broken.[12] The
motivation is, therefore, still viable, if not as strong of an argument as before.

8 Taken from [12].



7 C O N C L U S I O N

To summarize, we showed that the SM can not explain dark matter and, therefore,
introduced SUSY as the most general natural extension. In the minimal-parameter SUSY,
which was adjusted to be in concordance with experimental evidence (the pMSSM), we
saw that the WIMP neutralino as the LSP fulfils all requirements of being a valid and
promising dark matter candidate.

The main goal of this thesis was, after introducing the theories behind dark matter
and SUSY, to calculate one specific – to the neutralino relic density Ω ̃𝜒0

1
contributing –

coannihilation process with the NLSP gluino. This was done analytically in four- and
two-component technique. The resulting invariant amplitudes then were implemented
in the programme DM@NLO, where – via connected dark matter software MicrOMEGAs,
SPheno and CalcHEP – we integrated the cross-section and the corresponding neutralino
Boltzmann equation numerically. The final outcome was the relic density Ω ̃𝜒0

1
for our

chosen pMSSM scenario.
For calculating the Feynman graphs we had to establish fermion number violating

Feynman rules for theMajorana particles neutralino and gluino. Interestingly all resulting
fermion flow permutations proofed to be invariant in the case of couplings only involving
𝛾5 matrices in combination with a scalar propagator.

It was shown that the Weyl two-component calculation yields – next to a more elemen-
tal nature, some attractive advantages over the usual Dirac four-component one. This led
us to conclude that in theoretical models including distinctions regarding the chirality of
spinors (e.g. SUSY), we would prefer this technique over the standard Dirac calculation.

The computed relic density and the scenario-associated SUSY parameter masses were
discussed, and we conclude that this specific MSSM scenario agrees with at least recent
ATLAS and CMS experimental data. Furthermore, even under future-coming restrictions,
our scenario provides enough room to adjust to new limits. This originates from the
high SUSY soft-breaking scale 𝑄SUSY. But, the discussed little hierarchy problem would
be affected when 𝑄SUSY and, therefore, 𝜇 would grow larger. With the current scenario,
this is, however, only a small inconvenience compared to the way more “unnatural” big
hierarchy problem of the SM.

Although the chosen scenario, and, hence, SUSY, seems to be physically feasible, the
coannihilation process yields – with only 0.2 % – no overly significant contribution to
the thermal relic density. However, more precise calculations are required along with
more precise experimental results. In that regard and the fact that possible QCD 1-loop
interactions could yield – as discussed – relevant adjustments to the cross-section, we still
see some importance in the here calculated process. But, since now no loop corrections
have been made, the mostly only benefit from this calculation is the first implementation
in DM@NLO, so that fewer CalcHEP results are needed. This is of importance because, as
we saw, DM@NLO and CalcHEP differ by some margin so that it will yield less uncertainty
when calculating all processes in the same environment with the same initial conditions
and techniques. Furthermore, the coannihilation specific code is implemented and future
1-loop corrections can be added quite easily.
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7.1 outlook

As indicated, the next obvious step would be to calculate and implement into DM@NLO the
1-loop QCD corrections for the neutralino-gluino coannihilation. Although this could
change the cross-section, presumably it would bemore beneficial to first implement some
of the not yet included but more significantly contributing (co)annihilation processes,
which are right now only given by CalcHEP.

Next to that, we only discussed fairly fewbounds by experiment and theory. So, another
future step might be to first compute all cross-sections important for the neutralino relic
density of one scenario and then to examine the contributions from all relevant mass
parameters. After that, one could analyze themass spectra in combinationwith including
more experimental data and theoretical considerations.

The most far-reaching task that can be done in the future is the modernisation and
rewriting into a stand-alone application of DM@NLO. In particular, the implementation of
linearisation and scaling will be of great interest, so that computations can be run faster
and non-ideal parameter spaces can be calculated without implementing corresponding
processes.



A A U X I L I A R Y C A LC U L AT I O N

a.1 dirac calculation

a.1.1 Hermitian Conjugate of Gauge Vertices

Two calculate the Hermitian conjugate of a general gauge vertex with chirality operator
one can do the following steps (note the validity under 𝑢 ↔ 𝑣 exchange)

( ̄𝑢(𝑝)𝑃𝐿,𝑅𝑢(𝑘))† =
1
2𝑢(𝑘)†(1 ∓ 𝛾5)†(𝑢(𝑝)†𝛾0)† (A.1)

=
1
2𝑢(𝑘)†(1 ∓ 𝛾5)𝛾0𝑢(𝑝) (A.2)

=
1
2𝑢(𝑘)†𝛾0(1 ± 𝛾5)𝑢(𝑝) (A.3)

=
1
2 ̄𝑢(𝑘)(1 ± 𝛾5)𝑢(𝑝) (A.4)

= ̄𝑢(𝑘)𝑃𝑅,𝐿𝑢(𝑝), (A.5)

where in each of (A.1) and (A.4) we made use of the definition ̄𝑢 = 𝑢†𝛾0. Next to that
we took advantage of the very useful anticommutation relation of 𝛾𝜇 and 𝛾5-matrices
(D.5).

a.1.2 Trace Calculation I

The first of the two often reoccurring traces gives

Tr [(𝑎𝑃𝐿 + 𝑏𝑃𝑅)(𝑐𝑃𝑅 + 𝑑𝑃𝐿)] = Tr [𝑎𝑑𝑃𝐿 + 𝑏𝑐𝑃𝑅] (A.6)

=
1
2 Tr [𝑎𝑑 + 𝑏𝑐] (A.7)

= 2(𝑎𝑑 + 𝑏𝑐), (A.8)

where 𝑎, 𝑏, 𝑐, 𝑑 are real arbitrary constants. In (A.6) we exploited the commutation rela-
tions of the chirality operator and, as a next step, replaced the chirality operators with
their corresponding 𝛾-matrix definition (see Section D.1.1). Then we can take advantage
of trace theorem (D.14), which tells us that the single 𝛾5-terms will be zero, drag the
constants out of the trace and use Tr 𝐼4 = 4.
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a.1.3 Trace Calculation II

The second needed trace-calculation equals the first one except of the occurrence of two
impulses /𝑝 and /𝑘 in the trace. The trace then results in

Tr [/𝑝(𝑎𝑃𝐿 + 𝑏𝑃𝑅)/𝑘(𝑐𝑃𝑅 + 𝑑𝑃𝐿)] = Tr [/𝑝/𝑘(𝑎𝑃𝑅 + 𝑏𝑃𝐿)(𝑐𝑃𝑅 + 𝑑𝑃𝐿)] (A.9)
= Tr [/𝑝/𝑘(𝑎𝑐𝑃𝑅 + 𝑏𝑑𝑃𝐿)] (A.10)

=
1
2 Tr [/𝑝/𝑘(𝑎𝑐 + 𝑏𝑑)] (A.11)

= 2𝑝𝑘(𝑎𝑐 + 𝑏𝑑). (A.12)

To calculate this trace we made use of the same techniques applied before, but with two
changes: first, in (A.9), we dragged /𝑘 in front of the first two chirality operators and
exploited the anticommutation relation between the 𝛾5 from the slashed impulses and
the 𝛾-matrix we get from the chirality operators. Second, as the last step in (A.11), we
needed to determine the trace of the two impulses, instead of the unit matrix, with trace
theorem (D.12).

a.1.4 Omitted Trace Calculations

Tr [𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 /𝑝2𝑉�̃�
𝑖′] (A.13)

= Tr [/𝑘2/𝑝2(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)(𝑏 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑎 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]
(A.14)

=
1
2 Tr [/𝑘2/𝑝2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′1)] (A.15)

= 2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′1)𝑘2𝑝2 (A.16)

Tr [𝑉 ̃𝜒
𝑖𝑗/𝑝1𝑉 ̃𝜒

𝑖′𝑗𝑉
�̃�
𝑖 /𝑝2𝑉�̃�

𝑖′] (A.17)

= Tr [/𝑝1/𝑝2(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]
(A.18)

=
1
2(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′1)Tr [/𝑝1/𝑝2] (A.19)

= 2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′2 + 𝑎 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′1)𝑝1𝑝2 (A.20)

Tr [𝑉 ̃𝜒
𝑖𝑗/𝑝1𝑉 ̃𝜒

𝑖′𝑗/𝑘2𝑉�̃�
𝑖 𝑉�̃�

𝑖′] (A.21)

= Tr [/𝑝1/𝑘2(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝑅 − 𝑅𝑖1𝑃𝐿)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]
(A.22)

= −
1
2(𝑏 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′1)Tr [/𝑝1/𝑘2] (A.23)

= −2(𝑏 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2 + 𝑎 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1)𝑝1𝑘2 (A.24)
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Tr [/𝑘1𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗𝑉

�̃�
𝑖 /𝑝2𝑉�̃�

𝑖′] (A.25)

= Tr [/𝑘1/𝑝2(𝑏 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝐿)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝑅 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝐿)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]
(A.26)

=
1
2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′1 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′2)Tr [/𝑘1/𝑝2] (A.27)

= 2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′1 + 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′2)𝑘1𝑝2 (A.28)

Tr [/𝑘1𝑉 ̃𝜒
𝑖𝑗𝑉

̃𝜒
𝑖′𝑗/𝑘2𝑉�̃�

𝑖 𝑉�̃�
𝑖′] (A.29)

= Tr [/𝑘1/𝑘2(𝑏 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝐿)(𝑎 ̃𝑞∗
𝑖′𝑗𝑃𝐿 + 𝑏 ̃𝑞∗

𝑖′𝑗𝑃𝑅)(𝑅𝑖2𝑃𝐿 − 𝑅𝑖1𝑃𝑅)(𝑅𝑖′2𝑃𝐿 − 𝑅𝑖′1𝑃𝑅)]
(A.30)

= −
1
2(𝑏 ̃𝑞

𝑖𝑗𝑎
̃𝑞∗

𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞
𝑖𝑗𝑏

̃𝑞∗
𝑖′𝑗𝑅𝑖1𝑅𝑖′2)Tr [/𝑘1/𝑘2] (A.31)

= −2(𝑏 ̃𝑞
𝑖𝑗𝑎

̃𝑞∗
𝑖′𝑗𝑅𝑖2𝑅𝑖′1 + 𝑎 ̃𝑞

𝑖𝑗𝑏
̃𝑞∗

𝑖′𝑗𝑅𝑖1𝑅𝑖′2)𝑘1𝑘2 (A.32)



B D M @ N LO

DM@NLO [30], standing for dark matter at next-to-leading order, is a programme that provides
SUSY-QCD corrections on 1-loop level for (co)annihilation cross-sections, which are of
importance for the determination of the thermal relic density of the neutralino as the
LSP in the MSSM. In DM@NLO implemented amplitudes are integrated numerically and
the programme yields an easy access and modifiability of the resulting cross-sections.
DM@NLO is integrated in a software bundle including the darkmatter tool MicrOMEGAs [16]

as its core component. The complete software chain is sketched in Figure B.1. Input given

SPheno

SUSY spectrum
Input

23 parameters

MicrOMEGAs

Boltzman eq.
integration via
cross-sections

given by DM@NLO

and CalcHEP

CalcHEP

cross-sections
at tree level

Output
𝜒 relic density

DM@NLO

cross-sections
at NLO

Figure B.1: Software chain with DM@NLO for calculation of the neutralino relic density Ω𝜒0.

to the programme are the parameters describing a specific MSSM model according to
the convention set by the Supersymmetry Les Houches Accord [9]. The spectrum calculator
SPheno [40] then calculates the masses of SUSY particles, mixing matrices and observ-
ables. These are given to MicrOMEGAs, where the Boltzmann equation for the neutralino
will be integrated on the basis of the contributing annihilation and coannihilation cross-
sections. The cross-sections are delivered – on tree-level – by CalcHEP [42], but for each
cross-setion it is checked if the cross-section is already implemented in DM@NLO. If so, the
cross-section computed by DM@NLO supercedes the CalcHEP cross-section. Output is then
the relic density.

Concluding, DM@NLO provides QCD loop graphs for the calculation of neutralino relic
density and is constructed including radiative corrections and is specifically build for
this task, so that a more precise computation, reducing some uncertainties, can be done.
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C F E Y N M A N R U L E S

c.1 four-component

c.1.1 Particle Lines

External spin 1/2 particles are to be set as four component spinor wave functions 𝑢 and
𝑣 following the rules from Figure C.1.

Fermion

Initial state

̄𝑢

̄𝑣 𝑣

𝑢

Final state

Anti fermion

Figure C.1: External wave function spinors.

The Squark propagator term is

𝑝
𝑎 𝑏 =

𝑖
𝑝2 − 𝑚2

̃𝑞𝑖

⋅ 𝛿𝑏𝑎. (C.1)

c.1.2 Vertices

The Neutralino-Squark-Quark interaction Lagrangian, taken from [43], is

ℒ ̃𝜒 ̄𝑞𝑞 = ̄𝑞(𝑎 ̃𝑞
𝑖𝑗𝑃𝑅 + 𝑏 ̃𝑞

𝑖𝑗𝑃𝐿) ̃𝜒0
𝑗 ̃𝑞𝑖 + ̄̃𝜒0

𝑗 (𝑎 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑏 ̃𝑞

𝑖𝑗𝑃𝑅)𝑞 ̃𝑞∗
𝑖 , (C.2)

with the coupling matrices

𝑎 ̃𝑞
𝑖𝑗 = ℎ𝑓𝑍𝑗𝑥𝑅 ̃𝑞

𝑖2 + 𝑔𝑠 𝑓 𝑞
𝐿𝑗𝑅

̃𝑞
𝑖1 where 𝑓 𝑞

𝐿𝑗 = √2[(𝑒𝑞 − 𝐼3𝑙
𝑞 ) tan 𝜃𝑊𝑍𝑗1 + 𝐼3𝑙

𝑞 𝑍𝑗2],
(C.3)

𝑏 ̃𝑞
𝑖𝑗 = ℎ𝑓𝑍𝑗𝑥𝑅 ̃𝑞

𝑖1 + 𝑔𝑠 𝑓 𝑞
𝑅𝑗𝑅

̃𝑞
𝑖2 where 𝑓 𝑞

𝑅𝑗 = −√2𝑒𝑞 tan 𝜃𝑊𝑍𝑗1, (C.4)

where 𝑥 is standing for {down, up}-type case and can take the values of {3,4}, respectively.
The Squark mixing matrix with mixing angle 𝜃 ̃𝑞 is

𝑅 = (𝑅𝑖1, 𝑅𝑖2) = ⎛⎜⎜
⎝

cos 𝜃 ̃𝑞 sin 𝜃 ̃𝑞

− sin 𝜃 ̃𝑞 cos 𝜃 ̃𝑞

⎞⎟⎟
⎠
. (C.5)
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Coming from the Lagrangian in (C.2) we can construct the vertices

̃𝜒0
𝑗 𝑞

̃𝑞𝑖

= −𝑖(𝑏 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑎 ̃𝑞

𝑖𝑗𝑃𝑅) (C.6)

and

̃𝜒0
𝑗 𝑞

̃𝑞𝑖

= −𝑖(𝑎 ̃𝑞
𝑖𝑗𝑃𝐿 + 𝑏 ̃𝑞

𝑖𝑗𝑃𝑅). (C.7)

The second vertex from the Gluino-Squark-Quark coupling yields the Lagrangian [43]

ℒ�̃� ̄𝑞𝑞 = −√2𝑔𝑠𝑇𝑎
𝑠𝑡[ ̄𝑞𝑠(𝑅 ̃𝑞

𝑖1𝑃𝑅 − 𝑅 ̃𝑞
𝑖2𝑃𝐿) ̃𝑔𝑎 ̃𝑞𝑖,𝑡 + ̄̃𝑔𝑎(𝑅 ̃𝑞

𝑖1𝑃𝐿 − 𝑅 ̃𝑞
𝑖2𝑃𝑅)𝑞𝑠 ̃𝑞∗

𝑖,𝑡], (C.8)

note that in between the left and right handed terms there is a relative minus sign. This
is due to the fact that the SU(N) anti-colour generator is −𝑇𝑎†.

Again, from the Lagrangian (C.8), the coupling terms for the two fermion flow possi-
bilities

𝑞𝑠̃𝑔𝑎

̃𝑞𝑖,𝑡

= −𝑖√2𝑔𝑠𝑇𝑎
𝑠𝑡(𝑅 ̃𝑞

𝑖1𝑃𝑅 − 𝑅 ̃𝑞
𝑖2𝑃𝐿) (C.9)

and

𝑞𝑠̃𝑔𝑎

̃𝑞𝑖,𝑡

= −𝑖√2𝑔𝑠𝑇𝑎
𝑠𝑡(𝑅 ̃𝑞

𝑖1𝑃𝐿 − 𝑅 ̃𝑞
𝑖2𝑃𝑅) (C.10)

can be achieved.

c.1.3 Fermion Number Violation

Taken from [21] in the following stated are the three, for this thesis relevant, rules for
Majorana fermion interactions:

• Take for each external line the appropiate expression from (C.11) to (C.14) to
match the corresponding fermion flow.

• Scalar particles are not changed via fermion flow invertion.

• For fermion flow antiparallel to flow of fermion number take the coupling Γ′ instead
of Γ.
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Feynman rules for external fermions with momentum 𝑝 going from left to right

= ̄𝑢(𝑝, 𝑠) (C.11)

= 𝑣(𝑝, 𝑠) (C.12)

= 𝑢(𝑝, 𝑠) (C.13)

= ̄𝑣(𝑝, 𝑠) (C.14)

c.2 two-component

𝐿(1
2 , 0) fermion

Initial state

𝑥†

𝑦† 𝑦

𝑥

Final state

𝑅(0, 1
2) fermion

Figure C.2: External wave function spinors.

• For every odd permutation of external state spinors between terms that contribute
to the same amplitude one has to impose a relative minus sign.[24]



D R E L AT I O N S A N D F O R M U L A E

d.1 four-component

d.1.1 𝛾-Matrices

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 (D.1)
(𝛾0)2 = 𝐼4 (D.2)
𝛾0† = 𝛾0 (D.3)
𝛾𝜇† = 𝛾0𝛾𝜇𝛾0 (D.4)
{𝛾𝜇, 𝛾5} = 0 (D.5)

d.1.2 Chirality Operator

𝑃𝐿 ≡
1
2(1 − 𝛾5), 𝑃𝑅 ≡

1
2(1 + 𝛾5) (D.6)

𝑃2
𝐿 = 𝑃𝐿, 𝑃2

𝑅 = 𝑃𝑅 (D.7)
𝑃𝐿𝑃𝑅 = 𝑃𝑅𝑃𝐿 = 0 (D.8)

d.1.3 Completeness Relations

∑
𝑠

𝑢(𝑠)(𝑝, 𝑚) ̄𝑢(𝑠)(𝑝, 𝑚) = /𝑝 + 𝑚, ∑
𝑠

𝑣(𝑠)(𝑝) ̄𝑣(𝑠)(𝑝) = /𝑝 − 𝑚 (D.9)

d.1.4 Trace Theorems

Trace of an odd number of 𝛾𝜇 is zero. (D.10)
Trace of 𝛾5 times an odd number of 𝛾𝜇 is still zero. (D.11)
Tr [𝛾𝜇𝛾𝜈] = 4𝜂𝜇𝜈 (D.12)
Tr [𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎] = 4(𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎 + 𝜂𝜇𝜎𝜂𝜈𝜌) (D.13)
Tr [𝛾5] = Tr [𝛾𝜇𝛾𝜈𝛾5] = 0 (D.14)
Tr [𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎𝛾5] = 4𝑖𝜀𝜇𝜈𝜌𝜎 (D.15)
Tr [𝛾𝜇1 … 𝛾𝜇𝑛] = Tr [𝛾𝜇𝑛 … 𝛾𝜇1] (D.16)

d.2 two-component
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d.2.1 𝜎-Matrices

𝜎𝜇
𝛼 ̇𝛼�̄� ̇𝛽𝛽

𝜇 = 2𝛿 𝛽
𝛼 𝛿 ̇𝛽

̇𝛼 (D.17)
𝜎𝜇

𝛼 ̇𝛼𝜎𝜇𝛽 ̇𝛽 = 2𝜖𝛼𝛽𝜖 ̇𝛼 ̇𝛽 (D.18)

�̄�𝜇 ̇𝛼𝛼�̄� ̇𝛽𝛽
𝜇 = 2𝜖𝛼𝛽𝜖 ̇𝛼 ̇𝛽 (D.19)

d.2.2 Spin and Helicity Sums

∑
𝑠

𝑥𝛼( ⃗𝑝, 𝑠)𝑥†
̇𝛽( ⃗𝑝, 𝑠) = 𝑝 ⋅ 𝜎𝛼 ̇𝛽, ∑

𝑠
𝑥 ̇𝛼†( ⃗𝑝, 𝑠)𝑥𝛽( ⃗𝑝, 𝑠) = 𝑝 ⋅ �̄� ̇𝛼𝛽 (D.20)

∑
𝑠

𝑦 ̇𝛼†( ⃗𝑝, 𝑠)𝑦𝛽( ⃗𝑝, 𝑠) = 𝑝 ⋅ �̄� ̇𝛼𝛽, ∑
𝑠

𝑦𝛼( ⃗𝑝, 𝑠)𝑦†
̇𝛽( ⃗𝑝, 𝑠) = 𝑝 ⋅ 𝜎𝛼 ̇𝛽 (D.21)

∑
𝑠

𝑥𝛼( ⃗𝑝, 𝑠)𝑦𝛽( ⃗𝑝, 𝑠) = 𝑚𝛿 𝛽
𝛼 , ∑

𝑠
𝑦𝛼( ⃗𝑝, 𝑠)𝑥𝛽( ⃗𝑝, 𝑠) = −𝑚𝛿 𝛽

𝛼 (D.22)

∑
𝑠

𝑦 ̇𝛼†( ⃗𝑝, 𝑠)𝑥†
̇𝛽( ⃗𝑝, 𝑠) = 𝑚𝛿 ̇𝛼

̇𝛽, ∑
𝑠

𝑥 ̇𝛼†( ⃗𝑝, 𝑠)𝑦†
̇𝛽( ⃗𝑝, 𝑠) = −𝑚𝛿 ̇𝛼

̇𝛽 (D.23)

d.2.3 Trace Theorems

Tr [𝜎𝜇�̄�𝜈] = Tr [�̄�𝜇𝜎𝜈] = 2𝜂𝜇𝜈 (D.24)
Tr [𝜎𝜇�̄�𝜈𝜎𝜌�̄�𝜎] = 2(𝑔𝜇𝜈𝑔𝜌𝜎 − 𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌 + 𝑖𝜀𝜇𝜈𝜌𝜎) (D.25)
Tr [�̄�𝜇𝜎𝜈�̄�𝜌𝜎𝜎] = 2(𝑔𝜇𝜈𝑔𝜌𝜎 − 𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌 − 𝑖𝜀𝜇𝜈𝜌𝜎) (D.26)

d.3 SU(𝑁)

(𝑇𝑎
𝐹)𝑖𝑗 = (𝑇𝑎)𝑖𝑗 =

𝜆𝑎
𝑖𝑗

2 (D.27)

Tr [𝑇𝑎
𝐹𝑇𝑏

𝐹] = 𝑇𝐹𝛿𝑎𝑏 with 𝑇𝐹 =
1
2 (D.28)

∑
𝑎,𝑘

(𝑇𝑎
𝐹)𝑖𝑘(𝑇𝑎

𝐹)𝑘𝑗 = 𝐶𝐹𝛿𝑖𝑗, 𝐶𝐹 = 𝑇𝐹
𝑁2 − 1

𝑁 (D.29)
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