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Kurzfassung
In dieser Arbeit wird die assoziierte Produktion eines Squarks zusammen mit einem
Elektroweakino, also Neutralino oder Chargino, am Large Hadron Collider untersucht.
Da diese supersymmetrischen Teilchen noch nicht nachgewiesen wurden, müssen
sie eine hohe Masse haben. Um sie nachweisen zu können, müssen sowohl das
Experiment als auch die Theorie eine hohe Präzision aufweisen. Daher haben wir die
Berechnungen der reellen und virtuellen Korrekturen, die zusammen die nächsthöhere
Ordnung ergeben, für den genannten Prozess, durchgeführt. Die Anwendung des
Catani-Seymour-Formalismus spielt dabei eine wichtige Rolle. Diese Korrekturen
sind Voraussetzungen für die Erzielung einer höherer Präzision durch Resummation
von Logarithmen nächsthöherer Ordnung. Wir zeigen verschiedene Möglichkeiten
auf, um die Korrektheit der Berechnungen zu überprüfen. Sowohl die vorgestellten
Korrekturrechnungen als auch die Prüfroutinen haben wir in dem frei verfügbaren
Programm Resummino implementiert.

Abstract
In this thesis, the associated production of a squark together with an electroweakino,
i.e. neutralino or chargino, is studied at the Large Hadron Collider. Since these
supersymmetric particles have not yet been detected, they must have high masses. In
order to detect them, both experiment and theory must have a high precision. Therefore,
we have performed the calculations of the real and virtual corrections, which together
give the next-to-leading order. The application of the Catani-Seymour formalism plays
an important role. These corrections are preconditions for obtaining a higher precision
by resumming next-to-leading logarithms. We show different possibilities to check the
correctness of the calculations. We have implemented both the presented higher order
calculations and the test routines in the freely available program Resummino.
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1. Introduction
The Standard Model (SM) has proven to be an extremely successful description of
particle physics over the past decades. Nevertheless, there are still open questions both
on small and large scales. Prominent examples are the deviation of the measurement of
the Muon g− 2 experiment from the SM predictions [1], the origin and scale of neutrino
masses [2] and the unknown dark matter [3]. A potential solution to these problems is
provided by the extension of the SM to the Supersymmetric (SUSY) SM.

Within the Minimal Supersymmetric Standard Model (MSSM), each particle is given
a superpartner that differs only by 1

2 in spin. Two scalar squarks are assigned to each
quark and each gluon, Higgs boson, W boson and B boson is assigned a fermionic gluino,
Higgsino, Wino and Bino, respectively, as superpartners. In analogy to the mixing of
mass and interaction eigenstates in neutrinos, the neutral and charged interaction states
of higgsinos, binos and winos mix to form neutralinos and charginos. Since such particles
have not yet been discovered, it can be assumed that the supersymmetry is softly broken,
giving the superpartners much higher masses. The lightest supersymmetric particle
(LSP) has all the properties of a dark matter candidate. The parameter space of the
MSSM is constrained from LHC data at 13 TeV[4] and XENON1T [5]. A combination
of these two and several more is found in [6].

The expansion of the Large Hadron Collider (LHC) into the High-Luminosity LHC
(HL-LHC) is planned for the next few years and should enable the search for even more
massive particles [7]. While the production of supersymmetric dark matter particles
will most likely be dominated by strong interactions [8], e.g. squark or gluino pair
production, more insights beyond the masses of new particles can be found in the weakly
interacting sector [9]. In the last decade the precise investigation beyond next-to-leading
order (NLO) of gluino pair [10], slepton pair [11] and gaugino-gluino [12] production was
accomplished.

In this work we will focus on production of a squark and electroweakino in a hadron
collider like the LHC. The process will appear as missing transverse energy from the
electroweakinos and a hard jet from the squark. Such monojets are a well-studied
signature of dark matter [13]. From the CMS collaboration chargino and neutralino
masses between 300 GeV and 1450 GeV [14] and a top squark mass below 1300 GeV
[15] are excluded at 95% confidence level, though a dependence on the model remains.
At leading order (LO) the process involves weak αEM and strong αs interactions and
is already known in detail [9][16][17][18]. However, only precise theoretical predictions
will allow the comparison between theory and experiment. For this purpose, the NLO
corrections proportional to αEMα

2
S, composed of virtual and real corrections, are needed.

The goal of this thesis is to precisely compute the production of squarks and
electroweakinos at NLO and implement them into Resummino [19] First, in section 2 we
establish the necessary basics of SUSY and the MSSM. Next, section 3 will introduce
how we compute a cross section at leading order. Then we review the methods of
computing at higher orders in section 4. The actual computation follows in section 5.
In section 6 we present the consistency checks, comparisons and tests performed.
Finally, section 7 contains our NLO and preliminary resummation results. This thesis is
concluded in section 8 and section 9 gives an outlook on the continuation of the project.
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2. The Minimal Supersymmetric Standard Model
2.1. Supersymmetry
Much of the success of the Standard Model (SM) can be attributed to symmetries.
In particular, external space-time symmetries and internal gauge symmetries make
precise prediction possible. Supersymmetry (SUSY) integrates another through relating
fermionic and bosonic degrees of freedom. Only after the development of SUSY it became
clear, that it provides potentials solutions to remaining shortcomings of the Standard
Model. For a deeper insight into Supersymmetry, we refer the reader to our sources for
this chapter and their references [20][21][22][23] [24].

The extension of the Standard Model turns out to be not so simple, since the Coleman-
Mandula theorem [25] restricts the extension of the Poincaré group. To maximize the
symmetry of the SM beyond trivial extensions the Haag-Lopuszanski-Sohnius theorem
[26] establishes the inclusion of anticommutation relations. The transformation from
fermionic to bosonic states and vice versa is carried out by an anti-commuting spinor
operator Q. For realistic theories they satisfy

{Q,Q†} = P µ , (2.1)
{Q,Q} = {Q†, Q†} = 0 , (2.2)
[P µ, Q] = [P µ, Q†] = 0 , (2.3)

where P µ generates space-time translations. From the last relation (eq. (2.3)) we directly
see that the masses of superpartners are equal, since they have the same eigenvalues P 2.
This obviously contradicts experimental observation and has the consequence that SUSY
must be softly broken, which leads to higher masses.

2.2. Soft breaking
The Minimal Supersymmetric Standard Model (MSSM) is the simplest direct
supersymmetrisation of the SM. It is minimal in the sense that it uses the fewest
new particles to obtain a supersymmetric field theory. In table 1 we list all the
supermultiplets of the MSSM. The supersymmetric particles solely differ in spin by 1

2
(before mass generation) and get marked by a tilde.

The scalar spin 0 particles do not have a helicity, the indices L and R therefore refer
to the superpartner. The only exception to the direct definitions of superpartners is in
the definition of the Higgsinos. In the MSSM there are two Higgs supermultiplets HD

and HU to cancel chiral anomalies and generate the masses of the up- and down-type
particles. The neutral Standard Model Higgs is then obtained from the combination of
H0
u and H0

d .
The procedure to describe the Lagrangian in superspace is to use a holomorphic

superpotential

WMSSM(Φ) = URyuQLHU −DRydQLHD − ERyeLLHD + µHUHD , (2.4)

where the y are 3× 3 Yukawa matrices of each family and µ is a generalized Higgs mass
term. Following [27] we arrive at the expanded MSSM Lagrangian that still conserves
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Table 1: Supermultiplets in the Minimal Supersymmetric Standard Model. S denotes
the spin. The transformation properties under the Standard Model gauge group
SU(3)C×SU(2)L×U(1)Y are presented in the last column.

Multiplet Name S = 0 S = 1
2 S = 1 SM group

chiral s-/quarks QL (ũL, d̃L) (uL, dL) - (3, 2, 1
6)

(3 generations) UR ũcR u†
R - (3̄, 1, −2

3)

DR d̃cR d†
R - (3̄, 1, 1

3)

s-/leptons LL (ν̃, ẽL) (ν, eL) - (1, 2, −1
2)

(3 generations) ER ẽcR e†
R - (1, 1, 1)

higgs/-inos HU (H+
u , H

0
u) (H̃+

u , H̃
0
u) - (1, 2, +1

2)

(1 generation) HD (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) - (1, 2, −1

2)

gauge gluon/-ino VG - g̃ g (8, 1, 0)

W boson/Wino VW - (W̃±, W̃ 0) (W±, W 0) (1, 3, 0)

B boson/Bino VB - B̃0 B0 (1, 1, 0)

Supersymmetry [24]

LSUSY
MSSM =

∑
i

[
Dµφ

†
iD

µφi + i
2
(
ψiσµDµψ̄i −Dµψiσµψ̄i

)]

+
∑
k

[
−1

4V
µν
k V µν

k + i
2
(
Ṽkσ

µDµ ¯̃Vk −DµṼ kσµ ¯̃Vk
)]

−1
2
∑
i,j

[
∂2WMSSM(φ)
∂φi∂φj

ψi · ψj + h.c.
]
−
∑
i

∂WMSSM(φ)
∂φi

W ∗
MSSM(φ†)
∂φ†

i

−1
2
∑
k

gk∑
j

[
φ†
jT

kφj
](gk∑

i

[
φ†
iT

kφi
])
− i2
√

2
∑
i

(
gk

¯̃V k · ψ̄iTkφi + h.c.
) .
(2.5)

We write ψ or Ṽ for left-handed and ψ̄ and ¯̃V for right-handed spinors. σµ = (1, σi)
are constructed from the Pauli matrices and Dµ are covariant derivatives. The index k
indicates the MSSM gauge group such that couplings gk and generators Tk are generic.
Indices i and j refer to the members of scalar φ or fermionic ψ supermultiplet members.

The first two lines are the typical kinetic terms for fermions and bosons in two-
component Weyl fermion notation. The second derivative of the superpotential leaves
us with the Yukawa interactions. From the last term in the fourth line we get interactions
between gauginos scalars and fermions. They appear by requesting supersymmetry to
hold after transitioning from ordinary to gauge-covariant derivatives [20]. The remaining
terms include the scalar potential.
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For phenomenological studies the breaking mechanism must not be known in detail.
Instead, it will get parametrized into an extra term Lsoft which gets added to the LSUSY.
A general approach to the soft Lagrangian is

Lsoft
MSSM =− 1

2
[
M1B̃ · B̃ +M2W̃ · W̃ +M3g̃ · g̃ + h.c.

]
− Q̃†

LmQ̃
2Q̃L − ũRmŨ

2ũ†
R − d̃RmD̃

2d̃†
R − L̃LmL̃

2L̃†
L − ẽRmẼ

2ẽ†
R

−m2
Hu
H†
uHu −m2

Hd
H†
dHd

−
[
ũ†
RTuQ̃L ·Hu − d̃†

RTdQ̃L ·Hd − ẽ†
RTeL̃L ·Hd + bHu ·Hd + h.c.

]
(2.6)

where Mk denotes the mass of the fermionic gauginos: bino, winos and gluino. Next
there are 3×3 matrices m for both squarks and sleptons and mH masses for the two Higgs
doublets. Then the 3× 3 matrices T parametrize trilinear soft multiscalar interactions
and the supersymmetry-breaking term of the Higgs potentials is b.

In total the MSSM contains 124 real parameters, including 19 of the SM, but not all the
parameters are completely independent. On the basis of experiments, this arbitrariness
in the MSSM can be reduced by additional assumptions on the soft breaking. Thus,
many phenomenological versions of the MSSM, abbreviated as pMSSM, include fewer
parameters. Now that we have established the MSSM we can discuss some of its
intriguing properties.

First, by including additional particles in loops, unification of all three gauge couplings
at the Grand Unified Theory (GUT) scale becomes possible. This is observed through
evolving the couplings by solving the renormalization group equations up to the GUT
scale MGUT ≈ 1016GeV.

Second, loop correction to the Higgs boson’s mass exhibit quadratic divergences. In
SUSY these are however cancelled from the sign arising in loops due to the different
statistics of superpartners. By assuming a cut-off ΛUV at the Planck scale in combination
with natural couplings λ ∼ 1 the smallest mass related to the soft breaking msoft must be
in the order of O(1) TeV to reproduce the observed light Higgs mass without fine-tuning.

The open question on dark matter could be resolved through imposing the conserved
R-Parity

Rp = (−1)3(B−L)+2S . (2.7)
In the definition of the superpotential eq. (2.4) we did not include lepton L or baryon
B number violating terms. Including such terms is heavily constrained from e.g. proton
decays p→ e+ +π0. Only squarks and quarks have |B| = 1

3 and the sleptons and leptons
carry |L| = 1. From ∆S = 1

2 between superpartners it follows that Rp = +1 for SM and
Rp = −1 for SUSY particles. Then only an even number of sparticles are allowed at
each vertex, prohibiting the lightest supersymmetric particle (LSP) from decaying. All
remaining sparticles with a higher mass must decay into the LSP. Another consequence
is that sparticles will only be produced in pairs at collider experiments.

Next, we will take a closer look at the supersymmetric particles of interest for our
process at leading order namely squarks and electroweakinos. At next-to-leading order
we will also encounter gluinos. While we give equations for the mixing and masses of
these particles, in practice the mass spectra are generated by dedicated tools following
the SUSY Les Houches Accord (SLHA) conventions [28]. We are going to use the
Feynman rules from [29] in the same format as in [22] (cf. appendix A).
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2.3. Squarks
We will investigate the mixing of left- and right-handed squarks. The MSSM Lagrangian

mass term written in gauge eigenstates q̃ =

q̃L
q̃R

 for squarks reads

Lq̃mass = −
∑
q̃

q̃†M2
q̃ q̃ with M2

q̃ =

M2
q̃,LL M2

q̃,LR

M2∗
q̃,LR M2

q̃,RR

 (2.8)

where the squark mass matrix is

M2
q̃ =

M2
q̃ +m2

Z cos(2β)(I3 − eq sin2 θW ) +m2
q mq(A∗

q − µ tan(β)−2I3)

mq(Aq − µ∗ tan(β)−2I3) M2
q̃′ +m2

Z cos(2β)eq sin2 θW +m2
q

 .

(2.9)
The parameters entering are the quark mass mq, electric charge eq, third weak isospin
I3, Z-boson mass mZ and the Weinberg angle θW . From the MSSM we have the trilinear
Higgs-squark-squark coupling Aq, higgsino mass parameter µ and mixing angle tan β =
v2
v1

, defined by the ratio of the Higgs vacuum expectation values v1 and v2. The mass
terms M2

q̃ and M2
q̃′ parametrize the soft SUSY breaking with respect to left- and right-

handed squarks.
Since we want to investigate mass eigenstates, we need to diagonalize this matrix. For

the first two generations of squarks we can neglect the mixing between left- and right-
handed states because the off-diagonal components are proportional to the corresponding
quark mass which become negligible in high-energy computation. The mixing in the
third generation of t̃ will not be dropped. The diagonalization of a mass eigenstate
from an interaction eigenstate is analogous to the prominent case of neutrino masses. A
unitary squark mixing matrix S q̃ should satisfy

S q̃M2
q̃S

q̃† =

m2
q̃1 0

0 m2
q̃2

 and

q̃1

q̃2

 = S q̃

q̃L
q̃R

 . (2.10)

The eigenvalues of M2
q̃ are

m2
q̃1,2 = 1

2
[
M2

q̃,LL +M2
q̃,RR ∓

√
(M2

q̃,LL −M2
q̃,RR)2 + 4|Mq̃,LR|2

]
(2.11)

with the ordering m2
q̃1 < m2

q̃2 . The squark mixing matrix can be expressed as a rotation
by a mixing angle θq̃ S q̃ii S q̃i(i+3)

S q̃(i+3)i S q̃(i+3)(i+3)

 =

 cos θq̃ sin θq̃
− sin θq̃ cos θq̃

 where tan 2θq̃ =
2M2

q̃LR

M2
q̃,LL −M2

q̃,RR

,

(2.12)
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where we added an index i for each generation resulting in a 6 × 6 matrix. Then the
coupling of a gluino to a quark I and an antisquark j is given by

R′
Ij = L∗

Ij =
√

2S q̃j(I+3)

L′
Ij = R∗

Ij = −
√

2S q̃jI .
(2.13)

The restriction to minimal squark mixing results in

S q̃∗j(I+3)S
q̃
jJ = 0 = LL′

S q̃∗jIS
q̃
j(I+3) = 0 = RR′ ,

(2.14)

since one of the elements of S is an off-diagonal element which are zero.

2.4. Electroweakinos
The neutralinos and charginos are mixtures of higgsinos and electroweak gauginos. This
mixing is an effect of electroweak symmetry breaking. We will occasionally refer to them
loosely as gauginos, although we do not mean to include the gluino.

2.4.1. Charginos

As only fields with the same quantum numbers mix, the charginos will consist of charged
higgsinos (H̃+

u and H̃−
d ) and winos (W̃+ and W̃−) and carry a charge of ±1. The relevant

Lagrangian in two-component Weyl spinors is

Lnmass = −(ψ−)TMcψ+ + h.c. (2.15)

with

Mc =

 M2
√

2MW sin β
√

2MW cos β µ

 , ψ+ =

iW̃+

H̃+
u

 and ψ− =

iW̃−

H̃−
d

 . (2.16)

Mass eigenstates follow from diagonalization with two unitary matrices U and V .χ̃+
1

χ̃+
2

 = V

iW̃+

H̃+
u


χ̃−

1

χ̃−
2

 = U

iW̃−

H̃−
d

 (2.17)

The masses are again ordered Mχ̃±
1
< Mχ̃±

2

Mχ̃±
1,2

= 1
2

(
|M2|2 + |µ|2 + 2m2

W ∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|m2

W sin 2β − µM2|2
)
.

(2.18)
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2.4.2. Neutralinos

The neutralino has no charge and is a Majorana particle. In contrast to charginos the
mixing also includes binos B̃. The Lagrangian in gauge eigenstates ψ0 is

Lcmass = −1
2(ψ0)TMnψ0 + h.c. , (2.19)

where the mass matrix is

Mn =



M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ

MZsβsW −MZsβcW −µ 0


, and (ψ0)T =



iB̃

iW̃ 0

H̃0
d

H̃0
u


(2.20)

with abbreviated sin and cos for the Weinberg angle θW and the relation between the
two Higgs vacuum expectation values β. The unitary matrix N transforms the gauge
eigenstates to a mass diagonal form via N∗MnN−1 and the mass eigenstates are

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4


= N



iB̃

iW̃ 0

H̃0
d

H̃0
u


. (2.21)

From the usual ordering |Mχ̃0
1
| < |Mχ̃0

2
| < |Mχ̃0

3
| < |Mχ̃0

4
| the χ̃0

1 could emerge as the
lightest supersymmetric particle (LSP) and dark matter (DM) candidate.

2.5. Gluino
In the MSSM there is no other colour octet fermion that could mix with the gluino. The
gluino mass enters as the parameter M3 in the MSSM and as it is electrically neutral it
is a Majorana fermion. In most scenarios the gluino is much heavier than the charginos
and neutralinos. This is a consequence of requesting unification at the GUT scale and
at higher orders the gluino mass is no longer M3[20].
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3. Leading order
Now we are interested in comparing the MSSM against reality. One way to test a theory
is by investigating the scattering process of various particles. Historically, a successful
method of finding new particles as well as verifying associated theories are particle
collisions at the LHC. If we want to compute a cross section we must account for the
fact that we collide protons which consist of partons, namely quarks and gluons.

Given that in a hadron h the number density of a parton i with a momentum fraction
xi can be written as fi/h(xi), the hadronic cross section σh is a convolution and sum of
partonic cross sections σab

σh(PA, PB) =
∑
a,b

1∫
0

1∫
0

dxadxbfa/A(xa)fb/B(xb)σab(xaPA, xbPB) , (3.1)

where PA and PB refer to the momenta of the hadrons. To calculate the partonic cross
section we must integrate our averaged squared matrix element 〈M〉2 over the 2-particle
phase space of our final state particles and include a Flux factor of 1

8π2s
. We can already

limit the partonic processes from charge conservation to

qu,dg → q̃u,dχ̃
0
k (3.2)

qu,dg → q̃d,uχ̃
∓
k , (3.3)

where k identifies the neutralino or chargino, respectively. In this section we will explain
the construction of the squared matrix element from Feynman diagrams at leading order.

3.1. Feynman diagrams
The diagrams derive their name from the Mandelstam variables

s = (pa + pb)2 t = (pa − p1)2 u = (pa − p2)2 (3.4)

which give for our process
s+ t+ u = m2

q̃ +m2
χ̃ (3.5)

from four-momentum conservation and external particles being on-shell (p2 = m2).

s-channel

To construct the matrix element from the Feynman diagram we follow the well
established standard model procedure. The non-standard-model squark is a scalar and
its inclusion is straight forward. For the majorana neutralinos however the fermion flow
needs to be fixed [30][31]. We choose it to follow the charge flow of the quarks and get
ū(p2) as well as in the chargino case. Using the Feynman rules from appendix A we get:
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Γµ1 Γ2

pa

α

pb

a

p2

p1

γ

q

β

Γµ1 = −igsγµT aβα (3.6)
Γ2 = i(L′PL +R′PR)δγβ (3.7)

iMs = ū(p2)Γ2
i/q

q2 Γµ1u(pa)εµ (3.8)

−iM†
s = ū(pa)Γ̄µ1

−i/q
q2 Γ̄2u(p2)ε∗ν (3.9)

The definition Γ̄ = γ0Γ†γ0 comes from conjugation and insertions of γ2
0 = 1 in between

the various γ.

u-channel

In contrast to previous channel we have a massive intermediate squark now. In
a strict manner we would have to distinguish between the squark propagator
in the normal Mu and conjugated M†

u matrix elements, but since we know
that the gluon coupling to a squark only has an effect on the colour (and
kinematics) the squark stays the same and we get following amplitudes: 1

Γ1

Γµ2

pa

α

pb

a

p2

p1

γ

puβ

Γ1 = i(L′PL +R′PR)δαβ (3.10)
Γµ2 = −igs(pu + p1)µT aγβ (3.11)

iMu = ū(p2)Γ1u(pa)
i

p2
u −m2

q̃

Γµ2εµ (3.12)

−iM†
u = ū(pa)Γ̄1u(p2)

−i
p2
u −m2

q̃

Γ̄ν2ε∗ν (3.13)

From these amplitudes we can construct the averaged matrix element.

3.2. Averaged matrix element
We average over incoming quark spin and colour ( 1

2·3) and gluon polarization and colour
( 1

2·8). Spin and colour of the final state particles are not averaged but summed. Here we
use the Feynman gauge for the gluon polarization sum. Squaring the s channel diagram
gives

〈Ms〉2 = −gµν
1

2 · 3 · 2 · 8 Tr
[
Γ2

i/q
q2 Γµ1/paΓ̄

ν
3
−i/q
q2 Γ̄4(/p2 +mχ̃)

]
(3.14)

= g2
sCACF
96q4 8(|R|2 + |L|2)(D − 2)(papb)(p2pb) (3.15)

= g2
sCACF
96q2 2(|R|2 + |L|2)(D − 2)(m2

q̃ − t) , (3.16)

1Please note that p1 and p2 are swapped for readability in the final state (u diagram looks like a t
diagram).
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where the D dimensional gamma matrices relation γµ/qγµ = (2 − D)/q is inserted. We
use the anticommutation property of the γ5 matrices contained in PL,R to get a trace of
only 4-vector γ’s (more on this in section 4.2.1). The evaluation of the resulting trace is
possible with appendix E.2 or tools like Form[32], Tracer[33] and FeynCalc[34]. We will
not need this D dependent result and use 4 instead. The u-channel squared evaluates to

〈Mu〉2 = −gµν
1

2 · 3 · 2 · 8 Tr
[
Γ1/paΓ̄3(/p2 +mχ)

]
Γµ2 Γ̄ν4

i
p2
u −m2

q̃

−i
p2
u −m2

q̃

(3.17)

= − g2
sCACF

96(u−m2
q̃)2 2(|R|2 + |L|2)(m2

χ − u)(m2
q̃ + u) , (3.18)

and the interference terms is

2 Re[MsM†
u] =− 2gµν

1
96 Tr

[
Γ2

i/q
q

Γ1/paΓ̄3(/p2 +mχ̃)
]
−i

p2
u −m2

q̃

Γ̄4 (3.19)

=2 g2
sCACF

96s(u−m2
q̃)

(|R|2 + |L2|)(
2(m4

χ̃ −m4
q̃) +m2

q̃(2u− 3s)− 2m2
χ̃(2mq̃ + u)− su

)
. (3.20)
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4. Formalisms
The Next-to-Leading-Order (NLO) cross section is defined as

σNLO =
∫
3

dσR +
∫
2

dσV . (4.1)

The integration over the 3-particle phase space of the real corrections dσR turns out
to be problematic due to infrared (IR) divergences, meaning very small momenta in
denominators. From the Kinoshita-Lee-Nauenberg (KLN) theorem [35][36] it is known
that these soft and/or collinear divergences cancel against the IR divergences from
the virtual corrections dσV. When we compute the virtual corrections, will encounter
integration over unconstrained loop momenta. They will give rise to ultraviolet
(UV) divergences, meaning very large momenta. UV divergences will be absorbed into
counterterms during renormalization. In the end a measurable inclusive quantity will
have no more divergences.

To calculate the next-to-leading order we must introduce several methods and
formalisms. We start with introducing the Catani-Seymour formalism in section 4.1.
Then in section 4.2 we explain the regularization of divergences. Followed by a
description of the on-shell renormalization in section 4.3.

4.1. The Catani-Seymour formalism
The Catani-Seymour dipole formalism provides a convenient way of handling infrared
divergences. A full explanation of this method can be found in [37] for massless and
in [38] for massive particles. The regularization scheme dependence of the dipoles is
available here [39] and in even more generality in the references of section 4.2. First
we introduce the general method. Then before going into more detail, we cover some
notations from mentioned papers.

4.1.1. The Method

One consequence of the IR divergences is that a Monte-Carlo integration over the 3-
particle phase space will not give reliable results. The solution of the formalism can be
written in a short equation

σNLO =
∫
3

[
dσR − dσA

]
ε=0

+
∫
2

dσV +
∫
1

dσA


ε=0

. (4.2)

An auxiliary function σA is subtracted from the real corrections and added to the
virtuals. It will be chosen in such a way that it cancels all the soft and collinear
divergences arising in σR. The method derives its name from the construction of σA
by summing over different dipoles

dσA =
∑

dipoles
dσB ⊗ dVdipole (4.3)
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correlated with spins and colours of the leading order σB. The contribution to the
virtuals corrections can then be rewritten∫

1

dσA = dσB ⊗
∑

dipoles

∫
1

dVdipole = dσB ⊗ I , (4.4)

where an insertion operator I is introduced. As a consequence of the KLN theorem, it
will cancel the infrared divergences in the virtual corrections. In hadron collisions there
will be extra contributions from the collinear remainder P and K:

σNLO =
∫
3

[
dσR − dσA

]
ε=0

+
∫
2

dσV +
∫
1

dσA


ε=0

+
1∫

0

dx
∫
2

[
dσB(xp)⊗ (P + K)(x)

]
ε=0

(4.5)
We will focus on the dipoles, but before that we introduce some notations.

4.1.2. Notations

The following notations define a very convenient to express the unintegrated and
integrated dipoles.
Matrix elements: A basis for colour c and helicity s space is introduced such that an

amplitude of m particles is written as
Mc1,...,cm;s1,...,sm

m (p1, . . . , pm) := (〈c1, . . . , cm| ⊗ 〈s1, . . . , sm|) |1, . . . ,m〉m (4.6)
and the squared matrix element is

|Mm|2 = 〈1, . . . ,m|1, . . . ,m〉m m . (4.7)

Colour structure: We use Ti to represent the emission of a gluon from parton i

〈c1, . . . , cm|Ti |c′
1, . . . , c

′
m〉m = δc1c′

1
. . . Tcic′

i
. . . δcmc′

m
, (4.8)

where

T acb :=
ifcab adjoint representation (i gluon or gluino)
±T acb fundamental representation (i quark or squark)

. (4.9)

The (−) case is for antiparticles. Since |1, . . . ,m〉m is a colour-singlet state, colour
conservation can be written as

m∑
i

Ti |1, . . . ,m〉m = 0 . (4.10)

Lastly, the colour charge algebra commutes unless it is a quadratic Casimir
operator

[Ti,Tj] = 0 T2
i = Ci =

CF = 4
3 i fundamental

CA = 3 i adjoint
(4.11)

Using these conventions we write the colour-correlated squared amplitude as

2〈. . . , j; k, . . .|TjTk |. . . , j; k, . . .〉2 =M...,bj ,bk,...
LO

∗
T nbjaj
T nbkak

M...,aj ,ak,...
LO . (4.12)
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4.1.3. Dipoles

The dipole factorization formula reads

|MDIP
2→3|2 =

∑
i,j

∑
k 6=i,j
Dij,k +

∑
i,j

∑
a

Daij +
∑
a,i

∑
j 6=i
Daij +

∑
a,i

∑
b 6=a
Dai,b ,

where the sums mean that we include all possible dipoles associated with our real
correction Feynman diagrams. The definition of the dipoles will cancel the singular
regions of our real correction 2 → 3 matrix element. Each dipole D comes from a
different emitter-specatator case. Both emitter and spectator are coloured particles. In
fig. 1 four cases are shown.

LO

j

i

k

Dij,k

(i) Final-state emitter,
Final-state spectator

LO

a i

j

Daij

(ii) Initial-state emitter,
Final-state spectator

LO

j

i

a

Daij

(iii) Final-state emitter,
Initial-state spectator

LO

a i

b

Dai,b

(iv) Initial-state emitter,
Initial-state spectator

Figure 1: Dipole diagrams for various emitter-spectator cases.

The general structure of all these dipoles is

Daij (p1, p2, p3; pa, pb) ∝
1
p2 2〈. . . , j, . . . ; ai, . . .|

TspectatorTinterm.

T2
interm.

V |. . . , j, . . . ; ai, . . .〉2 ,
(4.13)

where the division by p2 can constitute a divergence. The Casimir operator T2
interm. is

linked to the particle that enters the leading order process and is connected to two
external particles (red). The kernel V will depend on the momenta and is closely
related to the Altarelli-Paris splitting functions [40]. In order to match the divergence
of the real corrections the colour correlation needs to be taken into account through
TspectatorTinterm.. The 3-particle phase space needs to be mapped to a 2-particle phase
space such that the limiting behaviour is correct and momentum conservation holds.

By integrating out the soft emitted particle of the dipoles, the insertion operator I
can be determined. We refer to [37] for more detailed equations where these derivations
are explained in detail.
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4.2. Regularization and Reduction
A proper treatment of the divergences requires them to be regularized. The following
methods are motivated by the fact that changing the number of dimensions affects the
divergence of an integral

Λ∫
a

1
r2 d3r ∼ O(Λ)

Λ∫
a

1
r2 d2r ∼ O(ln Λ)

Λ∫
a

1
r2 d1r ∼ O(1) (4.14)

for a large cut-off scale Λ. Transitioning to a D = 4−2ε dimensional momentum integral∫
d4l→ µ4−D

∫
dDl (4.15)

regularizes the divergence through poles in ε with a renormalization scale µR to conserve
mass-dimensions.

4.2.1. Dimensional regularization schemes

We will look briefly at the schemes encountered in this thesis. They differ in their
treatment of the vector field regularization (i.e. gluon). Since these schemes use different
spaces, we list them here:

• 4-dimensional Minkowski space (S[4])

• quasi-d-dimensional space (QS[d]) is infinite dimensional and as a consequence it
is a superspace of S[4] ⊂ QS[d].

• quasi-4-dimensional space (QS[ds]) is closely related to S[4] but QS[d] ⊂ QS[ds] =
QS[ds] ⊗ QS[nε] must hold to sustain gauge invariance. Thereby, ds ≡ d + nε =
4− 2ε+ nε.

The index in brackets [d] refers to the dimension of the space. From here we can look
at the consequences for the metric tensors and gamma matrices:

gµν[ds] = gµν[d] + gµν[nε] gµµ[dim] = dim gµν[d]g
νρ
[nε] = 0 (4.16)

γµ[ds] = γµ[d] + γµ[nε] {γµ[dim], γ
ν
[dim]} = 2gµν[dim] {γµ[d], γ

ν
[nε]} = 0 (4.17)

The ordering of these spaces implies the projections relations to be

gµν[ds]g
νρ
[d] = gµρ[d] gµν[ds]g

νρ
[4] = gµρ[4] gµν[d]g

νρ
[4] = gµρ[4] (4.18)

meaning that we take the subspace upon contractions with a different space.
After settling these formalities, we move on to the regularization. Regardless of the

scheme the momentum integration is done in d dimensions. We will call singular gluons
internal, meaning those in collinear/soft emissions or loops, and the remaining gluons
external. Divergences only appear with internal ones so regularization of external
gluons is optional. Four prominent regularization schemes are:
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• Conventional Dimensional Regularization (CDR): Both internal and
external gluons are treated d-dimensional. This makes this scheme appealing for
automatized calculations.

• ’t Hooft Veltman (HV): The internal gluons are d-dimensional but the external
ones are 4-dimensional.

• Dimensional Reduction (DRED): Both internal and external gluons are quasi-
4-dimensional.

• Four Helicity Dimension (FHD): The internal gluons are quasi-4-dimensional
but the external ones are 4-dimensional. This scheme is used in MadGraph[41] since
it allows using a helicity formalism through HELAS[42].

For DRED and FHD ds is usually 4 or equivalently nε = 2ε.
The HV and CDR scheme introduce a mismatch between the (d − 2) gluon and

the 2 gluino degrees of freedom. Their regularization then breaks supersymmetry. This
problem does not happen in the DRED or FHD scheme. Luckily, it is possible to include
SUSY restoring counterterms for the gaugino-squark-quark ĝ and gluino-squark-quark
ĝs vertices

ĝs = gs

[
1 + αs

3π

]
ĝ = g

[
1− αs

8πCF
]
. (4.19)

Methods for converting different schemes can be found in [43][44][45] and more details
and examples are available in [46][47][48][49]. The application of γ5 inD dimensions must
also be reconsidered. We will stick to the naive handling by keeping its anticommutation
relation {γ5, γµ} = 0 and dropping the trace relation Tr[γµγνγργσγ5] = i4εµνρσ[50]. By
convention the trace is evaluated to Tr[1] = 4.

4.2.2. Passarino-Veltman reduction

To evaluate a divergent loop integral in D − 2ε dimensions the Passarino-Veltman
reduction is very useful. A general N -loop integral is depicted in fig. 2 written in the
following in an algebraic form

TNµ1,...,µM
(p1, . . . , pM ,m1, . . . ,mM) = µ4−D

iπD/2rΓ

∫
dDl lµ1 . . . lµM

D1 . . .DN
(4.20)

with the prefactor

rΓ = Γ(1− ε)2Γ(1 + ε)
Γ(1− 2ε) = 1− γEε+ (γ

2
E

2 −
π2

12)ε2 +O(ε3) . (4.21)

Alternative definitions factorize 1/Γ(1 + ε) giving differences of order O(ε)

Γ(1 + ε)
Γ(1− ε)2 Γ(1+ε)

Γ(1−2ε)

= 1 + π2

6 ε
2 +O(ε3) (4.22)

resulting in shifted finite (ε0) contributions when double poles (ε−2) appear.
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l

l + k1

l + k2

l + k3

l + kN−1

p1

p2

p3 p4

pN−1

pN

D1 = l2 −m2
1

D2 = (l + p1)2 −m2
2

...

DN = (l +
N∑
i=1

pi)2 −m2
N

Figure 2: Momentum conventions for general N -loop diagrams.

In accordance with LoopTools[51] conventions we introduce the notation

∆ = 1
ε
− γE + ln 4π (4.23)

and use the definition of the momenta

kn =
n∑
i=1

pi . (4.24)

Of special importance are the scalar integrals (M = 0). We will need them with up to
four particles in the loop:

T 1 = A0(m2
1) = µ4−D

iπD/2rΓ

∫
dDl 1
D1

=:
∫
l

1
D1

(4.25)

T 2 = B0(p2
1,m

2
1,m

2
2) =

∫
l

1
D1D2

(4.26)

T 3 = C0(p2
1, p

2
2, (p1 + p2

2),m2
1,m

2
2,m

2
3) =

∫
l

1
D1D2D3

(4.27)

T 4 = D0(p2
1, p

2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2,m2

1,m
2
2,m

2
3,m

2
4) =

∫
l

1
D1D2D3D4

. (4.28)

They were first calculated by ’t Hooft and Veltman in [52]. The tensor reduction
proposed by Passarino and Veltman avoids solving more complicated integrals by
recycling the scalar integrals [53]. Exemplary, Bµ = pµ1B1 must have that form since pµ1
is the only available Lorentz-structure and

2p2
1B1 = 2pµ1Bµ =

∫
l

2pl
D1D2

=
∫
l

(l + pq)2 −m2
2

D1D2︸ ︷︷ ︸
A0(m2

1)

−
∫
l

l2 −m2
1

D1D2︸ ︷︷ ︸
A0(m2

2)

−(p2
1 −m2

2 +m2
1)
∫
l

1
D1D2︸ ︷︷ ︸
B0

(4.29)
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gives Bµ in terms of scalar integrals. Some other tensor decompositions give:

Bµν = gµνB00 + kµ1k
ν
1B11

Cµ = kµ1C1 + kµ2C2

Cµν = gµνC00 + kµ1k
ν
1C11 + (kµ1kν2 + kµ2k

ν
1)C12 + kµ2k

ν
2C22

...

(4.30)

Their derivations can be found in [54] [55] or the original papers. We will use various
results from these summarized in appendix E.3.

Now that we have a practical machinery to handle divergences, we work out the
necessary renormalization of our fields in the next chapter.

4.3. Renormalization
In order to absorb the UV-divergences appearing at one-loop level we replace the bare
bosonic fields Φ0 with renormalized fields Φ

Φ0 =
√
Z0Φ0 →

√
ZΦΦ =

√
1 + δZΦΦ = (1 + 1

2δZΦ)Φ . (4.31)

Left- and right-handed fermionic fields are treated separately

Ψ0 =
√
Z0Ψ0 → (1 + 1

2δZ
L
ΨPL + 1

2δZ
R
ΨPR)Ψ , (4.32)

where we introduce the chirality projectors PL,R = 1
2(1 ∓ γ5) since we are operating in

the mass-eigenstates now. The L,R index notation is used to separate the two cases in
analogy to the ± notation.

Similarly, couplings λ and masses m get corrections:

λ0 → Zλλ = λ+ δZλλ (4.33)
m0 → Zmm = m+ δZmm (4.34)

The advantage of using a renormalization constant δZ shifted from the bare coupling
1 instead of the whole multiplicative renormalization constants Z is that we reproduce
our original bare Lagrangian with new counterterms

L0 → L+ L× . (4.35)

The counterterms will then be chosen to explicitly cancel the UV-divergences
encountered at one-loop level in the bare Lagrangian.

In the on-shell (OS) renormalization scheme the renormalized masses correspond to
the physical masses and the real part of the propagator’s residue is normalized to 1.
This differs from the modified minimal subtraction scheme, where one includes extra
counterterms to account for the proper normalization of the residue [56]. Another
advantage of the OS renormalization is that we do not have to compute loops at the legs
of our Feynman diagrams. Furthermore, the cancellation of UV divergences between
various vertices and wave-function renormalization functions is checked explicitly.
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Since we only encounter squarks and quarks as intermediate particle at leading order
in our process, we look at their renormalization first. To determine the running of the
coupling we will also renormalize the gluon propagator. The electroweakinos do not
need any treatment, since the goal of our perturbative calculation is an improvement by
O(αs).

4.3.1. Quarks

The kinetic and mass terms of the bare Lagrangian for quarks reads

L0 = iψ̄L0 /∂ψL0 −m0ψ̄
R
0 ψ

L
0 + (L↔ R) . (4.36)

Here the upper indices refer to whether a quark is left- or right-handed. Replacing the
bare quantities

ψL,R0 →
√
ZL,R
ψ ψL,R = (1 + 1

2δZ
L,R
ψ )ψL,R (4.37)

m0 → Zmm = (1 + δZm)m (4.38)

in the bare Lagrangian L0 yields

L = iψ̄L/∂ψL −mψ̄RψL︸ ︷︷ ︸
L0

(4.39)

+ i Re[δZL
ψ ]ψ̄L/∂ψL −m

(
δZm + 1

2(δZR∗
ψ + δZL

ψ )
)
ψ̄RψL︸ ︷︷ ︸

L×

+(L↔ R) (4.40)

without higher order terms in δZ. The bare Lagrangian L0 gives the typical two-point
Green’s function by replacing the derivatives with the momenta −ip, formally a Fourier
transformation into momentum space, and dropping the fields ψ

− iΣ0 = i(/p−m) (4.41)

where we apply PL + PR = 1, after using ψ̄RψL = ψ̄PLψ and ψ̄Lγ
µψL = ψ̄γµPLψ.

Following the same steps, the new two-point Green’s function for the counterterms is
obtained

− iΣ× = i
(
/pRe[δZL

ψ ]−m
(
δZm + 1

2(δZR∗
ψ + δZL

ψ )
))

PL + (L↔ R) . (4.42)

The NLO propagator ΠNLO
ψ then consists of additional self energies and counterterms

ΠNLO
ψ = ΠLO

ψ + ΠLO
ψ (−iΣ)ΠLO

ψ + ΠLO
ψ (−iΣ×)ΠLO

ψ (4.43)
= ΠLO

ψ (1 + (−iΣ̂)ΠLO
ψ ) (4.44)

where Σ are the bare self energy loop contributions. Combining the counterterms and
self energies then gives the renormalized self energy Σ̂. Splitting up the vectorial ΣV

and scalar ΣS part allows us to rewrite

Σ̂ =
(
/p (ΣV − Re[δZL

ψ ])︸ ︷︷ ︸
Σ̂L

V

+m

(
δZm + 1

2(δZR∗
ψ + δZL

ψ ) + ΣL
S

m

)
︸ ︷︷ ︸

Σ̂L
S

)
PL + (L↔ R) . (4.45)
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To realize on-shell renormalization the following two conditions must be satisfied [57]
[58]. First, the real part of the propagator’s pole must be the physical mass, that is

Re
[

1
ΠNLO
ψ (m2)

]
u(p,m) = 0 4.44=⇒ Re[Σ̂(p2 = m2)]u(p,m) = 0 (4.46)

And second, the real part of the propagator’s residue should be normalized to 1,
translating to

lim
p2→m2

Re[−i(/p−m)ΠNLO
ψ ]u(p,m) = u(p,m) 4.44=⇒ lim

p2→m2

/p+m

p2 −m2 Re[Σ̂]u(p,m) = 0 .

(4.47)

These conditions define how we get the on-shell renormalization constants δZ from the
bare self energies Σ

δZm = −1
2 Re

[
ΣL
V + ΣR

V + ΣL
S + ΣR

S

m

]
p2=m2

(4.48)

δZL,R
ψ = Re

[
ΣL,R
V +m2(Σ̇L,R

V + Σ̇R,L
V + Σ̇L,R

S + Σ̇R,L
S

m
)
]
p2=m2

, (4.49)

where Σ̇ is the derivative in p2. However, we will see in the following sections that no
corrections to the quark mass are necessary, since the only particle we treat as massive
is the top, which we assume to be negligible in the proton initial state.

4.3.2. Squarks

We start from a typical bare Lagrangian for scalars

L0 =
2∑
i=1

(∂µq̃†
0,i∂µq̃0,i −m2

0,iq̃
†
0,iq̃0,i) , (4.50)

but include a sum over the mass eigenstates i. Our renormalization constants are

q̃0,i →
√
Zij q̃j = (δij + 1

2δZij)q̃j (4.51)

m2
0,i → Z2

mi
m2
i = (δij + δZ2

mi
)m2

i (4.52)

where the sum over j allows for the inclusion of mixing between eigenstates in loop
corrections. Replacing the bare fields gives the new Lagrangian

L =
2∑
i=1

(∂µq̃†
i∂µq̃i −miq̃†

i q̃i)︸ ︷︷ ︸
L0

+
2∑
i=1

2∑
j=1

(1
2(δZ∗

ji + δZij)∂µq̃†
i∂µq̃j − (δijδZ2

mi
+ 1

2(δZjim2
j + δZijm

2
i ))q̃

†
i q̃j)︸ ︷︷ ︸

L×

. (4.53)
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Repeating the same steps as for the quarks, we get a two-point function from the
Lagrangian for the counterterms.

− iΣ×,ij = i
(1

2(δZij + δZ∗
ji)p2 − 1

2(m2
i δZij +m2

jδZ
∗
ji)−m2

i δZ
2
mi
δij

)
(4.54)

Combining bare self energy and counterterms

Σ̂ij = Σij + Σ×,ij (4.55)

we get the renormalized self energy. Again using the on-shell conditions we obtain our
renormalization constants. Requiring the propagator pole to be the physical mass in the
case of i = j leads to

Re[Σ̂ii(m2
i )] = 0 =⇒ δZ2

mi
= −Re[Σii(m2

i )]
m2
i

(4.56)

and the fact that the real part of the residue of the propagator must be one results in

δZii = Re[Σ̇ii(m2
i )] . (4.57)

For i 6= j the mass counterterm does not appear, since we want no transition from type
i to j. Thus, we write

Re[Σ̂12(m2
1)] = 0 Re[Σ̂12(m2

2)] = 0 (4.58)

leading to

δZ12 = −2Re[Σ12(m2
2)]

m2
1 −m2

2
δZ21 = +2Re[Σ21(m2

1)]
m2

1 −m2
2

. (4.59)

4.3.3. Gluon

The renormalization of the gluon is determined in a similar procedure to the previous
squark case. But a difference lies in the vanishing longitudinal propagator due to gauge
invariance

− iΠab
µν(p2) = −iδab

(
(gµν − pµpν

p2 )Πt(p2) + pµpν

p2 Πl(p2)
)
. (4.60)

Since the gluon is massless, its renormalization constant is solely determined by the
on-shell condition

δZg = −Re
[

dΠt(p2)
dp2

]
p2=0

. (4.61)
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4.4. Threshold Resummation
Covering the whole topic of resummation would go far beyond the scope of this thesis.
We will sketch the key concepts related to resummation and refer the interested reader to
[19] and its references. First, we should ask ourselves why resummation is interesting and
important for our process? We are looking at the production of heavy particles therefore
we are close to the limits of the phase space. For massless virtual particles (e.g. gluon)
we integrate over the full loop momentum. This is in contrast to the particles in real
emissions, since their integration is constrained. And as a consequence there are large
logarithmic remainders

αns (µ2
R)
[

lnm(1− z)
1− z

]
+
, (4.62)

where z = M2/s is the fraction of the invariant masses of final and initial state and
m ≤ 2n − 1. For soft particles z → 1 the arising divergences prohibit us from using
normal perturbation theory and the logarithmic terms need to be resummed up to all
order [22] [59].

To calculate the soft emission up to all orders, dynamical and kinematical factorization
are fundamental. Dynamical factorization is possible by the eikonal approximation,
that is simplified Feynman rules dropping insignificant terms for small momenta. One
approach to kinematical factorization is by transforming into Mellin space such that
the phase space factorizes∫

dzzN−1dφ2+n(z) ≈ dφ2 × dφn(N) (4.63)

where N is our new Mellin momentum of z.
Due to the factorization theorem we can split an IR sensitive quantity R into a hard

scattering H and long distance S behaviour, where only the later two depend on the
factorization scale µF . Exploiting the independence of the factorization scale in R and
setting it to µF = M yields

R(M2,m2) = H(1)S(1) exp

− M2∫
m2

dk2

k2 γs(k
2)

 (4.64)

where the scale dependence is in the exponent, named Sudakov form factor, consisting
of the soft anomalous dimension γs. Furthermore, the hard matching coefficient
will be needed for matching the resummation to our NLO calculation where one must
avoid double counting in the soft region.

Our resummed results are, however, preliminary, since we use the already in
Resummino included computations of the hard matching coefficient and soft anomalous
dimension for squark-gaugino production.
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5. Next-to-leading order
In previous section we went through the necessary methods to compute a NLO cross
section. Now we will apply them to the production of a squark and electroweakino. First,
section 5.1 will explain the computation of the real corrections. The second puzzle piece,
the virtuals, are presented in section 5.2.

5.1. Real corrections
The real corrections consist of the additional emission of a massless coloured particle.
Here, this is either a gluon or an (anti-)quark. The corresponding diagrams are shown
below.

iMrNLO = + + +

We can already see that the first two and the last two diagrams are related by crossing
relations. Therefore, in total only two 2→ 3 matrix elements need to be calculated. An
exemplary demonstration of the dipole subtraction is given in section 5.1.1. Followed by
working out the subtraction of on-shell resonances section 5.1.2.

5.1.1. Quark gluon initiated corrections

We use QGRAF[60] to generate the Feynman diagrams contributing to the 2 → 3
corrections with one quark and one gluon in the initial state.

=

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

+

9

+

10

+

11
(5.1)

Since use the Feynman gauge for gluons, we need to eliminate the unphysical
longitudinal polarization from the gauge-fixing. These are cancelled by including
(anti-)ghost diagrams (dashed without arrows). The squared matrix element is then
constructed as

〈|M|2〉 =
∑
i

〈|Mi|2〉+ 2
∑
i

∑
j<i

Re [〈M∗
iMj〉] . (5.2)

The straight up application of Feynman rules and interference of all these amplitudes is
best handled in an automized symbolic calculation. For this purpose we use FORM[32],
which also handles γ matrices. The steps in our computation are, completely analogous
to analytic calculation,
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1. Contract colour structures

2. Apply completeness relations for spinors and polarization sums

3. Evaluate spinor traces for each closed fermion line

4. Simplify momenta and factorize out common prefactors

Then the resulting matrix-element can be embedded in a Monte-Carlo integrator. In
the red coloured (1-5, 11) diagrams of eq. (5.1) we encounter soft and/or collinear
divergences from a gluon emission and a naive integration over the 3-particle phase
space will fail. We also notice that if we remove the red particles from our Feynman
diagrams we restore either the s- or u-channel Born-diagram. If we look at a propagator
of an intermediate particle connected to the red particles, we see a divergence towards
low transverse momenta in the eikonal limit

i
(p− k)2 −m2

k→0−−→ −i
2p.k ∼

1
k2
t

. (5.3)

Here k belongs to the emitted massless particle (here gluon) and p to the emitter with
mass p2 = m2.

The previously presented dipole formalism gives us extra terms to include in our
integration over the 3-particle phase space such that these divergences vanish. Next, we
will apply this procedure exemplary to the last diagram of eq. (5.1).

Applying the dipole formalism

Looking at fig. 3 we can see two potential spectators coloured in blue. One case is
classified as an initial-final and the other as an initial-initial dipole. As the spectator is
used for colour correlations, colourless particles vanish with T = 0.

LO

a

ai

i

j

Figure 3: Dipole identification of diagram 11 in eq. (5.1).

We will focus on the initial-emitter final-spectator case depicted on the right in fig. 3.
The corresponding equation for the dipole

Daij (p1, p2, p3; pa, pb) = − 1
2papi

1
xij,a

2〈. . . , j, . . . ; ai, . . .|
TjTai

T2
ai

Vai
j |. . . , j, . . . ; ai, . . .〉2

(5.4)
is associated with both diagrams where a quark emits a gluon (4, 11 in eq. (5.1)) and
the spectator j is a final state particle.
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Since we want to reuse our Born matrix element which includes a different colour
correlation, we define our colour rescale factor as

c = 〈TjTai〉3 := 2〈. . . , j, . . . ; ai, . . .|TjTai |. . . , j, . . . ; ai, . . .〉2
2〈. . . , j, . . . ; ai, . . .|1 |. . . , j, . . . ; ai, . . .〉2

= −
T aβγT

b
γρT

b
δβT

a
ρδ

T cβ′α′T cα′β′
= TR
CA

.

(5.5)
This is possible because both leading order diagrams have the same colour structure. In
a more general approach one can show that for 3 partons the colour algebra factorizes
by application of the colour conservation eq. (4.10) [37, Appendix A]:

0 = (T1 + T2 + T3) |1, 2, 3〉 (5.6)
(2T1T2) |1, 2, 3〉 = (T1T2 + T2T1) |1, 2, 3〉 (5.7)

= (T1(−T1 −T3) + T2(−T2 −T3)) |1, 2, 3〉 (5.8)
=
(
T2

3 −T2
1 −T2

2

)
|1, 2, 3〉 (5.9)

=⇒ c = 〈T1T2〉3 = TR(C3 − C1 − C2) (5.10)

And we get the same colour factor c = TR(CA−CF −CF ) = TR

CA
. Since we only have one

adjoint (gluon) and two fundamental (quark and squark) particles at leading order, the
only other possible combination of Casimir operators is TR(CF − CA − CF ) = −TRCA.
In the aforementioned dipole formula the kernel V is diagonal in the spin s

〈s|Vqg
j |s′〉 = 8πµ2εαsCF

{
2

2− xij,a − z̃j
− 1− xij,a − ε(1− xij,a)

}
δss′ (5.11)

and the last ingredient is the transition from a three {i, ai, j} to a two {ai, j} particle
phase space. This transformation must respect momenta conservation and the on-shell
particles should keep their masses

pµi + pµj + pµai = p̃µai + p̃µj (5.12)
p2
a = p2

i = p̃2
ai = 0 (5.13)

p2
j = p̃2

j = m2
j . (5.14)

An approach similar to the parton distribution functions is to rescale the momentum of
a particle by x after an emission

p̃µai := xij,ap
µ
a (5.15)

p̃µj := pµi + pµj − (1− xij,a)pµa , (5.16)

which consequently can be determined to be

xij,a = papi + papj − pipj
papi + papj

. (5.17)

The remaining dipole cases follow the same steps but use different functions from [38].
In table 4 we list the dipoles with their only undetermined quantity the colour rescale
factor and the Casimir operator T2 of the intermediate particle.
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Table 2: List of dipoles for quark-gluon initial state.

Diagrams dipole type emitter spectator emitted colour c Casimir T2
interm.

4, 11 initial-final quark squark gluon TR

CA
CF

4, 11 initial-initial quark gluon gluon −TRCA CF

3, 5 final-initial squark quark gluon TR

CA
CF

3, 5 final-initial squark gluon gluon −TRCA CF

1, 2 initial-final gluon squark gluon −TRCA CA

1, 2 initial-initial gluon quark gluon −TRCA CA

The case where a gluon emits another gluon is a bit more involved since the kernel
will depend on the helicty of the external gluon.

〈µ|Vgg
j |ν〉 =16πµ2εαsCA

{
−gµν

[
1

2− xij,a − z̃j
− 1 + xij,a(1− xij,a)

]

+ (1− ε)1− xij,a
xij,a

z̃iz̃j
pipj

(
pµi
z̃i
−
pµj
z̃j

)(
pνi
z̃i
−
pνj
z̃j

)}
(5.18)

It’s Lorentz-structure consists of four tensors gµν , pµi pνi , p
µ
j p

ν
j , p

µ
i p

ν
j + pνi p

µ
j . We notice

that they all are symmetric in µ←→ ν and any contraction with an antisymmetric tensor
will vanish. If we look at our polarized Born matrix element we identify seven variants
gµν , pµapνa, qµqν , p

µ
2p

ν
2, pµaqν + qµpνa, pµapν2 + pµ2p

ν
a , qµpν2 + pµ2q

ν (appendix B). From these
we compute a 7 × 4 matrix with all possible contractions of the kernel with our Born
matrix element. We write the prefactors to the kernel as a 4 dimensional vector and the
prefactors of the polarized matrix element in a 7 dimensional vector. To get a scalar
result we just need to sandwich the matrix between the vectors.

We already show results from the complete computation in table 3. The computation
of the 7× 4 matrix for both initial-initial and initial-final can be found in appendix D.1.
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Table 3: List of Lorentz-structure tensor prefactors from the Born process. A
global factor of 2g2

s(L2 + R2)CACF as well as the corresponding propagator
denominators are omitted. The calculation is in appendix B.

Tensor structure SS UU SU

gµν −q2p2pb 0 0

pµap
ν
a 0 p2pa 2p2q

qµqν 0 p2pa q2 − 2pap2

pµ1p
ν
1 0 4p2pa 4paq

pµaq
ν + pνaq

µ m2
2 −m2

1 −p2pa (−p2q) + (−paq + p2pa)

pµap
ν
1 + pνap

µ
1 q2 2p2pa 2p2q + paq

qµpν1 + qνpµ1 0 −2p2pa 2 (−paq + p2pa)− paq

5.1.2. Gluon gluon initiated corrections

To get the gluon-gluon initial diagram we cross the final state gluon and initial quark of
our previous calculation. This means we swap pa ↔ −p3, collect a factor of (−1) from
Fermi statistics and adjust the averaging over initial particles by Nc

N2
c −1 .

=

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

+

9

+

10

+

11
(5.19)

The only subtlety arising with the dipoles is that they must be included twice but
with different kinematics.

Table 4: List of dipoles for gluon-gluon initial state. Each dipole appear twice, but with
different kinematics.

Diagrams dipole type emitter spectator emitted colour c T2
interm.

4, 5, 10, 11 initial-final gluon squark (anti-)quark TR

CA
CF

4, 5, 10, 11 initial-initial gluon gluon (anti-)quark −TRCA CF
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There is however the complication that some squark propagators can go on-shell.

On-shell resonance subtraction

First, we must understand what these resonances mean and why we must subtract them.
The resonances appear when the particle’s momentum gets close to its mass p2

res → m2
q̃.

Then the process of diagram 3 in eq. (5.19) splits into a leading order process with a
subsequent decay. Schematically,

p2
res→m2

q̃−−−−−→ ⊗ . (5.20)

This process is only possible if the squark has a higher mass than the gaugino to allow a
decay in its own reference frame. We do not want this contribution in our computation
since it is already a part of the prediction of producing two squarks at leading order.

In a first step we regularize the on-shell divergence by introducing a finite width Γq̃
to the propagator such that

1
p2

res −m2
q̃

→ 1
p2

res −m2
q̃ + imq̃Γq̃

. (5.21)

This width will act purely as a regulator and does not need to be the physical width.
If two amplitudes are combined and each has a resonant propagator we get a double
resonant propagator (note the conjugation of one propagator)

1
(p2

res −m2
q̃)2 →

1
(p2

res −m2
q̃)2 +m2

q̃Γ2
q̃

. (5.22)

Our total matrix-element splits into three pieces

|Mtot|2 = |Mnr|2 + 2 Re[MrM∗
nr] + |Mr|2 . (5.23)

The non-resonant diagrams (2, 4, 5, 8, 9, 10, 11) are part of Mnr and the remaining
resonant diagrams (1, 3, 6, 7, 9) are included in Mr.

The simplest method to exclude the large contributions is Diagram Removal (DR),
where double resonance |Mr|2 and the interference 2 Re[MrM∗

nr] are not considered
(DR-I). It is also possible to only exclude the double resonant part and keep the
interference (DR-II)[61]. The price one pays for such a simple method is the apparent
loss of gauge invariance.

Therefore, we will instead apply Diagram Subtraction (DS). DS keeps both
the single (interference) and double resonant pieces and only locally subtracts the
contribution from the leading order process followed by the decay (lhs. eq. (5.20)). The
advantage of this method is that it respects gauge invariance for vanishing width Γq̃.
Consequently, we do not just integrate |Mtot|2 over a 3-particle phase space dφ3 but
instead include a point wise subtraction
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(
|Mtot|2 − |Mr(φ̃3)|2

m2
q̃Γ2

q̃

(p2
res −m2

q̃)2 +m2
q̃Γ2

q̃︸ ︷︷ ︸
Breit-Wigner

Θ(
√
s−mq̃ −mq̃∗)︸ ︷︷ ︸
q̃q̃∗-production

Θ(mq̃ −mχ̃)︸ ︷︷ ︸
decay

dφ̃3

dφ3

)
dφ3 .

First, we include a Breit-Wigner function corresponding to the decay with given width
Γq̃. For the production of q̃q̃∗ at leading order to be kinematically allowed there must
be sufficient energy

√
s to constitute their masses. The second Θ function restrains our

subtraction to the cases where a subsequent decay is allowed.
We must introduce a new 3-particle phase space φ3 → φ̃3 similar to the Catani-

Seymour formalism to remove only contributions from |Mr|2 where p̃2
res = (p2+p3)2 = m2

q̃

is on-shell. Please note that the Breit-Wigner function is still evaluated in φ3 as it
evaluates to 1 otherwise. More details, especially on the explicit form of the Jacobian
dφ̃3
dφ3

, are given in [62] on the specific case of squark pair production.
We split the integration over the 3-particle phase space dφ3 in a double resonant part

with the diagram subtraction and the rest (non-resonant and single resonant). This
allows the Monte-Carlo integration to converge faster by focusing on the dominating
region of each part.

5.1.3. Quark antiquark initiated corrections

For a quark and antiquark entering our 2→ 3 process we get following diagrams

=

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

. (5.24)

In the diagrams above red indicates the need for a dipole subtraction and green for
an on-shell resonance subtraction. New in this process is the appearance of gluinos.
They can go on-shell now and might require a subtraction. Also, squarks in between a
gaugino and gluino are not determined for fixed initial and final state any more (3, 4, 7,
8). Therefore, we iterate over the possible squarks, but one needs to be careful here since
a diagram with the same topology, but different internal squarks will get a factor of 2 like
an interference term. This factor of 2 appears naturally if we iterate over both internal
squarks (one in M and one in M∗). Furthermore, we must include all types of quarks
in the final state. Given that the chargino changes particles from up-type to down-type
and vice-versa and the neutralino does not, the easiest way of including all possible cases
is to keep the couplings completely arbitrary in our computation and let them decide
which processes are allowed. The downside of this is the large number diagrams entering
the computation, but since the couplings will not change in one Monte-Carlo integration,
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it is sufficient to compute the couplings, use only the non-zero ones and reuse them for
the next integration point.

In table 6 we list the information for the dipoles again. The kernel here again depends
on the polarized Born matrix element since the dipole is linked to the gluon entering
our Born process.

Table 5: List of dipoles for quark-antiquark initial state.

Diagrams dipole type emitter spectator emitted colour c T2
interm.

5, 6 initial-final (anti-)quark squark (anti-)quark −TRCA CA

5, 6 initial-initial (anti-)quark quark (anti-)quark −TRCA CA

5.1.4. Quark quark initiated correction

This final real correction is related to the quark antiquark case again by a crossing of
the finial state antiquark with the initial state quark

=

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

. (5.25)

This case is very useful to check our previous case as it is very symmetric. First, we can
effectively remove the diagrams with a gluino by giving it a high mass. On the other
hand integrating over the first four diagrams must give the same result as if we integrate
only over the last four. We directly notice that the dipoles are nearly the same as in the
previous quark-antiquark case. The only difference is that the dipoles appear two times,
either with initial quark qa or qb. The dipoles are just like the diagrams related by the
crossing relation pa ←→ pb.

Table 6: List of dipoles for quark-quark initial state. Each dipole appear twice, but with
different kinematics.

Diagrams dipole type emitter spectator emitted colour c T2
interm.

1, 2, 5, 6 initial-final quark squark quark −TRCA CA

1, 2, 5, 6 initial-initial quark quark quark −TRCA CA
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Now that we finished the computation of the real corrections we can move on to the
virtual corrections.

5.2. Virtual corrections
The second ingredient to our NLO computation are the virtual corrections. A step-by-
step computation is given in appendix C. Though a symbolic computer driven approach
is faster and more reliable. We include such an exemplary code in appendix C.4.
As already outlined in the preparation to this part of the thesis we will apply on-
shell renormalization, such that no loops on the legs of our Feynman diagrams must
be calculated. We are left with computing self energies in section 5.2.1 and vertex
corrections in section 5.2.2. After listing the box diagrams in section 5.2.3, we mention
the extra finite counterterms and add the integrated Catani-Seymour dipoles.

5.2.1. Self energies

We need to compute quarks, squarks and the gluon self energies.

Quark self energy

For the quark self energy we get one extra contribution compared to the SM. This
additional loop is displayed in eq. (5.26).

= + + (5.26)

The counterterms can be determined from eq. (4.48) and eq. (4.49) derived in
section 4.3.1 and the self energies of a quark qI (cf. appendix C.1.1). In the general
massive case we find following self energies

ΣL
S = g2

s

(4π)2CF δβαmq

(4B0(p2,m2
q, 0)− 2)− 1

mq

∑
q̃i

(LIiL′
Iimg̃B0(p2,m2

g̃,m
2
q̃i

))

(5.27)

ΣL
V = g2

s

(4π)2CF δβα

(2B1(p2,m2
q, 0) + 1) +

∑
q̃i

(LIiR′
IiB1(p2,m2

g̃,m
2
q̃i

))
 (5.28)

and the right-handed term similar with L ↔ R. From the parameters of the Passarino-
Veltman integrals we can identify which term comes from which diagram. Since the mg̃

term is proportional to LL′ = 0, it can be dropped for minimal squark mixing and we
get for massless quarks

δZm = 0 (5.29)

δZL,R
q = g2

s

(4π)2CF (2B1(0,m2
g̃,m

2
q̃L,R

) + 2B1(0, 0, 0)) , (5.30)
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where the 2 comes from the
√

2 prefactors of R and L. Note that the finite shift that
came with the quark-gluon loop vanishes at p = 0 and m = 0. By applying the UV limit
B1

UV−−→ −1
2∆to this counterterm as listed in table 11 we get

δZL
q

UV−−→ g2
s

(4π)2CF (2 + 2)(−1
2∆) . (5.31)

We will not need the result for the massive case, but we present our result here anyway.
They are obtained from the same equations as in the massless case.

δZm =− g2
s

(4π)2CF (−1 + 2B1(m2
q,m

2
q, 0) + 4B0(m2

q,m
2
q, 0)

+
∑

i=q̃L,q̃R

(B1(m2
q,m

2
g̃,mq̃i

) + mg̃

mqI

S∗
i(I+3)SiIB0(m2

q,m
2
g̃,mq̃i

))) , (5.32)

δZL,R
q = g2

s

(4π)2CF (1 + 2B1(m2
q,m

2
q, 0) +

∑
q̃i

(LIiR′
IiB1(m2

q,m
2
g̃,m

2
q̃i

))

+m2
q(4Ḃ1(m2

q,m
2
q, 0) + 8Ḃ0(m2

q,m
2
q, 0)

+
∑

i=q̃L,q̃R

(2Ḃ1(m2
q,m

2
g̃,m

2
q̃i

) + 4 mg̃

mqI

S∗
i(I+3)SiIḂ0(m2

q,m
2
g̃,mq̃i

)))) . (5.33)

Here LIiR′
Ii +RIiL′

Ii gives 2 for the matching left and right handed squarks. We take
only the real part of the Passarino-Veltman integrals. Our result are in agreement with
massless and massive renormalization given in [24] if we set εUV = εIR and consequently
B1(0, 0, 0) = 0. The only difference is the factor mg̃/mq which got lost in referenced
paper. The renormalized quark self energy is embedded as follows in our calculation

|Msu
q |2 = 2 Re



∫  +


 . (5.34)

Squark self energy

Next we look at the renormalization of squarks. Therefore, we must calculate following
4 self energies Feynman diagrams.

= + + + +

(5.35)

The tadpole diagram with a gluon will yield no contribution and the squark tadpole case
can be absorbed into the renormalization as it is momentum independent. For the first
two generations where the quark mass is zero we determine the renormalization from
eq. (4.57) and eq. (4.56) to be

δZ2
mi
m2
i = −Σii(m2

i ) =− g2
s

(4π)2CF (4m2
q̃B0(m2

q̃, 0,m2
q̃)− A0(m2

q̃)
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+ 2(m2
g̃ −m2

q̃)B0(m2
q̃,m

2
g̃, 0) + 2A0(m2

g̃)− A0(m2
q̃)) , (5.36)

δZii = Σ̇ii(m2
q̃) = g2

s

(4π)2CF (2B0(m2
q̃, 0,m2

q̃) + 4m2
q̃Ḃ0(m2

q̃, 0,m2
q̃)

+ 2(m2
g̃ −m2

q̃)Ḃ0(m2
q̃,m

2
g̃, 0)− 2B0(m2

q̃,m
2
g̃, 0)) . (5.37)

With B0
UV−−→ ∆ the UV limit comes out as

δZii
UV−−→ g2

s

(4π)2CF (2− 2)∆ = 0 . (5.38)

In the massive case however we separate i = j and i 6= j where only the former gets a
mass renormalization.

δZii = Σ̇ii(m2
q̃) = g2

s

(4π)2CF (2B0(m2
q̃, 0,m2

q̃) + 4m2
q̃Ḃ0(m2

q̃, 0,m2
q̃)

+ 2(m2
g̃ −m2

q̃ +m2
q − 2mg̃mq Re[S∗

i(I+3)SiI ])Ḃ0(m2
q̃,m

2
g̃,m

2
q)

− 2B0(m2
q̃,m

2
g̃,m

2
q)) , (5.39)

δZij · (m2
j −m2

i ) =Σij(m2
j)− Σji(m2

i ) = g2
s

(4π)2CF (4mg̃mq(S∗
i(I+3)SjI + Sj(I+3)S

∗
iI))

(B0(m2
q̃j
,m2

g̃, 0)−B0(m2
q̃i
,m2

g̃, 0)) , (5.40)

δZ2
mi
m2
i = −Σii(m2

i ) =− g2
s

(4π)2CF (4B0(m2
q̃, 0,m2

q̃)− A0(m2
q̃)

+ 2(m2
g̃ −m2

q̃ +m2
q + 2mg̃mq̃ Re[S∗

i(I+3)SiI ])B0(m2
q̃,m

2
g̃, 0)

+ 2A0(m2
g̃) + 2A0(m2

q)−
∑
k=1,2

|Sik|2A0(m2
q̃k

)) . (5.41)

Our results again agree with [24]. The renormalized squark self energy enters only in
the u-diagram.

|Msu
q̃ |2 = 2 Re



∫  +


 . (5.42)

Gluon self energy

We also need to compute the gluon self energy since it gives finite contributions to the
vertex counterterms. We encounter following Feynman diagrams

= + + + (5.43)

+ + + + . (5.44)
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Their individual results are given in appendix C.1.3. The wave-function renormalization
term is obtained from the transversal self energy Σt (see eq. (4.61))

δZg =− Re
[

dΣt(p2)
dp2

]
p2=0

(5.45)

=−
∑

heavy q

g2
s

(4π)2
2
3

(
2m2

qḂ0(0,m2
q,m

2
q) +B0(0,m2

q,m
2
q)−

1
3

)

−
∑

light q

g2
s

(4π)2
2
3 (B0(0, 0, 0))

+ g2
s

(4π)2 (19 + 1)1
4(B0(0, 0, 0))

− g2
s

(4π)2
2
3Nc

(
2m2

g̃Ḃ0(0,m2
g̃,m

2
g̃) +B0(0,m2

g̃,m
2
g̃)−

1
3

)

−
∑
q̃

ig2
s

(4π)2TR
1
3

(
−(4m2

q̃)Ḃ0(0,m2
q̃,m

2
q̃) +B0(0,m2

q̃,m
2
q̃) + 2

3

)
. (5.46)

The first two terms come from the massive and massless quark loops. The term
proportional to 19 comes from the gluon loop, and it is grouped together with the 1
from the ghost loop. Then come the gluino and the last line are the contributions from
the squark loop. Taking the UV limit replaces B0 by ∆

δZg
UV−−→ g2

s

(4π)2 ( −2
3nlf + 5︸ ︷︷ ︸

−2CA+
11CA−2nlf

3

−2
3 −

2
3Nc −

∑
q̃

1
6)∆ (5.47)

where made use of

Ḃ0(0,m2,m2) = 1
6m2 (5.48)

εB0(0,m2,m2) = 1 (5.49)

and neglected terms of O(ε). The special case in eq. (5.48) is the reason why there is no
finite part for the light quarks in contrast to the heavy quarks. It is practical to define
β0 for light and heavy particles

βL0 = 11CA − 2nlf
3 (5.50)

βH0 = −2
3 −

2
3Nc −

∑
q̃

1
6 , (5.51)

where nlf = 5 is the number of light quarks. This result is in agreement with the
gluon wave-function renormalization given in [24] if we set εUV = εIR and consequently
B0(0, 0, 0) = 0.

5.2.2. Vertex corrections

In this segment we will look at the vertex corrections. Since they get a bit unhandy we
focus on the UV divergent pieces whilst the full calculations are in appendix C.2.
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Quark-quark-gluon vertex

For the quark gluon vertex we get the SUSY contributions by replacing all loop particles
with their superpartners.

= + + + +

(5.52)

The counterterm is expected to cancel the UV divergence and is constructed from the
renormalization constants of involved particles and couplings

−UV[Λ] = UV[Λ×] =− igsT aβαγµδIJUV[δZα + 1
2δZg + δZq] . (5.53)

We explicitly give the divergence from our loop calculations

UV[δZα + 1
2δZg + δZq] !=− g2

s

(4π)2TR

(
3CA + CA −

1
CA
− 1
CA

)
∆ (5.54)

=− g2
s

(4π)2 (CA + 2CF )∆ (5.55)

and using eq. (5.47) and eq. (5.31) gives us the divergence of the strong coupling
renormalization constant

UV[δZα] = g2
s

(4π)2 (−CA − 2CF −
1
2(−2CA + βL0 + βH0 ) + 2CF )∆ (5.56)

= − g2
s

(4π)2
βL0 + βH0

2 ∆ . (5.57)

The UV divergence of the renormalization constant agrees with the ones presented in
[9] and [24]. Again, the loop corrections to the qqg-vertex displayed must be combined
with the two leading order diagrams

|Msu
qqg|2 = 2 Re



∫  +


 . (5.58)

Squark-squark-gluon vertex

The coupling of the gluon to a squark gets following NLO contributions

= + + +
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+ + + + + .

(5.59)

Looking at the UV divergence of these diagrams (cf. appendix C.2.2)

−UV[Λ] = UV[Λ×] = igsT aβα(2p1 + p2)µδijUV[δZα + 1
2δZg + δZq̃] (5.60)

UV[δZα + 1
2δZg + δZq̃] != − g2

s

(4π)2TR

(3
2CA + 2CA −

1
CA
− 2 1

CA
− 27

4

)
∆ (5.61)

= − g2
s

(4π)2CA∆ . (5.62)

In the same fashion as for the qqg vertex, using the wave-function renormalization in
eq. (5.47) and eq. (5.38) gives us the divergence of

UV[δZα] = g2
s

(4π)2 (−CA −
1
2(−2CA + βL0 + βH0 ))∆ (5.63)

= − g2
s

(4π)2
βL0 + βH0

2 ∆ (5.64)

This is the same result as in previous chapter as it is expected. To include the loop
corrections to the q̃q̃g-vertex the u-diagram with the loop gets connected to both Born
diagrams

|Msu
q̃q̃g|2 = 2 Re



∫  +


 . (5.65)

Quark-squark-gaugino vertex

The gaugino vertex gets only two loops

= + + . (5.66)

We compute the loop corrections to the qq̃χ̃-vertex in appendix C.2.3. Since we do not
renormalize the gaugino, the UV divergence must equal the difference of the quark δZq
and squark δZq̃ renormalization constants

−UV[Λ] = UV[Λ×] =igs(L′PL +R′PR)UV[12δZq̃ + 1
2δZq] (5.67)
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UV[δZq̃ + δZq] = UV[δZq] =− g2
s

(4π)2 2CF∆ (5.68)

And that is what we observe by looking at 5.31 and eq. (5.38). The vertex appears in
both the s-channel and u-channel

|Msu
qq̃χ̃|2 = 2 Re



 +


∫  +


 .

(5.69)

Gluino-gaugino-gluon vertex

The vertex of a gluino, gaugino and gluon does not appear at leading order or in the
MSSM Lagrangian, but at higher orders it is realized as

= + + + . (5.70)

It therefore comes as no surprise that there are no UV divergences for all 4 diagrams
combined, to be absorbed in counterterms.

|Msu
gg̃χ̃|2 = 2 Re



∫  +


 (5.71)

5.2.3. Boxes

The remaining potential diagrams for qg → χ̃q̃ at the order of O(α3/2
s ) are

= + + +

+ + + . (5.72)

These box diagrams are combined, like all our virtuals, with both the s- and u-channel
and no UV divergences remain.

|Msu
qq̃χ̃g|2 = 2 Re



∫  +


 (5.73)
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5.2.4. Vertex counterterms

The counterterms for vertices follow directly from the wave-function renormalization
constants calculated in the previous chapter. They will by definition cancel the UV
poles since we chose the divergence of the running coupling that way. The running
coupling however also gets a finite shift to decouple heavy particles such that only the
gluon and five light quarks contribute to the running of αs

δZαs = αs
8π

−2
3 ln m

2
t

µ2
R

− 2 ln
m2
g̃

µ2
R

− 1
6
∑
q̃i

ln
m2
q̃i

µ2
R

 . (5.74)

This can be seen from the Slavnov-Taylor identities relating finite parts of the gluon
δZg = −2δZαs to the coupling [9]. In our gluon renormalization eq. (5.46) we extracted
the finite piece with the relation B0(0,m2,m2) = ∆ − ln m2

µ2 [54]. This procedure is
called zero-momentum subtraction scheme in the literature [9] [24] and consistent with
five-flavour MS scheme used in parton distribution functions. We also have to include
the finite SUSY restoring counterterms to our gaugino-squark-quark counterterm. They
were already given in eq. (4.19).

5.2.5. Integrated dipoles

The integrated dipoles are defined through an insertion operator I.∫
dσA =m 〈1, . . . ,m| Im+a+b(ε, µ2, {pi,mi}) |1, . . . ,m〉m

+
∑
a′

1∫
0

dxm,a′b 〈1, . . . ,m;xpa, pb|Ka,a′(x) + P a,a′(x, µ2
F ) |1, . . . ,m;xpa, pb〉m,a′b

+
∑
b′

1∫
0

dxm,ab′ 〈1, . . . ,m; pa, xpb|Kb,b′(x) + P b,b′(x, µ2
F ) |1, . . . ,m; pa, xpb〉m,ab′

(5.75)

Where the operators K and P are finite collinear counterterms depending on the
longitudinal momentum fraction x. The singular terms are included in I:

Im(ε, µ2
R; {pi,mi}) =− αs

2π
(4π)ε

Γ(1− ε)
∑
j

1
T2
j

∑
k 6=j

TjTk (5.76)

[
T2
j

(
µ2

sjk

)ε (
νj(sjk,mj,mk,mF ; ε, κ)− π2

3

)
(5.77)

+ Γj(µ,mj,mF ; ε) + γj(1 + ln µ2

sjk
) +Kj +O(ε)

]
The finite constants γj and Kj as well as the dipole kernel functions νj = νSj +νNSj can be
found in the paper [38]. The parameters change with the use of different regularization
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schemes [45]. However, there is no difference between CDR and HV schemes. This is
also intuitively clear since we expect the procedure to kill all remaining ε poles after
renormalization and thereby the additional O(ε) terms from CDR do not contribute to
the finite result. One also notices this in the different combinations of the leading order
in the dipoles. The CDR LO can have terms of O(ε) whereas in HV this ε is set to zero.

The evaluation of the integrated dipoles can again be summarized in a short table 7. It
comes as no surprise that we already now these colour factors well from the unintegrated
dipoles in our real correction.

Table 7: List of integrated dipoles for the virtual corrections.

Particle j particle k sjk colour c = 〈TjTk〉 Casimir T2
j

squark quark 2pap1
TR

CA
CF

quark squark 2pap1
TR

CA
CF

quark gluon 2papb −TRCA CF

gluon quark 2papb −TRCA CA

gluon squark 2pbp1 −TRCA CA

squark gluon 2pbp1 −TRCA CF

The collinear remainder P + K can be directly implemented from the aforementioned
dipole formalism papers and was already included for our process in Resummino.
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6. Numerical tests
Since such lengthy calculations carry a high probability of making of (most likely
insignificant) mistakes, we will go through several (primarily numeric) tests and
comparisons to ensure that the final results are correct. The specific SUSY scenario and
mass spectrum should not matter in performing these checks. An obvious exception
is the regularization and subtraction of on-shell resonances since they only appear for
specific mass ordering.

6.1. Leading Order
We checked our new implementation of the leading order process against SunderCalc,
Prospino2[63] and MadGraph[41]. The relative errors ∆σ/σ in table 8 shows good
agreement which is crucial for continuing with further tests.

Table 8: Relative errors between several programs calculating squark-electroweakino
production.

Process p+ p→ SunderCalc Resummino MadGraph Prospino2

u+ g → ũL + χ̃0
1 0% 0.02% 0.04% 0.03%

d+ g → d̃L + χ̃0
1 0% 0.03% 0.01% 0.04%

ū+ g → ¯̃uL + χ̃0
1 0% 0.04% 0.3% 0.03%

d̄+ g → ¯̃uL + χ̃0
1 0% 0.05% 0.05% 0.03%

u+ g → d̃L + χ̃+
1 0% 0.02% 0.3% 0.01%

d+ g → ũL + χ̃−
1 0% 0.03% 0.05% 0.01%

ū+ g → ¯̃dL + χ̃−
1 0% 0.04% 0.3% 0.01%

d̄+ g → ¯̃uL + χ̃+
1 0% 0.05% 0.04% 0.01%

6.1.1. Polarized matrix element

We also expect the polarized matrix element to be consistent with our averaged
calculation. To explicitly check this we only need to contract the tensor with −gµν (the
gluon polarization sum) and scale it with the values of table 3. For example in the SS
case (MsM†

s) we get
− q2(−4p2pb +m2

2 −m2
1 + 2pap1) (6.1)

after applying slightly modified momentum conservation −2p2pb+m2
2 = m2

1−2pap1 and
including the omitted factors we get

q2(2p2pb)
2CACFg2

s(R2 + L2)
96s2 = 〈Ms〉2 (6.2)

ensuring us that the computation is consistent with eq. (3.16).
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6.1.2. MadGraph

In the prompt after starting MG5_aMC we enter

MG5_aMC> import model EWKino_NLO_UFO
MG5_aMC> generate p p > ul n1 QCD=1
MG5_aMC> output LO
MG5_aMC> launch

to get the production of a left-up-squark and a neutralino from the specified UFO
model[24]. Now LO/Cards/param_card.dat2 needs to be set as well as the PDFs and
the factorization scale in LO/Cards/run_card.dat.

6.2. Real corrections
6.2.1. Dipole subtraction

We can check that the dipoles cancel the divergence of the real corrections point wise.
In fig. 4 adding together the two most contributing dipoles (5+6) results in the same
divergence as our real correction matrix element as pt approaches 0. The fig. 5 shows
a cancellation over 7-8 orders of magnitude. But with pt getting too low we loose some
cancellation due to numeric rounding errors, resulting in the peak at pt ≈ 0. This low
contributing region where the cancellation does not work any more is excluded from our
integration.

Figure 4: Divergence structure of an arbitrary phase space point as pt goes to 0.

2MadGraph always need the decay data. It can be copied from the param_card_default.dat
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Figure 5: Point wise cancellation of IR divergence by subtracting the dipoles (dips) from
the real matrix element (rNLO).

Let us look at the impact of the dipole subtraction on our integrated result. On the
left side of fig. 6 we see that, without the dipole subtraction, going to a lower pt-cut
results in an increased cross-section. This is to be expected as we include more of the
divergence displayed in fig. 4. If we now perform the dipole subtraction the divergence
is eliminated and our result does not depend on the pt-cut any more (right side).

dipole−−−−−−→
subtraction

Figure 6: Integrated cross-section with varied pt-cut. The left plot is just the real
emission cross section without dipole subtraction. In the plot on the right
the subtraction is enabled.

During checking our dipoles against other implementations we notice significant
differences in the 7 × 4 matrix used to combine the polarized dipoles (appendix D.1).
But most of the elements do not contribute such that the final subtraction term and
cross-section turn out to be the same.
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6.2.2. On-shell subtraction

In fig. 7 and fig. 8 we see that our result does not depend (much) on the width Γ, even
though the non-subtracted results differ significantly (orange, blue). The widths are
Γq̃ = mq̃ · 10−2 and Γq̃ = mq̃ · 10−3. They give roughly the same cross-section after the
subtraction (red, green).
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Figure 7: On shell subtraction with different widths in g + g → ũL + χ̃0
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Figure 8: On shell subtraction with different widths in g + g → d̃L + χ̃+
1

6.2.3. Total Reals

One interesting observation is a flipping of the sign in the total real correction when
either the squark mass or hadronic center-of-mass energy is varied (fig. 9). We observed
such a sign flip for all real corrections individually but at different masses. It is strongly
related to the dipole and on-shell subtraction since we would expect the squared matrix
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element to be positive. This was already observed in [9] with which we compare our
computation. We use SPheno[64] to reproduce the spectrum SPS1a1000 where the mass
of the gluino is increased to 1 TeV from the original SPS1a of [65]. The parameters and
masses are shown in table 9. Unfortunately LHAPDF[66] does no longer support the cteq6
set, nonetheless using CT14lo/CT14nlo gives good agreement as shown in fig. 9.

(i) Computation from [9]

400 500 600 700 800 900
M [GeV]

10 3

10 2

10 1

100

 [f
b]

real

real

(ii) own computation, the errors are statistical

Figure 9: Sign flip of the real correction in pp→ ũRχ
0
1

Table 9: SPS1a1000 parameter definitions [65] and resulting masses from SPheno. The
gluino mass was manually increased to 1 TeV.

Parameter m0 m1/2 A0 tan β signµ

Value [GeV] 100 250 -100 10GeV−1 +

Particle mũR
mχ̃0

1
mg̃

Mass [GeV] 550 97 1000

6.3. Virtuals
6.3.1. Madgraph

To get only the virtual contributions from MadGraph QCD=1 gets replaced by [virt=QCD].
For the s channel we force the intermediate particle to be an up-quark.

MG5_aMC> generate p p > u > ul n1 [virt=QCD]

Instead for the u channel we forbid up-quarks as the intermediate particle.

MG5_aMC> generate p p > ul n1 $$ u [virt=QCD]
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In the resulting directory SubProcesses/P0_ug_*/loop_matrix.ps we find a complete
pictorial list of loop diagrams. To inspect a subset or single diagrams the parameter
–loop_filter='id==1 or id==2' accepting a pythonic expression can be used and the
ids come from the unfiltered list. MadGraph uses the axial gauge for the polarization
sums of the gluon, and just a metric tensor gµν for internal gluons

∑
i

εµ∗(p)εν(p) = −gµν + pµqν + qµpν

p.q
− q2pνpµ

(p.q)2 . (6.3)

If we want to know more details of the calculation we perform following changes in the
generated process directory SubProcesses/P0_ug_*/

MadLoop5_resources/MadLoopParams.dat:
1. MLReductionLib 1, to use CutTools.
2. CTModeRun 1
3. HelicityFilterLevel 0
4. DoubleCheckHelicityFilter .FALSE.

check_sa.f:
1. READPS = .TRUE., if we want to use out own PS.input file.
2. ML5_0_SLOOPMATRIX_THRES(P,MATELEM,...)→

ML5_0_SLOOPMATRIXHEL_THRES(P,1,MATELEM,...), where 1 is the helicity
id as specified in ML5_0_HelConfigs.dat.

CT_interface.f
1. WRITE(*,*) 'CutTools: Loop ID',ID,' =',RES(1),RES(2),RES(3), gets

uncommented.

And in order to be sure that no UV counterterms are included, remove all UV and UVLOOP
HELAS[42] calls from helas_calls_ampb_1.f. Then,

$ make && ./check

gives the poles (UV+IR combined) and finite loop results.
One remaining complication comes from the rational R2 term, defined as

R2 = lim
ε→0

1
(2π)4

∫
ddq̄ Ñ

D̄0D̄1...D̄m−1
, (6.4)

where the loop denominators are given in d = 4−2ε and the numerator in d−4 dimensions
to transform the FDH scheme result to the HV scheme[44]. These finite contributions
are already included in the model as R2 counterterms and can not be reassigned to single
loops. For our process they were calculated in [67]. Therefore, only a subset of loops
corresponding to the R2 can be checked (they have the same R2GC_... counterterm),
unless we are sure the nominator of a single loop does not depend on ε. If the nominator
includes no ε, R2 can be ignored.
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If we want to check the parametrization of the Passarino-Veltman tensors, we need to
change the vendor/CutTools/src/avh/avh_olo.f90 file in our MadGraph installation.
By setting punit=6 and recompiling CutTools we get more information on our loop
integrals.

One remaining discrepancy between our computation and MadGraph’s individual
diagram calculations is a factor of 2 in the finite and both divergent ε pole contributions
whenever a triple-gluon-vertex appears (and in the model counterterms). This is most
likely related to the fixing of the gauge. The factor is not compatible with our integrated
dipoles and counterterms.

We are however convinced in our computation being correct since the double divergent
ε−2 are regularization scheme independent and given as

Im(ε, µ2; {pi,mi}) =
∑
j

1
ε2

∑
k 6=j

TjTk +O(1/ε) = − 1
ε2

∑
j

T2
j +O(1/ε) , (6.5)

where j only runs over massless particles and we used colour conservation ∑
k 6=j Tk =

−Tj and this is in agreement with our results. T2
j is just the quadratic Casimir operator

in given particle’s representation and consequently there is no colour correlation with
the Born process [39].

6.3.2. Pole cancellation

First, we observe that our previously analytical calculated counterterms exactly cancel
the UV contribution from our automatically constructed virtuals. The total IR poles
(or after renormalization, the remaining ε poles if we do not distinguish between UV
and IR) must cancel against the poles from the integrated dipoles. As explained above
the double poles are easier to check since they do not have a regularization scheme
dependence and no conversion from different common prefactors (e.g. rΓ or Γ(1 ± ε))
needs to be considered. We confirm that all ε poles get cancelled in our computation.
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7. Results
Finally, we can obtain precise cross sections for squark electroweakino production with
reasonable confidence in our computation. We average the final state masses for both
the central renormalization and factorization scales µ0 = µR = µF = 1

2(mq̃ + mχ̃). In
fig. 10 we present our correction to the leading order process again for the parameters
of [9] at 7 TeV LHC energy.
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Figure 10: Cross section for pp → ũRχ
0
1 at

√
s = 7 TeV using CT14LO as the PDF.

The SUSY spectrum is given in table 9. We vary the mass of the squark
keeping the difference between left- and right-handed squark constant. The
uncertainties stem from the convergence of our Monte-Carlo integration.

First looking at the virtuals we observe that our results are lower than our comparison
result (fig. 9i) for a small squark mass of 400 GeV, but also in good agreement for 800
GeV. This is most likely due to using different PDFs. However, it could also be a
difference coming from the collinear remainder P + K, which dominates the virtual
corrections. The contribution from the resummation is of roughly the same order as our
real corrections and should be included if one aims for a precision at the level of the
reals. The MSSM parameterization SPS1a has however been excluded by the LHC 13
TeV data.

We present the result to a more recent exemplary best fit parameterization of the
pMSSM from [6]. This parameterization includes constraints from LHC data at 13 TeV
as well as PICO, XENON1T, PandaX-II and (g−2)µ and is displayed with the resulting
masses in table 10. The neutralino mass is small compared to the squark and gluino.
By excluding the (g − 2)µ data the neutralino mass would get larger ∼ 1 TeV while the
squark and gluino get reduced to ∼ 1 TeV and ∼ 2 TeV, respectively.

It must be emphasized that these results are preliminary. In fig. 11 we again vary
the mass of our up-type squarks and as expected the cross section drops linearly on a
logarithmic scale with increasing squark mass.
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Table 10: Best fit MSSM parameters from [6] and resulting masses.

M1 M2 M3 tan β µ mA0 At,b,τ M(U,D,Q)1,2

[GeV] 252 254 -3861 36 GeV−1 1333 4015 2770 4044

M(U,D,Q)3 M(L,E)1,2 M(L,E)3 =⇒ mũR
mχ̃0

1
mg̃

[GeV] 1667 351 465 4065 249 3901
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Figure 11: Cross section for pp → ũRχ
0
1 at

√
s = 13 TeV using CT14LO as the PDF.

The SUSY spectrum is given in table 10. We vary the mass of the squark
keeping the difference between left- and right-handed squark constant. The
uncertainties come from the convergence of our Monte-Carlo integration.

If we rescale our cross sections by the leading order result

K = σNLO,NLO+NLL

σLO
(7.1)

we get the plot in fig. 12. Both relative NLO and NLO+NLL contributions rise with the
squark mass. This is to be expected from threshold resummation since the phase space
gets more restricted and the logarithmic remainders get even larger.



48

3000 3250 3500 3750 4000 4250 4500 4750 5000
M [GeV]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

K

K lo

Knlo

Knlo + nll

Figure 12: K for pp → ũRχ
0
1 at

√
s = 13 TeV using CT14LO as the PDF. The SUSY

spectrum is given in table 10. We vary the mass of the squark keeping the
difference between left- and right-handed squark constant. The uncertainties
come from the convergence of our Monte-Carlo integration.

A better quantity than statistical Monte-Carlo uncertainties for the precision of a
prediction comes from the dependence of the result on the unphysical renormalization
and factorization scales. This is shown in fig. 13 where the scales are varied around the
central scale µ0. In the first panel both scales are equal, whereas in the remaining plots
one scale is fixed and the other is varied. We observe a clear improvement from LO to
NLO. Apart from the point at µF = 10µ0 and µR = 0.1µ0 the inclusion of the NLL
corrections reduces the variance of the cross sections even further. The general trend of
our scale dependence is similar to that of [9].

Figure 13: Profile of renormalization and factorization scale dependence of pp → ũRχ
0
1

at
√
s = 13 TeV using CT14LO as the PDF. The SUSY spectrum is given in

table 10. The uncertainties come from the convergence of our Monte-Carlo
integration.
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8. Conclusion
We presented our next-to-leading order computation of squark electroweakino
production and explained several methods to test our calculation. To the presented
extent our computations agree with the results of alternatives, namely Prospino2
and MadGraph. The necessity of the inclusion of threshold resummation for a
highly restricted phase space was observed when we investigated a best fit pMSSM
parametrization of a global fit of several experiments. Apart from the high complexity
of combining all the methods outlined, we encountered no obstacle to moving to a fully
automated calculation.

9. Outlook
In this work we focused on (re-)producing consistent results, but our actual code still is
relatively slow and can be optimized. Most checks were performed for the dominating
up-squark neutralino production case. Explicitly checking the chargino and mixed top-
squark cases will ensure consistency in handling the couplings also beyond leading order.

Further performance improvements might be possible by splitting the virtual loops
with a massive gluino which contribute less into a separate integration. To ensure that
our results are correct I want to verify the calculation of the collinear remainder P + K
as well as resummation ingredients, the soft anomalous dimension and hard matching
coefficient.

After final optimization the main purpose of the investigation of precision predictions
of squark electroweakino production, the exploration of phenomenological and
experimental interesting regions, will become feasible for a large parameter space. The
uncertainties presented in this thesis were all statistical uncertainties originating from
the convergence of our Monte Carlo integration. A better and more physical uncertainty
can be obtained through a variation of the scales. The impact of using different parton
distribution functions on the NLO and NLL predictions should be explored in the
future. The realization of listed refinements will be done at the start of my PhD.



50

10. References
[1] B. Abi et al. “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46

ppm”. In: Phys. Rev. Lett. 126 (14 Apr. 2021), p. 141801. doi: 10.1103/PhysRevLett.
126.141801. url: https://link.aps.org/doi/10.1103/PhysRevLett.126.141801.

[2] S. Bilenky. “Neutrino oscillations: from an historical perspective to the present status”.
In: (2016). doi: 10.1016/j.nuclphysb.2016.01.025. eprint: arXiv:1602.00170.

[3] Martin Bauer and Tilman Plehn. Yet Another Introduction to Dark Matter. 2017. eprint:
arXiv:1705.01987.

[4] CMS Collaboration. “Search for electroweak production of charginos and neutralinos in
multilepton final states in proton-proton collisions at

√
s = 13 TeV”. In: (2017). doi:

10.1007/JHEP03(2018)166. eprint: arXiv:1709.05406.
[5] E. Aprile et al. “First Dark Matter Search Results from the XENON1T Experiment”.

In: (2017). doi: 10.1103/PhysRevLett.119.181301. eprint: arXiv:1705.06655.
[6] E. Bagnaschi et al. “Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data”.

In: (2017). doi: 10.1140/epjc/s10052-018-5697-0. eprint: arXiv:1710.11091.
[7] CERN Yellow Reports: Monographs. CERN Yellow Reports: Monographs, Vol. 10

(2020): High-Luminosity Large Hadron Collider (HL-LHC): Technical design report.
en. 2020. doi: 10.23731/CYRM-2020-0010. url: https://e-publishing.cern.ch/
index.php/CYRM/issue/view/127.

[8] Christoph Englert et al. “Autofocusing searches in jets plus missing energy”. In: Phys.
Rev. D 83 (9 May 2011), p. 095009. doi: 10.1103/PhysRevD.83.095009. url: https:
//link.aps.org/doi/10.1103/PhysRevD.83.095009.

[9] T. Binoth et al. “Automized Squark-Neutralino Production to Next-to-Leading Order”.
In: (2011). doi: 10.1103/PhysRevD.84.075005. eprint: arXiv:1108.1250.

[10] J. Fiaschi and M. Klasen. “Neutralino/chargino pair production at NLO+NLL with
resummation-improved PDFs for LHC Run II”. In: (2018). doi: 10.1103/PhysRevD.98.
055014. eprint: arXiv:1805.11322.

[11] Juri Fiaschi, Michael Klasen, and Marthijn Sunder. “Slepton pair production with
aNNLO+NNLL precision”. In: Journal of High Energy Physics 2020.4 (Apr. 2020). doi:
10.1007/jhep04(2020)049. url: https://doi.org/10.1007/jhep04(2020)049.

[12] B. Fuks, M. Klasen, and M. Rothering. “Soft gluon resummation for associated gluino-
gaugino production at the LHC”. In: (2016). doi: 10.1007/JHEP07(2016)053. eprint:
arXiv:1604.01023.

[13] Amit Chakraborty et al. “Monojet Signatures from Heavy Colored Particles: Future
Collider Sensitivities and Theoretical Uncertainties”. In: (2018). doi: 10.1140/epjc/
s10052-018-6149-6. eprint: arXiv:1805.05346.

[14] Search for electroweak production of charginos and neutralinos in proton-proton
collisions at sqrt(s)=13 TeV. Tech. rep. Geneva: CERN, 2021. url: http://cds.cern.
ch/record/2752640.

[15] CMS Collaboration. “Search for direct top squark pair production in events with one
lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment”.
In: (2019). doi: 10.1007/JHEP05(2020)032. eprint: arXiv:1912.08887.

https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://link.aps.org/doi/10.1103/PhysRevLett.126.141801
https://doi.org/10.1016/j.nuclphysb.2016.01.025
arXiv:1602.00170
arXiv:1705.01987
https://doi.org/10.1007/JHEP03(2018)166
arXiv:1709.05406
https://doi.org/10.1103/PhysRevLett.119.181301
arXiv:1705.06655
https://doi.org/10.1140/epjc/s10052-018-5697-0
arXiv:1710.11091
https://doi.org/10.23731/CYRM-2020-0010
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
https://doi.org/10.1103/PhysRevD.83.095009
https://link.aps.org/doi/10.1103/PhysRevD.83.095009
https://link.aps.org/doi/10.1103/PhysRevD.83.095009
https://doi.org/10.1103/PhysRevD.84.075005
arXiv:1108.1250
https://doi.org/10.1103/PhysRevD.98.055014
https://doi.org/10.1103/PhysRevD.98.055014
arXiv:1805.11322
https://doi.org/10.1007/jhep04(2020)049
https://doi.org/10.1007/jhep04(2020)049
https://doi.org/10.1007/JHEP07(2016)053
arXiv:1604.01023
https://doi.org/10.1140/epjc/s10052-018-6149-6
https://doi.org/10.1140/epjc/s10052-018-6149-6
arXiv:1805.05346
http://cds.cern.ch/record/2752640
http://cds.cern.ch/record/2752640
https://doi.org/10.1007/JHEP05(2020)032
arXiv:1912.08887


51

[16] Tilman Plehn. “Measuring the MSSM Lagrangean”. In: (2004). eprint: arXiv : hep -
ph/0410063.

[17] Sebastian A. R. Ellis and Bob Zheng. “Reaching for Squarks and Gauginos at a 100
TeV p-p Collider”. In: (2015). doi: 10.1103/PhysRevD.92.075034. eprint: arXiv:
1506.02644.

[18] Lasse Kiesow. “Higher-order corrections for squark-gaugino production at the LHC”.
MA thesis. Westfälische Wilhelms-Universität Münster, 2017. url: https://www.uni-
muenster.de/imperia/md/content/physik_tp/theses/klasen/kiesow_msc.pdf.

[19] Benjamin Fuks et al. “Precision predictions for electroweak superpartner production at
hadron colliders with Resummino”. In: (2013). doi: 10.1140/epjc/s10052-013-2480-0.
eprint: arXiv:1304.0790.

[20] Stephen P. Martin. “A Supersymmetry Primer”. In: (1997). doi: 10 . 1142 /
9789812839657_0001. eprint: arXiv:hep-ph/9709356.

[21] Moritz Meinecke. “SUSY-QCD Corrections to the (Co)Annihilation of Neutralino Dark
Matter within the MSSM”. dissertation. Westfälischen Wilhelms-Universität Münster,
2015. url: https : / / www . uni - muenster . de / imperia / md / content / physik _ tp /
theses/klasen/meinecke_phd.pdf.

[22] Marcel Rothering. “Precise predictions for supersymmetric particle production at the
LHC ”. dissertation. Westfälischen Wilhelms-Universität Münster, 2016. url: https:
/ / www . uni - muenster . de / imperia / md / content / physik _ tp / theses / klasen /
rothering_phd.pdf.

[23] David Regalado Lamprea. “Precision computations for gaugino and scalar dark matter”.
dissertation. Westfälischen Wilhelms-Universität Münster, 2018. url: https://www.
uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_
phd.pdf.

[24] Stefano Frixione et al. “Automated simulations beyond the Standard Model:
supersymmetry”. In: (2019). doi: 10 . 1007 / JHEP12(2019 ) 008. eprint: arXiv :
1907.04898.

[25] Sidney Coleman and Jeffrey Mandula. “All Possible Symmetries of the S Matrix”. In:
Phys. Rev. 159 (5 July 1967), pp. 1251–1256. doi: 10.1103/PhysRev.159.1251. url:
https://link.aps.org/doi/10.1103/PhysRev.159.1251.

[26] Rudolf Haag, Jan T. opuszaski, and Martin Sohnius. “All possible generators of
supersymmetries of the S-matrix”. In: Nuclear Physics B 88.2 (Mar. 1975), pp. 257–274.
doi: 10.1016/0550-3213(75)90279-5. url: https://doi.org/10.1016/0550-
3213(75)90279-5.

[27] Benjamin Fuks. Supersymmetry - When Theory Inspires Experimental Searches. 2014.
eprint: arXiv:1401.6277.

[28] B. C. Allanach et al. “SUSY Les Houches Accord 2”. In: (2007). doi: 10.1016/j.cpc.
2008.08.004. eprint: arXiv:0801.0045.

[29] Janusz Rosiek. “Complete set of Feynman rules for the MSSM – ERRATUM”. In: (1995).
doi: 10.1103/PhysRevD.41.3464. eprint: arXiv:hep-ph/9511250.

[30] A. Denner et al. “Compact Feynman rules for Majorana fermions”. In: Physics Letters
B 291.3 (Sept. 1992), pp. 278–280. doi: 10.1016/0370-2693(92)91045-b. url: https:
//doi.org/10.1016/0370-2693(92)91045-b.

arXiv:hep-ph/0410063
arXiv:hep-ph/0410063
https://doi.org/10.1103/PhysRevD.92.075034
arXiv:1506.02644
arXiv:1506.02644
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/kiesow_msc.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/kiesow_msc.pdf
https://doi.org/10.1140/epjc/s10052-013-2480-0
arXiv:1304.0790
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/9789812839657_0001
arXiv:hep-ph/9709356
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/meinecke_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/meinecke_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://www.uni-muenster.de/imperia/md/content/physik_tp/theses/klasen/rothering_phd.pdf
https://doi.org/10.1007/JHEP12(2019)008
arXiv:1907.04898
arXiv:1907.04898
https://doi.org/10.1103/PhysRev.159.1251
https://link.aps.org/doi/10.1103/PhysRev.159.1251
https://doi.org/10.1016/0550-3213(75)90279-5
https://doi.org/10.1016/0550-3213(75)90279-5
https://doi.org/10.1016/0550-3213(75)90279-5
arXiv:1401.6277
https://doi.org/10.1016/j.cpc.2008.08.004
https://doi.org/10.1016/j.cpc.2008.08.004
arXiv:0801.0045
https://doi.org/10.1103/PhysRevD.41.3464
arXiv:hep-ph/9511250
https://doi.org/10.1016/0370-2693(92)91045-b
https://doi.org/10.1016/0370-2693(92)91045-b
https://doi.org/10.1016/0370-2693(92)91045-b


52

[31] R. Kleiss, I. Malamos, and G. v. d. Oord. “Majoranized Feynman rules”. In: (2009). doi:
10.1140/epjc/s10052-009-1158-0. eprint: arXiv:0906.3388.

[32] J. Kuipers, T. Ueda, and J. A. M. Vermaseren. Code Optimization in FORM. 2013.
eprint: arXiv:1310.7007.

[33] Matthias Jamin and Markus E. Lautenbacher. “TRACER version 1.1”. In: 74.2 (Feb.
1993), pp. 265–288. doi: 10.1016/0010-4655(93)90097-v. url: https://doi.org/
10.1016/0010-4655(93)90097-v.

[34] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana. “FeynCalc 9.3: New features
and improvements”. In: (2020). doi: 10.1016/j.cpc.2020.107478. eprint: arXiv:
2001.04407.

[35] Toichiro Kinoshita. “Mass Singularities of Feynman Amplitudes”. In: Journal of
Mathematical Physics 3.4 (1962), pp. 650–677. doi: 10 . 1063 / 1 . 1724268. eprint:
https://doi.org/10.1063/1.1724268. url: https://doi.org/10.1063/1.1724268.

[36] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”. In: Phys.
Rev. 133 (6B Mar. 1964), B1549–B1562. doi: 10 . 1103 / PhysRev . 133 . B1549. url:
https://link.aps.org/doi/10.1103/PhysRev.133.B1549.

[37] Stefano Catani and Michael H. Seymour. “A General Algorithm for Calculating Jet
Cross Sections in NLO QCD”. In: (1996). doi: 10.1016/S0550-3213(96)00589-5.
eprint: arXiv:hep-ph/9605323.

[38] Stefano Catani et al. “The Dipole Formalism for Next-to-Leading Order QCD
Calculations with Massive Partons”. In: (2002). doi: 10.1016/S0550-3213(02)00098-
6. eprint: arXiv:hep-ph/0201036.

[39] Stefano Catani, Stefan Dittmaier, and Zoltan Trocsanyi. “One-loop Singular Behaviour
of QCD and SUSY QCD Amplitudes with Massive Partons”. In: (2000). doi: 10.1016/
S0370-2693(01)00065-X. eprint: arXiv:hep-ph/0011222.

[40] G. Altarelli and G. Parisi. “Asymptotic freedom in parton language”. In: 126.2 (Aug.
1977), pp. 298–318. doi: 10.1016/0550-3213(77)90384-4. url: https://doi.org/
10.1016/0550-3213(77)90384-4.

[41] J. Alwall et al. “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations”. In: (2014).
doi: 10.1007/JHEP07(2014)079. eprint: arXiv:1405.0301.

[42] H. Murayama, I. Watanabe, and Kaoru Hagiwara. “HELAS: HELicity amplitude
subroutines for Feynman diagram evaluations”. In: (Jan. 1992).

[43] Adrian Signer and Dominik Stockinger. “Using Dimensional Reduction for Hadronic
Collisions”. In: (2008). doi: 10 . 1016 / j . nuclphysb . 2008 . 09 . 016. eprint: arXiv :
0807.4424.

[44] Celine Degrande. “Automatic evaluation of UV and R2 terms for beyond the Standard
Model Lagrangians: a proof-of-principle”. In: (2014). doi: 10.1016/j.cpc.2015.08.015.
eprint: arXiv:1406.3030.

[45] Stefano Catani, Michael H. Seymour, and Zoltán Trócsányi. “Regularization
Scheme Independence and Unitarity in QCD Cross Sections”. In: (1996). doi:
10.1103/PhysRevD.55.6819. eprint: arXiv:hep-ph/9610553.

[46] William B. Kilgore. “Regularization Schemes and Higher Order Corrections”. In: (2011).
doi: 10.1103/PhysRevD.83.114005. eprint: arXiv:1102.5353.

https://doi.org/10.1140/epjc/s10052-009-1158-0
arXiv:0906.3388
arXiv:1310.7007
https://doi.org/10.1016/0010-4655(93)90097-v
https://doi.org/10.1016/0010-4655(93)90097-v
https://doi.org/10.1016/0010-4655(93)90097-v
https://doi.org/10.1016/j.cpc.2020.107478
arXiv:2001.04407
arXiv:2001.04407
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://link.aps.org/doi/10.1103/PhysRev.133.B1549
https://doi.org/10.1016/S0550-3213(96)00589-5
arXiv:hep-ph/9605323
https://doi.org/10.1016/S0550-3213(02)00098-6
https://doi.org/10.1016/S0550-3213(02)00098-6
arXiv:hep-ph/0201036
https://doi.org/10.1016/S0370-2693(01)00065-X
https://doi.org/10.1016/S0370-2693(01)00065-X
arXiv:hep-ph/0011222
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/JHEP07(2014)079
arXiv:1405.0301
https://doi.org/10.1016/j.nuclphysb.2008.09.016
arXiv:0807.4424
arXiv:0807.4424
https://doi.org/10.1016/j.cpc.2015.08.015
arXiv:1406.3030
https://doi.org/10.1103/PhysRevD.55.6819
arXiv:hep-ph/9610553
https://doi.org/10.1103/PhysRevD.83.114005
arXiv:1102.5353


53

[47] C. Gnendiger et al. “To d, or not to d: recent developments and comparisons of
regularization schemes”. In: The European Physical Journal C 77.7 (July 2017). doi:
10.1140/epjc/s10052-017-5023-2. url: https://doi.org/10.1140/epjc/s10052-
017-5023-2.

[48] Zoltan Kunszt, Adrian Signer, and Zoltán Trócsányi. “One-loop helicity amplitudes for
all 2 -> 2 processes in QCD and N=1 supersymmetric Yang-Mills theory”. In: (1993).
doi: 10.1016/0550-3213(94)90456-1. eprint: arXiv:hep-ph/9305239.

[49] William B. Kilgore. “The Four Dimensional Helicity Scheme Beyond One Loop”. In:
(2012). doi: 10.1103/PhysRevD.86.014019. eprint: arXiv:1205.4015.

[50] F. Jegerlehner. “Facts of life with gamma(5)”. In: (2000). doi: 10.1007/s100520100573.
eprint: arXiv:hep-th/0005255.

[51] T. Hahn and M. Perez-Victoria. “Automatized One-Loop Calculations in 4 and D
dimensions”. In: (1998). doi: 10.1016/S0010-4655(98)00173-8. eprint: arXiv:hep-
ph/9807565.

[52] G. ’t Hooft and M. Veltman. “Scalar one-loop integrals”. In: Nuclear Physics B 153 (Jan.
1979), pp. 365–401. doi: 10.1016/0550-3213(79)90605-9. url: https://doi.org/
10.1016/0550-3213(79)90605-9.

[53] G. Passarino and M. Veltman. “One-loop corrections for e+e- annihilation into µ+µ-
in the Weinberg model”. In: Nuclear Physics B 160.1 (Nov. 1979), pp. 151–207. doi:
10.1016/0550-3213(79)90234-7. url: https://doi.org/10.1016/0550-3213(79)
90234-7.

[54] K. Kovarik. “Hitchhikers guide to renormalization”. unpublished manuscript.
[55] Ansgar Denner. “Techniques for the calculation of electroweak radiative corrections at

the one-loop level and results for W-physics at LEP200”. In: (2007). eprint: arXiv:
0709.1075.

[56] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge
University Press, Mar. 2014. isbn: 978-1-107-03473-0, 978-1-107-03473-0.

[57] S. Heinemeyer, H. Rzehak, and C. Schappacher. “Proposals for Bottom Quark/Squark
Renormalization in the Complex MSSM”. In: (2010). doi: 10.1103/PhysRevD.82.
075010. eprint: arXiv:1007.0689.

[58] Tilman Plehn. “Lectures on LHC Physics”. In: (2009). doi: 10.1007/978-3-642-24040-
9. eprint: arXiv:0910.4182.

[59] S. Catani and L. Trentadue. “Resummation of the QCD perturbative series for hard
processes”. In: Nuclear Physics B 327.2 (Nov. 1989), pp. 323–352. doi: 10.1016/0550-
3213(89)90273-3. url: https://doi.org/10.1016/0550-3213(89)90273-3.

[60] P. Nogueira. “Automatic Feynman Graph Generation”. In: Journal of Computational
Physics 105.2 (Apr. 1993), pp. 279–289. doi: 10.1006/jcph.1993.1074. url: https:
//doi.org/10.1006/jcph.1993.1074.

[61] Wolfgang Hollik, Jonas M. Lindert, and Davide Pagani. “NLO corrections to squark-
squark production and decay at the LHC”. In: (2012). doi: 10.1007/JHEP03(2013)139.
eprint: arXiv:1207.1071.

[62] Ryan Gavin et al. “Matching Squark Pair Production at NLO with Parton Showers”. In:
(2013). doi: 10.1007/JHEP10(2013)187. eprint: arXiv:1305.4061.

https://doi.org/10.1140/epjc/s10052-017-5023-2
https://doi.org/10.1140/epjc/s10052-017-5023-2
https://doi.org/10.1140/epjc/s10052-017-5023-2
https://doi.org/10.1016/0550-3213(94)90456-1
arXiv:hep-ph/9305239
https://doi.org/10.1103/PhysRevD.86.014019
arXiv:1205.4015
https://doi.org/10.1007/s100520100573
arXiv:hep-th/0005255
https://doi.org/10.1016/S0010-4655(98)00173-8
arXiv:hep-ph/9807565
arXiv:hep-ph/9807565
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7
arXiv:0709.1075
arXiv:0709.1075
https://doi.org/10.1103/PhysRevD.82.075010
https://doi.org/10.1103/PhysRevD.82.075010
arXiv:1007.0689
https://doi.org/10.1007/978-3-642-24040-9
https://doi.org/10.1007/978-3-642-24040-9
arXiv:0910.4182
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1007/JHEP03(2013)139
arXiv:1207.1071
https://doi.org/10.1007/JHEP10(2013)187
arXiv:1305.4061


54

[63] Tilman Plehn. Prospino2. url: https://www.thphys.uni-heidelberg.de/~plehn/
index.php?show=prospino.

[64] Werner Porod. “SPheno, a program for calculating supersymmetric spectra, SUSY
particle decays and SUSY particle production at e+ e- colliders”. In: (2003). doi:
10.1016/S0010-4655(03)00222-4. eprint: arXiv:hep-ph/0301101.

[65] B. C. Allanach et al. “The Snowmass Points and Slopes: Benchmarks for SUSY Searches”.
In: (2002). doi: 10.1007/s10052-002-0949-3. eprint: arXiv:hep-ph/0202233.

[66] Andy Buckley et al. “LHAPDF6: parton density access in the LHC precision era”. In:
(2014). doi: 10.1140/epjc/s10052-015-3318-8. eprint: arXiv:1412.7420.

[67] Hua-Sheng Shao and Yu-Jie Zhang. “Feynman Rules for the Rational Part of One-loop
QCD Corrections in the MSSM”. In: (2012). doi: 10.1007/s13130-012-4240-2. eprint:
arXiv:1205.1273.

[68] Malin Sjödahl. “ColorMath - A package for color summed calculations in SU(Nc)”. In:
(2012). doi: 10.1140/epjc/s10052-013-2310-4. eprint: arXiv:1211.2099.

[69] Roman Poya, Antonio J. Gil, and Rogelio Ortigosa. “A high performance data parallel
tensor contraction framework: Application to coupled electro-mechanics”. In: Computer
Physics Communications (2017). doi: http : / / dx . doi . org / 10 . 1016 / j . cpc .
2017 . 02 . 016. url: http : / / www . sciencedirect . com / science / article / pii /
S0010465517300681.

[70] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103. url: https:
//doi.org/10.7717/peerj-cs.103.

[71] Catch2. https://github.com/catchorg/Catch2. 2021.

https://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino
https://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino
https://doi.org/10.1016/S0010-4655(03)00222-4
arXiv:hep-ph/0301101
https://doi.org/10.1007/s10052-002-0949-3
arXiv:hep-ph/0202233
https://doi.org/10.1140/epjc/s10052-015-3318-8
arXiv:1412.7420
https://doi.org/10.1007/s13130-012-4240-2
arXiv:1205.1273
https://doi.org/10.1140/epjc/s10052-013-2310-4
arXiv:1211.2099
https://doi.org/http://dx.doi.org/10.1016/j.cpc.2017.02.016
https://doi.org/http://dx.doi.org/10.1016/j.cpc.2017.02.016
http://www.sciencedirect.com/science/article/pii/S0010465517300681
http://www.sciencedirect.com/science/article/pii/S0010465517300681
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://github.com/catchorg/Catch2


55

Appendix

A. Feynman rules
All momenta go into the vertex. We adopt the generalized couplings and conventions
from [22]:

• First Greek letters (α, β, . . . ) denote fundamental colour indices.

• Middle Greek letters (µ, ν, . . . ) denote Lorentz indices.

• Lowercase beginning Latin letters (a, b, . . . ) refer adjoint colour indices.

• Uppercase middle Latin letters (I, J , . . . ) are generation indices.

• Lowercase middle Latin letters (i, j, . . . ) label sfermions.

• Lowercase middle Latin letters (k, . . . ) indicate different neutralinos or charginos.

A.1. Standard model
A.1.1. Propagators

α β =
i(/p+m)
p2 −m2 δβα

µa νb =


−i
p2 δabgµν Feynman gauge
−i
p2 δab(gµν − nµpν+nνpµ

p.n
+ n2pνpν

(p.n)2 ) axial gauge, n.p 6= 0

a b = i
p2 δba

A.1.2. Vertices

p1
p2

p3

gµa

gνb

gλc

= −gsfabcΓµνλ

= −gsfabc
(
gµν(p1 − p2)λ + gνλ(p2 − p3)µ + gµλ(p3 − p1)ν

)

qIβ

q̄Jα

gµa

= −igsγµT aαβδIJ

p

gµa

c̄c

cb

= gsp
µfabc
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A.2. Minimal supersymmetric standard model
The displayed rules are a subset taken from the complete set [29].

A.2.1. Propagators

α β = i
p2 −m2 δαβ a b =

i(/p+m)
p2 −m2 δab

A.2.2. Vertices

gµc

g̃b

¯̃ga
= −igsfabcγµ

q̃jβ

q̄Iα

χ̃k

= i(LIjkPL +RIjkPR)δαβ

q̃jβ

q̄Iβ

g̃a

= igs(LIjPL +RIjPR)T aαβ

q̃iα

q̃∗
lδ

q̃∗
jβ

q̃kγ

= −i(Xijklδαβδγδ + Yijklδαδδγβ + Zijklδαγδβδ)

q̃iβ

q̃∗
jα

gµa

= igs(pµq̃∗
α
− pµq̃β

)T aαβδij

q̃jβ

q̄Iα

χ̃k

= i(L′
IjkPL +R′

IjkPR)δαβ

q̃jβ

q̄Iβ

g̃a

= igs(L′
IjPL +R′

IjPR)T aαβ

q̃jβ

q̃∗
iα

gµa

gνb

= ig2
s(T aT b + T bT a)αβgµνδij
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B. Polarized Born matrix element
Here we will compute the prefactors to the Polarized matrix element. At the end we
also present the expressions in a format closely related to the actual implementation. 3

The matrix elements for squark gaugino production are

Ms = ū (p2) i (LPL +RPR) i
(
/q

q2

)
(−i) gsγµu (pa) εµ (q − pa)T b1

a3,a1 (B.1)

M †
s = −ū (pa) γν

(
/q

q2

)
i (L∗PR +R∗PL) i (−i) gsu (p2) εν∗ (q − pa)T b1∗

a3,a1 (B.2)

Mu = ū (p2) i (LPL +RPR)u (pa) (−i) gs
((pµa − p

µ
2)− (−qµ + pµ2)) i

(pa − p2)2 −M2
U

εµ (q − p1)T b1
a2,a3

(B.3)

M †
u = −ū (pa) i (L∗PR +R∗PL)u (p2) (−i) gs

((pνa − pν2)− (−qν + pν2)) i
(pa − p2)2 −M2

U

εν∗ (q − p1)T b1∗
a2,a3 .

(B.4)

In the following computations we are going to drop the ε polarization since we want to
calculate the polarized matrix element.

B.1. SS case
Summing over spins gives the usual spinor trace

∑
spin

MsM
†
s = Tr

[(
/p2 +m2

)
(LPL +RPR)

(
/q

q2

)
γµ/paγ

ν

(
/q

q2

)
(L∗PR +R∗PL)

]
· (B.5)

g2
sε
ν∗T b1

a3,a1
∗εµT b1

a3,a1 (B.6)

= Tr
[(
/p2

)
(LPL +RPR)

(
/q

q2

)
γµ/paγ

ν

(
/q

q2

)
(L∗PR +R∗PL)

]
· (B.7)

g2
sε
ν∗T b1

a3,a1
∗εµT b1

a3,a1 . (B.8)

We let Mathematica evaluate the expression to

Tr
[
(/p2)(LPL +RPR)( /

q

q2 )γµ/paγ
ν( /
q

q2 )(L∗PR +R∗PL)
]

= 2
(

L2q̄2ḡmunu (·p2pa)− 2L2ḡmunu (·p2q̄) (·paq̄) +R2q̄2ḡmunu (·p2pa)− 2R2ḡmunu (·p2q̄) (·paq̄)
+ 2i

(
L2 −R2

)
q̄nuε̄mup2paq̄ − 2i

(
L2 −R2

)
q̄muε̄nup2paq̄ − iL2q̄2ε̄munup2pa

+ 2iL2 (·paq̄) ε̄munup2q̄ − L2q̄2p2mupanu − L2q̄2pamup2nu + 2L2q̄mupanu (·p2q̄)
+ 2L2pamuq̄nu (·p2q̄) + iR2q̄2ε̄munup2pa − 2iR2 (·paq̄) ε̄munup2q̄ −R2q̄2p2mupanu

−R2q̄2pamup2nu + 2R2q̄mupanu (·p2q̄) + 2R2pamuq̄nu (·p2q̄)
)
. (B.9)

3The analytic calculations are given in papb → p1p2p3 kinematic nomenclature. The implementation
expressions however use p1p2 → k1k2k3.
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We only have to keep terms symmetric in µν

Tr
[
(/p2)(LPL +RPR)( /

q

q2 )γµ/paγ
ν( /
q

q2 )(L∗PR +R∗PL)
]

= 2
(

L2q̄2ḡmunu (·p2pa)− 2L2ḡmunu (·p2q̄) (·paq̄) +R2q̄2ḡmunu (·p2pa)− 2R2ḡmunu (·p2q̄) (·paq̄)
− L2q̄2p2mupanu − L2q̄2pamup2nu + 2L2q̄mupanu (·p2q̄) + 2L2pamuq̄nu (·p2q̄)
−R2q̄2p2mupanu −R2q̄2pamup2nu + 2R2q̄mupanu (·p2q̄) + 2R2pamuq̄nu (·p2q̄)

)
(B.10)

and can determine the prefactors to our vector of Lorentz tensors (here without the
common prefactors 2g2

s(L2 +R2)CACF and the propagator denominator).

gµν → p2.paq
2 − 2p2.qpa.q = q2 (p2pa − p2q)

= q2
(
p2pa −

(
m2

2 + p2p1 + 1
2m

2
1 −

1
2m

2
1

))
= q2

(
p2pa −

1
2
(
q2 + ∆M2

))
= 1

2-Q2* (Dn_k2mp1_MQ+Q2) (B.11)

pµap
ν
a → 0 (B.12)

qµqν → 0 (B.13)
pµ1p

ν
1 → 0 (B.14)

pµaq
ν + pνaq

µ → 2p2q − q2 = q2 + ∆M2 − q2 = 1
22*dM2o (B.15)

pµap
ν
1 + pνap

µ
1 → +q2 = 1

22*Q2 (B.16)

qµpν1 + qνpµ1 → 0 (B.17)

B.2. UU case
The u channel squared case is fully analog to previous SS case.∑

spin
MuM

†
u = Tr

[(
/p2 +m2

)
(LPL +RPR)

(
/pa

)
(L∗PR +R∗PL)

]
εν∗ (q − p1) εµ (q − p1)

((pµa − p
µ
2)− (−qµ + pµ2))

(pa − p2)2 −M2
U

((pνa − pν2)− (−qν + pν2))
(pa − p2)2 −M2

U

T b1
a2,a3

∗T b1
a2,a3g

2
s (B.18)

Where the trace gives

Tr
[
(/p2 +m2)(LPL +RPR)(/pa)(L

∗PR +R∗PL)
]

= 2
(
L2 +R2

)
(·p2pa) (B.19)

and the momenta from the squark-squark-gluon vertices simplify to

((pµa−p
µ
2)− (−qµ+pµ2))((pνa−pν2)− (−qν +pν2)) = (pa+2p1− q)µ(pa+2p1− q)ν . (B.20)

In the end we have following prefactors to the Lorentz-tensors.

gµν → 0 (B.21)
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pµap
ν
a → p2pa = P1K2 (B.22)

qµqν → p2pa = P1K2 (B.23)
pµ1p

ν
1 → 4p2pa = 4*P1K2 (B.24)

pµaq
ν + pνaq

µ → −p2pa = -P1K2 (B.25)
pµap

ν
1 + pνap

µ
1 → 2p2pa = 2*P1K2 (B.26)

qµpν1 + qνpµ1 → −2p2pa = -2*P1K2 (B.27)

B.3. SU case
The evaluation for the interference term is again the same procedure.

∑
spin

MsM
†
u = Tr

[(
/p2 +m2

)
(LPL +RPR)

(
/q

q2

)
γµ/pa (L∗PR +R∗PL)

]
((pνa − pν2)− (−qν + pν2))

(pa − p2)2 −M2
U

εν∗ (q − p1)T b1
a2,a3

∗εµ (q − pa)T b1
a3,a1g

2
s (B.28)

With the trace

Tr
[
(/p2 +m2)(LPL +RPR)( /

q

q2 )γµ/pa(L
∗PR +R∗PL)

]
=

2
(
L2 +R2

) (
p2mu (− (·paq̄)) + q̄mu (·p2pa) + pamu (·p2q̄)

)
+ 2i

(
L2 −R2

)
ε̄mup2paq̄

(B.29)

and the imaginary antisymmetric ε term can be dropped due to symmetry and being
imaginary. Simplification of the momenta gives

((pνa − pν2)− (−qν + pν2)) = (pa + 2p1 − q)ν . (B.30)

We must symmetrize the resulting expression in µν. Since the dipole is symmetric,
any antisymmetric contributions from pol. Born vanishes. We also multiply my 2 since
it is an interference term. We do this computation first for generic prefactors X and Y
and add a purely antisymmetric R such that our expression is symmetric.

Xpµaq
ν + Y pνaq

µ = (X +R) pµaqν + (Y −R) pνaqµ (B.31)

X +R
!= (Y −R) =⇒ X − Y = −2R =⇒ X +R = Y −R = X + Y

2 (B.32)

With this result the prefactors can be determined:

gµν → 0 (B.33)

pµap
ν
a → 2p2q = ∆M2 + q2 = 1

22* (Q2+dM2o) (B.34)

qµqν → −2 (−paq + p2pa) = q2 − 2pap2 = 1
22* (Q2-2*P1K2) (B.35)

pµ1p
ν
1 → 2 · 2paq = 2q2 = 1

24*Q2 (B.36)
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pµaq
ν + pνaq

µ → 21
2 ((−p2q) + (−paq + p2pa)) = −1

2
(
∆M2 + q2

)
+
(
−1

2q + p2pa

)
= −q2 − 1

2∆M2 + p2pa = 1
2 (-2*Q2-Dn_k2mp1_MQ) (B.37)

pµap
ν
1 + pνap

µ
1 → 21

2 (2p2q + paq) = ∆M2 + q2 + 1
2q

2 = 1
2 (3*Q2+2*dM2o) (B.38)

qµpν1 + qνpµ1 → 21
2 (2 (−paq + p2pa)− paq) = 1

2
(
−3q2 + 4p2pa

)
= 1

2 (-3*Q2+4*P1K2)
(B.39)

C. Virtual corrections
Many of these corrections are closely related to the computations in [18], however we
include several fixes and missing diagrams. We also use the definition

µ4−D
∫ dDl

(2π)D = i
16π2

∫
l

. (C.1)

In the last segment (appendix C.4) we will present our FeynCalc to compute all the
virtuals automatically.

C.1. Self energies
C.1.1. Quark self energies

Γ1 Γ2
q q

l

m1

l + pa + pb

m2

D1 = l2 −m2
1

D2 = (l + q)2 −m2
2

Figure 14: Parametrization of the q self energy

Gluon-quark loop

µ ν

Iα Jβa

Kγ

Γµ1 = −igsγµT aγαδIK
Γν2 = −igsγνT aβγδKJ
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−iΣβα(q2,m2
q, 0) (C.2)

=µ4−D
∫ dDl

(2π)DΓν2
i(/l + /q +mq)

D2
Γµ1
−igµν
D1

(C.3)

=− ig2
s

(4π)2T
a
βγT

a
γα

∫
l

γµ(/l + /q)γµ +Dmq

D1D2
(C.4)

=− ig2
s

(4π)2CF δβα

∫
l

(2−D)(/l + /q) +Dmq

D1D2
(C.5)

=− ig2
s

(4π)2CF δβα ((2−D)(γµBµ) +DmqB0) (C.6)

=− ig2
s

(4π)2CF δβα
(
(2−D)/q(−B1) +DmqB0

)
(C.7)

=− ig2
s

(4π)2CF δβα
(
(4−D − 2)/q(−B1) + (D − 4 + 4)mqB0

)
(C.8)

=− ig2
s

(4π)2CF δβα
(
/q(2B1 + 1) +mq(4B0 − 2)

)
(C.9)

Where we inserted eq. (E.6) for the colour algebra, used γ-matrices in D dimensions
eq. (E.12) and applied the tensor reduction of B1 eq. (E.17). In the last step the
multiplication with 2ε = (D − 4) is taken from table 11.

Gluino-squark loop

Iα Jβa

iγ

Γ1 = igs(L′PL +R′PR)IiT aγα
Γ2 = igs(LPL +RPR)JiT aβγ

−iΣβα(q2,m2
g̃,m

2
q̃) (C.10)

=µ4−D
∫ dDl

(2π)DΓ2
i(−/l +mg̃)
D1

Γ1
i
D2

(C.11)

= ig2
s

(4π)2CF δβα
(
−(LR′PL +RL′PR)/qB1 + (LL′PL +RR′PR)mg̃B0

)
(C.12)

=− ig2
s

(4π)2CF δβα(LIiR′
IiPL +RIiL′

IiPR)/qB1 (C.13)

The terms proportional to the single mg̃ can be dropped for minimal squark mixing (See
eq. (2.14)). Furthermore for massless quarks the restriction I = J applies since then
there are no off-diagonal elements in the squark mixing matrix.
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C.1.2. Squark self energies

Γ1 Γ2
pu pu

l

m1

l + pa − p2

m2

D1 = l2 −m2
1

D2 = (l + pu)2 −m2
2

Figure 15: Parametrization of the q̃ self energy

Γ1

l

m1
D1 = l2 −m2

1

Figure 16: Parametrization of the q̃ self energy with 4 point vertices

Gluon-squark loop

µ ν

iα jβa

kγ

Γµ1 = −igs(2pu + l)µT aγαδIK
Γν2 = −igs(2pu + l)νT aβγδKJ

−iΣβα(p2
u, 0,mq̃i

) (C.14)

=µ4−D
∫ dDl

(2π)DΓν2
i
D2

Γµ1
−igµν
D1

(C.15)

=− ig2
s

(4π)2CF δijδβα

∫
l

(2pu + l)2

D1D2
(C.16)

=− ig2
s

(4π)2CF δijδβα(4(B0 +B1)p2
u +Bµµ) (C.17)
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=− ig2
s

(4π)2CF δijδβα(4(B0 +B1)p2
u + A0(m2

q̃i
)) (C.18)

=− ig2
s

(4π)2CF δijδβα(2B0p
2
u + 2m2

q̃B0 − A0(m2
q̃i

)) (C.19)

Gluino-quark loop

iα jβa

Iγ

Γ1 = igs(LPL +RPR)IiT aγα
Γ2 = igs(L′PL +R′PR)IjT aβγ

−iΣβα(p2
u,m

2
g̃,m

2
qI

) (C.20)

=µ4−D
∫ dDl

(2π)D (−1) Tr
[
Γ2

i(/l +mg̃)
D1

Γ1
i(/l + /pu +mqI

)
D2

]
(C.21)

=− ig2
s

(4π)2CF δβα

∫
l

Tr

(
(L′RPL +R′LPR)(l2 + /l/pu) + (L′LPL +R′RPR)mg̃mqI

)
D1D2


(C.22)

=− ig2
s

(4π)2CF δβα

∫
l

2 ((L′R+R′L)(l2 + l.pu) + (L′L+R′R)mg̃mqI
)

D1D2
(C.23)

=− ig2
s

(4π)2CF δβα2
(
(L′R+R′L)(Bµµ + p2

uB1) + (L′L+R′R)mg̃mqI
B0
)

(C.24)

=− ig2
s

(4π)2CF δβα2
(
(L′R+R′L)(A0(m2

q) +m2
g̃B0 + p2

uB1) + (L′L+R′R)mg̃mqI
B0
)

(C.25)

=− ig2
s

(4π)2CF δβα2
(

(L′R+R′L)(1
2A0(m2

q) + 1
2m

2
g̃B0 + 1

2(A0(m2
g̃)− (p2

u −m2
q)B0))

+ (L′L+R′R)mg̃mqI
B0) (C.26)

(C.27)

The terms proportional to the single mg̃ can be dropped for minimal squark mixing (See
eq. (2.14)). Furthermore, for massless quarks the restriction I = J applies since then
there are no off-diagonal elements in the squark mixing matrix.
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Gluon loop

µν

iα

a

jβ

Γµν1 = ig2
s(T aT a + T aT a)βαgµνδij

−iΣβα(0) (C.28)

=µ4−D
∫ dDl

(2π)DΓµν1
−igµν
D1

(C.29)

= ig2
s

(4π)2 2CF δijδβαDA0(0) (C.30)

=0 (C.31)

Squark loop

iα

kγ

jβ

Γ1 = −i(Xijkkδβαδγγ + Yijkkδβγδγα)

Only the X and Y couplings are proportional to gS so Z can be dropped for our purposes.

−iΣβα(m2
q̃k

) (C.32)

=µ4−D
∫ dDl

(2π)DΓ1
i
D1

(C.33)

= i
(4π)2 δβα(NcXijkk + Yijkk)A0(m2

q̃k
) (C.34)

Same squark types

For a Ũ Ũ Ũ Ũ or D̃D̃D̃D̃ vertex

Yilkj = Xijkl = g2
s

1
6(3X il

q̃ X
kj
q̃ −X

ij
q̃ X

kl
q̃ ) (C.35)

and

X il
q̃ = δij − 2Rij

q̃ =
δij − 2SIi∗

Ũ
SIj
Ũ

δij − 2SIi
D̃
SIj∗
D̃

(C.36)
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holds. For vanishing mixing this results in

−iΣβα(m2
q̃i

) = i
(4π)2 δβαδij(Nc

3
6 −

1
6)A0(m2

q̃k
) (C.37)

= i
(4π)2 δβαδijCFA0(m2

q̃i
) (C.38)

Different squark types

For a Ũ ŨD̃D̃ vertex

Xijkl = −X ij

Ũ
X lk
D̃ (C.39)

Yijkl = 3X ij

Ũ
X lk
D̃ (C.40)

(C.41)

results in
Σβα = 0 (C.42)

Combined

−iΣβα(m2
q̃k

) = −
∑
k=1,2

ig2
sCF

(4π)2 δβα|Sik|
2A0(m2

q̃k
) (C.43)

C.1.3. Gluon self energies

The gluon self energy can be split in a logitudinal and a transversal part.

Σba(p2) = δba
(

(gµν −
pµpν

p2 )Σt(p2) + (p
µpν

p2 )Σl(p2)
)

(C.44)

Γ1 Γ2
p p

l

m1

l + p

m2

D1 = l2 −m2
1

D2 = (l + p)2 −m2
2

Figure 17: Parametrization of the g self energy
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Γ1

l

m1
D1 = l2 −m2

1

Figure 18: Parametrization of the g self energy with 4 point vertices

Quark-quark loop

aµ bνIα

Jβ

Γµ1 = −igsγµT aβαδIJ
Γν2 = −igsγνT bαβδIJ

−iΣba(p2,m2
qI
,m2

qJ
) (C.45)

=(−1)µ4−D
∫ dDl

(2π)D Tr
[
Γν2

i(/l +mqI
)

D1
Γµ1

i(/l + /p+mqJ
)

D2

]
(C.46)

=− ig2
s

(4π)2 (TRδba)
∫
l

Tr
[
γν/lγµ(/l + /p)

]
+ 4gµνm2

q

D1D2
(C.47)

=− ig2
s

(4π)2 (TRδba)
∫
l

4
lµ(l + p)ν − gµνl.(l + p) + lν(l + p)µ + gµνm2

q

D1D2
(C.48)

=− ig2
s

(4π)2 (TRδba)2
p2gµν − pµpν

p2
((D − 2)p2 + 4m2

q)B0 − 2(D − 2)A0(m2
q)

(D − 1) (C.49)

−iΣt(p2) =− ig2
s

(4π)2
2
3
(
(p2 + 2m2

q)B0(p2,m2
q,m

2
q)

− 1
3(p2 − 4m2

q)εB0(p2,m2
q,m

2
q)− 2A0(m2

q)
)

(C.50)

−iΣl(p2) =0 (C.51)

where we used
D − 2
D − 1 = 2

3 −
2
9ε+O(ε2) (C.52)

1
D − 1 = 1

3 + 2
9ε+O(ε2) (C.53)
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in the last step. For massless quarks however

−iΣt(p2) = − ig2
s

(4π)2
2
9(3− ε)

(
p2B0(p2, 0, 0)

)
(C.54)

−iΣl(p2) = 0 . (C.55)

Gluon-gluon loop

ρ δ

γ κ

aµ bν
c

d

Γγρµ1 = −gsΓργµf cda

Γδκν2 = −gsΓδκνf cdb

−iΣba(p2, 0, 0) (C.56)

=1
2µ

4−D
∫ dDl

(2π)DΓδκν2
−igδρ
D1

Γγρµ1
−igγκ
D2

(C.57)

=− ig2
s

(4π)2 (2NcTRδ
ba)1

2

∫
l

(gδκ(−2l − p)ν + gκν(l + 2p)δ + gνδ(−p+ l)κ)
D1D2

(C.58)

×(−1)(gργ(−2l − p)µ + gγµ(l + 2p)ρ + gµρ(−p+ l)γ)gδρgγκ (C.59)

=− ig2
s

(4π)2 (2NcTRδ
ba)1

4B0
(5− 6D)p2gµν + (7D − 6)pµpν

(D − 1) (C.60)

−iΣt(p2) = ig2
s

(4π)2Nc
6D − 5

4(D − 1)p
2B0(p2, 0, 0) (C.61)

−iΣl(p2) = − ig2
s

(4π)2Nc
1
4p

2B0(p2, 0, 0) (C.62)

Ghost-ghost loop

aµ bν
c

d

Γµ1 = −gslµfdca

Γν2 = −gs(l + p)νf cdb
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−iΣba(p2, 0, 0) (C.63)

=(−1)µ4−D
∫ dDl

(2π)DΓν2
i
D1

Γµ1
i
D2

(C.64)

= ig2
s

(4π)2 (−2NcTRδba)
∫
l

lµ(l + p)ν
D1D2

(C.65)

= ig2
s

(4π)2 (−2NcTRδba)(Bµν + pνBµ) (C.66)

= ig2
s

(4π)2 (−2NcTRδba)(gµνB00 + pµpνB11 + pνBµ) (C.67)

= ig2
s

(4π)2 (−2NcTRδba)(gµν
1

2(D − 1)p
2B1 − pµpν

D

2(D − 1)B1 + pνpµB1) (C.68)

=− ig2
s

(4π)2 (−2NcTRδba)
1
2(gµν 1

2(D − 1)p
2B0 + pµpν

D − 2
2(D − 1)B0) (C.69)

−iΣt(p2) = ig2
s

(4π)2Nc
1

4(D − 1)p
2B0(p2, 0, 0) (C.70)

−iΣl(p2) = ig2
s

(4π)2Nc
1
4p

2B0(p2, 0, 0) (C.71)

We notice that the longitudinal contributions between the ghost and the gluon loop
cancel.

Gluon loop

ρκ

µ

a

ν

Γµνρκ1 ∝ g2
s

−iΣba(0) ∝ A0(0) = 0 (C.72)

Gluino-gluino loop

aµ bν
c

d

Γµ1 = gsγ
µfdcaδIJ

Γν2 = gsγ
νf cdbδIJ
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−iΣba(p2,m2
g̃,m

2
g̃) (C.73)

=(−1
2)µ4−D

∫ dDl
(2π)D Tr

[
Γν2

i(/l +mg̃)
D1

Γµ1
i(/l + /p+mg̃)

D2

]
(C.74)

Giving us the same contribution from the trace as in the massive quark loop case. The
colour factor changes from T 2 to f 2 and thereby TR → 2NcTR resulting in total rescaling
by Nc.

−iΣt(p2) = − ig2
s

(4π)2Nc

((D − 2)p2 + 4m2
g̃)B0(p2,m2

g̃,m
2
g̃)− 2(D − 2)A0(m2

g̃)
(D − 1) (C.75)

−iΣl(p2) = 0 (C.76)

Squark-squark loop

aµ bνiα

jβ

Γµ1 = igs(2l + p)µT aβαδij
Γν2 = igs(2l + p)νT bαβδij

−iΣba(p2,m2
q̃i
,m2

q̃j
) (C.77)

=µ4−D
∫ dDl

(2π)DΓν2
i
D1

Γµ1
i
D2

(C.78)

= ig2
s

(4π)2 (TRδba)
∫
l

(2l + p)µ(2l + p)ν
D1D2

(C.79)

= ig2
s

(4π)2 (TRδba)(4Bµν + 4pµpνB1 +B0p
µpν) (C.80)

= ig2
s

(4π)2
(TRδba)
(D − 1)

(
(4m2

q̃ − p2)(gµν − pµpν

p2 )B0 + 2A0(m2
q̃)((D − 2)p

µpν

p2 + gµν)
)

(C.81)

−iΣt(p2) = ig2
s

(4π)2 (TR) 1
(D − 1)

(
(4m2

q̃ − p2)B0(p2,m2
q̃,m

2
q̃) + 2A0(m2

q̃)
)

(C.82)

−iΣl(p2) = ig2
s

(4π)2 (TR)2A0(m2
q̃) (C.83)
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Squark loop

µ

αI

ν

Γµν1 = ig2
s(T aT b + T bT a)αα

−iΣba(m2
q̃I

) (C.84)

= µ4−D
∫ dDl

(2π)DΓνµ1
i
D1

(C.85)

= − ig2
s

(4π)2 δ
baA0(m2

q̃I
)gµν (C.86)

−iΣt(p2) = − ig2
s

(4π)2A0(m2
q̃I

) (C.87)

−iΣl(p2) = − ig2
s

(4π)2A0(m2
q̃I

) (C.88)

This longitudinal part cancels the squark-squark-loop contribution.

C.2. Vertex corrections
C.2.1. Quark-quark-gluon vertex

We compute the loop corrections to the qqg-vertex using the parametrization displayed
in fig. 19.

Γ2

Γ3

Γ1

pa

pb

−q

l

m1
l + pa m2

l + pa + pb

m3

D1 = l2 −m2
1

D2 = (l + pa)2 −m2
2

D3 = (l + pa + pb)2 −m2
3

Figure 19: Parametrization of the qqg-vertex
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Quark-gluon-gluon loop

κ

λ

ν

ρ

Iα

aµ

Jβ

Kγ

c
b

Γρ1 = −igsγρT cβγδJK
Γκ2 = −igsγκT bγαδKI
Γµνλ3 = −gsfabcΓµνλ

Λµa
βα(0, 0, q2, 0, 0, 0) (C.89)

=µ4−D
∫ dDl

(2π)DΓρ1
−i/l
D1

Γκ2
−igκλ
D2

Γµνλ3
−igνρ
D3

(C.90)

=− g3
s

(4π)2

∫
l

γν/lγλ
(
gµν(l + pa + 2pb)λ + gνλ(−(2l + 2pa + pb))µ + gµλ(l + pa − pb)ν

)
D1D2D3

T cβγT
b
γαfabcδJI (C.91)

= ig3
s

(4π)2CATRT
a
βαδIJ

(
γµ((/pb − /pa)γσC

σ − Cσσ) + (2−D)γσ(2Cσµ + Cσ(2pa + pb)µ)

−γµ(Cσσ + γσC
σ(/pa + 2/pb))

)
(C.92)

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = ig3
s

(4π)2CATRT
a
βαδIJγ

µ(−4− 4− 4)(1
4∆) (C.93)

In contrast the vertex divergence in FeynCalc/MadGraph is

UV[Λ] = ig3
s

(4π)2CATRT
a
βαδIJγ

µ(−4)(1
4∆) . (C.94)

It appears as if Cσσ = 0 was used for the massless case.
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Squark-gluino-gluino loop

Iα

aµ

Jβ

iγ

c
b

Γ1 = igs(LPL +RPR)JiT cβγ
Γ2 = igs(L′PL +R′PR)IiT bγα
Γµ3 = −gsfbcaγµ

Λµa
βα(0, 0, q2,m2

q̃i
,m2

g̃,m
2
g̃) (C.95)

=µ4−D
∫ dDl

(2π)DΓ1
i(/l + /pa + /pb +mg̃)

D3
Γµ3

i(/l + /pa +mg̃)
D2

Γ2
i
D1

(C.96)

= ig3
s

(4π)2CATRT
a
βα

(LR′PL +RL′PR)
∫
l

γµm2
g̃ + (/l + /pa + /pb)γ

µ(/l + /pa)
D1D2D3

+ (LL′PL +RR′PR)
∫
l

mg̃γ
µ(/l + /pa) + (/l + /pa + /pb)γ

µmg̃

D1D2D3

 (C.97)

= ig3
s

(4π)2CATRT
a
βα

(
(LJiR′

IiPL +RJiL′
IiPR)

(
C0(γµm2

g̃ + (/pa + /pb)γ
µ
/pa)− 2γσCµσ

+ γµCσσ + Cσ(γσγµ/pa + (/pa + /pb)γ
µγσ)

)
+ (LJiL′

IiPL +RJiR′
IiPR)(

Cσ(γσγµmg̃ +mg̃γ
µγσ) + C0(mg̃γ

µ
/pa + (/pa + /pb)γ

µmg̃)
))

(C.98)

The terms proportional to the single mg̃ can be dropped for minimal squark mixing (See
eq. (2.14)).

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = ig3
s

(4π)2CATRT
a
βα(−2)γµ(−2 + 4)(1

4∆) (C.99)
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Quark-quark-gluon loop

ν
ρ

Iα

aµ

JβbKγ

Lζ

Γρ1 = −igsγρT bβζδJL
Γν2 = −igsγνT bγαδLK
Γµ3 = −igsγµT aζγδKI

Λµa
βα(0, 0, q2, 0, 0, 0) (C.100)

=µ4−D
∫ dDl

(2π)DΓρ1
i(/l + /pa + /pb)

D3
Γµ3

i(/l + /pa)
D2

Γν2
−igνρ
D1

(C.101)

=− ig3
s

(4π)2T
b
βζT

a
ζγT

b
γα

∫
l

γν(/l + /pa + /pb)γ
µ(/l + /pa)γ

ν

D1D2D3
(C.102)

= ig3
s

(4π)2
TR
CA

T aβαδJIγν
(
2Cµσγσ − γµCσσ + Cσ(γσγµ/pa + (/pa + /pb)γ

µγσ) (C.103)

+C0(/pa + /pb)γ
µ
/pa

)
γν (C.104)

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = ig3
s

(4π)2
TR
CA

T aβαδIJγ
µ(−2)(2− 4)(1

4∆) (C.105)

The extra factor −2 comes from the remaining γ-matrices. In contrast, the vertex
divergence in FeynCalc/MadGraph is

UV[Λ] = ig3
s

(4π)2
TR
CA

T aβαδIJγ
µ(−2)(2)(1

4∆) . (C.106)

It appears as if Cσσ = 0 was used for the massless case.
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Squark-squark-gluino loop

Iα

aµ

Jβ
b

iγ

jζ

Γ1 = igs(LPL +RPR)JjT bβζ
Γ2 = igs(L′PL +R′PR)IiT bγα
Γµ3 = −igs(2l + 2pa + pb)µT aζγδji

Λµa
βα(0, 0, q2,m2

g̃,m
2
q̃i
,m2

q̃i
) (C.107)

=µ4−D
∫ dDl

(2π)DΓ1
i(/l +mg̃)
D1

Γ2
i
D2

Γµ3
i
D3

(C.108)

=− ig3
s

(4π)2
TR
CA

T aβα
((LJiR′

IiPL +RJiL′
IiPR)γσ (2Cσµ + Cσ(2pa + pµb ))

(LJiL′
IiPL +RJiR′

IiPR)mg̃ (2Cµ + C0(2pa + pµb )) (C.109)

The term proportional to the single mg̃ can be dropped for minimal squark mixing (See
eq. (2.14)). To get the counterterm we consider only the UV divergent part UV by
looking at table 11:

UV[Λ] = − ig3
s

(4π)2
TR
CA

T aβαγ
µ(−2)(2)(1

4∆) (C.110)

C.2.2. Squark-squark-gluon vertex

We compute the loop corrections to the q̃q̃g-vertex using the parametrization displayed
in fig. 20.
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Γ2

Γ3

Γ1

pa − p2 ≡ pu

pb

−p1

l

m1
l + pu m2

l + pu + pb

m3

D1 = l2 −m2
1

D2 = (l + pu)2 −m2
2

D3 = (l + pu + pb)2 −m2
3

Figure 20: Parametrization of the q̃q̃g-vertex

Γ1 Γ2

pb
−p1

pu

l

l + pb

D1 = l2 −m2
1

D2 = (l + pb)2 −m2
2

Figure 21: Parametrization of the q̃q̃g-vertex

Γ1 Γ2

−p1

pu

pb

l + p1

l

D1 = l2 −m2
1

D2 = (l + p1)2 −m2
2

Figure 22: Parametrization of the q̃q̃g-vertex
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Γ1 Γ2
pu

−p1

pb

l − pu

l

D1 = l2 −m2
1

D2 = (l − pu)2 −m2
2

Figure 23: Parametrization of the q̃q̃g-vertex

Squark-gluon-gluon loop

κ

λ

ν

ρ

iα

aµ

jβ

kγ

c
b

Γκ1 = −igs(pu − l)κT cβγδki
Γρ2 = igs(l − p1)ρT bγαδjk
Γµνλ3 = −gsfabcΓµνλ

Λµa
βα(p2

u, 0,m2
q̃,m

2
q̃, 0, 0) (C.111)

=µ4−D
∫ dDl

(2π)DΓµνλ3
−igλκ
D2

Γκ1
i
D1

Γρ2
−igρν
D3

(C.112)

=− g3
s

(4π)2

∫
l

Γµνλ(pu − l)ν(l − p1)λ
D1D2D3

fabcT
c
βγT

b
γα (C.113)

given

Γµνλ = −gµν(2pb + l + pu)λ + gνλ(2l + 2pu + pb)µ − gµλ(l + pu − pb)ν (C.114)

results in

Γµνλ(pu − l)ν(l − p1)λ =pµu(4pu.l + 2pb.l − 4l2) (C.115)
+pµb (pu.pb + 2pu.l − pb.l − 2l2) (C.116)
+lµ(−4p2

u − 4pu.pb + 4pu.l + 2pb.l) (C.117)
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and thus giving following vertex correction with the same arguments for the C-tensors:

Λµa
γβ(p2

u, p
2
b = 0, p2

1 = m2
q̃,m

2
q̃, 0, 0) = ig3

s

32π2CAT
a
γβ

[
pµu(Cν(4pu + 2b)ν − 4Cνν)

+pµb (Cν(2pu − pb)ν − 2Cνν + C0pu.pb)
−Cµ(4p2

u + 4pu.pb) + Cµν(4pνu − 2pνb )
]

(C.118)

where the colour algebra has been simplified fabcT
c
βαT

b
γβ = −iCATRT aγα Now we can

apply the tensor-coefficients from eq. (4.30) and arrive at

Λµa
γα = − ig3

s

32π2CAT
a
γα

[
+pµu(−C1m

2
q̃ + C1U + C2m

2
q̃ − C2U

+ 4C00 + C11m
2
q̃ − C11U − C22m

2
q̃ + C22U − 4DC00)

+pµb (1
2C0m

2
q̃ −

1
2C0U −

1
2C1m

2
q̃ + 5

2C1U −
3
2C2m

2
q̃ −

1
2C2U

+ 2C00 − 2C11U − C12m
2
q̃ + C12U + C22m

2
q̃ + C22U − 2DC00)

]
(C.119)

with p2
1 = m2

q̃ and p2
u = U which arise due to pu.pb = 1

2(p2
1 − p2

b − p2
u). This can be

embedded in to

2MvM
∗
u = −2 1

96(p2
u −m2

q̃)2 ε
∗µενTr[i(L′PL +R′PR)/pa(−i(LPL +RPR))(/p2 +mχ)

(−igs)(pµuCu + pµbCb)T aγβ︸ ︷︷ ︸
Λµa

γα

igs(pν1 + pνu)T aβγ]

(C.120)

with averaging factors of quark spin 1
2 , colour 1

3 , gluon polarisation 1
2 and colour 1

8 . Cu
and Cb are the terms proportional to the momenta in eq. (C.119). The fermion traces
are evaluated with FORM. In our computation we get exactly half of what MadGraph gives
as result for ε−1

UV + ε−1
IR ,ε−2

IR and the finite contribution. This also is the case for the
uug-vertex’ ugg-loop.

Notes:

• in axial gauge (∑i εµε
∗
ν = −gµν + nµpν+nνpµ

p.n
− n2pνpν

(p.n)2 , n = q or n = pa) Cb
won’t contribute since the gluon momentum contracted with the polarization sum
vanishes.

• Also only C2 and C22 contribute to the ε−2
IR term.

• The ε−2
IR of Cu is g2

sCA

32π2 .

• Only these two vertex loops with a triple gluon differ from MadGraph’s vertex
computations

• Only these two vertex loops give ε−2
IR contributions
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• The same factor 2 is missing in separate unpublished automatic calculation
(SunderCalc).

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = − ig3
s

(4π)2TRCAT
a
βαδij(2pu + pb)µ(−4 · 2 + 2)(1

4∆) (C.121)

= ig3
s

(4π)2
3
2TRCA∆T aβαδij(2pu + pb)µ (C.122)

Quark-gluino-gluino loop

iα

aµ

jβ

Iγ

c
b

Γ1 = igs(L′PL +R′PR)IjT bβγ
Γ2 = igs(LPL +RPR)IiT cγα
Γµ3 = −gsf bcaγµ

Λµa
βα(p2

u, 0,m2
q̃,m

2
qI
,m2

g̃,m
2
g̃) (C.123)

=µ4−D
∫ dDl

(2π)D (−1) Tr
[
Γ1

i(/l +mqI
)

D1
Γ2

i(/l + /pu +mg̃)
D2

Γµ3
i(/l + /pu + /pb +mg̃)

D3

]
(C.124)

=− g3
s

(4π)2 f
bcaT bβγT

c
γα︸ ︷︷ ︸

iCATRT
a
βα

(C.125)

∫
l

Tr
[(L′PL +R′PR)(/l +mqI

)(LPL +RPR)(/l + /pu +mg̃)γµ(/l + /pu + /pb +mg̃)
D1D2D3

]
(C.126)

=− ig3
s

(4π)2CATRT
a
βα (C.127)

∫
l

Tr
[(L′RPL +R′LPR)(/l)(/l + /pu +mg̃)γµ(/l + /pu + /pb +mg̃)

D1D2D3

]
(C.128)

∫
l

Tr
[(L′LPL +R′RPR)(mqI

)(/l + /pu +mg̃)γµ(/l + /pu + /pb +mg̃)
D1D2D3

]
(C.129)



C.2 Vertex corrections 79

=− ig3
s

(4π)2CATRT
a
βα (C.130)

∫
l

2(L′R+R′L)
(
lµ(l2 +m2

g̃ − pu.pb) + (l.pb)pµu + (l.pu + l2)(2pu + pb)µ
)

D1D2D3
(C.131)

∫
l

2(L′L+R′R)mqI
mg̃(2l + 2pu + pb)µ

D1D2D3
(C.132)

=− ig3
s

(4π)2CATRT
a
βα2 ((L′L+R′R)mqI

mg̃(2Cµ + (2pu + pb)µC0) + (L′R+R′L)

(C.133)(
Cσσµ + Cσσ(2pu + pb)µ + Cσ(pσb pµu + pσu(2pu + pb)µ) + Cµ(m2

g̃ − pu.pb)
))

(C.134)

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = − ig3
s

(4π)2TRCA21
2(−2)T aβα(2pu + pb)µ(4)(1

4∆) (C.135)

= ig2
s

(4π)2TRCA2∆T aβαδij(2pu + pb)µ (C.136)

Gluon squark squark loop

ρ

ν

iα

aµ

jβbkγ

lδ

Γν1 = −igs(l + pu + pb + p1)νT bβδδjl
Γρ2 = −igs(l + 2pu)ρT bγαδlk
Γµ3 = −igs(2l + 2pu + pb)µT aδγδka

Λµa
βα(p2

u, 0,m2
q̃, 0,m2

q̃,m
2
q̃) (C.137)

=µ4−D
∫ dDl

(2π)DΓν1
−igρν
D1

Γρ2
i
D2

Γµ3
i
D3

(C.138)

=− ig3
s

(4π)2 T
b
βδT

b
γαT

a
δγ︸ ︷︷ ︸

− TR
CA

Ta
βα

δij

∫
l

(l + pu + pb + p1).(l + 2pu)(2l + 2pu + pb)µ
D1D2D3

(C.139)

= ig3
s

(4π)2
TR
CA

T aβαδij
(
(C0(2pu + pb)µ + 2Cµ)(p2

u + pb.pu + p1.pu) (C.140)
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+Cσσ(2pu + pb)µ + 2Cσσµ + (2Cσµ + Cσ(2pu + pb)µ)(4pu + 2pb)σ) (C.141)
(C.142)

In the last step p1 = pu + pb has been replaced.
To get the counterterm we consider only the UV divergent part UV by looking at

table 11:

UV[Λ] = ig3
s

(4π)2
TR
CA

T aβαδij(2pu + pb)µ
(

(4 + 4)(1
4∆) + (2 · 6 · 2)(− 1

12∆)
)

(C.143)

= − ig3
s

(4π)2
TR
CA

∆T aβαδij(2pu + pb)µ (C.144)

Gluino quark quark loop

iα

aµ

jβbIγ

Jδ

Γ1 = igs(L′PL +R′PR)JjT bβδ
Γ2 = igs(LPL +RPR)IiT bγα
Γµ3 = −igsγµT aδγδJI

Λµa
βα(p2

u, 0,m2
q̃,m

2
g̃,m

2
qI
,m2

qI
) (C.145)

=µ4−D
∫ dDl

(2π)D (−1) Tr
[
Γ1

i(/l + /pu + /pb +mqI
)

D1
Γµ3

i(/l + /pu +mqI
)

D2
Γ2

i(/l +mg̃)
D3

]
(C.146)

= ig3
s

(4π)2
TR
CA

T aβα (C.147)
∫
l

Tr
[(L′PL +R′PR)(/l + /pu + /pb +mqI

)γµ(/l + /pu +mqI
)(LPL +RPR)(/l +mg̃)

D1D2D3

]
(C.148)

= ig3
s

(4π)2
TR
CA

T aβα2 ((L′L+R′R)mqI
mg̃(2Cµ + (2pu + pb)µC0)µ + (L′R+R′L)

(C.149)(
Cσσµ + Cσσ(2pu + pb)µ + Cσ(pσb pµu + pσu(2pu + pb)µ) + Cµ(m2

g̃ − pu.pb)
))

(C.150)

Giving us the same vertex correction as in appendix C.2.2 only with a different colour
factor and swapped masses mg̃ ↔ mqI

.
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To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

UV[Λ] = ig3
s

(4π)2
TR
CA

21
2(−2)T aβα(2pu + pb)µ(4)(1

4∆) (C.151)

= − ig3
s

(4π)2
TR
CA

2T aβα(2pu + pb)µ∆ (C.152)

Gluon gluon loop

κ

ρ

σ

ν

aµ
jβ

iα

b

c

Γµ1 = −igsf cbaΓµσν

Γν2σ = ig2
sg

ρκ(T cT b + T bT c)βαδji

Λµa
βα(0, 0, 0) (C.153)
=0 (C.154)

Since f cba(T cT b + T bT c) = 0 due to the antisymmetry and also from the fact that the
gluon is on-shell.

Squark squark loop

aµ
jβ

iα

kγ

lδ

Γµ1 = igs(2l + pb)µT aγδ
Γ2 = −i(Xijklδβαδγδ + Yijklδαδδβγ)

Λµa
βα(0,m2

q̃k
,m2

q̃k
) (C.155)
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=µ4−D
∫ dDl

(2π)DΓµ1
i
D1

Γ2
i
D2

(C.156)

=− igs
(4π)2YijkkT

a
βα

∫
l

(2l + pb)µ
D1D2

(C.157)

=− igs
(4π)2YijkkT

a
βαp

µ
b (2B1 +B0) (C.158)

=0 (C.159)

Gluon squark loop

ρν

jβ

iα

aµ
b

kγ

Γµν1 = ig2
sg

µν(T aT b + T bT a)γαδki
Γρ2 = −igs(−l + p1)ρT bβγδjk

Λµa
βα(p2

1 = m2
q̃i
,m2

q̃i
, 0) (C.160)

=µ4−D
∫ dDl

(2π)DΓµν1
i
D1

Γρ2
−igρν
D2

(C.161)

= ig3
s

(4π)2T
a
βα(CF −

1
2CA

)
∫
l

(−l + p1)µ
D1D2

(C.162)

= ig3
s

(4π)2T
a
βα(CF −

1
2CA

)(−Bµ +B0p
µ
1) (C.163)

= ig3
s

(4π)2T
a
βα(CF −

1
2CA

)(B0 −B1)pµ1 (C.164)

Next up, the corresponding crossing is p1 → −pu and we get a factor of (−1) from the
inverions of the charge flow:
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ρν

iα

jβ

aµ
b

kγ

Γµν1 = ig2
sg

µν(T aT b + T bT a)γβδkj
Γρ2 = −igs(pu + l)ρT bαγδik

Λµa
βα(p2

u,m
2
q̃i
, 0) (C.165)

= ig3
s

(4π)2T
a
βα(CF −

1
2CA

)(B0 −B1)pµu (C.166)

To get the counterterm for both diagrams we consider only the UV divergent part
UV by looking at table 11:

UV[Λ] = ig3
s

(4π)2T
a
βα(CF −

1
2CA

)(1 + 1
2)∆(2pu + pb)µ (C.167)

= − ig3
s

(4π)2T
a
βα

7
4∆(2pu + pb)µ (C.168)

C.2.3. Quark-squark-gaugino vertex

We compute the loop corrections to the qq̃χ̃-vertex using the parametrization displayed
in fig. 24. This vertex appears in both the s-channel and u-channel.

Γ2

Γ3

Γ1

pa
q
≡ pin

pout ≡ −pu1

−p2

l

m1
l + pin m2

l + pin + pout

m3
D1 = l2 −m2

1

D2 = (l + pin)2 −m2
2

D3 = (l + pin + pout)2 −m2
3

Figure 24: Parametrization of the qq̃χ̃-vertex
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Quark-gluon-squark loop

κ

λ

Iα

iβ

k

Jγ

b

jδ

Γ1 = i(L′PL +R′PR)Jjkδδγ
Γκ2 = −igsγκT bγαδJI
Γλ3 = igs(l + pin + 2pout)λT bβδδji

Λβα(p2
in, p

2
out,m

2
χ̃, 0, 0,m2

q̃) (C.169)

=µ4−D
∫ dDl

(2π)DΓ1
−i/l
D1

Γκ2
−igκλ
D2

Γλ3
i
D3

(C.170)

= ig3
s

(4π)2CF δβα(L′PL +R′PR)
∫
l

/l(/l + /pin + 2/pout)
D1D2D3

(C.171)

= ig3
s

(4π)2CF δβα(L′PL +R′PR)Ii(Cµµ + γµCµ(/pin + 2/pout)) (C.172)

(C.173)

To get the counterterm we consider only the UV divergent part UV by looking at
table 11:

δZ̄gΓ = ig3
s

(4π)2CF δβα(L′PL +R′PR)4(1
4∆) (C.174)

Squark-gluino-quark loop

Iα

iβ

k

jγ

b

Jδ

Γ1 = i(LPL +RPR)Jjkδδγ
Γ2 = igs(L′PL +R′PR)IjT bγα
Γ3 = igs(L′PL +R′PR)JiT bβδ
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Λβα(p2
in, p

2
out,m

2
χ̃,m

2
q̃j
,mg̃,m

2
qJ

) (C.175)

=µ4−D
∫ dDl

(2π)DΓ1
i(/l + /pin + /pout +mqJ

)
D3

Γ3
i(/l + /pin +mg̃)

D2
Γ2

i
D1

(C.176)

=− ig3
s

(4π)2CF δβα(LPL +RPR) (C.177)
∫
l

(/l + /pin + /pout +mqJ
)(L′PL +R′PR)(/l + /pin +mg̃)(L′PL +R′PR)

D1D2D3
(C.178)

=− ig3
s

(4π)2CF δβα (C.179)(
(LL′R′PL +RR′L′PR)

(
Cµµ + C0(/pin + /pout)(/pin +mg̃) + Cµγµ(2/pin + /pout +mg̃)

)
(C.180)

(LL′L′PL +RR′R′PR)mqJ
(Cµγµ + C0(/pin +mg̃))

)
(C.181)

To get the counterterm we consider only the UV divergent part UV by looking at
table 11. Due to the coupling

δZ̄gΓ = 0 . (C.182)

C.2.4. Gluino-gaugino-gluon vertex

We compute the loop corrections to the g̃χ̃g-vertex using the parametrization displayed
in fig. 25. This vertex appears in neither the s-channel nor the u-channel. The diagram
containing this vertex correction is shown in fig. 26 and gets combined with the
conjugated s-channel and u-channel.

Γ2

Γ3

Γ1

pa − p1 ≡ pt

pb

−p2

l

m1
l + pt m2

l + pt + pb

m3

D1 = l2 −m2
1

D2 = (l + pt)2 −m2
2

D3 = (l + pt + pb)2 −m2
3

Figure 25: Parametrization of the g̃χ̃g-vertex
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pa

α

pb

a

p1

γ

p2

pub

Figure 26: Loosely identified t-channel diagram.

Quark-squark-squark loop

b

aµ

k

Iβ

iγ

jδ

Γ1 = i(PLL′
Ijk + PRR

′
Ijk)δγδ

Γ2 = igs(PLLIi + PRRIi)T bβγ
Γµ3 = igs(2l + 2pt + pb)µT aγδδij

Λµab(p2
t , 0,m2

χ̃k
,m2

qI
,m2

q̃i
,m2

q̃i
) (C.183)

= µ4−D
∫ dDl

(2π)DΓ1
−i/l
D1

Γ2
i
D2

Γµ3
i
D3

(C.184)

= − g2
s

(4π)2 (PLL′R+ PRR
′L)

∫
l

/l(2l + 2pt + pb)µ
D1D2D3

T bβγT
a
γβ (C.185)

= − g2
s

(4π)2TRδ
ab(PLL′

IikRIi + PRR
′
IikLIi)γν(2Cνµ + Cν(2pt + pb)µ) (C.186)

b

aµ

k

Iβ

iγ

jδ

Γ1 = i(PLLIjk + PRRIjk)δγδ
Γ2 = igs(PLL′

Ii + PRR′
Ii)T bγβ

Γµ3 = igs(2l + 2pt + pb)µT aδγδij
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The inversion in the charge flow gives the same result with

L↔ L′ (C.187)
R↔ R′ (C.188)
L ↔ L′ (C.189)
R↔ R′ . (C.190)

Squark-quark-quark loop

b

aµ

k

iβ

Iγ

Jδ

Γ1 = i(PLL′
Jik + PRR

′
Jik)δγδ

Γ2 = igs(PLLIi + PRRIi)T bβγ
Γµ3 = −igsγµT aγδδIJ

Λµab(p2
t , 0,m2

χ̃k
,m2

q̃i
,m2

qI
,m2

qI
) (C.191)

= µ4−D
∫ dDl

(2π)DΓ1
i(/l + /pt + /pb)

D3
Γµ3

i(/l + /pt)
D2

Γ2
i
D1

(C.192)

= − g2
s

(4π)2 (PLL′R+ PRR
′L)

∫
l

(/l + /pt + /pb)γ
µ(/l + /pt)

D1D2D3
T aγβT

b
βγ (C.193)

= − g2
s

(4π)2TRδ
ab(PLL′

IikRIi + PRR
′
IikLIi) (2Cνµγν + Cννγµ

+Cν(γνγµ/pt + (/pt + /pb)γ
µγν) + C0(/pt + /pb)γ

µ
/pt

)
(C.194)

b

aµ

k

iβ

Iγ

Jδ

Γ1 = i(PLL′
Jik + PRR

′
Jik)δγδ

Γ2 = igs(PLLIi + PRRIi)T bβγ
Γµ3 = −igsγµT aγδδIJ
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The inversion in the charge flow gives the same result with

L↔ L′ (C.195)
R↔ R′ (C.196)
L ↔ L′ (C.197)
R↔ R′ . (C.198)

C.3. Boxes
We compute the loop corrections to the Boxes using the parametrization displayed in
fig. 27. Since the results get quite big, we only give the first steps and the remaining
calculation can be done with e.g. FeynCalc in Mathematica.
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Γ1

Γ2 Γ3

Γ4

pa

pb

−p1

−p2

l

m1

l + pa m2

l + pa + pb

m3

l + pa + pb − p2m4

D1 = (l)2 −m2
1

D2 = (l + pa)2 −m2
2

D3 = (l + pa + pb)2 −m2
3

D4 = (l + pa + pb − p2)2 −m2
4

(i)

Γ1

Γ2 Γ3

Γ4

pa

pb

−p2

−p1

l

m1

l + pa m2

l + pa + pb

m3

l + pa + pb − p1m4

D1 = (l)2 −m2
1

D2 = (l + pa)2 −m2
2

D3 = (l + pa + pb)2 −m2
3

D4 = (l + pa + pb − p1)2 −m2
4

(ii)

Γ1

Γ2 Γ3

Γ4
m2 m4

pa

pb

−p2

−p1

l

l + pa

l + pa − p1

m3

l + pa + pb − p1

D1 = (l)2 −m2
1

D2 = (l + pa)2 −m2
2

D3 = (l + pa − p1)2 −m2
3

D4 = (l + pa − p1 + pb)2 −m2
4

(iii)

Γ1

Γ2

Γ3

pa

pb

−p2

−p1

l

m1

l + pa

m2

l + pa + pb − p1

D1 = (l)2 −m2
1

D2 = (l + pa)2 −m2
2

D3 = (l + pa − p1)2 −m2
3

(iv)

Figure 27: Parametrization of the Boxes
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C.3.1. Gluon-quark-quark-squark box

ρ σ
Iα

aµ

iβ

k

b

Jγ

Kδ

jε

Γρ1 = −igsγρT bγαδJI
Γµ2 = −igsγµT aδγδKJ
Γ3 = i(L′PL +R′PR)Kjδεδ
Γσ4 = −gs(l + pa + pb − p2 + p1)σT bβεδij

Bµa
βα(0, 0,m2

χ̃k
,m2

q̃i
, s, t, 0, 0, 0,m2

q̃i
) (C.199)

=µ4−D
∫ dDl

(2π)DΓσ4
i
D4

Γ3
i(/l + /pa + /pb)

D2
Γµ2

i(/l + /pa)
D3

Γρ1
−igσρ
D1

(C.200)

= ig3
s

(4π)2 (L′PL +R′PR)Ii
∫
l

(/l + /pa + /pb)γ
µ(/l + /pa)(/l + 2/pa + 2/pb − 2/p2)
D1D2D3D4

T bβεT
a
εγT

b
γα (C.201)

C.3.2. Gluino-squark-squark-quark box

Iα

aµ

iβ

k

b

jγ

kδ

Jε

Γ1 = igs(L′PL +R′PR)IjT bγα
Γµ2 = −igs(2l + 2pa + pb)µT aδγδkj
Γ3 = i(LPL +RPR)Jkδεδ
Γ4 = igs(L′PL +R′PR)JiT bβε

Bµa
βα(0, 0,m2

χ̃k
,m2

q̃i
, s, t,m2

g̃,m
2
q̃j
,m2

q̃j
,m2

qJ
) (C.202)

=µ4−D
∫ dDl

(2π)DΓ3
−i(/l + /pa + /pb − /p2 −mqJ

)
D4

Γ4
i(/l +mg̃)
D1

Γ1
i
D2

Γµ2
i
D3

(C.203)

= ig3
s

(4π)2T
b
βεT

a
εγT

b
γα

∫
l

(2l + 2pa + pb)µ
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(
−(LJjL′L′PL +RJjR′R′PR) mqJ

mg̃

D1D2D3D4

+ (LJjR′R′PL +RJjL′L′PR)
(/l + /pa + /pb − /p2)mg̃

D1D2D3D4

− (LJjL′R′PL +RJjR′L′PR) mqJ
/l

D1D2D3D4

+(LJjR′L′PL +RJjL′R′PR)
(/l + /pa + /pb − /p2)/l
D1D2D3D4

)
(C.204)

C.3.3. Quark-gluon-gluon-squark box

σ

ν

λ ρ

Iα

aµ

k

iβ

Jγ

b

c

jδ

Γσ1 = −igsγσT bγαδJI
Γµνλ2 = −gsfabcΓµνλ

Γρ3 = igs(l + pa + pb − 2p1)ρT cβδδij
Γ4 = i(L′PL +R′PR)Jjδδγ

Bµa
βα(0, 0,m2

q̃i
,m2

χ̃k
, s, u, 0, 0, 0,m2

q̃i
) (C.205)

=µ4−D
∫ dDl

(2π)DΓ4
−i/l
D1

Γσ1
−igσν
D2

Γµνλ2
−igλρ
D3

Γρ3
i
D4

(C.206)

= ig3
s

(4π)2 (L′PL +R′PR)Ii
∫
l

/lγσΓµσρ(l + pa + pb − 2p1)ρ
D1D2D3D4

T cβδT
b
δαf

abc (C.207)
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C.3.4. Squark-gluino-gluino-quark box

Iα

aµ

k

iβ

jγ

b

c

Jδ

Γ1 = igs(L′PL +R′PR)γσT bγα
Γµ2 = −gsfabcγµ

Γ3 = igs(L′PL +R′PR)T cβδ
Γ4 = i(LPL +RPR)Jjδδγ

Bµa
βα(0, 0,m2

q̃i
,m2

χ̃k
, s, u,m2

q̃j
,m2

g̃,m
2
g̃,m

2
qJ

) (C.208)

=µ4−D
∫ dDl

(2π)DΓ4
i(/l + /pa + /pb + /p1 −mqJ

)
D4

Γ3
i(/l + /pa + /pb +mg̃)

D3
(C.209)

Γµ2
i(/l + /pa +mg̃)

D2
Γ1

i
D1

(C.210)

= ig3
s

(4π)2T
c
βδT

b
δαf

abc
∫
l

(C.211)

(
(LJjL′L′PL +RJjR′R′PR)

mqJ
((/l + /pa + /pb)γ

µmg̃ +mg̃γ
µ(/l + /pa))

D1D2D3D4

+ (LJjR′R′PL +RJjL′L′PR)
(/l + /pa + /pb − /p1)((/l + /pa + /pb)γ

µmg̃ +mg̃γ
µ(/l + /pa))

D1D2D3D4

+ (LJjL′R′PL +RJjR′L′PR)
mqJ

(γµm2
g̃ + (/l + /pa + /pb)γ

µ(/l + /pa))
D1D2D3D4

+(LJjR′L′PL +RJjL′R′PR)
(/l + /pa + /pb − /p1)(γ

µm2
g̃ + (/l + /pa + /pb)γ

µ(/l + /pa))
D1D2D3D4

)
(C.212)
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C.3.5. Quark-gluon-squark-squark box

ρ

σ

jδ
b

Iα

aµ

k

iβ

Jγ

mε

Γρ1 = −igsγρT bγαδJI
Γµ2 = +gs(2l + 2pa + pb − 2p1)µT aεδδmj
Γσ3 = +gs(l + pa − 2p1)σT bβεδim
Γ4 = i(L′PL +R′PR)Jjδδγ

Bµa
βα(0,m2

q̃i
, 0,m2

χ̃k
, t, u, 0, 0,m2

q̃i
,m2

q̃i
) (C.213)

=µ4−D
∫ dDl

(2π)DΓ4
−i/l
D1

Γρ1
−igσρ
D2

Γσ3
i
D3

Γµ2
i
D4

(C.214)

=− ig3
s

(4π)2 (L′PL +R′PR)Ii
∫
l

/l(/l + /pa − 2/p1)(2l + 2pa + pb − 2p1)µ

D1D2D3D4

T bβεT
a
εγT

b
γα (C.215)

C.3.6. Squark-gluino-quark-quark box

Jδ
b

Iα

aµ

k

iβ

jγ

Mε

Γ1 = igs(L′PL +R′PR)IjT bγα
Γµ2 = −gsγµT aεδδMJ

Γ3 = igs(L′PL +R′PR)MiT
b
βε

Γ4 = i(LPL +RPR)Jjδδγ

Bµa
βα(0,m2

q̃i
, 0,m2

χ̃k
, t, u,m2

q̃j
,m2

g̃,m
2
qj
,m2

qj
) (C.216)

=µ4−D
∫ dDl

(2π)DΓ4
i(/l + /pa − /p1 + /pb +mqJ

)
D1

Γµ2
i(/l + /pa − /p1 +mqJ

)
D2

(C.217)

Γ3
i(/l + /pa +mg̃)

D3
Γ1

i
D4

(C.218)
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=− ig3
s

(4π)2T
b
βεT

a
εγT

b
γα

∫
l

(C.219)

(
(LJjL′L′PL +RJjR′R′PR)

mg̃mqJ
((/l + /pa − /p1 + /pb)γ

µ + γµ/l + /pa − /p1)
D1D2D3D4

+ (LJjR′R′PL +RJjL′L′PR)
mg̃(γµm2

qJ
+ (/l + /pa − /p1 + /pb)γ

µ(/l + /pa − /p1))
D1D2D3D4

+ (LJjL′R′PL +RJjR′L′PR)
mqJ

(/l + /pa)((/l + /pa − /p1 + /pb)γ
µ + γµ/l + /pa − /p1)

D1D2D3D4

+(LJjR′L′PL +RJjL′R′PR)
(/l + /pa)(γ

µm2
qJ

+ (/l + /pa − /p1 + /pb)γ
µ(/l + /pa − /p1))

D1D2D3D4

)
(C.220)

C.3.7. Quark-gluon-squark box

σ

ν

Iα

aµ

k

iβ

Jγ

b

jδ

Γσ1 = −igsγσT bγαδJI
Γµν2 = ig2

s(T aT b + T bT a)δβgµνδij
Γ3 = i(L′PL +R′PR)Jjδδγ

Bµa
βα(0, 0,m2

q̃i
,m2

χ̃k
, s, u, 0, 0, 0,m2

q̃i
) (C.221)

=µ4−D
∫ dDl

(2π)DΓ3
−i/l
D1

Γσ1
−igσν
D2

Γµν2
i
D3

Γ3 (C.222)

= ig3
s

(4π)2 (L′PL +R′PR)Ii
∫
l

/lγµ

D1D2D3

(T aβεT bεδ + T bβεT
a
εδ)T bδα (C.223)

C.4. FeynCalc implementation
For completeness, we present the code used for automatically computing the virtuals.
The dependencies of the code are FeynCalc[34] and Colormath[68].

In[1]:= (* Dependencies *)
Needs['FeynCalc`']
Get['ColorMath1.0.m`']
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In[2]:= (* polarization sum of the external gluon *)
Polsum [mu_,nu_] := -MT[mu,nu]\

+AXG*(((FV[q,mu]*FV[pb,nu]+FV[q,nu]*FV[pb,mu])/SP[q,pb]\
-SP[q,q]*FV[pb,mu]*FV[pb,nu]/SP[q,pb]/SP[q,pb]))/.{q→→→pa+pb}

suchannel[LOOP_] := (
PR=ChiralityProjector[+1];
PL=ChiralityProjector[-1];

(* evaluate the loop in D dimensions *)
OK = Simplify[TID[DiracSimplify[LOOP],l,UsePaVeBasis→→→True]];
PVL=Simplify[DiracSimplify[TID[OK,l,ToPaVe→→→True]]];

(* s channel amplitude combined with s channel *)
(* where the uug vertex is replaced by the loop*)
AMPS=SS*2*Polsum[mu,nu]/96/16/Pi^4*

(I*(Lp*PL+Rp*PR)).
(I*GS[pa+pb]/SP[q,q]) .
ChangeDimension[PVL,4].
GS[pa].
(I*gs*GA[nu]).t[{Ga},Qa,Qb].
(-I*GS[pa+pb]/SP[q,q]) .
(-I*(L*PL+R*PR)).
(GS[p2]+MX);

(* u channel amplitude combined with s channel *)
(* where the uug vertex is replaced by the loop *)
AMPU=UU*2*Polsum[mu,nu]/96/16/Pi^4*

(I*(Lp*PL+Rp*PR)).
(I*GS[pa+pb]/SP[q,q]) .
ChangeDimension[PVL,4].
GS[pa].
(-I*(L*PL+R*PR)).
(GS[p2]+MX).
((-I)/(u-MU^2)).
(I*gs*FV[pa-p2+p1,nu]).t[{Ga},Qa,Qb];

(* final simplification and epsilon expansion *)
MMMM = Simplify[CSimplify[Tr[(AMPS+AMPU)/.

{p1→→→ pa+pb-p2}]]]/.{u→→→-t-s+MXs+MUs};
epsser = Series[MMMM/. {D→→→4-2*eps},{eps,0,2}];

)

In[3]:= (* exemplary quark-quark-gluon loop *)
uug=-gs^3*t[{Gb},Qb,Qbp].t[{Ga},Qbp,Qap].t[{Gb},Qap,Qa].
GAD[nu].GSD[l+pa+pb].GAD[mu].GSD[l+pa].GAD[nu].
FAD[{l,0},{l+pa+pb,0},{l+pa,0}]
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suchannel[uug];

In above code we ommitted ScalarProduct which simplifies momenta. CForm and
FeynCalc2FORM come in handy to export the code in compatible formats. If we do not
want to compute in the ’t Hooft Veltman scheme we could use ChangeDimension to get
an overall D dimensional expression (CDR).

If one intends to cancel UV and IR divergence separately extra care is needed since
FeynCalc seems to simplify expressions where UV and IR divergence cancel, e.g.
B0(0, 0, 0) = 0 or Cµµ

0 (0, 0, q2, 0, 0, 0) = 0.

D. Real corrections
D.1. Polarized dipole kinematics and connection matrix
The subtraction of the dipoles from the real corrections involves helicity correlations of
the external gluon. The following explicit calculations are not very interesting, however
we list them here anyway since the process of squark-gaugino production is the first
implementation of such correlated dipoles into Resummino. As in the computation of
the polarized born cross section we use formatting closely related to the implementation,
where this contributes to better understanding. 4

D.1.1. Initial state emitter and final state spectator

First we define several kinematic quantities

s1 = 2papb − 2p3pa − 2p3pb = m2
1 +m2

2 + 2p1p2 = s− 2p3q (D.1)
K1P1→ p1pb = K1Q-K1P1 (D.2)
K2P1→ p2pb = p2 (q − pa) = (q − p1 − p3) q − pap2 = (q − p3) q − p1q − pap2

= 1
2 (s+ s1)− (p1q + pap2) = (s+s1) /2- (K1Q+K2P1) . (D.3)

One notices these quantities are crossed pa ←→ pb since our gluon is associated with the
momentum pb in contrast to the equations from the dipole papers [37][38].

We use the phase space transformation from [38, section 5.3.1]

xij,a = papi + papj − pipj
papi + papj

= 1− pipj
papi + papj

= 1− (q − p2 − p1) p1

paq − pap2

= 1− 2 (qp1 − p2p1 −m2
1) +m2

2 −m2
2

2 (paq − pap2)
= 1− 2qp1 − s1 + ∆M2

2 (paq − pap2)
= 1- (2*K1Q-s1+dM2o) / (s-2*K2P1) (D.4)

z̃j = papj
papi + papj

= 2*K1P1/ (s-2*K2P1) . (D.5)

4The analytic calculations are given in papb → p1p2p3 kinematic nomenclature. The implementation
expressions however use p1p2 → k1k2k3.
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For these dipole parameters we already inserted i = 3 and j = 1.

p̃ai = xij,apa (D.6)
p̃j = pi + pj − (1− xij,a) pa (D.7)

Q2 = (p̃b + p̃ai)2 = (pb + p̃ai)2 = 1
22pbpaxij,a = xij,as (D.8)

Pt1Kt1 = p̃1pb = p̃jpb = p1pb + p3pb −
1
2 (1− xij,a) sonumber (D.9)

= p1pb + p3pb + (p1 + p2 + p3) pa − papb

− 1
2 (1− xij,a) s = p1 (pa + pb) + p2pa + p3pb + p3pa − papb −

1
2 (1− xij,a) s

= p1 (pa + pb) + p2pa −
1
2s1 −

1
2 (1− xij,a) s

= (K1Q+K2P1) - ((1-xija) *s+s1) /2 (D.10)

From above computations we can determine intermediate momenta contractions that
will appear in our 7×4 dipole connection matrix.

P1Ki = pap3 = pa (q − p1 − p2) = s/2- (K1P1+K2P1) (D.11)
KiKj = p3p1 = K1Q- (s1-dM2o) /2 (D.12)

Pt1Pt1 = 0 (D.13)
Pt1Kj = pbp1 = K1Q-K1P1 (D.14)

Pt1Ki = pbp3 = (q − pa) p3 = 1
2 (s− s1)− pap3 = (s-s1)/2-P1Ki (D.15)

Kt1Kt1 = m2
1 = Mo1**2 (D.16)

Kt1Kj = p̃jpj = pipj +m2
1 − (1− xij,a) papj = Mo1**2+KiKj-(1-xija)*K1P1 (D.17)

Kt1Ki = p̃jpi = pipj − (1− xij,a) papi = KiKj-(1-xija)*P1Ki (D.18)

QtKj = (pb + p̃ai) p1 = (pb + pa − pa + xij,apa) p1 = qp1 − (1− xij,a) pap1

= K1Q-(1-xija)*K1P1 (D.19)
QtKi = (pb + p̃ai) p3 = qp3 − (1− xij,a) pap3 = (s-s1)/2-(1-xija)*P1Ki (D.20)

Pt1Qt = pb (pb + p̃ai) = 1
2xij,as = Pt1Pt1+(xija*s-Mi1**2-Mi2**2)/2 (D.21)

QtKt1 = p̃j (p2 + p̃j) = m2
1 + p̃jp2 = m2

1 + 1
2
(
xij,as−m2

1 −m2
2

)
= Kt1Kt1+(xija*s-Mo1**2-Mo2**2)/2 (D.22)

Next up we show the final dipole connection matrix of the Lorentz structures from
the dipole kernel

gµν , pµj p
ν
j , p

µ
i p

ν
i , p

µ
j p

ν
i + pνi p

µ
j (D.23)

and the polarized matrix element

gµν , p̃µa p̃
ν
a, q̃

µq̃ν , p̃µj p̃
ν
j , p̃

µ
a q̃

ν + p̃νaq̃
µ, p̃µa p̃

ν
1 + p̃νap̃

µ
1 , p̃

µ
1 q̃

ν + p̃ν1 q̃
µ . (D.24)
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The following 7 · 4 = 28 equations list the elements of our matrix.

gµνgµν = 4 (D.25)
gµν p̃µa p̃

ν
a = 0 = Pt1Pt1 (D.26)

gµν q̃µq̃ν = xij,as (D.27)
gµν p̃µj p̃

ν
j = Kt1Kt1 (D.28)

gµν (p̃µa q̃ν + p̃νaq̃
µ) = 2*Pt1Qt (D.29)

gµν (p̃µa p̃ν1 + p̃νap̃
µ
1) = 2*Pt1Kt1 (D.30)

gµν (p̃µ1 q̃ν + p̃ν1 q̃
µ) = 2*QtKt1 (D.31)

gµνpµj p
ν
j = Mo1**2 (D.32)

p̃µa p̃
ν
ap
µ
j p

ν
j = Pt1Kj**2 (D.33)

q̃µq̃νpµj p
ν
j = QtKj**2 (D.34)

p̃µj p̃
ν
jp
µ
j p

ν
j = Kt1Kj**2 (D.35)

(p̃µa q̃ν + p̃νaq̃
µ) pµj pνj = 2*Pt1Kj*QtKj (D.36)

(p̃µa p̃ν1 + p̃νap̃
µ
1) pµj pνj = 2*Pt1Kj*Kt1Kj (D.37)

(p̃µ1 q̃ν + p̃ν1 q̃
µ) pµj pνj = 2*Kt1Kj*QtKj (D.38)

gµνpµi p
ν
i = 0 (D.39)

p̃µa p̃
ν
ap
µ
i p

ν
i = Pt1Ki**2 (D.40)

q̃µq̃νpµi p
ν
i = QtKi**2 (D.41)

p̃µj p̃
ν
jp
µ
i p

ν
i = Kt1Ki**2 (D.42)

(p̃µa q̃ν + p̃νaq̃
µ) pµi pνi = 2*Pt1Ki*QtKi (D.43)

(p̃µa p̃ν1 + p̃νap̃
µ
1) pµi pνi = 2*Pt1Ki*Kt1Ki (D.44)

(p̃µ1 q̃ν + p̃ν1 q̃
µ) pµi pνi = 2*Kt1Ki*QtKi (D.45)

gµν
(
pµi p

ν
j + pνi p

µ
j

)
= 2*KiKj (D.46)

p̃µa p̃
ν
a

(
pµi p

ν
j + pνi p

µ
j

)
= 2*Pt1Kj*Pt1Ki (D.47)

q̃µq̃ν
(
pµi p

ν
j + pνi p

µ
j

)
= 2*QtKj*QtKi (D.48)

p̃µj p̃
ν
j

(
pµi p

ν
j + pνi p

µ
j

)
= 2*Kt1Kj*Kt1Ki (D.49)

(p̃µa q̃ν + p̃νaq̃
µ)
(
pµi p

ν
j + pνi p

µ
j

)
= 2*Pt1Kj*QtKi+2*Pt1Ki*QtKj (D.50)

(p̃µa p̃ν1 + p̃νap̃
µ
1)
(
pµi p

ν
j + pνi p

µ
j

)
= 2*Pt1Kj*Kt1Ki+2*Pt1Ki*Kt1Kj (D.51)

(p̃µ1 q̃ν + p̃ν1 q̃
µ)
(
pµi p

ν
j + pνi p

µ
j

)
= 2*Kt1Kj*QtKi+2*Kt1Ki*QtKj (D.52)

D.1.2. Initial state emitter and final state spectator

Again, as in the previous calculation we start with the same quantities which are crossing
pa and pb.

s1 = 2papb − 2p3pa − 2p3pb = m2
1 +m2

2 + 2p1p2 = s− 2p3q (D.53)
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K1P1→ p1pb = K1Q-K1P1 (D.54)
K2P1→ p2pb = p2 (q − pa) = (q − p1 − p3) q − pap2 = (q − p3) q − p1q − pap2

= 1
2 (s+ s1)− (p1q + pap2) = (s+s1) /2- (K1Q+K2P1) (D.55)

To evaluate the dipoles we need following parameters from [37, section 5.5]

xij,a = papb − papi − pipb
papb

= s1

s
= s1/s (D.56)

z̃b = 2papb
(s+ 2pap3)

= 2papb
2 (s− pa (q − p3))

= s

2 (s− pap1 − pap2)
= s/(2*(s-K1P1-K2P1))

(D.57)

z̃i = 1− z̃b = 2pap3

(s+ 2pap3)
(D.58)

z̃b
z̃i

= papb
pap3

(D.59)

z̃i
z̃b

= pap3

papb
, (D.60)

already setting i = 3 and j = 1 for our purposes. We keep computing the outlined
quantities to generate a proper Lorentz transformation and thereby k̃j.

p̃ai = xi,abpa (D.61)

k̃j = kj −
2kj.

(
K + K̃

)
(
K + K̃

)2

(
k + K̃

)
− 2kj.K

K2 K̃ (D.62)

(
K + K̃

)2
= ((pa + pb − pi) + (p̃ai + pb))2

= ((1 + xi,ab) pa + 2pb − pi)2

= (1 + xi,ab) 4papb − 4pbpi − 2 (1 + xi,ab) pipa
= 2s+ 2s1 − 4pbpi − 2 (1 + xi,ab) pipa = 2s+ 2s1 − 2 (s− s1 − 2papi)

(D.63)
− 2 (1 + xi,ab) pipa
= 4s1 + 4papi − 2 (1 + xi,ab) pipa = 4s1 + 2 (1− xi,ab) ((q − p1 − p2) pa)
= 4s1 + s− s1 + 2 (1− xi,ab) ((−p1 − p2) pa)
= s+3*s1-2*(1-xiab)*(K1P1+K2P1) (D.64)

kjK̃ = xi,abpap1 + pbp1 = xi,abpap1 + (q − pa) p1 = K1Q-(1-xiab)*K1P1 (D.65)
kjK = p1pa + p1pb − p1p3 = p1 (p1 + p2 + p3)− p1p3 = p1 (p1 + p2)

= p1p2 + 1
2p

2
1 + 1

2p
2
2 −

1
2p

2
2 + 1

2p
2
1 = (s1-dM2o)/2 (D.66)

Then we can resolve the contraction of kj with various momenta.

p̃aik̃j = xi,abp1pa −
2kj

(
K + K̃

)
(
K + K̃

)2

(
xi,abpa

(
K + K̃

))
+ 2p1K

K2 xi,abpaK̃
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= xi,abp1pa −
2kj

(
K + K̃

)
(
K + K̃

)2 (xi,abpa ((1 + xi,ab) pa + 2pb − pi)) + 2p1K

2s1
xi,abs

= xi,abp1pa −
2kj

(
K + K̃

)
(
K + K̃

)2 (s1 − xi,abpapi) + p1K

= xi,abp1pa −
2kj

(
K + K̃

)
(
K + K̃

)2 (s1 − xi,abpa (q − p1 − p2)) + p1K

= xi,abp1pa −
2kj

(
K + K̃

)
(
K + K̃

)2

(1
2s1 + xi,abpa (p1 + p2)

)
+ p1K

= xiab*K1P1-(K1Kt+K1K)/KKt2*(s1+2*xiab*(K1P1+K2P1))+K1K (D.67)

pbk̃j = p1q − p1pa −
2kj

(
K + K̃

)
(
K + K̃

)2 (pb ((1 + xi,ab) pa + 2pb − pi)) + 2p1K

K2 pbK̃ (D.68)

pbk̃j = p1q − p1pa −
kj
(
K + K̃

)
(
K + K̃

)2 ((1 + xi,ab) s− 2pbpi) + p1K (D.69)

pbk̃j = p1q − p1pa −
kj
(
K + K̃

)
(
K + K̃

)2 (s+ s1 + s1 − s+ 2papi) + p1K (D.70)

pbk̃j = p1q − p1pa −
kj
(
K + K̃

)
(
K + K̃

)2 (2s1 + s− 2pa (p1 + p2)) + p1K (D.71)

= K1Q-K1P1-(K1Kt+K1K)/KKt2*(s+2*s1-2*(K1P1+K2P1))+K1K (D.72)

p̃aiki = p̃aipi = xi,abpa (q − p1 − p2) = 1
2s1 − xi,abpa (p1 + p2) = s1/2-xiab*(K1P1+K2P1)

(D.73)

pbki = 1
2 (s− s1)− papi = 1

2 (−s1) + pa (p1 + p2) = K1P1+K2P1-s1/2 (D.74)

Q̃ki = K̃ki = p̃aiki + pbki = PtaKi+PbKi (D.75)

Q2 = (p̃b + p̃ai)2 = (pb + p̃ai)2 = 1
22pbpaxij,a = xij,as = s1 (D.76)

PbKt1 = p̃1pb = pbk̃j (D.77)
Pt1Pb = 0 (D.78)
Pt1Ki = PbKi (D.79)

(D.80)

Kt1Ki = p3p1 −
2kj

(
K + K̃

)
(
K + K̃

)2 (p3 ((1 + xi,ab) pa + 2pb − pi)) + 2p1K

K2 p3K̃
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= p1q −Kp1 −
2kj

(
K + K̃

)
(
K + K̃

)2

(
Q̃ki + p3 (pa + pb)

)
+ 2p1K

s1
p3K̃

= p1q −Kp1 −
2kj

(
K + K̃

)
(
K + K̃

)2

(
Q̃ki + 1

2 (−s1 + s)
)

+ 2p1K

s1
p3K̃

= K1Q-K1K-(K1Kt+K1K)/KKt2*(s-s1+2*QtKi)+2*K1K*QtKi/s1 (D.81)

QtPb = 1
2s1 (D.82)

QtKt1 =
(
k̃1 + k̃2

)
k̃1

Loren.Traf.= (k1 + k2) k1 = k1K = K1K (D.83)

Finally, we show the dipole connection matrix of the Lorentz structures from the
dipole kernel

gµν , pµb p
ν
b , p

µ
i p

ν
i , p

µ
b p

ν
i + pνi p

µ
b (D.84)

and the polarized matrix element

gµν , p̃µa p̃
ν
a, q̃

µq̃ν , p̃µj p̃
ν
j , p̃

µ
a q̃

ν + p̃νaq̃
µ, p̃µa p̃

ν
1 + p̃νap̃

µ
1 , p̃

µ
1 q̃

ν + p̃ν1 q̃
µ (D.85)

The following 7 · 4 = 28 equations list the elements of our matrix.

gµνgµν = 4 (D.86)
gµν p̃µa p̃

ν
a = 0 = Pt1Pt1 (D.87)

gµν q̃µq̃ν = xij,as = s1 (D.88)
gµν p̃µj p̃

ν
j = Kt1Kt1 = m2

1 (D.89)
gµν (p̃µa q̃ν + p̃νaq̃

µ) = 2*Pt1Qt = s1 (D.90)
gµν (p̃µa p̃ν1 + p̃νap̃

µ
1) = 2*Pt1Kt1 (D.91)

gµν (p̃µ1 q̃ν + p̃ν1 q̃
µ) = 2*QtKt1 (D.92)

gµνpµb p
ν
b = 0 (D.93)

p̃µa p̃
ν
ap
µ
b p

ν
b = Pt1Pb**2 (D.94)

q̃µq̃νpµb p
ν
b = QtPb**2 (D.95)

p̃µj p̃
ν
jp
µ
b p

ν
b = PbKt1**2 (D.96)

(p̃µa q̃ν + p̃νaq̃
µ) pµb pνb = 2*Pt1Pb*QtPb (D.97)

(p̃µa p̃ν1 + p̃νap̃
µ
1) pµb pνb = 2*Pt1Pb*PbKt1 (D.98)

(p̃µ1 q̃ν + p̃ν1 q̃
µ) pµb pνb = 2*PbKt1*QtPb (D.99)

gµνpµi p
ν
i = 0 (D.100)

p̃µa p̃
ν
ap
µ
i p

ν
i = Pt1Ki**2 (D.101)

q̃µq̃νpµi p
ν
i = QtKi**2 (D.102)

p̃µj p̃
ν
jp
µ
i p

ν
i = Kt1Ki**2 (D.103)

(p̃µa q̃ν + p̃νaq̃
µ) pµi pνi = 2*Pt1Ki*QtKi (D.104)
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(p̃µa p̃ν1 + p̃νap̃
µ
1) pµi pνi = 2*Pt1Ki*Kt1Ki (D.105)

(p̃µ1 q̃ν + p̃ν1 q̃
µ) pµi pνi = 2*Kt1Ki*QtKi (D.106)

gµν (pµi pνb + pνi p
µ
b ) = 2*PbKi (D.107)

p̃µa p̃
ν
a (pµi pνb + pνi p

µ
b ) = 2*Pt1Pb*Pt1Ki (D.108)

q̃µq̃ν (pµi pνb + pνi p
µ
b ) = 2*QtPb*QtKi (D.109)

p̃µj p̃
ν
j (pµi pνb + pνi p

µ
b ) = 2*PbKt1*Kt1Ki (D.110)

(p̃µa q̃ν + p̃νaq̃
µ) (pµi pνb + pνi p

µ
b ) = 2*Pt1Pb*QtKi+2*Pt1Ki*QtPb (D.111)

(p̃µa p̃ν1 + p̃νap̃
µ
1) (pµi pνb + pνi p

µ
b ) = 2*Pt1Pb*Kt1Ki+2*Pt1Ki*PbKt1 (D.112)

(p̃µ1 q̃ν + p̃ν1 q̃
µ) (pµi pνb + pνi p

µ
b ) = 2*PbKt1*QtKi+2*Kt1Ki*QtPb (D.113)

E. Relations
A list of useful equations.

E.1. Colour
These relations are available in most standard text books on quantum field theory and
the standard model (e.g. [56]).

E.1.1. Definitions

TF = TR = 1
2 (E.1)

CA = Ta = Nc = N = 3 (E.2)

CF = N2 − 1
2N = 4

3 (E.3)

Tr
[
T aT b

]
= TRδab (E.4)

E.1.2. Fierz identity

T aαβT
a
γδ = 1

2(δαδδγβ −
1
N
δαβδγδ) (E.5)

And consequently
T aαγT

a
γβ = CF δαβ (E.6)

follows. One can also solve

fabcT cβαT
b
γβ = iCATRT aγα (E.7)

T bβδT
b
γαT

a
δγ = −TR

CA
T aαβ . (E.8)
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E.2. Gamma Matrix
Again, the relations are available in most standard text books on quantum field theory
and the standard model (e.g. [56]).

E.2.1. Gamma trace relations

Tr[γµγν ] = 4gµν (E.9)
Tr[γµγνγδ] = 0 (E.10)

Tr[γµγνγδγρ] = 4(gµνgδρ − gµδgνρ + gµρgνδ) (E.11)

E.2.2. D-dimensional Gamma Matrix

γµγνγµ = (2−D)γν (E.12)
γµγνγσγµ = (D − 4)γνγσ + 4gνσ (E.13)

γµγνγσγργµ = −2γργσγν − (D − 4)γνγσγρ (E.14)

E.3. Passarino-Veltman
Here we list Passarino-Veltman results extracted from [54].

E.3.1. Reduction

When no parameters are given to a function, the same parameters as on the left-hand
side are used.

B-tensor

Bµ = pµ1B1 (E.15)
Bµν = gµνB00 + pµ1p

ν
1B11 (E.16)

B1(p2
1,m

2
1,m

2
2) = 1

2p2
1

[
A0(m2

1)− A0(m2
2)− (p2

1 −m2
2 +m2

1)B0
]

(E.17)

B00(p2
1,m

2
1,m

2
2) = 1

2(D − 1)
[
A0(m2

2) + 2m2
1B0 + (p2

1 −m2
2 +m2

1)B1
]

(E.18)

B11(p2
1,m

2
1,m

2
2) = 1

2(D − 1)
1
p2

[
(D − 2)A0(m2

2)− 2m2
1B0 −D(p2

1 −m2
2 +m2

1)B1
]

(E.19)
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E.3.2. Divergences

Table 11: Passarino Veltman Loop integral divergences

Integral UV divergences (D − 4)×Integral

A0(m2) m2∆ −2m2

B0 ∆ −2

B1 −1
2∆ 1

B00 −(p2

12 −
1
4(m2

0 +m2
1))∆ (p2

6 −
1
2(m2

0 +m2
1))

C00
1
4∆ −1

2

F. Implementation into Resummino
The Fastor [69] library was very useful for realizing tensor computations in C++ in the
context of couplings as well as handling the ε poles from the Passarino-Veltman integrals.
Unfortunately Looptools does not give just UV poles, but we can circumvent this by
subtracting the IR poles from the total poles. Further the python library sympy[70] is
worth mentioning, especially the cse function for “Common Subexpression Detection
and Collection” is convenient for simplifying large C++ code (though the exponentiation
operator ’**’ needs to be avoided):

from sympy import cse, simplify
from sympy.parsing.sympy_parser import parse_expr

result = cse(simplify(parse_expr("C++ math code here")),order='none')
# convert to cpp expressions
for k,l, in result[0]:

print("auto " + str(k) + " = "+ str(l) + ";")
print(result[1])

As outlined in this thesis there are many checks to be performed. Instead of just
performing these tests once when the code is implemented a test framework (Catch2
[71]) was added to Resummino. This comes with the advantage of reproducible tests and
thus one can prevent regression.
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