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Zusammenfassung
Nukleare Parton-Verteilungsfunktionen (nPDFs) sind unverzichtbar, um Vorhersagen für

Collider-Experimente mit Atomkernen in den Anfangszuständen unter Verwendung des kolli-
nearen Fakto-risierungs-Ansatzes der QCD zu treffen. nPDFs werden mit einem datengetriebe-
nen Ansatz über eine globale Analyse mit verschiedenen nuklearen Daten bestimmt. Da diese
Daten typischerweise nur für bestimmte Kombinationen von PDFs einzelner Parton-Flavours
empfindlich sind, werden mehr Daten aus verschiedenen harten Prozessen benötigt, um ge-
nauere nPDFs aus einer verbesserten Flavor-Trennung zu erhalten. Die tiefinelastische Neutrino-
Nukleus-Streuung (DIS) ist einer jener Prozesse, die komplementäre Informationen über Valenz-
und Down-Typ-Quark-PDFs liefern. Der exklusiverer Prozess, die Charm-Dimuon-Produktion,
bietet starke Einschränkungen für die Strange Quark-PDFs. Das Einbeziehen dieser Neutrino
Daten ist jedoch aufgrund von Spannungen mit einigen geladenen Lepton-DIS-Daten nicht ein-
fach. In dieser Arbeit untersuchen wir die Kompatibilität von Neutrino-DIS-Daten von CCFR,
NuTeV, Chorus und CDHSW im Rahmen von nCTEQ PDF Fits. Wir haben mehrere Kom-
patibilitätskriterien eingeführt, um die Spannungen zu bewerten und kinematische Regionen
zu identifizieren, die sie erzeugen. Wir schlagen mehrere Lösungen vor, um die Spannungen
abzubauen und einen konsistenten globalen Fit zu erzielen, und vergleichen die resultierenden
Theorievorhersagen mit den Charm-Dimuon-Daten von NOMAD und CDHS-Daten.

Im zweiten Teil dieser Arbeit untersuchen wir Targetmassenkorrekturen (TMCs) in Lepton-
Nukleus-DIS, die in der hohen x- und niedrigen Q2-Region signifikant sind. Während eine
Reihe von Masterformeln für TMCs verfügbar sind, geht die Herleitung von einem einzelnen
Nukleon als Target aus. In dieser Arbeit wird die Gültigkeit der TMC-Masterformel für Lepton-
Nukleus-DIS untersucht. Die Auswirkungen von TMCs auf die DIS-Strukturfunktionen wer-
den ebenfalls untersucht. Wir schlagen eine Reihe von Parametrisierungen vor, um die Verhält-
nisse zu parametrisieren, damit die TMCs schnell berechnet werden können. Die Fähigkeit,
TMC-Strukturfunktionen schnell auszuwerten, ist äußerst wichtig für nPDF Fits, bei denen
DIS-Theorievorhersagen viele Male während der Suche der Parameter berechnet werden müssen.

Im letzten Teil dieser Arbeit wird die Möglichkeit untersucht, CMS-Dijet-Daten von Proton-
Blei-Kollisionen bei

√
5 TeV einzubeziehen. Wir beginnen mit der Analyse der pp-Spektren

und zeigen, dass die pp-Daten von allen modernen Protonen-PDFs nicht gut beschrieben wer-
den können. Wir zeigen auch, dass die pPb-Spektren von den Blei-PDFs aus den jüngsten
EPPS21- und HIXNEU-CJ2 Fits nicht reproduziert werden können. Der Fit HIXNEU-CJ2 repräsen-
tiert eine globale Analyse mit verbesserter Methodik und fast allen Datensätzen, die in den
nCTEQ15HIX- und BaseDimuChorus-Analysen verwendet wurden. Allerdings werden die
Dijet-pPb/pp-Verhältnisse mit Rapidität ηdijet ≤ 2 bereits gut durch den Fit HIXNEU-CJ2
beschrieben. Wir erweitern dann die HIXNEU-CJ2-Analyse, indem wir die Dijet-pPb/pp-
Daten einbeziehen, was zu einer wesentlichen Reduzierung der Gluon-PDF-Unsicherheiten
führt.
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Abstract
Nuclear parton distribution functions (nPDFs) are indispensable in making predictions for col-
lider experiments with nuclei in the initial states using the QCD collinear factorization frame-
work. nPDFs are determined using a data-driven approach via a global analysis with vari-
ous nuclear data. As these data typically are sensitive to only certain combinations of PDFs
of individual parton flavors, more data from different hard processes are needed to obtain
more accurate nPDFs from an improved flavor separation. Neutrino-nucleus deep inelastic
scattering (DIS) is one of those processes that provide complementary information on valence
and down-type quark PDFs. Its more exclusive process, the charm-dimuon production, places
strong constraints on the strange quark PDFs. However, including these neutrino data is not
straightforward due to tensions with some charged lepton DIS data. In this thesis, we inves-
tigate the compatibility of neutrino DIS data from CCFR, NuTeV, Chorus, and CDHSW in the
nCTEQ PDF fitting framework. We introduce several compatibility criteria to assess the level
of tensions and identify kinematical regions that generate them. We propose several solutions
to relieve the tensions and compare the resulting theory predictions with the charm-dimuon
data from NOMAD and nuclear ratio data from CDHS.

In the second part of this work, we study target mass corrections (TMCs) in lepton-nucleus
DIS. TMCs are significant in the high x and low Q2 regions and therefore important if data
with low hadronic invariant mass are included. While a set of master formulas for TMCs is
available, the derivation did not emphasize the use of a nucleus as the DIS target. In this work,
the validity of the TMC master formula for lepton-nucleus DIS is studied. The impact of TMCs
on the DIS structure functions are also investigated. We propose a set of parameterizations for
the ratios, so that the TMCs can be quickly calculated. The ability to quickly evaluate TMC
structure functions is very important for nPDF fitting, where DIS theory predictions need to be
calculated many times during the fitting loop.

In the last part of this thesis, the viability of including CMS dijet data from proton-lead
collisions at

√
5 TeV is investigated. We start by analyzing the pp spectra, and show that the

pp data can not be well-described by all modern proton PDFs. We also show that the pPb
spectra can not be reproduced by the lead PDFs from the recent EPPS21 and the HIXNEU-
CJ2 fits. The HIXNEU-CJ2 represents a global analysis with almost all the data sets used in
the nCTEQ15HIX and BaseDimuChorus analyses, with an improved methodology. We show
that the dijet pPb/pp ratio data with ηdijet ≤ 2 can, however, already be well-described by the
HIXNEU-CJ2. We then extend the HIXNEU-CJ2 fit by including the dijet pPb/pp resulting in
substantial reductions of the gluon PDF uncertainties.
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Chapter 1

Introduction

Humans have been pondering and gazing away to the farthest edge of the cosmos using so-
phisticated telescopic apparatus and deep down to the most elementary constituents of matters
through particle colliders. The more we see physics occurring in the domains beyond what can
be seen by the naked eye, the more mysterious things become. Newton’s laws and Maxwell’s
theory on electromagnetism largely do not contradict human intuition. It was not until the
advent of Quantum Mechanics, initially developed by Heisenberg, Schrodinger and many oth-
ers in the 1920s, which describe physics at ultra-microscopic scale, and special relativity theory,
mainly developed by Einstein, which describes physics at high energy, that mind-bending laws
of nature started to become widely known. The development of relativistic quantum mechanic,
also initiated in the 1920s, as a unified framework to merge quantum mechanics and special
relativity, was a natural continuation of both theories that applies at short distance and high
energy. To explain multi-particle productions and annihilations, field theory concepts were in-
troduced, leading to the development of quantum electrodynamics, which was later unified
with weak interaction theory by Glashow[1] and later perfected by Weinberg and Salam[2, 3]
into a modern form of electroweak theory by incorporating the Higgs mechanism. This the-
ory is now part of the standard model of particle physics (the SM for short), which is often
regarded as one of the pinnacles of human knowledge in understanding the laws of nature at
ultra-microscopic scales. The SM describes electromagnetic, weak, and strong interactions in a
unified way using quantum field theory as the main framework, imbued with some symmetry
principles, such as Lorentz invariance and local gauge symmetry of SU(3)c ⊗ SU(2)L ⊗U(1)Y.

Being the focus of this thesis, QCD is based on an SU(3) gauge group, with the gluons as
the gauge bosons that mediate the interaction. The strong interaction is only active for col-
ored particles, such as quarks. Together with the gluons, quarks constitute hadrons. QCD is
very interesting for a variety of reasons. It beautifully explains hadron spectrosocopy from
early bubble chamber experiments in the 1950s[4, 5], the theory predicts asymptotic freedom
at high energy and therefore explains confinement nature of hadrons, and it implies factoriza-
tion of long- and short-distance physics for some processes[6], such as deep inelastic scattering
(DIS) and Drell-Yan lepton pair production (DY). The factorization of long and short distance
physics, implies the existence of a unique set of the so-called parton distribution functions
(PDFs), which describe the structure of hadrons.

In lepton-hadron and hadron-hadron colliders, PDFs are very important as inputs to make
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theory predictions for the data (typically cross sections) that the experimentalists measure. they
can not be predicted from first principle (QCD) using perturbation theory due to a large QCD
coupling constant at low energy. However, PDFs are universal, namely the same PDFs are en-
tered in the factorization-based theory predictions for various scattering processes. Therefore,
once PDFs are determined from one process, they can be used to calculate theory prediction
for other processes. This opens up the possibility of using data-driven methods to determine
PDFs. In fact, modern PDFs[7–10] are determined in this way, by using various scattering data
from many experiments conducted at the Large Hadron Collider (LHC) at CERN in Geneva,
HERA particle accelerator at DESY in Hamburg, Tevatron collider at Fermilab in Batavia, Illi-
nois. Many of these experiments collide protons and therefore, PDFs of the proton were histor-
ically the first to be determined.

In 1983, results from muon-iron and muon-deuterium DIS experiments conducted by the
European Muon Collaboration (EMC)[11] suggested that the cross sections of DIS of a nucleus
A is different from that of a free nucleon. This is unexpected, as the binding energy of pro-
tons and neutrons inside the nucleus is very small compared to the exchange energy of the
DIS process. These findings suggest that non-trivial nuclear effects contribute to the DIS pro-
cess, although there is still no consensus about definitive explanations for this EMC effect. This
experiment later inspired a series of follow up experiments by different groups, such as the
one from New Muon Collaboration (NMC)[12, 13], SLAC (Stanford Linear Accelerator)[14–
16], BCDMS[17, 18]and recently the CLAS collaboration in Jefferson Lab (JLab)[19, 20]. These
experiments essentially confirm evidence of nuclear modifications for a wide range of kinemat-
ical regions. The results from all these experiments can also be regarded as evidence of nuclear
modification of free proton PDFs, which leads to the concept of nuclear parton distribution
functions.

Nuclear Parton Distribution Functions (nPDFs) are PDFs of nuclei, and therefore, general-
izations of the proton PDFs. Similar to the free proton PDFs, they are determined by a global
analysis using various nuclear data. nPDFs are currently less precise than the proton ones,
mainly due to the lack of (precise) data. All modern proton PDFs[7, 21] are from global anal-
ysis using next-to-next- to-leading order (NNLO) of perturbative QCD, while in the nuclear
case, the development of NNLO nPDF analyses only started several years ago[22, 23], while
widely used nPDFs in the market[24–26] are still at next-to-leading order (NLO) accuracy. This
is not a big issue, though, as most nuclear data are old and not precise enough to require going
to the next perturbative orders of pQCD to describe them.

In this work, we are interested in better determining nPDFs by including new data, im-
proved theory predictions for data in extreme kinematical regions, and an improved fitting
methodology. The new data that we are trying to include is the neutrino-nucleus DIS data
from NuTeV, CCFR, CDHSW and Chorus experiments. Compared to the charged lepton DIS
data previously used in the past nCTEQ analyses, these new data are six times more abundant.
However, we will see that some of these data sets have irreconcilable tensions with the charged
lepton DIS data, making the analysis not as straightforward as one initially expected.
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The inclusion of DIS data with high Bjorken x and low virtuality Q2 demands a proper
treatment of the so-called target mass corrections (TMCs). A set of TMC master formula based
on operator product expansion (OPE) for lepton-nucleon DIS has been known for quite some
time, but the validity of the same master formula for lepton-nucleus case has not been properly
addressed. In this thesis, we will show that the master formula is still valid, thanks to the
rescaling formalism employed in the nPDF framework. We will also show that the size of
TMCs seems to be universal for all nuclei, allowing us to parameterize the corrections. The
parameterizations are useful in an nPDF fitting, where such slow TMC calculation need to be
done many times.

In the last part of this thesis, we will analyze the CMS data from dijet production process
in proton-lead collisions at

√
s = 5 TeV. This data is very important in nPDF determination,

as it can provide a strong constraint to the nuclear gluon PDF at low and high x regions. We
will see that the pp data can not be well-described by all modern proton PDFs available in the
literature. This makes the inclusion of pPb or pPb/pp data problematic.

This thesis is organized as follows. In Chapter II, we give an overview of the standard
pQCD and nPDF framework used in this analysis. This includes a summary of basic princi-
ples of QCD, parton model and factorization, nuclear modifications of structure functions, and
finally, nPDFs and rescaling formalism.

In chapter III, we discussed in detail the statistical aspects of PDF fitting. First, derivations
of the maximum likelihood-based loss function will be given. Then, three different methods
for error estimation will discussed and compared. In particular, we focus on how model mis-
specifications (which happen, for example, when there are tensions between data sets, or when
the PDF parameterization is insufficiently flexible) impact the estimated PDF uncertainties. We
then give a detailed discussion on Bayesian reweighting techniques as a method to assess the
impact of new data on the fitted PDFs without doing an actual fit. Finally, we discuss several
compatibility criteria which is useful to assess and quantify the tensions between data sets.

In chapter IV, we report the detailed results of the global analysis with neutrino DIS data.
We start by discussing the neutrino data and the extracted nuclear corrections. We then discuss
the baseline fit (nCTEQ15WZSIHdeut) that represents the charged lepton data. A neutrino data
alone fit is then discussed, and the resulting nPDFs and predictions are contrasted to the ones
from nCTEQ15WZSIHdeut. We then discuss several combined fits and their compatibility as-
sessment. Finally, we compare the predictions from the combined fits to the neutrino-induced
dimuon production process with the data from the NOMAD experiment and nuclear ratio data
from CDHS.

In chapter V, discussions on the target mass corrections (TMCs) for lepton-nucleus will
be given. First, we discuss the sketch of TMC master formula derivation using OPE formal-
ism and then compare the TMC structure functions with that from ACOT. The universality of
FA,TMC

i /Fleading
i is then shown and discussed. Then, we discuss how we parameterize these

ratios in terms of 2F1 hypergeometric function and compare the fitted parameterizations to the
exact results.
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In Chapter VI, we discuss the viability of including the CMS dijet production data. We will
start by discussing the pp spectra and how well all the modern proton PDFs can describe the
data. We then move to discuss the pPb spectra and the ratio pPb/pp data, which naturally
bring to the discussion on a combined fit with the ratio pPb/pp data.

Finally, chapter VII presents the summary and outlook of this work.
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Chapter 2

Foundation

2.1 Quantum Chromodynamics (QCD)

This section aims at providing an overview of the theory of strong interaction, otherwise known
as QCD. The overview is centered around specific aspects of QCD that are directly related to
the main part of this thesis, which is nuclear parton distribution functions.

2.1.1 The Lagrangian

QCD is a quantum field theory (QFT) featuring SU(3) local gauge symmetry which provides
an explanation for phenomena related to the strong interaction. Being part of the SM, QCD
is different from the electroweak theory in the sense that it predicts asymptotic freedom and
confinement property of parton (quarks and gluons) inside hadrons. The word "chromo" in
QCD literally means "color", which refers to the charge associated with the strong interaction.
The color charge was historically introduced to reconcile the quark model of hadrons with the
Pauli exclusion principle[27, 28].

The pure QCD Lagragian takes the following form :

L0,QCD = −1
4

GaµνGa
µν + ψ

f
(

i /D − m f
)

ψ f . (2.1)

This Lagrangian describes the self-interactions between gluon fields Aa
µ, and the interaction

between the fermionic field ψ f with the gluon field Aa
µ. The interaction term between the two

resides in the covariance derivative Dµ, defined as :

Dµ = ∂µ − igs Aa
µTa, (2.2)

where gs is the QCD coupling and Ta, a = 1, ..., 8 are the generators of SU(3) in the fundamen-
tal representation. The gluonic self interactions come from the kinetic term, which is expressible
in terms of the gluon field strength tensor:

Ga
µν = ∂µ Aa

µ − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν, (2.3)

where f abc is the totally antisymmetric SU(3) structure constant.
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FIGURE 2.1: The running of the strong coupling constant. Figure is taken from
[32]

In quantum field theory, to deal with multi-particle productions and annihilations, the clas-
sical fields ψ f and Aa

µ are promoted to quantum fields, which behave as operators in the Fock
space. The physical observables, such as cross sections and decay rates, can be computed once
the matrix elements are known. The matrix element can be calculated using the LSZ reduc-
tion formalism[29]. The calculation requires to know the relevant correlation functions for the
process under consideration. Up until this stage, everything is exact. To compute correlation
functions, perturbation theory is usually employed, which, through path integral formalism or
Wick contractions, leads to a set of Feynman rules.

Perturbation theory assumes that the interaction parts of the Lagrangian can be regarded
as small perturbations on top of the free theory. The Feynman diagrams and rules can then be
built by first quantizing the free theory. While the quantizing of a free fermionic (Dirac) field is
rather straightforward, the quantization of a non-abelian gauge field is not. Due to the gauge
freedom, only the physical gauge boson configurations can be taken into account. In the path
integral formalism, one can achieve this by including a gauge-fixing term and the so-called
ghost term in the Lagrangian. The full derivation can be found in any standard text book of
QFT, such as [30, 31]. The full QCD Lagrangian is then given by

LQCD = −1
4

GaµνGa
µν + ψ

f
(

i /D − m f
)

ψ f − 1
2ξ

(∂µ Aaµ)2 + ∂µ c̄a
(

∂µδad − gs f abd Aµ
b

)
cd. (2.4)

Here, ca and c̄a are the fermionic scalar ghost and anti-ghost fields. Using this Lagrangian, one
can derive Feynman rules for propagators and interaction vertices.

2.1.2 UV Divergences and Asymptotic Freedom
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As in quantum electrodynamics (QED), going beyond the tree level in perturbation theory
when computing Green functions generally leads to infinities or divergences. A divergence
related to virtual particle’s momenta going to infinities is called ultraviolet (UV) divergence.
The standard way to remove these infinities is through a renormalization program, which basi-
cally absorbs the divergences into the so-called bare fields and couplings. A theory is said to be
renormalizable if all the UV divergences can be absorbed into a finite set of the so-called ‘bare’
fields, parameters (such as masses), and couplings. At the end of the program, any observable
computed in this framework will be finite and depends only on the renormalized couplings
and parameters, which are now functions of the chosen renormalization scale µ. The depen-
dency of the couplings and parameters on µ are governed by renormalization group equations
(RGEs). In QCD, the strong coupling gs, is running according to:

µ
dgs

dµ
= β(gs), (2.5)

where β(gs) can be computed order-by-order in perturbation theory. At one loop using the MS
scheme, it is given by

β(gs) = −gs
g2

s
16π

[
11
3

CA − 2
3

N f

]
, (2.6)

where CA is the Casimir constant for the SU(3) group and N f is the number of quark flavors.
For N f ≤ 33CA/6, which is the case for the SM, we see that βs is always negative, thus the QCD
coupling decreases in strength as the scale increases. By solving the RGE (2.5), one obtains

αs(µ) =
12π

(11CA − 2N f ) ln
(

µ2/Λ2
QCD

) , (2.7)

where αs = g2
s /4π and ΛQCD ∼ 200 MeV is the scale at which gs diverges, otherwise known

as the Landau pole. Eqs. (2.7) implies that QCD becomes perturbative and asymptotically
free at high energy. Conversely, at µ ∼ ΛQCD, the theory ceases to be perturbative, hence the
perturbation theory can not be used. One has to resort to a computationally intensive Lattice
QCD technique if one wants to obtain meaningful QCD predictions. In Fig. 2.1, we show
the value of αs as a function of the renormalization scale Q. We can clearly see that αs is a
monotonically decreasing function of Q.

2.2 Deep Inelastic Scattering, Parton Model and Factorization

Deep inelastic scattering (DIS) is a process where energetic leptons collide with the hadronic
target, typically proton or nucleus, such that the target is destroyed and the detectors measure
the products of the collisions. Schematically, the DIS process for lp+ → l′X is shown in Fig.
2.2. The term "deep" indicates that the target is completely destroyed. Let W2 = p2

X, where
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FIGURE 2.2: Feynman diagram for l + p+ → l′ + X DIS.

pX is the total momentum of the debris X. Then a scattering process lp+ → l′X is categorized
as a DIS process only if W2 ≫ M2, where M is the hadron mass. If W2 = M2, we say that
the process is elastic. The term shallow (or semi) inelastic scattering (SIS) is often introduced to
refer to a scattering process where the target is excited to a resonance state, which then decayed
into debris. This typically happens for W values not far above the proton mass (W ≲ 2 GeV).

Let’s discuss the typical kinematical variables used to describe DIS process. For massless
leptons, it is easy to show that q2 = (k − k′)2 = −EE′(1 − cos(θ) ≤ 0, where θ is the angle
between the outgoing and incoming lepton. Then we define Q2 = −q2 ≥ 0. Note that Q2 = 0
only if θ = 0. Then we define

ν ≡ p · q
M

= (E − E′)lab, x ≡ Q2

2p · q
=

Q2

2Mν
, y =

p · q
p · k

=
E − E′

E

∣∣∣
lab

. (2.8)

It is easy to show that the DIS condition W2 > M2 implies ν ≥ 0, x ∈ [0, 1] and y ∈ [0, 1]. To
show this, we can start by writing W2 in terms of x and Q2:

W2 = p2
X = (p + q)2 = M2 + Q2

(
1
x
− 1
)

. (2.9)

The condition W2 ≥ M2 implies :
1
x
− 1 ≥ 0 . (2.10)

From this inequality, one can see that x can not be negative, otherwise, this inequality can never
be true. Thus x ≥ 0. As x is always positive, this inequality (2.10) implies x ≤ 1. Thus x ∈ [0, 1]
has been shown. As Q2 ≥ 0, from the definition of x, the inequality x ≥ 0 implies that ν can
not be negative, or ν ≥ 0. This further implies y ≥ 0. As the energy of the outgoing lepton is
always positive, E′ ≥ 0, this gives y ≤ 1, demonstrating that y ∈ [0, 1]. In the literature, x is
often called the Bjorken x, while Q2 is often referred to as the virtuality.

The cross section for the DIS process can be written in terms of the leptonic Lµν and Wµν as

dσ =
1
F

e4

q4 LµνWµν4π
d3k′

(2π)32E′ , (2.11)
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where F = 4
√
(p.k)− M2m2

l = 2S is the Moller flux factor. The leptonic and dimensionless
hadronic tensors are defined as:

Lµν(k, k′)
∣∣∣
QED

=
1
2 ∑

sl,sl′
u(l′)γµu(l)u(l)γνu(l′) = 2

{
kµk′ν + kνk′µ − (k · k′)gµν

}
, (2.12)

4πWµν(p, q) = ∑
X

dΠX(2π)4 δ(4)(p + q − pX)
〈
⟨N(p)|J†

ν (0)|X⟩⟨X|Jµ(0)|N(p)⟩
〉

spin
. (2.13)

Here, dΠX = ∑i∈X
d3 pi

(2π)32p0
i

denotes the invariant phase space measure for the hadronic final
state X and |N(p)⟩ denotes the nucleon state. From the Lorentz structure of Wµν, one can
express Wµν in terms of Wi(x, Q2) structure function as :

Wµν(p, q) = −gµνW1 +
pµ pν

M2 W2 − iϵµναβ
pαqβ

M2 W3 +
qµqν

M2 W4 +
(pµqν ± pνqµ)

M2 W5,6 . (2.14)

Here, the structure functions Wi(x, Q2) are real. These Wis are related to the measurable Fi

structure function as{
F1, F2, F3, F4, F5 (6)

}
=

{
W1,

Q2

2xM2 W2,
Q2

xM2 W3,
Q2

2M2 W4,
Q2

2xM2 W5 (6)

}
. (2.15)

When contracting Wµν with the Lµν, we see that not all the structure functions Wis contribute to
the total cross section. For example, as Lµν is symmetric, then the contributions from antisym-
metric terms such as the one from W3 and W6 are zero. As qµqνLµν ∝ m2

l = 0, the contribution
from W4 also vanishes. Similarly also for W5, as pµqνLµν ∝ m2

l = 0. After evaluating the
contraction, we obtain

dσ

dΩdE′ =
α2

e

4ME2 sin4 θ
2

[
2W2(x, Q) cos2 θ

2
+ W1(x, Q) sin2 θ

2

]
. (2.16)

We have managed to derive a cross section formula for a DIS process in terms of Wi structure
functions. The calculation for Wi can be performed using parton model approach[33]. Alterna-
tively, a more rigorous operator product expansion (OPE)[34] technique can also be employed.

Parton model was first introduced by Feynman[35], Bjorken and Paschos[33] in 1969 as an
explanation for the Bjorken scaling behavior of the DIS structure function. In the parton model,
the incoming lepton is assumed to scatter off point-like constituents (called partons, which we
identify as quarks and gluon) of the hadron, whose probability distributions are given by the
so-called parton distribution functions (PDFs). At high energy, these partons are effectively
massless and assumed to carry a fraction x of the hadron momentum p. Then the cross section
of DIS process can be expressed as a convolution of hard cross section with parton distribution
functions (PDFs) :

σ(e−p+ → e−X) = ∑
i

∫
dξ fi(ξ)σ̂(e−qi → e−X) . (2.17)
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FIGURE 2.3: Proton structure functions measured by several experiments. The
figure is taken from [30].

The hard cross section for e−qi → e−qi can be computed easily using Feynman diagram. It is
given by

dσ̂

dΩdE′ =
α2

e Q2
i

4E2 sin4 θ
2

[
cos2 θ

2
+

Q2

2m2
q

sin2 θ

2

]
δ

(
E − E′ − Q2

2mq

)
. (2.18)

Here, Qi, mq are the fractional charge and mass of the participating quark. Inserting this hard
cross section to the factorization formula (2.17) and comparing to (2.16), we obtain

F1(x, Q2) =
1
2 ∑

i
Q2

i fi(x) , (2.19)

F2(x, Q2) = 2xF1 = ∑
i

Q2
i x fi(x) . (2.20)

Thus, the parton model predicts that both structure functions are independent of Q2. This
is the scaling behavior mentioned before. The relation F2 = 2xF1 is often referred to as the
Callan-Gross relation.

In reality, Bjorken scaling is violated in the small and high x regions. In Fig. 2.3, we show
proton structure function F2 for wide range of x and Q2 region. We can clearly see that F2 is
not independent of Q2. To better describe the data in these regions, it is necessary to include
contributions from QCD radiations. The improvement leads to a QCD-improved parton model,
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FIGURE 2.4: Feynman diagrams for the hard processes in DIS. (a) Born (tree level)
diagram for γ∗ + quark of type i scattering. (b) Diagram for a gluon radiation
from the initial quark i (initial state radiation). (c) Diagram for a gluon radiation
from the final state quark i (final state radiation). (d) Diagram for one loop QCD
correction to the γqiqi vertex. (e) Same as (a), but now QCD self energy correction

to the initial state quark i is included.

as discussed in the following.
At next-to-leading order (NLO), or O(αs), QCD corrections enter in: 1) initial state radi-

ation (shown in Fig. 2.4(b)), 2) virtual correction (shown in Fig. 2.4(d)) and 2.4(e)), and 3)
final state radiation(shown in Fig. 2.4(c)). As the partons are massless, the contributions from
these processes to the total partonic cross section contain soft and collinear divergences. For-
tunately, most of the divergences cancel, and the remaining collinear divergence, which is Q2-
dependent, is absorbed into PDFs. The PDFs then contain some Q2 dependence, whose behav-
ior is governed by the DGLAP evolution equations[36–38]. As the PDFs are Q2 dependent, the
calculated structure functions, therefore, have some Q2 dependency as well.

The derivation of QCD corrections from these diagrams can be found in various textbooks
on QCD, such as [30, 31]. However, here, we would like to stress the importance of choosing
a gauge for the gluon field. If one uses Feynman gauge, such as in [30], all the diagrams :
initial, final and virtual radiations contribute to the hard process. As the remaining infrared
(IR) divergences from these diagrams will eventually be absorbed into PDFs, the interpretation
of PDF being a probability distribution for finding initial state parton becomes less obvious, as
it receive contributions from the final state radiation. In this respect, Feynman gauge is not the
most convenient choice of gauge, as it leads to an obscure interpretation of PDFs. Using the
axial gauge, however, as shown in [39], leads to a clearer interpretation of PDFs as initial state
distributions, as all contributions from the final state radiations vanish.
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In the following, we outline the derivation of DGLAP equation. Readers can refer to [39]
for pedagogical details.

• Phase Space Factorization: Using Sudakov decomposition for collinear branching of ini-
tial state parton, it can be shown that the n + 1 final state particle phase space measure
factorizes as

dΦ(n+1)(k1, k) = dΦ(n)(zk1, k)
d|⃗kT|2

|⃗kT|2ϵ

1
16π2

(4π)ϵ

Γ(1 − ϵ)

dz
1 − z

, (2.21)

where k1 is the momentum of branching parton, k = (1 − z)k1 is the momentum of the
splitted particle, and k⃗T is its transverse momentum.

• Cross section factorization : For initial state quark-quark splitting (namely: q → q + g), the
cross section for producing n + 1 final states factorizes as

dσ̂(n+1)(k1, ...) → dσ̂(n)(zk1)
αs

2π
P̂qq(z)dz

d|⃗kT|2

|⃗kT|2
. (2.22)

Here, P̂qq(z) is the unregulated Alterelli-Parisi splitting function for the quark-quark split-
ting :

P̂qq(z) = CF
1 + z2

1 − z2 , (2.23)

where CF = 4/3 is the color factor. We can see that the n + 1 cross section become diver-
gent when |⃗kT| → 0 (collinear radiation) and/or z → 1 (soft radiation). Note that besides
q → qg splitting (initial state quark, split into a quark that participates in the hard process
and a gluon radiation), there are also q → gq (now the gluon participates in the hard
process), g → qq and g → gg splittings which contribute to the hard cross sections.

• One can work out the |⃗kT| integral directly, with the lower and upper bound given by
m2 and Q2. The lower bound m2 is the quark mass which serve as an IR regulator. The
|⃗kT| integral gives ln(Q2/m2). Upon adding the contribution from the real emission from
q → qg splitting, we see that the cross section calculated using parton model maintains
the same form (2.17), but now the PDFs are modified as

fq(x) → fq(x, Q2) ≡
[
1 +

αs

2π
ln(Q2/m2)P̂qq

]
⊗ fq . (2.24)

Here, the convolution symbol ⊗ means

P̂qq ⊗ fq ≡
∫ 1

x

dz
z

P̂qq(z) fq

( x
z

)
= fq ⊗ P̂qq , (2.25)

1 ⊗ fq ≡
∫ 1

x

dz
z

δ(1 − z) fq

( x
z

)
= fq(x) . (2.26)
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• The redefinition in (2.24) however is not infrared safe: one needs to know the detail of
the IR regulator m2 to make predictions. The solution of this problem is to resum a whole
tower of diagrams, where multiple gluons are emitted. Resumming all such diagrams is
equivalent to redefining PDFs as :

fq(x) → fq(x, Q2) ≡ exp
[ αs

2π
ln(Q2/m2)Pqq

]
⊗ fq . (2.27)

Thus, by taking the derivative with respect to Q2, the PDFs now satisfy:

Q2 ∂

∂Q2 fq(x, Q2) =
αs

2π
P̂qq ⊗ fq(x, Q2) . (2.28)

However, we still have some problems : 1) the splitting function is divergent for z → 1.
2) The strong coupling αs is set to be a (fixed) constant and not yet renormalized.

• The first problem can be cured by considering gluon radiations that get reabsorbed by
the radiating initial state quark (see Fig. 2.4(e)). This O(αs) self-energy diagram modifies
the wave function renormalization of the quark, which soften the IR divergence in the
splitting function. After taking into account the self-energy contribution, the splitting
function is now regulated as

P̂(z) → P(z) ≡ CF

(
1 + z2

1 − z

)
+

. (2.29)

The plus distribution f+ is defined such that for a test function h(x) :∫
dz f (z)+h(z) =

∫
f (z)(h(z)− h(1)) . (2.30)

• Finally, taking into account the virtual correction in the γqq vertex (see Fig. 2.4(d)) amounts
to replace αs with the renormalized one. By including contributions from all other split-
tings, the PDFs can be shown to satisfy :

Q2 ∂ fi

∂Q2 =
αs(Q2)

2π ∑
j

P̂ij ⊗ f j(x, Q2) . (2.31)

This set of equations is often called as the Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP)
evolution equations [36–38].

We have seen that when including NLO QCD corrections in our calculation, we can main-
tain the main statement of parton model by promoting the PDFs to be Q2 dependence. In turns
out this is also true if one goes beyond NLO. Specifically, by writing the hard cross section as

dσ̂ = ∑
i

( αs

2π

)i
dσ̂(i) , (2.32)
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one can compute the hadron-level cross section using the factorization formula

dσ(Q2) = ∑
i

∫
dξdσ̂i)(Q2) fi(ξ, Q2) ≡ ∑

i
dσ̂i(Q2)⊗ fi(Q2) , (2.33)

with the PDFs fi(x, Q2) satisfy the DGLAP equations (2.31). We note here that we can also
define PDFs in other way than (2.27), giving different factorization scheme. Given a set of PDFs
fi(x, Q2), one can define another set f ′i (x, Q2) as

F′
i (x, Q2) = ∑

j
Cij ⊗ f j(Q2) , (2.34)

Cij(z) = 1 +
α2

2π
C(1)

ij +
( α2

2π

)
C(2)

ij + ... . (2.35)

The hadron-level cross section should not depends on the choice of scheme, thus :

σ = ∑
i

σi ⊗ fi = ∑
i

σ′
i ⊗ f ′i , (2.36)

with σ′
i = ∑i σj ⊗ C−1

ji . To retain the same form of evolution equation, the splitting functions
must also be modified as[39]

P′
ij =

[
C ⊗ P ⊗ C−1 − 2πβ(αs)

dC
dαs

C−1
]

ij
. (2.37)

Thus, beyond leading order, the hard coefficient is always intertwined with the splitting func-
tions. We note here that while the fixed order prediction for the total cross section is scheme-
dependent, the all-order predictions are the same for different schemes.

Besides having freedom to choose factorization scheme, one is also be free to choose the
factorization scale while keeping the hadron-level prediction the same:

σ(Q2) = ∑
i

dσ̂i(Q2)⊗ fi(Q2) = ∑
i

dσ̂i(Q2, Q2
F)⊗ fi(Q2

F) . (2.38)

The factorization scale Q f , is typically chosen QF = cQ, with c is between 0.5 and 2. As PDFs
at different scales are related via the DGLAP equation, they satisfy

fi(x, Q2) = ∑
j

Dij(Q2/Q2
F)⊗ f j(Q2

F) (2.39)

for some Dij. Therefore, the hard cross section at different factorization scales are related by

σ̂i(x, Q2, Q2
F) = ∑

j
σ̂j ⊗ Dji(Q2/Q2

F) . (2.40)

The all-order predictions should be independent of the choice of QF. However, in practice,
σ̂i is calculated at a fixed order. Therefore some differences are expected when comparing
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FIGURE 2.5: CJ15 NLO[10] PDFs at Q = 2 GeV.

predictions from different factorization scales.
We have shown that for a DIS process, the total cross section can be written as convolu-

tions of the cross sections from hard process with scale-dependent parton distribution func-
tions (PDFs). It turns out that factorization of short- and long- distance physics is not unique
in DIS. There are other processes where the factorization also applies, such as Drell-Yan (DY)
A+ B → l + l′+X and single inclusive hadron production (SIH) A+ B → C+X cross sections.
For SIH process :

σ(A + B → C + X) = ∑
i,j,k

∫ 1

0
dxAdxBdzC f A

i (xA, µF) f j(xB, µF)

× σ̂ij→cX(xA pA, xB pB,
pC

z
, µF) DC/c(zC, µF) . (2.41)

Here, DC/c is the fragmentation function for a parton c fragments into a hadron C. Note that the
same PDFs enter into the factorization formula for DIS, DY, and SIH. Thus, PDFs are universal.
Once they are determined at some scale Q0 from one process, it can be used to predict other
processes.

2.3 Parton Distribution Functions

As discussed in the previous section, factorization theorem predicts the existence of universal
(process-independent) parton distribution functions (PDFs). To understand how the PDFs look
like, in Fig. 2.5, we show proton PDFs obtained from the CJ15 analysis[10]. From this figure,
we can learn several important points:

• At low x (x ≲ 0.1), gluon PDF is much higher than all quark PDFs. This explain why
Bjorken scaling is maximally violated in this region.
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• At low x (x ≲ 0.1), all the sea quark (u, d, s, ū, d̄) PDFs are higher than the valence quark
(uv = u − ū and dv = d − d̄) PDFs. This is understandable, as these quarks are generated
from gluon radiation, which are abundant in this region.

• At higher x (x ≳ 0.1), valence quarks dominate, with uv > dv. Furthermore, u ≳ uv and
d ≳ dv as ū and d̄ are orders of magnitudes smaller than u and d,

• At the highest x, u and uv are orders of magnitudes higher than the rest: u ≳ uv ≫ d ≳

dv ≫ g ≫ felse.

• In all x regions, d > d̄, u > ū and s < felse.

These points are useful when assessing PDF sensitivities of an observable. For example, the
charged lepton DIS structure function at leading order can be written as

FNC
2 (x) =

4
9
(u + ū + c + c̄) +

1
9
(
d + d̄ + s + s̄

)
(2.42)

This means that this observable is, for instance, 4 times more sensitive to ū than d, however, we
see that d is orders of magnitude bigger than ū at large x. Therefore the contribution of ū to the
process at high x is meaningless compared to that of d, despite having lesser sensitivity.

PDF represent a probability distribution of finding certain parton with momentum fraction
within ξ and ξ + dξ, therefore, the momentum fractions carried by the partons must sum up
to unity. Namely, the total momenta carried by the partons are equal to the momentum of the
nucleon. Thus:

∑
i

∫
dξ ξ fi(ξ) = 1 . (2.43)

In the modern view, partons here refer to quarks and gluon. Given that proton consist of two
up and one down quarks in total, we also have the following valence sum rules∫

dξ (u − ū)(ξ)dξ = 2 , (2.44)∫
dξ (d − d̄)(ξ)dξ = 1 . (2.45)

2.4 Global QCD Analysis

Due to the non-perturbative nature of QCD at low energy, PDFs can only be reliably deter-
mined by fitting the functions to various high energy scattering data. There are some efforts
(see, for example, [40] and references therein) to calculate PDFs directly from first principle
using Lattice QCD method, however, so far, the uncertainties of the resulting PDFs are still
substantial. Therefore, PDFs from the data-driven approach are still widely used for compar-
ing factorization-based theory prediction to the experimental data.

There are several research groups that study PDFs as the main goal. For proton PDFs, the
main players are : NNPDF[9], CT[7], MSHT[8], and CJ[10]. While these groups use overlapping
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FIGURE 2.6: The generic flowchart of a global QCD analysis.

data sets to constrain the PDFs, they differ in how they parameterize the PDFs at the input scale,
fitting program/code, different included data sets and kinematical cuts, and theory corrections,
such as treatment of higher twist, deuteron correction, and nuclear corrections. They also use
different methods to estimate the uncertainties of the fitted PDFs. To illustrate the difference,
let’s take for example NNPDF4.0[9] and CT18[7] analyses. NNPDF4.0, used neural networks
(NNs) to parameterize the PDFs at the input scale. In contrast, CT18 PDFs, used Bernstein
polynomials. To estimate the uncertainty of the PDFs, NNPDF4.0 analysis used a monte-carlo
replica method, while CT18 used the Hessian method. Given the differences in the fitting
methodology, it is no surprise that the PDFs from these groups are not identical. However, the
fact that the central values are within the respective error bars means that a PDF set determined
by one group is reproducible by the other groups, albeit using a different methodology.

The determination of PDFs from the data is an inverse problem. The term "Global QCD
analysis" is often used to indicate that PDFs are fitted from various data sets from different
processes. The analysis is started with data selection. This includes choosing which data sets
to include and the kinematical cuts to impose. If there are tensions between data sets, one
should also look further into the data sets and investigate possible explanations. Once the
data sets have been selected, one can proceed to run the fitting procedure, summarized in
Fig. 2.6. The central part of the fitting is loss function χ2 minimization. To calculate the χ2

function, theory predictions need to be computed, which typically depend on the PDFs at the
scale Q of the process. The values of the PDFs at the scale Q can be computed by solving the
DGLAP evolution equations, given the parameterized PDFs at the input scale Q0 as the initial
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condition. The whole χ2 function is then effectively a function of the PDF parameters. Once
the minimization is finished, the uncertainty of the fitted PDFs can then be determined using
Hessian method or monte-carlo method as discussed in Chapter 3.

2.5 Nuclear Corrections

A naive view to describe the dynamics of nucleons inside a nucleus is that the nucleons are
non-interacting with each other and thus essentially free. This means the total DIS structure
function is an arithmetic sum of the structure functions from the individual nucleons. However,
this naive view is challenged by the measurements of the structure function ratio FA

2 /FD
2 , where

FA
2 are the average (per nucleon) structure function for a nucleus with the mass number A and

FD
2 is the average deuteron structure function. In Fig. 2.7, we display the measurement of

R = FFe
2 /FD

2 from several experiments. The figure shows deviation from the unity (as expected
from the naive argument) in three characteristic regions :

• Shadowing region, R ≤ 1, x ≲ 0.1.

• Anti-shadowing region, R ≥ 1, 0.1 ≲ x ≲ 0.3.

• EMC region, R ≤ 1, 0.3 ≲ x ≲ 0.7.

• Fermi motion, R ≥ 1, x ≳ 0.7.

These regions represent different physics contributing to the nuclear correction. Similar shapes
can also be observed for other nuclei, albeit the strength (the deviation from unity) slowly
varies with A. In [41], it was shown that by fitting R[FA

2 ] = a + b ln(A) for each x bins of
various nuclear ratio data, it can be inferred that : q) the size of shadowing at low x increase
with ln(A). 2) For 0.07 < x < 0.3, which corresponds to the anti-shadowing region, the size
of anti-shadowing is independent or slightly increasing with A. 3) For 0.2 < x < 0.8, the ratio
R[FA

2 ] decreases with ln(A) (or the shadowing strength in this region increases with ln(A)).
For shadowing, the underlying mechanism is coherent multiple scatterings of the gauge

boson probe with different nucleons inside the nucleus, leading to a destructive interference
and hence a reduced cross section (see for example a review in [42] and references therein). In
the coherent limit, the hadronic fluctuation of the off-shell γ∗ that interacts with the nucleus
has roughly a lifetime τ ∼ 1/(2MNx), where MN is the nucleon mass, x is the Bjorken x. Thus,
the lifetime increase with decreasing x. To interact with the nucleus at a whole, the lifetime
must exceed the radius of the nucleus τ > RA ∼ A1/3, which gives x ≲ 0.1A−1/3. This simple
argument demonstrates why the shadowing effect occurs at low x. From various experimental
data taken on different nuclei, it can be inferred that : 1) Shadowing increases as x decreases.
At the smallest value of x, it is consistent with either saturation or mild decrease (plateau). 2)
Shadowing increases as A.

The nuclear effect in the anti-shadowing region is less well understood, although simi-
lar constructive interferences from multiple scattering of γ∗ are suspected as the underlying
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FIGURE 2.7: Nuclear ratio of F2 structure functions as measured by several ex-
periments. The figure is taken from [43].

mechanism[44–46]. It is worth noting that while in the DIS, anti-shadowing can be clearly seen
at 0.1 ≲ x ≲ 0.3, it is not the case in the Drell-Yan (DY) lepton pair production process. The
nuclear ratio data for the DY process is consistent with unity, namely, no anti-shadowing (this
can be seen in Fig. 14 of Refs. [25]). As the valence quarks dominate in the DIS process, the
anti-shadowing in the DIS then translates to the shadowing of the valence quark PDFs. Simi-
larly, the absence of anti-shadowing in the DY process in this kinematical region translates to
no shadowing in the sea quark PDFs.

In the EMC region, again, we observed a suppression of the ratio R[F2]. Even though this
region was the first to be experimentally measured to provide the evidence of nuclear effects,
there is still no widely accepted model. In fact, there are a plethora of models that try to explain
this effect, see a review in Refs. [47]. Among them are models based on : nuclear binding [48,
49], pion excess[50, 51], multi-quark clusters [52, 53], dynamical rescaling[54, 55], and short-
range correlations (SRCs)[56, 57].

The models mentioned in the above passage tries to explain nuclear corrections in a specific
kinematical region. There are also models which try to explain these for all x-region. No-
tably, among these are Kulagin-Petti model[58] and Aligarch-Valencia model[59]. Arguably,
a more natural approach is to treat these nuclear corrections as effects originated from non-
perturbative QCD, just like in the proton case, and hence can be absorbed into PDFs of the
nucleus. Thus, one simply assumes the factorization theorem and hypothesizes that all the
nuclear effects can be absorbed into non-perturbative nuclear parton distribution functions
(nPDFs), just like in the proton case. This approach leads to nPDF framework adopted in this
work.

A nucleus with A = 2 is a special case due to its simpler nature. A microscopic model
adopted in the CJ15 analysis[10], for example, assume a nuclear smearing model, where the
deuteron PDFs are assumed to be a convolution of the PDFs f̃ of the off-shell nucleon with a
smearing function fN/d, which describes momentum distribution of nucleons inside deuteron.
The smearing function can be obtained in the weak-binding approximation in terms of the
deuteron wave function, which is obtained by fitting nucleon-nucleon scattering data as done
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FIGURE 2.8: The ratio of deuteron structure function to isoscalar structure func-
tion from the CJ15 analysis[10]. The figure is taken from [60].

in AV18[61], CD-Bonn[62], WJC-1 and WJC-2[63]. For the PDFs f̃ of the off-shell nucleon,
one can further decompose it as an on-shell contribution (which is essentially the same as the
free proton PDFs) and an off-shell one. The off-shell correction is then parameterized and
fitted together with the parameters of the proton PDFs to the data. In Fig. 2.8, we show the
extracted the nuclear correction R[FD

2 ], where the denominator is the isoscalar stucture function
FN

2 = Fp
2 + Fn

2 . We can see that it differs to the isoscalar one by ∼ 1% in the EMC region.

2.6 Nuclear Parton Densities

As mentioned before, nuclear parton distribution functions (nPDFs) are essentially a general-
ization of proton PDFs to accomodate nuclear effects in a nucleus. They carry the same prob-
abilistic interpretation as in the proton case and their scale evolution is governed by the same
DGLAP equation. Let f̃ A

i (xA, µF) be a nPDF of nucleus A for the parton flavor i at the scale µF

and 0 ≤ xA ≤ 1 is the momentum fraction with respect to the nucleus momentum. Then the
DGLAP equation reads

d f̃ A
i

d ln µ2
F
=

αs(µ2
F)

2π ∑
j

∫ 1

xA

dyA

yA
Pij

(
xA

yA

)
f̃ A
j (xA, µ2

F) . (2.46)

Being probability distributions, nPDFs satisfy the following number and momentum sum rules

∫ 1

0
ũA

v (xA, µF)dxA = 2Z + N , (2.47a)∫ 1

0
d̃A

v (xA, µF)dxA = Z + 2N , (2.47b)∫ 1

0
xA ∑

i
f̃ A
i (xA, µF) = 1 . (2.47c)
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Here, Z is the atomic number and N = A − Z is the number of neutron in the nucleus. The
number sum rules (2.47a) and (2.47b) basically represent the external constraints, that a nucleus
with a mass number A contains Z protons and N neutrons, where each proton carries two
valence up quarks and one valence down quark and each neutron carries one valence up quark
and two valence down quarks. To calculate a theory prediction for an observable in nucleus-
nucleus or lepton nucleus collider, the same factorization theorem can be used. For a DIS cross
section in lepton-nucleus scattering l + A → l′ + X, the total cross section is given by the
convolution

σ(lA → l′ + X) = ∑
i

∫
dxA f̃ A

i (xA, Q2)σ̂iA→l′X(xA pA, Q2) , (2.48)

where σ̂iA→l′X is the hard scattering cross section. Similarly, for nucleus A and B collision with
an identified hadron C in the final state, the cross section is given by

σ(A + B → C + X) = ∑
i,j,k

∫ 1

0
dxAdxBdzC f̃ A

i (xA, µF) f̃ A
j (xB, µF)

× σ̂ij→cX(xA pA, xB pB,
pC

z
, µF) DC/c(zC, µF) , (2.49)

where σ̂ij→cX is the hard scattering i + j → c + X cross section and DC/c is the non-perturbative
fragmentation function for an outgoing parton c fragments into a hadron C.

2.6.1 Rescaling

While the nPDFs formalism discussed in the previous section are just a straightforward gener-
alization of proton PDFs, they are not the most useful as the support region for the nPDFs are
A-dependent, hence it is not easy to compare the shape of nPDFS from different nuclei. For this
reason, a rescaling formalism that will be discussed in this section, is useful. Another reason
for using rescaling formalism is that all the DIS nuclear data are represented in terms of the
rescaled Bjorken xN , defined as

xN = AxA =
Q2

2MNν
≤ A , (2.50)

ν =
pN .q
MN

, pN =
pA

A
, MN =

MA

A
. (2.51)

Here, MA and pA are the mass and the momentum of the nucleus A. Therefore, it is indeed
natural to work in the QCD factorization framework that uses the rescaled PDFs.

Given the unrescaled nPDF f̃ A
i (xA, Q2), the rescaled version, f A

i (x, Q2), with x = AxA, is
defined such that

f A
i (x, Q2)dx := f̃ A

i (xA, Q2)dxA . (2.52)

This definition ensures that the probability is conserved. It should be stressed once more that
x ∈ [0, A], while xA ∈ [0, 1]. While xA represent parton momentum fraction with respect to
the nucleus momentum pA, x represent parton momentum fraction with respect to the average
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nucleon momentum pN = pA/A. If all the nucleons do not move to each other, then the mo-
mentum for each nucleon is exactly the same as pN . However, due to Fermi motion, nucleons
are moving within the nucleus, therefore, some nucleons can have momentum larger than pN .
A parton with x > 1 means its momentum is larger than pN . As the parton itself is inside
a nucleon, the nucleon that carries this parton must have momentum much bigger than pN .
This extreme uneven distribution of the nucleon momentum is very rare, therefore, we expect
that f A

i (x > 1) is very small. In fact, in all recent nPDF analyses, it is always assumed that
f A
i (x > 1) = 0.

Given the sum rules (2.47), it is easy to derive the corresponding sum rules for the rescaled
nPDFs : ∫ A

0
dx uA

v (x, Q2) = 2Z + N , (2.53a)∫ A

0
dx dA

v (x, Q2) = Z + 2N , (2.53b)∫ A

0
dx x ∑

i
f A
i (x, Q2) = A . (2.53c)

The rescaled nPDFs also satisfy the analogous DGLAP evolution equations:

d f A
i (x, Q2)

d ln Q2 =
αs(Q2)

2π

∫ A

x

dy
y

Pij

(
x
y

)
f A
j (y, Q2) . (2.54)

As said, most nPDF analyses assume f A
i (x > 1) = 0, In this case, we have

d f A
i (x, Q2)

d ln Q2 =


αs(Q2)

2π

∫ 1
x

dy
y Pij

(
x
y

)
f A
j (y, Q2) : 0 < x ≤ 1

0 : 1 < x ≤ A .
(2.55)

This implies that, if fi(x > 1, Q0) = 0 for some initial scale Q0, then fi(x > 1, Q) = 0 for all.
Thus, DGLAP equations do not change the vanishing values of PDFs at x > 1.

It is interesting to see how the factorization formula should be modified under the rescaling.
Given that dxA f̃ A

i (xA, Q2) = dx f A
i (x, Q2) and xA pA = xpN , we thus have the same factoriza-

tion form :

σ(lA → l′ + X) = ∑
i

∫
dxA f A

i (x, Q2)σ̂iA→l′X(xpN , Q2) , (2.56)

σ(A + B → C + X) = ∑
i,j,k

∫
dxdydz f A

i (x, µF) f B
j (y, µF)

× σ̂ij→cX(xpN , ypN ,
pC

z
, µF) DC/c(z, µF) . (2.57)

Note here that the upper bound for x and y integrals is A, while the upper bound for z is still 1.
From (2.53), we can see that the sum of the total parton momentum computed using the

rescaled PDFs f A
i is equal to A. To have proper comparison with free nucleon PDFs, the sum
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must be unity. Therefore, in practice, a second rescaling is performed :

f A
i (x, Q2) →

f A
i (x, Q2)

A
. (2.58)

Note that the argument of the PDFs are the same, it is just the values of the PDFs are rescaled
by a factor of 1/A. In terms of the second-rescaled PDFs, the sum rules (2.53) becomes

∫ A

0
dx uA

v (x, Q2) =
2Z + N

A
, (2.59a)∫ A

0
dx dA

v (x, Q2) =
Z + 2N

A
, (2.59b)∫ A

0
dx x ∑

i
f A
i (x, Q2) = 1 . (2.59c)

while DGLAP evolution (2.55) stays the same. The factorization formula for DIS and SIH be-
comes :

1
A

σ(lA → l′ + X) = ∑
i

∫
dxA f A

i (x, Q2)σ̂iA→l′X(xpN , Q2) , (2.60)

1
AB

σ(A + B → C + X) = ∑
i,j,k

∫
dxdydz f A

i (x, µF) f B
j (y, µF)

× σ̂ij→cX(xpN , ypN ,
pC

z
, µF) DC/c(z, µF) . (2.61)

Thus, using the second-rescaled PDFs, we obtain formulas for calculating the per-nucleon cross
section. As it turns out, most nuclear data are also rescaled with A, giving a per-nucleon cross
section instead of the total one. Therefore, the theory calculated using the second-rescaled PDFs
can be directly compared to the data, without any need to rescale back. For brevity, from now
on, we will call the second-rescaled nPDFs as simply nPDFs.

In all nPDF analyses, the nPDFs are decomposed in terms of effective bound proton f p/A
i

and neutrino f n/A
i PDFs as as:

f (A,Z)
i (x, Q) =

Z
A

f p/A
i (x, Q) +

A − Z
A

f n/A
i (x, Q) . (2.62)

We note that in the nPDF framework, at the theoretical level, it is actually unnecessary to de-
compose the full nPDFs in terms of the bound nucleon PDFs. The benefit of using this decom-
position is that it is easy to implement isospin symmetry:

{up/A, ūp/A} ↔ {dn/A, d̄n/A} , (2.63)
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such that these bound nucleon PDFs really resemble the free nucleon ones in terms of valence
number sum rules: ∫ A

0
up/A

v (x, Q2)dx = 2,
∫ A

0
un/A

v (x, Q2)dx = 1 , (2.64)∫ A

0
dp/A

v (x, Q2)dx = 1,
∫ A

0
dn/A

v (x, Q2)dx = 2 . (2.65)

The main consequence of the decomposition (2.62) and isospin symmetry (2.63) is that for an
isoscalar nucleus with N = Z = A/2, we have

uA(x, Q2) = dA(x, Q2), ūA(x, Q2) = d̄A(x, Q2), uA
v (x, Q2) = dA

v (x, Q2) . (2.66)

This implies that data taken on isoscalar nucleus can not separate u and d.

2.6.2 nCTEQ Fitting Framework

nPDFs are determined by a global analysis with world data, therefore, they are dependent
on the fitting methodology used in the analysis. It is therefore not so surprising that nPDFs
from different nPDF fitting groups, such as nCTEQ[25], EPPS[24], and nNNPDF[26] are slightly
different. Their differences can eventually be traced back to the differences in : 1) choice of data
sets, 2) choice of proton PDF baseline, 3) parameterizations of the nPDFs at the input scale Q0,
and 4) the method of error estimation.

In this section, we present fitting framework employed in nCTEQ15 analysis[25] and the
recent nCTEQ15HQ analysis[64]. The full nPDFs are decomposed in terms of the effective
bound nucleon PDFs, as discussed in the previous section. At the input scale Q0 = 1.3, the
bound proton PDFs are parametrized as [25]:

x f p/A
i (x, Q0) = c0xc1(1 − x)c2 ec3x (1 + ec4 x)c5 , (2.67)

d̄(x, Q0)

ū(d, Q0)
= c0xc1(1 − x)c2 + (1 + cx)(1 − x)c4 , (2.68)

where the flavor index i runs over i = uv, dv, g, ū + d̄, s + s̄. Here uv and dv are the up- and
down-quark valence distributions, and g, ū, d̄, s, s̄ are the gluon, anti-up, anti-down, strange,
and anti-strange quark distributions, respectively. The A, Z-dependence in encoded in ck via

ck(A, Z) = pk + ak(1 − Abk). (2.69)

This parameterization ensures that for A = 1, we obtain ck(A = 1, Z) = pk, where pk is the
proton PDF parameters obtained from the old CTEQ6 fit[65]. In other word, the proton PDF
baseline is the CTEQ6 PDFs.

The nPDF fitting then can be done by a flowchart shown in Fig. 2.6. First, we must perform
data selection. In nCTEQ15 analysis, the charged lepton DIS, Drell-Yan lepton pair productions,
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and Pion production data were used. The fit can be done by minimizing the χ2 function :

χ2(a) = (D − T(a))TC−1(D − T(a)) , (2.70)

where D, T, and C represent the data, theory prediction, and the data covariance matrix. The
theory predictions are calculated using (2.60), which requires us to know the PDFs at the scale
Q of the data. The PDFs at the scale Q can be obtained by using DGLAP evolution from the
input scale Q0, at which the PDFs are parameterized. The theory predictions then are functions
of PDF parameters a. In nCTEQ analyses, the minimization is done using Minuit Migrad[66].
After the optimal PDF parameters a are found, then the errors of the fitted PDFs are determined
using Hessian method.
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Chapter 3

Statistics Aspects of nPDF Fitting

The determination of parton distribution functions (PDFs) is usually done through a global
QCD analysis with a set of data taken from various high-energy physics experiments. The
global analysis is performed by iteratively comparing perturbative QCD (pQCD) predictions
with the experimental data until an optimal set of PDFs is obtained. PDF fitting is an infinite
dimensional inverse problem, which is not necessarily well-defined as one tries to infer an
infinite number of parameters from a finite number of data. In practice, however, the PDFs are
usually parameterized in terms of a finite number of parameters. In this case, the cost function
is no longer functional, but merely a function.

PDF fitting estimates the parameters from the data, which can be considered as a random
variable. Therefore, several statistical details needs to be properly taken care off. This includes:
choosing the right loss/cost function that takes into account correlated systematic uncertain-
ties, how the uncertainties of the data are propagated into the fitted parameters, how the im-
pact of specific data on the fitted parameters, and how the tensions between data sets can be
quantified and assessed.

In this chapter, we will give an overview of the statistics aspect of nPDF global analysis
by considering it as a finite-dimensional inverse problem. As this topic is usually not covered
in the standard textbooks on pQCD and generally only found in the publications of the PDF
fitting experts, we give quite a detailed discussion on this. We first explain the derivation of χ2

function used in the nCTEQ analysis based on the normality assumption of the data. As the
data itself is a random variable, we also discuss several methods to propagate the statistical
properties of the data to the fitted nPDFs. Here, we emphasize more on Hessian method as it
is widely used in the literature. we will then discuss replica and Bayesian method. At the end
of this chapter, we will discuss how to quantify tensions between data sets.

3.1 Loss or χ2 Function

Let a set of pairs D = {(x1, y1), (x2, y2), ..., (xND , yND)} be the data. The datum is denoted as
Di = (xi, yi), where xi is the input (for example, Bjorken x, rapidity y, pT, etc), and yi denotes
the measured observable (cross section, structure function, etc). The goal is to derive a cost
function whose minimum serves as an ideal estimator (unbiased, consistent, and efficient) for
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the theory parameter aµ, µ = 1, 2, 3, ...Np. For this purpose, we can use the maximum likeli-
hood method. The maximum likelihood estimation is a standard estimator whose (asymptotic)
statistical properties are widely known. Let L(D|a) the probability density of the whole data D
given the theory parameter a. This probability density is often called the likelihood. Then we
can define the cost function as

χ2(D, a) = −2 ln p(D|a) (3.1)

Therefore, maximizing the likelihood is then equivalent to minimizing the cost function. The
likelihood can be derived by modeling the data generation process. The standard assumption
on the data generation is that the data is normally distributed with the variance given by the
square of the data uncertainty. Based on how the uncertainty is related to the data, one can
distinguish an additive and multiplicative uncertainty. An additive uncertainty means that the
ratio of the data uncertainty to the data is not constant for all data points. On the other hand, a
multiplicative uncertainty is always tied to the data linearly, such that the ratio of uncertainty to
the data is always constant. The multiplicative uncertainty, which is related to the conversion
of event count to cross section data, is often called normalization uncertainty. For the rest of
this thesis, we will use the terms normalization and multiplicative uncertainty interchangeably.
The difference between the nature of the additive and multiplicative uncertainties results in
different likelihood functions, as discussed below.

3.1.1 Additive Errors

Given a data set D used in a global fit that contains ND data points. For each data point, there
is a statistical uncertainty, Nunc uncorrelated systematic errors, and Ncorr correlated systematic
errors. We assume that all the systematic uncertainties are additive. We model the distribution
of the data point Di in a way such that Di is related to the true value ⟨Di⟩ as

Di = ⟨Di⟩+ σiri +
Ncorr

∑
α

σ̄iαr̄α +
Nunc

∑
α

σ̃iβr̃iβ . (3.2)

Here, ri is distributed with standard normal distribution ri ∼ N (0, 1). At this stage, r̄α and r̃iβ

are nuisance parameters whose values are unknown. The likelihood function can be obtained
by replacing ⟨Di⟩ with the theory prediction Ti(a), where a is the theory parameters, and taking
the expectation value of the delta function

L(a) ∝ ∏
i,α,β

∫
dridriαdrβ e−

ri
2

2 e−
r2
iα
2 e−

rβ
2

2 × δ

(
Di − Ti(a)− σiri −

Ncorr

∑
α

σ̄iαr̄α −
Nunc

∑
α

σ̃iβr̃iβ

)
, (3.3)
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where we have include a standard normal prior in order to eliminate the nuisance parameters.
Performing the integration over ri and r̃iβ, we obtain

L(a) ∝
∫

dr̄α exp

[
−1

2 ∑
i

(Di − Ti − ∑α σ̄iαr̄α)
2

σunc
i

2 − 1
2 ∑

α

r̄2
α

]
≡ exp

[
−1

2
χ2(a)

]
, (3.4)

where
σunc

i
2 ≡ σi

2 + ∑
β

σ2
iβ . (3.5)

The integrated likelihood, given the Gaussian prior Π(r′α) ∝ exp(−r′α
2/2), is then given by

L(a) ∝ ∏
α

∫
exp

[
−1

2

(
∑

i

(Di − Ti − ∑α σ̄iαr′α)
2

σ2
i

+ ∑
β

r′2β

))
dr′α ∝ exp

[
−1

2
χ2(a)

]
. (3.6)

The Gaussian integral can be evaluated analytically and thus, χ2(a) is given by

χ2(a) = ∑
i,j
(Di − Ti(a))(Dj − Tj(a))×

[
δij

σ2
i
− 1

σ2
i σ2

j
∑
α,β

σ̄iα(A′−1
)αβσ̄jβ

]
(3.7)

≡ (D − T)TC−1(D − T) , (3.8)

where A′
αβ = δαβ + ∑i

σ̄iασ̄jα

σ2
i

and C is the covariance matrix, defined by

Cij = σ2
i δij + ∑

α

σ̄iασ̄jα . (3.9)

Thus, Maximum likelihood principle reduce to the familiar weighted least square method.

3.1.2 Normalization Uncertainty

Normalization uncertainty is a scale uncertainty that affects both the central data and its un-
certainties. It arises when converting an event number to a physical cross section. As such, the
error is usually written in percentage and constant for all data points.

Here, we review several prescriptions available in the literature :

• The D-method. Here, one use the following χ2 function:

χ2
D(a, r) = (rD − T(a))TC−1(rD − T(a)) +

(1 − r)2

σ2
norm

. (3.10)

As χ2
D is quadratic in r, one can minimize r analytically to obtain

χ̃2
D ≡ min

r
χ2

D(a, r) = (D − T)tC−1
D (D − T) , (3.11)



30 Chapter 3. Statistics Aspects of nPDF Fitting

where :

CD,ij = Cij + σ2
normDiDj , (3.12)

Cij = σ2
i δij + ∑

α

σ̄iασ̄jα , (3.13)

and σnorm is the normalization uncertainty. The symbol t in 3.11 refers to transpose oper-
ation. Thus, (3.10) and (3.11) are therefore equivalent.

To prove (3.11), one can start by writing the optimal value for r, given the data D and
theory T. For the derivations presented below, it is useful to define :

A = 1 + σ2
normTTC−1T , (3.14a)

B = 1 + σ2
normDTC−1T , (3.14b)

E = 1 + σ2
normDTC−1D . (3.14c)

We can therefore write

χ2
D(a, r) =

1
σ2

norm

[
E
(

r − B
E

)2

+

(
A − B2

E

)]
.

The fitted normalization rD is then given by :

rD ≡ arg min
r

χ2
D =

B
E

. (3.15)

Therefore,

χ̃2
D = min

r
χ2(a, r) = χ2(a, rD) =

1
σ2

norm

(
A − B2

E

)
= (D − T)tC−1

D (D − T), (3.16)

where we have used the Sherman-Morrison formula [67] to write the inverse of CD as :

C−1
D = C−1 − σ2

normC−1DDTC−1

1 + σ2
normDTC−1D

. (3.17)

The main drawback of this method is that it can lead to the d’Agostini bias [68] which
causes the fitted theory to be much lower than expected. Furthermore, the bias becomes
worse as the number of data points increases [68, 69]. This can be understood as follows.
When one used (3.10), or equivalently (3.11), the minimizer algorithm will always prefer
to have r ≤ 1. The scale r ≤ 1 makes the data smaller without rescaling the uncertainties.
Therefore, relative to the data, the errors become larger, and hence smaller χ2. As a result,
the theory T is also shifted downward, leading to a biased fit. Note that as we have
more data points, the penalty term (1 − r)2/σ2

norm, which makes the fit to prefer r = 1, is
becoming less relevant, and hence the bias is more apparent.

To illustrate the bias in a real PDF fit, we performed fits with neutrino DIS data from
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NuTeV[70] and Chorus[71]. These data have the same normalization uncertainty of 2.1%,
but NuTeV data is much more numerous than Chorus (2136 vs. 824). After the fits, we
obtained χ2/N = 0.86 and χ2/N = 0.95 for the NuTeV and Chorus fit respectively. We
plot the weighted average of data/theory in the left panel of Fig. 3.1. The figure shows
that the theory is severely below the data. We can also see that the bias in the NuTeV fit
is more severe than in the Chorus fit. This is because NuTeV has much more data points
than Chorus.
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FIGURE 3.1: The weighted average of the data/theory from fits with NuTeV and
Chorus data where the normalization uncertainties are treating using (3.10) (top

panel) and using the method adopted in this work (3.19) (bottom panel).

• d’ Agostini method[68]. Now, the errors of the data are also rescaled by a factor r, and
thus, effectively rescaling the theory :

χ2
1/r(a, r) = ∑

i,j

(
Di −

Ti

r

)
C−1

ij

(
Dj −

Tj

r

)
+

(
1 − r
σnorm

)2

. (3.18)

This method requires to fit the normalization fluctuation, r, directly to the data. The main
drawback of this approach is that the number of normalization parameters can become
large, and in case there are many data sets in the global fit, even comparable to the number
of PDF parameters. This causes the fit to be prone to numerical problems, such as saddle
point or local minimum trap. The larger number of parameters also means the computing
cost will increase. Furthermore, the uncertainty of the nuisance parameter r must also be
taken into account when estimating the uncertainty of observables. Further discussion
on this is given in Section 3.2.1.

• T-method[72, 73]. Instead of rescaling the theory by a factor of 1/r, a factor r is used
instead :

χ2
r (a, r) = ∑

i,j
(Di − rTi)C−1

ij (Dj − rTj) +
(1 − r)2

σ2
norm

. (3.19)

The main advantage of using (3.19) is that the normalization r can now be minimized
analytically, hence there is no need to open more free parameters in the fit. We can rewrite
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(3.19) as

χ2
r (a, r) =

1
σ2

norm

[
A
(

r − B
A

)2

+

(
E − B2

A

)]
(3.20)

It is clear now that the fitted normalization is given by :

rT = arg min
r

χ2
r (a, r) =

B
A

(3.21)

Inserting r = rT into (3.19), we obtain

χ̃2
T(a) ≡ min

r
χ2

r (a, r) =
1

σ2
norm

(
E − B2

A

)
= (D − T)TC−1

T (D − T) (3.22)

where
CT,ij(a) = Cij + σ2

normTi(a)Tj(a) (3.23)

and we have used the following formula for the inverse of CT :

C−1
T = C−1 − σ2

normC−1TTTC−1

1 + σ2
normTTC−1T

(3.24)

Thus, the fitting normalization uncertainty using (3.19) is equivalent to using an effective
covariance matrix CT. The advantage of using this approach is that the nuisance parame-
ters are completely eliminated, and the Hessian error method, to be discussed in the next
section, automatically takes into account the uncertainty of the nuisance parameters in
the estimation of PDF uncertainties. As the difference between T-method and d’ Agos-
tini method essentially comes from the penalty term, they are equivalent if the optimal
normalization parameter rT is not far from unity, which is usually the case.

It is trivial to generalize this method to a case where there are more than one data set that
share the same normalization. In such case, (3.21) still holds, but A, B and C are modified
as

A = 1 + ∑
s

σ2
normTsTC−1

s Ts (3.25)

B = 1 + ∑
s

σ2
normDsTC−1

s Ts (3.26)

E = 1 + ∑
s

σ2
normDsTC−1

s Ds (3.27)

where s denotes the data set s and the sum is done over all data sets that share the same
normalization.

In order to contrast the fit results obtained with D-method, we performed analogical
fits using (3.19)and show the weighted average of the data/theory in the right panel of
Fig. 3.1. We can see that for both NuTeV and Chorus fits, the ratio becomes much closer
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to unity. The relatively high data/theory values for the Chorus fit at x > 0.4 is related
to large systematic uncertainties (hence large systematic theory shifts). As far as the χ2

is concerned, we obtain much larger χ2
r /N (compared to the one form the D-method) :

χ2
r /N = 1.36 and χ2

r /N = 1.07 for the NuTeV and Chorus fits respectively.

• T0-method[73]. An alternative method to include normalization uncertainties in a global
fit is to use t0-method as explained in detail in [73]. This method sets the covariance
matrix as:

Ct0,ij = Cij + σ2
normT0iT0 j (3.28)

where T0i is the theory prediction from the previous iteration of the fit and Cij is the orig-
inal covariance matrix without normalization uncertainties. This method eliminates the
nuisance parameters from the χ2 function, and hence their uncertainties are automati-
cally included. As T0 is frozen during the fit, this method has the advantage of having
a simpler χ2 function (as the covariance matrix is not a function of theory parameters a),
hence the minimizer should be easier to find the global minimum. However, several fit
iterations need to be done in order to use this method, hence it is more computationally
expensive.

3.2 Error Estimations

One of the main issue in PDF global analysis is how the uncertainties of the fitted PDFs are
estimated. The usual way is to use the Hessian method, for which the χ2 function is assumed
to be quadratic with respect to the PDF parameters. It is then possible to derive a formula
that can be used to estimate the uncertainty of the fitted PDFs. However, this method depends
on the choice of the so-called ∆χ2 tolerance, whose value depends on: 1) tensions between
data sets, 2) fitting methodology mistakes, such those that are related to the inflexibility of the
PDF parameterization, assumption about the distribution of the data uncertainties, treatment
of the correlated systematic uncertainties, and theory uncertainties, and 3) issues with the ex-
perimental data, such as missing correlation, inaccuracy of the data and/or its uncertainties.
To estimate the tolerance, there are several prescriptions in the literature. The global tolerance,
where a single value of ∆χ2 is used for all the Hessian eigenvector directions, is used in [24, 25,
74]. Dynamical tolerance criterion was adopted in CT PDFs[7, 8], which assign different ∆χ2

values for each eigenvector direction. The resulting ∆χ2 generally ranges from ∼ 10 to ∼ 100.
The PDF uncertainties obtained using the Hessian method with an enlarged tolerance can

be regarded as uncertainties in the hypothesis testing sense. This is because the tolerance is
typically determined using a hypothesis testing approach, by requiring all the data sets used in
the global analysis to be explainable by the error PDFs. This type of uncertainty is used in some
PDF analyses because some of the high energy physics data have misestimated uncertainties
and correlations, therefore, the standard frequentist uncertainties based on χ2 tolerance of T2 =
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1, can lead to PDF uncertainties that can not even explain the data (in the hypothesis testing
sense).

Omitting the requirement that PDF uncertainties must be able to explain all the data used in
the analysis, we have the standard frequentist uncertainties. In this approach, the PDF uncer-
tainties are obtained by propagating the uncertainties of the data. We will show later that, the
presence of tensions between data sets and model misspecifications do not affect the validity
of using T2 = 1 in the Hessian approach.

The hessian method is not the only method used to estimate the PDF uncertainties. NNPDF
group[9, 75] use a replica-based method to sample the distribution of the fitted PDFs. The
appeal of this approach is that it does not assume χ2 to be quadratic, but it is computationally
much more expensive than the Hessian method. Both the Hessian and replica methods are
based on the so-called frequentist view of probability distribution. An alternative picture is
a bayesian view, which in the PDF fitting context, estimates the PDFs and their uncertainties
by sampling the posterior distribution of the PDF parameters from the data. We will show
later that, In the case of a sufficiently linear model and Gaussian errors, the Hessian, replica,
and bayesian methods should be equivalent. Therefore, choosing either of them is a matter of
choice with consideration on computational cost in mind.

3.2.1 Error Estimation : Hessian Method

Hessian error method is the most common way to propagate the uncertainties of the data to
the uncertainty of observables. The main appeal of this method is its simplicity. In the statistics
literature (see for example : [76–78]), two related methods are often encountered to estimate
the uncertainties of the fitted parameters : the likelihood-based method and the normal theory
method. The former is based on Wilk’s likelihood ratio statistic l = L(a)/L(â) (here L(a) is the
likelihood for a given theory parameter a), whose −2 ln L(a) is distributed asymptotically as a
χ2-distribution with Np degrees of freedom (here Np is the number of theory parameters). This
method has been used by physicists from a long time and in Minuit program[66], this is called
the MINOS error. The latter is based on asymptotic properties of the maximum likelihood esti-
mation. The hessian method, which appears in PDF-related literature, is the same as the normal
theory method. In the Minuit framework, it is called "parabolic error". The likelihood-based
interval is generally preferred when the likelihood function is multimodal and the confidence
interval contains multiply connected regions. Using normal theory method in such a case can
severely underestimate the resulting parameter errors.

Linear Error Propagation

Let aµ denotes the PDF parameters at the given initial scale Q0. Here, µ = 1, 2, 3, ..., Np, where
Np is the number of parameters. Let χ2(a, D) be the cost function to be minimized to get the
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best fit for a, then the fitted PDF parameters, âµ, can be written as

â(D) = arg min
a

χ2(a, D) (3.29)

Since â is a function of D which is a random variable, then it is also a random variable. The
uncertainties of any quantity X can be obtained by propagating the uncertainties of â. We note
here that the distribution of the fitted parameters, p(â), does not care whether the data are
consistent or not. It only depends on the functional form of χ2(a, D) and how D is distributed.

Formally, let p(â1, ..., âp) the probability distribution of the fitted parameters â, then the
uncertainty of PDF fi(x, Q) can be obtained by the standard deviation

∆ fi(x, Q) :=
√

Var( fi(x, Q)) (3.30)

For any observable X which is a function of the PDF parameters, we can propagate the uncer-
tainties of the fitted parameters â using the standard method. Let ⟨â⟩ be the mean of â, then
around â = ⟨â⟩, one expand X as

X(â) ≈ X(⟨â⟩) + ∂X
∂âµ

∣∣∣∣
â=⟨â⟩

(â − ⟨â⟩) (3.31)

This means

⟨X(â)⟩ = X(⟨â⟩) (3.32)

Var(X(â)) = ∑
µ,ν

∂X
∂âµ

Cµν
∂X
∂âν

(3.33)

where Cµν = Cov
(
âµ, âν

)
is the covariance matrix. Here, the derivatives are understood to be

evaluated at â = ⟨â⟩.
Under suitable assumptions, the distribution of the fitted parameters is Gaussian. This

normality is also automatic if the estimator (3.29) is the maximum likelihood and the number
of data is large. Denoting

Hµν = C−1
µν (3.34)

the joint probability distribution is then given by

p(â1, ..., âNp) =
1√

(2π)Np detH
exp

(
−1

2
(â − ⟨â⟩)T H (â − ⟨â⟩)

)
(3.35)

It is useful to work in a basis such that the fitted parameters are independent (uncorrelated).
This requires us to assume that the estimator is invariance, namely, if â is the estimator for a,
then the estimator for any function of a, f (a), is just f (â). Fortunately, the maximum likelihood
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estimator, which we will assume in this paper, satisfies this invariance property. Now, define:

z = H1/2
diagVT(a − ⟨a⟩), (3.36)

with V is Np × Np matrix that diagonalize H, namely H = VHdiagVT. Let ẑ be the estimator
for z, then from the invariance properties and (3.35), ẑ is distributed as

p(ẑ) = ∏
µ

p(ẑµ) (3.37)

with p(ẑµ) ∼ N (0, 1). Thus, Cov(ẑµ, ẑν) = δµν. Therefore,

Var(X(ẑ)) = ∑
µ

(
∂X
∂ẑµ

)2

(3.38)

We can estimate the derivative ∂X/∂ẑ by using finite difference. Let S±
µ = {a1, a2, ..., aNp} be a

set of parameter a that correspond to z whose µ-th component is ±1, then

∂X
∂ẑ

≈
X(S+

µ )− X(S−
µ )

2
(3.39)

Inserting this to (3.38), we find

Var(X) =
1
4 ∑

µ

(
X(S+

µ )− X(S−
µ

)2
(3.40)

Having derived almost all the necessary formula to propagate the uncertainty of the fitted
parameters to an observable, the remaining puzzle is to estimate the covariance of the fitted
parameter.

Given the covariance matrix Cµν, one can obtain p% the confidence region of the fitted pa-
rameters. To find the region, it is easier to work with z instead of a as z is uncorrelated and
distributed according to the standard normal distribution. Let’s define1 χ2

z = ∑µ z2
µ. As zµ is

a standard normal variable, χ2
z is distributed according to χ2 distribution with Np degrees of

freedom. Let χ2
Np,p% be the p% percentile of the χ2 distribution with Np degrees of freedom,

then the confidence region for the fitted parameter with probability content p% is given by :

Rp% =

{
z
∣∣∣∑

µ

z2
µ ≤ χ2

Np,p%

}
(3.41)

As an example, for Np = 20 and p = 90%, the confidence region is then given by a hypersphere

with radius
√

χ2
20,90% = 5.3.

1In the statistics literature, it is called Wald statistic.
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Hessian Matrix as the Inverse of The Covariance Matrix

To obtain the covariance of the fitted parameters, one can utilize asymptotic property of MLE.
Let â(D) be the MLE estimate (fitted parameters) from a fit with the data D and a0 be the true
parameters. Then (â(D)− a0) is asymptotically normal with mean 0 and covariance matrix Cµν

given by :

C−1
µν = −E

[
∂2 ln L(a0)

∂a0,µ ∂a0,ν

]
= E

[
1
2

∂χ2(a0)

∂a0,µ ∂a0,ν

]
(3.42)

Here, the expectation value E is evaluated with respect to the probability of the data. As the
true parameters and the data probability are unknown, one can approximate Cµν by using â as

C−1
µν ≈ 1

2
∂χ2(â)

∂a0,µ ∂a0,ν
= Hµν (3.43)

The matrix Hµν is the Hessian matrix, obtained by taking a second derivative to the χ2 function
at a = â.

Given that the inverse of the covariance matrix is just the Hessian, then there is a direct
relation between the χ2 and confidence region of the fitted parameters. As now H = H, then z
defined in (3.36) is just the parameter a in the eigenvector basis. Writing

χ2(a) = χ2(â) + (a − â)tH(a − â) = χ2(â) + ∑
µ

z2
µ (3.44)

This means, as individually zµ ∼ N (0, 1), then 1σ deviation of the parameter zµ while fixing
the others to zero corresponds to :

∆χ2 ≡ χ2(a(z = 1))− χ2(â) = 1 (3.45)

In the case where tensions between data sets are present, the so-called global tolerance
method is sometimes used to modify the covariance matrix. In this case, the covariance matrix
is enlarged by a factor T2:

Cµν = T2H−1
µν (3.46)

where T2 ≥ 1 is the global tolerance. The tolerance T2 is usually determined by using hypoth-
esis testing, such that all data sets can be explained at some p% (usually p = 90) confidence
level by all points inside the one σ confidence region of the fitted parameters specified by Cµν.
This method is used in nPDF analyes by nCTEQ[25, 60, 64, 72, 79] and EPPS group[24, 80]. In
this case, one can relate χ2(a) to zµ defined in (3.36) as:

χ2(a) = χ2(â) + (a − â)tH(a − â) = χ2(â) + T2 ∑
µ

z2
µ (3.47)

Thus, zµ = 1 (1σ deviation) while fixing the others to zero corresponds to ∆χ2 = T2.
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Nuisance Parameters in the Hessian Method

In section 3.1, we discussed how the nuisance parameters were introduced to accommodate
correlated systematic and normalization uncertainties. In this section, we will discuss how one
can take into account the uncertainty of the nuisance parameters in the estimation of the errors
of observables.

If the nuisance parameters are eliminated from the χ2 as in (3.8) and (3.22), then the Hes-
sian formalism automatically includes the contributions from the nuisance parameters. If, on
the other hand, the nuisance parameters are not eliminated, such as in (3.18), then one needs
to take into account the contribution from the nuisance parameters manually, by using, for ex-
ample, profile likelihood method. For a χ2(aµ, ri) function, where aµ, µ = 1, ..., N denotes the
parameters of interest (PDF parameters) and ri, i = 1, ..., M are the nuisance parameters, one
defines the "profile" χ2 function as

χ2
p(a) := min

r
χ2(a, r) (3.48)

which is a function of theory (PDF) parameters only. As the nuisance parameters are elimi-
nated in χ2

p, one can use the Hessian method using χ2
p, and it will automatically include the

contribution from r. However, the computation of χ2
p is expensive as there is no closed-form

solution for χ2
p. Hence this method is impractical.

An alternative method is to treat the nuisance parameters in the same footing as the theory
parameters. Then their errors can be determined using an effective Hessian matrix, which is
given by N × N-submatrix of the inverse of the full (N + M)× (N + M) Hessian matrix [78].

To prove this statement, let Hp
µν be the second derivative of χ2

p(a) with respect to the theory
parameters aµ and aν, where µ, ν = 1, ..., N. Let Hµi, Hµν, and Hij be the second deriative of χ2

with respect to aµ and ri, aµ and ri and rj. Here, i = 1, ..., M. By implicit differentiation, the
Hessian Hp

µν can be written as

Hp
µν = Hµν + Hµi

∂r̂
∂aν

(3.49)

where r̂(a) = arg minr χ2(a, r). The derivative ∂r̂/∂aν evaluated at any a is hard to be calculated
as the explicit function r̂(a) is unknown. However, for a = â = arg mina χ2

p(a), we can express
the derivative as

∂r̂i(â)
∂aν

= −Hr
−1

ijHjν (3.50)

where Hr is an M × M matrix whose components are the same as Hij. Note that all the Hessian
matrices on the RHS are evaluated at the minimum â. Inserting this to (3.49), we obtain

Hp
µν = Hµν − Hµi Hr

−1
ijHiν (3.51)
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For any block matrix :

P =

(
A B
C D

)
(3.52)

with A, B, C, D are N × N, N × M, M × N, and M × M matrices, the first (upper left) N × N
component of P−1 is given by (A − BD−1C)−1. Therefore, one immediately see that

Hp−1 = H−1
∣∣∣

N×N
, (3.53)

and thus the statement was proven.

3.2.2 Justification of Hessian Method under Linear Approximation

In the previous section, we show how the asymptotic properties of MLE lead to the Hessian
matrix as the inverse of the covariance matrix. In this section, we will show how a sufficiently
linear theory/model naturally leads to a normally distributed fitted parameters with covari-
ance matrix given by the inverse of the Hessian matrix. We will also discuss cases in which
´the predictions from Hessian formalism are inaccurate. In this section, we assume that the
cost function takes the following form

χ2(a) = (D − T)TC−1(D − T) (3.54)

For a general case with normalization uncertainties, the cost function (3.19) can be shown to
take the form of (3.54) as the normalization fluctuation r can be regarded as a theory parameter
which is fitted to the data.

Let a0 be some reference theory parameters. In our context, this can be the true theory
parameter (if the model is correct), or it can be the average of the fitted parameters obtained
by repeating the data acquisitions. Then, assuming that the theory prediction is linear in the
vicinity of a0

Ti(a) ≈ Ti(a0) + T′
iµ(a0)(a − a0)µ (3.55)

where T′
iµ = ∂Ti/∂aµ. Inserting this approximation to (3.54), one can show that the cost function

is minimized at
âµ ≡ arg min

a
χ2(a, D) = a0 + ∑

ν

H−1
µν d0

ν (3.56)

where

Hµν = ∑
i,j

T′
iµ(a0)C−1

i,j T′
jν(a0) =

1
2

∂2χ2(a0)

∂aµ∂aν
(3.57)

dµ = ∑
i,j
(D − T(a0))iC−1

ij T′
jµ(a0) (3.58)
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Inserting (3.56) into (3.54), one find the χ2 at the minimum as

χ2(â) = (D − T(a0))TC−1(D − T(a0))− dT H−1d (3.59)

To obtain the distribution of the fitted parameters â and the χ2(â), we assume that the data
Di is normally distributed with mean ⟨Di⟩ and covariance matrix ⟨(Di − ⟨Di⟩)(Dj − ⟨Dj⟩)⟩ =
Ctrue

ij . Given the data distribution, it is easy to show that the fitted parameters are also normally
distributed with

⟨âµ⟩ = a0 + ∑
ν

H−1
µν ⟨dν⟩ (3.60)

âµ − ⟨âµ⟩ = ∑
ν

H−1
µν ∆dν (3.61)

⟨(âµ − ⟨âµ⟩)(âν − ⟨âν⟩)⟩ = ∑
λγ

H−1
µλ ⟨∆dλ∆dγ⟩H−1

νγ (3.62)

where

∆dµ ≡ d0
µ − ⟨d0

µ⟩ = ∑
i,j
(Di − ⟨Di⟩)C−1

ij T′
jµ(a0) (3.63)

⟨∆dµ∆dν⟩ = ∑
i,j,k,l

T′
iµC−1

ij Ctrue
jk C−1

kl T′
lν (3.64)

Having derived the distribution of the fitted parameters, we can now proceed further to
determine the distribution of the minimum of the cost function. From (3.59), as D and d0 are
normally distributed, then it follows that χ2(â) is distributed according to χ2 distribution. Here,
we are interested in the mean and the variance of the distribution. First, we rewrite (3.59) as

χ2(â) = (D − T(a0))K−1(D − T(a0)) (3.65)

where
K−1

ij = C−1
ij − ∑

k,l,µ,ν
C−1

ik T′
kµH−1

µν T′
lνC−1

l j (3.66)

Writing D − T(a0) = D − ⟨D⟩+ ⟨D⟩ − T(a0) and using the fact that ⟨(D − ⟨D⟩)⟩ = 0, we find

⟨χ2(â)⟩ = Tr
(

K−1Ctrue
)
+
(
⟨D⟩ − T(a0)

)
K−1 (⟨D⟩ − T(a0)

)
(3.67)

Similarly, we can also calculate the variance of χ2(â). They are given by :

Var
(
χ2(â)

)
= 2Tr

(
K−1CtrueK−1Ctrue

)
+ 4(⟨D⟩ − T(a0))TK−1CtrueK−1(⟨D⟩ − T(a0)) (3.68)

It is possible to slightly simplify the formula (3.68) and (3.67) by choosing

a0 = ⟨â⟩ (3.69)
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Eqs. (3.60) then implies
H−1⟨d⟩ = 0 (3.70)

This leads to
K−1 (⟨D⟩ − T(a0)

)
= C−1 (⟨D⟩ − T(a0)

)
(3.71)

We can then rewrite

⟨χ2(â)⟩ = Tr
(

K−1Ctrue
)
+
(
⟨D⟩ − T(a0)

)
C−1 (⟨D⟩ − T(a0)

)
(3.72)

Var
(
χ2(â)

)
= 2Tr

(
K−1CtrueK−1Ctrue

)
+ 4(⟨D⟩ − T(a0))TC−1CtrueC−1(⟨D⟩ − T(a0)) (3.73)

The advantage of choosing a0 = ⟨â⟩ is now apparent. As C and Ctrue are positive definite, the
second term in the RHS of (3.72) and (3.73) are always positive, and zero if T(a0) = ⟨D⟩. Thus,
model misspecification always leads to an increase of ⟨χ2(â)⟩ and Var

(
χ2(â)

)
. In contrast, if the

uncertainties of the data are misestimated, then C ̸= Ctrue, the first term in RHS of (3.72) and
(3.73) can be smaller or larger from the ideal values.

Having derived the distribution of the â and χ2(â) for a general case without assuming the
correctness of the model and the data uncertainties, we can now discuss specific cases where
either of the theory or the uncertainties are correct. We say that theory prediction Ti(a) is
correctly specified if there exist a set of parameters, ā, such that ⟨Di⟩ = Ti(ā) for all data points
i. Using this definition, one can say that in the case of tensions the theory is misspecified, as
there is no ā that satisfy ⟨Di⟩ = Ti(ã) for all data points i. We say that the data uncertainties are
correctly estimated if Cij = Ctrue

ij . We discuss further the distribution of the fitted parameters and
the cost function at the minimum for each case in the following.

Correct Theory and Uncertainties

If the theory is correct, then it is easy to show that the estimator is unbiased, which means
⟨â⟩ = ā. As explained above, as consequence of choosing a0 = ⟨a⟩, we have H−1⟨d⟩ = 0. If the
theory is correct, then

⟨d⟩ = T′TC−1 (T(ã)− T(⟨a⟩)) = T′TC−1T′((ã − ⟨a⟩) = 0

Therefore, H−1⟨d⟩ = 0 implies ā = ⟨a⟩. This proves our claim. We note here that we did
not make any assumption about the correctness of the data uncertainties. Irrespective of the
correctness of the data uncertainties, the estimator is always unbiased.

If, additionally, the data uncertainties are correct, then by definition Ctrue = C. This further
implies

Tr
(

K−1Ctrue
)
= Tr

(
(K−1Ctrue)2

)
= ND − Np (3.74)
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Using the choice a0 = ã, we have ⟨d0
µ⟩ = 0. Furthermore, H = H0. Thus, the fitted parameters

are normally distributed with

⟨âµ⟩ = āµ (3.75)

Cov(âµ, âν) = H−1
µν (3.76)

Thus, the covariance matrix of the fitted parameters is given precisely by the inverse Hessian
matrix. Therefore, it amounts to using a χ2 tolerance of T2 = 1 at 1σ.

The cost function at the minimum is distributed according to χ2-distribution with ND − Np

degrees of freedom, such that :

⟨χ2(â)⟩ = ND − Np (3.77a)

Var(χ2(â)) = 2(ND − Np) (3.77b)

Correct Theory and Incorrect Uncertanties

Besides the central value, experimental data usually also specify the statistical as well as sys-
tematical uncertainties. However, it is often the case that the individual correlated systematic
uncertainty is not provided. Instead, the systematic errors are just the total correlated and un-
correlated ones added in quadrature. Furthermore, the uncertainties could be overestimated
or underestimated. Therefore, the reported uncertainties can be different than the actual data
uncertainties that specify the data distribution. To highlight the departure from an ideal case,
we write the true data covariance matrix as

Ctrue = C + ∆C (3.78)

As Ctrue is unknown, so is ∆C. Let ā be the correct (true) PDF parameters, satisfying ⟨Di⟩ =

Ti(ā) for all i (the model is correctly specified). Then as before, we can set a0 = ā. The mean
and the covariance of the fitted parameters are

⟨âµ⟩ = āµ (3.79)

Cov(âµ, âν) = ∑
α

H−1
µα (δαν + ∆αν) (3.80)

with

∆αν = ∑
σ,λ

H−1
ασ

[
∑

i,j,k,l
T′

iσC−1
ij ∆CjkC−1

kl T′
lλ

]
H−1

λν (3.81)

Thus, the estimator is still unbiased, but the covariance matrix is now modified. This means, if
one uses the plain Hessian method, one could easily underestimate or overestimate the uncer-
tainty of fitted parameters. The expectation value of the cost function at the minimum is given
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by

⟨χ2(â)⟩ = ND − Np − Tr
(

C−1T′H0−1
T′TC−1∆C

)
(3.82)

If ∆C is positive definite, then we can see that ⟨χ2(â)⟩ ≤ (ND − Np). However, in general ∆C
does not have a specific definitiness, so ⟨χ2(â)⟩ can be larger than ND − Np as well.

Incorrect Theory and Correct Uncertainties

When the uncertainties are correct, then Ctrue = C. Let

R = ⟨D⟩ − T (⟨â⟩) (3.83)

Then

⟨χ2(â)⟩ = ND − NpRTC−1R (3.84)

Var
(
χ2(â)

)
= 2(ND − Np) + 4RC−1R (3.85)

We can see that the mean and variance are always larger than those that correspond to the ideal
case. We remark here, while the mean is larger, this does not mean the χ2 at the minimum is
larger than ND − Np. In fact, in an overfitting case, χ2(â) could be smaller than ND − Np and
conversely for the underfitting case. It is just when the whole experiment and parameter fitting
are repeated many times, the mean is always larger than the ideal case ND − Np.

Turning to the distribution of the fitted parameters, we can see that the covariance matrix
is the same as in the ideal case :

Cov(âµ, âν) = H−1
µν (3.86)

Thus, the Hessian method with tolerance T2 = 1 still applies in this case. Note that this also
includes the case of tensions between data sets.

Numerical Experiment

All derivations presented above assume that the theory predictions are sufficiently linear near
the reference parameter a0. In practice, such linearity condition applies quite generally. To see
how well the Hessian error method in non-linear curve fittings, we perform fits with the data
generated from the following function :

ftrue(x) = N xa1(1 − x)a2(1 + a3
√

x + a4x + a5x3/2) (3.87)

The data is generated according to :

fdata(xi) = ftrue(xi) + σiri (3.88)
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FIGURE 3.2: Data-theory comparison for fits with artifical data. The black lines
shows the true theory functions use to generate the data. The green lines shows
the results from Monte Carlo fit (see text for more detail). The red lines and bands
show the results of theory fits and their Hessian errors. (a) shows data-theory
with fmodel = ftrue. (b) Shows data-theory with fmodel given by Eqs. (3.89). (c)
shows data-theory with fmodel = ftrue and the uncertainty of the data is artifically

shrinked by a factor of 2.

where σi = 0.05 ftrue(xi) is the statistical uncertainty for the i-th data point and ri ∼ N (0, 1) is
a standard normal random number. Note that ftrue defined here is similar to the CJ15 parame-
terization for uv PDF, therefore the fit that we are doing here mimicks a real PDF fit.

After we generate 40 data points, we fit a model function fmodel(x), which is identical to
ftrue to the data (let’s call this fit-a). Thus, the model is correctly specified. We obtain the
final χ2 = 40.28, which correspond to χ2/do f = 1.14, where do f = ND − Np = 35. In Fig.
3.2(a), we show the data-theory comparison and also the Hessian errors (with T2 = 1) of the
fitted model. In Fig. 3.2(a), we also show results from 1000 Monte Carlo (MC) fits. For each
Monte Carlo fit, we generate the data using different sample of ri and redo the fitting process.
The green line in Fig. 3.2(a) shows the average of the fitted model and the green band show
the standard deviation. Thus, essentially, Monte Carlo fits is just sampling the distribution
of the fitted parameters and thus the resulting model errors are representative of the actual
errors propagated from the data uncertainties. The mean and variance of χ2 in the MC fits are
⟨χ2⟩ = 34.82 and Var(χ2) = 71.12 respectively. These values are very close to the expected
values from (3.77) : ⟨χ2⟩ = 35 and Var(χ2) = 70.

To see the impact of model misspecification on the uncertainty of the fitted parameters,
perform a second fit (let’s call it fit-b), where now :

fmodel(x) = N xa1(1 − x)a2 (3.89)

Thus, the model is now severely misspecified. The final χ2/N = 34.26, much larger than the
ideal case. In Fig. 3.2(b), data-theory from this fit is shown. In Fig. 3.2(b), we also show the
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results from MC fits. One can see that the fitted theory is very similar to MC one. Furthermore,
the Hessian uncertainty band (with T2 = 1) is also similar to the errors from MC fits.

In Fig. 3.2(c), we show data-theory from fit with correctly specified model fmodel = ftrue, but
the uncertainty is shrunk by a factor of 2. As expected, the Hessian error is now shrunk by the
same factor compared to the MC uncertainties.

To summarize, we have shown that for sufficiently linear model and correctly estimated
data uncertainties, the Hessian formalism with ∆χ2 = 1 is still valid, even if the model is
severely misspecified2. If the data uncertainties is misestimated, then the Hessian errors with
∆χ2 = 1 are not valid and can lead to overestimated/underestimated uncertainties. ´

3.2.3 Error Estimation : Replica Method

The hessian method relies on the linearity of the model with respect to the theory parameters.
When the theory is not linear, then the Hessian estimates can be inaccurate. The replica method
is a way to estimate the uncertainties of the fitted parameters without assuming the theory to
be linear. The idea of the replica method is similar to the Monte Carlo method. Namely, one
samples the data generation distribution and repeats the parameter estimation many times.
As the data generating distribution is unknown, it can be approximated as the probability
distribution from the observed data. Thus, if the data is Gaussian, then the mean of the data
generating distribution is just the observed data, with the covariance matrix given by the one
of the observed data. One should remember that the reported data is not the true value of the
measured observable, but rather a sample of the data generating distribution with an unknown
true value, which is hopefully close to the measured data. Thus, generating replica from the
data will cause some bias. However, as the data should be randomly distributed around the
true value, the bias is hopefully small and thus, fitting a replica is equivalent to sampling the
distribution of the fitted parameters.

As said, one generates a replica D̃ of the original data D according to

D̃i = (1 + σnormrnorm)

(
Di + σiri + ∑

α

σ̄iαr̄α

)
(3.90)

where σnorm, σi and σ̄iα are the normalization, statistical and correlated systematical uncertain-
ties for the i-th data point and from α-th source of correlated systematics. Di represent the
original i-th data point. All fluctuations rnorm, ri and r̄α are sampled from a standard normal
distribution. Let’s forget normalization uncertainty for the moment, then (3.90) implies that
the replica is Gaussianly distributed with mean Di and the same covariance matrix as the orig-
inal data :

Cij = σ2
i δij + ∑

alpha
σ̄iασ̄jα (3.91)

2Note that the presence of tensions between data sets also means that the model is incorrect/misspecified.
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Thus,

⟨D̃i⟩rep = Di (3.92)

⟨(D̃ − T)i(D̃k − T)k⟩rep = Cij (3.93)

To fit nPDFs, we minimize the standard χ2 function for each replica :

χ2
D̃ = (D̃ − T)tC−1(D̃ − T) (3.94)

If, for each replica, a set ˆ̃a of optimized theory parameters is obtained, then the sample mean
of such ˆ̃a for all replicas then provides the best estimate for a. Furthermore, the sample covari-
ance of ã approximates the true covariance of the fitted parameters. Therefore it can be used to
estimate the PDF uncertainties. In the linear approximation, it is possible to analytically derive
the statistical properties of the replicas. Let a0 be some reference parameter as discussed in the
previous section. We can write the linearized theory Ti(a) for a that is close to the reference
parameter a0 as :

Ti(a) = Ti(a0) + ∑
µ

T′
iµ(a − a0)µ (3.95)

where T′
iµ = ∂Ti(a)/∂aµ|a0 . At ˆ̃a, the χ2 satisfies ∂χ2

D̃(a)/∂aµ for all µ. This implies

∑
ν

Hµν( ˆ̃aµ − a0
µ) = d̃µ (3.96)

where

Hµν = ∑
i,j

T′
iµC−1

ij T′
jν ≈ 1

2
∂2χ2

D(a)
∂aµ∂aν

∣∣∣∣
a0

(3.97)

d̃µ = ∑
i,j

T′
iµC−1

ij (D̃ − T(a0))j (3.98)

Note that H here approximate the Hessian matrix and will become exact if T(a) is exactly linear
in a. The fitted parameters â is then given by

ˆ̃aµ(D̃) = a0
µ + ∑

ν

H−1
µν d̃ν (3.99)

As D̃ is Gaussian, then ˆ̃a is also so. The mean and covariance of the fitted parameters ˆ̃a are
therefore given by

⟨ ˆ̃a⟩rep = a0
µ + ∑

ν

H−1
µν dµ = âµ (3.100)〈(

ˆ̃a − ⟨ ˆ̃a⟩
)

µ

(
ˆ̃a − ⟨ ˆ̃a⟩

)
ν

〉
rep

= H−1
µν (3.101)

where dµ is the same as (3.98). The above equations shows that under replica variation, the
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FIGURE 3.3: Data-theory comparison for fits with artifical data. The black lines
shows the true theory functions use to generate the data, the green, red,blue lines
and bands show the results from Monte Carlo, Hessian, and replica methods. (a)
shows data-theory with fmodel = ftrue. (b) Shows data-theory with fmodel given

by Eqs. (3.89).

mean of the fitted parameters is the same as the ones from a fit with the original data, with
covariance matrix given by the inverse of the Hessian matrix. This provides an equivalence
between both Monte Carlo and the Hessian approach.

It is interesting how the minimum χ2
min ≡ χ2( ˆ̃a) is distributed in this linear approximation.

From (3.94), (3.95), (3.99), and (3.97), we then have

χ2( ˆ̃a)D̃ = (D̃ − T(a0))C−1(D̃ − T(a0))− d̃µH−1
µν d̃ν (3.102)

In then straightforward to prove that

⟨χ2
D̃(

ˆ̃a)⟩rep = χ2
D(â) + ND − Np (3.103)

where χ2
D(â0) is the minimum of the χ2 of the original data. This is rather surprising, as we

naively expect that ⟨χ2
D̃(

ˆ̃a)⟩rep = ND − Np. (3.103) basically says that the replica average of
the χ2

D̃ is just ND − Np plus the bias term χ2
D as we generate the data replica from the original

data D, instead of the true theory function. For a good fit, we expect χ2
D(â) ∼ ND − Np, thus

⟨χ2
D̃(

ˆ̃a)⟩rep/(ND − Np) ∼ 2. Thus, the expected χ2/do f for each replica fit is around 2.
In practice, when running many replica fits, some of the fits converge to local minima or

even do not converge at all. As a result, the replica mean of the χ2 at minimum is larger than
the expected value (3.103). Thus, (3.103) can be used to check if the replica method works as
expected.

To see how the errors from replica method compared to the ones from Hessian (with T2 = 1)
and from Monte Carlo sampling, we repeat fit-a and fit-b in section 3.2.2, but now we also
evaluate the uncertainty of the fitted parameters using replica method with 1000 replicas. For
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FIGURE 3.4: Data-theory comparison for fits with an artifical data. The black lines
shows the true theory functions use to generate the data, the green, red,blue lines
and bands show the results from Monte Carlo, Hessian, and Bayesian methods.
(a) shows data-theory with fmodel = ftrue. (b) Shows data-theory with fmodel given

by Eqs. (3.89).

fit-a and fit-b, we obtain ⟨χ2
D̃⟩rep of 75.64 and 1336.30 respectively. Given the χ2

D values for fit-a
and fit-b are 40.28 and 1301.85, and the ND − Np values are 35 and 38 respectively, the values
of ⟨χ2

D̃⟩rep are in excellent agreement with the expected ones from (3.103) : 75.28 for fit-a and
1339.85 for fit-b. In the top panels of Fig. 3.3, we show the comparison between the results
from different methods of error estimation. We can see that the central curves from the replica
method (blue lines) perfectly coincide with the ones from Hessian (red lines), as expected from
(3.100). In the bottom panel, we show the ratio of the errors to the central values. We can see
that all these three methods lead to similar uncertainty bands, even though we have a severe
model misspecification in fit-b. The Hessian uncertainty band in the low x region in fit-a is
significantly larger than the one from Monte Carlo and Replica method. The likely explanation
for this is that the linear approximation breaks down for the model and thus, the Hessian
method gives an inaccurate results.

3.2.4 Error Estimation : Bayesian Approach

Estimating the uncertainty of the fitted PDFs involves an implicit assumption that the resulting
uncertainty of the PDFs should match the spread of fits from repeated measurements. An
alternative to this frequentist method is the Bayesian approach. In this method, the distribution
of the PDFs, given the data D, is obtainable via Bayes theorem, p( f |D) ∝ p(D| f )p( f ), where
p(D| f ) is the likelihood and p( f ) is the prior distribution. Usually, in the absence of prior
information, a uniform distribution is taken to be the prior, then the posterior PDF distribution
is just the likelihood. As shown in section 3.1, by construction, the χ2 function is proportional
to log-likelihood. Therefore, with a uniform distribution as the prior, the posterior distribution
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is given by

p( f |D) ∝ exp
(
−χ2( f , D)

2

)
(3.104)

PDF determination using this approach can be done by sampling the posterior distribution.
From a large number of samples, one can then obtain the mean as a point estimate for the PDF
parameters. Alternatively, one can construct a credibility interval, within which some percent-
age of the samples fall in. As another remark, one can relate this method to the maximum
likelihood approach if the χ2 function is symmetric around the minimum. In this case, the
best (point) estimate for the PDF parameters is given by the global maximum of the likelihood
function, or equivalently, the minimum of χ2(a, D).

In the context of PDF fitting, the most considerable appeal of this approach lies in its capa-
bility to reliably estimate the inferred parameters without assuming linearized theory predic-
tion as in the Hessian approach or requiring multiple fits of data replicas, which are prone to
get stuck in local minima, as in the MC replica method. The downside of this method is the
same as in the MC replica method. Namely it requires a rather high computational cost.

If the theory is linear and symmetric enough near the best estimate of the parameters, one
can actually show that this method is equivalent to the Hessian one. Let ⟨a⟩ be the best estimate
for PDF parameters. Then one expand the χ2 function near ⟨a⟩ as

χ2(a, D) = χ2(⟨a⟩) + 1
2 ∑

µν

∂2χ2

∂aµ∂aν
(a − ⟨a⟩)µ(a − ⟨a⟩)ν (3.105)

= χ2(⟨a⟩) + zTz, (3.106)

Thus, from (3.104), one can immediately see that the posterior distribution is Gaussian, cen-
tered around ⟨a⟩, with covariance matrix given by the inverse of the Hessian. This shows that
Hessian, Bayesian and MC replica methods are equivalent for sufficiently linear theory func-
tions.

In Fig. 3.4, we compare the uncertainty estimates for the model fitted to the artificial data
as discussed in the previous sections. To obtain the parameter errors from Bayesian method,
we sample 1000 samples of (3.104) using Markov Chain Monte Carlo with Metropolis-Hasting
algorithm. To obtain 1000 samples, we collected 10000 accepted samples from the algorithm,
and discarded the first 9000 ones to account the burn-in period. From Fig. 3.4, we can see
that central values from the Bayesian method are identical to those from the Hessian method.
Looking at the error estimates, one can see that the errors from all these three methods are
similar, even when the model is misspecified as shown in Fig.3.4(b).

3.2.5 Hypothesis-Testing vs Frequenstist Uncertainty

Previously, it has been shown that the Hessian method is equivalent to both replica and Bayesian
approach, provided that the χ2 function is sufficiently linear around the average of the fitted
parameters. Note that while the linearity condition seems restricting, in practice, this condition
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is quite general and applies in many cases. In section 3.2.1, it has also been shown that the
tensions between data sets and model misspecification do not influence the validity of the Hes-
sian method (with ∆χ2 = 1). In this case, enlarging the uncertainty by using global or dynamic
tolerance is not needed.

One should note that the Hessian and Monte Carlo methods that we discussed previously
give estimate the uncertainty of the PDF parameter in frequentist way. Namely, the uncer-
tainty is exactly the standard deviation when the experiments are repeated many times, and
the resulting data sets are used to fit the PDFs using exactly the same methodology. Thus, the
uncertainty estimation does not care whether the data sets agree with each other or if the theory
is correct. It is just a propagation of uncertainty from a set D of random variables to another
â(D). For future reference, we will call this type of uncertainty as frequentist uncertainty3. The
main concern of using this type of uncertainty is that the resulting error bands for the theory
can be quite far away from the true theory that generates the data in the case of a severe model
misspecification. If the tensions between data sets are large, the error bands may not even re-
produce all the data. Thus, the estimation of the uncertainty is as good (in the sense of covering
the true theory and explaining the data) as the data and the model used in the fit.

In order to enforce the error bands to explain all the data (in the hypothesis testing sense),
the frequentist uncertainty is artificially enlarged by choosing T2 ≥ 1. the global and dy-
namic tolerance methods fall in this category. The resulting uncertainty is therefore called
hypothesis-testing uncertainty. As the tolerance T2 ≥ 1, this uncertainty is always larger than
the frequentist one. This uncertainty does not reflect the probability of the fitted parameters, so
its propagation (to observable errors) does not have probabilistic interpretation. It also does not
reduce to the frequentist uncertainty even if tensions are absent and the theory is perfect. The
dramatic difference between frequentist and hypothesis testing uncertainty can be illustrated
as follows: Let D1 represent the data from an experiment E, with N data points. Suppose that
the experiment is later repeated with the same set-up, and a new data D2 is obtained. If one
performs a model fitting to D1 (let’s call it fit1) and to both D1 and D2 (fit2), then frequentist
uncertainty of the fit2 is shrunk by a factor of 1/

√
2. In contrast, the hypothesis-uncertainty

will not shrink at all. This illustrate that type of uncertainty does not respond well with the
addition of new data.

Generally speaking, when we speak about the uncertainty of the fitted parameters, the
frequentist uncertainty should be used, no matter if the model is misspecified (which includes
the presence of tensions between data sets) or not. This means, if one uses the Hessian method,
the tolerance should be set to T2 = 1 for 1σ deviation. However, in PDF fittings, it is desirable
that the PDF uncertainties can explain the data. Neglecting this requirement can make some
data to have large χ2, which implies (assuming the data and the uncertainties are correct), for
example, breakdown of the factorization theorem, which is a conclusion that we do not want
to take easily.

3In PDF fitting literature, this type of uncertainty is often referred to as the uncertainty in the parameter estima-
tion sense.
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Regardless, it is always useful to have hypothesis-testing uncertainty when comparing a
theory with a data. This uncertainty band in this case represents the regions where the theory
curves can still explain the data used in the fit. Comparing data S and theory in this case is
equivalent to assess the compatibility of the data S with all the data used in the fit.

3.3 Assessing the Impact of New Data: Reweighting Technique

Reweighting, in the context of PDF fitting, is a technique to obtain a new set of PDFs by in-
cluding new data that was not included in the original PDFs. This technique is very useful
when one does not have the access to the fitting code used in the original PDFs, or the theory
predictions for the new data simply take too long to compute, making the new data impractical
to be included in the original fit. By comparing the new set of PDFs with the original ones, one
can study the impact of the new data in PDF extraction.

Reweighting is originally formulated in the Bayesian framework[81]. The core concept is
Bayes theorem : p( f |D) = N (D) p(D| f )p( f ), where p( f |D) represents the posterior distribu-
tion of the PDFs, generically denoted as f , after seeing the new data D. p(D| f ) denotes the
likelihood and p( f ) is the prior distribution, which is usually given by the PDF distribution of
the original fit (without the new data D). N (D) here is a normalization factor, such that p( f |D)

is properly normalized. The normalization is then given by

N (D) =

(∫
D f p( f |D)p( f )

)−1

. (3.107)

Here, D f ′ is the functional integration measure. Now, by construction, the loss function χ2 is
χ2( f , D) = −2 log p(D| f ), hence

p(D| f ) = exp
[
−1

2
χ2( f , D)

]
. (3.108)

Given the posterior distribution p( f |D), one can obtain the expectation value and variance of
an observable Q( f ) as

⟨Q⟩ = N (D)
∫

D f Q( f )p(D| f )p( f ) , (3.109a)

Var(Q) = N (D)
∫

D f (Q( f )− ⟨Q⟩)2 p(D| f )p( f ) . (3.109b)

The functional integrations in (3.107) and (3.109) can be computed using a Monte Carlo
approach. As the prior distribution p( f ) is known, one can generate sufficiently large number
of samples from p( f ), and the integrations are reduce to a simple summation. Thus :

∫
D f Q( f ) p( f |D)p( f ) =

1
Nrep

∑
f

Q( f ) exp
(
−1

2
χ2( f , D)

)
, (3.110)
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where Nrep is the number of PDF samples. The expectation value and variance of the observable
Q can then be approximated as

⟨Q⟩ = ∑
f

w( f )Q( f ) , (3.111a)

Var(Q) = ∑
f

w( f ) (Q( f )− ⟨Q⟩)2 , (3.111b)

where the weight w( f ) is given by

w( f ) =
exp

(
−χ2( f , D)/2

)
∑ f ′ exp (−χ2( f ′, D)/2)

. (3.112)

Note that the weight is normalized to one ;

∑
f

w( f ) = 1 . (3.113)

Given the original PDFs f (x), one can the update the PDFs after including the data D using
(3.111), with Q( f ) = f . The uncertainty of the new PDFs can also be determined in the same
way.

The reweighting procedure described above requires knowing how to sample the prior
distribution. If the distribution of the original PDFs are represented as a collection of PDF
replicas (samples) as in NNPDF case, then one can immediately use the replicas to do the
reweighting. If the Hessian error PDFs are known, then one needs to devise a way to sample
the distribution from the provided error PDFs. The general strategy for sampling PDFs from
Hessian error PDFs is as follows. Recall from section 3.2.1 that, written in terms of z(a), the
distribution of the fitted parameters is given by

p(z) ∝ exp

(
− 1

2T2
std

zTz

)
. (3.114)

Here, as in section 3.2.1, we use a to denote a point in the PDF parameter space, while z(a)
is the same point, written in the rescaled eigenvector basis. Tstd denotes the tolerance that
corresponds to 68% percentile. In most modern PDFs, Tstd is significantly larger than one, to
account for data or theory inconsistencies. Given z(a), the value of PDF with flavor i at a(z)
can be obtained by a linear expansion :

fi(z) = f (z = 0) + ∑
µ

∂ fi

∂zµ
zµ . (3.115)

The first derivative can be obtained by using finite difference method :

∂ fi

∂zµ
=

f (z+µ )− f (z−µ ))
2Tlhapd f

. (3.116)
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Here, Tlhapd f denotes the value of zµ used in the LHAPDF distribution. Typically, one use 90%
percentile, which correspond to T = 1.645. In the case of 68% percentile, then T = 1.0. Note
that Tstd ̸= Tlhapd f , as in most case, the given error PDFs in the LHAPDF package is the ones that
correspond to the 90% percentile. The procedure to generate a PDF replica is then very simple.
First, one sample the D-dimensional z from the normal distribution (3.114). The associated PDF
replica is then given by (3.115).

While the Bayesian approach is clean and simple, one still needs to interpret the updated
PDFs from PDF fitting point of view. To simplify things a bit, let us assume that the PDFs
are parameterized in terms of a finite number of theory parameters aµ, µ = 1, ..., D and hence
the distribution of the PDFs are completely specified if one knows the distribution of aµ. It
is therefore more convenient to directly work with aµ and its representation in the (rescaled)
eigenvector basis zµ rather than the infinite-dimensional functional space f . Let’s assume that
the theory predictions near the original PDFs are sufficiently linear. Let χ2

0(z) be χ2 function
that correspond to the data used in the original PDF analysis. Near the minimum (z = 0), one
has

χ2
0(z) = χ2

0(z = 0) + zTz . (3.117)

The prior distribution for the fitted parameters zµ, µ = 1, ..., D can then be expressed in term of
χ2

0(z) as

p(z) ∝ exp

(
− 1

2T2
std

zTz

)
∝ exp

(
−χ2

0(z)
2T2

std

)
. (3.118)

Thus, the posterior distribution is given by

p(z|D) ∝ exp

[
− 1

2T2
std

(
T2

stdχ2
D(z) + χ2

0(z)
)]

, (3.119)

where χ2
D = χ2(z, D) is the χ2 function for the data D. Defining an effective χ2

e f f as

χ2
e f f (z) = T2

stdχ2
D(z) + χ2

0(z) (3.120)

≈ χ2
e f f (z = 0) + ∑

µ

∂χ2
e f f

∂zµ
zµ + ∑

µ,ν

1
2

zµ

∂2χ2
e f f

∂zµ∂zν
zν

= χ2
e f f (znew) + (z − znew)

T Hnew(z − znew) .

Note that all derivatives appearing in the above expressions are evaluated at z = 0. Here, znew

and Hnew are given by

znew = −1
2

H−1
new,µν

∂χ2
e f f

∂zν
= arg min

z
χ2

e f f (z) , (3.121a)

Hnew,µν =
1
2

∂2χ2
e f f

∂zµ∂zν
. (3.121b)
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If the original PDFs has hessian error PDFs, in the linear approximation, one can calculate Hnew

and ∂χ2
e f f /∂zµ in terms of the error PDFs directly :

Hnew,µν = δµν + ∑
i,j

Ti(z)
∂zµ

C−1
ij

Ti(z)
∂zµ

= δµν + ∑
i,j

T(z+µ )− T(z−µ ))
2Tlhapd f

C−1
ij

T(z+ν )− T(z−ν ))
2Tlhapd f

, (3.122a)

∂χ2
e f f

∂zµ
=

∂χ2
D

∂zµ
=

χ2
D(z

+
µ )− χ2

D(z
−
µ ))

2Tlhapd f
, (3.122b)

where, Ti(z) is the theory prediction for the i-th data point of D, Cij is the covariance matrix
of the data D, and z±µ is a point in the parameter space that correspond to the µ-th error PDFs.
Given znew and Hnew, The posterior distribution then can be rewritten as

p(z|D) ∝ exp

(
− 1

2T2
std

(z − znew)
T Hnew(z − znew)

)
. (3.123)

This shows, that in the linear approximation (as also assumed in the Hessian error method) :

1. The expectation value of the PDFs after seeing the data D is the same as fitting D together
with the other data sets used in the original PDF analysis with loss function given by the
χ2

e f f (z) defined in (3.120).

2. The covariance matrix of the PDFs after including the data D using reweighting method
is given by T2

stdH−1
new.

3. Reweighting method with the weights given by (3.112) is then completely equivalent with
refitting PDFs with the original and the new data, with the loss function given by χ2

e f f .

4. The increase of the χ2
0 before and after reweighting can be estimated as

∆χ2
0 = zT

newznew . (3.124)

if χ2
0(z = 0) + ∆χ2

0 is outside the 95% χ2-percentile of the χ2
0 distribution, this indicates

that the data D has too strong tensions with the data sets used in the original PDF analy-
sis.

5. To have χ2
e f f = χ2

D +χ2
0, one can modify the likelihood to p(D| f ) = exp

(
−χ2( f , D)/(2Tstd

)
leading to a modified weight :

w( f ) =
exp

(
−χ2( f , D)/(2T2

std)
)

∑ f ′ exp
(
−χ2( f ′, D)/(2T2

std)
) . (3.125)

Thus, if one wants the reweighting technique to be equivalent to refitting the PDFs with
the new data, one should use this weight.
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(a) (b) (c) (d)

FIGURE 3.5: Illustrations of confidence regions of S-fit (blue) and S̄-fit (red). The
origin of each figure here represent the minimum of the combined S+S̄ fit. (a)
shows both S and S̄ are mutually compatible. (b) shows that minimum from the
combine fit are outside of S̄-confidence region. (c) shows that minimum from the
combine fit are outside of S-confidence region. (d) shows that both S and S̄ are

incompatible.

6. If the original PDFs admit Hessian errors PDFs, it is possible to perform a reweighting
method without sampling PDF distribution. The so-called Hessian reweighting tech-
nique[82] is based on (3.121), with the znew and Hnew are computed directly from the error
PDFs, as shown in (3.122). The PDFs are then updated as

fi(z) = fi(z = 0) + ∑
µ

f (z+µ )− f (z−µ )
2Tlhapd f

znew,µ . (3.126)

Here, the dependency of PDFs to parton momentum fraction x and factorization scale
has been suppressed.

3.4 Tensions Between Data Sets

In a global analysis with many data sets, sometimes some data sets do not perfectly agree with
each other, in the sense that they prefer different minima. In fact, even for perfectly mutually
compatible data sets, some slight difference in the preferred minima is often observed. There-
fore, a question arises: how much different can the minima be in order for two data sets S and
S̄ to be said incompatible?

We can use the hypothesis testing method to answer this question, which leads to a set of
conditions that defines compatibility. Stronger statements can be made by using the confidence
region of the fitted parameters in th frequentist view, however, the resulting conditions will be
too strict to be applied in a PDF fitting. Given a data set S, we define the p% (hypothesis-testing)
confidence region Rp%

S of S as

Rp%
S =

{
a
∣∣∣χ2

S(a) ≤ χ2
NS,p%

}
, (3.127)

where χ2
S(a) is the χ2 value of S for given theory parameters a and χ2

NS,p% is the p% percentile
of χ2 distribution with NS degrees of freedom. Here, NS is the number of data points in S.
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In Fig. 3.5, we show the illustrations of (hypothesis testing) confidence regions of fits with S
(blue oval) and S̄ (red oval). In all panels in Fig. 3.5, the origins represent the minimum of the
combined fit with S and S̄. When we say two data sets are mutually compatible, we mean that
the minimum of the combined fit with S + S̄ is inside the confidence regions of S and S̄. This
implies that the confidence regions of S and S̄ must overlap. Note that, as shown in Fig. 3.5(c),
the converse is not true : overlapping confidence region does not imply compatibility.

For future reference, we also define other kinds of compatibility:

• Mutual compatibility : the minimium of the combined fit with S and S̄ is inside the confi-
dence regions of both S and S̄ (see Fig. 3.5(a)). This means, the combined fit can explain
both the data at p% confidence level (CL).

• S-compatibility : the minimium of the combined fit with S and S̄ is inside the confidence
regions of S (see Fig. 3.5(b)). Thus, this type of compatibility ensures that the combined
fit can still explain S at p% CL.

• S̄-compatibility : the minimium of the combined fit with S and S̄ is inside the confidence
regions of S̄ (see Fig. 3.5(c)). This type of compatibility ensures that the combined fit can
explain S̄ at p% CL.

If the combined fit with S and S̄ are outside of the confidence regions of both S and S̄, then S
and S̄ are said to be mutually incompatible. Note that, if S- and S̄-compatibilities are satisfied,
the two data are automatically mutually compatible.

In PDF global analysis, where many data sets are included, S and S̄ represent collections
of data sets. In this case, it is reasonable to check if all data sets are well described by the the
combined fit. For this, one can use χ2/N metric, where N is the size of the data. If χ2/N
correspond to χ2 value that exceeds the 90% percentile, then we can say that the combined
fit can not describe the data. Using χ2/N as a metric to assess the description of the data is
not the most convenient, however. This is because the value of χ2/N that corresponds to 90%
percentile of χ2 distribution strongly depends on N. For example, for N = (5, 10, 20, 100, 1000),
one has χ2

N,90%/N = (1.85, 1.60, 1.42, 1.18, 1.06) respectively. A better way is to use the SE

variable[83] :
SE(χ

2(N), N) =
√

2χ2(N)−
√

2N − 1 ∼ N (0, 1) (3.128)

which is distributed according to the standard normal distribution for N ≳ 10. We can therefore
define :

• SE-compatibility : the distribution of SE variable for all data sets in S and S̄ in the combined
fit is approximately standard normal.

When testing two collections S and S̄ of data sets in nPDF fit, ideally, one should use the
three compatibility criteria : S-, S̄, and SE-compatibilities. However, it is often the case that S̄-
compatibility can not be evaluated as the fit with S̄ alone is not available, or not reliable enough
due to limited flavor separations. In this case, one can only use the S-compatibility criterion,
which assesses the impact of the pulls of the new data S̄ to S.
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Chapter 4

Global Analysis with Netrino Data

This chapter is based on the work presented in [72].
—————————————————————————
A reliable determination of nPDFs based on a global analysis of all available data requires

that all the flavors are sufficiently separated. With the additional A, Z degrees of freedom, more
data are required for an nPDF global analysis to have the same level of precision as the proton
PDF analyses. In reality, the amount of nuclear data is less abundant and less precise, making
the nPDFs have large uncertainties. As an example, the nCTEQ15WZSIH analysis[84] used 940
data points, much less than 4600 pts in NNPDF4.0 analysis[21]. This shows that nPDF analysis
is in a dire need of including more data, preferably taken from different nuclei.

A type of nuclear data, which has been known for quite a while in the nPDF fitting com-
munity is the neutrino DIS taken on iron and lead, measured by NuTeV, CCFR, CDHSW and
Chorus collaborations. In fact, some of these data, for example, the neutrino data from Chorus
and the neutrino-induced dimuon data from NuTeV, are still used in modern proton PDF anal-
yses, such as CT18[7] and NNPDF4.0[21]. In nuclear PDF case, however, only Chorus was ever
used (as in the EPPS21 analysis[24]). This is because the other data have been shown to have
irreconcilable tensions with some of the charged lepton DIS data. It is the primary purpose of
this study to investigate this issue further.

4.1 Review of Past nPDF Analyses with Neutrino Data

In this section, we give a review of studies on the compatibility between the neutrino and
charged lepton data. In Ref. [85], it was shown by conducting a global analysis of neutrino DIS
data from NuTeV and dimuon data from NuTeV and CCFR, that the extracted iron PDFs us-
ing the nCTEQ framework leads to a nuclear ratio of the charged-current structure function F2

that is flatter and significantly different from the Kulagin-Petti model [58] and the SLAC/NMC
parametrization [86], which are usually used to correct charged-lepton DIS data in proton PDF
analyses. In particular, the lack of shadowing of the charged-current structure function ratio
in the low-x (x ≤ 0.1) region is quite atypical. Although Ref. [85] did not study the compat-
ibility with other data, the behavior of the extracted nuclear ratio clearly shows some signs
of tension. In a follow-up study by Kovarík et al. [87], by performing a global analysis that
included charged-lepton and Drell-Yan (DY) data as well as neutrino DIS from NuTeV [70]
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and Chorus [71], it was even concluded that these neutrino DIS data are incompatible with the
charged-lepton data.

A contradictory conclusion was obtained in a global fit by De Florian et al [88]. This study
analyzed charged-lepton DIS, DY, pion production, and F2 and F3 neutrino data from CDHSW,
NuTeV, and Chorus. All correlated uncertainties were added in quadrature, hence ignoring
the point-by-point correlations of the data. The study shows that, qualitatively, these neutrino
data sets are reproduced within their respective uncertainties by the combined fit, although the
χ2/datum = 1.41 for the F2 NuTeV data is well above unity. A study on the issue of neutrino
DIS was later done by the EPPS group [89]. This time, the more abundant differential cross
section data was used. The study suggested that data normalization might be the reason for
the apparent incompatibility between the neutrino and charged-lepton DIS. By normalizing the
cross section data with the integrated cross section in each energy bin and using Hessian re-
weighting analysis, it was shown that the neutrino DIS data, in particular the one from NuTeV,
could be included in a global analysis with charged-lepton data without causing significant ten-
sion. It is worth noting that the NuTeV data used in Ref. [89] was without the data correlations,
which was shown to possess a very good χ2, even in the analysis of Ref. [87].

Another intriguing study was done by Kalantarians et al [90]. There, FFe
2 /FD

2 data from
BCDMS and NMC were brought into FFe

2 data by multiplying it with FD
2 from the NMC pa-

rameterization[86]. This neutral current FFe
2 data is then compared with charge current FFe

2

data from NuTeV, CCFR, and CDHSW, after correcting them using the famous 18/5-rule. Al-
though agreement at the valence region (x > 0.3) can be shown, around 15% discrepancies
at x < 0.15 are visible. However, we point out here that such discrepancy could still be ex-
plained by the factorization framework at NLO of pQCD when heavy quark effects are prop-
erly treated. As shown in Fig. 4.1, using the nCTEQ15WZ nPDFs[79] with S-ACOT scheme [91,
92] for the heavy quark treatments, the NLO predictions for Fl±A

2 and FCC
2 ≡ (FνA

2 + Fν̄A
2 )/2

differ at around 15% at low x.
It is important to stress that the notion of compatibility in general is always dependent

on the specific nPDF fitting framework employed, the compatibility criteria used to quantify
tensions, the type of neutrino data (differential cross section or structure function data), and
how the uncertainties of the data are treated during the fitting procedure. Studies from the
nCTEQ, EPPS, and De Florian et al groups used different nPDF frameworks. In particular, the
proton PDF baseline and the A-dependence parametrizations differ. They also used different
compatibility criteria that are not necessarily equivalent. As for the type of data, while De
Florian et al groups used F2 and F3 structure function data, the use of cross section data is
arguably preferred as extracting the latter always involves more assumptions .1 Because of
these differences, it is therefore not completely unexpected that the resulting conclusions about
the neutrino data compatibility are different.

1In particular, some inputs for the cross section ratio of longitudinally to transversely polarized W bosons
RL(x, Q2) and ∆xF3 ≡ xFν

3 − xFν̄
3 are needed to extract the structure function. In the case of NuTeV data, RL(x, Q2)

was obtained from a fit to e − p and e − d world data at that time [93], and therefore ignore any nuclear effects.
∆xF3 ≡ xFν

3 − xFν̄
3 was calculated using the QCD parton model with the MRSTW PDFs [94].
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FIGURE 4.1: Top panel: The comparison between neutral current Fl±A
2 and the

charge current FCC
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2 ) structure function predictions for iron

(A=56, Z=28) using the nCTEQ15WZ nPDFs. Bottom panel: The ratio ∆F2/F2 ≡
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4.2 Neutrino DIS Sensitivity

With the addition of neutrino data, it is necessary to understand how these data help constrain
PDF components in a global fit. The cross section of (anti-)neutrino scattering on a nucleus
with a mass number A can be computed using the formula

1
E

d2σνA(ν̄A)

dx dy
=

G2
F M4

W(
Q2 + M2

W

)2
M
π

[
xy2FνA(ν̄A)

1

(
1 − y − xyM

2E

)
FνA(ν̄A)

2 ± xy
(

1 − y
2

)
FνA(ν̄A)

3

]
.

(4.1)

Here, E is the energy of incident (anti-)neutrino in the lab frame, GF is the Fermi constant, M
is the proton mass, and MW is the W boson’s mass. The FνA(νA)

i are nuclear structure functions
of (anti-)neutrino DIS on a target A. For νA(νA), the sign preceeding F3 is +(−). The three
relativistically invariant variables Q, x, y are related by Q2 = 2MExy.

The Collinear Factorization Theorem stipulates that the cross section can be written as con-
volutions of parton-level cross section with the PDFs

dσ = ∑
i

dσ̂ ⊗ fk. (4.2)

The Wilson coefficient Cik can be computed order-by-order in perturbative QCD. In this section,
for simplicity, we will work at leading order (LO) and assume the first two generations of
quarks are massless and we negelect the contributions of bottom and top quarks.
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Suppressing the dependence on x and Q, the structure functions can be expressed as

FνA
1 = d + s + ū + c̄, (4.3)

FνA
2 = 2x (d + s + ū + c̄) , (4.4)

FνA
3 = 2 (d + s − ū − c̄) , (4.5)

Fν̄A
1,2 = FνA

1,2 [q ↔ q̄], Fν̄A
3 = −FνA

3 [q ↔ q̄], (4.6)

where u, d, . . . are the full (not bound) up, down, . . . quark PDFs and we have used assumed
that the Callan-Gross relation holds. The analogous formula for charged lepton DIS is given by

Fl±A
2 = x

1
9
[
4(u + ū) + (d + d̄) + 4(c + c̄) + (s + s̄)

]
. (4.7)

We can now write the LO expression for neutrino cross section formula. Using Eqs. (4.3)-(4.6),
and assuming xyM/2E ≪ 1, we obtain

1
E

d2σνA

dx dy
∝ 2x

[
(d + s) + (1 − y)2 (ū + c̄)

]
, (4.8)

1
E

d2σν̄A

dx dy
∝ 2x

[(
d̄ + s̄

)
+ (1 − y)2 (u + c)

]
. (4.9)

Here, the proportionality factor is equal to the one before in Eq. (4.1). Due to the suppression
factor (1 − y)2, the (anti-)neutrino cross section is more sensitive to d and s (d̄ and s̄) than ū
and c̄ (u and c). For an isoscalar nucleus, due to the quantum number sum rule and isospin
symmetry, we have further constraints d = u and d̄ = ū. Thus, the (anti-)neutrino data can be
used to constrain (ū)u PDFs.

From Eqs. (4.8) and (4.9), it is easy to understand that for a nucleus with more neutrons
than protons, such as lead, the neutrino scattering differential cross section will be larger com-
pared to an isoscalar nucleus at the same E, x, y. Similarly, the anti-neutrino counterpart will
be smaller. This is because the neutron contains a larger d content and a smaller d̄ content
compared to proton.

Using Eqs. (4.4) and (4.6), it is possible to derive the so-called “18/5 rule” mentioned in the
introduction section. For a nucleus with an equal number of protons and neutrons (isoscalar),
then we have u = d and ū = d̄ from isospin symmetry and the quantum number sum rule. It
is then straightforward to derive the relation(

Fl±A
2

FCC,A
2

)
ISO

=
5
18

[
1 +

3
5

c + c̄ − s − s̄
qS

]
, (4.10)

where FCC,A
2 = (FνA

2 + Fν̄A
2 )/2, and qS = ∑i(qi + q̄i) is the quark singlet PDF. Without the sec-

ond term in the parenthesis, Eq. (4.10) is often called the "5/18 rule" and is used to compare F2

data from charged-lepton and neutrino scattering. Deviations from the 5/18 rule are expected,
for example, when radiative corrections and/or heavy quark mass effects are large [95], when
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isosopin symmetry does not hold to some degree [96], and when the ratio |c+ c̄− s− s̄|/qS ≫ 0.
The latter could happen, for example, by having a large s + s̄ density or having a large strange-
antistrange asymmetry [97].

The more exclusive process from neutrino scattering is the charm dimuon production, given
by

νµ(νµ) + A → µ∓ + h∓ + X. (4.11)

Here h is some charmed hadron (D0, D+, D+
s , Λ+

c , etc) and X is the remnant of the target. For
(anti)neutrino probes, an (anti)charm quark is produced at LO by the interaction of a down-
type quark a time-like exchange of a W+(W−) gauge boson. The charm quark then fragments
into a charmed hadron h∓, carrying a fraction z of the charm quark momentum. The hadron
then decays weakly into a neutrino and a (secondary) muon that has an opposite charge as the
(primary) muon from the initial ν − A interaction. The cross section of charm-tagged dimuon
production is then

dσµµ

dx dy dz
=

dσc

dξdy ∑
h

fh Dh
c (z)Br(h → µX) . (4.12)

Here, x, y are the usual DIS scaling variable, ξ = x(1 + m2
c /Q2)(1 − x2M2/Q2) is the momen-

tum fraction of the struck quark (mc is the charm quark mass, M is the nucleon mass, Q2 is
the virtuality), σc(x, y) is the charm production cross section, fh is the production fraction of
a charmed hadron h, Dh

c is the charm fragmentation function into a charmed hadron h, fh,
and Br(h → µX) is the branching ratio of hadron h into a muon. At LO, the νA → µc + X
production cross section is given by

dσc

dξdy
=

G2
F M4

W(
Q2 + M2

W

)2
M
π

(
1 − m2

c
2MEνξ

)
×
{
|Vcs|2s(ξ, Q2) + |Vcd|2

[
u(ξ, Q2) + d(ξ, Q2)

]}
. (4.13)

which shows us the sensitivity to the strange PDF due to the CKM matrix.

4.3 Neutrino Data

The neutrino DIS data that we analyze here are the data from the NuTeV, CCFR, Chorus, and
CDHSW experiments. We refer to these data sets simply as the neutrino data. To help better
constrain the strange quark PDF, we also analyze the neutrino-induced charm dimuon produc-
tion data from NuTeV and CCFR. Although this data is technically obtained from a neutrino
DIS experiment, to distinguish it from the inclusive cross section one, we will simply refer to
this as the dimuon data. Electromagnetic radiative corrections were applied to NuTeV, CCFR
and Chorus data. The point-by-point correlated systematic uncertainties are taken into account
wherever available. Specifically for the NuTeV data, these correlated uncertainties are obtained
from the NuTeVPack package [70]. Table 4.1 shows the summary of the newly added data sets
used in our analysis. The total number of data points is 7123 points after kinematical cuts.
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Data set Nucleus Eν/ν̄(GeV) #pts Corr.sys. Ref.
CDHSW ν

Fe 23 - 188
465

No [98]
CDHSW ν̄ 464
CCFR ν

Fe 35 - 340
1109

No [95]
CCFR ν̄ 1098
NuTeV ν

Fe 35 - 340
1170

Yes [70]
NuTeV ν̄ 966
Chorus ν

Pb 25 - 170
412

Yes [71]
Chorus ν̄ 412
CCFR dimuon ν

Fe
110 - 333 40

No [99]
CCFR dimuon ν̄ 87 - 266 38
NuTeV dimuon ν

Fe
90 - 245 38

No [99]
NuTeV dimuon ν̄ 79 - 222 34

TABLE 4.1: New neutrino data sets used in this analysis.

Experiment #pts Relative Error(%)
CDHSW ν 59 8.36
CDHSW ν̄ 59 10.75
CCFR ν 54 6.01
CCFR ν̄ 54 16.90
NuTeV ν 55 5.88
NuTeV ν̄ 54 10.29
Chorus ν 65 7.70
Chorus ν̄ 65 18.32

TABLE 4.2: Relative experimental uncertainties (in percent) of various data sets
at Eν ∼ 85 GeV where all the data sets overlap.

In Table 4.2, we show the average absolute and relative total uncertainties (statistical and
systematical errors are added in quadrature) for (anti)neutrino data that we use in our fits for
an incoming neutrino energy of Eν ∼ 85 GeV where all these data overlap. We can see that
the NuTeV neutrino data has the smallest uncertainties followed by the CCFR, Chorus, and
CDHSW. For the anti-neutrino counterpart, the order is slightly different : NuTeV anti-neutrino
data is the most precise, followed by the CDHSW, CCFR and then Chorus data.

We note here that other sources of neutrino data are available in the literature, but they are
not used in our fits. The latest results come from MINERνA neutrino scatterings on polystyrene,
graphite, iron, and lead. The collaboration published the ratio of neutrino scattering single dif-
ferential cross section dσ/dx [100] as function of x and neutrino energy Eν. However, the aver-
age virtuality ⟨Q2⟩ is below our Q2 = 4 GeV2 threshold for the kinematic cuts, which makes the
data unusable in our global analysis. The NOMAD experiment is one of the first fined-grained
experiments that allows for high-resolution measurements of exclusive states [101]. However,
NOMAD has yet to officially publish the data. Preliminary data from NOMAD have been
available since 2005 [102], but their presentation takes the form of a plot and not a table. There
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FIGURE 4.2: The weighted average of the cross-section ratios for Q2 > 4 GeV2

and W2 > 12.25 GeV2 from CDHSW, CCFR, NuTeV, and Chorus data. The de-
nominator (σf ree) is computed using nCTEQ15 proton baseline (left) and CT18

(no-ν-A) NLO proton PDFs without neutrino data of Ref. [105] (right).

are also charm-tagged dimuon production data from Chorus [103] and Nomad [104], which
should help constrain the strange quark PDF. In the present analysis, we do not include them
in our global fit. We do, however, compare theory predictions from our fits to these data in
section 4.8.

4.4 Nuclear Corrections from Neutrino Data

The nuclear PDF framework assumes that there exists a unique set of PDFs that universally
can be used to calculate theory predictions using the factorization theorem. Given that charged
lepton and neutrino DIS are different processes, it is expected the shape of nuclear corrections
are different. The corrections will be the same if the bound nucleon PDFs receive the same
nuclear corrections. This is roughly true for 0.01 ≤ x ≤ 0.6, which is the region where most
nuclear data are in. Thus, we expect that the shape of nuclear correction for neutrino DIS is
rather similar to the one in charged lepton DIS.

To study nuclear corrections of neutrino DIS cross sections directly from the data, we con-
struct a ratio :

Rσ =
σ(x, y, E)

σf ree(x, y, E)
, and ∆Rσ =

∆σ(x, y, E)
σf ree(x, y, E)

, (4.14)

Here, σ represents the cross section data for a given x, y, E. ∆σ(x, y, E) is the total sum of
statistical and systematical uncertainties added in quadrature, except for the uncertainty in
normalization. If the data prefers bound-nucleon PDFs that are identical to the free ones, then
the ratio Rσ is expected to be around unity. Thus, deviations of R away from unity measure
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the nuclear correction for the observable σ. To get an x-dependence for the ratio, we construct
a weighted average, such that for a given x the weighted-average ratio and its uncertainty are:

Rx = ∑
i

wiRσ
i , (4.15)

∆Rx =

(
∑

i
w2

i (∆Rσ
i )

2

)1/2

, (4.16)

wi =

(
∑

j

1
(∆Rσ

j )
2

)−1
1

(∆Rσ
i )

2 , (4.17)

where the sums over data point indices i, j are done for all points with the same x. This av-
eraging procedure is similar to the one used in Ref. [89], although there are differences in the
weight wi and ∆R. Our averaging method is based on maximum likelihood estimation of a sin-
gle quantity R, given multiple data {R1 ± ∆R1, R2 ± ∆R2, ...RN ± ∆RN}. The uncertainty ∆Rx

can be understood as the “spread” of ratio data if the experiment is repeated many times. This
averaging procedure could be understood in the limit that the nuclear ratio R is independent
of the kinematic variables that were averaged out, in this case, y and E, or equivalently y and
Q2. Thus we assume that the dependence on y and Q2 is largely canceled out in the ratio. We
have checked that such an assumption is reasonably valid for a wide range of Q2 and y. De-
viation from this assumption can be observed at x = 0.015 and x = 0.75 where R can be seen
spread around unity quite widely. Therefore, any inference based on this averaging procedure
at x = 0.015 and x = 0.75 should be done with caution. To emphasize the shape of the nuclear
correction, we also plot the interpolation (solid lines), obtained from fits to the following ratio
parametrization [70]

R(x) = a1 + a2x + a3ea4x + a5xa6 . (4.18)

In the left panel of Fig. 4.2, we show the shape of the cross section ratio where σf ree is
computed using our proton PDF baseline[65]. We can observe the rough x-shape for the nuclear
correction for (anti)neutrino scattering process. For the CCFR and NuTeV data, although they
generally agree at low x, at x > 0.4, the NuTeV data is consistently above the CCFR data sets.
This aligns with the observation in Ref. [70]. Overall, for the iron neutrino data (CDHSW,
CCFR and NuTeV), there is no obvious shadowing at low x (x ≤ 0.1). This is even more so
for the CDHSW data. However, one should remember that the bin center correction was not
applied for the CDHSW data, which affects largely low- and high-x data points [70]. Chorus
anti-neutrino data shows rather typical nuclear correction expected from charged-lepton DIS,
represented by the SLAC/NMC curve[86]. In short, while the shape of nuclear corrections at
x ≳ 0.1 in neutrino-iron DIS is similar to those in charged lepton DIS, a striking difference can
be observed at low x (x ≲ 0.1).

It is worth noting that the nuclear corrections presented in the left panel of Fig. 4.2 always
depend on the free nucleon PDFs used to compute the denominator in the ratio Rσ. Therefore,
one may have different results when other proton PDFs are used. On the right panel of Fig. 4.2,
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we show the weighted average of cross section ratio, where the denominator σf ree is computed
using CT18NLO (no-ν-A)[105] proton PDFs instead. One can see that, for neutrino-iron data,
the nuclear correction curves are closer to the SLAC/NMC one at low x, while deviating further
at high x. This should serve as a warning to draw conclusions about the existence of shadowing
in neutrino data from observables, which are not purely data driven and depend on some
assumptions such as the proton PDFs.

4.5 The Base Fit : nCTEQ15WZSIHdeut
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FIGURE 4.4: The ratio of nuclear parton distribution functions of the
nCTEQ15WZSIH and nCTEQ15WZSIHdeut analyses with respect to the

nCTEQ15 analysis for lead at the scale Q2 = 4 GeV2.

To study the compatibility of the neutrino data with the other data used in the previous
analysis [84], we need to set up a reference fit to which the combined fit with neutrino data
will be compared. The reference fit is called nCTEQ15WZSIHdeut, and it is based on the
nCTEQ15WZSIH analysis, which used the following data sets :
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ATLAS Run I CMS Run I CMS Run II ALICE LHCb DIS DY SIH W,Z Total
W− W+ Z W− W+ Z W− W+ W− W+ Z LHC

nCTEQ15 (1.38) (0.71) (2.88) (6.13) (6.38) (0.05) (9.65) (13.20) (2.30) (1.46) (0.70) 0.91 0.73 (0.25) (6.20) 1.66
nCTEQ15WZSIH 0.64 0.26 1.76 1.31 1.16 0.11 0.74 1.14 0.76 0.04 0.56 0.91 0.78 0.41 0.91 0.83

nCTEQ15WZSIHdeut 0.56 0.37 1.33 1.01 1.13 0.13 0.70 0.90 0.75 0.05 0.63 0.85 0.79 0.45 0.77 0.78

TABLE 4.3: Comparison of the χ2/pt for the nCTEQ15, nCTEQWZSIH and
nCTEQ15WZSIHdeut analyses for selected data sets. Numbers appearing inside
brackets show the χ2/pt values for data sets that are not used in the correspond-

ing fits.

• Charged lepton DIS data from [12–18, 106–115]

• Drell-Yan lepton pair productions data from [116, 117]

• Single Inclusive Hadron data from [118–124]

• Drell-Yan W and Z production data from LHC [125–132]

In the nCTEQ15WZSIHdeut analysis, we impose the following kinematical cuts. For DIS
data, we apply our standard kinematic cuts : Q2 > 4 GeV2 and W2 = M2

p + Q2(1 − x)/x >

12.25 GeV2, where Mp is the nucleon mass. As in [84], we use the same strict pT ≥ 3 GeV cut for
all single inclusive hadron data (compared to pT ≥ 1.7 GeV in the nCTEQ15 and EPPS16 analy-
ses). The main difference with the analysis in [84] is that now deuteron nuclear effects are taken
into account when calculating deuteron structure function FD

2 . There are three approaches that
one can use to apply deuteron nuclear effects to the theory predictions :

• ’ISO-CJ’ method :

FD
2 ≡ FISO,CTEQ

2
FD,CJ15

2

FISO,CJ15
2

(4.19)

• ’P-CJ’ method :

FD
2 ≡ Fp,CTEQ

2
FD,CJ15

2

FP,CJ15
2

(4.20)

• ’D-CJ’ method :
FD

2 = FD,CJ15
2 (4.21)

Here, FISO,CTEQ
2 is an isoscalar structure function using our base proton PDFs[65]. These three

methods are equivalent if the base proton PDFs used to compute FISO
2 and FP

2 are the CJ15 PDFs.
In this work, we use P-CJ method as it gives the best χ2 with the conservative cuts used in this
analysis. Note that similar approach was also adopted in the previous nCTEQ analysis [60].

In the nCTEQ15WZSIHdeut fit, we enlarged the set of free parameters from 19 to 27 :

auv
1 , auv

2 , auv
4 , auv

5 , buv
1 , buv

2 , adv
1 , adv

2 , adv
4 , adv

5 , bdv
1 , bdv

2 , aū+d̄
1 , aū+d̄

2 , aū+d̄
5 , ag

1 , ag
4 , ag

5 , bg
0 , bg

1 , bg
4 , bg

5 ,

as+s̄
0 , as+s̄

1 , as+s̄
2 , bs+s̄

0 , bs+s̄
2 .

Beside these PDF parameters, there are 10 additional normalisation parameters which are also
determined in the fit using the approach discussed in section 3.1.2. Specifically, 7 normalisation



4.6. Neutrino DIS Data Fit 67

Dimuon NuTeV ν NuTeV ν̄ CCFR ν CCFR ν̄ Chorus ν Chorus ν̄ CDHSW ν CDHSW ν̄ Total
χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts χ2/pt #pts
1.06 150 1.51 1170 1.25 966 1.00 824 1.00 826 1.21 412 1.09 412 0.68 465 0.72 464 1.12 5689

TABLE 4.4: χ2/pt value for each data set from the DimuNeu fit.

parameters are used to describe the single inclusive hadron experimental data and 3 normal-
isations are used for the description of the W- and Z-boson production measurements from
the LHC. Note that, in the original nCTEQ15WZSIH analysis[84], only 7 normalization pa-
rameters are fitted, while normalizations for the LHC data are taken from nCTEQ15WZ anal-
ysis[79]. After fitting 940 data points from the same experiments that were also used in the
nCTEQ15WZSIH analysis [84], we obtain a χ2 = 735 corresponding to χ2/pt = 0.782.

In Tab. 4.3, we compare the quality of the new nCTEQ15WZSIHdeut fit with the previous
nCTEQ15WZSIH and the nCTEQ15 analyses. The values of χ2/pt for each experiment are dis-
played in Fig. 4.3. The resulting PDFs are then compared for all relevant flavours at the scale
Q2 = 4 GeV2 in Fig. 4.4. All PDF uncertainties in the figure are constructed using the same
∆χ2 = 45 tolerance. There are several differences that can be observed between the original
nCTEQ15WZSIH and the nCTEQ15WZSIHdeut analyses. In all parton flavors, we observe
larger uncertainties compared to the nCTEQ15WZSIH analysis. This is connected to the en-
larged number of free parameters, which can more realistically describe the true uncertainty.
The differences in the central values for the up- and down-quark parton distributions are the
expected consequences of removing the isoscalar corrections and of the different treatment
of the deuterium in DIS data together with a slightly larger number of free parameters. The
differences seen in the gluon distribution can be attributed to different free parameters used to
describe the gluon PDF as well as secondary effects on the gluon from altered scaling violations
coming from the modified deuteron data. In the case of the strange quark, the only constraint
comes from the W and Z boson data from the LHC as well as the sum rules linking all the
PDFs together. Given the lack of data constraining the strange quark, we conclude that what
is displayed in Fig. 4.4 is just the parametrization bias where even our parametrization with
a large number of free parameters cannot reproduce the true uncertainty in the determination
of the strange quark PDF, which should be regarded as much wider than the plotted bands in
Fig. 4.4. It is here where the neutrino DIS data could play a major role in a global PDF analysis,
providing additional sensitivity to the strange quark PDF.

4.6 Neutrino DIS Data Fit

nPDF global analysis assumes QCD factorization theorem, which posits the existence of unique
and universal PDFs for all processes. Therefore, one way to check, before doing a combined a
global analysis, if a set of data S is compatible with another set S̄ is to compare the extracted
nPDFs from S and S̄.

In this section, we will compare the nPDFs from a fit with neutrino and dimuon data alone,
which we call the DimuNeu fit, to those from reference fit. Note that extracting a reliable set of
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FIGURE 4.5: The ratio of nuclear parton distribution functions for the full nuclei
- iron (A = 56, Z = 26) - to the nPDF of full nuclei made up of free protons and

neutrons both at the scale Q2 = 5 GeV2.
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nPDFs from the neutrino data alone is not straightforward due to the lack of sufficient flavor
separations. During the fitting procedure, we want to have a reasonable fit, indicated by a good
goodness-of-fit. On the other hand, we also want to make sure that the data are not overfitted
by varying the least constrained flavor PDFs. To avoid this, we are forced to use certain as-
sumptions, which could potentially introduce additional theory biases. Therefore, we have to
make sure that the additional assumptions do not affect the fit too much. This can be checked,
for example, by requiring that upon using the assumptions, the final χ2 value differ from the
one without the assumptions only by less than a few percents. In the DimuNeu fit, we set the
gluon PDF parameters to be the same as in the nCTEQ15WZSIHdeut fit. Furthermore, we set
d̄/ū ratio to be the same as in the free proton case, as we assume that the nuclear correction to
ū and d̄ are similar and cancel in the ratio [85].

In Table 4.4 we show the total χ2 per degree of freedom as well as the χ2 per degree of
freedom per data set. Based on the total χ2 in Tab. 4.4, we see that the DimuNeu result can
decently describe all the neutrino data. We see however that not all data are described equally
well. For example, the NuTeV data still relatively large χ2/N. As was stated in previous
analyses and verified also in the course of this analysis, the NuTeV neutrino data cannot be
adequately described in this nPDF framework even if the data are fitted alone.

In Fig. 4.5, we compare the nPDFs extracted from the neutrino data to nCTEQ15WZSIHdeut
nPDFs as discussed in section 4.5. We observe that the results from the DimuNeu and nCTEQ15-
WZSIHdeut analyses are distinctly different for the valence quark PDFs as well as for the non-
valence quark PDFs. The strange quark nPDF also differs between the two analyses but they
are still within the uncertainties. The gluon PDF parameters were fixed and so the gluon PDF
is the same in both analyses.

To qualitatively examine the tension between the neutrino and charged-lepton data, we
compare the predictions from the nCTEQ15WZSIHdeut and DimuNeu fits to charged lepton
nuclear ratio and F2 data from NuTeV[70] and CDHSW[98]. On the right panel of Fig. 4.6, we
plot for Q2 = 5 the theory predictions for charged current (CC) structure function ratio R(F2),
defined by:

R[FCC
2 ] =

FCC
2 [ f A

i ]

FCC
2 [ f A,free

i ]
, (4.22)

where FCC
2 = (FνA

2 + Fν̄A
2 )/2 and f A,free

i is the free proton PDF. Looking at R[FCC
2 ] predictions

from DimuNeu fit, one can see very similar overall pattern as in Rν-curves in Fig. 4.2. On the
left panel in Fig. 4.6, the usual charged-lepton FFe

2 /FD
2 predictions for the same Q2 = 5 GeV2

are shown. The error bands from the DimuNeu fit are obtained with the same χ2 tolerance as
in nCTEQ15WZSIHdeut, namely ∆χ2 = 45. For both charged and neutral current processes,
some discrepancies between DimuNeu and nCTEQ15WZSIHdeut predictions can be observed
basically at all x. In particular, DimuNeu prediction generally is significantly higher at low x
and at x > 0.1 than that of nCTEQ15WZSIHdeut. At glance, it seems that the tension can be
relaxed by enlarging the normalization factor of the red curve by ≲ 3%. However, doing so will
increase the tensions with the green curve at low x which is driven mainly by NMC calcium
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data[107] as shown on the left panel of Fig. 4.6.
In Fig. 4.7, we show the predictions of DimuNeu and nCTEQ15WZSIHdeut for W± pro-

duction at the LHC. The data from CMS run II is also shown. We can see that both fits can
describe the data well. This is actually expected as both fits have the same gluon PDF, which in
turn gives a dominant contribution to the vector boson production cross section.

4.7 Combined Analysis

Analysis name χ2
S/N χ2

S/pt χ2
S̄/N χ2

S̄/pt ∆χ2
S ∆χ2

S̄ pS/pS̄

nCTEQ15WZSIHdeut 735/940 0.78 - - 0 - 0.500 / -
DimuNeu - - 6383/5689 1.12 - 0 - / 0.500

DimuChorus - - 1059/974 1.09 - 0 - / 0.500
BaseDimuNeu 866/940 0.92 6666/5689 1.17 131 283 0.99987/0.990

BaseDimuNeuU 861/940 0.92 5569/5689 0.98 126 - 0.99978 / -
BaseDimuNeuX 781/940 0.83 5032/4644 1.08 46 - 0.908 / -

BaseDimuChorus 740/940 0.79 1117/974 1.15 5 58 0.559 / 0.885

TABLE 4.5: Statistical information such as the total χ2 and the number of data
points for all analyses discussed here are presented. Moreover, the χ2-percentiles
with respect to the default data sets of the reference fit nCTEQ15WZSIHdeut (de-

noted S) and to the neutrino only fits (denoted S̄) are also given if applicable.

In this section, we discuss the inclusion of the neutrino data in a global analysis with data
sets used in the nCTEQ15WZSIHdeut fit. We will discuss several fits that reflect the way we
lessen the tensions. In all these fits, different compatibility definitions as discussed in Section
3.4 will be assessed. First, we will discuss the BaseDimuNeu fit, which is just a combined fit
that includes data sets used in nCTEQ15WZSIHdeut and DimuNeu analyses. We will see that
the BaseDimuNeu analysis does not satisfy all S-, S̄-, and SE- compatibility criteria. We then
discuss other combined fits that contain fewer data points than in the BaseDimuNeu fit, whose
focus is to lessen the tensions based on different approaches :

1. Large tensions can often be caused by very precise experimental data, and a compromise
can be reached if it is believed that the estimate of the experimental errors is underesti-
mated. In such a case, the errors might be artificially enlarged. This approach leads to
BaseDimuNeuU fit.

2. If the tensions can be attributed to a specific kinematic region, they can be removed by
imposing a kinematic cut on the neutrino data. This approach leads to BaseDimuNeuX.

3. The last option is to identify experiments that are still consistent with the bulk of the
original data and include only those in our analysis. This leads to BaseDimuChorus fit.
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FIGURE 4.8: Distribution of the variable SE for all experiments in the BaseD-
imuNeu, BaseDimuNeuU, BaseDimuNeuX and BaseDimuChorus fits. All pan-
els show the fitted Gaussian distribution to the actual SE distribution (blue) com-

pared to the ideal Gaussian SE distribution with µ = 0 and σ = 1 (red).
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FIGURE 4.9: Ratio of the full iron PDFs to the corresponding PDFs from
nCTEQ15WZSIHdeut fit at Q2 = 4 GeV2. All uncertainty bands are obtained

using the Hessian method with ∆χ2 = 45.
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FIGURE 4.10: Scans of the χ2 function along the PDF parameter directions vary-
ing always one free parameter at a time while other parameters were left fixed at
the global minimum of the BaseDimuNeu analysis. The breakdown into χ2 for

classes of experimental data is also shown.
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4.7.1 BaseDimuNeu

In this section, we discuss the combined fit of these two. The fit is referred to as BaseDimuNeu,
which contains all the data from the reference nCTEQ15WZSIHdeut analysis and all inclusive
(anti-)neutrino DIS data from the CDHSW, Chorus, CCFR and NuTeV experiments as well as
semi-inclusive di-muon data from CCFR and NuTeV. The total number of the included data
points is 6629 pts. We open the same 27 free parameters to determine nuclear PDFs. We obtain
χ2 = 7532 or χ2/pt = 1.14.

Before going further, let’s discuss the compatibility between S=nCTEQ15WZSIHdeut and S̄
=DimuNeu. We can use several definitions of compatibility as discussed in Section 3.4, namely
S-, S̄-, and SE-compatibility. To assess these compatibility criteria, in table 4.5, we show statis-
tical information for the BaseDimuNeu fit and all other fits we consider in this work. To assess
the S(S̄)-compatibility, we can take a look at the percentile pS(S̄) of the χ2

S(S̄) in the combined
fit. For BaseDimuNeu case, we can see that pS = 0.99987 and pS̄ = 0.99, much higher than
ptresh = 0.95 threshold value. This suggests that both S and S̄ are not S- and S̄-compatible.
To assess SE-compatibility, in Fig. 4.8, we show the distribution of SE variable from each data
for the BaseDimuNeu and other fits that will be discussed later. For the BaseDimuNeu fit, we
can see that the distribution is much flatter than the ideal standard normal one, suggesting
many data sets are pulled outside their respective confidence regions. Thus, we see that the
BaseDimuNeu fit fails in SE-compatibility test.

We can identify the origin of the inconsistencies by examining Tab. 4.6 and Tab. 4.7, which
shows the χ2/pt and SE values for selected experiments. We can see that the description of
the NuTeV, Chorus, and the di-muon data in the BaseDimuNeu analysis is much worse than
in the DimuNeu fit. Moreover, if one examines the shifts in the description of the experiments
in the reference the nCTEQ15WZSIHdeut analysis, we can discover large shifts in χ2/pt or
alternatively in the SE variable, especially in precise DIS experiments taken on iron, calcium
and carbon.

To see the level of pulls from DimuNeu data, let’s take a look at the comparison between the
fitted PDFs from BaseDimuNeu and nCTEQ15WZSIHdeut for iron. To better see the difference,
we rescale the PDFs with the central values of PDFs from nCTEQ15WZSIHdeut and show the
ratio in Fig. 4.9. We can clearly see that the up- and down-quark valence PDF distributions as
well as the strange-quark nuclear PDF from the global analysis including all the neutrino data
lie outside or at the edge of the error band of the reference nCTEQ15WZSIHdeut analysis.

To better see how the tensions realize at the level of nPDF parameters, we show the χ2 scan
by varying one parameter at a time in Fig. 4.10. In Fig. 4.10 we see that for many quark pa-
rameters the result of the BaseDimuNeu analysis is a compromise between the neutral current
DIS data already present in the nCTEQ15WZSIHdeut analysis (labeled DIS in Fig. 4.10) and
the newly added inclusive neutrino DIS data (labeled DISNEU). The DIS and DISNEU subsets
show clear sensitivity to the quark valence and the sea ū + d̄ parameters, but the minimum
preferred by those data are widely separated. The situation is different in the case of strange
quark, where neutrino data seems to provide much better constraints compared to the charged



74 Chapter 4. Global Analysis with Netrino Data

Data set #pts
χ2/pt (SE) χ2/pt (SE)
DimuNeu BaseDimuNeu

CDHSW ν 465 0.68 (-5.29) 0.59 (-7.01)
CDHSW ν̄ 464 0.73 (-4.47) 0.69 (-5.22)
CCFR ν 824 0.99 (-0.09) 1.03 (0.56)
CCFR ν̄ 826 1.00 (0.07) 1.02 (0.45)
NuTeV ν 1170 1.51 (11.12) 1.61 (13.05)
NuTeV ν̄ 966 1.25 (5.16) 1.27 (5.50)
Chorus ν 412 1.21 (2.85) 1.25 (3.40)
Chorus ν̄ 412 1.09 (1.26) 1.25 (3.35)
CCFR dimuon ν 40 1.70 (2.79) 2.52 (5.32)
CCFR dimuon ν̄ 38 0.79 (-0.89) 0.64 (-1.68)
NuTeV dimuon ν 38 0.98 (-0.06) 2.11 (4.01)
NuTeV dimuon ν̄ 34 0.73 (-1.16) 1.16 (0.70)

TABLE 4.6: Statistical information on the description of the neutrino data sets
used in different analyses.

Experiment Target ID #pts
χ2/pt (SE) χ2/pt (SE)
Reference BaseDimuNeu

NMC-95 C/D 5113 12 0.88 (-0.20) 1.70 (1.59)
NMC-95,re C/D 5114 12 1.18 (0.53) 2.16 (2.40)
NMC-95 Ca/D 5121 12 1.15 (0.46) 2.98 (3.66)
BCDMS Fe/D 5101 10 0.63 (-0.81) 2.00 (1.97)
BCDMS Fe/D 5102 6 0.48 (-0.93) 1.62 (1.09)

TABLE 4.7: Statistical information on the description of the selected neutral cur-
rent DIS data sets used in the reference nCTEQ15WZSIHdeut and BaseDimuNeu

analyses.

lepton DIS data. It is interesting here to see that the dimuon data (labelled DISDIMU) and the
charged lepton DIS shows the same preference for the strange quark PDF parameters, contra-
dicting that of neutrino data. This tension can also be seen in Tab. 4.6 where the listed χ2/pt
of the di-muon data signifies that they are described much worse than in the neutrino only
DimuNeu analysis.

To summarize, we have seen that combining data sets in Base=nCTEQ15WZSIHdeut and
DimuNeu analyses leads to S-, S̄-, and SE- incompatibilities. The tensions seems to originates
from the difference in both valence and sea quark PDFs. Interestingly, both charged lepton DIS
and dimuon data prefers similar strange quark PDFs, while at the same time contradicting the
preference from the neutrino data.

4.7.2 BaseDimuNeuU

It has been suggested in [87, 133] that ignoring the correlation of the NuTeV data can relax
the tensions with the charged lepton data. In this section, we will investigate further whether
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the impact of ignoring correlation is significant enough for the combined fit to pass all the
compatibility criteria.

We repeat the BaseDimuNeu analysis, but now the correlation from NuTeV data is ignored.
We call the new fit BaseDimuNeuU. We report the statistical information of BaseDimuNeuU
fit in Tab. 4.5. Examining the table, we can see the neutrino data are described much better
(χ2/pt=0.98). However, the tension with the neutral current data is unchanged. In the com-
bined fit BaseDimuNeuU, the increase of χ2 of nCTEQ15WZSIHdeut data is similar to that
of BaseDimuNeu, showing that both the data in DimuNeu and nCTEQ15WZSIHdeut are S-
incompatible. Some details of the tensions are visible in the SE-distribution shown in Fig. 4.8,
where the standard deviation of the distribution is much larger than unity (σ = 1.89), show-
ing that both the data do not pass the SE-compatibility criterion. Large SE contributions can
be traced back to the neutrino di-muon data from both CCFR (SE=4.77) and NuTeV (SE=3.19),
which as we have seen before prefer a different strange quark PDF compared to the inclusive
neutrino data. The tensions with the neutral current DIS data have also not improved but got
worse compared to the BaseDimuNeu analysis. The largest SE contributions still come from the
Ca/D and C/D data from the NMC collaboration (SE=3.91 and SE=2.45 respectively). These
data support shadowing at low x, and therefore contradict the preference from the neutrino
data. Therefore, we conclude that the use of correlated systematic errors for the NuTeV data
has no effect on the compatibility of the neutrino data with the rest of the scattering data and
neglecting the correlations does not reduce the tensions, even though the neutrino data seem
to be described well overall.
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FIGURE 4.11: The full iron PDFs at Q2 = 4 GeV2. All uncertainty bands are
computed using the Hessian method with ∆χ2 = 45.
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FIGURE 4.12: The fitted iron PDF ratio to nCTEQ15WZSIHdeut. All uncertainty
bands are obtained using the Hessian method with ∆χ2 = 45.

4.7.3 BaseDimuNeuX

Given that the nuclear ratio extracted directly from the neutrino iron data, as shown in Fig. 4.2,
displays no-shadowing at low x, we expect that the tensions between the charged lepton DIS
data and the neutrino data are maximal at low x. Therefore, it is natural to ask if excluding the
neutrino data from this region in a combined fit can relax the tensions. Before going further,
we note that using arbitrary cuts to remove the data which cause the largest tensions in each
experiment is not in line with the philosophy of a global analysis, because it introduces a bias or
preference to one data over another. The cut is justified only if there is some physical motivation
behind it. In this section, we will assume that the large tensions in the low-x region may be due
to e.g. a different mechanism for nuclear shadowing in charged current DIS [134] which is not
properly included in our theoretical framework, hence causing the tensions.

We proceed further by applying the low x cut (excluding all data with x ≤ 0.1) to all neu-
trino data, including the dimuon one. We then include these data in a global analysis with
nCTEQ15WZSIHdeut. We will call the new fit the BaseDimuNeuX fit. This fit use the same
fitting methodology as the BaseDimuNeu fit. The kinematic cut removes 1045 data points from
the low-x region of neutrino scattering data. The result of this analysis has χ2/pt = 1.04. Further
details and the breakdown of the χ2 for the usual data subsets are listed in Tab. 4.5.

Examining the statistical information of BaseDimuNeuX in the Tab. 4.5, we can see a dra-
matic reduction in tension between both data, as now we see ∆χ2 = 46, which corresponds to
91% percentile of χ2 of nCTEQ15WZSIHdeut. However, if we examine the SE distribution as
shown in Fig. 4.8, we can see that the distribution is not that much different from that of BaseD-
imuNeu and BaseDimuNeuU. However, most experiments are fitted well, and the distribution
is distorted by a few outliers. The tensions are experienced by the NuTeV neutrino cross-section
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FIGURE 4.13: Neutral current nuclear ratio FFe
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2 ] as defined in Eq. (4.22) (right) using the fitted nPDFs. Note that
we have applied nuclear corrections for the neutral current deuterium structure
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data (SE = 9.72 largest not shown) and by the NuTeV anti-neutrino data (SE = 3.37). Without
these data, the SE distribution would be very similar to that of nCTEQ15WZSIHdeut.

In Figs. 4.11 and 4.12 we compare the extracted nuclear PDFs to the ones of nCTEQ15WZSIHdeut.
Several points can be learned from the figures. First, the central values of BaseDimuNeuX are
within the errors of the reference analysis, although the shapes are still similar to that of BaseD-
imuNeu. This is expected as we have ∆χ2

S ∼ 45 in the BaseDimuNeuX. Second, we see a huge
reduction of PDF uncertainties, showing the constraining power of the new data. Note that
for strange quark PDF, the overall uncertainty seems to be bigger than the one from the refer-
ence fit. However, in the region where the data are located (0.1 ≲ x ≲ 0.3), the strange quark
uncertainty is reduced dramatically.

The predictions for the nuclear correction factors from the neutral and charged current DIS
are shown in Fig. 4.13 and compared with those of the reference analysis. For the neutral
current FA

2 /FD
2 at low x, we can see a perfect agreement with that of the reference fit. This is

expected as no neutrino data is present in this region due to the low x cut. At high x, we see dis-
agreement between the charged lepton data and the predictions from BaseDimuNeuX, which
shows softer shadowing. The shallow shadowing in the EMC region is a known behaviour of
the NuTeV data, see Fig. 4.2. Thus, tensions at high x, although less significant compared to
the ones in low x, are still present. On the right panel of Fig. 4.13, we see that the structure
function data from NuTeV and CDHSW are not correctly described even in the intermediate
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x region. In short, while the tensions at low x in BaseDimuNeuX largely disappear, there are
still ones at higher x. Overall, we see that applying the cut x > 0.1 to all neutrino data reduces
the tensions just enough for this fit to be considered consistent. It needs to be stressed once
more that this analysis can be considered the final result only if a plausible explanation for the
additional kinematic cut is put forward.
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FIGURE 4.14: The full lead PDFs at Q2 = 4 GeV2. All uncertainty bands are
computed using the Hessian method with ∆χ2 = 45.

4.7.4 BaseDimuChorus

In Section 4.7.3, we have seen that by excluding low x neutrino data, the tensions between
the charged lepton and neutrino data can be significantly reduced, but barely enough to pass
the compatibility criteria. In this section, we follow a slightly different approach: we only
include neutrino data that are compatible with the charged lepton data. By examining Fig.
4.2, it is not hard to identify Chorus data as potentially compatible with the charged lepton
data, as the extracted nuclear ratio shape is similar to SLAC/NMC curve. Furthermore, from
the scan in Fig. 4.10, we can see that the dimuon data prefer similar strange quark PDF as
the charged lepton data, suggesting compatibility. Thus, this time, we exclude all inclusive
neutrino data taken on iron, keeping only dimuon and Chorus data. The resulting combined
fit will be referred to as BaseDimuChorus, with an overall χ2/pt =0.97.

As usual, let’s start by examining the compatibility criteria for this fit. Looking at statistical
information for this fit in Tab. 4.5, we can see that the tensions with the charged lepton data
is almost nonexistent. This fit easily passes the S- and S̄- compatibility criteria. Examining the
SE distribution from BaseDimuChorus fit in Fig. 4.8, we can see that the resulting distribution
is now much more similar to the ideal case. The fit, in general, is overfitted, with average
SE given by µ = -0.54 and the standard deviation of the distribution is larger than the one for
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FIGURE 4.15: The fitted lead PDF ratio to nCTEQ15WZSIHdeut. All uncertainty
bands are obtained using the Hessian method with ∆χ2 = 45.

nCTEQ15WZSIHdeut (σ = 1.28). The wide SE-distribution is mostly due to Chorus data (χ2/pt
= 1.27, SE = 3.61) and also the di-muon data from CCFR (χ2/pt = 1.68, SE = 2.70). However, we
can see that these data were not described much better in any other analysis. Given that all the
other criteria do not signal inconsistencies, we can still regard the distribution as acceptable.

In Figs. 4.14 and 4.15 we show the extracted lead PDFs from this analysis and compare them
to those extracted from the reference nCTEQ15WZSIHdeut analysis. We can see that the central
values are almost identical, except for the strange quark PDF at high x. Looking at the PDF
uncertainties, we see slight reductions for the valence and sea quark PDFs, and no reduction in
the gluon PDF uncertainty. Given that we have an additional 974 data points from the neutrino
data, which is slightly more than the data in reference fit, we expect that the reduction of the
uncertainties would be bigger. This suggests that the Chorus data has large errors and therefore
does not have the same constraining power as the other data. Nevertheless, such a very good
agreement between the central values of BaseDimuChorus and the reference fit reassures us
that it is indeed possible to include some of the neutrino data in a fit with the charged lepton
data.

In Figs. 4.13, we compare the theory predictions for the neutral and charge current structure
function ratio from BaseDimuChorus and the reference fit. We can see that they are almost
identical. We can also see that the theoretical prediction from the BaseDimuChorus analysis
does not describe the structure function data from NuTeV or CDHSW well. This is expected as
we have omitted the inclusive neutrino data from iron. We should note that even though the
normalization of the cross-section data from NuTeV was allowed to vary as a part of the fitting
procedure, no shift was applied to the structure function data shown in Figs. 4.13. Shifting the
NuTeV data by the normalization of 3.6% determined in the BaseDimuNeuX analysis would
reduce the tensions between the data and the theory from this analysis.
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4.8 Application : Comparisons with the NOMAD and CDHS Data
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FIGURE 4.16: Comparison between the data from the NOMAD experiment [104]
and our theory predictions using our fitted PDFs for the ratio of the di-muon

production and the total charged current DIS cross-section.

As discussed in the previous sections, we have by now identified two fits that pass our
compatibility criteria: BaseDimuNeuX and BaseDimuChorus. In this section, we will discuss
how predictions from these two fits compare to neutrino data that was not included in these fits.
For this, we will use dimuon production data from NOMAD[104] and the structure function
ratio FCC,Fe

2 /FCC,D
2 data from the old CDHS experiment[135].

The dimuon data from NOMAD collaboration[104] takes the form of cross section ratio
σµµ/σcc as a function of Eµ, x and

√
ŝ =

√
Q2(1/x − x). Here, σµµ is the charm-tagged dimuon

cross section and σCC is the inclusive neutrino scattering cross section, Eν is the incoming neu-
trino energy and x is the Bjorken variable. To calculate the theory prediction for σµµ, we com-
pute the numerator σµµ as :

dσµµ(Eν) =
∫

Q>Q0

dσµµ

dx dy
dxdy (4.23)

dσµµ(x) = N∆x
∫

Q>Q0

dσµµ

dx dy
ϕ(Eν), dy dEν (4.24)

Here, Q2 = 2MEνxy, Q0 = 1.3 GeV, ∆x is the size of x-bin, ϕ(Eν) is the Eν-dependent flux and
N = (

∫
ϕ(E)dE)−1 where the integral lower bound is Eν = 3 GeV and for the upper bound

Eν = 297 GeV. Although NOMAD uses Q2 > 1 GeV2 acceptance, using slightly higher value
of Q2 should have a little effect on the predicted cross section ratio, as done in [136]. The Eν-
dependent flux function was obtained from NOMAD flux data (see Appendix A in [104]) which
are interpolated using the Lagrange interpolation. For the dimuon differential cross section, we
assume that the charm fragmentation function Dh

c (z) = Dc(z) is independent of the hadron h
and thus, upon integrating out z, see (4.12) :

dσµµ

dxdy
=

dσc

dξdy
Bν (4.25)
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where a normalized to one fragmentation function Dc(z) has been assumed. The Eν dependent
semi-leptonic branching ratio Bν = ∑h fhBr(h → µX) is parametrized as Bν(Eν) = a(1 +

b/Eν)−1 where a = 0.097 and b = 6.7 are taken from [104].
In the left panel of Fig. 4.16, we show the theory predictions for the cross section ratio

σµµ/σcc as a function of the incoming neutrino energy, while in the right panel, we show the
predictions for the charged current nuclear ratio FCC,Fe

2 /FCC,D
2 . We also show the corresponding

data from NOMAD[104] and CDHS dimuon[137]. We can see that the predictions from fits with
neutrino data(the BaseDimuChorus and BaseDimuNeuX fits), can better describe the NOMAD
data compared to the reference fit. However, all the NOMAD data are within the uncertainties
of the reference fit. Furthermore, at high energy, the predictions from the BaseDimuChorus fit is
in better agreement with the data compared to ones from the BaseDimuNeuX. We also observe
that the uncertainty on the prediction is much larger than the experimental errors. Therefore,
this data has the potential to put stronger constraints on the strange quark PDF.

In the right panel pof Fig. 4.16, we show the predictions for the old CDHS nuclear ratio
data[135]. It is interesting to see here that the CDHS data has a typical nuclear ratio shape:
shadowing, anti-shadowing, and EMC effect. This is drastically different from the Rν and Rν̄

curves in Fig. 4.2. Comparing theory predictions from our fits to the data, we can see that
we generally have a good agreement for all but the lowest x. That onset of shadowing/anti-
shadowing from the data is shifted to the right, making the shadowing the predictions over-
shoot the data at low x.

4.9 Summary

To summarize, we have investigated the long-standing tensions between the neutrino and
charged lepton data within the nCTEQ nPDF fitting framework. First, we set up a reference
fit, which is basically nCTEQ15WZSIH fit[84] with deuteron correction applied for the charged
lepton data, to which fits with the neutrino data will be compared. Before we performed a
global analysis with the neutrino data, we examined the shape of the nuclear ratio extracted
from the data directly and identified the low x region as the region that generate most tensions.
We then did several combined fits that represent our approaches to relax the tensions. The
combined fit with all the neutrino data, the BaseDimuNeu fit, does not pass our compatibil-
ity criteria. The same is also true for the BaseDimuNeuU fit, where the NuTeV correlation is
ignored.

The combined fits that pass our compatibility criteria are the BaseDimuNeuX, where low
x cut is applied to all neutrino data, and the BaseDimuChorus, where all inclusive neutrino
data on iron are excluded. These fits represent different philosophies when dealing with the
tension problem. If, there is a physical motivation that suggests different shadowing mech-
anism in neutrino DIS, then applying low x cut is scientifically acceptable and therefore the
BaseDimuNeuX represent the final combined fit with neutrino data. Alternatively, we drop all
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the inclusive neutrino data in the combined fit and work only with tensionless data such as
Chorus and Dimuon data. In this approach, the BaseDimuChorus is the final fit.

Without new neutrino DIS data, there is no way to decide if this inconsistency is due to a
different mechanism for the neutrino-nucleus interaction or simply a sign of problems in the
acquisition of the current neutrino data. Nevertheless, there is potential to obtain new crucial
data from novel ideas or experiments such as the proposed Forward Physics Facility [138] at
the LHC or from precise measurements of charged current DIS processes at the future Electron-
Ion-Collider [139, 140].
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Chapter 5

Target Mass Corrections

This chapter is based on the work in [141].
—————————————————————————
Deep inelastic scattering (DIS) of leptons has been known as a clean example of a process

that can be predicted using pQCD and factorization, and hence it has been the backbone for
both proton[7, 8, 10, 142–144] and nuclear[25, 60, 72, 88, 145–150] PDF determinations. This
process will be at the forefront at the future Electron-Ion Collider (EIC) [140] where DIS off
nucleons and various nuclear targets will be studied with high precision.

As the precision and the kinematical coverage of the DIS data has improved, it is impor-
tant to include all source of corrections that enter into the standard pQCD formalism. Such
corrections are electroweak radiative corrections[151], quark mass effects[152], target mass cor-
rections (TMCs)[91, 92, 153], and higher twist effects[10, 58, 154]. In this study, the main focus
will be the TMCs.

Target mass corrections arise when one takes into account the mass of the target hadron
in the calculation of DIS structure functions. Generally, there are two approaches to calculate
TMCs. The first is a method based on parton model and factorization. This standard ap-
proach was used in ref. [91, 92, 153, 155] to derive structure functions that include both heavy
quark and target mass. The second approach, that will be the main focus here, is based on
the operator product expansion (OPE)[34, 156, 157]. The use of OPE to derive TMCs at lead-
ing order of pQCD was first done by Georgi and Politzer[158]. This work was extended to
next-to-leading order (NLO) QCD by DeRujula, Georgi and Politzer [159]. Kretzer and Reno
employed OPE formalism to derive TMCs for charged current (CC) and weak neutral current
(NC) neutrino-nucleon DIS,including NLO QCD corrections and heavy quark mass effects us-
ing modern conventions[160]. A review article by Schienbein et al[161] put TMCs derived using
the OPE formalism in a compact form in terms of a master formula.

The purpose of this study is twofold. First, to clarify the use of master formula of TMCs,
reviewed in [160, 161] in the nuclear case. Second, to show that the shapes of the TMCs are
fairly independent of nPDFs and to provide parameterizations for the TMCs which can be
used for fitting nPDFs.
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5.1 TMCs in the OPE Formalism

In this section, we will give a brief overview about the operator product expansion (OPE) and
how it can be used to derive the TMC master formula[160, 161]. OPE can be regarded as
a systematic way to organize divergences appearing in a product of local operators as they
approach each other. As explained in [162], product of local operators are generally divergent.
An example for this is the (free) vacuum expectation value (vev) of a time ordered product of
scalar field operators

⟨0|Tϕ(x)ϕ(y)|0⟩ = −i
∫ d4 p

(2π)4
e−ip.(x−y)

m2 − p2 − iϵ
. (5.1)

It is clear that when x → y, the vev becomes infinite. OPE basically organized the divergence
as a series of local operators, whose coefficients are divergent. The statement of OPE goes back
to Kenneth Wilson[34, 163], which basically says that, for any two local operators Â(x) and
B̂(y), as x → y, the product can be written as

lim
x→y

Â(x)B̂(y) = ∑
i

ci(x − y)O(
x + y

2
) . (5.2)

The usefulness of OPE lies in the fact that the relation (5.2) are valid at operator level. This
means, once the coefficients ci(0) are known from a simple process, the values are still valid for
any states that sandwich the operators in the left hand side.

Having introduced the formalism, a question naturally arises : how is the OPE useful to
compute cross sections or structure functions in the DIS process? To answer this question, recall
that the cross section of DIS of a lepton scattering off a nucleon, l + N → l′ + X, is proportional
to leptonic and hadronic tensors Lµν and Wµν :

dσ ∼ LµνWµν . (5.3)

The leptonic tensor can be easily computed with the help of Feynman diagrams. For massless
leptons with a photon exchange, one has

∑
{λ}

Lµν
∣∣∣
QED

= 4e2
{

kµ
1 kν

2 + kν
1kµ

2 − (k1 · k2)gµν
}

. (5.4)

The hadronic tensor Wµν, is proportional to the square of the scattering amplitude of the process
γ∗ + N → X :

e2ϵµϵ∗νWµν =
1

2π ∑
X,spin

∫
dΠX (2π)4δ4(q + p − pX) |M(γ∗ + N → X)|2 . (5.5)

Here, e, ϵµ, q = k − k′, p, pX are the charge of the incoming lepton, the polarization vector of the
off-shell photon γ∗, the momentum of the photon, the momentum of the nucleon, and the total
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momentum of the hadronic final states respectively. As M(γ∗ + N → X) = eϵµ⟨X|Jµ(0)|p⟩,
one can see that the hadronic tensor can be written as

Wµν(q, p) =
1

2π ∑
X

∫
dΠX ⟨N(p)|Jν(0)|X⟩⟨X|Jν(0)|N(p)⟩ (2π)4δ4(q + p − pX) (5.6)

=
1

2π ∑
X

∫
dΠX ⟨N(p)|Jν(0)|X⟩⟨X|Jν(0)|N(p)⟩ei(q+p−pX) (5.7)

=
1

2π

∫
d4zeiq.z ⟨N(p)|Jµ(x)Jν(0)|N(p)⟩ , (5.8)

where we have used an integral representation of the delta function :

δn(y) =
1

(2π)n

∫
dn zeiz.y, (5.9)

translation invariance :

⟨N(p)|Jµ(0)|X⟩ = ⟨N(p)|eiP̂.x Jµ(x)eiP̂.x|X⟩ = e−i(p−pX).x⟨N(p)|Jµ(x)|X⟩, (5.10)

as well as the fact that we are considering an inclusive DIS process :∫
dΠX|X⟩⟨X| = 1. (5.11)

Alternatively, one can also rewrite (5.8) as1

Wµν(q, p) =
1

2π

∫
d4zeiq.z ⟨N(p)|[Jµ(x), Jν(0)]|N(p)⟩ . (5.12)

In short, we can express the hadronic tensor as a Fourier transform of a product of local op-
erators. At this stage, one can not use OPE directly as due to the integration, the space time
points, x and y = 0 in (5.8) do not necessarily approach each other. However, in the so-called
DIS limit, where

Q2 = −q2 → ∞ ν =
p.q
M

→ ∞, x =
Q2

2Mν
≤ 1 , (5.13)

one can prove that the biggest contribution to the integral in (5.8) comes from the region where
z2 → 0. Further arguments can be set up, as we will see, to show that, while expanding Wµν

in the short distance limit using OPE is not possible, one can use the forward amplitude Tµν

that allows the use of OPE. As Wµν and Tµν are related by an analytic continuation, once Tµν is
obtained using OPE, one can determine Wµν as well.

Following [162], to prove that the biggest contribution to the integral in (5.8) comes from

1To prove this, one first notes that the integral
∫

d4z eiq.z ⟨N(p)|Jν(0)Jµ(x)|N(p)⟩ = 0. This is because the delta
function δ4(q − p + pX) factor appearing in the integral after imposing translation invariance, see (5.6) and (5.7).
For physical DIS process, one require q2 ≤ 0 and W2 ≡ p2

X ≥ M2. The argument of the delta function can not be
zero, as if it is zero, then pX = p − q → W2 = M2 + q2 − 2p.q = M2 + q2(1 + 1

x ) ≤ M2, contradicting the physical
region condition. As the argument of the delta function is not zero for the physical region, the integral must vanish.
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the light cone region (z2 → 0), one first note that only the region where |q.z| is finite gives
non-zero contributions to the integral. This is because an infinite phase makes the integrand
oscillate without bound. One then needs to express q.z in terms of Q2 and ν, in order to see
how the DIS limit translates into further constraints on z. In the frame of the nucleon target,
ν = q0. Therefore,

q.z = q0z0 − q⃗ · z⃗ = ν

[
z0 − r

√
1 − q2

ν2

]
= ν

[
x0 − r

√
1 +

2Mx
ν

]
(5.14)

= ν(z0 − r)− Mxr +O(1/ν) , (5.15)

where r = q⃗ · z⃗/|⃗q|. Note that, at this stage, we do not require that Q2 → ∞. However, as we
assume x ≤ 1 is finite in the DIS limit, the assumption Q2 → ∞ is implicit. The linear expansion
of the square root in the RHS of (5.14) is valid as 2Mx/ν ≪ 1, which is a consequence of ν → ∞.
In order for q.z to be finite, then both terms in the RHS of (5.15) must be finite as well. Therefore,

|z0 − r| ≤ c
ν

, |r| ≤ d
Mx

. (5.16)

Here, c and d are some finite constants. Using the inequality relation : |a| − |b| ≤ |a − b|, the
first inequality in (5.16) gives

z2
0 ≤ (|r|+ c

ν
)2 ≃ |r|2 + 2c

r
ν
≤ z⃗2 +

2cd
Mxν

. (5.17)

Using the relation Mxν = Q2/2, this implies

z2 ≤ 4cd
Q2 . (5.18)

From (5.12) and using causality argument, that [Jµ(x), Jν(0)] = 0 for space like z (z2 < 0), one
can easily see that the integrand in (5.8) has support only for z2 ≥ 0. Thus, in the DIS limit, the
only non-vanishing contribution to the hadronic tensor (5.8) comes from the light-cone region :

0 ≤ z2 ≤ 4cd
Q2 . (5.19)

The proof of the light-cone dominance has been given. But there is still issue with the fact
that z2 → 0 does not necessarily imply zµ → 0. In the momentum space, zµ → 0 correspond to
q0 → ∞ (in the frame of target nucleon, this correspond to an infinite energy transfer El − El′).
This implies Q2, ν → ∞ while keeping Q2/ν2 fixed. This region is of course unphysical in the
DIS case, as this implies x → ∞. Thus, taking the short distance limit zµ → 0 (which is a
requirement for OPE to work) to the hadronic tensor Wµν contradict the DIS limit, invalidating
OPE to expand Wµν.

As mentioned earlier, while it is not possible to expand Wµν directly using OPE, one can
get around that by using OPE on the forward scattering amplitude Tµν. The forward scattering
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FIGURE 5.1: Contour for the integration of Tµν to avoid branch cuts (sawtooth
lines) in the complex w-plane.

amplitude is defined as

Tµν = i
∫

d4zeiq.z ⟨N(p)|TJµ(x)Jν(0)|N(p)⟩ (5.20)

Note that the factor 1/2π in (5.12) is replaced with i here. With the time ordered product ap-
pearing in the inner product, it is possible to calculate Tµν in perturbation theory using Feyn-
man diagram. Furthermore, Tµν is well-defined in the short distance limit (hence OPE can be
used). For the following discussion, it is useful to define w = 1/x = 2Mν/Q2, as w → 0 as
Q2 → ∞. Due to production of on-shell intermediate states, at fixed Q2, Tµν is analytic in w
except for when (p ± q)2 = M2 + Q2(1 ± w)2. Thus, Tµν has branch cuts : w > 1 (DIS region)
and w < 1 (unphysical region). By decomposing Tµν into its advanced and retarded parts, and
by using the inverse Fourier transform of Wµν :

⟨N(p)|Jµ(z)Jν(0)|N(p)⟩ = 2π
∫ d4q′

(2π)4 e−iq′.zWµν(p, q′) , (5.21)

it is then possible to derive the relation between Wµν and Tµν as[164]

i
(

Tµν

∣∣
w+iϵ − Tµν

∣∣
w−iϵ

)
= 2πWµν(p, q), for w > 0 , (5.22a)

i
(

Tµν

∣∣
w+iϵ − Tµν

∣∣
w−iϵ

)
= −2π

[
Wµν(p,−q)

]† , for w < 0 . (5.22b)

Note that Wµν(p, q) = 0 for w ≤ 1, but in this region, Wµν(p,−q) ̸= 0.
To obtain the Tµν for |w| ≤ 1 (the region where it is analytic), one can expand around

w = 0 as a Laurent series. For a Laurent series f (z) = ∑n=0 an(z − z0)n, the coefficient of the
expansion can be obtained as

an =
1

2πi

∮ f (z)
(z − z0)n+1 dz . (5.23)

2The plus sign in P ± q comes from γ + P → X. The minus sign however, comes from p + X → γ, which is
obvious if one pictures the relevant handbag diagram.
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Thus for the expansion of Tµν around w = 0:

Tµν(p, q) = ∑
n

aµν
n wn, (5.24)

one can calculate the Laurent series coefficient by following a contour as shown in Fig. 5.1.
Following (5.23), one can calculate the coefficient ai

n as

aµν
n =

1
2πi

∮ Tµν(w)

wn+1 dw

=
1

2πi

[ ∫ ∞

w=1
dw w−(n+1)(Tµν(w + iϵ)− Tµν(w − iϵ))

+
∫ −1

w=−∞
dw w−(n+1)(Tµν(w + iϵ)− Tµν(w − iϵ))

]
=

1
2πi

∫ ∞

1
w−(n+1)(−2πi)Wµν(w)dw +

1
2πi

∫ −1

−∞
w−(n+1)(2πi)Wµν(−w)dw

=
[
−1 + (−1)n+1

] ∫ 1

0
xn−1Wµν(x)dx,

where in the last line, we have used (5.22) and we have assumed that W†
µν = Wµν, which is

valid for neutral current DIS processes. It is then clear that

Tµν(p, q) = −2 ∑
2n

Wµν, 2n w2n , (5.25)

where Wµν, n is just the n-th Mellin moment of Wi:

Wµν, n =
∫ 1

0
xn−1Wµν(x)dx, (5.26)

It is interesting to see here that the coefficients of an odd powers of w in the Laurent series are
always zero.

Note that the Mellin moment here is computed in the physical region of Wµν. (5.25) then
serves as a bridge that connects Wµν, which is defined (namely, non vanishing) in the DIS
region, to Tµν, which is analytic in the short distance limit, in which OPE can be performed.
This also summarizes our strategy to compute Wµν. First, one evaluates the OPE of Tµν around
w = 0. This resulting expansion can then be matched to the Laurent series (5.25), giving the
Mellin moment of Wµν. By inverting the Mellin transform, one obtains Wµν.

5.1.1 TMC Master Formula for a Nucleon Target

In this section, we present the derivation of the TMC master formula. The main references
for this topic are [158, 160, 161, 164]. To derive the TMC formula, let’s start with relating the
hadronic tensor Wµν to the structure functions Fi’s. From the Lorentz invariant property of Wµν,
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one can parameterize the dependence on p and q as

Wµν(p, q) = −gµνW1 +
pµ pν

M2 W2 − iϵµναβ
pαqβ

M2 W3 +
qµqν

M2 W4 +
(pµqν ± pνqµ)

M2 W5,6 . (5.27)

Here, the structure functions Wi(x, Q2) are real. Furthermore, W6 = 0 due to time reversal
invariance of QCD. These structure functions are related to the ones measured by the experi-
mentalist Fi’s as

{
F1, F2, F3, F4, F5 (6)

}
=

{
W1,

Q2

2xM2 W2,
Q2

xM2 W3,
Q2

2M2 W4,
Q2

2xM2 W5 (6)

}
. (5.28)

Similarly, one can also parameterize Tµν in the same way :

Tµν(p, q) = −gµνT1 +
pµ pν

M2 T2 − iϵµναβ
pαqβ

M2 T3 +
qµqν

M2 T4 ±
(pµqν + pνqµ)

M2 T5,6 . (5.29)

Using OPE formalism, the forward amplitude Tµν can be written as

Tµν(p, q) = i
∫

d4zeiq.z ⟨N(p)|TJµ(x)Jν(0)|N(p)⟩ = ∑
iτ,n

ci,µ1,...,µn
τ,µν (q)⟨N(p)|Oi,τ

µ1...µn
|N(p)⟩ .

(5.30)

Note here that the Wilson coefficient ci,µ1,...,µn
τ,µν (q) is a function of q alone, while the dependence

of the momentum p of external nucleon resides in the expectation value ⟨N(p)|Oi,τ
µ1...µn |N(p)⟩.

The index τ appearing (5.30) denotes the twist, to be made clear in a moment. The index i
catalogs all possible operators for a given twist τ and n. Just like in EFT expansions, it is
customary to work with a an operator basis which is gauge invariant and transforms as an
irreducible representation of the Lorentz group, in this case, labelled by the spin s. An operator
of spin s will be a symmetric, traceless tensor fo rank s. As an example, for spin 2 with quark q
(instead of nucleon N) in the initial state :

O0,2
µν = ψ̄q

(
iγµ∂ν + iγν∂µ −

1
2

igµν /∂
)

ψq . (5.31)

For this case, the basis for spin-s operators is [30]

Or,τ
µ1,...,µs

= ψ̄γµi∂µ1 ...i∂µs(−∂2)rψq + symmetrization of µi -traces . (5.32)

Given the spin s and the mass dimension of these operators d, one can define the twist τ = d− s.
From a simple dimensional analysis, together with the requirement that all operators are gauge
invariant, it is easy to see that τ ≥ 2.

To relate the OPE formalism to parton model, it is sufficient to use twist 2 operators in the
OPE of Tµν. Furthermore, just like Wµν, using Lorentz invariance, one can parameterize the
Wilson coefficient ci,µ1,...,µn

τ,µν (q) in terms of scalar coefficients Ci’s. The OPE expansion of Tµν
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then reads [160]:

Tµν(p, q) = N
∞

∑
k=1

[
−gµνqµ1 qµ2 C2k

1 + gµ
µ1 gν

µ2
Q2C2k

2 − iϵµναβgαµ1 qβqµ2 C2k
3 +

qµqν

Q2 qµ1 qµ2 C2k
4

+ (gµ
µ1 qνqµ2 ± gν

µ1
qµqµ2)C

2k
5,6

]
· qµ3 ...qµ2k

22k

Q4k ⟨N|Oi,τ
µ1...µk

|N⟩ (5.33)

≡ T1µν + T2µν + T3µν + T4µν + T5µν + T6µν (5.34)

where N is a normalization constant to be determined later. The coefficients C2k
i ’s can be

computed by matching the expansion to quantities calculated in pQCD. The matrix element
⟨N|Oi,τ

µ1...µn |N⟩ which contains the p-dependence of the Tµν, can be written as

⟨N|Oi,τ
µ1...µk

|N⟩ = A2k
τ=2 Πµ1...µ2k(p) . (5.35)

The coefficient A2k
τ=2 is a scalar, which is sometimes called the reduce matrix element. Again,

using Lorentz invariant argument, the dependence of Πµ1...µ2k(p) can be parameterized as [158,
165]

Π̃µ1...µ2k =
k

∑
j=0

(−1)j (2k − j)!
2j(2k)!

{g...g}︸ ︷︷ ︸
j gµnµm ′s

{p...p}︸ ︷︷ ︸
(2k−2j) pµn ′s

(p2)j (5.36)

= {p...p}︸ ︷︷ ︸
2k pµm

+ {p...p}︸ ︷︷ ︸
(2k−2) pµm

{g...g}︸ ︷︷ ︸
1 gµmµn

M2 + {p...p}︸ ︷︷ ︸
(2k−4) pµm

{g...g}︸ ︷︷ ︸
2 gµmµn

M4 + . . . (5.37)

Here, g...g p...p is an abbreviation for a sum over all permutation of the indices. Thus, this rep-
resents symmetrization procedure. Note there are Nj,k = (2k)!/[2j j!(2k − 2j)!] ways to arrange
the indices. One can see that the first term in (5.37) which does not contain the target mass
dependence M2, correspond to the massless parton model. The target mass effects then reside
in terms with j > 0. As another remark, the contractions between the Wilson coefficients which
are functions of q, and Πµ1...µk result in polynomial of (2p.q)/Q2 = 1/x = w. Thus, at the end,
the OPE in this case is just a Taylor expansion around w = 0.

Now, to compute T′
i s, one need to match the OPE expression in (5.33) to the parameteriza-

tion in (5.29). To do that, one must first do the contractions between the Wilson coefficients and
the matrix elements in (5.33). As an example, for the contractions in T1µν in (5.33) :

T1µν = N
∞

∑
k=1

[
−gµνC2k

1 A2k
τ=2

]
× 22k

(Q2)2k ×
(

2k

∏
m=1

qµm

)
× Π̃µ1...µ2k

= −N gµν

∞

∑
k=1

[
C2k

1 A2k
τ=2

] k

∑
j=0

(2k − j)!
j!(2k − 2j)!

(
M2

Q2

)j

w(2k−2j) . (5.38)

The next is the contractions in T2µν. They are the most complicated as now we have two metric
tensors contracting on a bunch of other metric tensors g and momenta p. In fact, there five
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different ways for the two metrics to contract with terms in Πµ1...µ2k , each leads to different
prefactors gµν, pµ pν, qµqν, pµqν, pνqµ. Therefore, the coefficient C2k

2 will appear in the extracted
T1, T2, T4, T5, T6. Upon working the contractions, one finds

T2µν = N
2pµ pν

Q2

∞

∑
k=1

[
C2k

2 A2k
τ=2

] k

∑
j=0

(2k − j)!(2k − 2)!
(2k)!j!(2k − 2j − 2)!

(
M2

Q2

)j

w(2k−2j−2)

−N gµν

∞

∑
k=1

[
C2k

2 A2k
τ=2

] k

∑
j=0

(2k − j)!(2k − 2)!
(2k)!(j − 1)!(2k − 2j)!

(
M2

Q2

)j

w(2k−2j)

+N
2qµqν

Q2

∞

∑
k=1

[
C2k

2 A2k
τ=2

] k

∑
j=0

(2k − j)!(2k − 4)!
(2k)!(j − 2)!(2k − 2j)!

(
M2

Q2

)j

w(2k−2j)

−N
2(pµqν + pνqµ)

Q2

∞

∑
k=1

[
C2k

2 A2k
τ=2

] k

∑
j=0

(2k − j)!(2k − 3)!
(2k)!(j − 1)!(2k − 2j − 1)!

(
M2

Q2

)j

w(2k−2j−1) .

(5.39)

Just like T1µν, the contractions in T3µν is easy to evaluate. The result is

T3µν = −N iϵµναβ
pαqβ

Q2 (−1)
∞

∑
k=1

[
C2k

3 A2k
τ=2

] k

∑
j=0

(2k − j)!(2k − 1)!
(2k)!j!(2k − 2j − 1)!

(
M2

Q2

)j

w(2k−2j−1) .

(5.40)

Using the above results, Ti’s can be extracted as

T1 = N
∞

∑
l=0

w2l
∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j
(C2l+2j

1 A2l+2j
τ=2

)
+

j
(

C2l+2j
2 A2l+2j

τ=2

)
(2l + 2j)(2l + 2j − 1)

 , (5.41a)

T2 = N 2M2

Q2

∞

∑
l=0

w(2l−2)
∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j

(2l)(2l − 1)

(
C(2l+2j)

2 A(2l+2j)
τ=2

)
(2l + 2j)(2l + 2j − 1)

, (5.41b)

T3 = N M2

Q2

∞

∑
l=0

w(2l−1)
∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j

(2l)

(
C(2l+2j)

3 A(2l+2j)
τ=2

)
(2l + 2j)

. (5.41c)

Having derived the OPE expansion of T structure functions, there is still question how
the Wilson coefficients Ck

i and the reduced forward amplitude Ak
τ=2 can be calculated. To do

this, let’s assume the nucleon is massless. Therefore, the OPE expansions for Ti’s are exactly
the same as derived earlier, but with M2 = 0. Note that in order this statement to be true,
the reduced forward amplitude A2k

τ=2 must not depend on M. In the OPE expansions (5.41a),
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(5.41b), (5.41c), setting up M2 = 0 causes terms with j > 0 to vanish. Therefore

lim
M2→0

T1 = N
∞

∑
l=0

w2l
(

C2l
1 A2l

τ=2

)
, (5.42a)

lim
M2→0

Q2

2M2 T2 = N
∞

∑
l=0

w2l−2
(

C2l
2 A2l

τ=2

)
, (5.42b)

lim
M2→0

Q2

2M2 T3 = N
∞

∑
l=0

w2l−1
(

C2l
3 A2l

τ=2

)
. (5.42c)

This shows that the coefficient of the Laurent series of Ti’s are just Ck
i Ak

τ=2.
In the previous section, we derived the Laurent series of Tµν as

Tµν(p, q) = −2 ∑
2n

Wµν, 2n w2n . (5.43)

This implies that the Laurent series of Ti around w = 0 is given by

Ti(w) = −2 ∑
2n

W2n
i w2n , (5.44)

where Wn
i is just the n-th Mellin moment of Wi. Up until now, N is completely arbitrary. Any

value of N can be absorbed into Cn
i . For convenience, we set N = −2. Therefore, by inserting

(5.44) into (5.42), one obtains

Cn
1 An

τ=2 = lim
M2→0

Wn
1 = Fn

1 |M2=0 , (5.45a)

Cn
2 An

τ=2 = lim
M2→0

Q2

2M2 Wn−2
2 = Fn−1

2 |M2=0 , (5.45b)

Cn
3 An

τ=2 = lim
M2→0

Q2

M2 Wn−1
3 = Fn

3 |M2=0 . (5.45c)

From (5.44), (5.41), and (5.28), one can express the n-th Mellin moment of F as

F2l
1 =

∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j [
F2l+2j

1 |M2=0 +
j F2l+2j−1

2 |M2=0

(2l + 2j)(2l + 2j − 1)

]
, (5.46a)

F2l−1
2 =

∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j
(2l)(2l − 1)

(2l + 2j)(2l + 2j − 1)
F2l+2j−1

2 |M2=0 , (5.46b)

F2l
3 =

∞

∑
j=0

(2l + j)!
j!(2l)!

(
M2

Q2

)j 2l
(2l + 2j)

F2l+2j
3 |M2=0 . (5.46c)

At this point, the derivation is almost finished. We have successfully derived the Mellin mo-
ment of the full TMC structure functions in terms of the massless ones. The last step would be
inverting the Mellin transforms to obtain the original TMC structure functions. Here, we will
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demonstrate derivation only for F2. Useful identities that will be extensively used are summa-
rized here. For any integrable function B(y) over y ∈ [0, 1] and m ≥ 0, one has

1
(m + 1)

∫ 1

0
dy ym+1 B(y) =

∫ 1

0
dy ym H(y), (5.47a)

1
(m + 2)(m + 1)

∫ 1

0
dy y(m+2) B(y) =

∫ 1

0
dy ym G(y), (5.47b)

H(y) =
∫ 1

y
dy′ B(y′), and (5.47c)

G(y) =
∫ 1

y
dy′

∫ 1

y′
dy′′ B(y′′) =

∫ 1

y
dy′ (y′ − y) B(y′) . (5.47d)

Using (5.47b), one finds

F2l+2j−1
2 |M2=0

(2l + 2j)(2l + 2j − 1)
=
∫ 1

0
dy y2l+2j−2 g2(y), (5.48)

where
g2(y) ≡

∫ 1

y
dy′

∫ 1

y′
dy′′ (y′′)−2 F0

2 (y
′′) . (5.49)

Here, F(0)
2 is the massless structure function, obtained by taking the limit M2 → 0. (5.46b) then

can be rewritten as

F(2l−1)
2 =

∫ 1

0
dy y2l−2 g2(y) (2l)(2l − 1)

∞

∑
j=0

(2l + j)!
j!(2l)!

(
y2M2

Q2

)j

(5.50)

=
∫ 1

0
dy y−1 g2(y)

(2l)(2l − 1) y2l−1

(1 − y2M2/Q2)2l+1 . (5.51)

In the last step, we used the following identity :

∞

∑
j=0

(n + j)!
j!n!

zj =
1

(1 − z)(n+1)
. (5.52)

Then, the inverse Mellin transform can be evaluated as

F2(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−N F̃A N

2 (5.53)

=
x2

2πi
d2

dx2

∫ 1

0
dy

g2(y)
y(1 − y2M2/Q2)2

∫ c+i∞

c−i∞
dN

(y/x)N

(1 − y2M2/Q2)N (5.54)

= x2 d2

dx2

∫ 1

0
dy

g2(y)
y(1 − y2M2/Q2)2 δ

[
log
(

(y/x)
(1 − y2M2/Q2)

)]
. (5.55)
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The delta function of the log can be calculated as

δ

[
log
(

(y/x)
(1 − y2M2/Q2)

)]
=

[
y(1 − y2M2/Q2)

(1 + y2M2/Q2)

]
δ(ξA − y) . (5.56)

where

ξ =
2x

1 + r
, r ≡

√
1 + 4x2M2/Q2 =

(1 + ξ2M2/Q2)

(1 − ξ2M2/Q2)
, (5.57)

The ξ variable is often called Nachtmann variable, which reduces to Bjorken x for M = 0.
Finally :

F2(x) = x2 d2

dx2

∫ 1

0
dy

g2(y)
y(1 − y2M2/Q2)2

[
y(1 − y2M2/Q2)

(1 + y2M2/Q2)

]
δ(ξ − y) (5.58)

= x2 d2

dx2

[
(1 + r)2

4r
g2(y)

]
. (5.59)

Upon inserting the functional form of g2, one obtains the F2 structure function with target
mass correction included as a function of the massless one. To clearly indicate TMC structure
functions, a superscript "TMC" will be attached.

Finally, the master formula for target mass-corrected structure functions FTMC
j for j =

1, . . . , 6 reads [160, 161]:

FTMC
1 (x) =

x
ξr

F(0)
1 (ξ) +

M2x2

Q2r2 h2(ξ) +
2M4x3

Q4r3 g2(ξ) , (5.60a)

FTMC
2 (x) =

x2

ξ2r3 FA,(0)
2 (ξ) +

6M2x3

Q2r4 h2(ξ) +
12M4x4

Q4r5 g2(ξ) , (5.60b)

FTMC
3 (x) =

x
ξr2 FA,(0)

3 (ξ) +
2M2x2

Q2r3 h3(ξ) + 0 , (5.60c)

where the functions hi(ξ, Q2) and g2(ξ, Q2) are given by the integrals

h2(ξ, Q2) =
∫ 1

ξ
du

F(0)
2 (u, Q2)

u2 , (5.61a)

h3(ξ, Q2) =
∫ 1

ξ
du

F(0)
3 (u, Q2)

u
, (5.61b)

g2(ξ, Q2) =
∫ 1

ξ
du h2(u, Q2). (5.61c)
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Additionally, the target mass-corrected longitudinal structure function is given by

FTMC
L (x) = r2FTMC

2 (x)− 2xFTMC
1 (x)

=
x2

ξ2r
[F(0)

2 (ξ)− 2ξF(0)
1 (ξ)] +

4M2x3

Q2r2 h2(ξ) +
8M4x4

Q4r3 g2(ξ)

=
x2

ξ2r
F(0)

L (ξ) +
4M2x3

Q2r2 h2(ξ) +
8M4x4

Q4r3 g2(ξ) . (5.62)

Note that in the derivation of the master formula, one does not assume Callan-Gross relation
between F1 and F2. In fact, the relation is simply violated in the presence of TMC. Furthermore,
it is also violated if the heavy quark masses are included in the calculation of the massless
structure functions. Thus, the leading term FA,(0)

L will be non-zero for finite quark masses,
h2, g2 terms give the nucleon mass M contributions.

Regarding the master formula (5.71), a few remarks are in order. First, the argument of the
TMC structure functions in the LHS is the Bjorken x, while the F(0)

i , h2 and g2 are evaluated at
the x = ξ. As r ≥ 1, this implies ξ ≤ x. At high x, F(0)

i is monotonically decreasing, therefore,
F(0)

i (ξ)/F(0)
i (x) ≥ 1 at high x. Thus, we expect that at high x, FTMC

i (x) is higher than the
massless F(0)

i (x).
Looking at the master formula, it can be seen that F(0)

2 appears in the computation of FTMC
1

and FTMC
3 . Actually, this is the result of contractions in T2µν. After working out the contrac-

tion, T2µν contains Lorentz structures of W1, W2, W4, W5, W6 as can be seen in (5.39), with coef-
ficients that are proportional to C2k

2 A2k
τ=2 = F2k−1

2 . Therefore, the resulting TMC formula for
F1, F2, F4, F5, F6 depend on F(0)

2 .
Finally, it is worth noting that the derivation of the master formula presented above was

done without using perturbation theory, hence the formula is valid to all orders in pQCD.
pQCD enters when calculating the massless structure functions, which are connected to Cn

i An
τ=2

(hence Ti) through (5.45). It is the Wilson coefficients Cn
i that store the dependence on the order

of perturbative calculation. They are in principle calculable using perturbation theory. Cn
i can

be calculated, for example, by computing Tµν in photon-quark scattering γ∗ + q → γ∗ + q (in-
stead of γ∗ + N → γ∗ + N) and match the OPE expansion. Once we compute Cn

i to some order
of the strong coupling constant αs, the resulting Cn

i is also valid for any external state. If the
external state are the nucleon, then the reduce matrix elements An

τ encode the non-perturbative
nature of the nucleon, hence An

τ are directly related to parton distribution functions. Using the
notation of Refs. [160, 161], the master formula can be summarized in a single equation

FTMC
j (x, Q2) =

6

∑
i=1

Ai
jF

(0)
i (ξ, Q2) + Bi

jhi(ξ, Q2) + Cjg2(ξ, Q2) . (5.63)

The coefficients Ai
j, Bi

j, Cj are the same that are given in Tables I,II,III in [160]. As all the pertur-

bativity dependences are encoded in the computation of F(0)
i , the coefficients Ai

j, Bi
j, Cj, once

computed, are valid at all orders in pQCD.



96 Chapter 5. Target Mass Corrections

5.1.2 Comparisons of FTMC
i , Fleading

i , F(0)
i and Facot

i
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FIGURE 5.2: The F2 (left) and F3 (right) charged current (W+-mediated) DIS struc-
ture functions calculated using different methods: TMC, leading TMC, ACOT
and massless. The bottom panels shows the ratio to ACOT calculations. All cal-

culations are done using proton PDFs from nCTEQ15 proton PDF baseline.

The original ACOT[91, 92, 153] formalism to compute the DIS structure functions was com-
puted in the helicity basis within the framework of factorization and the parton model. Using
the helicity basis has the advantage of having a boost-invariant polarization vector, making it
easier to disentangle the partonic and hadronic structure functions. Furthermore, it elegantly
encodes the dependence on heavy quark masses and target mass in the Wigner rotation matrix.
As the ACOT method, which is based on the parton model, also includes target mass correc-
tions, it is interesting to compare the resulting structure function calculation from OPE and the
ACOT.

From the master formula (5.60), one can see that the biggest contributions to the calculated
TMC SF comes from the first term in the RHS of (5.60). For an obvious reason, this term is
called the leading TMC structure functions FA,leading

i :

Fleading
1 (x) =

x
ξr

F(0)
1 (ξ) , (5.64)

Fleading
2 (x) =

x2

ξ2r3 F(0)
2 (ξ) , (5.65)

Fleading
3 (x) =

x
ξr2 F(0)

3 (ξ) . (5.66)

To calculate these structure functions, we use the nCTEQ++ code that allows us to calculate
structure functions at LO and NLO using ACOT scheme. To calculate massless structure func-
tions F(0)

i (ξ) at x = ξ, the Nachtmann variable ξ is computed first for a given Bjorken x and
hadron mass M. F(0)

i (ξ) is then calculated with M=0.
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In top panels in Fig. 5.2, we show proton structure functions for W+-mediated process,
computed using master formula (5.60) (labelled as TMC in the figure), leading TMC (labelled
as leading), ACOT-based calculation (labelled as ACOT), and massless calculation (labelled as
massless). In the bottom panels, we show the ratio of these structure functions to the ACOT
ones. One can see that the difference between the massless and the other methods are dramatic,
especially in the larger x region. Comparing the full TMC and the leading calculations, one can
see that they are quite similar for all x. The difference between these two and the ACOT is
≲ 20% for x ≲ 0.6 at Q = 1.3.

5.2 Master Formula for a Nucleus Target

In this section, the TMC master formula for the DIS structure functions in l + A → l′ + X
collisions will be given. As now the target hadron is a nucleus, with mass significantly larger
than the proton mass, it is interesting to know how the TMC structure functions scale with A(
the mass number of the nucleus). This will be crucial for nPDF analysis, as many DIS nuclear
data are included, with some of them have data points that goes to very high x and low Q2 at
the same time.

In the lepton-nucleus DIS, let pA denotes the momentum of the nucleus. Then the Bjorken
variable is given by xA = Q2/(2pA.q). Requiring the invariant mass of the hadronic final states
p2

X ≥ M2
A, with MA is the nucleus mass, giving us xA ≤ 1, just like in the lepton-nucleon DIS.

In term of xA, the hadronic invariant mass can be written as3

W̃2
A = M2

A + Q2
(

1 − xA

xA

)
(5.67)

At this point, all results for the lepton-nucleon DIS derived in the previous section are valid also
for the lepton-nucleus case, with M and x are replaced with MA and xA. However, some care
needs to be given when trying to justify the use of OPE in the lepton-nucleus case. As discussed
earlier, the OPE expansion is valid when two local operators are close to each other z → 0. In
the lepton-nucleon DIS, the local operators are the currents Jµ(z) and Jν(0). It has been shown
that in the DIS limit, the light cone region z2 → 0 gives the most dominating contribution to the
hadronic tensor Wµν. For lepton-nucleus case, we also expect the same light-cone dominance,
as the constant c and d in (5.16) should be the same in the nuclear case. In the actual OPE of
Tµν, one assumes Q2, ν2

A → ∞, while keeping Q2/ν2
A fixed. Here,

νA =
pA.q
MA

(5.68)

In the frame of target nucleus, νA = (El − E′
l), hence it does not depend on A. Similarly also for

Q2 = −(k − k′)2. Thus, the ratio Q2
A/ν2

A only depends on the incoming and outgoing lepton,
and therefore does not depend on type of the target. As the OPE in nuclear case is identical to

3The use of tilde in W̃2
A shows that this is a total (unrescaled) quantity. All rescaled quantities will be denoted

without tilde.
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that in the nucleon case, the TMC master formula for lepton-nucleus DIS is identical:

F̃A,TMC
1 (xA) =

xA

ξArA
F̃A,(0)

1 (ξA) +
M2

Ax2
A

Q2r2
A

h̃A
2 (ξA) +

2M4
Ax3

A

Q4r3
A

g̃A
2 (ξA) , (5.69a)

F̃A,TMC
2 (xA) =

x2
A

ξ2
Ar3

A
F̃A,(0)

2 (ξA) +
6M2

Ax3
A

Q2r4
A

h̃A
2 (ξA) +

12M4
Ax4

A

Q4r5
A

g̃A
2 (ξA) , (5.69b)

F̃A,TMC
3 (xA) =

xA

ξAr2
A

F̃A,(0)
3 (ξA) +

2M2
Ax2

A

Q2r3
A

h̃A
3 (ξA) + 0 , (5.69c)

where the functions h̃A
i (ξA, Q2) and g̃A

2 (ξA, Q2) are given by the integrals

h̃A
2 (ξA, Q2) =

∫ 1

ξA

duA
F̃A,(0)

2 (uA, Q2)

u2
A

, (5.70a)

h̃A
3 (ξA, Q2) =

∫ 1

ξA

duA
F̃A,(0)

3 (uA, Q2)

uA
, (5.70b)

g̃A
2 (ξA, Q2) =

∫ 1

ξA

duA h̃A
2 (uA, Q2). (5.70c)

When studying lepton-nucleus DIS, it is useful to rescale the structure functions with the
mass number of the nucleus. This rescaling has been discussed in Section 2.6.1. In terms of
the rescaled structure functions FA

i (xN), where xN = AxA, MN = MA/A, the master formula
becomes

FA,TMC
1 (xN) =

xN

ξNrN
FA,(0)

1 (ξN) +
M2

Nx2
N

Q2r2
N

hA
2 (ξN) +

2M4
Nx3

N

Q4r3
N

gA
2 (ξN) , (5.71a)

FA,TMC
2 (xN) =

x2
N

ξ2
Nr3

N
FA,(0)

2 (ξN) +
6M2

Nx3
N

Q2r4
N

hA
2 (ξN) +

12M4
Nx4

N

Q4r5
N

gA
2 (ξN) , (5.71b)

FA,TMC
3 (xN) =

xN

ξNr2
N

FA,(0)
3 (ξN) +

2M2
Nx2

N

Q2r3
N

hA
3 (ξN) + 0 , (5.71c)

where :

ξN =
2xN

1 + rN
, rN ≡

√
1 + 4x2

N M2
N/Q2 =

(1 + ξ2
N M2

N/Q2)

(1 − ξ2
N M2

N/Q2)
, (5.72)

and the functions hA
i (ξN , Q2) and gA

2 (ξN , Q2) are given by the integrals

hA
2 (ξN , Q2) =

∫ A

ξN

duN
FA,(0)

2 (uN , Q2)

u2
N

, (5.73a)

hA
3 (ξN , Q2) =

∫ A

ξN

duN
FA,(0)

3 (uN , Q2)

uN
, (5.73b)

gA
2 (ξN , Q2) =

∫ A

ξN

duN hA
2 (uN , Q2). (5.73c)
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FIGURE 5.3: The upper bounds of Ri ≡ FTMC
i /FTMC−Leading

i for a) F2 and b) F3
for selected Q = {1.3, 1.5, 2, 3, 4, 6} GeV, (from top to bottom).

As a remark, note that the master formula (5.71) is very similar to (5.69) and (5.60). This a
consequence of the rescaling : xA MA = xN MN , xA/ξA = xN/ξN , rN = rA. The upper limit
of the integrals in (5.73) is uN = A. In practice, however, FA,(0)

i (xN) falls off very quickly for
x ≥ 1, therefore it is zero for xN ≥ 1. Thus, the upper limit of the integrals is effectively uN = 1.
Finally, nPDFs are often written as an average of bound proton and neutron PDFs :

f A
k =

Z
A

f p/A
k +

N
A

f n/A
k , (5.74)

where k represent parton flavor, Z and N denotes the atomic and neutron number respectively.
The bound nucleon PDFs, which usually differ from the free nucleon ones by ≲ 20% for xN ≤
0.8, are the ones that are fitted to the data in an nPDF global analysis. As FA,(0)

i are linear
functionals of f A

i , this means

FA,(0)
i =

Z
A

Fp/A,(0)
i +

N
A

Fn/A,(0)
i , (5.75)

where Fp,n/A,(0)
i are the massless structure functions computed using bound proton (neutron)

PDFs. Due to the averaging (5.75), one expects that FA,(0)
i varies rather slowly with A, with the

envelop given by the Fp/A,(0)
i and Fn/A,(0)

i . As a result, we also expect the same for the full TMC
structure functions. We will explore this universality in the following section.

5.3 TMCs for Various Nuclear Targets

As one of the main focuses of this study, the impact of TMCs on structure functions for various
nuclei will be examined. First, let’s see how structure functions with TMC applied differ to
the massless ones. In Fig. 5.4, we show the ratio of FA,TMC

i /FA,(0)
i computed using nCTEQ15

nPDFs for various nuclei (see Tab. 5.1) and for Q = 1.3, 3, 6 GeV. In the bottom panel of the
figure, we show the spread of the curves at Q = 1.3 GeV . In the figure, the dashed and dotted
lines correspond to proton and neutron respectively. We can see form the figure that the ratio
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Symbol A Z Symbol A Z Symbol A Z Symbol A Z
H 1 1 Be 9 4 Ca 40 20 Xe 131 54
D 2 1 C 12 6 Fe 56 26 W 184 74

3He 3 2 N 14 7 Cu iso 64 32 Au 197 79
He 4 2 Ne 20 10 Kr iso 84 42 Au iso 197 98.5
Li 6 3 Al 27 13 Ag iso 108 54 Pb iso 207 103.5
Li 7 3 Ar 40 18 Sn iso 119 59.5 Pb 208 82

TABLE 5.1: List of nuclei considered in this work. The nuclei indicated with “iso”
subscript are isoscalar nuclei; thus, the Z value can be half-integer.
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FIGURE 5.4: (Top panels) The ratio of (W+-mediated) DIS structure function
FA,TMC

i /FA,(0)
i , i = 2 (left) and i = 3 (right), for various nuclei. (Bottom pan-

els) the spread of the ratios around their averages.

quickly deviates from unity as we go to higher xN . Furthermore, for the same xN , the deviation
from unity is higher as Q decreases.

Note here that the argument of FA,leading
i is the nucleonic Bjorken xN , while terms on the

RHS are evaluated at ξN . Due to the suppression M2/Q2 for the h-term and M4/Q4 in the g
term, FA,leading

i is supposed to capture most of the target mass effects. As it is proportional to
FA,(0)

i (ξN), it is just as fast to calculate as in FA,(0)
i (ξN). As mentioned in the previous section,

FA,TMC
i /FA,(0)

i varied slowly with respect to A. As FA,leading
i already encodes most of the TMC

effects, the ratio Ri ≡ FA,TMC
i /FA,leading

i should be even more universal in A. In fact, this can
be seen from the upper bound for Ri, which can be computed by assuming structure functions
are monotonically decreasing (an entirely reasonable assumption in the large x region). Using
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this assumption, it is easy to derive the upper bound for Ri as [161]:

R2 ≡ FA,TMC
2

FA,leading
2

(xN , Q2) ≤ 1 +
(

MN

Q

)2 6xNξN

rN
(1 − ξ) +

(
MN

Q

)4 12x2
Nξ2

N
r2

N
(− ln ξN − 1 + ξ)

R3 ≡
FA,TMC

3

FA,leading
3

(xN , Q2) ≤ 1 −
(

MN

Q

)2 2xNξN

rN
ln ξN .

Note that there is no PDF dependence on the RHS. Here, we can see explicitly the powers of
(M/Q) which drive the ratios to unity for large Q. In Fig. 5.3, we plot these bounds as a
function of xN for selected Q values. One can see that the upper bounds are quite conservative,
reaching as high as R2 = 1.4 for Q = 1.3 GeV. Keep in mind that the upper bounds are valid
for all FA,(0)

i shapes (as long as they are monotonically decreasing), and yet, the differences
between FA,TMC

2 and FA,leading
2 are only 40% at most. This remarkable result suggest that Ri is

essentially independent of nuclei given the fact that the nPDFs for these nuclei does not differ
much with each other.

To show explicitly the universality of Ri under nuclei variation, in Fig. 5.5, we show the
ratio Ri for various nuclei in the top panels. One can see that, aside from an extreme non-
isoscalar nuclei such as neutron and proton, the Ri curves seems to be universal for all nuclei.
To better see the universality, in the bottom panels, we show the spread around the average
Rave

i , defined as:

Rave
i (xN , Q2) =

1
nA

nA

∑
k

FAk ,TMC
i (xN , Q2)

FAk ,leading
i (xN , Q2)

. (5.76)

One can see that, aside from neutron and proton curves, the ones from all other nuclei spread
with less than 0.5% around the average at Q = 1.3. Note that the spread will be smaller as
we go to higher Q. At Q = 2.0 GeV, the spread will be less than 0.1%. Looking at the proton
and neutron curves, we can see that they almost always on the opposite ends. As explained in
the previous section, this is a consequence of the averaging f A

i = Z/A f p/A
i + N/A f n/A

i and
the fact that these structure functions receive major contributions from either u or d quarks.
As an example, at high x, we have F2(γ/Z) ∼ xN/9(4u(xN) + d(xN)), F2(W−) ∼ 2xu(xN),
F2(W+) ∼ 2xd(x) as we can neglect the gluon and sea quarks. As d/u ≪ 1 in the large x
region, this explains why the proton F2 curve from γ/Z is higher than the one from neutron.
Patterns happen in all other Fi can also be explained similarly.

Given that the ratio Ri’s are almost independent of nuclei, it is then useful to have a param-
eterization that capture Ri-shape without needing to calculate the time consuming convolution
integrals as in the master formula. The parameterization is beneficial when we need to calcu-
late the TMC structure functions many times during nPDF fitting. In the following section, we
will discuss how such parameterization can be constructed.
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FIGURE 5.5: (top panel) The nuclear variation of the ratio FA,TMC
i /FA,TMC−Leading

i
for CC and NC processes for Q = {1.3, 1.5, 2, 3, 4, 6} GeV (from top to bottom)
calculated using nCTEQ15 nPDFs. (Bottom panel) the spread of the nuclear vari-
ation around the average Eq. (5.76) for Q = 1.3 GeV. In all panels, proton lines
as shown as dashed black line, while the neutron lines are shown as dotted black
lines. FTMC

i /FTMC−Leading
i , i = 1, 2, 3 are shown in top, middle and bottom rows

respectively. The first columns shows FTMC
i /FTMC−Leading

i for DIS process with
γ and Z exchange. Similarly, the second and third columns shows the ratios for

DIS process with W+ and W− exchanges respectively.
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eters given in Table 5.2.

5.4 Parameterizing FTMC
a /Fleading

a

In the previous section, we demonstrated that the full/leading TMC ratios were effectively
insensitive to the nuclear A value. In this section, we discuss how to parameterize the Ri ratios.
Starting from Eqs (5.69), we divide FA,TMC

i (x) by the leading term FA,leading
i (x):

FA,TMC
1 (xN)

FA,leading
1 (xN)

= 1 +
M2

N
Q2

xNξN

rN

hA
2 (ξN)

FA,(0)
1 (ξN)

+
M4

N
Q4

2x2
NξN

r2
N

gA
2 (ξN)

F(0)
1 (ξN)

, (5.77)

FA,TMC
2 (xN)

FA,leading
2 (xN)

= 1 +
M2

N
Q2

6xNξ2
N

rN

hA
2 (ξN)

FA,(0)
2 (ξN)

+
M4

N
Q4

12x2
Nξ2

N
r2

N

gA
2 (ξN)

FA,(0)
2 (ξN)

, (5.78)

FA,TMC
3 (xN)

FA,leading
3 (xN)

= 1 +
M2

N
Q2

2ξNxN

rN

hA
3 (ξN)

FA,(0)
3 (ξN)

. (5.79)

To parameterize these ratios, in principle one can use any universal function approximators,
such as polynomial-based parameterization (Legendre, Cebyshev, Bernstein polynomials...),
neural network, and many others. However, to minimize the number of open parameters, one
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can utilize some physical assumptions and simpler parameterizations can be obtained, with
only two open parameters needed for each structure function. First, we assume the structure
functions FA,(0)

a (x), a = 1, 2, 3, vanish at x = 1. This assumption follows from the fact that most
nPDFs vanish at x = 1, which is a consequence of (1 − x)b factor appearing in the parameteri-
zations. Next, we use a finite difference formula to approximate the derivatives of FA,(0)

a (x = ξ)

as

F
′A,(0)
i (u = ξN) ≈ −

γiF
A,(0)
i (ξN)

1 − ξN
, (5.80)

Fj,A,(0)
i (u = ξN) ≈

0 − FA,j−1,(0)
i (ξN)

(1 − ξN)
= (−1)j γiF

A,(0)
i (ξN)

(1 − ξN)j . (5.81)

Here, γi(x) is a universal (A-independent) correction factor for the first derivative which we
assume to have a mild x dependence. We can then expand FA,(0)

i (u) about u = ξN as

FA,(0)
i (u) =

∞

∑
j=0

1
j!

Fj,A,(0)
i (ξN)(u − ξN)

j (5.82)

≈ FA,(0)
i (ξN)

(
1 +

∞

∑
j=1

1
j!
(−1)j γi

(1 − ξN)j (u − ξN)
j

)
(5.83)

≡ FA,(0)
i (ξ)Ki(u, ξ, γi) . (5.84)

As Ki(u, ξN , γi) is independent of A, this implies that the ratios

hA
i (ξ)

FA,(0)
i (ξN)

=
∫ 1

ξN

Li(u)Ki(ξN , xN , γi)du , (5.85)

gA
2 (ξ)

FA,(0)
2 (ξN)

=
∫ 1

ξN

u − ξN

u2 Ki(ξN , xN , γi)du . (5.86)

are also independent A. Here we have defined L1(u) = 2/u, L2(u) = 1/u2, and L3(u) = 1/u.
Evaluating the explicit expression for Ki(u, ξN , γi) in the above relations and assuming the the
Callan-Gross relation FL = F2 − 2xF1 (deviation from Callan-Gross relation can be absorbed by
the fitted γi), we obtain :

h2(ξ)

F(0)
2 (ξ)

=
1 − ξ

ξ
+ γ2(ξ)

1 − ξ

ξ2

jmax

∑
j=1

(−1)j

j!(j + 1) 2F1

(
2, j + 1, j + 2, 1 − 1

ξ

)
, (5.87a)

h3(ξ)

F(0)
3 (ξ)

= − ln(ξ) + γ3(ξ)
1 − ξ

ξ

jmax

∑
j=1

(−1)j

j!(j + 1) 2F1

(
1, j + 1, j + 2, 1 − 1

ξ

)
, (5.87b)

h2(ξ)

F(0)
1 (ξ)

= 2ξ

[
1 − ξ

ξ
+ γ1(ξ)

1 − ξ

ξ2

jmax

∑
j=1

(−1)j

j!(j + 1) 2F1

(
2, j + 1, j + 2, 1 − 1

ξ

)]
, (5.87c)
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FTMC
1 /Fleading

1 FTMC
2 /Fleading

2 FTMC
3 /Fleading

3

nPDFs λ1 δ1 λ2 δ2 λ3 δ3

nCTEQ15 2.352 -0.122 2.264 -0.074 2.090 0.035

EPPS16 2.222 -0.080 2.135 -0.032 2.007 0.059

nNNPDF2.0 2.240 -0.095 2.152 -0.046 2.094 0.041

TUJU19 2.441 -0.156 2.355 -0.110 2.123 0.024

TABLE 5.2: The values of λ and δ parameters that parameterize the ratio
FA,TMC

i /FA,leading
i for each structure function type. The {λi, δi} parameters are

independent of the exchanged boson (γ, Z, W±), and are relatively insensitive to
the specific underlying nPDF.

g2(ξ)

F(0)
2 (ξ)

= − ln(ξ)− (1 − ξ) + γ2(ξ)
(1 − ξ)2

ξ2

jmax

∑
j=1

(−1)j

j!(j + 2) 2F1

(
2, j + 2, j + 3, 1 − 1

ξ

)
, (5.87d)

g2(ξ)

F(0)
1 (ξ)

= 2ξ

[
− ln(ξ)− (1 − ξ) + γ1(ξ)

(1 − ξ)2

ξ2

jmax

∑
j=1

(−1)j

j!(j + 2) 2F1

(
2, j + 2, j + 3, 1 − 1

ξ

)]
,

(5.87e)
Here, 2F1(a, b, c, z) is a hypergeometric function. Although the summations over the index j
can, in principle, go to infinity, we can truncate the series as they converge quickly due to 1/(j!)
prefactor. Setting jmax = 4 is sufficient to reproduce the exact results. The slowly varying γi

can be parameterized as :

γi(ξN) = λi +
δi

ln(1 + ξN)
. (5.88)

The values of {λi, δi} are obtained by fitting the parameterization to the exact results for each
structure function type. Note that the values of {λa, δa} are independent of the type of the ex-
changed bosons. In Table 5.2, we show the values of {λi, δi} obtained by fitting the parameteri-
zations to the exact results which are computed using nCTEQ15[25], EPPS16[80], nNNPDF2.0[26]
and TUJU19[149]. We can see that the fitted parameters are largely insensitive to the specific
nPDF sets.

In Figure 5.6, we show the comparison between our parametrization with the exact results
obtained using nCTEQ15 nPDFs. We can see that our parameterization works very well to
reproduce the exact results with ≲ 0.2% agreement level. In the appendix A, we show the
comparison between the exact and parameterized results for EPPS21, nNNPDF2.0, and TUJU19
nPDFs. With the parameter values given by table 5.2, similar agreement levels are obtained.

5.5 Summary

Lepton-nucleus DIS is one of the backbones of nuclear PDF analysis. As the precision and
the kinematic coverage of the DIS data have improved, it is important to include all sources
of corrections that enters into pQCD calculations. TMC is one of those which is significant at
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high x and low Q2. In this work, TMC master formula for lepton-nucleon DIS was derived
using OPE formalism. Extending to lepton-nucleus case is straightforward due to rescaling.
The main finding of this study is that the ratio FA,TMC

i /FA,leaidng
i is fairly independent of the

nucleus A, therefore, open a possibility to parameterize the ratio. The parameterization allows
us to calculate TMC structure functions without evaluating the time-consuming convolutions
in (5.69), hence will be useful for nPDF fitting. The parameterization is given in (5.87), which
can be derived using basic properties of massless structure functions at large x. By fitting
two parameters (λ and δ) for each structure function type to the exact results, we obtain an
impressive agreement at ≲ 0.2% level with nCTEQ15 nPDFs.
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Chapter 6

Global Analysis with the CMS Dijet
Data

The dijet (a pair of the two most energetic jets) production data from proton-lead collisions
has been known to provide strong constraints on the nuclear gluon PDFs[166]. Compared
to the dijet production in a lead-lead collision system, the final state effects from the quark-
gluon plasma are negligible and hence it is perfect for nPDF fits. Furthermore, if the ratio
to the proton-proton reference spectra is taken, scale uncertainties from missing higher order
terms can also be minimized. In this chapter, we investigate the viability of including the dijet
production data[167] from CMS, measured in proton-lead collisions at

√
s = 5 TeV. We start

by discussing the pp data and compare the predictions from CJ15 and CT18 NLO PDFs. We
then discuss the pPb spectra and the spectra ratio pPb/pp data. In the appendix B, we have
set up a reference fit (the HIXNEU-CJ2 fit), to which the pPb and pPb/pp dijet data will be
compared. This HIXNEU-CJ2 fit represents a global analysis that includes data sets used in the
nCTEQ15HIX[60] and BaseDimuChorus[72] analyses, along with some improvements in the
fitting methodology, such as the use of the CJ15 NLO PDFs as the new proton PDF baseline,
new nPDF parameterizations, and better treatments of target mass, higher twist and deuteron
corrections. At the end, we extend the HIXNEU-CJ2 fit to include the dijet pPb/pp data and
discuss the results.

6.1 The CMS Dijet Data

The pPb and pp dijet data from the CMS[167] experiment is currently the most recent nuclear
jet data from LHC. In this experiment, the center of mass energy is

√
sNN = 5.02 TeV with the

corresponding integrated luminosities of 35± 1 nb−1 and 27.4± 0.6 pb−1 respectively. The data
is binned in pave

T = (pT,1 + pT,2)/2 and ηdijet = (η1 + η2)/2, where pT,i and ηi are the transverse
momentum and the pseudorapidity of the i-th jet respectively. Jets are reconstructed using
the anti-kT clustering algorithm with jet radius R = 0.3. For the p-Pb system, only jets with
|ηlab| < 3.0 are selected.

As said, the importance of the dijet data is that it provides a strong constraint to gluon
PDFs, not only at low x (x ≈ 0.001), but also at medium and high x. From the leading order
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FIGURE 6.1: The average of the probed lead’s partonic momentum fraction from
the dijet productions at CMS. The figure is taken from [167].

kinematics for dijet production in the p-Pb system, we have

ηdijet =
1
2

ln
(

xp

xPb

)
, (6.1)

where xp and xPb are the momentum fractions of participating partons from proton and lead. To
really study the sensitivity of the dijet data to a specific region of xPb, one needs to disentangle
xPb from the ratio in (6.1). For this, one could perform a simulation study with a Monte-Carlo
generator such as Pythia. With Pythia, it is possible to turn on initial (ISR) and final (FSR) state
radiations to see the impact of gluon radiations to the probed parton momentum. Fig. 6.1,
which was taken from [167], shows the average xPb probed as function of ηdijet for each pave

T

bin. One can see that the probed xPb goes from as low as xPb = 0.003 to as high as xPb = 0.9.
The shadowing, anti-shadowing and EMC effect region are probed by the dijet events with
ηdijet ≳ 1.5, −0.5 ≲ ηdijet ≲ 1.5, and ηdijet ≲ −0.5 respectively.

The dijet production data from CMS is measured in terms of dijet pseudorapidity spectra,
defined as 1/Nij

dijetdNdijet/dηdijet. Here, dNdijet/dηdijet represents the number of dijet events that

fall within the specific ∆Pdijet
T and ∆ηdijet, divided by ∆ηdijet. Ndijet represents the number of

all dijet events falling in ∆Pdijet
T with no restriction in ηdijet. The theoretical prediction for the

spectra, in practice, is calculated by computing ratio of cross sections as follows:

1

Nij
dijet

dNij
dijet

dηdijet,j
=

[
∑

k

dσik

dηdijet,k
∆ηdijet,k

]−1
dσij

dηdijet,j
. (6.2)

The theory prediction for the dijet production can be computed using NLOJET++ pro-
gram[168], which is based on Catani-Seymour substraction method[169] and interfaced with
FASTJET[170] for the jet clustering. For fast calculation, one can use a gridding technique such
as the one implemented in FASTNLO[171] or APPLGRID[172]. This gridding technique allows
us to store the convolution of PDFs with the Wilson coefficients ahead of time and the cross sec-
tion is computed by a simple sum. To calculate theory predictions for the CMS dijet data, we
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use FASTNLO instead of APPLGRID. As by default FASTNLO does not support different types
of hadron in the initial state, we modified some part of the code and integrated the modified
FASTNLO code into our code base.

Another program capable of calculating jet production cross sections is NNLOJET[173]. It is
a Monte Carlo parton-level event generator that handles divergences using antenna substrac-
tion method[174]. It provides calculations of various jet production processes at both NLO and
NNLO. To make sure that our NLOJET++ setup and calculations are correct, we benchmarked
the calculated dijet spectra with the result from NLOJET++ calculation. We found that both
theory predictions generally agree well within the Monte Carlo uncertainties of NNLOJET cal-
culations. We also benchmarked the integrated cross section dσ/dηdijet, and we found good
agreement within less than 1‰.

6.2 The pp Dijet Data

For nPDF fitting, the pp dijet data is very important as it serves as a basis to which the pPb
data will be compared. As we do not fit proton PDFs, but rather fix them to some specific PDFs
taken from other analysis, it is essential to check if the theory predictions from the proton PDF
baseline can well-describe the data.

To see if the theory predictions from modern proton PDFs, such as the ones from CT18
and CJ15, can describe the data, in Fig. 6.2, we show the ratio theory/data from NLOJET++
calculations. During the calculations, we set the factorization and renormalization scales to be
the same, namely at µr = µ f = pave

T
1. We can see from the figure that the theory predictions can

not describe the data well. In fact, the χ2/N is 8.81 and 8.28 for CT18 and CJ15 respectively,
showing an extreme discrepancy between the data and theory.

In Table 6.1 and 6.2, we show the χ2/N for the dijet pp data using various modern proton
PDFs. We can see that the worrisome χ2 value for this pp data is not only unique to the CT18
and CJ15 NLO PDFs, but rather to all modern PDFs in the market. Considering most of these
PDFs included some jet data[176–178] from LHC in their analyses, the high χ2/N can be inter-
preted as tensions between the CMS dijet data and the other jet data. However, we note here
that the correlated systematic uncertainties are not available in the CMS dijet data. Therefore,
such tensions might be artificial.

PDFs MSHT20 NNPDF4.0 CT18 CJ15 CT14 ABMP16 NNPDF31
χ2/N 6.10 9.43 8.81 8.28 7.69 3.52 4.17

TABLE 6.1: χ2/N for CMS pp dijet data, with theory predictions calculated using
several modern NLO PDFs[7–10, 179–181].

Going back to the CT18 and CJ15 NLO PDFs, to see how these PDFs should be modified in
order to better describe the dijet data, we perform a Bayesian reweighting analysis (discussed

1Note that it is possible to choose another scale choice, for example, the invariant mass of the dijet Mdijet, which
has been shown to improve perturbative convergence up to leading color NNLO precision[175]. However, Refs.
[166] showed that using µF = Mdijet leads to similar theory predictions as when µF = pave

T is used.
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FIGURE 6.2: Theory/data for the dijet productions at CMS in proton-proton (top
panel) and proton-lead (bottom panel) collisions at

√
s = 5 TeV.
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cedure with the pp dijet data from CMS.
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PDFs nCTEQ15 nNNPDF3.0 EPPS21
χ2/N 18.87 10.56 8.70

TABLE 6.2: χ2/N for CMS pp dijet data, with theory predictions calculated using
the proton PDF baselines from nCTEQ15[25], nNNPDF3.0[75] and EPPS21[24].

in Section 3.3). The data-theory comparison after the reweighting is shown in the top panel of
Fig. 6.2. We can see that the predictions from the reweighted PDFs have now better agreement
with the data. The χ2/N values after reweighting are 1.61 and 2.97 for CJ15-reweighted (or
CJ15RW for short) and CT18-reweighted (CT18RW) respectively2. In Fig. 6.3, we show the
ratio of the reweighted CJ15 (CJ15RW) and CT18 (CT18RW) PDFs to the original CT18 PDFs.
One can see that the CMS dijet data prefers softer PDFs at high x. While less pronounced, this
reduction trend can also be seen for the valence quark PDFs at low x. As the high x region
corresponds to a negative rapidity region, we can understand this as the way the fit try to
adapt to the data at negative rapidity, where the original theory predictions using CJ15 and
CT18 severely overshoot the data.

We have seen that it is very difficult to reproduce the CMS dijet data the latest proton PDFs
from different PDF fitting groups. Reweighting the CJ15 and CT18 PDFs with the pp data im-
proves the data description by a significant margin, but it still can not satisfactorily reproduce
the data in edges of ηdijet region. One might argue the going to higher order of pQCD is nec-
essary to better describe the data. However, as shown in [182], by performing proton PDF fit
at NLO and NNLO with this dijet data as well with other jet data[177, 178], large χ2/N can
still be observed (χ2/N = 2.51 and χ2/N = 6.91 for the NLO and NNLO fit respectively). It
is worth noting that the NNLO fit in [182] was performed using K-factors. Therefore, it is not
a full NNLO fit. If we regard the K-factor fit from [148] as a good approximation to the full
NNLO fit, this means that inability to satisfactorily describe the CMS dijet data is likely not
because of missing higher order terms. Similar conclusions were also drawn in a study by the
EPPS group[166].

6.3 The pPb and pPb/pp Data

From the previous section, we have shown that the pp data can not be reproduced by the CJ15
and the other proton PDFs. It turns out, similar to the pp data, the pPb spectra can also not
be well-described by the recent EPPS21 nPDFs and the HIXNEU fits from appendix B. In the
second column of Tab. 6.3, we show the χ2/N for the pPb data, calculated using nPDFs from
HIXNEU fits and EPPS21. We can see that all these nPDFs gives very large χ2/N for the pPb
data.

2At first, it is rather surprising that, with large errors of CT18 PDFs, the reweigted PDF should be able to find
points in the parameter space preferred by the dijet data easier. However, one should note that the CT18 PDFs use
a large ∆χ2 ∼ 100 tolerance. Thus, for each PDF replica of the CT18, the reweighting put a scale factor 1/100 to the
χ2 of the dijet data, leading to larger final χ2.
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Fit pPb pPb / pp
HIXNEU-CTEQ [15.82] [7.50]

HIXNEU-CJ1 [7.00] [3.59]
HIXNEU-CJ2 [7.36] [2.68]

HIXNEU-DeuCJ2 [6.13] [2.67]
HIXNEU-CJ2-Dijet [6.45] 2.04

EPPS21 [8.80] 1.62

TABLE 6.3: χ2/N for the dijet production spectra (pPb column) and sepctra ratio
(pPb/pp column) data from proton-lead collisions at CMS. The values of χ2/N
with the brackets indicate that the corresponding data is not used in the analysis.
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FIGURE 6.4: Data-theory comparison for the ratio pPb/pp dijet spectra data from
CMS.

In the bottom panels of Fig. 6.2, we show the theory/data calculated using nPDFs from the
HIXNEU-CJ2, HIXNEU-CJ2-Dijet (to be discussed in the next section) and EPPS21 fits. We can
see that for ηdijet ≤ 2, the theory/data ratios for pPb from all these three fits are very similar
to the ones in the pp case (shown in the top panels of Fig. 6.2). This means that all these fits
should have a good agreement with the ηdijet ≤ 2 pPb/pp data. This expectation is confirmed
in Fig. 6.4 where we show data-theory comparison for the ratio data pPb/pp. In fact, if we
remove the data with ηdijet > 2, we obtain χ2/N of 1.27, 1.18, and 1.14 for the HIXNEU-CJ2,
HIXNEU-CJ2-Dijet, and EPPS21, respectively. This shows that these fits can reproduce the dijet
ratio data quite well for ηdijet ≤ 2. As the forward rapidity region correspond the low x lead
PDFs, where the gluon dominates the process, we expect that stronger gluon shadowing is
required to have a better data description.

Now, given that both the pPb and pPb/pp data can not be satisfactorily described by the
HIXNEU-CJ2 fit, it is natural to ask if one should include these data in an nPDF fits. As the
data correlations are not available, the large χ2 of the pp and pPb data may actually be caused
by the missing data correlations. In the pPb/pp data, however, we expect some degree of
cancellations of the correlated systematic uncertainties. Therefore, the pPb/pp data is less
affected by the missing correlation. This can explain why the χ2/N value for the pPb/pp data
is vastly better than the pPb one. Thus, assuming that the large χ2/N values for both pp and
pPb data are caused by the missing correlations, the pPb/pp data then can be safely included
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FIGURE 6.5: The distribution of χ2/N per-experiment in the HIXNEU-CJ2 and
HIXNEU-CJ2-Dijet fits.

in an nPDF fit.
However, given the fact that all proton PDFs can not describe well the pp spectra, such

a better χ2/N for the pPb/pp data may actually be caused by accidental cancellations of the
data-theory discrepancies occurring in the numerator and denominator of the ratio pPb/pp.
In this case, including the pPb/pp data can potentially cause the fitted nPDFs to absorb the
discrepancies in the denominator. This leads to an inaccuracy of the fitted PDFs. Another issue
that can arise from including the pPb/pp data is the potential tensions with the W and Z data
from LHC. As the dijet data is expected to prefer deeper shadowing at low x, this contradicts
with the preference of the W and Z data. Given that the W and Z data does not suffer from a
proton baseline issue, the tensions between the pPb/pp and W and Z data are likely originated
from the denominator issue, rather from a real physics.

Regardless of whether the cancellations of data-theory discrepancies in the numerator and
denominator of pPb/pp ratios are accidental or due to cancellations of correlated systematic
uncertainties, one can always try to include the pPb/pp data in an nPDF fit to see if the impact
of including this data to the fitted nPDFs. After all, two latest nPDFs in the market, EPPS21[24]
and nNNPDF3.0[75], also include this data in their analyses. In the following section, we will
discuss the inclusion of the dijet data in an nPDF fit that extend our baseline fit (HIXNEU-CJ2).
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FIGURE 6.6: The full lead PDFs from the HIXNEU-CJ2, HIXNEU-CJ2-Dijet and
EPPS21[24] analyses.

6.4 nPDF Fit with pPb/pp Data

The fit that extends HIXNEU-CJ2 by including the dijet ratio data from CMS is referred to as
HIXNEU-CJ2-Dijet fit. In the bottom panel of Fig. 6.5, we show the χ2/N per experiment from
this fit. For comparison, we also show the χ2/N from the reference fit, the HIXNEU-CJ2, in
the top panel of Fig. 6.5. Comparing the two fits, we can see that there is almost no difference
in the χ2 values of the charged lepton DIS, DY, neutrino DIS and dimuon data. A notable,
yet acceptable, increase of χ2/N can be seen in W and Z data from LHC. Furthermore, the
dijet data still has a large χ2/N = 2.04, signaling a rather poor description of the dijet data.
From data-theory comparison displayed in Fig. 6.4, we can see major improvements of the
data description in the central rapidity region, but the data in the forward rapidity region is
still poorly described.

In Fig. 6.6, we show the extracted lead PDFs from the HIXNEU-CJ2-Dijet fit. We can see
that the PDFs are identical to that of the HIXNEU-CJ2 fit for all flavors except the gluon. The
HIXNEU-CJ2-Dijet fit shows a softer gluon PDF at low x, which correspond to an increased
shadowing. In Fig. 6.7, we show the extracted nuclear correction. One can clearly see that the
gluon PDF from the HIXNEU-CJ2-Dijet fit is more shadowed than the one from the HIXNEU-
CJ2, and the EPPS21 gluon PDF has even stronger shadowing.

In the high x region (x ∼ 0.55), one can see the tendency to have a shallower shadowing for
the gluon PDF. However, it is not obvious whether this is due to the momentum sum rule or the
preference of the data. After all, the data in the backward rapidity region, which corresponds
to this high x region, can already be described well by the HIXNEU-CJ2 fit. Furthermore,
in this region, the contributions from the valence quark increase dramatically. Therefore, the
correspondence between nuclear correction of the gluon at high x and the pPb/pp data is
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FIGURE 6.7: The extracted nuclear correction ratio from the HIXNEU-CJ2 and
HIXNEU-CJ2-Dijet fits for lead nucleus. For comparison, we also show the ratio
from the EPPS21 nPDFs[24]. In all plots, the denominator of the nuclear ratio is

computed using the CJ15 NLO PDFs.

weaker.
Finally, comparing the PDF uncertainties from the two fits in Fig. 6.7, we can see that the

uncertainties in the HIXNEU-CJ2-Dijet are very similar as in the HIXNEU-CJ2 fit for all flavor
but the gluon. For the gluon PDF, we can see dramatic reductions of uncertainties, showing the
constraining power of the dijet data to the gluon PDF.

6.5 Summary

In this study, we have investigated the viability of including the CMS dijet data in an nPDF
global analysis with the other nuclear data. The inclusion of this data is not straightforward
due to the inability of modern proton PDFs to well-describe the pp. Therefore, extractions of
nPDFs using either pPb or pPb/pp data can lead to an inaccuracy, as the fitted nPDFs can
absorb the data-theory discrepancies of the pp data.

There are at least two approaches that one can adopt to view this problem. First, if the large
values of χ2/N for the pp and pPb data are caused by the missing correlations, then one can
safely include the pPb/pp data in an nPDF fit. This is because some correlated systematic un-
certainties from the numerator and denominator are expected to cancel to some degree, making
the ratio pPb/pp data less sensitive to the missing correlations. In this approach, the fact that
all modern proton and nuclear PDFs can not well-describe the pp and pPb data is no longer an
issue, as the discrepancies due to the missing correlations will cancel in the ratio.

The second approach to view this problem is that the cancellations of the discrepancies in
the numerator and denominator are merely accidental, hence they can not be used to justify the
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inclusion of pPb/pp data in an nPDF fit. This view is supported by the observation that the W
and Z data from LHC, which does not suffer from proton baseline issue, prefer different shape
of the gluon PDF at low x than the pPb/pp data.

Adopting the first approach, we included the dijet pPb/pp data in an global analysis that
extend the HIXNEU-CJ2 fit, which represents a global analysis with the data sets used in
nCTEQ15-HIX[60] and BaseDimuChorus[72]. The resulting fit is called HIXNEU-CJ2-Dijet,
which has been shown to have much smaller gluon PDF uncertainties and stronger gluon shad-
owing at low x.
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Chapter 7

Conclusions and Outlook

Parton distribution functions (PDFs) are essential to make predictions based on the QCD fac-
torization theorem. The data-driven approach is usually adopted to determine PDFs as first
principle determinations of PDFs based on lattice QCD is not yet reliable and precise enough.
The determination of PDFs then can be regarded as an inverse problem: given a set of data, a
set of functions must be inferred from it. The data-driven approach is reliable if: 1) all partonic
flavors are sufficiently constrained by the data, ideally in all x-region, 2) the theory (model) is
not misspecified. That is, the model, given the functional space of the PDFs, can describe the
data, 3) reliable fitting methodology. This thesis is aimed to improve the reliability of nCTEQ
nPDF fits, by improving each of these aspects.

When it comes to improving flavor separations, new data needs to be included. Given the
fact that charged lepton DIS data has been included in all nPDF analyses, it is then natural to
include neutrino DIS data. The inclusion of this data will result in better constraints for the va-
lence and down-type quark PDFs. With the inclusion of the data from dimuon production data,
the strange quark PDF can be further pinned down. That being said, the inclusion of neutrino
data has not been straightforward due to tensions with the charged lepton data. The tensions,
in the context of nPDF fitting, were first studied by the nCTEQ collaboration and also by the
other nPDF fitting groups, such as EPPS, TUJU and DSSZ. In this work, we revisited this issue
and carefully treated small effects such as deuteron nuclear effects, normalization uncertain-
ties, and opened more parameters to reduce parameterization bias. We also included the CCFR
and CDHSW data in our analysis, which were not included in the past nCTEQ analyses. We
found that the tensions are maximal at low x, where the neutrino data seems to prefer no shad-
owing, while the charged lepton prefers otherwise. Based on this information, we ultimately
studied four fits: the BaseDimuNeu, BaseDimuNeuX, BaseDimuNeuU, and BaseDimuChorus.
Among these fits, only the BaseDimuChorus clearly passes the compatibility criteria, while
the BaseDimuNeuX barely passes. We then compared the prediction of BaseDimuChorus and
BaseDimuNeuX to the Dimuon data from NOMAD and showed that the results from these fits
are in much better agreement with the data compared to the nCTEQ15WZSIHdeut fit. We also
compared the charged current nuclear ratio predictions from all these fits to the CDHS data,
finding good agreement.

When it comes to improving the model, in chapter 5, we discussed target mass corrections,
which improves theory predictions for DIS structure functions in the large x and low Q2 region.
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Several prescriptions exist in the literature for the TMCs. Here, the one that we follow is based
on the master formula in[160, 161], which was derived using OPE formalism. The master
formula in [160, 161] was derived specifically for lepton-nucleon DIS. For the lepton-nucleus
case, thanks to the rescaling method, the master formula in [160, 161] is still valid, with the
Bjorken x replaced with xN = AxA ≤ A. Using the master formula, we also found that the ratio
FA,TMC

i /FA,leading
i is fairly independent of A due to the averaging procedure when constructing

full nuclear PDFs from the bound nucleon ones. This suggests a shortcut to calculate the full
target mass corrected structure functions from leading ones by multiplying with universal (A-
independent) corrections from the ratio FA,TMC

i /FA,leading
i . We parameterized the ratio and fit

the parameterizations to the exact results. To optimize the number of parameters, we used 2F1-
based parameterizations (5.87), which only need two parameters for each structure function
type. The fitted parameterization works really well to reproduce the data with ≲ 0.2% level of
agreement.

In this work, we also investigated the viability of doing an nPDF fit with the recent dijet data
from CMS. This data is very appealing as it can provide a better handle on the gluon PDFs from
x ∼ 0.01 to x ∼ 1. As typically only the low x part of the gluon PDF is properly constrained by
the data, the ability to constrain the gluon PDF at high x is therefore very valuable. However, it
seems that using this data is not straightforward due to the inability of modern proton PDFs to
describe the proton-proton (pp) dijet data. Furthermore, the nPDF from the EPPS21 fit, which
included the dijet ratio pPb/pp data, can also not describe the pPb data. Surprisingly, the
pPb/pp data in the central and backward rapidity region (ηdijet ≤ 2) can be described well
even by the HIXNEU-CJ2 fit (which does not include the dijet data). We propose two views
to approach this puzzle. On the one hand, if the large values of χ2/N for the pp and pPb
data are caused by the missing data correlations, then we can still use the ratio pPb/pp data
in an nPDF analysis without worrying too much on the data-theory discrepancies occurring in
both numerator and denominator. This is because the correlated systematic uncertainties are
expected to cancel to some degree in the ratio, making the pPb/pp data less sensitive to the
missing correlation problems. Indeed, the reasonable value of χ2 for the pPb/pp data with
ηdijet ≤ 2 confirms the cancellation of the data-theory discrepancies. On the other hand, one
can also regard the cancellations of discrepancies as accidental. As the correlated systematic
uncertainties will not 100% cancel out in the ratio, the remaining discrepancies can still be
absorbed in the nPDFs. Regardless of whether the cancellation of discrepancies are accidental
or not, to study the impact of the dijet pPb/pp data, we performed a global fit with the ratio
data and showed that the dijet data prefers stronger shadowing than our reference fit. We also
noticed dramatic reductions in the nuclear gluon PDF uncertainties.

All the works presented in this thesis are part of the efforts to better determine nPDFs, by
improving the three aspects of the data-driven method. However, these are by no means fin-
ished endeavors. For example, to have a more consistent determination of nPDFs, a combined
proton+nuclear PDF analysis is necessary. With more precise nuclear data coming from LHC,
going to NNLO is also needed in the future. Furthermore, with the influx of more precise
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data from the planned EIC, the future of nPDF research becomes even more promising, which
requires advancements not only in the theory side, but also in the methodology and fitting
technology.
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Appendix A

Supplementary Materials for Chapter 5

In this appendix, we show the comparisons between the fitted 2F1-parameterizations given by
(5.87) and the exact results computed using the EPPS16[80], nNNPDF2.0[26], and TUJU19[149]
nPDFs.
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FIGURE A.1: The same as Fig. 5.6, but the nPDFs are from EPPS16[80].
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FIGURE A.2: The same as Fig. 5.6, but the nPDFs are from nNNPDF2.0[26].
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FIGURE A.3: The same as Fig. 5.6, but the nPDFs are from TUJU19[149].
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Appendix B

The Combined nCTEQ15HIX and
Neutrino Analyses

In this appendix, we present a discussion on our efforts to combine the nCTEQ15HIX[60] and
Neutrino[72] analyses. We will improve on several aspects of the fitting methodology, such as
the use of the CJ15 NLO PDFs as the proton PDF baseline, new nPDF parameterizations, as
well as better treatment of target mass, higher twist, and deuteron corrections. The resulting
combined fit serves as a basis to which the dijet data from CMS[167] will be compared.

B.1 Methodological Improvements

B.1.1 Proton PDF Baseline

Ideally, nPDFs are best determined together with proton PDFs using both proton and nuclear
data. However, this is currently not possible as this would require a significant upgrade to the
current code base. In an nPDF fit where the proton PDF is not fitted, as in the case of nCTEQ
nPDFs, the choice of proton PDFs is important for two reasons. First, it provides the boundary
condition at A = 1 and Z = 1. Second, as some nuclear data are presented as ratios of nuclear
structure functions FA

2 /FD
2 or cross sections σA/σp, the proton PDFs are needed to calculate the

denominators.
Two important aspects characterize proton PDFs as a good baseline. First, proton PDF anal-

ysis should include the largest possible set of data sets, to guarantee a good flavor separation.
This is typically the case for modern proton PDFs such as CT18[7], NNPDF[9], and MSHT[8].
Second, the data sets used in the proton PDF analysis should contain as little nuclear data as
possible. This is crucial to avoid double counting of nuclear data used in the nPDF analysis
and to minimize the bias of applying some nuclear correction to the nuclear data. Of course,
if the nuclear data used in the proton PDF analysis has large uncertainties and small nuclear
corrections, then one can still argue that such proton PDFs are still a good baseline. As an
example, both the NNPDF4.0[9] and CT18[7] PDFs used neutrino-induced charm-dimuon pro-
duction data from NuTeV, which came from a neutrino-iron DIS experiment. However, it has
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FIGURE B.1: Proton PDF baselines of the recent nPDFs available in the literature.

been argued in [136] that the nuclear correction for this process is much less than the data un-
certainties. Furthermore, as this type of data provides one of the strongest constraints to the
strange quark PDF, including this data is therefore beneficial for flavor separations.

Here, we summarizes the recent nPDFs with their proton PDF baseline. The nNNPDF3.0
analysis[75] used their own proton PDFs as the baseline. The baseline is an extension of the
NNPDF3.1 fit[143], with all the deuteron data removed. All the omitted deuteron data are then
included in the nPDF fits. In the EPPS21 analysis[24], the baseline is CT18A[7], which deviates
from the standard CT18 PDFs by the addition of ATLAS W/Z rapidity distribution data, which
is known to have tensions with some of the DIS data. In the TUJU21 analysis[74], the proton
baseline is fitted with the DIS, DY, and W and Z production data from LHC. In nCTEQ15 and
its recent iterations [64, 72, 84], a variant of CTEQ6 PDFs[65] were used as the baseline. In
Fig. B.1, we show the proton PDF baselines of nCTEQ15WZSIH, nNNPDF3.0, TUJU21, and
EPPS21. The figure shows that these nPDFs use a similar proton baseline, and the difference
on this should not cause too much concern.

In this study, the CJ15[10] proton PDFs will be used as the proton PDF baseline. There are
several reasons for this. First, aside from the deuteron DIS data, no nuclear data was used in
the CJ15 analysis. While the deuteron data is technically nuclear data, its theory predictions
are computed using a phenomenological model whose parameters are fitted together with the
proton PDFs. Thus, assuming that the phenomenological model used in the CJ15 analysis is
correct, then the extracted CJ15 PDFs are bias-free from absorbing deuteron nuclear effects.
Second, as we aim to relax the kinematic cuts to allow CLAS/JLAB nuclear data[19, 20], it
is then desirable to have proton PDF baseline whose analysis used the same cuts. As shown
in [60], relaxing the DIS kinematical cuts to Q2 ≥ 1.3 GeV2 and W2 ≥ 1.7 GeV2 leads to an
inclusion of data points with a very high Bjorken x (x ≈ 0.9). If the high x region of the proton
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PDF baseline is less well-constrained, due to lacks of proton data in this region, the resulting
theory predictions for FA

2 /FD
2 or σA/σp will be inaccurate. Furthermore, the inaccuracy can

potentially be absorbed into the fitted nPDFs. The CJ15 analysis used the same relaxed cuts
as the nCTEQHIX analysis[60]. Therefore, it is a good choice in this sense. Third, the initial-
scale parameterizations of CJ15 PDFs are simpler than, say, CT18. Therefore, if one uses the
CJ15 parameterization to parameterize the nPDFs, the minimizer algorithm should find the
minimum easier. We note here that while having a smaller number of parameters is desirable
in terms of minimization, it also means that it is potentially less flexible. This will be discussed
further in the following section.

B.1.2 Parameterization

As in the previous nCTEQ analysis, the full nPDFs f A
i are written in terms of the effective

bound proton f p/A
i and neutron f n/A

i PDFs as

f A
i (x, Q) =

Z f p/A
i (x, Q) + N f n/A

i (x, Q)

A
, (B.1)

where A, Z, N = A − Z are the mass, atomic and neutron numbers respectively. Note that,
once (B.1) is true for some initial scale Q0, it will be true for all Q as the DGLAP evolution is
linear. The bound neutron PDFs can be obtained from the bound proton ones by assuming
isospin symmetry, namely :

f n/A
u ↔ f p/A

d ,

f n/A
ū ↔ f p/A

d̄ ,

f n/A
i = f p/A

i , i ̸= {u, d, ū, d̄} .

The bound proton PDFs is parameterized at an initial scale Q0 = 1.3 GeV in a way such that
for A = 1, the CJ15 PDFs are recovered for all x. The strategy to allow this to happen is by
first choosing a sufficiently flexible x-dependent PDF parameterization form, and then for each
parameter, assign an A, Z-dependent function that reduces to parameters that reproduce the
CJ15 PDFs. Of course, the natural choice for the x-dependent paramaterizations will be just the
ones used in the original CJ15 analysis. The same strategy was actually employed in the pas
nCTEQ analyses. This time, however, to improve the flexibility, we extend the CJ15 parame-
terizations to include additional five parameters. We will refer this procedure as the extended
CJ15 parameterization (or CJ15 extended for short). As a reminder, the CJ15 parameterization
is given by

x fi(x, Q0) = c0xc1(1 − x)c2(1 + c3
√

x + c4x), i = uv, g, ū + d̄, s + s̄ , (B.2a)

dv(x, Q0) = c0
[
xc1(1 − x)c2(1 + c3

√
x + c4x) + c5xc6 uv

]
, (B.2b)

d̄
ū
= c0xc1(1 − x)c2 + 1 + c3x(1 − x)c

4 . (B.2c)
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Note here that uv enters in the dv parameterization. This is to ensure at x → 1, we have a
limit dv/uv → c0c5 < ∞, which is motivated by several non-perturbative models of hadron
structure[183–186], see also a discussion in [187].

The five additional parameters in the CJ15 extended enter in uv, g, s + s̄, ū + d̄, and d̄/ū.
These parameters generally serve as the coefficients of the higher older polynomials in

√
x. The

extended CJ15 parameterization reads

x fi(x, Q0) = c0xc1(1 − x)c2(1 + c3
√

x + c4x + c5x3/2), i = uv, g, ū + d̄ , (B.3a)

dv(x, Q0) = c0
[
xc1(1 − x)c2(1 + c3

√
x + c4x) + c5xc6 uv

]
, (B.3b)

x(s + s̄)(x, Q0) = c0xc1(1 − x)c2(1 + c3
√

x + c4x)ec5
√

x , (B.3c)

d̄
ū
= c0xc1(1 − x)c2(1 + c5x) + 1 + c3x(1 − x)c4 . (B.3d)

Note here that x(s + s̄) parametrization is extended by including an exponential ec5
√

x, instead
of simply adding a polynomial of higher degree in

√
x. We have checked that including an

exponential function in the x(s + s̄) leads to a better fit to CT18 NLO strange quark PDF, which
will be discussed further below.

As a comparison, this is the CTEQ6 parameterization used in the nCTEQ15 analysis :

x f p/A
i (x, Q0) = c0xc1(1 − x)c2 ec3x(1 + ec4 x)c5 , i = uv, dv, g, ū + d̄, s + s̄ , (B.4a)

d̄
ū
= c0xc1(1 − x)c2 + (1 + c3x)(1 − x)c4 . (B.4b)

Note here the appearance of exponential functions ec3x and ec4 . In this case, these are used to
enforce positivity to the PDFs.

For all of these parameterizations, the valence number and the momentum sum rules are
evaluated in the same way. The sum rules are used to determine the normalization coefficient
of the dv, uv, and ū + d̄ PDFs. Let f̃i(x, Q0) be the unnormalized PDF, which corresponds to
ci

0 = 1. The number and momentum sum rules are evaluated as follows.

1. From the d-valence sum rule, the coefficient cdv
0 is determined as

cdv
0 =

1∫
d̃v(x, Q0)dx

. (B.5)

2. Similarly, from the u-valence sum rule, the coefficient cuv
0 is determined as

cuv
0 =

2∫
ũv(x, Q0)dx

. (B.6)
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3. The next is momentum sum rule evaluation. The total momentum of all parton flavors
can be written as

M = ∑
i

∫
x fi(x)dx = Muv + Mdv + Mg + Ms+s̄ + 2Mū+d̄ , (B.7)

where i = t, b, c, s, u, d, g, d̄, ū, s̄, c̄, b̄, t̄. In (B.7), the momentum of an individual parton
basis j = uv, dv, g, s + s̄, and ū + d̄ is given by

Mj =
∫

x f j(x)dx . (B.8)

After one calculates the coefficient cuv
0 and cdv

0 , one can immediately compute the total
momentum Muv and Mdv carried by the valence quarks.

4. Next, one calculates the gluon momentum Mg. In the nCTEQ++ code, the total gluon
momentum is set to be a free parameter which is fitted to the data. Thus given the total
momentum Mg, one can determine the normalization coefficient by

cg
0 =

Mg∫
xg̃(x)dx

. (B.9)

Operationally, one can decompose cg
0 = cg, f itted

0 cg,elim
0 , and hence cg, f itted

0 = Mg and cg,elim
0 =

1/
∫

xg̃(x)dx.

5. Given that the total momentum must be unity, the remaining momentum R carried by
s + s̄ and ū + d̄ must be

Ruv,dv,g = 1 − Muv − Mdv − cg, f itted
0 . (B.10)

6. Similar to the gluon case, the momentum of s + s̄ is user settable by choosing an appro-
priate normalization coefficient :

cs+s̄
0 =

Ms+s̄∫
x f̃s+s̄(x)dx

. (B.11)

In the nCTEQ++ code, the momentum Ms+s̄ is set as Ms+s̄ =
cs+s̄, f itted

0 Ruv ,dv ,g
3 , where cs+s̄, f itted

0

is fitted. Thus by writing cs+s̄
0 = 1

3 cs+s̄, f itted
0 Ruv+dv+gcs+s̄,elim

0 , we have cs+s̄,elim
0 = 1/

∫
x f̃s+s̄(x)dx.

7. The remaining momentum that must be carried by ū + d̄ is then given by

Ruv,dv,g,s+s̄ = 1 − Muv − Mdv − cg, f itted
0 − Ms+s̄

=
(

1 − Muv − Mdv − cg, f itted
0

)(
1 − 1

3
cs+s̄, f itted

0

)
. (B.12)
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FIGURE B.2: The ratio of the fitted CJ15 (black lines), CJ15 extended (red lines)
and CTEQ6 (green lines) parameterizations to the CT18 PDFs at the input scale
Q0 = 1.3 GeV. The light blue bands show the actual CT18 PDF uncertainty, while

the dark blue shows 1% uncertainty bands.

Thus, this must be equal to 2Mū+d̄, see (B.7). The coefficient cū+d̄
0 is then given by

cū+d̄
0 =

Ruv,dv,g,s+s̄

2
∫

x f̃ū+d̄(x)dx
. (B.13)

To test if the additional parameters in the CJ15 extended improve the flexibility of the pa-
rameterization, we fit the standard CJ15, extended CJ15, and CTEQ6 parameterizations to the
CT18 NLO PDFs at Q = 1.3 GeV. During the fitting loop, the number and momentum sum rules
are evaluated using the steps described above. Only CT18 PDFs in the region 10−5 ≤ x ≤ 0.8 is
fitted, as generally LHAPDF interpolation in the very high x region x > 0.8 is unstable due to
very small values of PDFs in this region. To fit CT18 PDFs, the weighted least square method
was used, with the uncertainty of the data (the CT18 PDFs) set to be 1% of the central values.
We use 70 data points for each flavor (hence a total of N = 560 data points) and we get χ2/N
of 9.14, 3.24, and 5.72 for CJ15, CJ15 extended, and CTEQ6 respectively. This shows that for
reproducing the CT18 PDFs, the extended CJ15 parameterization has more flexibility than the
original CJ15 and CTEQ6 parameterizations. In terms of the fitted PDFs, as shown in Fig. B.2,
the same conclusion can be drawn.

Once the x-dependent parameterizations have been fixed, the next step will be choosing the
A-dependence. For this, two parameterizations are investigated :

• Amode-1 parameterization :

ck(A, Z) = pk + ak(1 − A−bk) . (B.14)

Note that this is the same as in the previous nCTEQ analyses.
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• Amode-2 parameterization :

ck(A, Z) = pk + ak ln(A) + bk ln2(A) . (B.15)

In both cases, each pk is fixed to a value which reproduces CJ15 PDFs for A = 1. When fitting
nPDFs, only the parameters ak and bk are varied.

Our reasons for proposing the Amode-2 parameterization are :

1. As ck is linearly related to ak and bk, fitting these parameters should be easier as it becomes
less likely to get stuck in local minima. The linear relation also gives more confidence
when using the Hessian method1.

2. The nucleus mass number A covers rather large range : 1 ≤ A ≤ 208. Therefore, using
Amode-1 increase the correlation between a light nucleus with a heavy one. This means,
tuning PDFs for A = 208 requires significant changes of PDFs for A = 3. Using ln(A) as
in Amode-2 minimize this issue.

3. If either ak or bk is zero, using Amode-1, one always has ck(A, Z) = pk for all A. This
means, in order to have non-flat ck(A, Z), both ak and bk can not be zero. This is an issue
if one wants to fix one of the ak or bk parameters to zero to reduce the number of open
parameters in an nPDF fit. This issue does not exist in Amode-2.

4. It is easy to extend the flexibility of the Amode-2 parameterization, for instance, by adding
a higher degree polynomial in ln(A). With Amode-1, it is less obvious how to do this.

5. Finally, as shown in [41], the size of shadowing and EMC effect of the FA
2 DIS structure

function seems to be described well by a linear function in ln(A), therefore modifying the
PDF parameters by a polynomial of ln(A) seems to be more natural.

To improve the flexibility of the parameterizations at x ≳ 0.7, in particular to reproduce a
steep rise of nuclear ratios from Fermi motion, we modify the CJ15 extended as

x f p/A
i (x, Q0) = c0xc1(1 − x + η)c2(1 + c3

√
x + c4x + c5x3/2), i = uv, g, ū + d̄ , (B.16a)

dp/A
v (x, Q0) = c0

[
xc1(1 − x + η)c2(1 + c3

√
x + c4x) + c5xc6 uv

]
, (B.16b)

x(s + s̄)p/A(x, Q0) = c0xc1(1 − x + η)c2(1 + c3
√

x + c4x)ec5
√

x , (B.16c)

d̄p/A

ūp/A = c0xc1(1 − x)c2(1 + c5x) + 1 + c3x(1 − x)c4 . (B.16d)

where
η(x, A) = ϵ xκ ln(A) . (B.17)

1For example, an absolute (non ratio) cross section or structure function can be written as a convolution of
Wilson coefficient and PDFs. Thus, it can be regarded as a linear operator acting on PDFs. In the CJ15 extended
parameterizations, all the PDFs are linear in ck, except for c1 and c2. The PDFs depend on c1 and c2 via x fi(x) ∝ xc1

and x fi(x) ∝ (1− x)c2 . These monotonic functions behave like linear functions if one looks at a small neighborhood.
All in all, the cross sections or structure functions then behave as a linear function of the PDF parameters ak and bk.
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Note that η is the same for all parton flavors. This modification was inspired by the x-rescaling
in [60], which was shown to improve the description of the very high x DIS data. In this work,
however, a total rescaling as discussed in [60] is not used, but is rather imposed partially to
only (1 − x)c2 . It is important to note here that (B.16) implies : f A

i (x = 1) ̸= 0. This should not
raise an issue as nPDFs can, in principle, have non-zero values for 1 ≤ x ≤ A. However, in this
region, the values of the PDFs are very small, hence this can be ignored for practical purposes.

B.1.3 Corrections From Deuteron Nucler Effects

In the nCTEQ15 analysis[25], the deuteron structure function FD
2 is computed as an isoscalar

combination: FD
2 = FISO

2 = Fp
2 + Fn

2 , where Fp
2 and Fn

2 are the free proton and neutron structure
functions. However, as shown in Fig. 2.8, the deuteron structure function slightly deviates
from the isoscalar one by less than 1% at x ≲ 0.6 and quickly increases at higher x. In the
nCTEQ15HIX[60] analysis, the deuteron nuclear effects are taken into account by modifying
the data :

FA
2

FD
2

∣∣∣∣
data

→ FA
2

FD
2

∣∣∣∣
data

× FD,CJ
2

FP,CJ
2

, (B.18)

FD
2 |data → FD

2 |data ×
FP,CJ

2

FD,CJ
2

. (B.19)

Here, FP,CJ
2 and FD,CJ

2 are the proton and deuteron structure functions fitted in the CJ15 analysis.
Thus, this method converts FA

2 /FD
2 and FD

2 data into FA
2 /Fp

2 and Fp
2 data. One should note that

in the nCTEQ15HIX analysis, only the central values of the data are multiplied by the CJ15 cor-
rections, while the data uncertainties are not modified. This leads to a slightly overestimation
of the converted data uncertainties.

A more consistent way to treat deuteron nuclear effects was used in BaseDimuChorus anal-
ysis[72]. Instead of modifying the data, one modifies the theory prediction as

FD
2 = Fp

2 × FD,CJ
2

FP,CJ
2

(PCJ Method) (B.20)

We will refer this as the PCJ method. Alternatively, one can also construct the deuteron struc-
ture function prediction as

FD
2 = FISO

2 × FD,CJ
2

FISO,CJ
2

(ISOCJ Method) (B.21)

FD
2 = FD,CJ

2 (DCJ Method) (B.22)

Here, FISO,CJ
2 = FP,CJ

2 + FN,CJ
2 is the isocalar structure function from the CJ15 analysis. Theo-

retically speaking, these three approaches for calculating FD
2 should be the equivalent if one
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Method NMC FD
2 (275 pts) BCDMS FD

2 (253 pts)
Isoscalar 1.25 1.26

DCJ 1.33 1.17
ISOCJ 1.21 1.15

PCJ 1.21 1.15
PCJ (BaseDimuChorus[72]) 1.47 1.06
FIT (HIHXNEU-DEUCJ2) 1.11 1.10

TABLE B.1: χ2/N for BCDMS[188] and NMC[12] deuteron data calculated using
different deuteron correction treatments.

uses the same PDFs and the theory setup2 as in the CJ15 analysis to calculate Fp
2 and FISO

2 . In
practice, however, even if one uses the CJ15 PDFs, some difference is expected due to different
theory setup. Then the most pragmatic way to treat deuteron nuclear corrections is by using
the method that gives the best χ2 for deuteron FD

2 data. In Table B.1, we show the χ2/N for
BCDMS[188] and NMC[12], with theory predictions given by isoscalar combination of free pro-
ton and neutron, DCJ, PCJ, and ISOCJ. We note here that kinematic cuts as in the CJ15 analysis
Q ≥ 1.3 GeV and W ≥ 1.7 GeV have been imposed to the data. Furthermore, in the calculations
of Fp

2 , Fn
2 and FISO

2 in (B.20) and (B.21), we use CJ15 NLO PDFs, with target mass corrections
discussed in the section 5.4 and higher twist correction as in the CJ15 analysis have been ap-
plied on top. The table shows that while PCJ and ISOCJ are perfectly equivalent and give the
best χ2/N, they differ quite a bit with the DCJ and isoscalar methods. Based on the values of
χ2/N from the table, it is clear that PCJ and ISOCJ are preferred. In this work, therefore, we
use the PCJ method to compute FD

2 .
There is another, arguably more consistent, way to compute deuteron structure functions.

Given the nPDF fitting framework, one can fit bound proton PDFs f p/D
i of deuteron directly to

the data, in the same way as we fit bound proton PDFs of other nuclei. This method is more
consistent than the previously mentioned approaches in the sense that now the full deuteron
PDFs follow the same continuous A dependence as the nPDFs from other nuclei. Furthermore,
this method reduces the dependency of nPDF analysis on the choice of proton PDF baseline as
FD

2 is fitted directly to the data. However, fitting f p/D
k to the deuteron data could potentially

raise several issues. First, the shape of f p/D
k can be driven by non-deuteron data via the as-

sumed A-dependence, especially in the kinematical region with no precise deuteron data in it.
Furthermore, there is not enough flavor separation constrained by the deuteron data, as most of
the deuteron data are measured as FD

2 , FD
2 /FP

2 . Lastly, the A-dependent parameterization of the
bound nucleon PDFs in an nPDF fit is chosen based on guesses, rather than a physical model,
a methodological bias can significantly influence the determination of f p/D

i . The deuteron cor-
rection from CJ15 analysis has less of this issue as it was determined from a well-established
phenomenological model.

We note here that fitting deuteron data in nPDF fit has been done by the other nPDF fitting

2Here, we mean the same code for the αS and DGLAP evolution as well as the same target mass and higher twist
corrections.
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FIGURE B.3: Ratio of F2 structure function computed using different methods
to FACOT

2 . All structure function calculations are computed using the CJ15 NLO
PDFs.

groups as well. For example, the latest nPDF releases from NNPDF group (NNPDF3.0[75]) and
TUJU (TUJU21[74]). In EPPS21 analysis[24], FD

2 is calculated as an isoscalar structure function.
The argument was, that as the EPPS21 proton PDF baseline (CT18ANLO[7]) already used some
deuteron data, then the proton baseline essentially absorbs some of the deuteron nuclear effects
making the baseline equivalent to the bound PDFs of the deuteron.

In this work, for completeness and future reference, treatment of deuteron nuclear effects
by fitting the deuteron PDFs will also be investigated.

B.1.4 Target Mass and Higher Twist Corrections
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FIGURE B.4: The nuclear ratio FFe
2 /FD

2 predictions using the nCTEQ15HIX nPDFs
with different combination of TMC and HT corrections.

In this study, the same theory setup as in the previous nCTEQ analysis is used, except
for the DIS structure function calculations, where now OPE-based target mass corrections are
applied by default. The TMCs are calculated using 2F1-parameterization as discussed in detail
in Section 5.4. Furthermore, to deal with the remaining power correction from higher twist
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operators, a further multiplicative correction from CJ15 analysis is also applied :

FTMC+HT
2 = FTMC

2

(
1 +

h0xh1(1 + h2x)
Q2

)
(B.23)

Here, the parameter h0 controls the overall scale of the corrections, while h1 controls the well-
known rise of the corrections at large x. The parameter h2 allows for the possibility of negative
higher twists at smaller x.

In Fig.B.3, we show the ratio of proton structure function Fp
2 computed using different treat-

ment of TMC and higher twist (HT) corrections to the same Fp
2 computed using the ACOT

scheme (which already includes target mass corrections in the parton model approach). All
calculations are done using CJ15 NLO PDFs with Q = 1.3 GeV. One can see that, all the four
calculations agree well for x ≤ 0.1. At 0.1 ≤ 0.5, the differences can go as high as 10%. As
expected, the largest difference between the four happens in the high x region (x ≥ 0.5). In this
region, the OPE TMC prediction undershoots the ACOT one, while adding HT on top of OPE
TMC, the prediction overshoot it.

It is worth pointing out that, although the difference between the combinations of higher
twist and TMC are large at high x, it will drop off when one calculates the structure func-
tion ratio FA1

2 /FA2
2 . This is because the higher twist correction (B.23) are multiplicative and

A-independent. Similarly, as the OPE TMC structure function is computed by multiplying
leading TMC Fleading

2 by an A-independent correction factor, it will also cancel out in the ratio.
The difference between ACOT and TMC+HT in this case then must come from the difference
between leading OPE TMC and ACOT. in Fig. B.4, we show theory predictions for nuclear ratio
FFe

2 /FD
2 , calculated using nCTEQ15HIX iron PDFs. For this plot, the deuteron structure func-

tion is computed using PCJ method. It can be observed that the difference between different
combinations of TMC and HT are very small, even at high x.

B.2 The Combined Fits

The main purpose of our study reported in this appendix is to set up combined fits with all the
data sets (except the single inclusive hadron data) used in the nCTEQ15HIX[60] and BaseD-
imuChorus[72] analysis. Specifically, we include :

• Charged lepton DIS data from [12–18, 106–115],

• Drell-Yan lepton pair productions data from [116, 117],

• Drell-Yan W and Z production data from LHC [125–132],

• Neutrino DIS from Chorus[71],

• Dimuon data from CCFR and NuTeV[99],

• Charged lepton DIS data from JLab[19, 20],
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FIGURE B.5: The distribution of χ2/N per-experiment in the HIXNEU fits. In the
lowest panel, we also show the χ2/N of the BCDMS FD

2 [188] (the left-most bar)
and NMC[12] (the right-most blue bar before the green bars).
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FIGURE B.6: Data-theory comparison for selected data sets, with theory predic-
tions computed using nPDFs from the HIXNEU fits.

• Deuteron FD
2 data from BCDMS[188] and NMC[12] (only in the HIXNEU-DEUCJ2 fit, see

discussion below).

For all DIS data (which includes the charged lepton DIS, neutrino DIS, and dimuon data), the
following kinematical cuts are applied : Q2 ≥ 1.3 and W2 ≥ 1.7. These are the same cuts as in
the nCTEQ15HIX analysis.

Regarding the fitting methodology, the new fits feature: the updated proton PDF baseline
(the CJ15 NLO), the new initial scale parameterization, an improved and more consistent treat-
ment of the deuteron nuclear effects, and the inclusion of OPE TMCs and HT corrections for the
DIS structure function calculations. All theory calculations are performed at NLO of pQCD.

Having mentioned the included data sets and the improved methodology, to assess the
impact of these imprvements, we do several fits :

• HIXNEU-CTEQ : a fit that use the nCTEQ15 PDF parameterizations, with CTEQ6[65] as
the proton baseline. All data sets mentioned above, except the deuteron FD

2 data from
BCDMS and NMC, are included. The total number of data points is 2651 pts. For this fit,
31 free parameters are fitted.
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• HIXNEU-CJ1 : a fit that use the CJ15 extended parameterization, with an A-dependent
given by Amode1. The total number of data points is 2651 pts. a total 42 parameters are
open during the fitting procedure.

• HIXNEU-CJ2 : the same as the HIXNEU-CJ1 fit, but Amode2 is used for the A-dependence.

• HIXNEU-DeuCJ2 : The same as HIXNEU-CJ2 fit, but the deuteron data from NMC and
BCDMS are now included and the deuteron PDFs are fitted. The total number of data
points is 3179 pts and a total 42 free parameters are fitted.

Collectively, we will call these fits as HIXNEU fits. The fits are done by minimizing a loss
function explained in section 3.1. For the minimization algorithms, Simplex and Migrad are
used. They are provided by the Minuit package[66]. To avoid premature stop due to saddle
point trap, those minimizers are chained, so that the initial point of the subsequent minimizer
is obtained from the earlier one. A total of six or seven minimizers are usually used. To avoid
getting trapped inside a local minimum, the fits are performed as follows. First, all 42 param-
eters are open. Normally, it is challenging for Minuit minimizers to converge if the number of
parameters is more than 20. However, with the new Amode2 parameterization, the fits are eas-
ier to converge. After a fit with 42 parameters, we redo the fit by opening a subset of all these
parameters, while keeping the others fixed to the same values as obtained from the previous fit.
This step is redone several times until the absolute best χ2 is obtained. Sometimes, some data
sets are initially given large weight to force the initial fit to go into the direction preferred by
these data sets. This technique is beneficial if one wants to check if a large χ2 for some data sets
is actually caused by a local minimum trap, or due to some other cause (for example, tensions
with the other data).

B.2.1 Fit Quality

In terms of overall χ2/N, as shown in Fig. B.5, all the fits considered here are excellent, as
the χ2/N are very close to the expected value from the ideal case. One can also see that the
HIXNEU-CTEQ has the most unequal χ2/N distribution per experiment. Using the CJ15 ex-
tended parameterization with the same A-dependence as in the HIXNEU-CJ1 fit, one can see
that the fit has a slightly improved overall χ2/N. By using the Amode2 for the A-dependence in-
stead of Amode1, in the HIXNEU-CJ2 fit, we can see further improvement in the overall descrip-
tion of the data. The HIXNEU-DeuCJ2 yields similar χ2/N distribution as in the HIXNEU-CJ2
fit, however, the neutrino data is slightly better described.

To further investigate if the HIXNEU fits can reproduce the data, in Fig. B.6, we show data-
theory plots for selected charged lepton DIS data sets. The plots show that all these HIXNEU
fits can satisfactorily reproduce the data at low and medium x. Thanks to the x-shifting proce-
dure, the HIXNEU-CJ1, HIXNEU-CJ2, and HIXNEU-DeuCJ2 can better reproduce the high x
data compared to the HIXNEU-CTEQ fit.
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B.2.2 Deuteron Nuclear Correction
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FIGURE B.7: The weighted average of the data/theory of the NMC[12] (left) and
the BCDMS[188] data (right).
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FIGURE B.8: (Left) Deuteron nuclear correction ratio at Q2 = 25 GeV2 computed
using PCJ method (red) and the fitted deuteron PDFs (blue). (Right) FD

2 nuclear
corrections from [189].

Treatment of deuteron nuclear effects is the main differentiating factor between the HIXNEU-
CJ2 and the HIXNEU-DeuCJ2 fits. As mentioned before, in the HIXNEU-CJ2 fit, PCJ method
is used to calculate the deuteron structure function and the PDF of the bound proton inside
deuteron is exactly the same as the free proton ones. This is different in the BaseDeuCJ fit,
where the bound proton PDFs of deuteron are fitted in the same way as those of other nuclei.
To assess the quality of data description, the χ2 of NMC[12] and BCDMS[188] deuteron data
are shown in table B.1. One can see that predictions from the BaseDeuCJ fit give better χ2 com-
pared to the standard PCJ method. Surprisingly, PCJ method with the CTEQ6 proton PDFs as
in HIXNEU-CTEQ fit gives a better χ2 for the BCDMS data, but significantly worse χ2 for the
NMC data.

In Fig. B.7, we show the weighted average of data/theory for both NMC and BCDMS FD
2

data. Let Ri = Di/Ti be the data-theory ratio for the i-th data point. Then, the weighted average
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can be computed as :

R(x) = ∑
i

wiRi, (B.24)

∆R(x) =
√

N

(
∑

i
w2

i (∆Rσ
i )

2

)1/2

. (B.25)

In (B.25), a factor
√

N is introduced to compensate for the averaging error, which goes like
1
√

N, where N is the number of data points that are being averaged. The error, ∆R, defined
in this way, represents the actual spread of Ri, while without

√
N factor, the error represent the

averaging errors when the experiment is repeated many times. The weight wi is defined as

wi =

(
∑

j

1
(∆Rσ

j )
2

)−1
1

(∆Rσ
i )

2 , (B.26)

which is derived from maximum likelihood estimation. Fig. B.7 shows that for the NMC
data, predictions from the HIXNEU-DeuCJ2 fit have better agreement with the data than the
ones from the HIXNEU-CJ2 and the HIXNEU-CTEQ fits. For the BCDMS data, the predictions
from the HIXNEU fits generally agrees well with each other, although the predictions of the
HIXNEU-CTEQ fit at the lowest x are much higher than the ideal values. At higher x however,
the predictions diverge. At high x, the PCJ method from the HIXNEU-CTEQ and the HIXNEU-
CJ2 fits leads to too high theory predictions. In contrast, the ones from the HIXNEU-DeuCJ2 fit
undershoot the data, but with a less deviation from the ideal value compared to HIXNEU-CJ2
and HIXNEU-CTEQ.

In Fig. B.8, the extracted shape of deuteron nuclear correction is shown. It is interesting to
see that predictions from the HIXNEU-DeuCJ2 fit follow a typical nuclear ratio curve: shadow-
ing at low x, anti-shadowing, EMC dip, and Fermi motion. Overall, this curve is similar to the
one from Kulagin-Petti model[189], as shown in the right panel of Fig. B.8. On the other hand,
the PCJ-based prediction from the HIXNEU-CJ2 shows a similar nuclear ratio curve from CJ15
analysis, with no anti-shadowing at mid-x and very steep Fermi motion rise at high x.

B.2.3 The Fitted nPDFs

Given that all the fits, with all the methodological differences, give very good χ2/N, it is in-
structive to look at the resulting nPDFs. To study the impact of the added data to the PDFs and
compare the resulting nPDFs to the ones from the previous nCTEQ analyses (nCTEQ15[25],
nCTEQ15HIX[60], and BaseDimuChorus[72]), In Fig. B.9, we show the predictions for the nu-
clear ratio curves, defined as

R[ f A
i ] =

f A
i

f A, f ree
i

, f A, f ree
i =

Z
A

f p
i +

N
A

f n
i . (B.27)
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FIGURE B.9: Nuclear corrections of lead PDFs from the previous nCTEQ analyses
and the HIXNEU-CTEQ fit. The denominator for the nuclear ratio is computed

using the CTEQ6 proton PDFs[65].

Here, f A, f ree
i is computed using the CTEQ6 PDFs[65]. We can see that the valence quark PDFs

of the HIXNEU-CTEQ fit are identical in all x regions to the ones from the nCTEQ15HIX. This
is expected, as both fits used exactly the same charged lepton DIS data, which are sensitive
to the valence quark PDFs. The ū and d̄ PDFs. The ū and d̄ PDFs are also very similar in all
these fits. Switching to the gluon PDF, one can see that the HIXNEU-CTEQ gluon PDF is very
similar to that of the BaseDimuChorus fit. The W and Z data are known to place a very strong
constraints to the gluon PDF at low x (x ≲ 0.1)[72]. Therefore, it is expected that the HIXNEU-
CTEQ gluon is similar to that of BaseDimuChorus, as the W and Z data are both present in both
fits. Examining the strange quark PDF, one can see that the HIXNEU-CTEQ agrees well at high
x with the BaseDimuChorus, and at low x with the nCTEQ15 and nCTEQ15HIX. Nevertheless,
the overall shape of the strange quark PDF from the HIXNEU-CTEQ fit is similar to the one
from the BaseDimuChorus up to a normalization factor, suggesting that the difference might
come from the momentum sum rule. In short, the HIXNEU-CTEQ fit results in reasonable
nPDFs and some differences from previous nCTEQ analyses can be attributed to the addition
of the new data.

Lets’s now compare the full nPDFs from the HIXNEU fits. In Fig. B.10, we show the ex-
tracted nPDFs from the HIXNEU fits. The uncertainties of the nPDFs shown in the figure are
obtained by using χ2 tolerance of T2 = 95, which correspond to 90% percentile of a χ2 distri-
bution with N = 2651 degrees of freedom. We can see that, in general, all the HIXNEU fits are
in good agreement within uncertainties. To better see the difference, we rescale the PDFs with
the free "lead" PDFs computed using the CJ15 PDFs, to obtain nuclear corrections ratios. The
resulting ratios are displayed in Fig. B.11.

Let’s first compare the nuclear ratios from the HIXNEU-CTEQ and HIXNEU-CJ1 fits. The
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FIGURE B.10: The full lead nPDFs at Q = 2 GeV from the HIXNEU fits.

nuclear ratios from these fits are similar overall, except ū and d̄ in the high x region, where the
HIXNEU-CJ1 shows a steep rise. Looking at the HIXNEU-CJ1 uv and dv curves and compar-
ing them to the ones from the HIXNEU-CJ2, one immediately see some difference the low x
(x ≲ 0.1): the HIXNEU-CJ1 fit shows softer shadowing and anti-shadowing. Comparing the
ratio curves from the HIXNEU-CJ2 and HIXNEU-DeuCJ2 fits, one can see that they are almost
identical, although the HIXNEU-DeuCJ2 generally prefers a slightly stronger size of nuclear
ratios for all x.

Looking at the PDF uncertainties, we can see that HIXNEU-CJ1 has much smaller uncer-
tainties than the other fits despite having the same tolerance T2 = 95. This is likely because
the Amode1 is highly non-linear and therefore the Hessian method underestimate the uncertain-
ties. It is interesting to see here that the uncertainties from the HIXNEU-CJ2 are actually smaller
than the ones from the HIXNEU-DeuCJ2 fits, despite having less data points. In the HIXNEU-
DeuCJ2 fit, FD

2 data from NMC and BCDMS were included, adding a total of 528 data points.
As the deuteron PDFs are fitted to the data instead of freezing it to values from other analy-
ses, the uncertainties of the denominator of FA

2 /FD
2 for the charged lepton DIS data and ratio

of dimuon yield YpA/YpD for the Drell-Yan data are essentially propagated to the HIXNEU-
DeuCJ2 PDFs, leading to larger overall uncertainties despite having more data points.

To see the extracted nuclear correction from the HIXNEU fits as a function of A, we plot
the ratio R[ f A

i ] in Fig. B.12 for 5 nuclei : 2D, 4He, 12C, 56Fe, 108Ag, and 208Pb. For comparison,
we also the nuclear corrections from the EPPS21 fit. For the current discussion, we will focus
on the valence quark PDFs. In the shadowing region, we see that the heavier nuclei tend to
have a stronger shadowing for all parton flavors shown in the figure. This is, of course, aligned
with the observation that the size of the shadowing increases with A. However, we can see a
striking difference between the HIXNEU-CJ2 and HIXNEU-DeuCJ2 fits with the other fits: the
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FIGURE B.11: Nuclear ratio for lead at Q = 2 GeV from the HIXNEU fits. The
denominator for the ratio is computed using the CJ15 NLO PDFs.

crossing points (a point where R[ f ] = 0), which mark the transition from shadowing to anti-
shadowing, vary quite rapidly with A. This is especially true for light nuclei. These varying
crossing points are not observed in the HIXNEU-CTEQ, HIXNEU-CJ1, and EPPS21 nPDFs.
Moving to the anti-shadowing region, we can see that the HIXNEU fits show monotonically
increasing anti-shadowing strength as A increases. This pattern is not observed in the EPPS21
dv PDFs. Moving to the EMC and Fermi motion regions, we see stronger nuclear corrections as
A increases for all the fits.

Considering that all these fits have a good χ2/N with a decent χ2/N distribution per data
sets, the nuclear data is not precise nor numerous enough to justify a strong preference of one
A-dependent parametrization over the other3. Nevertheless, the HIXNEU-CJ2 fit, with Amode2
parameterization, has slightly better overall χ2 (the total χ2 in HIXNEU-CJ2 fit is 80 points, or
3%, smaller than that of HIXNEU-CJ1 fit). Therefore, in this respect, Amode2 parameterization
is slightly better.

3As an example here, the dv in the shadowing region from HIXNEU-CTEQ, with Amode1 for the A-dependence,
has rather unusual R[dv] shapes : lead 208Pb is less shadowed than 4He, while in the other fits, it is the opposite.
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FIGURE B.12: Nuclear correction ratios for 2D, 4He, 12C, 56Fe, 108Ag nuclei com-
puted using the HIXNEU and EPPS21 (the lowest panel) fits. Due to isospin
symmetry, u ∼ d and ū ∼ d̄. Therefore, one should keep in mind that the nuclear

ratio for ū and d are similar to that of u and d̄ respectively.
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