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1 Introduction
The aim of this thesis will be to discuss the proton structure and in particular the strange
quark content of the proton. The strange content is relevant for measuring the Boson
mass or other electroweak parameters that are not known yet, so in general it is the key
to analyse data of current and future colliders. If one wants to explore and understand
the proton further, there is no way around investigating and quantising the strange
quark distribution. The first part of this thesis shows how the idea that the proton
consists of individual partons has grown, starting with the idea of a point-like particle
and ending with the parton model description. Therefor the elastic and deep inelastic
electron proton scattering will be studied. The parton model describes each parton as a
pointlike particle with its own parton distribution function (PDF) q(x), where x is the
Bjorken scaling variable. As will be seen, the study of the proton with electromagnetic
interactions is not sufficient to be sensitive for general linear combinations of strange
and antistrange distribution functions s(x) and s(x) so therefore it is necessary to do an
examination of the proton in processes of weak interactions. The data of the Dimuon
production cross section provides independent information on strange and antistrange
quark distribution. But what exactly is the current state of research of strange content?
Figure 1 shows the distribution functions for (anti)up, (anti)down, and (anti)strange
quarks from PDF sets of different years. The CT sets are from the years 2006, 2014 and
2018 and the data of NNPDF3 is from 2021. We can see that the strange quark PDF
and their uncertainty varies between the different data sets. The data sets from CT14
are from lepton deep-inelastic scattering experiments, and measurements of Drell-Yan
processes and inclusive jet production [2]. A further development of the sets created
from this are the CT18 PDF sets. These PDFs are produced by next-to-leading-order
and next-to-next-to-leading-order perturbative QCD. The analysis included variety of
new LHC data on production of single-inclusive jets, W/Z bosons and top-antitop quark
pairs, obtained by the ATLAS, CMS and LHCb collaborations [5]. The data from
NNPDF3 is accurate to next-to-next-to leading order pertubative Quantumchromody-
namics (QCD) and includes charm-quark mass corrections to neutrino-nucleus structure
functions. Especially there were used data from the NuTeV experiment, from several
Tevatron and LHC experiments and from the NOMAD experiment. In the letter ex-
periment they measure the ratio Rµµ of dimuon σµµ to inclusive charged-current cross
sections σCC [3]

Rµµ = σµµ

σCC
. (1)

Other interesting quantities to describe the strange fraction of the proton are the strange
fraction of proton quark sea Rs and the corresponding ratio of momentum fraction κ [3],
which are dependent on the Bjorken x. They are defined as

Rs = s(x) + s̄(x)
ū(x) + d̄(x)

and κ =
∫ 1

0 x(s(x) + s̄(x))∫ 1
0 x(ū(x) + d̄(x))

. (2)

Figure 2 shows the ratio Rs(x) at Q = 1.6 GeV for the four different data sets. In
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Figure 1: quark and antiquark distribution functions for the PDF sets CTEQ6, CT14,
CT18 and NNPDF3.

current QCD there is the simplifying educated guess s = s = r · u+d
2 for small x [6]. The

figure shows that the ratio is nearly constant for all PDF data sets at small x so the
educated guess works, but the high uncertainties also show the lack of knowledge of the
strange and antistrange distribution functions. Moreover the data sets from 2006 and
2014 predict a smaller strange ratio than the newer data sets from 2018 and 2021. In
table 1 are the different values for κ listed. It is noticeable that the data from NNPDF3
predict with κ = 0.63 a much higher ratio of momentum fraction than the CT data sets,
especially a ratio >50%. It is also worth to mention that the NNPDF3 data predict

PDF set κ ⟨x⟩s− =
∫
x(s− s)

CT6 0.39 0.0
CT14 0.41 0.0
CT18 0.37 0.0

NNPDF3 0.63 0.001

Table 1: Momentum strange ratio and strange antisymmetry for different PDF sets.
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Figure 2: Strange ratio for different PDF sets.

an antisymmetry in strange and antistrange PDFs. The current knowledge is that the
strangeness antisymmetry has a value of −0.001 < ⟨x⟩s− < 0.005 [3]. The fact that it
is not even known if the antisymmetry is positive or negative is just another aspect of
how much is still unexplored about the strange fraction of the proton.

2 In search of the structure of the proton
In order to investigate the structure of a particle, it is useful to measure the cross section
in scattering experiments. The differential cross section is defined as the quotient of the
particles counted in the solid angle per second and the number of incoming particles per
second and area fraction. Expressed in a formula, in general the cross-section can be
calculated by

dσ = |M |2
F

dQ. (3)

Here, |M |2 is the invariant amplitude, that can be calculated for different scattering
processes. F is the initial flux and dQ the Lorentz-invariant phase space factor.
The possible resolution of the structure of a particle in scattering experiments is limited
by the De Broglie wavelength of the incoming particles. To “see“ a structure, the De
Broglie wavelength

λ = h

p
(4)
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has to be in the order of magnitude of the structure constant.
In the following sections, various cross sections are calculated using the Feynman rules,
the commutator relations of the Dirac gamma matrices and trace theorems. These
calculation rules can be found in the Appendix.

2.1 The proton as a point like particle: elastic electron-muon scatter-
ing

If the De Broglie wavelength of the scattering electrons is larger than the spatial expan-
sion of the proton, the electrons would “see“ just a pointlike particle. The proton then
has the same electron scattering behaviour as the muon, we just have to use the mass
of the proton M instead the mass of the muon mµ. In the following section the crossing
section of elastic electron-muon scattering will be calculated in order to get a result for
scattering with pointlike particles. We will see that this calculation can also be used for
the scattering of quarks.
The Feynman diagram for this scattering process is shown in fig. 3. The electron carries

p

k

p′

q

k′

γ

µ−

e−

µ−

e−

Figure 3: The leading order Feynman diagram for electron-muon scattering

the four-momentum k before scattering and k′ after scattering. The four-momentum of
the muon is p before and p′ after. The calculation of the initial flux and the Lorentz in-
variant phase space factor is shown in eq. (A.16) and eq. (A.19). The invariant amplitude
consists of the two particle currents (they build up a scalar separately) and the photon
propagator, that can be written in the form

(
− igµν

q

)
. Here, q is the four-momentum,

that is transmitted at the scattering process. As we can see in the Feynman diagram,
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this scattering is a t-channel process, so q2 = t = (k − k′)2 is the transmitted four-
momentum (see eq. (A.5)). Now M and M † can be calculated by using the Feynman
rules from

M = [ūs1(k′)ieγµus2(k)][ūs3(p′)ieγνus4(p)]
(

− igµν

t

)
= i

e2

t
[ūs1(k′)γµus2(k)][ūs3(p′)eγµu

s4(p)]

M † = −ie
2

t
[us2 †(k)γα†ūs1†(k′)][us4 †(p)(γα)†ūs3†(p′)]

= −ie
2

t
[ūs2(k)γαus1(k′)][ūs4(p)γαu

s3(p′)]

The invariant amplitude can be written in the form

|M |2 = e4

t2
Lµα

e Lmuon
µα (5)

because the Electron current Lµα
e as well as the muon current form a Lepton tensor,

that can be calculated independently. It has to be considered that there is no knowledge
about the spin states of the particles. This is why we have to average over all spins by
summing over all spin states and dividing by two. So the e− current is:

Lµα
e =1

2
∑
s1,s2

[ūs1(k′)ieγµus2(k)][ūs2(k)γαus1(k′)]

= 1
2Tr[(̸ k′ +me)γµ( ̸ k +me)γα]

= 1
2Tr(̸ k′γµ ̸ kγα) + 1

2m
2
eTr(γµγα)

= 2k′
ρkσ(gρµgσα − gρσgµα + gραgσµ) + 2m2

eg
µα

= 2(k′µkα + k′αkµ + gµα(m2
e − (k′ · k))) (6)

We achieve the following reslut for the muon current performing the equivalent calcula-
tion:

Lmuon
µα = 2(p′

µpα + p′
αpµ + gµα(m2

µ − (p′ · p)))

Now |M |2 can be calculated by expanding all products:

|M |2 = e4

t2
2(k′µkα + k′αkµ + gµα(m2

e − (k′ · k)))2(p′
µpα + p′

αpµ + gµα(m2
µ − (p′ · p)))

= 4e
4

t2
[(2(k′ · p)(k · p′) + 2(k′ · p′)(k · p) + 2(m2

e − (k′ · k))(p′ · p) + 2(m2
µ − (p′ · p))(k′ · k)

+ 4m2
em

2
µ + 4(p′ · p)(k′ · k) − 4m2

e(p′ · p) − 4M2(k′ · k)]

= 8e
4

t2
[(k′ · p)(k · p′) + (k′ · p′)(k · p) −m2

e(p′ · p) −m2
µ(k′ · k) + 2m2

em
2
µ] (7)
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In the extreme relativistic limit we can neglect the electron mass as well as the muon
mass (me ≈ mµ ≈ 0). Moreover we can use the invariant Mandelstam variables eq. (A.5),
so the expression in eq. (7) can be written in the form:

|M |2 = 8e
4

t2
[(k′ · p)︸ ︷︷ ︸

u/2

(k · p′)︸ ︷︷ ︸
u/2

+ (k′ · p′)︸ ︷︷ ︸
s/2

(k · p)︸ ︷︷ ︸
s/2

]

= 2e4 s2 + u2

t2
(8)

Comparing this calculation with the scattering process of the Proton, it also makes
sense to calculate the cross section without neglecting the mass of the muon, because
the proton is much heavier. Moreover it is useful to replace p′ by

p′ = k + p− k′

to reduce the equation to the momenta before scattering and the electron momentum
after scattering. With this replacement there is no need to measure the proton momen-
tum after scattering. In the following only the electron mass will be neglected, p′ will
be replaced and q2 ≈ −2(k · k′) in eq. (7) will be used, so the equation becomes

|M |2 = 8e
4

t2
[−1

2q
2((k · p) − (k′ · p)) + 2(k · p)(k′ · p) + 1

2m
2
µq

2].

To simplify the equation it is useful to look at the process from the laboratory frame,
in which the muon is in rest p = (mµ, 0). The energy of the electron before scattering is
E, after scattering E′. The equation simplifies to:

|M |2 = 16e
4

t2
m2

µEE
′
(

1 +
1
2m

2
µq

2

2m2
µEE

′ −
1
2q

2m2
µ(E − E′)

2m2
µEE

′

)

At this point we can take advantage of q2 = t, because with eq. (A.7) for t in the
laboratory frame, we can exchange q by an expression of E′ and θ

|M |2 = 16e
4

t2
mµEE

′(1 − sin2 θ − q2

2m2
µ

sin2 θ)

= 16e
4

t2
m2

µEE
′(cos2 θ − q2

2m2
µ

sin2 θ)

= 256α
2π2

q4 m2
µEE

′(cos2 θ − q2

2m2
µ

sin2 θ)

The elementary charge was replaced by the fine structure constant α = e2

4π . By using
eq. (3), the initial flux and the Lorentz invariant phase space factor in the laboratory
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frame A.19, the differential cross section becomes:

dσLab = 1
4mµE︸ ︷︷ ︸

F

256α
2π2

q4 m2
µEE

′(cos2 θ − q2

2m2
µ

sin2 θ)︸ ︷︷ ︸
|M |2

E′dEk′dΩ 1
16π2mµA

δ(E′ − E

A
)︸ ︷︷ ︸

dQLab

= 4α
2

q4 E
′2(cos2 θ − q2

2m2
µ

sin2 θ) 1
A
δ(E′ − E

A
)dE′dΩ

Now we can perform the integration over E′. After that we substitute A = E
E′ and

q4 = t2 = 16E2E′2 sin4 θ
2 , see eq. (A.7).

(
dσ

dΩ

)
Lab

=
(

α

2E sin2 θ
2

)2
E′

E
(cos2 θ − q2

2m2
µ

sin2 θ) (9)

Again, written in terms of the scattering angle θ (see eq. (A.18) instead of eq. (A.19))
we get

dσ

dE′dΩ = 4α
2

q4 E
′2(cos2 θ − q2

2m2
µ

sin2 θ)δ(v − q2

2mµ
) (10)

which is the final result for the electron muon differential cross section. This result is es-
sential, because all cross sections of scattering processes of point like spin 1

2 particles can
be written in this form. In the following sections we show, that the cross section of the
proton is not equal to the electron-muon cross section with exchanged masses. Nonethe-
less, the calculation above can be used for comparison and especially to determine the
deviations that arise from the parton model.

2.2 Spatially extended Proton: elastic electron-proton scattering

If the electrons have a higher kinetic energy, their De Broglie wavelength would be in
the order of the spatial expansion of the proton. The electrons now “see“ the proton
as an expanded particle. The elastic electron proton scattering process is show in fig. 4.
One can see that the proton is mentioned with an expansion, but the electrons are not
fast enough to notice a possible inner structure. The proton current can in general be
written as

Jµ
P = eū(p′)[...]u(p)ei(p′−p)x.

The brackets [...] can not simply be replaced by γµ as for the muon scattering, because
the Proton does not act like a point like Spin-1

2 -particle. Instead we exchange [...] by a
general expression:

[...] =
[
F1(q2)γµ + κ

2MF2(q2)iσµνqν

]
(11)
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Figure 4: The leading-order Feynman diagram for elastic Electron proton scattering.

Here κ is the anomalous magnetic moment and F1, F2 present two independent form
factors. The boundary conditions q2 → 0 are known, because for small transmitted
four-momenta we see just a particle with charge e and magnetic moment (1 + κ) e

2M , so
F1(0) = F2(0) = 1. We can calculate the cross section equivalent to the cross section of
electron-muon scattering but with the new expression for the proton current. We can
write:(

dσ

dΩ

)
Lab

=
(

α

2E sin2 θ
2

)2
E′

E

(
(F 2

1 − κ2q2

4M2F
2
2 ) cos2 θ − (F1 + κF2)2 q2

2M2 sin2 θ

)
(12)

This formula is known as the Rosenbluth-formula. We can avoid intereference terms
by using GE = F1 + κq2

4M2F2 und GM = F1κF2. If we also use τ = − q2

4M2 , then the
Rosenbluth-formula is(

dσ

dΩ

)
Lab

=
(

α

2E sin2 θ
2

)2
E′

E

(
G2

E + τG2
M

1 + τ
cos2 θ + 2τG2

M sin2 θ

)
. (13)

Now, interference terms do not appear. In equivalence to eq. (10) the formula can be
written as:

dσ

dE′dΩ = 4α
2

q4 E
′2
(
G2

E + τG2
M

1 + τ
cos2 θ + 2τG2

M sin2 θ

)
δ(v + q2

2M ) (14)

The cross section is the result for the interaction in which the proton is described as a
particle with expansion but without an inner structure. If one measures this cross section
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experimentally with a higher kinetic energy for the electrons, there are two possibilities:
Either the proton has no internal structure and the electron-proton scattering is com-
pletely described, or the proton has an inner structure and the electrons with which the
scattering was performed have enough energy to break up the proton, so that inelastic
scattering can be observed. This possibility is described in the following section.

2.3 The proton with inner structure: inelastic electron-proton scatter-
ing

The calculation for the cross section of the inelastic electron-proton scattering is also
based on the calculation for the electron-muon scattering. The Feynman diagram for
inelastic electron proton scattering is shown in fig. 5. However, here is dσ ∼ Le

µνW
µν ,

p

k

q

k′

γ

P {

e−

}X

e−

Figure 5: The lowest order Feynman diagramm for inelastic Electron proton scattering.

where Wµν describes the expression for the hadronic tensor, which is first presented
in its most general form. For now, the only certainty is that it must be symmetrical
in µ ↔ ν, because Le

µν from eq. (6) is symmetrical and all antisymmetrical terms are
omitted after summation via Einstein’s summation convention. Furthermore, Wµν is a
function of gµν , p and q. γµ is not included because the cross section is treated here,
where the spins have already been summed and averaged. The tensor is therefore in the
form

Wµν = −W1g
µν + W2

M2 p
µpν + W4

M2 q
µqν + W5

M2 (pµqν + pνqµ). (15)
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W3 is reserved for an antisymmetric component. We will see that antisymmetry con-
tributes to the calculation in neutrino scattering. By a generalised form of the continuity
equation, qµW

µν = 0 must hold which is known as the Ward identity [4]. From this fol-
lows:

qµW
µν = −W1qµg

µν + W2
M2 qµp

µpν + W4
M2 qµq

µqν + W5
M2 (qµp

µqν + qµp
νqµ)

= −W1q
ν + W2

M2 (q · p)pν + W4
M2 q

2qν + W5
M2 ((q · p)qν + pνq2)

= qν (−W1 + w2
M2 q

2 + w5
M2 (q · p))︸ ︷︷ ︸

=0

+pν ( w2
M2 (q · p) + w5

M2 q
2)︸ ︷︷ ︸

=0

!= 0

For this equation to yield 0 in general, the coefficients in front of qν and pν must cancel
separately. We see, this causes the dependence relations:

W5 = −q · p
q2 W2,

W4 = M2

q2 W1 − q · p
q2 W5 = M2

q2 W1 + (q · p)2

q4 W2.

Thus only two of the four assumed structure functions are independent of each other
and we can write Wµν as

Wµν = W1(−gµν + qµqν

q2 ) + W2
M2 (pµ − q · p

q2 qµ)(pν − q · p
q2 qν). (16)

At this point it should be noted that the tensor is dependent on two independent vari-
ables. Here one often uses q2 and v = p·q

M . Later one sees that also the choice of

x = − q2

2p · q
= − q2

2Mv
(17)

y = p · q
p · k

= 1 − E′

E
(18)

can be useful as independent variables. To calculate the cross section of the electron-
proton scattering, the product Le

µνW
µν is evaluated. For this purpose, the result from

eq. (6) from the electron-muon scattering is used for Le
µν :

Le
µνW

µν (19)

=2[k′
µk

ν + k′
νkµ + gµν(m2

e − (k′ · k))][W1(−gµν +
�

�
�@

@
@

qµqν

q2 )+ W2
M2 (pµ − q · p

q2 ��@@q
µ)(pν − q · p

q2 ��@@q
ν)]

The terms that are crossed out fall directly due to

qµL
µν
e = 2(kµ − k′

µ)[k′µkα + k′αkµ + gµα(m2
e − (k′ · k))]

= 2[kν(k′ · k) − kνm2
e + k′νm2

e − k′ν(k′ · k)
+ kνm2

e − kν(k′ · k) − k′νm2
e + k′ν(k′ · k)]

= 0 (20)
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With this we can simplify eq. (19) to

Le
µνW

µν

= −2W1(k · k′) − 2W1(k · k′) + 8W1(k · k′) + 2W2
M2 (2(k′ · p)(k · p) + m2

e︸︷︷︸
≈0

p2 − p2︸︷︷︸
M2

(k · k′))

= 4W1(k · k′) + 2W2
M2 (2(k′ · p)(k · p) −M2(k · k′)). (21)

If one considers the scattering in the laboratory system, i.e. in the rest system of the
proton, the scalar products can be expressed with the help of the relations from eq. (A.7)
via E′ and θ. It follows

Le
µνW

µν = 4EE′(2W1 sin2 θ

2 +W2 cos2 θ

2). (22)

The invariant amplitude is then equivalent to eq. (5) with an additional normalisation
4πM to

|M |2 = 4πM e4

q4 4EE′(2W1 sin2 θ

2 +W2 cos2 θ

2)

= 16 · 16Mα2π3

q4 EE′(2W1 sin2 θ

2 +W2 cos2 θ

2).

Here, the fine structure constant α was used again. The total cross section corresponds
to the term:

dσ = 1
4ME

16 · 16Mα2π3

q4 EE′(2W1 sin2 θ

2 +W2 cos2 θ

2) d3k⃗′

2E′(2π)3

It should be noted that the Lorentz-invariant phase space element here only runs over k⃗′

(see eq. (A.17)), since nothing is known about the final momentum X⃗. This information
is contained in the structure factors W1 and W2. It follows

dσ

dE′dΩ = 4α
2E′2

q4 (2W1 sin2 θ

2 +W2 cos2 θ

2). (23)

This is the most general expression for the cross section of the inelastic electron-proton
scattering. The structure functions keep open what the inner structure of the proton
looks like.

2.4 Comparison

It is useful to make a short summary of the results so far, to use them for future refer-
ences. In the laboratory frame and a neglected electron mass all three differential cross
sections can be written in the form

dσ

dE′dΩ = 4α2E′2

q4 {...}
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with

{...} = (cos2 θ − q2

2m2 sin2 θ)δ(v + q2

2m)

for muons or other point like particles (by replacing mass and charge),

{...} =
(
G2

E + τG2
M

1 + τ
cos2 θ + 2τG2

M sin2 θ

)
δ(v + q2

2M )

for an expanded particle and finally

{...} = (2W1 sin2 θ

2 +W2 cos2 θ

2)

when the electron breaks up the proton target and reveals the inner structure in form
of W1 and W2.
The actual expressions for W1 and W2 are discussed in the following chapter.

3 Partons and Bjorken scaling
At small wavelengths, the experimental results provide that the proton behaves like a
free Dirac particle [4], which is reflected in

2mW1 = Q2

2mδ(v − Q2

2m) = 2mW1(v,Q2)

W2 = δ(v − Q2

2m) = W2(v,Q2)

For convinience the positive variable Q2 = −q2 is used. With the calculation rules of
the delta function one can see that

2mW1 = Q2

2mvδ(1 − Q2

2mv ) = 2mW1(ω) ≡ 2F1

vW2 = δ(1 − Q2

2mv ) = vW2(ω) ≡ F2 (24)

so that the structure functions W1 and W2 are in the form of a delta function and only
depend on the variable ω = 2mv

Q2 . Thus, the virtual photon interacts with point-like
particles. The proton consists of many point-like particles called partons, which we do
not have to identify them yet as quarks and gluons. Each parton can carry a different
fraction x = 1

ω of the total momentum and energy of the proton, it has the momentum
p̂ = xp. The variables with a roof each refer to a single parton. If we consider the
scattering in the rest system of the proton, i.e. p = (M, 0), it can easily be shown that
x and y each lie between 0 and 1:
The so-called invariant mass, W 2 = (p+q)2 = M2 +q2 +2Mv fulfils W 2 > M2 so we get
−q2 < 2Mv. Furthermore, for q2, neglecting the electron mass, q2 = −2EE′(1−cos Θ) <

14



Figure 6: Illustration of the parton model, according to which the cross section of
the electron-proton scattering can be expressed via the individual interactions with the
partons. [4].

0 holds. Thus is 0 < x < 1. For y in the laboratory system y = M(E−E′)
ME = 1 − E′

E holds.
Since E′ < E we directly get 0 < y < 1.
As has been shown, the variable x lies between 0 and 1, which fits the interpretation as
a momentum fraction. At this point it makes sense to introduce the parton distribution
functions (PDFs):

fi(x) = dpi

dx
, (25)∑

i

∫
dxfi(x) = 1. (26)

fi(x) describes the probability that parton i carries the momentum part x of the proton
momentum. Since the entire proton momentum is distributed among the partons, the
completeness relation from eq. (26) applies. The aim is now to express the effective cross
section of the proton scattering via the individual effective cross sections of the partons
in order to be able to draw conclusions about the intrinsic structure of the proton. This
idea is visualised in fig. 6. In the form of an equation this connection can be written as(

dσ

dtdu

)
eP →eX

=
∑

i

∫
dxfi(x)

(
dσ

dtdu

)
eqi→eqi

. (27)

First we want to calculate the right side of the equation,
(

dσ
dtdu

)
eqi→eqi

, the cross section
for elastic electron parton scattering.

3.1 Elastic electron-quark scattering

The Feynman diagram of this parton scattering, which we now assume to be a quark
scattering, is shown in fig. 7. The remaining partons of the proton are labeled as “Spec-
tators “. To calculate this cross section, in the first step, the invariant Mandelstam
variables of the single parton can be considered, for which holds:

ŝ = xs, t̂ = t and û = xu. (28)
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Figure 7: The lowest order Feynman diagram for elastic electron-quark scattering

Furthermore, we take advantage of the fact that

cos θ =
−1

2s(1 − cos θ) + 1
2s(1 + cos θ)

s
= t− u

s

applies (see eq. (A.6)). Now d cos θ can be expressed over dt using the derivative d cos θ
dt =

1
s . The effective cross-section that results from eq. (3), the result from eq. (8) from
the electron-muon scattering calculation for the invariant amplitude and the Lorentz-
invariant phase element in the CMS (eq. (A.20)) thus becomes:(

dσ

dΩ

)
muon

= 1
64π2s

2e4 s
2 + u2

t2

⇒
(
dσ

dt

)
Parton

= 2πα2e2
i

s2
s2 + u2

t2

Here, the integration over ϕ was carried out and α = e2

4π was used. Furthermore, we
have α → αei in electron-quark scattering where ei describes the charge fraction carried
by the parton. We have used the invariant amplitude that neglect the muon mass, or in
this case the quark mass, because if the electrons have enough kinetic energy to break
up the proton we can be sure that we are in range of the extreme relativistic limit, where
the masses can be neglected. Now, in addition, eq. (A.13) and eq. (28) can be used to
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rewrite the effective cross-section in the form(
dσ

dtdu

)
eqi→eqi

= x
dσ

dt̂dû

= 2πα2e2
i

s2
s2 + u2

t2
δ(u+ t

x
+ s)

= x2πα
2e2

i

t2s2
s2 + u2

s+ u
δ(x+ t

(u+ s)).

This is the result for the cross section for elastic electron-quark scattering and the right-
hand side of eq. (27).

3.2 Master formula of the parton model

The left-hand side of the equation can be expressed using the result of eq. (8) (neglecting
the term with prefactor M2) and the relations of s, t, u from eq. (A.5). It thus holds:

Le
µνW

µν = −2tW1 − W2
M2 su

= − 2t
M
F1 − su

vM2F2

= 2
M(s+ u) [(s+ u)2xF1 − usF2].

In the last step we use eq. (A.13) and v = E − E′ = s+u
2M . Furthermore, the differential

cross section according to dtdu and not according to dΩdE′ is required. Considering in
the laboratory frame s = 2ME, t = q2 = −2EE′(1− cos θ) and u = −2ME′ one obtains

dΩ = d cos θdϕ = −2π 1
2EE′dt = 4πM

2

su
dt

dE′ = − 1
2Mdu.

This can be used in the differential cross section.

dσ

dudt
= 1

4ME︸ ︷︷ ︸
1/F

4πM e4

q4
2

M(s+ u) [(s+ u)2xF1 − usF2]︸ ︷︷ ︸
¯|M |2

E′

16π3dΩdE′︸ ︷︷ ︸
dQ

= 1
4ME

4πM e4

q4
2

M(s+ u) [(s+ u)2xF1 − usF2] E
′

16π3
−1
2M 4πM

2

su
dtdu

17



In the next step, with the same relations as just mentioned, E = s
2M , E′ = − u

2M , q4 = t2

and e4 = 16π2α2 can be substituted.

dσ

dudt
= 2M

4Ms
4 · 16π3M

α2

t2
2

M(s+ u) [(s+ u)2xF1 − usF2] −u
2M16π3

−1
2M 4πM

2

su
dtdu

= 4π α2

s2t2
1

(s+ u) [(s+ u)2xF1 − usF2]

= 4π α2

s2t2
1

(s+ u) [(s2 + u2)xF1 + us(x2F1 − F2)]

This is the final expression for the left side of eq. (27). Both expressions can now be
substituted into the equation and the integration over x can be performed. This results
in:

4π α2

s2t2
1

(s+ u) [(s2 + u2)xF1 + us(x2F1 − F2)] =
∑

i

fi(x)x2πα
2e2

i

t2s2
s2 + u2

s+ u

⇔ 2[(s2 + u2)xF1 + us(2xF1 − F2)] =
∑

i

xfi(x)e2
i (s2 + u2)

Comparing the coefficients of (s2 + u2) and us provides the important formula of the
parton model:

2xF1 = F2 =
∑

i

xfi(x)e2
i (29)

The relation FL = F2 −2xF1 = 0 is the so called Callan-Gross relation, which is fullfilled
in leading order of 1

Q2 [1]. We can see that in the leading order F1 = F1(x) and F2 =
F2(x) are functions that depend only on the scaling variable x. The result is that
important because the individual parton distribution functions now provide the overall
structure of the proton or said differently, measuring the cross section of deep inelastic
electron proton scattering provides information about how the parton structure of the
proton looks like. The next section will deal with this fact in more detail.

3.3 Parton distribution functions (PDFs)

First, consider what the structure function F2 would have to look like depending of the
structure of the proton. The simplest possibility is if the proton consisted of only one
quark. Then the entire proton momentum would be carried by this quark and F2 would
be a delta peak at 1. Looking at the properties of the proton (charge, spin, etc.), it can
be assumed that the proton consists of three quarks. If these are not coupled with each
other in the first consideration, F2 would be a superposition of 3 delta peaks at 1/3,
because each of the three quarks would then carry exactly 1/3 of the total momentum.
If the three quarks can interact with each other, the momentum is no longer discrete
but continuously distributed around the maximum at 1/3, the area is normalised to 1.
This situation is visualised as a red curve in fig. 8. Here, the sum of the valence up and
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down PDFs of the CT18 PDF sets with their uncertainties was plotted. The expected
distribution can be seen clearly.
Now the idea of three valence quarks bound together is extended to include a sea of
gluons and quark-antiquark pairs. The quarks and gluons in the sea carry only small
momentum fractions. This idea is shown as a green curve in the figure. We can see
that the curve no longer flattens out at small x. In a first approximation it is now
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Figure 8: Structure function F2 for three bounded valence quarks and in addition for
three bounded valence quarks and a debris at small x visualized with data from the
CT18 PDF set.

assumed that the proton consists of up, down and strange quarks (and the respective
antiparticles) and gluons, where the up quark has a charge of 2

3e, the strange and the
down quark each carry a charge of −1

3e. Furthermore we assume that the gluons just
couple the quarks but do not carry a momentum fraction themselves. Then eq. (29) can
be written in the form

1
x
F2 =

(2
3

)2
[uP (x) + ūP (x)] +

(1
3

)2
[dP (x) + d̄P (x)] +

(1
3

)2
[sP (x) + s̄P (x)] (30)

The functions uP , dP , sP or ūP , d̄P , s̄P are the distribution functions for (anti-)up,
(anti-)down or (anti-)strange quarks. Thus, there are a total of 6 quark distribution
functions fi(x) that are unknown. However, we know that the quantum numbers of
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the proton are exactly the sum of the quantum numbers of the valence quarks, i.e. the
quarks that are not in a quark-antiquark pair. The quantum numbers of the proton are:
strangeness=0, electric charge=1, baryon number=1. Since only the strange quark can
contribute to the strangeness, the following applies:∫

dx[s(x) − s̄(x)] = 0

The strange quarks are therefore only present in quark-antiquark pairs. Since the up
and down quarks each carry the baryon number 1

3 , the following also applies:∫
dx[u(x) − ū(x)] = 2∫
dx[d(x) − d̄(x)] = 1

In order to visualize these facts, the valence parton distribution functions of the PDF
sets that are mentioned in the introduction are shown in fig. 9.
To a first approximation, all seaquarks appear in the same number:
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Figure 9: valence quark distribution for the PDF sets CTEQ6, CT14, CT18 and
NNPDF3.
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us = ūs = ds = d̄s = ss = s̄s = S(x) (31)

The valence quarks are those without antipartners, so we get:

uv = u− ū = u− ūs = u− us (32)
dv = d− d̄ = d− d̄s = d− ds (33)
sv = 0 (34)

Using these relations, in eq. (30) u = uv +S and d = dv +S can be substituted, resulting
in

1
x
F2 = 4

9uv + 1
9ud + 4

3S. (35)

For the neutron, on the other hand,
∫
dx[u(x) − ū(x)] = 1 and

∫
dx[d(x) − d̄(x)] = 2 to

satisfy its quantum numbers and thus 1
xF

n
2 = 1

9uv + 4
9ud + 4

3S. The subtraction of the
two distribution functions yields

1
f

(F2 − Fn
2 ) = 1

3(uv − dv)

and thus only the fraction of valence quarks, without the fraction of sea quarks. This is
an example of how information about the quark content of the proton can be collected via
a linear combination of structure functions of the proton during deep inelastic scattering
with an electron.

The problem in determining the inner structure of the proton is obvious: At this
point, the analysis of electron-proton scattering is no longer sufficient for general linear
combinations of PDFs. Since the deep inelastic electron proton scattering is not sensitive
to the individual strange or antistrange PDF we can not get information about the
strange content in the proton. It is useful to consider deep inelastic scattering with
neutrinos and antineutrinos to obtain more independent linear combinations of PDFs.

4 Weak interactions
The lifetimes of pions and muons are significantly longer than those of particles that
decay through strong or electromagnetic interaction. This suggests that there must be
another type of interaction that has a much weaker coupling than electromagnetism.
This is the so-called weak interaction. All hadrons and leptons are subjected to it.
Neutrinos can help out to observe a weak interaction process. These are subjected
exclusively to the weak interaction, because they are colourless and electrically neutral,
so that the weak interaction has to play a role in the neutrino quark scattering in any
case.
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4.1 Parity violation of weak interaction

In the most general form, the particle current can be described as

(ψ)(4 × 4)(ψ).

The bracket (4 × 4) describes a general product of γ matrices. It is significant how the
individual constructions behave under space inversion, i.e. using the parity operator

ΛP =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (36)

Under the condition that the parity transformation is a Lorentz transformation, it makes
sense to consider the Dirac equation from eq. (A.2) in two systems x and x′ = ΛPx linked
by parity

iγµ∂ψ(x)
∂xµ

−mψ(x) = 0

iγµ∂ψ
′(x′)
∂x′µ −mψ(x′) = 0.

Since both equations yield 0, there must be an operator for which ψ′(x′) = Sψ holds. If
this is substituted into the lower equation, then in agreement with the upper equation
S−1γµS = ΛPγ

mu must hold. Substituting ΛP from eq. (36) concretely, we get S−1γ0S =
γ0, and S−1γkS = −γk. These relations are fulfilled exactly for S = γ0. With this result
and the relations from eq. (A.4), we can now consider which form of the current has which
parity. This is summarised in table 2. Note that the construction γ5γµ is effectively a

form parity no. of components phys. name
ψψ 1 scalar
ψγµψ γ0ψγµψ = - ψγµψ 4 Vector
ψσµνψ 6 Tensor
ψγ5γµψ γ0ψγ5γµψ = + ψγ5γµψ 4 Axial Vector

ψγ5ψ γ0ψγ5ψ = - ψγ5ψ 1 Pseudoscalar

Table 2: Overview of the possibilities of constructions with γ-matrices [4]

product of 3 and not 5 γ matrices, since two matrices are the same and the product
can thus be reduced to 3. It can be stated about the tensor that it is antisymmetrical,
i.e. in the form σµν = 1

2(γµγν − γνγµ), since all symmetrical components fall out due to
the anticommutator relation of the matrices. Therefore it also only has 6 independent
components. The axial vector and the pseudoscalar appear strange because they look
like a vector and a scalar in terms of the number of their components, but behave exactly
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the opposite as expected when the parity operator is applied. When investigating the
scattering experiments with electrons, the particle current was always described in the
form of a vector, i.e. in such a way that it has the eigenvalue 1 when the parity operator
is applied. This is what is to be expected from currents that can be observed in nature.
Intuitively, it also seems nonsensical to describe the particle current in the form of an
axial vector. However, a Priori, there is no reason to use only vectors to describe the
particle currents. Replacing γµ by γµ(1 − γ5) has surprisingly lead to an explanation
of a number of hitherto unexplained β-decay observations [4]. One speaks of the V-
A structure (vector-axial vector) of the weak currents. The weak cross sections can
therefore be calculated in the same way as those of the electromagnetic interaction by
replacing γµ by 1

2γ
µ(1 − γ5). The antisymmetric part of the neutrino current allows an

antisymmetric fraction in the hadron tensor, which this time does not disappear due to
the Gaussian summation convention.

4.2 Elastic electron-neutrino scattering

First, we investigate elastic electron-neutrino scattering. Later we will see that this
calculation can be recycled for neutrino-quark scattering. To calculate the cross section

p

k

k′

q

p′

W−

e−

νe

νe

e−

Figure 10: Feynman-diagram of electron-neutrino scattering [4]

of the electron-neutrino scattering, the Feynman diagram from fig. 10 is considered and
we use the Feynman rules. We start the calculation of the effective cross-section at the

23



invariant amplitude.

M = [ g√
2
ūs1(k′)1

2γ
µ(1 − γ5)us2(p)][ g√

2
ūs3(p′)1

2γµ(1 − γ5)us4(k)] 1
Q2 +M2

W︸ ︷︷ ︸
Propagator

Here g√
2 is a dimensionless weak coupling constant and MW the W-Boson mass. As-

suming that Q2 ≪ M2
W , then the propagator can be approximated as 1

M2
W

.

M = [ g√
2
ūs1(k′)1

2γ
µ(1 − γ5)us2(p)][ g√

2
ūs3(p′)1

2γµ(1 − γ5)us4(k)] · 1
M2

W︸ ︷︷ ︸
Propagator

= g2

8 [ūs1(k′)γµ(1 − γ5)us2(p)]︸ ︷︷ ︸
Jµ

1

[ūs3(p′)γµ(1 − γ5)us4(k)]︸ ︷︷ ︸
J2

ν

1
M2

W

(37)

In this case the weak interaction amplitudes are of the form

M = GF√
2
Jµ

1 J
2
ν (38)

with

GF√
2

= g2

8M2
W

(39)

where GF is the Fermi constant [4]. So we get

M = GF√
2

[ūs1(k′)γµ(1 − γ5)us2(p)][ūs3(P ′)γµ(1 − γ5)us4(k)]

M † = GF√
2

[us2 †(p)(1 − γ5)†γν†ūs1†(k′)][us4 †(k)(1 − γ5)†γν
†ūs3†(p′)]

= GF√
2

[ūs2(p)γν(1 − γ5)us1(k′)][ūs4(k)γν(1 − γ5)us3(p′)]

In contrast to the calculation of |M |2 for the electron-muon scattering in section 2.1 we
can not multiply parts seperatly with each other. The multiplication and spin average
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gives the following for the invariant amplitude

|M |2 = 1
2

∑
s1,s2,s3,s4

MM †

= G2
F

4 Tr[γµ(1 − γ5) ̸ pγν(1 − γ5) ̸ k′]Tr[γµ(1 − γ5) ̸ kγν(1 − γ5) ̸ p′]

= G2
F

4 pαk
′
β[Tr(γµγ5γαγνγ5γβ) + Tr(γµγαγνγβ)

− Tr(γµγ5γαγνγβ) − Tr(γµγαγνγ5γβ)]
· kκp′λ[Tr(γµγ

5γκγ
νγ5γλ) + Tr(γµγκγνγλ)

− Tr(γµγ5γκγνγλ) − Tr(γµγκγνγ5γλ)]

= G2
F

4 2pαk
′
β[Tr(γµγαγνγβ) − Tr(γµγ5γαγνγβ)]

2kκp′λ[Tr(γµγκγ
νγλ) − Tr(γµγ5γκγνγλ)]

= G2
F

4 8pαk
′
β[gµαgνβ − gµνgαβ + gµβgνα + iϵµανβ ]

8kκp′λ[gµκgνλ − gµνgκλ + gµλgνκ + iϵµκνλ] (40)

Now the brackets must be multiplied. Note that the product of the ϵ tensors gives a
product of δ functions as described in eq. (A.22). If we now put term by term together
to form scalar products, we obtain:

|M |2 = G2
F

4 64[(p · k)(k′ · p′) −(((((((hhhhhhh(p · k′)(k · p′) +(((((((hhhhhhh(p · p′)(k · k′) −(((((((hhhhhhh(k · p′)(p · k′)

+(((((((hhhhhhh4(p · k′)(k · p′) −(((((((hhhhhhh(p · k′)(k · p′) +(((((((hhhhhhh(k · k′)(p · p′) −(((((((hhhhhhh(p · k′)(k · p′)
+ (p · k)(k′ · p′) + 2(p · k)(k′ · p′) − 2(((((((hhhhhhh(p · p′)(k · k′)]

= G2
F

4 · 64 · 4(p · k)(k′ · p′)

= G2
F · 64 · (p · k)(k′ · p′) (41)

If one also considers that in the CMS s = (p + k)2 = (p′ + k′)2 = 2(p · k) = 2(p′ · k′)
applies if one neglects the masses of the particles, then we get

|M |2 = 16 ·G2
F · s2 (42)

The effective cross section can again be calculated via eq. (3). The initial flux F results
from the consideration in the CMS, where |⃗k| = |p⃗| = pi, according to eq. (A.14) to
F = 4(piEp + piEk) = 4pi

√
s. The invariant phase space element can be obtained from
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Figure 11: Feynman diagram of electron-antineutrino scattering.

eq. (A.21). In total we obtain:

dσ

dΩ = 1
4pi

√
s

1
4π2

pf

4
√
s

· 16G2
F · s2

= G2
F · s
4π2

pf

pi

= G2
F · s
4π2

Here, in the limit me → 0, it was exploited that pf = pi applies. After integration over
the solid angle, the result is:

σ = G2
F · s
π

(43)

Figure 11 shows the Feynman diagram for electron-antineutrino scattering. The effective
cross section can be obtained directly from that of electron-neutrino scattering. This
can be recognised by the fact that the antineutrino can be regarded as a neutrino with
reversed momentum, so k ↔ −k′. Substituting in eq. (41) yields

|M |2 = G2
F · 64 · (p · k′)(k · p′) (44)

for the invariant amplitude in antineutrino-electron scattering. The scattering angle θ is
defined as the angle between the (anti)neutrino momentum before (k) and the electron

26



after (p′) scattering. So here

u ≈ −2(k · p′) = −2(k′ · p) = −1
2s(1 − cos θ).

We get

|M |2 = 16 ·G2
F · u2 = 4G2

F · s2(1 − cos θ)2.

In this case, the effective cross section is(
dσ

dΩ

)
Antineutrino

= G2
F · u2

4π2s

= G2
F · s

16π2 (1 − cos θ)2. (45)

The angular integration provides

σAntineutrino = G2
F · s
3π = 1

3σNeutrino (46)

This result can be checked experimentally and thus confirm the form γµ(1 − γ5) of the
weak interaction vertex. Looking at eq. (45), we see that backscattering (i.e. θ = 0)
is forbidden in electron-antineutrino scattering. This can be explained by the fact that
the helicity does not change for the two particles. With the backscattering, however,
the momentum would rotate and thus the angular momentum would also have to rotate
in order to maintain the helicity. Thus, an angular momentum state J = 1 would
become a state with J = −1, which is forbidden according to the conservation of angular
momentum. Strictly speaking, this scattering always ends in a state with J = 1 and a
helicity of +1, so that only one of the three possible helicity states is assumed for the
total system of the two particles. Thus, according to these symmetry considerations,
the scattering amplitude is proportional to the element d−1,1

1 (Θ) = 1
2(1 − cos Θ) of the

Wigner-d matrix, which coincides with our result on the cross section.

4.3 (anti-)neutrino-quark scattering

In order to calculate the effective cross section of neutrino-quark scattering, we need to
know what the weak quark currents look like. The quarks behave electromagnetically
like leptons with their individual charge fraction. The weak current can therefore be
constructed in the same way as for leptons.

Jµ
q = uqγ

µ(1 − γ5)uq′ (47)

When a neutrino hits the nucleon, all but one quarks are pure „observer quarks“, which
means that the scattering effectively takes place on one particle. The Feynman diagram
for this process for the scattering on a strange quark with a muonic neutrino is shown
in fig. 12. The weak interaction can only couple to left-handed quarks, i.e. at very
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Figure 12: Feynman diagram of neutrino-quark scattering.

Figure 13: Helicity and angular configuration in antineutrino quark scattering [4].
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high energies only to quarks with negative helicity. The cross section for scattering with
a neutrino and an antineutrino can be taken from the calculation of electron-neutrino
scattering. However, the scattering angle is now defined as shown in fig. 13. We obtain:(

dσ

dΩ

)
νµd→µ−u

= G2
F · s
4π2(

dσ

dΩ

)
νµu→µ+d

= G2
F · s

16π2 (1 − cos (θ + π))2 = G2
F · s

16π2 (1 + cos θ)2

With the help of the variable y from eq. (18), the integration via dΩ can be replaced.
We use the relation

1 − y = p · k′

p · k
= 1

2(1 + cos θ)

in the CMS, to replace dΩ = 4πdy and 1 + cos θ = 2(1 − y). In addition, one proceeds
to s → xs, since each quark only carries the fraction x of the total momentum. Thus,
the two cross sections for the parton i result in(

dσi

dy

)
νµd→µ−u

= G2xs

π
=
(
dσi

dy

)
ν̄µd̄→µ+ū

(48)(
dσi

dy

)
νµu→µ+d

= G2xs

π
(1 − y)2 =

(
dσi

dy

)
νµu→µ−d

Note that the cross section for the process νµu → µ−d is also that of the second line by
inversion.

4.4 Parton formula for weak interactions

Equivalently to eq. (27), the total effective cross section of neutrino-proton scattering is
to be represented by the individual neutrino-quark cross sections, which can be expressed
by the equation (

dσ

dxdy

)
νP →µX

=
∑

i

fi(x)
(
dσi

dy

)
(49)

In order to find a connection to the form factors of the proton, the cross section of the
neutrino-proton scattering will be calculated. Using eq. (38), the amplitude is of the
form

|M |2 = G2
F

2 WµνLneutrino
µν . (50)

First we calculate Lneutrino
µν :

Lneutrino
µν = 1

2
∑
s1,s2

[ū(k′)s1γµ(1 − γ5)us2(k)][ū(k′)s1γµ(1 − γ5)us2(k)]†

= (−gµν(k · k′) + kµk
′
ν + kνk

′
µ + iϵµνρσk

ρk′σ) (51)
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We see the appearance of an additional antisymmetric term as noted before. So we now
need the additional antisymmetric term with the structure factor W3, which was saved
up, in the proton tensor.

Wµν = W1(−gµν + qµqν

q2 )+ W2
M2 (pµ − q · p

q2 qµ)(pν − q · p
q2 qν) + i

W3
M2 ϵ

µνκλpκqλ (52)

We can multiply the two antisymmetric parts as follows:

Wµν
antisymm.L

neutrino
µν antisymm. = i

M2W3ϵ
µνκλpκqλ · iϵµνρσk

ρk′σ

= 1
M2W3pκqλk

ρk′σ2[δκ
ρ δ

λ
σ − δκ

σδ
λ
ρ ]

= 2
M2W3[(p · k)(q · k′) − (p · k′)(q · k)]

At this point we use q = (k − k′) to replace q.

Wµν
antisymm.L

neutrino
µν antisymm. = 2

M2W3[(p · k)(k · k′ − k′2︸︷︷︸
=0

) − (p · k′)( k2︸︷︷︸
=0

−k′ · k)]

= 2
M2W3(k · k′)[(p · k) + (p · k′)]

=︸︷︷︸
CMS

2
M2W3EE

′(1 − cos θ))(ME +ME′)

= 4
M
W3EE

′(E + E′) sin2 θ

2 (53)

The product of the symmetrical parts can be recycled from the electron-muon scattering
calculation (eq. (22)) with the additional factor 1

4 . In total we get

Lneutrino
µν Wµν = 4EE′(2W1 sin2 θ

2 +W2 cos2 θ

2 + W3
M

(E + E′) sin2 θ

2)

Using the relations forQ2 and xy of eq. (A.9) and eq. (A.11), we can replace sin2 θ
2 = xy M

2E′

and cos2 θ
2 = E

E′ (1 − y − xy M
2E ). We also replace W1 and W2 by F1 and F2 as we did in

eq. (24) and W3 = F3
v = E

yE :

Lneutrino
µν Wµν = 4EE′

(
xy

E′F1 + 1
yE′ (1 − y − xy

M

2E )F2 + 1
E′ (1 − y

2)xF3

)
= 4E

(
xyF1 + 1

y
(1 − y − xy

M

2E )F2 + (1 − y

2)xF3

)
(54)

With the normalisation 16πM and eq. (38) we obtain for the invariant amplitude:

|M |2 = 32G2
FπME

(
xyF1 + 1

y
(1 − y − xy

M

2E )F2 + (1 − y

2)xF3

)
(55)
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Now we can calculate the total cross section using eq. (3), eq. (A.16) and eq. (A.17).

dσ = 1
4ME︸ ︷︷ ︸

F

E′dE′dΩ
2(2π)3︸ ︷︷ ︸

dQ

32G2
FπME

(
xyF1 + 1

y
(1 − y − xy

M

2E )F2 + (1 − y

2)xF3

)
︸ ︷︷ ︸

|M |2

= G2
F

E′

2π2

(
xyF1 + 1

y
(1 − y − xy

M

2E )F2 + (1 − y

2)xF3

)
dE′dΩ

If we remember that the result is to be inserted into eq. (49) for comparison, it makes
sense to switch to dxdy.We use eq. (A.12) and eq. (A.10):

dσ = G2
F

E′

2π2

(
xyF1 + 1

y
(1 − y − xy

M

2E )F2 + (1 − y

2)xF3

) 2πME

E′ ydxdy

= G2
F

ME

π

(
xy2F1 + (1 − y − xy

M

2E )F2 + y(1 − y

2)xF3

)
dxdy (56)

For a coefficient comparison in powers of s, u and t in the formula eq. (49) we use:

y = 1 + u

s
,

ME = 1
2s

in eq. (56) and we neglect the part with xy M
2E in the extreme relativistic limit, like we did

when we derived eq. (29). Since E = Q2

2Mxy from eq. (A.11) and in the limit M2 ≪ Q2

or M2

Q2 → 0 the part is negligible. We get:

dσ

dxdy
= G2

F

2π

(
x(s+ u)2

s
F1 − uF2 + 1

2x(s− u2

s
)F3

)

= G2
F

2π

(
xs(F1 + 1

2F3) + u(2xF1 − F2) + x
u2

s
(F1 − 1

2F3)
)

(57)

We can insert eq. (57) and eq. (48) into eq. (49):

G2
F

2π

(
xs(F1 + 1

2F3) + u(2xF1 − F2) + x
u2

s
(F1 − 1

2F3)
)

= G2
Fxs

π

∑
i,k

(
fi(x) + u2

s2 fk(x)
)

⇔
(
xs(2F1 + F3) + 2u(2xF1 − F2) + x

u2

s
(2F1 − F3)

)
=
∑
i,k

(
4xsfi(x) + 4xu

2

s
fk(x)

)

Here fi(x) are the structure functions of quarks, which interact with the neutrino and
fk(x) are the structure functions of the antiquarks, which interact with the neutrino.
The comparison of coefficients provides:

(i) 2xF1 = F2 =⇒ FL = F2 − 2xF1 = 0︸ ︷︷ ︸
Callan-Gross relation

(ii) 2xF1 + xF3 = 4∑i fi(x)x
(iii) 2xF1 − xF3 = 4∑k fk(x)x (58)
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First we see in (i) that the deep inelastic proton neutrino structure functions still satisfy
the Callan-Gross relation, which were also fulfilled in electron proton scattering [1]. It
should be noted that (i) is an approximated solution, since the part with prefactor xy M

2E
was neglected in the coefficient comparison. In fact FL is not 0 zero but it is small.
Adding and subtracting the last two lines yields:

1
2[(ii) − (iii)] : F3 = 2

(∑
i

fi(x) −
∑

k

fk(x)
)

1
2[(ii) + (iii)] : F2

x
= 2

(∑
i

fi(x) +
∑

k

fk(x)
)

(59)

where line (i) was used to substitute F1. From these equations, linear combinations can
now be formed, which can produce a wide variety of PDFs. If we look at the scattering
at a target consisting of equal numbers of protons and neutrons, we can, by taking
advantage of the fact that in a neutron the number of u- and d-quarks and antiquarks
are swapped in contrast to the proton, use

d(x) + dn(x) = d(x) + u(x) ≡ Q(x)
u(x) + un(x) = u(x) + d(x) ≡ Q(x). (60)

The scattering of the u and d quarks of the proton (which are a first approximation
of the quark content) is thus described by the scattering of the d quarks at the entire
target, the scattering of the anti-u and anti-d quarks of the proton (which is in a first
approximation the antiquark content) by that of the scattering of the anti-u quarks of
the entire target. This fact inserted into eq. (59) yields(

dσ

dxdy

)
νP →µ−X

= G2
F sx

2π (Q(x) + (1 − y)2Q(x))

and in equivalence (
dσ

dxdy

)
νP →µ+X

= G2
F sx

2π (Q(x) + (1 − y)2Q(x)).

From these two equations, the quark content Q and the antiquark content Q of the
proton can be separated, which means that the fraction of quarks and antiquarks in a
first approximation where the proton just consists of (anti)up and (anti)down quarks
can be determined from the measurement of the two cross sections.

4.5 Linear combinations for strange quark content

In the following, the proton consisting of (anti)up, (anti)down and (anti)strange quarks
is considered. The neutrino can interact via charged current with d, s and u, so we get

F ν
3 = 2[s+ d− u],

F ν
2
x

= 2[s+ d+ u]. (61)
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This result, neglecting the charm quark distribution, is consistent with the structure
functions from [8]. In contrast to that the antineutrino interact with d, s and u quarks,
so in the case of antineutrino proton scattering we get

F ν̄
3 = 2[u− s− d],

F ν
2
x

= 2[u+ s+ d]. (62)

It is easy to see, that

F ν
2 + F ν

2 = 2x
∑

i

(qi + q̄i)

F ν
3 + F ν

3 = 2(s+ d− u− s− d+ u) = 2(uv + dv).

For an isoscalar target N , where the number of protons and neutrons are equal (and
therefore the number of u and d quarks and u and d quarks) we get

FN,ν
2 = 2x

[
s+ s

2 + u+ d

2 + u+ d

2

]
= x

∑
i

(qi + qi) = FN,ν
2

FN,ν
3 = 2

[
s+ s

2 + u+ d

2 − u+ d

2

]
= (uV + dV ) + (s+ s)

FN,ν
3 = (uV + dV ) − (s+ s). (63)

Here we used uv = u− ū and dv = d− d. It makes sense to consider the following linear
combinations:

FN,ν
3 − FN,ν

3 = 2(s+ s)
FN,ν

2 − FN,ν
3 = 2(u+ d)

So we get the following expression for the strange content of proton quark sea

Rs = s+ s

u+ d
= FN,ν

3 − FN,ν
3

FN,ν
2 − FN,ν

3
(64)

In addition the neutrino and antineutrino cross sections allow a determination of both,
s and s separately.

5 Dimuon production
One method of determining the strange content of the proton is to measure the ratio of
dimuon to charged current cross section. The NOMAD experiment measures the ratio

Rµµ = σµµ

σcc
(65)
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Figure 14: Feynman-diagram of charmed dimuon production

The Feynman diagram of the process of charm induced dimuon production is shown in
fig. 14. When the incident neutrino scatters with a strange quark (or, also possible but
less probable as we will see, with a down quark), a charm quark is created, which forms a
charmed hadron. In a further step, this decays into a strange or down quark, a neutrino
and a muon. Together with the first muon from the neutrino scattering, two muons can
be detected. The use of the ratio allows a reduction to few uncertainties, as uncertainties
that occur in both the numerator and the denominator are dropped out. These include,
for example, the uncertainties from the incident neutrino current, which is very large
and thus the ignorance about it can be avoided. The systematic uncertainties for the
ratio are smaller than 2% and smaller than the statistical uncertainties [7].

5.1 Charged current cross section

In order to be able to interpret the experimental results, we need a non-approximated
form of the cross section for neutrino-proton charged current scattering σcc. At this
point we no longer want to approximate the propagator to 1

M2
W

but replace it with the

correct value of 1
M2

W +Q2 . Therefore, we get the factor M4
W

(M2
W +Q2)2 = 1

(1+ Q2
M2

W

)2
and we
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insert this in eq. (56):

σcc = G2
FME

π

1
(1 + Q2

M2
W

)2

(
xy2F ν

1 + (1 − y − xy
M

2E )F ν
2 + y(1 − y

2)xF ν
3

)
dxdy

With xy = Q2

2ME we can use dy = 1
2MExdQ

2.

σcc = G2
F

2πx
1

(1 + Q2

M2
W

)2

(
xy2F ν

1 + (1 − y − xy
M

2E )F ν
2 + y(1 − y

2)xF ν
3

)
dxdQ2

= G2
F

2π(1 + Q2

M2
W

)2x
·

1
2y

2 (2xF ν
1 − F ν

2 )︸ ︷︷ ︸
=−F ν

L

+(1 − y + 1
2y

2︸ ︷︷ ︸
= 1

2 Y+

−xy M2E )F ν
2 + (y − y2

2︸ ︷︷ ︸
= 1

2 Y−

)xF ν
3

 dxdQ2

We use F ν
L = F ν

2 − 2xF ν
1 , Y± = 1 ± (1 − y)2 as indicated in the formula.

dσcc

dQ2dx
= G2

F

4π(1 + Q2

M2
W

)2x

(
(Y+ − 2x2y2M2

Q2 )F ν
2 − y2F ν

L + Y−xF
ν
3

)

F2 and F3 are the structure functions from eq. (61), since we approximate that the
proton momentum is carried only by (anti)up, (anti)down and (anti)strange quarks. We
assume the Callan-Gross relation FL = 0 and evaluate the cross section in the limit
M2

Q2 → 0 so the cross section becomes

dσcc

dQ2dx
= G2

F

4π(1 + Q2

M2
W

)2x
(Y+F

ν
2 + Y−xF

ν
3 ) .

The NOMAD experiment measures the ratio for an iron target, which is approximately
an isoscalar target. Therefore the cross section is

dσN
cc

dQ2dx
= G2

F

4π(1 + Q2

M2
W

)2x

(
Y+F

ν,N
2 + Y−xF

ν,N
3

)
. (66)

with

F ν
2 = x

∑
i

(qi + qi)

F ν
3 = (uV + dV ) + (s+ s)

from eq. (63). Equation (66) is an expression for the cross section of charged current
neutrino-proton scattering. In the following we want to derive the cross section for charm
dimuon production σµµ.
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5.2 Dimuon production cross section

In order to derive the charm dimuon production cross section we start with the general
charged current cross section for neutrino-proton scattering from eq. (66):

σcc

dQ2dx
= G2

F

4πx(1 + Q2

M2
W

)2
(Y+F2 + Y−xF3)

Here Fi with i=2, L, 3 are the structure functions of the proton for the charged current
cross section. We know that only d and s quarks can convert to a charm quark via
charged current weak interaction. Thus we obtain from eq. (61) the structure functions
of the proton for dimuon production

xF ν
3,µµ = F ν

2,µµ = 2x
[
|Vcs|2s(x) + |Vcd|2d(x)

]
(67)

Here |Vcs|2 and |Vcd|2 are the matrix elements of the 2x2 CKM Matrix [4].[
|Vud| ≈ 0, 973 |Vus| ≈ 0, 23
|Vcd| ≈ 0, 24 |Vcs| ≈ 0, 97

]

s The strange quark contribution dominates the charm production at small x, since
|Vcd| ≪ |Vcs|. For an isoscalar target the term becomes

F ν,N
2,µµ = 2x

[
|Vcs|2s(x) + |Vcd|2d(x) + u(x)

2

]
= xF ν,N

3,µµ (68)

Furthermore, the effective semileptonic branching ratio Bµ must be considered, which
takes into account the probability of the muonic decay of the hadron. Bµ is of the form

Bµ = a

1 + b
Eν

.

The free parameters a and b can be determined with a fit for the NOMAD data and the
result is a = (0.097 ± 0.003) and b = (6.7 ± 1.8) GeV [7]. In summary, we obtain for the
cross section of the dimuon production the approximated result

σµµ

dQ2dx
= G2

F

4πx(1 + Q2

M2
W

)2
· (Y+F2,µµ + Y−xF3,µµ)Bµ

= G2
F

4πx(1 + Q2

M2
W

)2
(2 · 2x)

[
|Vcs|2s(x) + |Vcd|2d(x) + u(x)

2

]
·Bµ

= G2
F

πx(1 + Q2

M2
W

)2
· x ·

[
|Vcs|2s(x) + |Vcd|2d(x) + u(x)

2

]
·Bµ (69)
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5.3 Calculation of the NOMAD ratio and comparison with measured
data

Both the nominator σµµ and the denumerator σCC of the NOMAD ratio Rµµ can be
calculated from the differential cross sections using a double integral. It must be noted
that x and Q2 are linked with each other via the relation Q2 = 2MExy. Since we know
that y < 1, the maximal value for Q2 is Q2

max(x) = 2MEx. There is also a minimal value
for Q2 because deep inelastic scattering can only be assumed from a certain momentum
transfer onwards. It is usual to choose Q2

min = 1 GeV2 [3]. This also directly provides a
minimum value for x, namely xmin = Q2

min
2ME . We get

σµµ/CC(Eν) =
∫ 1

xmin

∫ Q2
max(x)

Q2
min

dσµµ/CC(Eν)
dxdQ2 dxdQ2 (70)

First, let us compare the inclusive charged current cross section σCC with existing data
from the NOMAD detector. In fig. 15, the measured values for σCC are plotted against
the neutrino energy. The measured values were taken from [9]. The plot was calculated
with the help of eq. (70) in the leading-order. The PDFs of the NNPDF3 set were used
for this purpose [3]. The energy range of Eν < 30 GeV is dominated by quasi-elastic
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Figure 15: Inclusive charged current cross section in LO prediction compared with data
from the NOMAD experiment

scattering and excited resonances [9]. Only above this energy does it enter the deep

37



inelastic scattering range. It can be seen that the deep inelastic scattering prediction
describes the data well only from this energy and higher energies.
Finally, we look at the NOMAD ratio. The measured data were taken from [7]. They are
shown in fig. 16 (grey). The blue plot represents the calculated ratio from eq. (65) with its
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Figure 16: Comparison between the theoretical predictions for the NOMAD ratio in
leading-order and the experimental data measured by the NOMAD experiment

uncertainty, calculated with the same PDF set. In fact, the data agree with the prediction
of the calculation in its uncertainty range. It is important to note that according to the
considerations from the previous plot, the values in the <30 GeV range should be viewed
with caution. In this range of resonances, an error is made in the measurement in both
the numerator and the denominator, which fortunately has a relatively equal effect, but
cannot be quantised exactly. Calculations in next-to-leading-order and next-to-next-to-
leading-order perturbation theory can describe the data even more precisely and with
lower uncertainties [3]. In addition, the heavy quarks (charm, bottom and top) and the
momentum component carried by the gluons were neglected in this calculation.

6 Conclusion and outlook
The first part of this thesis has shown that the idea of the proton as an elementary
particle has been replaced by the knowledge that the proton consists of a complex inner
structure of quarks and gluons. To describe this structure, the master formula of the
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Parton model was derived in leading order perturbation theory. Then considerations
have been made as to how the ratio of strange quarks in the proton can be determined
by scattering experiments, because in contrast to the up and down quarks, little is
known about the strange distribution. For this purpose, scattering with neutrinos was
considered, since the weak interaction ensures the separation of individual strange dis-
tributions. In the last part the NOMAD ratio was reproduced with the NNPDF3 PDF
sets in the leading order of perturbation theory.
The structure of the proton is still unexplored, but experiments like the NOMAD exper-
iment are on their way to bring light into the darkness. The work with next-to-next-to-
leading-order in perturbation theory provides a precise determination of the strangeness
content of the proton. The results suggest that the proton is not too strange and carries
only 65 to 80 per cent of the momentum fraction that the other light seaquarks carry.
[3]. What will we be able to learn from the proton in the future? The precise knowledge
about the strange quarks in the proton can be used to determine fundamental param-
eters of the Standard Model and it can be the baseline in the determination of nuclear
PDFs [3].
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A Appendix
In the following section, the relations and theoretical background from [4] required for
the calculation of the cross sections are presented.

A.1 Dirac equation

The Dirac equation is a relativistically generalised form of the Schrödinger equation. It
reads:

Hψ = (α⃗P⃗ + βm)ψ

This equation must satisfy the relativistic energy-momentum relation, i.e.

H2ψ = (P 2 +m2)ψ

It can be seen that all αi and β must anticommute with each other and furthermore
α2

1 = α2
2 = α2

3 = β2 = 1 must be given. Since the coefficients do not commute with
each other, they cannot be scalar prefactors, but have the form of 4x4 matrices. These
are the so-called Dirac-Pauli matrices. The conventionally used representation of the
matrices is

α⃗ =
(

0 σ⃗
σ⃗ 0

)
β =

(
12×2 0

0 −12×2

)
. (A.1)

It is called the Dirac Pauli representation. The σ matrices are the Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ1 =

(
1 0
0 −1

)

A four-vector that satisfies the Dirac equation is called a Dirac spinor.
It is useful to consider the Dirac equation in covariant form:

(iγµ∂µ −m)ψ = 0 (A.2)

Here γµ = (β, βα⃗). If one additionally introduces the adjoint line vector ψ = ψ†γ0 one
can derive from the hermitian conjugate Dirac equation

i∂µψγ
µ +mψ = 0.

From the two equations the continuity equation ∂µj
µ = 0 can be derived and it results

in

jµ = ψγµψ.

The probability density ρ = j0 = ψγ0ψ = ψ†ψ = ∑4
i=1 |ψi|2 ≥ 0 is positively defined,

unlike the solution in the Klein-Gordan equation, which was Dirac’s original aim.
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For a free particle, the eigensolutions of the Dirac equation are ψ = u(p)eipx. u is a
four-component spinor that is independent of x. The Dirac equation simplifies to

Hu = (α⃗+ βm)u = Eu

=
(
m σ⃗p⃗
σ⃗p⃗ −m

)(
uA

uB

)
= E

(
uA

uB

)
. (A.3)

The solutions of the equation are

u(s) = N

(
χ(s)

σ⃗·p⃗
E+mχ

(s)

)
, E > 0, s = 1, 2

u(s+2) = N

(
− σ⃗·p⃗

|E|+mχ
(s)

χ(s)

)
, E < 0.

It should be noted that all 4 solutions are orthogonal to each other. The Dirac equation
yields an additional twofold degeneracy. In order to cancel this degeneracy, an additional
observable is sought which commutes with P̂ as well as with Ĥ. For this, the spin
component in the direction of motion 1

2 σ⃗ · p⃗ (for spin 1
2 particles) is chosen, the so-called

helicity.

A.2 Dirac-gamma matrices and trace theorems

In the Dirac-Pauli representation, the γ matrices have the form

γ0 =
(
12×2 0

0 −12×2

)
β =

(
0 σ⃗

−σ⃗ 0

)
.

By recalculation the following identities result (k = 1, 2, 3):

γk† = γ0γkγ0

γk† = −γk

}
{γ0, γk} = 0 (anticommutator)

γ0† = γ0 γ02 = 14×4

γµγν + γνγµ = 2gµν (A.4)

To be able to represent particle currents in their most general form, it is useful to
introduce γ5 = iγ0γ1γ2γ3. In the Dirac-Pauli representation γ5 has the form

γ5 =
(

0 12×2
12×2 0

)

For γ5 it applies

γ5† = γ5

γ52 = 14×4

{γ5, γµ} = 0 (anticommutator).
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For the traces of different combinations of the γ-matrices, the following trace theorems
apply:

Tr(γµγν) = 4gµν

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ)
Tr(γ5γµγν) = 0

Tr(γ5γµγνγργσ) = 4iϵµνρσ

The trace for an odd number of γ matrices multiplied together is always 0.

A.3 Feynman rules

• External lines

– Spin 0 boson: 1
– Spin 1

2 fermion (in,out): u, ū
– Spin 1

2 antifermion: v,v̄
– Spin 1 photon: ϵµ,ϵ∗µ

• Internal lines

– Spin 0 boson: i
p2−m2

– Spin 1
2 fermions: i(̸p+m)

p2−m2

– Spin 1 photon: −igµν

p2

• Vertex factor

– photon - spin 1
2 fermion: ieγµ

– boson - spin 1
2 fermion: ie1

2γ
µ(1 − γ5)

A.4 Mandelstam variables

For the process AB → CD one defines the Lorentz invariant variables:

s = (pA + pB)2 = (pC + pD)2 = m2
A + 2pApB +m2

B = m2
C + 2pCpD +m2

D

t = (pA − pC)2 = (pB − pD)2 = m2
A − 2pApC +m2

C = m2
B − 2pBpD +m2

D

u = (pA − pD)2 = (pB − pC)2 = m2
A − 2pApD +m2

D = m2
B − 2pBpC +m2

C

In the extreme-relativity limit, all masses can be neglected and it holds:

s = 2pApB = 2pCpD

t = −2pApC = −2pBpD

u = −2pApD = −2pBpC (A.5)
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In the CMS, the impulses of the incoming particles as well as those of the outgoing
particles must be equal in terms of magnitude and thus (with negligible masses) also the
energies. Since conservation of energy also applies, all energies must be equal after and
before the collision. The following applies

p⃗A = −p⃗B p⃗C = −p⃗D

|p⃗A| = |p⃗B| = E = |p⃗C | = |p⃗D|

In this case, the following applies to the Mandelstam variables:

s = 4E2

t = −2E2(1 − cos θ) = −1
2s(1 − cos θ)

u = −2E2(1 + cos θ) = −1
2s(1 + cosθ) (A.6)

Here θ denotes the scattering angle between A and C.
If the mass M of particle B is not negligible, it makes sense to consider the scattering
process in the laboratory system, i.e. the system in which particle B is at rest. The four
momentum of particle B is then pB = (M, 0). E and E′ denote the energies of the other
particle before (A) and after (C) the scattering. In this case, the Mandelstam variables
can be expressed as

s = 2ME

t = −2EE′(1 − cos θ)
u = −2ME′ (A.7)

A.5 Substitution of invariant variables

For a t-channel process we have

Q2 = −t = 2EE′(1 − cos θ) = 4EE′ sin2 θ

2 (A.8)

v = p · q
p · k

=︸︷︷︸
CMS

= E − E′ (A.9)

It is easy to see that Q2 and v are lorentz invariant, because the scalar product of
two four-vectors is always Lorentz invariant. Therefore, v can be considered in the CMS
without changing anything. We can also consider the differential cross sections according
to these variables instead of according to dΩdE′. This results in:

dΩ = 2πd cos θ = − π

EE′dQ

dE′ = −dv

dE′dΩ = π

EE′dQ
2dv (A.10)
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We define

y = p · q
p · k

=︸︷︷︸
CMS

E − E′

E
= v

E

x = Q2

2p · q
= Q2

2Mv
= Q2

2MEy

x · y = Q2

2ME
(A.11)

Also, x and y are Lorentz invariant, which can be recognised by the fact that they are
only defined via scalars and scalar products of four-vectors. This results in:

dv = Edy

dQ2 = 2MEydx

dQ2dv = 2E2My dxdy (A.12)

With the definitions of s, t and u from the previous section, the following relations can
be recorded:

x = − t

s+ u

y = Q2

2ME

1
x

= t

s

s+ u

t
= 1 + u

s

dy = 1
s
du

dx = − 1
s+ u

ds

dxdy = − 1
s(s+ u)dtdu (A.13)

A.6 Initial flux

The initial flux is defined as

F = 4|vk − vP |EkEP = 4(|⃗k|EP + |P⃗ |Ek). (A.14)

with

(P · k)2 = (EkEP − |⃗k||P⃗ |)2 = (E2
kE

2
P − 2EkEP |⃗k||P⃗ )| + |⃗k|2|P⃗ |2)

m2
Pm

2
k = (E2

P − |P⃗ |2)(E2
K − |⃗k|2) = E2

kE
2
P − E2

P |⃗k|2 − E2
k |P⃗ |2 + |P⃗ |2 |⃗k|2

⇒ (|⃗k|EP + |P⃗ |Ek) =
√

(P · k)2 −m2
Pm

2
k

So the initial flux can be expressed as

F = 4
√

(P · k)2 −m2
Pm

2
k (A.15)
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which is Lorentz-invariant in any case. In the case of a negligible mass mK and the
observation from the laboratory system, i.e. the mass mp at rest , the following results

F = 4MEk (A.16)

A.7 lorentz-invariant phase space factor

Starting from the definition of the phase space factor, this is expressed in the following
in different ways

dQ1 = d3k⃗′

2E′(2π)3 Change to spherical coordinates

= |k′|2d|k′|dΩ
2E′(2π)3 m ≈ 0 → |k′|2d|k′| = E′2dE′

= E′dE′dΩ
2(2π)3 (A.17)
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dQ2 = d3k⃗′

(2π)32Ek′

d3P⃗ ′

(2π)32EP ′
(2π)4δ(4)(k + P − k′ − P ′)

|Switch to the CMS: further on dQCMS

= d3k⃗′

(2π)32Ek′

d4P ′

(2π)3 δ(P
′2 −m′2

P )(2π)4δ(4)(k + P − k′ − P ′) |Integrate d4P ′

= d3k⃗′

(2π)32Ek′
(2π)δ((k + P − k′)2 −m2

p) |Change to spherical coordinates

= |k′|2d|k′|dΩ
8π2Ek′

δ((k + P − k′)2 −m2
p) |q = k − k′, und |k′|d|k′| = Ek′dEk′

= E′dEk′dΩ
8π2 δ((P + q)2 −m2

p)

= E′dEk′dΩ
8π2 δ(2p · q + q2) |Switch to the lab. frame: fruther on dQLab

= E′dEk′dΩ
8π2 δ(2Mv + q2)

= E′dEk′dΩ
16π2M

δ(v + q2

2M ) (A.18)

dQLab = E′dEk′dΩ
8π2 δ(2MP (E − E′) − 4EE′ sin2 Θ

2 ))

= E′dEk′dΩ 1
8π22MP

δ(E − E′ − 2EE′

MP
sin2 Θ

2 )) with A = 1 + 2E
MP

sin2 Θ
2

= E′dEk′dΩ 1
16π2mPA

δ(E′ − E

A
) (A.19)

dQCMS = 1
(2π)32Ek′

d3P⃗ ′

(2π)32EP ′
(2π)4δ(Ek + Ep − Ek′ − Ep′) mit Ek + Ep =

√
s = W

= 1
(2π)22Ek′

d3p⃗′

2EP ′
δ(W − Ek′ − Ep′) Change to spherical coordinates

= 1
4π2

|p⃗′|2d|p′|dΩ
4Ek′Ep′

δ(W − Ek′ − Ep′) (A.20)

At this point it can be exploited that

W = Ek′ + Ep′ =
√

(m2
k + p2

f ) +
√

(m2
p + p2

f )

Here pf = |k⃗′| = |p⃗′| is the momentum of the particles after the scattering, which has
the same magnitude in the CMS for both particles. We now use the relation

dW

dpf
= pf ( 1

Ek′
+ 1
Ep′

) = pf
Ek′ + Ep′

Ek′Ep′
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to replace dpf with dW . Insertion yields:

dQCMS = 1
4π2

pfdWdΩ
4(Ek′ + Ep′)δ(W − Ek′ − Ep′)

= 1
4π2

pf

4
√
s
dΩ (A.21)

A.8 Product of the 4-dimensional Epsilon-Tensor

ϵµανβϵµκνλ = −2δαβ
κλ

= −2[δα
κ δ

β
λ − δα

λδ
β
κ ] (A.22)

49




	Introduction
	In search of the structure of the proton
	The proton as a point like particle: elastic electron-muon scattering
	Spatially extended Proton: elastic electron-proton scattering
	The proton with inner structure: inelastic electron-proton scattering
	Comparison

	Partons and Bjorken scaling
	Elastic electron-quark scattering
	Master formula of the parton model
	Parton distribution functions (PDFs)

	Weak interactions
	Parity violation of weak interaction
	Elastic electron-neutrino scattering
	(anti-)neutrino-quark scattering
	Parton formula for weak interactions
	Linear combinations for strange quark content

	Dimuon production
	Charged current cross section
	Dimuon production cross section
	Calculation of the NOMAD ratio and comparison with measured data

	Conclusion and outlook
	Appendix
	Dirac equation
	Dirac-gamma matrices and trace theorems
	Feynman rules
	Mandelstam variables
	Substitution of invariant variables
	Initial flux
	lorentz-invariant phase space factor
	Product of the 4-dimensional Epsilon-Tensor


