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1 INTRODUCTION

1 Introduction

The Standard Model (SM) of particle physics describes three of four fun-
damental interaction, electromagnetism, weak and strong interactions via a
quantum field formalism. By using space-time and internal gauge symmetries
the SM leads to very precise predictions. But there are still some phenomena
which can not be explained with the SM. Examples for those phenomena are
dark matter and dark energy, the asymmetry between matter and antimatter
in the universe, the hierarchy and the fine-tuning problem[1][3].
Since symmetry is a very strong tool which already lead to the SM, it seems
to be reasonable to assume further symmetries to extend the SM to get rid
of those problems. The supersymmetry (SUSY) is one possible extension
of the SM by demanding further symmetries. SUSY assumes a symmetry
between bosonic and leptonic particles and predicts fermionic (bosonic) hy-
pothetical supersymmetric partners for the SM bosons (fermions). For exam-
ple the dark matter problem could be solved since SUSY predicts a weakly
interacting stable particle which would serve as a candidate for dark matter.
On the other hand there is a need for more parameters(e.g. SUSY-particle
masses,couplings,...) which can be reduced to just four parameters and a
relativ sign by using the mSUGRA SUSY breaking scenario. But even those
four parameters are unknown and therefore are treated as arbitrary[3].
Because of this arbitrariness it seems to be a very good idea to constraint
these parameters by as much experimental data as possibly. This will be
done during this thesis by comparing the theoretical results from SUSY cal-
culations for different parameter sets with the experimental data.
First there will be a brief explaination of the SM, SUSY und Dark Mat-
ter. Followed by a short introduction of the used constraints. Then these
constraints will be calculated for different mSUGRA input parameters, first
for fixed parameter steps to achieve an overview and second via a Markov
Chain Monte Carlo algorithm to find parameter sets which would fulfil the
constraints.
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2 THEORETICAL BACKGROUND

2 Theoretical background

2.1 Standard Model

This section is based on Ref. [1].

The Standard Model (SM) of particle physics is a quantum field theory
which describes three of the four fundamental interaction in nature by using
fields. Since it is a quantum theory these fields can only be varied in discrete
packets. Those packets can be interpreted as particles. The SM decsribes all
known particles and their interaction, except gravity, very percisely and even
includes special relativity, but one although has to notice that the SM has
18 free parameters (fermion masses,coupling constants,...), which have to be
determined experimentally.

2.1.1 Particle content

The SM contains 37 particles, 6 quarks, 6 leptons, 12 gauge bosons and
the Higgs boson, furthermore there are the corresponding antiquarks and
antileptons. The particle content of the SM is shown in Tab. 1.

Table 1: Particle content of the SM.
generation
/family

1. 2. 3.
gauge
boson

Higgs
boson

quarks
u c t γ

hd s b g

leptons
e− µ− τ− Z
νe νµ ντ W±

At first the particles are arranged into fermions (spin 1/2) and bosons (spin
0,1). The bosons are classified into gauge bosons (spin 1) and the higgs bo-
son (spin 0). The fermions are classified into particle that ’feel’ the strong
interaction the so-called baryons and particles that do not the so called lep-
tons. Furthermore quarks and leptons are grouped into three generations or
families with increasing particle mass and different flavors (e.g. strangeness,
topness, Le, ...). The rest of the particles characteristics (e.g Charge, color-
charge, ...) stay the same. This means that for instance electrons e−, muons
µ− and tauons τ− have the same electric charge and therefore would behave
similar in a magnetic field.
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2 THEORETICAL BACKGROUND

By now there are pairs of two baryons and pairs of two leptons for each gener-
ation. Each particle of one pair behaves different under a certain interaction.
The quarks can be distinguished into up-type quarks (u, c, t) and down-type
quarks (d, s, b) and the leptons can be distinguished into charged leptons
(e−, µ−, τ−) and neutral so-called neutrinos (νe, νµ, µτ ). One great difference
between quarks and leptons is the so-called confinement, which means that
quarks cannot be isolated, respective that observed particles have to be color
neutral or white (red+green+blue=white or color+anticolor=white). This is
due to the fact that simulations have shown that color-charged particles gain
energy when their distance towards each other is increased. This means that
at a certain distance it is energetically easier to create a quark/antiquark
pair, which leads to two color neutral particles, than separating two color-
charged particles[2].

To understand this seperation into different groups one has to take a closer
look at the particle properties or quantum numbers. Tab. 2 shows the
particles and their quantum numbers, where e is the elementary charge, Q
the particles charge, B the baryon number, L the lepton number, I3 the third
component of the isospin, C the charmness, S the strangeness, T the topness,
B′ the bottomness and Le,µτ the leptonic flavor.

Table 2: Quantum numbers of the SM particles.

Particle
Charge
Q

Baryon
number B

Lepton
number L

Flavor

u 2e/3 1/3 0 I3 = 1/2

q
u
ar

k
fl
av

ord −e/3 1/3 0 I3 = −1/2
c 2e/3 1/3 0 I3 = 0, C = 1
s −e/3 1/3 0 I3 = 0, S = −1
t 2e/3 1/3 0 I3 = 0, T = 1
b −e/3 1/3 0 I3 = 0, B′ = −1
e− -e 0 1 Le = 1

le
p
to

n
ic

fl
av

or

µ− -e 0 1 Lµ = 1
τ− -e 0 1 Lτ = 1
νe 0 0 1 Le = 1
νµ 0 0 1 Lµ = 1
ντ 0 0 1 Lτ = 1

2.1 Standard Model 3



2 THEORETICAL BACKGROUND

To get the corresponding antiparticles one simply has to the change the signs
for all these quantum numbers. One has to notice that each particle has its
mass which is the same for particle and antiparticle.
There are so called majorana particles, which are particle whose quantum
numbers are the same for particle and antiparticle. But this could only be
the case for neutral particles, for example neutrinos.
Furthermore there is the leptonic flavor which is connected to the leptons
generation. It is important to know thaht those quantum numbers are con-
served during strong and electromagnetic interactions, while the flavors can
be violated during weak interaction.

One important fact about the weak interaction is that it distinguishes be-
tween particles of different chirality. Chirality or handedness is defined by
via the particles spin and its momentum. If the spin is parallel aligned to the
particles momentum, the particle is called right-handed (index R) and if the
spin is antiparallel aligned to the particles momentum it is called left-handed
(index L). One has to notice that no right-handed neutrinos have observed
yet.
To describe the weak interaction one can now define the weak hypercharge
YW = 2(Q − T3) with the third component of the weak isospin T3, which is
a conserved quantities of the weak interaction. Tab. 3 shows the third com-
ponent of the weak isospin and the weak hypercharge for the SM particles.

Table 3: Weak Isospin and weak hypercharge.

particle
3rd component

of the Weak
isospin T3

Weak
hypercharge

YW

uL, cL, tL 1/2 1/3
dL, sL, bL -1/2 1/3
eL, µL, τL 1/2 -1
νe, νµ, ντ -1/2 -1
uR, cR, tR 0 4/3
dR, sR, bR 0 -2/3
eR, µR, τR 0 -2

4 2.1 Standard Model



2 THEORETICAL BACKGROUND

2.1.2 Interactions

Each interaction is represented by a certain gauge group at which the force-
carriers or gauge bosons are represented by the generators of the correspond-
ing gauge group. Interactions and their corresponding groups and gauge
bosons are shown in Tab. 4.

Table 4: Interactions and their corresponding gauge groups and gauge
bosons.

interaction
gauge
group

number of
generators

gauge
bosons

strong interaction SU(3) 8 gluon g

weak interaction SU(2) 3 Z-,W±-boson

electromagnetic
interaction

U(1) 1 photon γ

The strong interaction is represented by the SU(3) gauge group and is me-
diated by gluons. Since gluons are color-charged they are not only able to
mediate the strong interaction between color-charged particles but although
between each other, this behavior is called selfinteraction. The strong inter-
action is caused by gluon mediated color changing.
The weak interaction is represented by the SU(2) gauge group and is me-
diated by Z- and W±-bosons. It is the only SM interaction that is able to
change a particles flavor (e.g. d −→ u+ e− + ν̄e).
The electromagnetic interaction is represented by the U(1) gauge group and
is mediated by photons.

2.1 Standard Model 5



2 THEORETICAL BACKGROUND

2.1.3 Electroweak Symmetry Breaking and Higgs Mechanism

At the so-called electroweak scale the electromagnetic and the weak interac-
tion unify to the electroweak interaction. The electroweak gauge bosons are
the B0,W 0,W 1 and W 2 boson. The transition from electroweak interaction
to electromagnetic and weak interaction is called symmetry breaking.
Usually the SM particles are assumed to be massless at energies higher than
the electroweak scale, since one could not easily add a mass term to the SM
Lagrangian without affecting its lorentz invariance. Therefore a special mass
generating mechanism is needed, the so-called Higgs mechanism, which intro-
duces the scalar Higgs field to the SM. The Higgs field causes the electrow̃eak
symmetry breaking, during this symmetry breaking the fermionic particles
gain their mass and the neutral B0- and W 0-boson mix to the massless pho-
ton γ and the massive Z-boson and the charged W 1- and W 2-bosons mix to
the massive W+- and W−-bosons.

6 2.1 Standard Model



2 THEORETICAL BACKGROUND

2.2 Supersymmetry

This section is based on Ref. [3].

2.2.1 Shortcomings of the Standard Model

Even though the SM has tremendous predictive power, there are still prob-
lems and open questions. For instance: The SM does not predict dark matter
and dark energy. Furthermore the SM does not include gravity nor it explains
the asymmetry between matter and antimatter in the universe. Then there
are the fine-tuning problem and the hierarchy problem. Due to this it seems
that a new theory or at least an extension of the SM is needed. Since sym-
metries lead to the SM it might be a good idea to use further symmetries to
expand the SM.

2.2.2 From SM to SUSY

We will take a closer look at one of this problems. Because of the Higgs
bosons scalar nature the correction to the Higgs bare mass depend quadrat-
ically on the scale up to which one assumes the SM to be valid, usually the
Planck scale. This makes the whole SM sensitive to this scale. Either one
accepts the fact that the Higgs bare mass has to be chosen very carefully,
avoid theories which use the Higgs mechanism or one finds a way to cancel
out the quadratically dependence with the scale.
If one now assumes a massive fermion, whose quantum numbers are simi-
lar to those of the SM vector bosons it would contribute to the Higgs mass
correction term quadratically with the scale, but due to its spin, with an
opposite sign, so the quadratic dependence cancels out. So this might be
the symmetry we are looking for: a symmetry which connects SM bosons
to fermionic particles with the same quantum numbers. Same for the SM
fermions which should be somehow connected to some bosons which have the
same quantum numbers.
This is the so called supersymmetry or short SUSY. So for each boson
(fermion) there should be a supersymmetric fermionic (bosonic) partner with
the same quantum numbers. Since for example no bosonic electrons or mass-
less spin 1/2 particles are discovered, one can see that SUSY cannot be an
exact symmetry. Due to experimental Data it seems that SUSY particle have
masses around or higher than 1 TeV/c2 for most SUSY particles.

2.2 Supersymmetry 7



2 THEORETICAL BACKGROUND

2.2.3 Minimal Supersymmetric Standard Model

As one can guess from the name the Minimal Supersymmetric Standard
Model MSSM is the minimal possible realisation of a supersymmertic ex-
tension of the SM. It contains one supersymmetric partner for each SM par-
ticle and the interactions remain the same. The superpartners of the SM
fermions are called sfermions (e.g. selectron, up-squark,...) and the SM
bosons are extended with the suffix ’-ino’ (e.g. gluino, Higgsino,...). All su-
perparticles symbols are marked with a tilde (e.g.ẽ, ν̃e, g̃, ...). The particle
content of the MSSM can be listed very easily, except for the fact that now
two Higgs doublets are needed to generate every particles mass: one up-type
doublet (H+

u , H
0
u) and one down-type doublet (H0

d , H
−
d ), each consisting of

one neutral and one charged Higgs. The particle content of the MSSM is
shown in Tab. 5. The quantum numbers are not mentioned here, since they
are already known from the SM. The superpartner masses are generated via
the Higgs mechanism too.

Table 5: Particle content of the MSSM.
SM-particle superpartner

U(1)Y B0 B̃0

SU(2)L W 0,W 1,W 2 W̃ 0, W̃ 1, W̃ 2

SU(3)C g g̃

leptonen/ e, µ, τ ẽ, µ̃, τ̃

sleptonen νe, νµ, ντ ν̃e, ν̃µ, ν̃τ

quarks/ u, c, t ũ, c̃, t̃

squarks d, s, b d̃, s̃, b̃

8 2.2 Supersymmetry



2 THEORETICAL BACKGROUND

Similar to the mixing of the B and W gauge eigenstates to the massless
photon γ and the massive mass eigenstate Z and W± bosons in the elec-
troweak gauge sector of the SM, occurs a mixing of the eigenstates Wino,
Bino and Higgsino to the mass eigenstate neutralinos Ñ0

1 , Ñ
0
2 , Ñ

0
3 , Ñ

0
4 (or

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4) and charginos χ̃±1 , χ̃

±
2 . As one can guess from the names the

neutralinos are electrically neutral and the charginos are electrically charged.

One important new quantum number of the MSSM is the so-called R-parity
PR = (−1)3B+L+2s, where B is the baryon number, L is the lepton number
and s the particles spin. All SM particles have the R-parity PR = 1 and the
superpartners PR = −1. This leads to the fact that the lightest supersym-
metric particle, the so-called LSP, has to be stable, since the R-parity is a
conserved quantum number.
Depending on its properties the LSP might be a candidate for cold dark mat-
ter. Therefore it should be neutral, massive and weakly interacting. Which
means it would only interact with matter via gravitational and weak inter-
action.

2.2.4 Breaking scenario & mSUGRA

Since SUSY is not an exact symmetry a breaking mechanism is needed.
This can be done via a term in the MSSM Lagrangian or via spontaneous
symmetry breaking similar to the electroweak sector. Since the breaking
mechanism is unknown, one introduces a phenomenologically breaking term
into the MSSM Lagrangian. This Lagrangian should be soft and of positive
mass dimension.
This ensures the cancellation of the quadratic divergence of scalar mass term.
The scale of the soft SUSY breaking should not be much larger then 1 TeV
to avoid the fine-tuning problem. After introducing this breaking term the
MSSM ends up with 105 extra free parameter which add to the 18 of the SM.
This leads to a huge arbitrariness in the MSSM. Furthermore it is technically
unfeasible to scan a parameter space with over 100 dimensions.
One of the most common breaking scenarios is the so-called minimal super-
grvity (mSUGRA). mSUGRA is the minimal realisation of this supergrav-
itational symmetry breaking and mediates the SUSY breaking via a hidden
sector which is connected to the visible sector via gravitational interaction.
mSUGRA generates the needed soft breaking term naturally.
There are two important assumptions. First that all (squark and sfermion)
mass matrices are proportional the unit matrices, to avoid further flavor vi-
olation, and second that the triple scalar couplings are proportional to the
Yukawa couplings. Furthermore no new complex phases are introduced. If

2.2 Supersymmetry 9



2 THEORETICAL BACKGROUND

one now assumes that masses and couplings unify at a high energy scale,
there are only four parameters left. The mass of the spin 1/2 SUSY particles
m1/2, the mass of the spin 0 SUSY particles m0, the trilinear coupling A0

and the mixing angle of the two neutral Higgs boson vacuum expectation
values tan(β) = 〈H0

u〉/〈H0
d〉. And there is although the relative sign for µ in

the Higgs potential.
A four dimensional parameter space is much easier to analyse than one with
over 100 dimensions. The only thing one has to do now is to calculate back
the unified masses and couplings to get the mass spectrum of the SUSY parti-
cles at the electroweak scale. This is done by using so-called renormalization
group equations (RGEs).

10 2.2 Supersymmetry



2 THEORETICAL BACKGROUND

2.3 Dark Matter

This subsection is based on Ref. [5].

Around 1970 Vera C. Rubin and W. Kent Ford, Jr. observed that the ro-
tation velocity of stars within galaxies behaves differently than expected.
From the visible matter inside a galaxy one would expect a decreasing rota-
tion velocity with increasing distance from the galactic center, but a nearly
constant rotation velocity is observed[4]. To explain this one assume a halo
of non-visible matter, so-called dark matter. Since dark matter is not visible
it does not produce, or maybe even interact with any form of electromagnetic
radiation.
One possible candidate for dark matter are so-called weakly interacting
massive particles or short WIMPs. WIMPs should be electrically neutral,
massive and stable on a cosmoligical timescale. The only WIMP candidates
within the SM are the neutrinos, which only interact via gravity and weak
interaction. But due to their very small masses the neutrinos would move
with velocities close the speed of light and are therefore not able to form
halos. This type of fast moving WIMPs is called hot dark matter.
We are looking for slow moving dark matter particles, so called cold dark
matter. The MSSM provides a possible cold dark matter candidate: the neu-
tralino, which like neutrinos only interacts via gravity and weak interaction.
Depending on the chosen MSSM input parameters the lightest neutralino
might be the LSP and therefore stable, so that all SUSY particles should
have been decayed into neutralinos over time.
This may explain the abcense of SUSY particles and provide a sufficent relic
density. Furthermore, since the neutralino mass is much greater than the
neutrino mass, the neutralino might move slow enough to form halos.

2.3 Dark Matter 11



2 THEORETICAL BACKGROUND

2.4 Markov Chain Monte Carlo

This section is based on Ref. [7].

The Markov Chain Monte Carlo algorithm in general is used to find the
minimum of a function and explore the region around this minimum. Dur-
ing this thesis the Metropolis algorithm is used and will be explained in
the way it is used. The Metropolis algorithm uses a sequence of points
P0 −→ P1 −→ P2 −→ ..., with a transition probability to get from the point
Pi to the point Pi+1. During this thesis the whole parameter space provides
possible points and one has to decide which of those points should be chosen.

At first one defines a likelihood function L = exp(χ2/2), where χ2 relates
the probed constraint and will be explained later (see section 3.2).
The first point P0(x1, x2, ..., xn), where x1, x2, ...xn are the coordinates of the
point within the parameter space, is chosen randomly under the condition
that L(P0) > 0.
From now on the procedure is the same for every new point:

• First: A new point is generated by making a random step in the
parameter space. This is done by generating a random step ∆xj for
each parameter with ∆xj ∈ [0 : ∆xmax

j = xmax
j − xmin

j ], where ∆xmax
j

is the maximum step width, xmin
j is the minimal and xmax

j the max-
imum value for this parameter, and adding the step with a random
sign to the coordinate of the previous point: Pi(x1, x2, ..., xn) −→
Pi+1(x1 + ∆x1, x2 + ∆x2, ..., xn + ∆xn).
If xj+∆xj is greater than xmax

j one subtracts xmax
j −xmin

j from xj+∆xj
and if xj + ∆xj is less than xmin

j one adds xmax
j − xmin

j to xj + ∆xj, so
that the new point is within the valid parameter space.

• Second: One checks if the new point is accepted. Therefore one de-
fines an acceptance probability A(Pi+1, Pi), where A(Pi+1, Pi) = 1 for
L(Pi+1) > L(Pi) and A(Pi+1, Pi) = L(Pi)/L(Pi+1) for L(Pi+1) ≤ L(Pi).
Due to this points with a higher likelihood than the previous one are
always taken.
To decide if a point of a lesser likelihood is accepted one generates
a random number n ∈ [0; 1] and compares it with the acceptance
probability. The new point is accepted if the random n is lesser than
A(Pi+1, Pi) = L(Pi)/L(Pi+1), otherwise it is rejected and a new random
point Pi+1 is generated as described above and then tested for accep-
tance.

12 2.4 Markov Chain Monte Carlo



2 THEORETICAL BACKGROUND

It has been shown that the fastest exploration of the parameter space happens
if about 1/4 of the generated points is accepted. To adjust the acceptance
rate, which is defined as the number of accepted points devided by the number
of all generated points, one decreases the maximum step width by the factor
2 if the acceptance rate is below 1/4 and increases it by the factor 2 if it is
above 1/4.
If the adjusted maximum step width is greater than the initial maximum
step width or becomes zero, it is reseted to the initial value.

2.4 Markov Chain Monte Carlo 13



3 COMPUTATION AND RESULTS

3 Computation and Results

3.1 Used Software

During this computations ’SPheno’[8][9] is used as a mass spectrum calcu-
lator. ’SPheno’ calculates the SUSY particles masses and other low energy
properties, such as decays and the anomalous magnetic moment of the muon
from the MSSM input parameters. ’micrOMEGAs’[10] is used to compute
dark matter properties, such as the relic density or the cold dark matter
nucleon cross section, from the MSSM parameters.
Furthermore self-written python code is used to for the fixed step and Markov
Chain calculations. It uses the MSSM parameters and the constraints as in-
put for the calculations and passes the MSSM input to ’SPheno’ and
’micrOMEGAs’, reads the needed data from the ’SPheno’ and ’micrOMEGAs’
output an computes a deviation of the constraints.
The fixed step calculation is simply done by using for-loops for the masses
m0 and m1/2 and leaving tan(β) and A0 fixed. The Markov Chain calculation
is done as described in section2.4.

3.2 Constraints

The used contraints and their values are shown in Tab. 6.

Table 6: constrains used for computing[11].
Constraint Data Ref.

Ωh2 0.113±0.004 [12]

b −→ XSγ (3.55±0.24) · 10−4 [13]

Bu −→ τν (1.68±0.31) · 10−4 [13]

B0
S −→ µ+µ− < (4.5±0.2) · 10−9 [14]

∆aµ (3.02±1.24) · 10−9 [15]

mh > (114.4±0.5) GeV [16]

mA > (480±50) GeV [17],[18]

σχN < (2±1) · 10−8 pb [19]

14



3 COMPUTATION AND RESULTS

• Ωh2:
The first constraint is the relic density Ωh2 as determined by the
Wilkinson Microwave Anisotropy Probe (WMAP)[12]. The relic den-
sity can be calculated via:

Ωh2 =
8π GN n0mχ̃

3H2
0

, (1)

where GN is the gravitational constant, H0 is the Hubble expansion rate
in units of 100 km

s·Mpc
, mχ̃ is the WIMP mass, in this case the lightest

neutralino mass, and n0 is the present number density. n0 can be
received by solving the Boltzmann equation:

dnχ̃
dt

= −3Hnχ̃ − 〈σannν〉(n2
χ̃ − n2

eq), (2)

where H is the time independent Hubble expansion rate, n2
eq is the

number of relic particles in thermal equilibrium and 〈σannν〉 is the
thermally averaged annihilation cross section[22]. Therefore the relic
density should be proportional to the neutralino mass.

• b −→ XSγ:
The second constraint is the branching ratio of the bottom quark decay
into a final state with strangeness s = −1 and a photon: b −→ XSγ.
It is the average of the measurements from the experiments BaBar,
Belle and the CLEO detector at the CSER[12]. This branching ratio
should be the SM value plus some SUSY correction which arise from
charged Higgs and chargino loop contributions and should be therefore
be sensitive to their masses[20].

• Bu −→ τν:
The third constraint is the branching ratio of the B-meson decay into a
tau-lepton and a neutrino: Bu −→ τν. It is the average of the measure-
ments from the experiments BaBar, Belle and the CLEO detector at
the CSER[12]. This branching ratio receives SUSY corrections at tree
level from the charged Higgs and is therefore sensitive to the charged
Higgs mass.

• B0
S −→ µ+µ−:

The fourth constraint is the upper limit for the branching ratio of
the B0

S-meson into a muon anti-muon pair: B0
S −→ µ+µ−. It is

3.2 Constraints 15



3 COMPUTATION AND RESULTS

determined by the LHCb experiment at the LHC[14]. This branch-
ing ratio should be suppressed by the pseudo-scalar Higgs mass mA(
BR(B0

S −→ µ+µ−.) ∝ 1
m4

A
)[23].

• ∆aµ:
The fifth constraint is the anomalous magnetic muon moment ∆aµ
as determined by the E821 experiment at BNL[15]. The anomalous
magnetic muon moment receives a SUSY contribution which should
decrease for higher mass parameters[25].

• mh:
The sixth constraint is the lower limits for the MSSM Higgs mass mh

as determined by the experiments ALEPH, DELPHI, L3 and OPAL at
the LEP[16]. The Higgs mass mh calculates easily as mentioned in Ref.
[3] via:

mh =
1

2

(
m2
A +m2

Z −
√

(m2
A −m2

Z)2 +mAmZ sin2(2β)

)
. (3)

• mA

The seventh constraint is the lower limits for the pseudo-scalar Higgs
mass mA as determined by the ATLAS and CMS experiment at the
LHC via decay into tau pairs[17][18]. It is proportional to m0 and
m1/2[3].

• σχN
The eighth constraint is the upper limit for the string independent cold
dark matter nucleon cross section σχN as determined by the XENON100
experiment[19]. It depends on the WIMP mass as shown in Fig.5 in
Ref. [19].

To combine these constraints one defines a deviation from the expected value
analogous to Ref. [11] via :

χ2 =
∑
α

(αcalc − αexp)2

σ2
α

, (4)

where αcalc is the computed value for the constraint α, αexp is the expected
value for this constraint from Tab. 6 and σα the corresponding uncertainty.
Furthermore one defines the deviation from the minimal χ2 as:

∆χ2 = χ2 − χ2
min. (5)

16 3.2 Constraints
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Figure 1: Spin independent WIMP nucleon cross section,Ref.[19]

3.3 Computation with fixed mass steps for fixed tan(β)
and A0.

All calculations are done for µ > 0. This choice is motivated by the anoma-
lous magnetic moment of the muon[26]. The first computations where done
for fixed steps for m0 and m1/2 and fixed values for tan(β) and A0. An ex-
ample for those calculations is done for tan(β) = 30 and A0 = 500 and m0

and m1/2 from 30 GeV to 3000 GeV, with steps of 30 GeV for both masses:
∆m0 = ∆m1/2 = 30 GeV. The Figures 2 to 9 show the results of this calcu-
lations for the individual constraints. Fig. 10 shows the deviation ∆χ2 of χ2

from the minimal χ2 of this calculation. The upper left corner in Fig. 2 and
9 is left out, since the LSP would be charged for this parameter sets. In Fig.
3,4,5,6,7 and 8 the regions where the SPheno aborded the calculation, due
to problems in different loop calculations, are left out. This of course leads
to combination of the omitted regions in Fig. 10.

3.3 Computation with fixed mass steps for fixed tan(β) and A0. 17
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Figure 2: Ωh2 for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Figure 3: b −→ XSγ for fixed tan(β) = 30 and A0 = −500 and fixed steps
for m0 and m1/2.

Fig. 2 shows the calculated relic density Ωh2 for tan(β) = 30 and A0 = −500
and steps of 30 GeV for m0 and m1/2 from 30 to 3000 GeV. The relic density
increases for increasing m0 and m1/2, expect for small m1/2 below around 200

18 3.3 Computation with fixed mass steps for fixed tan(β) and A0.
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GeV. In this region happens a very rapid increase of the relic density towards
smaller 1/2. The expected value Ωh2 = (0.113± 0.004) is represented by the
nearly black colored area on the edge to the charged LSP region in the upper
left corner and at masses for m1/2 below 500 GeV in Fig. 2.

Fig. 3 shows the calculated branching ratio of the b −→ XSγ decay for
tan(β) = 30 and A0 = −500 and steps of 30 GeV for m0 and m1/2 from 30
to 3000 GeV. For m0 above 400 GeV and m1/2 above 700 GeV the branch-
ing ratio remains nearly constant. Below this value, there is at first a de-
crease(violet area) followed by an increase of the branching ratio for smaller
m0 and m1/2. This behaviour matches with the expectation that the loop
contributions should be less for higher chargino and charged Higgs masses,
which both scale with the pseudo-scalar Higgs mass, which itself scales with
m0 and m1/2. There should be bigger contributions for low m0 and m1/2,
while the contributions decrease for increasing masses. The expected value
b −→ XSγ = (3.55 ± 0.24) · 10−4 is represented by the very small yellow-
orange region in the lower left corner (m0 < 400 GeV, m1/2 < 200 GeV) in
Fig. 3.

Figure 4: Bu −→ τν for fixed tan(β) = 30 and A0 = −500 and fixed steps
for m0 and m1/2.

Fig. 4 shows the calculated branching ratio of the Bu −→ τν decay for
tan(β) = 30 and A0 = −500 and steps of 30 GeV for m0 and m1/2 from
30 to 3000 GeV. Beginning from small m0 and m1/2 the branching ratio
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decreases until m0 around 350 GeV and m1/2 around 700 GeV. From this
on the branching ratio remains nearly constant. The same as said above is
valid for this branching ratio, great loop contributions for low m0 and m1/2,
while the contributions decrease for high m0 and m1/2. The expected value
Bu −→ τν = (1.68± 0.31) · 10−4 is not represented in Fig. 4, since the plots
scale ends at around 1.2 · 10−4. But the great orange area is quite close to
the lower limit for Bu −→ τν, which is 1.37 · 10−4.

Figure 5: B0
S −→ µ+µ− for fixed tan(β) = 30 and A0 = −500 and fixed steps

for m0 and m1/2.

Fig. 5 shows the calculated branching ratio of the B0
S −→ µ+µ− decay for

tan(β) = 30 and A0 = −500 and steps of 30 GeV for m0 and m1/2 from
30 to 3000 GeV. Beginning from small m0 and m1/2 the branching ratio
decreases until m0 around 450 GeV and m1/2 around 650 GeV. From this on
the branching ratio remains nearly constant. The same as said above is valid
for this branching ratio, great loop contributions for low m0 and m1/2, while
the contributions decrease for high m0 and m1/2. The expected upper limit
for B0

S −→ µ+µ− is (4.5± 0.2) · 10−9. Except the for the red to yellow region
in the lower left corner the rest of Fig. 5 fulfils this condition.
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Figure 6: ∆aµ for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Figure 7: mh for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Fig. 6 shows the calculated anomalous magnetic moment of the muon ∆aµ
for tan(β) = 30 and A0 = −500 and steps of 30 GeV for m0 and m1/2 from
30 to 3000 GeV. Beginning from small m0 and m1/2 ∆aµ decreases until m0
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around 500 GeV and m1/2 around 500 GeV. It matches with the expectation
that the SUSY contribution should be great for small m0 and m1/2 and should
decrease for higher m0 and m1/2. From then on ∆aµ is still decreasing but
rather slightly there before. The expected value ∆aµ = (3.02 ± 1.24) · 10−9

is represented by the slightly violet region in Fig. 6 on the edge to the red
region in the lower left corner(m0 < 750 GeV, m1/2 < 550 GeV).

Fig. 7 shows the calculated Higgs mass mh for tan(β) = 30 and A0 = −500
and steps of 30 GeV for m0 and m1/2 from 30 to 3000 GeV. There is just a
slight increase of the Higgs mass mh with m0. For increasing m1/2 the Higgs
mass increases to a maximum around 500-600 GeV and decreases from there
on. Which matches with the expected behaviour described by Eq. 3. The
expected lower limit for mh is (114.4± .05) GeV. The yellow region in Fig. 7
from m1/2 < 1200 GeV for m0 = 30 GeV to m1/2 < 600 GeV for m0 = 3000
GeV fulfils this condition.

Figure 8: mA for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Fig. 8 shows the calculated pseudo-scalar Higgs mass mA for tan(β) = 30
and A0 = −500 and steps of 30 GeV for m0 and m1/2 from 30 to 3000 GeV.
The pseudo-scalar Higgs mass mA increases, as expected, for increasing m0

and m1/2. The increase of mA with m1/2 is a bit stronger than the increase
with m0. The expected lower limit for mA is (480± 50) GeV. This condition
is fulfilled for the nearly whole plot in Fig. 8 except for a small dark violet
region for m0 and m1/2 below 500 GeV.

22 3.3 Computation with fixed mass steps for fixed tan(β) and A0.



3 COMPUTATION AND RESULTS

Figure 9: σχN for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Figure 10: ∆χ2 for fixed tan(β) = 30 and A0 = −500 and fixed steps for m0

and m1/2.

Fig. 9 shows the calculated cold dark matter nucleon cross section σχN for
tan(β) = 30 and A0 = −500 and steps of 30 GeV for m0 and m1/2 from 30 to
3000 GeV. The cross section increases with increasing m1/2, except for the
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region in the lower right corner for high m0 and small m1/2. The first matches
with the expectations from Fig.5 in Ref.[19], where the cross section is high
for small WIMP is much higher, but than the Fig. shown a decrease followed
by a slight increase. The expected upper limit for σχN is (2 ± 1) · 10−8 pb.
This condition is fulfilled for nearly the whole plot in Fig. 9 except for the
small dark orange to yellow region for m1/2 below 500 GeV.

Fig. 10 shows the deviation from the minimal χ2 for tan(β) = 30 and
A0 = −500 and steps of 30 GeV for m0 and m1/2 from 30 to 3000 GeV.
The regions of a low deviation from the minimal χ2 are similar to the region
of the Ωh2 constraint in Fig. 2. The mimimum in Fig. 10 is at m0 = 270
GeV and m1/2 = 570 GeV. One can see that Fig. 2 and 10 are roughly of the
same shape, therefore it seems to be that Ωh2 has a great influence on ∆χ2.

Discussion

The relic density constraint is fulfilled near the charged LSP region and for
low m1/2. The b −→ Xsγ constraint is fulfilled for a small region for small
masses around 200 to 300 GeV. The branching ratio of the Bu −→ τν is
slightly to low for a great area for masses above around 600 GeV, but there
is no region where the constraint is really fulfilled. Since the B0

S −→ µ+µ−

is just an upper limit only a small region for small masses below around 700
GeV has to be excluded, while the rest of the plane fulfils this constraint.
Both Higgs masses are lower limits. For the Higgs mass mh the constraint is
fulfilled for m0 between around 400 and 1200 GeV, while the pseudo-scalar
Higgs massmA is fulfilled for the whole plane except a region for masses below
around 600 GeV. The deviation ∆χ2 of the minimal χ2 has a minimum at
m0 = 270 GeV and m1/2 = 570 GeV. The region of a small deviation are
similar to the region which fulfil the relic density constraint. Of course one
has to be careful since some of the constraints are just upper or lower limits
and are therefore able to be fulfilled even if the deviation is rather large.
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3.4 Computation via Markov Chain...

3.4.1 ...for m0 and m1/2 for fixed tan(β) and A0

All calculations are done for µ > 0. This choice is motivated by the anoma-
lous magnetic moment of the muon[26]. Fig. 11 to 18 show the calculations of
the individual constraints via a Markov Chain m0 and m1/2, for tan(β) = 30
and A0 = −500 and m0,m1/2 ∈ [30 GeV, 3000 GeV]. The likelihood function
is defined as:

L(χ2) = exp(χ2/2), (6)

where χ2 is defined analogous to 3.2 as:

χ2 =

(
αcalc − αexp

σα

)2

, (7)

where αcalc is the calculated value, αexp is the expected value and σα the
uncertainty of the contraint α.

One has to be careful since this algorithm leads only to values which are
somehow near the constraint, hence some region which are shown in the
Figs. 2 to 9 might be missing even if they would fulfil the condition of being
higher (lower)vthan the lower (upper) limit(e.g. compare Fig. 8 and Fig. 17).

Figure 11: Ωh2 for fixed tan(β) = 30 and A0 = −500 via Markov Chain for
m0 and m1/2.
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Fig.11 shows the calculated relic density Ωh2 via a Markov Chain for m0 and
m1/2 and tan(β) = 30 and A0 = −500. Compared to Fig. 2 a huge region of
to high Ωh2 is excluded by the algorithm. The resulting values are between
0 an 1.8 and are therefore close the expected value of (0.113 ± 0.004). The
expected value is represented by the nearly black dots on the edge of the
charged LSP region in the upper left corner and for values of m0 between
around 100 and 140 GeV and m1/2 between around 180 GeV to 1000 GeV.

Figure 12: b −→ XSγ for tan(β) = 30 and A0 = −500 via Markov Chain for
m0 and m1/2.

Fig.12 shows the calculated branching ratio of the b −→ XSγ decay via a
Markov Chain for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig. 12
looks similar to Fig. 3 on can see just a few points(red to orange) in the
lower left corner which fulfil the constraint b −→ XSγ = (3.55± 0.24) · 10−4

and a lot of violet points which are close the constraint but do not fulfil it.
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Figure 13: Bu −→ τν for tan(β) = 30 and A0 = −500 via Markov Chain for
m0 and m1/2.

Fig.13 shows the calculated branching ratio of the Bu −→ τν decay via a
Markov Chain for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig. 13
looks similar to Fig. 4 which is due to the fact that the whole plot does not
fulfil the constraint Bu −→ τν = (1.68± 0.31) · 10−4, but is close to it.

Figure 14: B0
S −→ µ+µ− for tan(β) = 30 and A0 = −500 via Markov Chain

for m0 and m1/2.
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Fig.14 shows the calculated branching ratio of the B0
S −→ µ+µ− decay via a

Markov Chain for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig. Fig.
14 is similar to Fig. 5 except that the region in the lower left corner which
does not fulfil the constraint B0

S −→ µ+µ− < (4.5 ± 0.2) · 10−9 is excluded
by the Markov Chain.

Figure 15: ∆aµ for tan(β) = 30 and A0 = −500 via Markov Chain for m0

and m1/2.

Fig.15 shows the calculated anomalous magnetic moment of the muon ∆aµ
via a Markov Chain for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig.
15 is similar to Fig. 6 except that the region in the lower left corner which
does not fulfil the constraint ∆aµ = (3.02 ± 1.24) · 10−9 is excluded by the
Markov Chain.
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Figure 16: mh for tan(β) = 30 and A0 = −500 via Markov Chain for m0 and
m1/2.

Figure 17: mA for tan(β) = 30 and A0 = −500 via Markov Chain for m0

and m1/2.

Fig.16 shows the calculated Higgs mass mh via a Markov Chain for m0 and
m1/2 and tan(β) = 30 and A0 = −500. Fig. 16 is different from Fig. 7 since
a part of the area which fulfils the constraint mh < (114.4± 0.5). Since the
Markov Chain only leads to value near the value of mh = (114.4±0.5), which
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only vary between around 113 and 116 GeV. That there a two regions which
fulfil the constraint is due the fact that the Higgs mass first increases to a
maximum and then decreases again.

Fig.17 shows the calculated pseudo-scalar Higgs mass mA via a Markov Chain
for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig. 17 is different from
Fig. 8 since a part of the area which fulfils the constraint mh < (480± 50).
Since the Markov Chain only leads to value near the value of mh = (480±50).
But there is one yellow point around 2100 GeV and a few for around 1200
GeV for mA, which might be a result of the beginning Markov Chain and
the search for a high likelihood. But the majority of the acquired points are
around 300 to 600 GeV.

Figure 18: σχN for tan(β) = 30 and A0 = −500 via Markov Chain for m0

and m1/2.

Fig. 18 shows the calculated cold dark matter nucleon cross section σχN via
a Markov Chain for m0 and m1/2 and tan(β) = 30 and A0 = −500. Fig.
18 is similar to 9 except that the region, which does not fulfil the constraint
σχN < (2± 1) · 10−8 pb, is excluded by the Markov Chain, while the rest of
the plot which fulfils the constraint or is at least near the constraint.

A plot similar to Fig. 10 could not be calculated since the used program
could not find a valid starting point for the combined constraints. This is
due to the fact that, if one uses χ2 as it is defined in 3.2, the likelihood
function seems to be always zero.
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Discussion

The plots generated via Markov Chain calculations match(except some ex-
clusions) with the plots of the previous section but since the constraints tend
to be fulfilled in rather different region of the mass plane a Monte Carlo cal-
culation with this simple algorithm was not successful. But since the results
for the single constraints are quite good and the combined constraints behave
similar to the relic density, it seems to be a quite good idea to take a closer
look at the relic density with Markov Chain for all four parameters.
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3.4.2 ...for m0, m1/2, tan(β) and A0

All calculations are done for µ > 0. This choice is motivated by the anoma-
lous magnetic moment of the muon[26]. Fig. 11 to 18 show the calculations
of the individual constraints via a Markov Chain m0, m1/2, tan(β) and A0,
for m0, m1/2 ∈ [30 GeV, 3000 GeV], tan(β) ∈ [10, 60] and A0 ∈ [−2000, 2000].
The likelihood function was choosen as:

L(χ2) = exp(χ2/2), (8)

where χ2 is defined analogous to Ref. [7] as:

χ2 =

(
ln(Ωh2

calc/Ωh
2
exp)

σΩh2

)2

, (9)

where Ωh2
calc is the calculated relic density, Ωh2

exp is the expected relic density
and σΩh2 the uncertainty of the expected relic density Ωh2.

Figure 19: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

Ωh2 as color scale.

Fig. 19 shows Ωh2 on the z-axis and the color scale. This plot shows a
Markov Chain of 10000 accepted points for all four parameters.
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Figure 20: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

A0 as color scale.

Fig. 20 shows the same results as 19 but with Ωh2 on the z-axis and A0 on
the color scale.

Figure 21: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

tan(β) as color scale.

Fig. 21 shows the same results as two previous plots but with Ωh2 on the
z-axis and tan(β) on the color scale.
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Figure 22: Projection in the m0, m1/2-plane of Fig. 20 (left) and 21 (right).

Fig. 19 to 21 are somehow confusing, therefore Fig. 22 shows the pro-
jections of 20 (left) and 21 (right) in the m0, m1/2-plane and only a short
quanlitative discussion will be done for this one. Since the expected value is
Ωh2 = (0.114 ± 0.004) (see Tab. 6), one can say that the results are quite
good, since the calculated values for Ωh2 lie between 0 and 1.8 for various
combination of the four parameters. Furthermore A0 seems to have a slight
tendency for greater absolute values of A0 for greater values of m0 and m1/2.
tan(β) seems to be lower for low values of m0 or m1/2 and higher for middle
and high values for m0 and m1/2.

The Figs. 23 to 25 show an extract of the Figs. 19 to 21 for Ωh2 ∈
[0.109, 0.117] as projections in the m0, m1/2-plane. The Figs. 23 to 25 con-
tain 93 pairs of parameters which would fit the constraint that Ωh2 has to
be in the intervall [0.109, 0.117] with a simple Markov Chain Monte-Carlo
algorithm.

By comparing Figs. 23, 24 and 25 one achieves a few points in the parameter
space whose parameter sets would fulfil the relic density constraints. As one
can see for high values of tan(β) the constraint can be fulfilled even for high
masses.
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Figure 23: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

For Ωh2 ∈ [0.109, 0.117], Ωh2 as color scale.

Fig. 23 shows an extract of Fig. 19, as an projection in the m0, m1/2-plane
for Ωh2 ∈ [0.109, 0.117], with Ωh2 on the color scale.

Figure 24: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

For Ωh2 ∈ [0.109, 0.117], A0 as color scale.

Fig. 24 shows an extract of Fig. 20, as an projection in the m0, m1/2-plane
for Ωh2 ∈ [0.109, 0.117], with A0 on the color scale.
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Figure 25: Ωh2 via Markov Chain for m0, m1/2, tan(β) and A0

For Ωh2 ∈ [0.109, 0.117], tan(β) as color scale.

Fig. 25 shows an extract of Fig. 21, as an projection in the m0, m1/2-plane
for Ωh2 ∈ [0.109, 0.117], with tan(β) on the color scale.

36 3.4 Computation via Markov Chain...



4 SUMMARY AND OUTLOOK

4 Summary and Outlook

Summary

Different constraints are fulfilled in different regions of the m0, m1/2-plane
for fixed tan(β) and A0 = −500. The b −→ XS γ constraint is fulfilled for
small masses, so does the anomalous magnetic moment of the muon. The
Bu −→ τ ν and the B0

S −→ µ+, µ− constraint tend to be fulfilled for middle
an high masses. Some for the pseudo-scalar Higgs mass. The Higgs mass
contraint is fulfilled for m1/2 around 1000 GeV, while m0 does not have
a great influence. The cold dark matter nucleon cross section contraint is
fullfilled for m1/2 above 500 GeV, while m0 does not have a great influence.
The toughest constraint is the relic density since it is only fulfilled near the
charged LSP region respectively for small masses and seems to have a great
influence as one can see from the similarity of Fig. 2 and Fig. 10.
The Markov Chain calculations fÃ1

4
r fixed tan(β) and A0 = −500 lead to

results which are similir to the fixed step calculation and provide quite good
results. The Markov Chain for all four parameters leads to good results.
It leads a lot of points near the contraint and even some which fulfil the
constraint for very different parameter sets with a rather simple algorithm.

Ideas for further computaion

There are some points that could still could be done, first the dependence
of the expected value for the pseudo scalar Higgs mass mA on tan(β) and
the dependence of the cold dark matter nucleon crosssection σχN on the
LSP mass, which where assumed to be constant during the calculations for
reasons of simplicity. Furthermore one could add further constraints, to set
close limits the possible regions of the parameter space. Although one could
experiment with the likelihood function to get a function which works for a
Markov Chain calculation for the combined constraints. Since the Markov
Chain calculations for all four parameter are quite good, one should consider
to survey more of the constraints via Markov Chain calculations.
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