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1 Einleitung

Tiefinelastische Streuung und damit auch die DGLAPEI—Gleichung haben ihre Urspriinge in den
Rutherfordschen Streuexperimenten des frithen 20. Jahrhunderts. Die grundlegende Idee, durch
Beschuss von Teﬂchenﬂ Informationen {iber Materie, das heiffit die beschossenen Teilchenlﬂ zu
sammeln, zieht sich im Wesentlichen durch die gesamte Geschichte der Teilchenbeschleuniger.

Im Laufe der Jahre fithrte der technische Fortschritt zu immer gréferen Beschleunigern, die
Teilchen auf immer grofiere Energien beschleunigen konnten. Mit diesen neuen Moglichkeiten
kamen auch neue Erkenntnisse: War zu Beginn noch das Rutherfordsche Atommodell samt eines
punktformigen Kernes ,state of the art“, wurde schon bald klar, dass der Atomkern keineswegs
scharf auf einen Raumpunkt lokalisiert ist, sondern vielmehr aus Nukleonen, also Neutronen
und Protonen besteht. Ab den 1950er Jahren war es dann moglich, auch die Nukleonen auf eine
etwaige Substrukur zu untersuchenlﬂ Die Experimente zeigten, dass Proton und Neutron eine
magnetische und elektrische Ladungsverteilung besitzen, ein konkreter innerer Aufbau blieb je-
doch ein Ratsel. In den 1960er Jahren setzte sich dann aus mehreren konkurrierenden Modellen
das von R. P. Feynman entwickelte Partonmodell durch, in dem die Quarksﬂ und Gluonen der
Quantenchromodynamik als Partonen identifiziert wurden. Implementiert man diese Theorie
konsequent in das Partonmodell, so ergibt sich die DGLAP-Gleichung. Die Partonverteilungs-
funktionen, also die Wahrscheinlichkeitsdichten des Partonimpulses, deren Verhalten von dieser
Gleichung beschrieben wird, besitzen aufgrund ihrer universellen Anwendbarkeit auch heute
noch hohe Relevanz. Zwar wird in dieser Arbeit nur von der Streuung eines Elektrons am Pro-
ton die Rede sein, jedoch lassen sich die gewonnenen Erkenntnisse auf beliebige andere Prozesse
iibertragen.

Diese Arbeit soll sich mit der Herleitung und Lésung der DGLAP-Gleichung beschéftigen.
Begonnen wird mit einer Einfithrung in die tiefinelastische Streuung, das Partonmodell und Kor-
rekturenlﬂ an diesem aus der Quantenchromodynamik, an deren Ende die DGLAP-Gleichung
steht. Diese Integro-Differentialgleichung lasst sich nur numerisch 16sen, weshalb danach diverse
Umformungen erldutert werden, die fiir eine numerische Implementierung nétig sind. Zu die-
sen gehort auch die Mellin-Transformation, eine Integraltransformation, die die Struktur der
DGLAP-Gleichung mafigeblich vereinfacht. Abschlielend wird ein in Python 3.6 verfasstes Pro-
gramm vorgestellt, mit dem durch Lésen der DGLAP-Gleichung Partonverteilungsfunktionen
bei beliebigen Energieskalen ausgegeben werden konnen.

! Ausgeschrieben: Dokshitzer-Gribow-Lipatow-Altarelli-Parisi.

2Bei Rutherford Helium-Kerne, also a-Strahlung, im weiteren Verlauf dieser Arbeit Elektronen.

3Bei Rutherford Goldatome, im weiteren Verlauf dieser Arbeit Protonen.

“Die Nobelpreisvorlesungen [14],[8] und [4] von R. E. Taylor, H. W. Kendall und J. I. Friedmann aus dem Jahr
1990 enthalten ausfiihrliche Schilderungen zur Geschichte der tiefinelastischen Streuung.

SEingefiihrt durch M. Gell-Mann.

SWir beschrinken uns dabei auf Korrekturen in der ersten Ordnung Stérungstheorie.



2 Uber den theoretischen Hintergrund - eine
Herleitung der DGLAP-Gleichung

In den nachfolgenden Abschnitten soll eine kurze Einfithrung in die tiefinelastische Streuung und
das Partonmodell samt ,next-to-leading order“-Korrekturen gegeben werden. Die Darstellungen
orientieren sich an den Kapiteln 6.3, 8 und 9 aus [6] sowie dem Kapitel 32 aus [13].

Selbstverstidndlich kann es sich nicht um eine vollstdndige Darstellung der Quantenelektrody-
namik (QED) oder -chromodynamik (QCD) handeln. Vielmehr wird an entsprechenden Stellen
auf relevante Punkte dieser Theorien zuriickgegriffen. Eine Zusammenfassung der Feynmanre-
geln und der SU(3)-Symmetrie der QCD sowie eine ldngere Beispielrechnung eines Schleifenin-
tegrals wurden aus Griinden der Ubersicht in den Anhang ausgelagert.

2.1 Elastische Streutheorie zweier Dirac-Punkt-Teilchen

Um durch experimentelle Methoden Informationen iiber das Proton zu gewinnen, ldsst man,
wie schon in der Einleitung erwéhnt, Elektronen mit Energie F an diesem streuen und misst
deren Austrittswinkel © (vgl. Kugelkoordinaten) und -energie E’. Als Bindeglied zwischen Mes-
sung und theoretischer Vorhersage dient der Wirkungsquerschnitt o, definiert als Proportiona-
lititsfaktor zwischen gestreuten Teilchen pro Zeiteinheit AN und Stromdichte der einfallenden
Teilchen j:
AN = o (2.1)
Da Detektoren meist nur einen bestimmten Raumwinkel 2 einnehmen, wird iiblicherweise der
differentielle Wirkungsquerschnitt 2% angegeben. Wie kann nun der differentielle Wirkungs-
querschnitt theoretisch ermittelt werden?
Zum Einstieg soll von zwei punktférmigen streuenden (Elementar-)Teilchen ausgegangen wer-
den, zum Beispiel einem Elektron e mit Masse m und einem Myon p mit Masse M, beide mit
negativer Elementarladung —e. Betrachtet wird also der ProzeseE] el — eu, dargestellt in Ab-

bildung

Abbildung 2.1: Elektromagnetische Elektronstreuung (Impulse k& und £’) am Muon (Impulse p
und p’) durch Austausch eines virtuellen Photons mit Impuls(-iibertrag) ¢ =
kE—K.

'Hier und im Folgenden wird sich auf elektromagnetische Streuung beschrankt.
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Da aufgrund sehr hoher Teilchenenergie im GeV-Bereich die Geschwindigkeiten nahe der
Lichtgeschwindigkeit liegen, greift man auf relativistische Quantenmechanik zuriick. Elektron
und Myon sind Fermionen, werden also durch die Dirac-GleichungP| beschrieben:

(1y"0,, —m)y = 0. (2.2)

Hier wird die kovariante Form mit vierdimensionalem Nabla-Differentialoperator 9, und dem
Vierervektor der Dirac-Matrizen

Y = (8, 6d) (2.3)
benutzt. Sie gehorchen der Clifford-Algebra
{77} =2¢"1 (2.4)
sowie der Relation
Yo = gi, = 4. (2.5)

Es ist nun moglich, den Einfluss des Myons auf das Elektron iiber Stérungstheorie darzustellen.
Der ungestorte Zustand ist hierbei das iiber die Dirac-Gleichung beschriebene ein- und
auslaufende freie Elektron, das elektromagnetische Potential des Myons die Storung.

In erster Ordnung Stérungsrechnung ergibt sickﬂ eine invariante Amplitude zwischen initialem
und finalen Zustand des Elektrons von

M = (@ ey (i)~ ) @l e u(r). (2.6)

Sie hiingt wie folgt mit der Ubergangsamplitude zwischen initialem und finalem Elektronenzu-
stand T'r; zusammen:

Ty = M@2m)'0(p+ k —p' — ). (2.7)

Die Amplitude M wird iiber die Feynmanregeln gebildet, ndheres dazu findet sich im Anhang,
Abschnitt [Al

Bis hierhin wurde der Spinzustand beider Teilchen mit Spins Sgiektron = SMyon = % beliebig
gehalten. Da in den betrachteten Streuexperimenten der Spin unbestimmt bleibt, muss tiber
alle finalen Spinzustdnde summiert und iiber alle initialen der Durchschnitt gebildet werden.
Anstatt |M|? ergibt sich deshalb

1 et
M2 = MP? = LE o Lhyen, 2.8
M| (28Elektron + 1)(25My0n +1) Alle Spgz:usténdJ | 7 Elektron ™~ pv (2.8)
Es wurde der leptonische Tensor
1 _ — *
Liteitron = 5 Y [ ) uk)] @k’ )y ulk)]* (analog Lyf,,) (2.9)
alle Spinzustédnde
eingefiihrt.
Die Vollstéandigkeitsrelation
> w(k)u(k) =k, +m=k+m (2.10)
alle Spinzustdnde
fiihrt zu .
Lilektron = 2TT{(%' +m)y (f + m)v“}- (2.11)

2Hier fiir ein freies Teilchen, d.h. ohne Potential.
Die Rechnungen der gesamten Arbeit werden in Feynman-Eichung durchgefiihrt.
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Durch Ausmultiplizieren und das Ausnutzen der Pfadtheoreme

Tr(gh¢d) = 4[(a-b)(c-d) — (a-c)(b-d) + (a-d)(b-c)] (2.12)

Tr(—ungerade Anzahl an v-Matrizen—) = 0 (2.13)
sowie der Relationl]
Y=l =¢_ (2.14)
gelangt man schliellich zur finalen Form:
864 1o / / 2./ 210 272
|M|2:?(k:-p)(k-p)+(k-p)(k:-p)—mp-p—Mk"k:—i—QmM ) (2.15)
Durch
2
do = |A;l,| dqQ (2.16)

kann dann der Wirkungsquerschnitt bestimmt werden. d@ ist hierbei der lorentzinvariante Pha-
senfaktor, F' der einfallende Fluss der Elektronen. Uber die Kinematik im jeweiligen Inertial-
system, zum Beispiel dem Laborsystem
PMyon = (M) 6) (2.17)
oder dem Schwerpunktssystem
ﬁElektron = _ﬁMyonv (218)

l&sst sich abschliefend der jeweilige differentielle Wirkungsquerschnitt Sz% theoretisch ermitteln.
Im Laborsystem gilt bei Vernachléssigung der Elektronmasse m:

do Oz2 2 S) q2 .2 S q2
JEdY ~ 152 s % <cos — — sin )5(1/+ 2]\4) (2.19)

Die zusatzliche Differentiation nach E’ kann wegen des Faktors & (1/ + 5;) sofort durch Inte-
gration aufgehoben werden kann. Diese J-Funktion wird allerdings genau wie

P - q@ im Laborsystem, s. (2.17)

YT

E—E (2.20)

weiter unten benotigt.

Abschlieend soll noch einmal betont werden, dass im gesamten Abschnitt von punktformi-
gen Teilchen ausgegangen wurde. Diese Annahme hat ihren Ursprung in der Dirac-Gleichung
, dessen Loésungen Punkt-Teilchen beschreiben. Im finalen Resultat schldgt sich dies im
leptonischen Tensor nieder, der die Spinoren der Punkt-Dirac-Teilchen enthalt.

2.2 Hadronischer Tensor

Fiir die Elektron-Proton-Streuung kann der im vorherigen Abschnitt vorgestellte Formalismus
analog verwendet werden. Das Myon wird unter Beibehalt der Impulse p bzw. p’ und Masse M
durch das Proton mit jetzt positiver Elementarladung e ausgetauscht:

ep — ep.

Spétestens bei Energien im GeV-Bereich bricht allerdings die Annahme eines punktférmigen
Protons zusammen, die Streuung wird inelastisch. Die innere Struktur des Protons fithrt dazu,
dass sich das Proton durch die Streuung verdndert:

ep — eX, dargestellt in Abbildung [2:2]

‘e_,— ist der p-te Einheitsvektor, e®, = §**.
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Abbildung 2.2: Elektromagnetische Elektronstreuung (Impulse &, k') am Proton (Impuls p) mit
unbekannten Produkten X.

Es stellt sich die Frage, was anstelle des leptonischen Tensors nun das Proton reprisentieren
soll. An der vorherigen Form von |M|? wird weiterhin festgehalten, allerdings tritt nun an die
Stelle des zweiten leptonischen Tensors ein noch unbekannter hadronischer Tensor WH#":

4
€ v
’M |2 q4 Lg}lektronwl"/ (221)

WH wird nun so allgemein wie moglich angesetzt. Antisymmetrische Beitrdge geben keinen
von 0 verschiedenen Beitrag, da L* symmetrisch ist (s. (2.9)). AuBerdem enthélt der hadro-
nische Tensor analog zum leptonischen schon die Spinsummation. Damit ist jedes v* in den
Pfadtheoremen verwertet worden. Was iiberbleibt, ist ein Anteil des metrischen Tensors gH”
und symmetrische Kombinationen aus dem Protonimpuls p* sowie dem Impulsiibertrag g¢*:

W5

W Wy
WH = —Wgh” + WP“PV + ququ + WE

(p"q” +¢"p”). (2.22)
W3 steht fiir einen paritdtsverletzenden Anteil, der nur fiir die schwache Wechselwirkung relevant
ist und deshalb hier nicht weiter betrachtet wird. Aus der Kontinuitétsgleichung 9,,J* = 0 folgt
die Ward-Identitét

quWH = q,WH = 0. (2.23)

Damit sind zwei Variablen, wahlweise W4 und W5, nicht mehr unahhéngig und kénnen durch
W1 und Wy ausgedriickt werden. Final ergibt sich:

m v . .
WH = W, (g’“‘” + q@g )+W2 (p“ + szqq“) (p” + szqq”) (2.24)

Hier wurde die positive GroBe Q? = —¢? eingefiihrt.
Aus dem hadronischen Tensor (2.24)) erhélt man via (2.21]) und dem in Abschnitt [2.1] vorge-
stellten Formalismus im Laborsystem:

do a? M S 1 S
— [ Wy cos? = + — Wy si 2) 2.25
(dEfdQ)eX 87rE2sin4(;)(2 2COST g T g (2.25)

Die Formfaktoren W; und W5 hidngen aufgrund der inelastischen Streuung von zwei Variablen
ab, wahlweise dem Impulsiibertrag Q2, der in (2.20)) eingefiihrten Differenzenenergie v oder
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deren Verhéltnis, der Bjorkenschen Skalenvariable

Q? Q?
= =2X. 2.2
2Mv  2p-q v (2.26)

Im Folgenden soll Wi o = Wi o(x, Q?) gelten.

2.3 Das Partonmodell

2.3.1 Tiefinelastische Streuung

Bei ausgetauschten Energien Q2 > 4 GeV? legen experimentelle DaterE] nahe, dass das Elektron
an punktformigen Teilchen gestreut wird. Dadurch ldsst sich der hadronische Tensor , der
bis jetzt die Unkenntnis iiber Streuprodukte und damit die Struktur des Protons charakteri-
sierte, niher spezifizieren (s. Abbildung [2.3)). Jegliche Ausfithrungen dieses Kapitels fuBen auf
dieser Riickfithrung auf die Streuung zweier Dirac-Teilchen in der tiefinelastischen Streuung.
Dass das Elektron anstatt am Proton nun an Punkt-Teilchen streut, motiviert einen Forma-
lismus, in dem der Gesamtimpuls des Protons aus den Teilimpulsen der punktférmigen Teilchen,
von nun an Partonen genannt, aufgeteilt wird. Der Impulsanteil der Partonen am Gesamtim-
puls wird als £ € [0, 1] bezeichnet, das partonische Analogon zur kinematischen Variable z des

Protons (s. ([2.26))) ist

2 2
z = ¢ = ¢ _— (2.27)
2pParton “q QmPartonV E
Fiir Impuls und Masse des Partons ergibt sich
PParton = &PProton = (€E7 fﬁProton)v
MPparton = \/p%arton = \/£2p12?’roton =E¢M. (2.28)

Abbildung 2.3: Elektromagnetische Elektronstreuung (Impulse &, k') am Proton (Impulse p, p')
bestehend aus Partonen mit Impuls &p.

Vor der nidheren Betrachtung dieses Modells soll zuerst auf dessen Voraussetzungen eingegan-
gen werden. Eine variable Masse des Partons €M ist fernab jeglicher physikalischer Realitét,
da die Masse punktformiger Teilchen wohldefiniert ist. Um dieses Problem vernachléssigen zu

SHierauf wird spéter genauer eingegangen, s. Abbildung [2.4
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konnen, muss das Proton in einem Initialsystem betrachtet werden, in dem |p] > M gilt und
Massen demnach vernachléssigt werden konnen.

Die verschwindenden Massen von Proton und Parton verhindern zudem, dass Letzteres einen
transversalen Impuls besitzt, beide Impulse sind also parallel. Durch die Zeitdilatation in diesem
Inertialsystem kann zudem die Interaktion der Partonen untereinander vernachléssigt werden,
da diese auf einer viel grofleren Zeitskala als die Streuung stattfindet. Jegliche Prozesse der
entstandenen Produkte X nach der Streuung werden aus dem gleichen Grund nicht betrachtet.

2.3.2 Partonverteilungs- und Strukturfunktionen

Die Aufteilung des Protons in Partonen hat auch eine additive Aufteilung des Wirkungsquer-
schnitts zufolge:

d X d arton 7 3
olep—e Z/dffz OParton(€Pi — €p;) (2.29)

dE'dS) dE'dS)

In obiger Gleichung wurden die Partonverteilungsfunktion f;(£) eingefiihrt. Diese beschreiben
die Wahrscheinlichkeit, das Parton p;, wobei mit ¢ die Teilchenart beschrieben wird, mit ei-
nem Impulsanteil von € vorzufinden. Analog zum Wirkungsquerschnitt kann auch der
hadronische Tensor {iber eine Partonsumme dargestellt werden:

W (2, Q2) = / dz / dEL(EWE  (2,Q%)6(x — =€)

= Z / Wé‘irton(z QQ). (2.30)

Die §-Funktion hat ihren Ursprung in (2.27)), durch die z-Integration wird die untere Integrati-
onsgrenze der ¢-Integration aufgrund der Bedingung

é[o,1]:»§g1<:>§zx (2.31)

M8

nach x verschoben. Fiir alle £ < x verschwindet die z-Integration.

Die physikalisch sinnvollere Summation tiber Teilchenarten (anstatt iiber jedes einzelne Teil-
chen) in und muss durch die Normierung der Verteilungsfunktion auf die Teilchen-
zahl Nj; einer Teilchenart kompensiert werden:

1
JESIGER (2.32)
0

Dass dies notwendig ist, wird an deutlich. Ist Parton p; mehrmals im Proton vorhanden,
so muss der Wirkungsquerschnitt auch mehrfach beitragen. Es handelt sich deshalb nicht um
eine klassische Wahrscheinlichkeitsdichte, wodurch obige Wahrscheinlichkeitsinterpretation nur
eingeschrankt giiltig ist.

Die Summe der Erwartungswerte aller Partonimpulsanteile dagegen muss auf 1 normiert sein,
um den Gesamtimpuls des Protons zu erhalten:

1
> [etienis =1 (2.33)
()

Mithilfe des Partonmodells ist es nun auch moglich, die Strukturfunktionen W7 und Ws aus
dem hadronischen Tensor WH (s. ) naher zu beschreiben. Setzt man in die Partonsum-
me im Wirkungsquerschnitt (2.29)) dle Wirkungsquerschnitte (2.19)) fir die Streuung zweier
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Punktteilchen (Elektron und Parton) eirﬂ, so ergibt sich

do(ep — eX) a? Ze?/ldﬁfi(ﬁ) (cos26 + LsiHQ 6)6(1/ QQ)

dE'd2 N 4E23in4% 5 2 2m%arton 2 a 2mParton
(2.34)

e; bezeichnet hierbei die Ladung des i-ten Partons.

Mit
5(u L ): 5( o o ): 2mpart°“5<§ = x) (2.35)

2mPart0n 2mPartonx 2mParton§ Q2

wird der Wirkungsquerschnitt zu

do(ep — eX a?e? 2MPparton ©
( ) S et ie) (et cos”

dE'dQ  4F2sint9

———x“cos” — +
Q2 2 MParton

sin? (;)) (2.36)

Dieser Wirkungsquerschnitt muss nun aber offensichtlich gleich dem sein, der aus dem hadroni-
schen Tensor gewonnen wurde (s. (2.25))). Per Koeffizientenvergleich kénnen die Strukturfunk-
tionen durch

Wi(§, Q%) =27 ) el fi9), (2:37)

Q*Wa(&, Q) = 8 3 el fi(¢) (2:38)

dargestellt werden.

Hier manifestiert sich eine der wichtigsten Figenschaften des Partonmodells bei Anwendung
auf Elektron-Proton-Streuung, die Bjorken’sche Skaleninvarianz: Die den Wirkungsquerschnitt
charakterisierenden Strukturfunktionen sind unabhingig von Q2. Dies ist Folge des Zuriickfiih-
rens des inelastischen Wirkungsquerschnitts auf den elastischen durch die Parton-
summe im Wirkungsquerschnitt (s. . Letzterer hédngt von zwei Variablen ab, ersterer nur
noch von einer, zum Beispiel der Bjorkenschen Skalenvariable x. Die zu Beginn des Abschnitts
angesprochenen experimentellen Hinweise auf den Aufbau des Protons aus Punktteilchen be-
standen in genau dieser Skaleninvarianz bei der Messung der Formfaktoren und ,
zu sehen in Abbildung

0.5 —

0.4 —

oal ?l¢+¢¢+¢¢¢ 4 lﬁ,

VW2 ,
0.2 |—

(VRN

Q? (GeV/c)?

Abbildung 2.4: Messung des Formfaktors v, in Abhéngigkeit der Energie Q? am Stanford
Linear Accelerator bei # = 1. Entnommen aus [6], S. 190.

5Mit der Ersetzung der Muonmasse durch die Partonmasse mparton-
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Die Identitét, die sich aus (2.37) und ([2.38)) ergibt,
Q2

Wilz) = 472

Wa(z), (2.39)

wird als Callan-Gross-Relation bezeichnet. Thre Gestalt wére eine andere, wiirde man nicht
vom Wirkungsquerschnitt zweier Spin—%—Teilchen ausgehen. Deshalb war ihr experimenteller

Nachweid’] ein deutlicher Hinweis darauf, dass die Partonen im Proton Fermionen sind.

2.3.3 Quarks und Gluonen als Partonen

Im Folgenden sollen die bis jetzt sehr allgemein gehaltenen Partonen néher spezifiziert werden.
Das statische Quarkmodell zusammen mit der Quantenchromodynamik impliziert eine Struktur
aus drei Valenzquarks (uud), die durch Gluonen wechselwirken. Gluonen kénnen zudem noch
in Quark-Antiquark-Paare aufspalten, die sogenannten Seequarks.

Obiges Modell soll als Grundlage genommen und sich auf die Flavour up, down und strange
beschrénkt werderﬁ Die Flavouranzahl wird mit ny angegeben, in dieser Arbeit gilt damit
ng = 3. Aus Griinden der Lesbarkeit wird die Notation f;(£) = ¢(&) eingefiihrtﬂ

Eine beliebige Parton-Verteilungsfunktion lasst sich additiv in Valenz- und Seeanteil aufteilen:

q(§) = qv (&) +as(§)- (2.40)

Unter der Annahme, dass Flavour und Anti-Flavour nur aus Paarbildung der Gluonen entstehen
und demnach den gleichen Seeanteil haben, gilt

qv(§) = q(&) —q(8), (2.41)

da Anti-Flavour im Proton keinen Valenz-Anteil besitzen.

2.4 Einfliisse der QCD durch Prozesse nachster Ordnung

Bis jetzt wurde der Prozess samt Amplitude nur in fithrender Ordnung (,leading order*, LO) der
Storungstheorie betrachtet, da auf Amplituden von Feynmandiagrammen der fithrenden Ord-
nung zuriickgegriffen wurden. Zu den Annahmen des Modells im Abschnitt zéahlte, dass
die Partonen nicht untereinander wechselwirken. Die Beriicksichtigung von Gluonen und See-
quarks als Folge der Wechselwirkung der Quarks im letzten Abschnitt ist folglich inkonsequent.
Um diese Teilchen nun auch physikalisch zu rechtfertigen, werden Prozesse der néchstfithrenden
Ordnung (,next-to-leading order“, kurz NLO), zu sehen in Abbildung berticksichtigt.

Es liegt von nun an der Fokus auf dem Verhalten der Quarks und Gluonen in der ersten
Ordnung, da der Beitrag des streuenden Elektrons sich nicht verdndert. Genauer formuliert:
Der leptonische Tensor L und der Photonpropagator bzw. der erste Teil der Amplitude,

a(k )y k) 4. (2.42)
q
bleibt erhalten, lediglich der hadronische Tensor W bzw. der letzte Teil der Amplitude erfdhrt
eine Verdanderung in den betrachteten Prozessen.
Eine ausfiihrliche Berechnung der Amplitude der Vertexkorrektur findet sich im Anhang [C]
Die Amplituden der anderen Beitrige sollen vorausgesetzt werden.

"Unter anderem in [8] beschrieben.

8 Andere Flavour besitzen eine weit héhere Masse, die nicht mehr ignoriert werden kann. Dies fithrt zu einigen
Sonderbehandlungen, die nicht Teil dieser Arbeit sein sollen.

9¢ ist ein (Anti-)Flavour



2 Uber den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

> > >
> > >

(a) Vertexkorrektur: Emission eines virtu-

ellen Gluons vor der Streuung und Ab- (b) Selbstenergie: Emission und Absorpti-
sorption danach. on eines virtuellen Gluons.

(c) Abstrahlung eines reellen Gluons vor (d) Abstrahlung eines reellen Gluons nach
der Streuung. der Streuung.

Abbildung 2.5: NLO-Korrekturen.

2.5 Herleitung der DGLAP-Gleichung
2.5.1 Der Formfaktor 11/, in LO

Im Folgenden steht die Frage im Fokus, wie diese zusétzlichen Amplituden Einfluss auf das
in den letzten Abschnitten etablierte Partonmodell in fiihrender Ordnung nehmen. Am Ende
dieser Betrachtungen wird dann eine Verletzung der Bjorken’schen Skaleninvarianz durch einen
logarithmischen Term und die daraus folgende DGLAP-Gleichung stehen.

Zuerst muss ein Weg gefunden werden, mit dem die Amplituden der betrachteten Korrektu-

ren in die schon bestehenden Strukturfunktionen der fihrenden Ordnung ((2.37) und (2.38))
implementiert werden kénnen. Es soll hierfiir der neue Formfaktor

Wo(2, Q) = — g™ 0 (2, @?) (4 - q2) CWa(e,Q?)

QZ
. 2 . 2 2
y <p2 N 2(1?@3) N g; “1222 ,qz) 31 (2) — Wal(x) <M2 + 4:@)
Q*>M?,[239) 2 (z) = 4r Y g(x) (2.43)
q

etabliert werden. Die Ndherung Q? > M? ist gerechtfertigt, da tiefinelastische Streuung be-
trachtet wird.
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2 Uber den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Aus der Darstellung in der Partonsumme ([2.30f) folgt zudem bei Anwendung von gH”:

1 1
d T
Wow, @) = 3 [ ol Woruon(5:@*) = 3 [ doalWorumon(2. @) (244
7 0 70
Beim Vergleich von (2.43)) und ergibt sich
Wi Barton = 4me2d(1 — 2). (2.45)

Diese Identitat gilt allerdings nur in fithrender Ordnung, da sie auf Basis des Wirkungsquer-
schnitts fithrender Ordnung entwickelt wurde. Gleichermafien kann allerdings nun in héheren
Ordnungen vorgegangen werden.

2.5.2 Der Formfaktor 1/, in NLO

Hat man die Amplitude der nidchsten Ordnung ermittelt, so kann diese auf Wy tbertragen
werden und nimmt so Einfluss auf die Verteilungsfunktionen (s. (2.44])). Mit den Korrekturen aus
virtuellem Gluon am Vertex W(Yparton (s. Abbildung i und reellen Abstrahlungen W({{Parton

(s. Abbildung [2.5 und [2.5d)) ergibt sich™”]

__1i/LO \4 R _ 2
WO,Parton _WO,Parton + WO,Parton + WO,Parton - 47r6q{ [5(1 - Z)

1 ag 2\ PT(1 - €
-2 Ta

1+ 22
L+ 1+z

1+ 2?)

Qs
—C
+27r F 1—=z2

In(1 — z)]
n

s

In(z) + 342z — (2 + ;) 5(1— z)] } (2.46)

3
21—z

mit den DGLAP Splitting-Funktionen

Pyq(2) = CF{(l +2%) {

3
T ++§5(1 - z)} (2.47)

—z

und der Distribution llll , die tiber folgende beide Bedingungen definiert ist:
+

[ L ] :i falls z # 1
+

1—2 1—2’
1 1
und/dzf(z) llizl = /(f(zi_—i"(l)) (2.48)
0 + 0

Es wurde die Feinstrukturkonstante der starken Wechselwirkung «, benutzt, C'r ist eine Grup-
penkonstante der QCD zugrunde liegenden SU(3) Eichsymmetriﬂ @ und € haben ihren Ur-
sprung in der im Anhang |C| erliuterten dimensionalen Regulierung, also der Uberfiihrung des
Schleifenintegrals in D = 4 — e Dimensionen. Um ein physikalisches Ergebnis zu erhalten, ist der
Limes € — 0 zu bilden. Mit p wird eine Skala bezeichnet, die die physikalisch richtige Dimension
wahrt.

OHier wird implizit der Formfaktor Wy mit der Amplitude M des Prozesses in Zusammenhang gebracht. Dass
WH in der Gesamtamplitude das wechselwirkende Proton und damit auch die QCD-Korrekturen am Quark
charakterisiert, soll diesen Schritt motivieren. Es wird die Eulersche Gammafunktion I'(n) = fooo dre "z
eingefiihrt.

1Nsheres dazu im Anhang, Kapitel

11



2 Uber den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

2.5.3 Splitting-Funktionen und Renormierung der Partonverteilungsfunktionen

Eine genaue Erlauterung von setzt die in dieser Arbeit nicht explizit betrachteten Ampli-
tuden der reellen Abstrahlungen und Selbstenergien voraus und wird deshalb iibergangen. Bevor
die letzten Schritte bis zur DGLAP-Gleichung unternommen werden, sollen aber zumindest die
Splitting Funktionen P,,(z) und ihr Auftauchen in diskutiert werden. Alle Prozessen ist
zu eigen, dass ein Quark ein virtuelles oder reelles Gluon abstrahlt. Der Impuls eines ein- oder
auslaufenden Quarks bleibt also nicht konstant, er teilt sich in den Impuls des abstrahlenden
Gluons und den des Quarks nach der Abstrahlung auf. Py, kann als Wahrscheinlichkeit inter-
pretiert werden, mit der ein Quark mit Flavour ¢ nach einer Gluonabstrahlung nur noch einen
Anteil z des Quarkimpulses vor der Abstrahlung besitzt. Hier wurde implizit wieder die glei-
che Identifizierung zwischen kinematischer Gréle z und Impulsanteil auf Quarkebene gemacht,
wie sie auch schon im Partonmodell auf Protonebene vorgenommen wurde. Vor diesem
Hintergrund ldsst sich auch der LO-Beitrag physikalisch interpretieren. Da hier keine
Abstrahlung stattfindet, muss der Impulsanteil durch die J-Funktion in der Integration tiber z
auf 1 festgelegt werden.

Um nun den finalen Ausdruck fir Wy mit den Verteilungsfunktionen in Verbindung
zu bringen, wird Wp parton in den Formfaktor des gesamten Protons eingesetzt und

3
<482‘2> 1;1((11:3) bis zur ersten Ordnung in € entwickelt. Es ergibt sich

Wolz, Q%) = 473" é? /1 d;q(g) [5(1 _ Z) - ;quq@) (i +ln é‘;) + R<z>} (2.49)

Unter R(%) werden jegliche endliche Teile von Wy zusammengefasst, die fiir die weiteren Aus-
fihrungen nicht mehr von Relevanz sind.

In (2.49) findet sich eine (Infrarot-)Divergenz der Form %EL die auch schon in (2.46) aufge-
treten ist Divergierende Amplituden sind jedoch unphysikalisch, denn nach @ geht mit
ihnen auch ein divergenter Wirkungsquerschnitt einher. Man spricht von infraroter Divergenz,
da sie bei einem sehr kleinen Gluonimpuls auftaucht. Um diese Divergenz zu umgehen, wird auf
die Renormierung einer physikalischen Gréﬁﬂ zuriickgegriffen.

Die zentrale Idee der Renormierung liegt in der Neudefinierung physikalischer Gréflen, um die
entstandenen Divergenzen in den Prozessen héherer Ordnungen zu absorbieren: Grofien, die zu
Beginn der Rechnung als physikalisch, insbesondere also auch als endlich angenommen wurden,
stellen sich bei Auftauchen der Divergenzen als schlecht definiert heraus. Die renormalisierte
Grofle tritt deshalb an den Platz der vorherigen.

Konkret soll der (divergente) Formfaktor der ersten Ordnung in den (endlichen) Form-
faktor der fithrenden Ordnung iiberfiihrt werden.

Hierfiir renormiert man die Verteilungsfunktionen auﬂ

e @)= [£a0{s(1- 1) - (2 Con(E)) ()} ew

12Beachte den Limes aus der dimensionalen Regulierung.

13 Anders als in der QED kompensieren reelle Abstrahlungen hier nicht jegliche Infrarot-Divergenzen.

1Selbiges Prinzip wird bei ultravioletten Divergenzen angewandt, was eine Redefinierung von zum Beispiel der
Masse m, der Ladung e oder auch der Feinstrukturkonstante as zur Folge hat. Eng damit verbunden ist die
Renormierungsgruppengleichung der entsprechenden Gréfle, auf die in Kapitel @ eingegangen wird.

5Eine Renormierung ist auf unterschiedliche Weisen mdoglich, man spricht von einer Renormierung in einem
bestimmten Schema. Hier werden alle, insbesondere auch die endlichen Teile der Strukturfunktion in
die renormierte Verteilungsfunktion aufgenommen, die Renormierung erfolgt daher im DIS (Deep inelastic
scattering) - Schema.

12



2 Uber den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Der Index R wird im weiteren Verlauf unterschlagen, da nur noch mit den renormierten Par-
tonverteilungsfunktionen gearbeitet wird.

Die renormierten Partonverteilungsfunktionen sind offensichtlich Q?-abhingig, verletzen also
die Bjorken’sche Skaleninvarianz. Aussagen iiber Verteilungsfunktionen selbst kann man treffen,
wenn man sie in Relation zu einer neuen, beliebigen Impulsskala Q% betrachtet. Bildet man die
Differenz zwischen beiden Skalen, so verschwinden die infraroten Divergenzen und man erhélt

g(2,Q%) — q(z,Q}) = f (€.Q >{—PW<5><1“§22 é@”(s)}

2 d§ L Q*
0.0 = a(e.Q}) + 52 [ Ca(. Q)P (§ ) 5. (251)
Daraus folgt sofort
dq(z, Q%) _ d¢ x
o = 5 | TP (%) (252)

Dies ist die vorlaufige Form der DGLAP-Gleichung fiir einen beliebigen Quarkflavour. Hier und
im Folgenden sollen die Splitting-Funktionen nicht flavourabhéngig sein.

In obigen Ausfiihrungen wurden allerdings nur die Wechselwirkungen zwischen Quarks in der
ersten Ordnung Storungstheorie betrachtet. Seequarks, also die Aufspaltung eines Gluons in
Quark und Antiquark sowie Wechselwirkungen des Gluons, tauchen bis jetzt nicht auf, miissen
aber als zusétzliche Prozesse in der DGLAP-Gleichung berticksichtigt werden. Tabelle fiithrt
diese Prozesse samt zugehoriger Splitting-Funktion auf.

Neben der Sonderbehandlung von Gluonen durch Py4(x) fithren diese zuséatzlichen Splitting-
Funktionen dazu, dass Quark-Verteilungsfunktionen auch von der Gluon-Verteilungsfunktion
und nicht nur (wie in der vorldufigen DGLAP-Gleichung (2.52))) von sich selbst beeinflusst
werden. Dieses ,,Mischen® ldsst sich tiber einen Vektor-/Matrixformalismus ausdriicken. Die
finale DGLAP-Gleichung® hat somit folgende Form:

U(ZE,QQ) P (g) 0 P (g) u(xaQQ
u(x, Q?) 1 S z qgg u(x,Q?)

s | @ =g [ Lo | e
sogy) D @) Pa@) g

Mit obiger Gleichung schliefit dieser Abschnitt und das gesamte Kapitel. Durch Zulassen von
Partoneninteraktionen iiber die QCD musste zwar die sehr einfache Struktur des Partonmo-
dells in Abschnitt samt der Bjorkenschen Skaleninvarianz aufgegeben werden, allerdings
bietet die DGLAP-Gleichung nun eine Moglichkeit, durch die numerische Loésung die-
ser Integro-Differentialgleichung die explizite Gestalt der Partonverteilungsfunktionen fir die
Quark-Flavour und Gluonen zu bestimmen. Bevor in Kapitel ein solches Programm vorge-
stellt wird, werden im folgenden Kapitel zunéchst noch einige vorbereitende Umformungen an
fiir die numerische Implementierung vorgenommen.

16Bzw. DGLAP-Gleichungen, falls jede Zeile einzeln betrachtet wird.
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2 Uber den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Tabelle 2.1: DGLAP-Splitting-Funktionen zu verschiedenen Quark-Gluon-Prozessen.

Beschreibung physikalischer Prozess entsprechende Splitting—Funktio
Gluonabstrahlung N 1+a? | 3 ,
eines Quarks Pog(2') = Cr -y T 50(1— ')

Gluon teilt sich in
Quark und Anti-
Quark auf

Pyg(a') = Trlz” + (1 — a')?]

Quarkabstrahlung
unter Umwand-
lung zum Gluon

qu(l’,) =Cp

Z'/

1+(1—:c’)2]

Gluonabstrahlung
eines Gluons

x

17 Aus Ubersichtsgriinden wird die Abkiirzung 2’ = 2
QCD (s. Anhang . Entnommen aus [I5], S. 12.

AN

/ .’17,
ng(x ) = QCA m
11C4 — 4n T,
. %5(1 )

14

1

+(1=2") - ("+=

x/

)

benutzt. Tr, C'r und C'4 stammen aus der Eichgruppe der



3 Vorbereitungen fiir die numerische
Implementierung der DGLAP-Gleichung

Nachdem die DGLAP-Gleichung hergeleitet wurde, soll sie nun gelost werden. Es handelt
sich allerdings um eine matrixwertige Integro-Differentialgleichung. Dadurch wird eine analyti-
sche Herangehensweise von vornherein ausgeschlossen und zudem eine numerische Lésung sehr
erschwert. Durch verschiedene Umformungen kann die Implementierung allerdings deutlich ver-
einfacht werden.

Begonnen wird mit der Mellin-Transformation, die die DGLAP-Gleichung auf eine Differen-
tialgleichung reduziert. Die Matrixwertigkeit wird dann durch Diagonalisierung umgangen.

3.1 Die Mellin-Transformation

Die Mellintransformation ist wie folgt definiert:

1
MT|[f(z)] = f(n) = /da:f(x)ac"_l, n € C. (3.1)
0

Durch diese Integraltransformation lésst sich der rechtsseitige Ausdruck der DGLAP-Gleichung
(2.53) entscheidend vereinfachen, da sie aufgrund von

e[S (2)] - [ [ Sacm(2)

1

1 1
ZO/d:m:"_lO/dz/dfq(f)qu<z>5($—fz)

1 ’ 1
- / dz2" 1Py (2) / dE€™1q(€) = q(n) - Ppq(n) (3.2)
0 0
im Mellin-Raum die Gestalt einer einfachen Differentialgleichung hat:
2 2
ZEZ g% Pyq(n) , o( o ]P;gqgn; ZEZ 823
0 d "2 Qs 0 qq\" gq\T d "2
e (a:,:Q )| = o . . : : (n,.Q ) (3.3)
g(n’.QQ) Pag(n)  Feg(n) ... Pyg(n) g(n,.Q2)
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3 Vorbereitungen fiir die numerische Implementierung der DGLA P-Gleichung

Wie simple Integration zeigt, ergeben sich die Mellin-Transformierten der Splitting—FunktioneIﬂ
zu

Pyo(n) = C (2 CIn—1)—I(n+ 1)), (3.4)
Pyq(n) = Cp - & _21;'7;(7;: o (3.5)
Fag(n) =T - - (2 : ;L)T(Z: 3 (36)
ng(n):2CA-(ni1—;+ni1—ni2—l(n))+nc’4_€%. (3.7)

Aufgrund der Komplexwertigkeit der Mellin-Transformierten erfolgt die Riicktransformation
iber eine Kontur in der komplexen Ebeneﬂ (s. auch Abb. :

zf(x) = 21m{ /dz [ei‘bxlfcfze"p(id’)f(n = ¢+ ze'?)]
0
- / dz[e” gt eP(=0) £y — ¢ 4 ze79)] } (3.8)
0
t Im(n)
e

-3 -2 -1 0 1 c Re(n)

Abbildung 3.1: Die Kontur in der komplexen Ebene, iiber die die Mellin-Riicktransformation
erfolgt, festgelegt durch die Parameter ¢ und ¢. Die Singularitdten der Mellin-
Funktionen sind durch Kreuze eingezeichnet. Entnommen aus [16], S. 12.

c € R, das auf der reellen Achse rechts neben allen Singularitédten liegen muss, legt den Punkt
der Kontur auf der reellen Achse fest, ¢ € [0,27] den Winkel der Kontur zur reellen Achse.
Den am weitesten rechts liegenden Pol aller hier betrachteten Funktionen besitzen die Mellin-
Transformierten der Splitting-Funktionen an der Stelle n = 1ﬂ Zudem sind alle Funktionen im
z-Raum reellwertig, sodass die Mellin-Transformierten nur durch ihre Argumente komplexwertig
werden (f*(n) = f(n*)). Wegen u — u* = 2ilm(u) lasst sich deshalb zu

xf(x) = % /dzIm (e“%lcz (i) £ = ¢ + zei¢)> (3.9)
0

vereinfachen.

'Fiir das Integral I(n) = [ 01 dxl’f; gilt I(n) = vg + ¥ (n+1). yg ist die Euler-Mascheroni-Konstante und (n)
die logarithmische Ableitung der Eulerschen Gammafunktion.

2Dafiir miissen mathematische Voraussetzungen wie Holomorphie und und gleichméBige Konvergenz im Unend-
lichen gegeben sein, fiir detaillierte Ausfithrungen siehe [2], Kapitel 11.

3Man beachte den Faktor (n — 1) im Nenner von P,4(n) und P,4(n).
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3 Vorbereitungen fiir die numerische Implementierung der DGLA P-Gleichung

3.2 Wahl einer neuen Basis

Nachdem durch die Mellin-Transformation die Integralauswertung in der DGLAP-Gleichung
umgangen werden konnte, soll nun die Matrixstruktur vereinfacht werden. Wéahlt man eine
Darstellung in einer entsprechenden Basis, wird das Mischen der Quarkverteilungen mit der
Gluonverteilung auf ein Basiselement reduziert und gleichzeitig ein grofier Anteil der Matrix
diagonalisiert.

Auf folgende Linearkombinationen der physikalischen Basiselemente wird ab jetzt zuriickge-
griffen:

Non-Singulett : qz?'; = (¢; £ ¢) — (g; £ gj), 4 und j sind Quarkflavour

Valenz : qy = Z(q —q)
q

Singulett : gg = Z(q +q)
q
Gluon (unverdndert) : g =g

Die physikalische Basis hat allerdings 2ny + 1 = 7 Elemente. Um die gleiche Anzahl auch in der
neuen Basis zu erhalten, werden aus den Non-Singulett-Kombinationen nur die ausgewéhlt, die
den up-Flavour an zweiter Position enthalten: q:[u, 4w, 44, und g, Die Basiswechselmatrize
von der neuen Basis in die physikalische und zuriick ergeben sich dann zu

1 -1 1 -1 1 -10
-1 -11 1 0 0 0
-1 -10 0 1 1 0
U=|-1 1 1 -1 0 0 0 (3.10)
-1 1 0 0 1 -1 0
1 1 1 1 1 1 0
0 0 0 0 0 0 1
und
1 -1 -1 -1 -1 10
-1 -1 -1 1 1 10
2 -1 2 110
vt=>-1 2 -1 -2 1 10 (3.11)
611 -1 2 -1 2 10
-1 -1 2 1 -210
0O 0 0 0 0 01

U~! liefert die Darstellungen der neuen in der physikalischen Basis, auf die in der Riicktrans-
formation zuriickgegriffen wird.
Die Splitting-Matrix P aus (2.53) wird in der neuen Basis durch

Py(%) 0 0
P-vtru=| Y : (3.12)
: qu(%) 6qu(%)
0 Pyg(§)  Pog(%)

dargestellt, ist also bis auf den Singulett/Gluon-Anteil diagonal. Die Ansidtze und Anfangsbe-
dingungen fiir die Verteilungsfunktionen sind spéter in dieser Basis formuliert.

4Eintrage in U reihenweise nach der Reihenfolge der oben stehenden Definitionen: (qv, q;u, Qs A7 G5us 95, 9)-
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3 Vorbereitungen fiir die numerische Implementierung der DGLA P-Gleichung

3.3 Losung der DGLAP-Gleichung im Mellin-Raum

3.3.1 Renormierungsgruppengleichung von «; in erster Ordnung

Die DGLAP-Gleichung ist nun in eine Form gebracht worden, die eine einfache Lésung ermog-
licht. Bevor diese allerdings diskutiert wird, muss zuerst noch auf die Skalenabhéngigkeitﬂ von
«s eingegangen werden. Diese manifestiert sich auch in bekannten Effekten der starken Wechsel-
wirkung, ,Confinement“ und ,asymptotischer Freiheit“. Dass bei hohen Energien/kleinen Ab-
standen die Kopplungsstérke klein (asymptotische Freiheit) und bei geringen Energien/grofien
Abstanden die Kopplungsstarke grof3 wird, erklart die Nicht-Existenz freier Quarks und ist somit
Ausdruck der Energieabhiingigkeit von as.

In erster Ordnung ergibt sich durch die Renormierungsgruppengleichung

127 ny=3 127 1

2y - .-

Aqcep = 0,2994 GeV ist eine in der Renormierung von a; eingefiihrte Konstanteﬂ Sie wird auch
als Landau-Pol bezeichnet, da ay fiir Q% — A(QQCD divergiert. Streng genommen kann hier erst
gerechtfertigt werden, dass die QCD-Korrekturen in storungstheoretisch behandelt werden:
Die Reihenentwicklung von «; in der Stérungstheorie konvergiert, denn es werden Energien im
GeV-Bereich betrachtet, fiir die ay < 1 gilt.

3.3.2 Non-Singulett-Verteilungen

Fiir alle Basiselemente aufler Singulett- und Gluon-Verteilung ist die Splitting-Matrix diagonal.
Im Mellin-Raum ist also nur noch die partielle Differentialgleichung erster Ordnung

8fNon—Singulett (n, Qz) _ O‘S(QZ)P

01n Q? or 1

zu 16sen. Uber elementare Losungsverfahren, zum Beispiel Trennung der Variablen, erhilt man

q(n) : fNon—Singulett (n, Q2) (3.14)

]n(A2Q2 ) Q%'qu(”)
) (3.15)

fNon—Singulett (n7 Qz) = fNon—Singulett (n, Q%) . (?;D
ln(A2 0_)
QCD

Zur Bestimmung der Anfangsbedingung wird die Verteilung fNon-Singulett bei einer frei wihlba-
ren Ubertragsenergie Qo experimentell vermessen und kann dann durch einen Fit als Funkti-
on dargestellt werden. In dieser Arbeit werden die folgenden Ansatzfunktionen| mit den Fit-
Parametern p; bis pg verwendet:

q(x) =p1- (1 —z)P - 2P (1 — psaP + pex) (3.16)
g(x) =p1- (1 —x)P* 2P (3.17)

Die entsprechenden Mellin-Transformierten lautenf|

P6‘(P2+n—1)]

qnzp-Bp%—n—l,p—i-l-{l—F

+ 15 - B(p2 +p4+n—1,p3+1)}, (3.18)

g(n) =p1-B(p2 +n—1,p3 +1). (3.19)

®Diese Skalenabhingigkeit hat ihren Ursprung analog zu den Partonverteilungsfunktionen in der Renormierung
der Feinstrukturkonstante.

6Und zudem noch von der Flavourzahl n; abhingig. Entnommen aus [5].

"Entnommen aus [5].

$Nach [1].
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B(a,b) ist die Eulersche Betafunktionﬂ

[(a) - T(b)

Blab) = Ta7m)

(3.20)

Die Parameter fiir jede Verteilungsfunktion sind im Programmcode in Kapitel zu finden.

Die Loésung der DGLAP-Gleichung ermOglicht es nun, Non-Singulett-
Verteilungsfunktionen bei jeder beliebigen Ubertragsenergie @ zu ermitteln, falls sie bei
einer bekannt sindﬂ Das Vorgehen im Singulett-/Gluon-Fall ist ist dhnlich, gestaltet sich
allerdings durch die fehlende Diagonalisierung aufwindiger.

3.3.3 Singulett- und Gluon-Verteilung
Die Splitting-Matrix ist fir Singulett- und Gluon-Verteilungen nicht diagonal, es gilt (s. (3.12]))
8 qS(”a Q2) _ % qu(n) 6qu(n) . qS(n) QQ) . (321)
oInQ? \ g(n, QQ) 21 \ Pgq(n)  Pgg(n) g(n, Q2)

Zuerst muss also eine zweite Diagonalisierung erfolgen. Die entsprechenden Basiswechselmatri-
zen ergeben sich zu

_ Pyq(n) Pgq(n)—Pgg(n)+,/~
_ N SN
5= ( Pyq(n) —qu(n)—i-ng(n)—f—\ﬁ) (3'22)
Nas 2/
und
Pyq(n)—=Pog(n) =/ Pag(n)=Pyg(n)+/
S_l — < 2Pgil(7l) 2Pgi1(n) ) , (323)

die diagonalisierte Matrix zu

Pé/ _ (quI(n) + ng(n) Ve 0 ) . (3.24)

ingulett/Gluon —

Hierbei wurde die Abkiirzung

Ve = \/qu(”)2 = 2Pyq(n) - Pyg(n) + Pgg(n)? + 24P44(n) - Pyq(n) (3.25)

verwendet.

Singulett- und Gluon-Verteilungen werden also zuerst mittels S transformiert, die Evolution
in die gewiinschte Energie findet dann wieder iiber statdﬂ Durch Anwenden von S~}
gelangt man dann zu den Singulett- und Gluon-Verteilungen in der , Ziel“-Energie Q.

Es sind nun alle Vorbereitungen getroffen worden, um den Programmecode vorstellen zu kon-
nen, der das Ziel dieser Arbeit realisiert: Die Losung der DGLAP-Gleichung.

9Mit der schon in Kapitel eingefithrten Eulerschen Gammafunktion I'(a).
¥Dje Verteilungsfunktionen von Qo nach Q zu iiberfiihren, wird auch als ,,Evolution® bezeichnet.
"Hier allerdings mit den entsprechenden Eigenwerten in PS”ingulett /Gluon anstelle von Pyq(n).
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4 Die numerische Losung der
DGLAP-Gleichung

4.1 Der Programmcode

Der nachstehende Text samt Programmcode ist eine .tex-Konvertierung einer ,Jupyter-
Notebook“-Datei der Version Python 3.6. Im Folgenden wechseln sich erlduternde Kommentare
mit Code-Abschnitten ab.

Es soll begonnen werden mit der Definition der Hilfsfunktion I(n) und der Eulerschen Be-
tafunktion. Auflerdem werden die Gruppenkonstanten der SU(3) Lie-Gruppe der QCD E| und
Aqcp aus der Renormierungsgruppengleichung definiert.

Anschlieflend werden die Basisfunktionen im Mellin-Raum bei der Energie Qo = 1/0,4GeV
samt der Fit-Parameter fiir die jeweiligen Ansétze (s. Kapitel aus [5] eingefiihrt. Zwei
Dinge sind zu beachten: In [5] werden nur zwei Flavour berticksichtigt, daher wird fiir den
strange-Flavour ein Ansatz aus [I] verwendet. Da keine Valenz-Quarks im Flavour strange exis-
tieren, kann fiir Quark und Anti-Quark der gleiche Ansatz gewédhlt werden. Ferner entsprechen
die Basisfunktionen aus der Literatur nicht der in dieser Arbeit gewahlten aus Kapitel [3.2]
deshalb wird in den danach folgenden Zeilen in diese Basis transformiert.

Nach der abschlieBenden Definition der Splitting-Funktionen im Mellin-Raum sind alle grund-
legenden Bausteine fir die Evolution vorhanden.

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt
from scipy import special
#Gruppenkonstanten der SU(3):
C_F=4/3

C_A=3

T_F=0.5

Lambda_QCD=0.2994#in GelV

#Hilfsfunktionen:
def I(n):
eulermascheroni=0.577215664901532
return (eulermascheroni+0j)+sp.special.digamma(n+(1+03j))
def beta(a, b):
return sp.special.gamma(a)*sp.special.gamma(b)/sp.special.gamma(a+b)

#Basis aus Literatur:
Q_O=np.sqrt(0.4) #in GeV, s. GRVI8 NLO S./
def PDFstartu_V(n):

p_1=0.632

p_2=0.43

'Fiir ndhere Erlduterungen siehe Anhang
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4 Die numerische Lésung der DGLAP-Gleichung

p_3=3.09

p_4=0.5

p_5=0

p_6=18.2

return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )=\
((1+03)+((p_6+03) * ((p_2+03)+n-(1+03))) / ((p_2+0j) +(p_3+03)+n) )\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+03),p_3+1 ) )

def PDFstartd V(n):

p_1=0.394368

p_2=0.43

p_3=4.09

p_4=0.5

p_5=0

p_6=18.2

return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )*\
((1+03)+((p_6+03) * ((p_2+0j)+n-(1+03))) / ((p_2+03) +(p_3+0j)+n) )\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

def PDFstartDelta(n):#4nti-d - Anti-u

p_1=0.2

p_2=0.43

p_3=12.4

p_4=0.5

p_5=-13.3

p_6=60

return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )=\
((1+03)+((p_6+03) * ((p_2+03)+n-(1+03))) / ((p_2+0j)+(p_3+0j)+n))\
+(p_5+0j) *beta( (p_2+0j)+(p_4+0j)+n-(1+03),p_3+1 ) )

def PDFstartSigma(n):#Anti-d + Anti-u

def

def

#In
def

def

def

p_1=1.24

p_2=0.2

p_3=8.5

p_4=0.5

p_5=-2.3

p_6=5.7

return p_1*( beta((p_2+0j)+n-(1+0j), p_3+1 )*\
((1+03)+((p_6+03) * ((p_2+0j)+n-(1+03))) / ((p_2+03) +(p_3+0j)+n) )\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

PDFstarts(n) : #identisch zu Anti-strange

return 0.2*PDFstartSigma(n)

PDFstartGluon(n):

p_1=20.8

p_2=1.6

p_3=4.1

return p_1lxbeta( (p_2+0j)+n-(1+0j), p_3+1 )

Singulett/Non-Singulett-Basis:
PDFstartValenz(n):

return PDFstartu_V(n)+PDFstartd_V(n)

PDFstartdu_plus(n):

return -PDFstartu_V(n)+PDFstartd_V(n)+2+PDFstartDelta(n)

PDFstartsu_plus(n):
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4 Die numerische Lésung der DGLAP-Gleichung

return -PDFstartu_V(n)+PDFstartDelta(n)-PDFstartSigma(n)+2*PDFstarts(n)
def PDFstartdu_minus(n):

return -PDFstartu_V(n)+PDFstartd_V(n)
def PDFstartsu_minus(n):

return -PDFstartu_V(n)
def PDFstartSingulett(n):

return PDFstartu_V(n)+PDFstartd_V(n)+2+PDFstartSigma(n)+2*PDFstarts(n)

#Mellin-Splitting-Funktionen:
def P_qq(n):
return C_F*(1.5-I(n-(1+03j))-I(n+(1+03j)))
def P_gq(n):
return C_F*((2+0j)-n-n**2)/((n-(1+0j))*n*(n+(1+03)))
def P_qg(n):
return T_F*((2+0j)+n+n**2)/(n* (n+(1+03j) ) * (n+(2+03)))
def P_gg(n):
return (11*C_A-12*T_F)/6+2*C_A*(1/(n-(1+0j))-1/n+1/(n+(1+0j))-1/(n+(2+0j))-I(n))

Es kann nun schon die Evolution der Non-Singulett-Verteilungen geméf Vorschrift (3.15]) durch-
gefiihrt werden.

def PDFzielValenz(n, Q):
return PDFstartValenz(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))*x (6*P_qq(n)/27)

def PDFzieldu_plus(n, Q):
return PDFstartdu_plus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD#**2) )** (6*P_qq(n)/27)

def PDFzielsu_plus(n, Q):
return PDFstartsu_plus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0#**2/Lambda_QCD+**2) ) ** (6+P_qq(n)/27)

def PDFzieldu_minus(n, Q):
return PDFstartdu_minus(n)*(np.log(Q*+*2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))*x(6*P_qq(n)/27)

def PDFzielsu_minus(n, Q):
return PDFstartsu_minus(n)*(np.log(Q*+*2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD#**2))** (6*P_qq(n)/27)

Fiir Singulett- und Gluon-Verteilungen muss zuerst (nach Definition des ,/7-Ausdrucks
(3.25))) eine weitere Basistransformation durchgefithrt werden. In dieser nun diagonalen Dar-
stellung kann die Evolution stattfinden. Abschlielend wird wieder in die Ausgangsbasis zuriick-
transformiert.

def PWurzel(n):
return np.sqrt(P_qq(n)**2-2+xP_qq(n) *P_gg(n) +P_gg(n) **2+24*P_qg(n) *P_gq(n))

#Btlde neue Basts:
def Vistart(n):
return -P_gq(n) /PWurzel (n)*PDFstartSingulett(n)\
+(P_qq(n)-P_gg(n) +PWurzel (n)) / (2*PWurzel (n) ) *PDFstartGluon(n)
def V2start(n):
return P_gq(n)/PWurzel (n)*PDFstartSingulett(n)\
+(-P_qq(n)+P_gg(n) +PWurzel (n)) / (2#PWurzel (n) ) *PDFstartGluon (n)
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4 Die numerische Lésung der DGLAP-Gleichung

#Ei1genwerte der P-Matriz fur Singulett und Gluon:
def P_1(n):

return 0.5*(P_qq(n)+P_gg(n)-PWurzel(n))
def P _2(n):

return 0.5*%(P_qq(n)+P_gg(n)+PWurzel(n))

#Evolution:
def Viziel(n, Q):
return Vistart(n)*(np.log(Q+**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD#**2) )** (6*P_1(n)/27)
def V2ziel(n, Q):
return V2start(n)*(np.log(Q+*2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD+**2) ) ** (6+P_2(n) /27)

#Basisricktransformation:

def PDFzielSingulett(n, Q):
return (P_qq(n)-P_gg(n)-PWurzel(n))/(2+xP_gq(n))*Viziel(n, Q\
+(P_qq(n)-P_gg(n) +PWurzel (n))/(2*P_gq(n)) *V2ziel(n, Q)

def PDFzielGluon(n, Q):
return Viziel(n, Q)+V2ziel(n, Q)

Es wurde nun die Evolution aller Elemente der Singulett-/Non-Singulett-Basis durchge-
fiihrt. Nun kann also die Riicktransformation gemafl der Eintrdge der inversen Basiswechsel-
matrix (3.11)) stattfinden. Zuletzt werden noch wegen ihrer physikalischen Relevanz die Valenz-
Verteilungen aller Flavour definiert.

PDFu(n, Q):
return 1/6*%(PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)-PDFzieldu_minus(n, Q)\
-PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti u(n, Q):
return 1/6*(-PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)+PDFzieldu_minus(n, Q)\
+PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFd(n, Q):
return 1/6*(PDFzielValenz(n, Q)+2*PDFzieldu_plus(n, O\
-PDFzielsu_plus(n, Q)+2*PDFzieldu_minus(n, Q)\
-PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti_d(n, Q):
return 1/6*(-PDFzielValenz(n, Q)+2*PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)-2*PDFzieldu_minus(n, @)\
+PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFs(n, Q):
return 1/6%(PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
+2xPDFzielsu_plus(n, Q)-PDFzieldu_minus(n, Q)\
+2*PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti_s(n, Q):
return 1/6*%(-PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q\
+2*PDFzielsu_plus(n, Q)+PDFzieldu_minus(n, Q)\
-2*%PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFu_V(n, Q):

23



4 Die numerische Lésung der DGLAP-Gleichung

return PDFu(n, Q)-PDFanti_u(n, Q)
def PDFd_V(n, Q):

return PDFd(n, Q)-PDFanti_d(n, Q)
def PDFs_V(n, Q):

return PDFs(n, Q)-PDFanti_s(n, Q)

Nachdem jetzt die Mellin-Transformierten physikalischer Verteilungen fiir die Energie @) vor-
liegen, fehlt nur noch die Riicktransformation in den z-Raum. Hierfiir wurde eine Routine ge-
schrieben, die das Integral in der Riicktransformationsvorschrift iiber eine Newton-Cotes
Forme]ﬂ auswertet. Die Konturparameter werden wie in [5] gewéhlt: ¢ =1,9 und ¢ = %7?.

Neben dem Fehler durch die numerische Ermittlung des Integralwertes lasst sich die Funktion
selbstverstandlich nicht bis co auswerten. Aus Tests mit Mellin-Transformationen elementarer
Funktionen ergab sich 100 als ausreichender Wert fiir die obere Grenze.

Hier zeigt sich noch einmal die grofle Stérke der Mellin-Transformation. Bis zum jetztigen
Zeitpunkt sind die Ergebnisse exaktﬂ Die einzige numerische Approximation in Form einer
einfachen Integralberechnung findet in den néchsten Zeilen statt.

def MellinInversIntegrand(z, x, PDF, Q):
c=1.9
e_iphi=np.exp((0+1j)*0.75%np.pi)
return (e_iphi*x**(l-c-z*e_iphi)*PDF(c+z*e_iphi, Q)).imag
def MellinInversIntegral(schritte, x, PDF, Q):
a=0
b=100
schrittweite=(b-a)/(schritte-1)
z=at+2*schrittweite
summe=3+*MellinInversIntegrand(a, x, PDF, Q)/8\
+7*MellinInversIntegrand(a+schrittweite, x, PDF, Q)/6\
+23*MellinInversIntegrand(a+2+schrittweite, x, PDF, Q)/24
while z<b-3*schrittweite:
z+=schrittweite
summe+=MellinInversIntegrand(z, x, PDF, Q)
return schrittweite* (summe\
+23*MellinInversIntegrand (b-2*schrittweite, x, PDF, Q)/24\
+7*MellinInversIntegrand(b-schrittweite, x, PDF, Q)/6\
+3*MellinInversIntegrand(b, x, PDF, Q)/8)

Im letzten Schritt konnen die Ergebnisse tiber Ausgaberoutinen abgerufen werden. Hier ist bei-
spielhaft eine Tabellen-/Datei-Ausgabe sowie eine Python-interne Plot-Ausgabe fiir die Valenz-
up-Quark-Verteilung fiir @) = 3 GeV aufgefithrt. Beiden Darstellungsmethoden ist gemein, dass
sie die oben definierte Riicktransformations-Routine fiir die ausgewéhlte Parton-Verteilung bei
vorgegebenen z-Werten aufrufen und die Ergebnisse entsprechend ausgeben. Der Konvention
nach werden die Verteilungen nicht als f(x), sondern als zf(z) dargestellt.

#Als Tabelle und .txt-Dater:
def InversMellinundDateiausgabe (PDF,Q):
f = open(str(PDF)+'.txt', 'w')
x=0.01
print ('Funktionswerte von '+str(PDF)+': \n'+'x\tx*PDF')
while x<=1.01:

*Diese Formel ist invers proportional zur vierten Potenz der Schrittanzahl, zu finden in [IZ], S. 160.
3 Ausgenommen natiirlich, dass héhere Ordnungen der Stérungstheorie unterschlagen werden.
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4 Die numerische Lésung der DGLAP-Gleichung

xPDFWert=MellinInversIntegral (1000, x, PDF, Q)/np.pi
f.write(str(round(x, 3)) + '\t' + str(xPDFWert)+'\n')
print(str(round(x, 3)) + '\t' + str(xPDFWert))
x+=0.01
f.close()
InversMellinundDateiausgabe (PDFu_V, 3)

#Als Plot:
x=np.arange(0.0001, 1, 0.00001)

plt.semilogx(x, MellinInversIntegral(1000, x, PDFu_V, 3)/np.pi, "r-")

4.2 Plots

In den Abbildungenlﬂ bis sind die Anfangsverteilungen sowie die Verteilungen nach der
Evolution fir zwei Energien, @ = 3GeV und Q = 10GeV, zu sehen. Deutlich zu erkennen
sind die charakterisierenden Eigenschaften der verschiedenen Partonverteilungsfunktionen. Da-
zu gehoren die mit Abstand gréfiten Werte der Gluonverteilung fiir kleine z, die Maxima in
der GréBenordnung von z = 107! der Valenzverteilungen von up- und down-Quark sowie die
flir kleine x ansteigenden Verteilungen der Anti-Flavour. Auch die Anndherung an 0 fir z — 1
aller Verteilungen ist ein Merkmal, das reproduziert werden konnte. Es zeigt sich auflerdem das
typische Evolutionsverhalten fiir unterschiedlichen Skalen: Mit steigender Energie steigen die
Werte der Verteilung fiir kleine und sinken fiir grofie x. Die nicht von 0 verschiedene Verteilungs-
funktion der strange-Valenz-Quarks bleibt von den Anfangsverteilungen bis zu den Endwerten
bis auf Abweichungen in der Gréfenordnung 10~1° erhalten, was ein Indikator fiir die korrekte
Funktionweise des Programms ist.

Physikalisch nicht erkldrbar ist hingegen das Ansteigen der up- und down-Valenz-Verteilungen
fiir < 1073. In einer fritheren Version des Programms wurde statt der Newton-Cote-Formel
ein TYapez—Verfahrerﬁ zur Berechnung des Integrals benutzt. Dort war dieses Verhalten schon
fiir Werte von # < 1072 zu beobachten, wodurch der Integrationsalgorithmus als Ursache fiir
dieses Verhalten ausgemacht werden kann.

4Alle erstellt mit der internen Plotroutine von Python 3.6.
®Das Trapez-Verfahren ist die Newton-Cote-Formel niedrigster Ordnung.
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12 4 --=Anfangsverteilung
— Q=3GeV
101 —— Q=10GeV

Abbildung 4.1: Partonverteilungsfunktion in der Form xf(z) der Gluonen fiir x € [107%,1],
zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir Q = 3 GeV und
Q =10 GeV.
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Abbildung 4.2: Partonverteilungsfunktion in der Form xf(x) der Valenz-up-Quarks fiir

x € [107%,1], zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir
Q =3GeV und @ = 10 GeV.
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Abbildung 4.3: Partonverteilungsfunktion

in der

Form zf(r) der Anti-up-Quarks
x € [107%,1], zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir
Q@ =3GeV und Q = 10 GeV.
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Abbildung 4.4: Partonverteilungsfunktion in der Form zf(z) der down-Valenz-Quaks fiir

x € [1074,1], zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir
Q =3GeV und Q = 10 GeV.
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Abbildung 4.5: Partonverteilungsfunktion in der Form zf(z) der Anti-down-Quarks fiir
x € [107%,1], zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir
Q@ =3GeV und Q = 10 GeV.
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Abbildung 4.6: Partonverteilungsfunktion in der Form xzf(z) der strange-Valenz-Quarks fiir
x € [107%,1], zu sehen ist die Anfangsverteilung sowie die Verteilungen fiir
Q =3GeV und @ = 10 GeV.
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Abbildung 4.7: Partonverteilungsfunktion in der Form xf(x) der strange- und Anti-strange-
Quarks fiir z € [107%,1], zu sehen ist die Anfangsverteilung sowie die Verteilun-
gen fiir Q = 3GeV und @ = 10 GeV.
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5 Fazit und Ausblick

Mit dem in Kapitel vorgestellten Programm ist es gelungen, grundlegende Figenschaften
der Partonverteilungsfunktionen zu rekonstruieren. Es ist allerdings nicht zu erwarten, dass die
Daten mit aktuellen Berechnungen tibereinstimmen. Das kann mit folgenden Punkten begriindet
werden:

Die Storungsrechnung nach der néchstfithrenden Ordnung (NLO) abzubrechen, ist eine of-
fensichtliche Vereinfachungen der Rechnung. Die néchsten Ordnungen fithren neben einer héhe-
ren Genauigkeit in den schon etablierten Splitting-Funktion aus Tabelle auch zu Splitting-
Funktion qu(%) zwischen Quark und Anti-Quark. Dies verindert die Struktur der Matrix in
der DGLAP-Gleichung , was eine Neuberechnung der Basiswechsel in Kapitel und
[3.3.3Inach sich zieht.

Auflerdem wurden die schweren Flavour charm, top und bottom nicht beachtet. Hier wird
zwischen Energien unterschieden, fiir die Q? < M c2,t,b und Q? > M CQ%b gilt. Mit ,Matching“-
oder ,, Threshold-conditions* werden dann beide Fille verbunderﬂ

Die Integralapproximation iiber eine Newton-Cotes-Formel hat, wie schon in Kapitel dis-
kutiert, einige Schwéchen. Approximationen iiber Polynome héherer Ordnung steigern zwar
wie beschrieben den Giiltigkeitsbereich, allerdings kénnte auch gepriift werden, ob nicht eine
komplexere Methode eine elegantere Losung darstellt. So finden sich zum Beispiel in [12] auch
Ansitze, uneigentliche Integrale ohne eine Verschiebung der kritischen Grenze numerisch zu
ermitteln.

'Eine ausfiihrliche Beschreibung dieses Verfahrens findet sich in [7].
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A Feynmanregeln

Feynmandiagramme, wie zum Beispiel das der Elektron-Myon-Streuung lassen sich direkt
via der sogenannten Feynmanregeln in die entsprechenden Amplituden tibersetzen, ohne fiir
jeden Prozess einen storungstheoretischen Ansatz rechnen zu miissen. Sie bieten ein sehr
schnelles und intuitives Konzept zur Aufstellung der Amplitude M fiir einen beliebigen
Wechselwirkungsprozess auf Elementarteilchenebene. Jede Linie und jeder Vertex, d.h. jede
Linienkreuzung, entsprechen einem Term, das Produkt aus allen Termen eines Diagramms
ergibt die Amplitude. Die fiir diese Arbeit relevanten Regeln sind in Tabelle aufgefiihrt.

Tabelle A.1: Relevante Feynmanregeln.

Symbol physikalische Entsprechung Faktor in M
——> | aus- bzw. eingehendes Fermion u(p) bzw. u(p)
NNV | internes Photon! %
00000000 | internes Gluon? %

internes Fermion ;iﬁ
[ Vertexfaktor in QED bzw. QCD? | iey* bzw. igsvf‘%Ti‘;-

So ergibt sich zum Beispiel aus den Regeln fiir interne bzw. externe Fermionen, Photonpro-
gatoren und Vertexfaktoren sofort die im Kapitel ermittelte Amplitude flir Elektron-
Muon-Streuung.

Feynmanregeln folgen direkt aus der zur entsprechenden Theorie gehérenden Lagrangedichte
L, aus der die Bewegungsgleichungen der Theorie, wie zum Beispiel die Dirac-Gleichung fiir
freie Teilchen in der QED, hergeleitet werden kénnen.

'in Feynman-Eichung.
2 Auf die Matrizen 7% wird im Anhang [B| niher eingegangen.
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B SU(3)-Gruppe als Eichsymmetrie der QCD

An verschiedenen Stellen der Arbeit tauchen Gruppenkonstanten der SU(3)-Gruppe auf, aller-
dings nie in einem Umfang, der eine Diskussion am selbigen Ort rechtfertigen wiirde. Deshalb
soll hier eine grobe Ubersicht gegeben werden. Detailliertere Ausfiihrungen finden sich in [13],
Kapitel 25.

Ein wichtige Eigenschaft der QED und QCD ist die lokale Eichsymmetrie. Darunter versteht
man die Invarianz einer Lagrangedichte £ unter einer Transformation des zugrundeliegenden
Feldes ¥ geméf

U — e @y = U(a(z))0, (B.1)
wobei a®(z) eine ortsabhéngige Phase und T# ein matrixwertiger Generator der Lie—Gruppeﬂ
aller Matrizen U(a®(z)) ist. Die Generatoren formen eine Lie-Algebra durchE]

[T, Tp) = if**TF. (B.2)

fo¢ werden als Strukturkonstanten der Grupp bezeichnet.

Die Lagrangedichte der QCD ist invariant unter Transformationen der SU(3)-Gruppe, also
der Gruppe aller unitéren dreidimensionalen Matrizen U, fiir die det(U) = 1 gilt. Die SU(3)
hat 3% — 1 = 8 verschiedene Generatorenf’} die als Gell-Mann-Matrizen A% bezeichnet werden:

)\a
Ty = CR (B.3)
Die Generatoren werden iiblicherweise wie folgt normiert:

1
Te(TETY) = iaab = T, (B.4)

Zu jeder Lie-Algebra gehoren Casimir-Operatoren C' = C(T'®) als Funktionen der Generatoren,
die

(€, T =0 (B.5)
geniigen. Eine naheliegende Wahl ist ein Vielfaches der Einheitsmatrix, auch quadratischer
Operator genannt, da diese Operatoren

8
3
Y TE==-1=Cp-1 (B.6)
4
a=1
erfiillenP]
Es existieren verschiedene Représentationen einer Lie-Gruppe. Bis jetzt wurde in der fun-
damentalenﬁ Représentation gearbeitet, die adjungierte Représentation wird hingegen durch
8 x 8-Matrizen mit Eintragen

(Tz)bc — _Z-fabc (B?)
gebildet. Der quadratische Casimir-Operator hat hier den Wert
Cy=3. (B.8)

'Die Elemente der Gruppe sind also ,nah an der Identitét“, denn man erkennt durch eine Reihenentwicklung:
U(a®(z)) =1+ a®T°.

2Der Kommutator ist insbesondere von 0 verschieden, was die Algebra und die erzeugte Gruppe nicht-abelsch
macht. Dies impliziert eine besondere Form der Eichtheorie, die Yang-Mills-Theorie.

Ein bekanntes Beispiel ist die SU(2) erzeugende Drehimpulsalgebra, hier gilt £

4Folglich lduft der Index a von 1 bis 8.

Dies ist ein Spezialfall des Lemmas von Schur.

5Daher auch der Index in Cr und Tp.

be

= e?
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C Berechnung der Vertexkorrektur

C.1 Schleifenamplitude und dimensionale Regularisierung

Die nachfolgenden Rechnungen orientieren sich an [9], die wiederum auf [3] und [I1] basieren.
Es soll nun eine Amplitude hoherer Ordnung (Diagramm |C.1)) ermittelt werden. In héheren
Ordnungen erlaubt man zusétzliche Prozesse im Mutterprozess, zum Beispiel das Emittieren
bzw. Absorbieren eines zusétzlichen virtuellen Gluons vor bzw. nach dem Quark-Photon-Vertex
in Diagramm Im Feynmandiagramm ist so eine sogenannte Schleife entstanden. Die Anzahl
der Schleifen ist Indikator der Ordnung des Prozesses{ﬂ Hier handelt es sich, wie schon in Kapitel
diskutiert, um einen NLO-Prozess.

Auch Schleifen lassen sich iiber Feynmanregeln in Amplituden iibersetzen. Es muss zusétzlich
eine Schleifenrichtung festgelegt werden, um interne Impulse iiber ihre Erhaltung charakteri-
sieren zu konnen. In Diagramm wurde die Schleifenrichtung in Flussrichtung der Quarks
gelegt, entsprechend ergeben sich dann die internen Impulse. Auflerdem bleibt der Gluonimpuls
k unbestimmt, daher wird tiber alle moglichen Impulswerte integriert. Damit ergibt sich fiir die
Amplitude des Gesamptprozesses

_ . ig S
M = (atpyier u(pn)) (=24 ) (ahie ulp)) (€1)
Der einzige Unterschied bei Beriicksichtigung der Schleife ist der neue Tensor I'V anstelle des
Vertexfaktors iey*. Fiir die Auswertung der Schleife ist also nur noch die rechte Klammer in der
Amplitude relevant. Unter Anwendung der Feynmanregeln in Tabelle sowie des Integrals
tiber den Gluonimpuls & ergibt sich fiir den betrachteten Prozess (dargestellt in Abbildung|C.1)):

e o fdY % Ligs ST+ B)ligen”[i(p + B)][igsy 3 T [~igas]
4 a4l v
1 /(dk( N [y + Kl L;»+km.

2
= —g2Cro;
4952 E0k | o) P T TP [p + k2K

(C.2)

Massen werden wie in allen anderen Rechnungen unterdriickt, g, ist Stellvertreter fiir die Kopp-
lungskonstanten des Quarksﬂ Die Gell—Mann-Matrizen[ﬂ T wurden schon in Anhang definiert.
In den Vertexfaktoren veranschaulichen sie den Wechsel von Farbladung ¢ nach j bzw. j nach k
durch das entsprechende Matrixelement. Die Farbladung j in der Schleife ist beliebig, deshalb
wird per Summenkonvention {iber diese summiert. Gleiches gilt fiir das Gluon, das durch die
a-te Gell-Mann-Matrix représentiert wird. Damit ergibt sich

ara = 3192, B (C.3)

a

!Dies gilt, da die Potenz der Kopplungskonstante proportional zur Stérungsordnung ist.

2Es gilt a5 = 2

t ar
3Hier und im Weiteren in fundamentaler Reprisentation, der Index F' wird unterschlagen.
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C Berechnung der Vertexkorrektur

Abbildung C.1: Quark (Impulse p, p) streut am virtuellen Photon (Impuls ¢), dabei emittiert
es vor der Streuung ein virtuelles Gluon (Impuls k) und absorbiert es nach der
Streuung wieder.

Viele Schleifenintegrale, darunter auch das obige, sind divergent. Man unterscheidet zwischen
infraroter und ultravioletter Divergenz bei sehr kleinen bzw. sehr groflen Impulswerten. Diver-
gentes Verhalten der Amplitude ist unphysikalisch, weil es nach auch einen divergierenden
Wirkungsquerschnitt zur Folge hat. Das hier benutzte Konzept zum Umgang mit divergenten
Schleifenintegralen ist die dimensionale Regularisierung:

Ziel ist es, die Integration nicht in 4, sondern in D Dimensionen durchzufiihren. Abschlie-
Bend wird mithilfe von D = 4 — € der Limes D — 4 oder dquivalent ¢ — 0 gebildet. Dort
manifestiert sich die Divergenz des Integrals in Form von Polen bei € = 0. Die zugrundeliegen-
de Clifford-Algebra der Dirac-Matrizen bleibt erhalten, die Relation wird wegen der
D-Dimensionalitdt der Matrizen zu

Y = D. (C.4)

Aus der Teilamplitude (C.2)) wird nun

1 dPk 2 EY P+ K
ZQECF(Sjk/ (zﬂ)Du(p) W+ k2[p+ k22 u(p).

(C.5)

Um dieses Integral zu berechnen, soll zuerst die Tensorstruktur im Zahler vereinfacht werden:

YW+ BV P+ Flva = 7Y [0 + k172 105 + kslva = 777 valbls + ksl [ps + ksl
=[-2v"y"7" + (4 = D)vPv"+°[pls + ksllps + ks]
— 2Py P + Py ks + 2 P ks + 707 A kghs)
+ (4= D)PA"p + "7 phs + P12 ks + 777 ksks). (C.6)

Im vorletzten Schritt wurde eine Identitdt benutzt, die aus den Kommutationseigenschaften der
Dirac-Matrizen (s. (2.4)) und der modifizierten Identitét (C.4)) hergeleitet werden kann.
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C Berechnung der Vertexkorrektur

Mit diesem Nenner ergibt sich dann das Integral zu

— ! v /. vV 1
10| =2 + (4= DY [ 0

27"y + ") + (4= DY+ P )] / e k]f[z TR
o2 4 4= D] [ dPh s ) ()
= at){I-2p'p + (4= D"HICy
27"y + 4777 + (4 = DY+ Pty )IC”
+[=29°4"7" + (4 - D)y’ 7”75106‘5}1&(19)- (C.8)

Vorfaktoren werden ab hier zugunsten der Ubersichtlichkeit unterschlagen. Bevor niher auf die
im letzten Schritt eingefiihrte Notation eingegangen wird, soll zunéchst die Dirac-Gleichung
(2.2) ausgenutzt werden. Diese wird im Fall verschwindender Massen zu

pu(p) — mu(p) =0
& pu(p) = 0 = —u(p)p. (C.9)

Alle Summanden im obigen Integral mit fithrendem p' und/oder nachstehendem p fallen also
weg:

U(p’){ —2p7" P Co — 2(p7" 7" + 47"y CP
+ =299 + (4 - D)vﬁv”v‘s]Cﬂ‘s}U(p)- (C.10)

Zuletzt soll noch der Vorfaktor des ersten Summanden —2p+"p’ ndher betrachtet werden. Nutzt
man die Algebra der Dirac-Matrizen (2.4]) aus, so erhélt man:

PP ="V Papy = 207977 = v Ipap), = 277977 — 29777 + 477"V Ipap),

=2pp, —2p- PV +ppy”

Anwenden von u(p'), u
on ), u(p)

Pr_op . ply. (C.11)

C.2 Tensorreduktion und finale Schritte

Die in eingefiihrten Integrale unterliegen folgender Nomenklatur: Der Anzahl der internen
Propagatoren, hier 3, wird geméfi dem Alphabet ein Buchstabe, hier also C, zugeordnet, die
Tensorwertigkeit der Integrationsvariable im Zéahler wird an diesem Buchstaben notiert. Falls
kein Tensor im Zahler steht, also ein skalares Integral vorliegt, wird stattdessen eine 0 im Index
gefiihrt. Allgemein ergibt sich bei Vernachlissigung der Massen:

dPr e = XML (p] i C.12
/ p1+ [PL 1+T] (plr"apol)' ( . )

X ist hierbei der L-te Buchstabe des Alphabets.

Ziel ist es nun, jegliches tensorwertiges Integral, in diesem Fall also C? und C?, auf eine
Kombination skalarwertiger Integrale, deren Werte dann in der Literatur nachgeschlagen werden
kénnen, zu reduzieren. Erreichen ldsst sich dies durch die Tensorreduktion.
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C Berechnung der Vertexkorrektur

Dafiir wird im ersten Schritt jedes Tensorintegral durch eine symmetrische Linearkombination
aus den Impulsen p und p’ ausgedriickt, hier beispielhaft die fiir Rechnung relevanten Integrale:

CP = pPCy + pPCy und (C.13)
CP = g% Coo + p’p°C11 + pPp Can + (PP + p°p'?) 2. (C.14)

Dann erfolgt die namensgebende Reduktion durch Multiplikation von kovarianten Tensoren
entsprechender Wertigkeit:

1
pBC’B =R = p201 +p - pCy=p' - pC1 & C1 = WRL (C.15)
1

Wenn R; und Ry nédher betrachtet werden, ergibt sich

B [p+k]* —
Rl_/dD k2[p+k; p—l—k 2/ Dkk?[p+k 2 + k2

= 5[30(]? =0) — Bo((p — '), (C.17)

analog Ry = --- = Ry, (C.18)

womit insgesamt das Tensorintegral C# durch skalare Integrale des Typs X ausgedriickt werden
konnte. Analog wird bei C#® vorgegangen, hier erhilt man

Coo = §[Bo((p —#/)?) + 1] + O(0) (€19
Cia = = [Coo = 3 Bul(p — 7)) (C:20)

(11 und Cyg sind nicht weiter relevant, da sie in dieser Rechnung keinen Beitrag liefern werden

. C2)).
Setzt man nun (C.11)) und die Identitdten im obigen Abschnitt in die Amplitude (C.10) ein,

so erhélt man
uW%@mﬁrﬂmW“ﬂ%%%m%+m@)
+[ =297 + (4= D)yPy"A]
x [985C00 + papsCr1 + Pp5Caz + (pps +p5p,g)cl2]}u(p)- (C.21)

Hier verschwinden wieder Terme aufgrund der Dirac-Gleichung (C.9)), auftretende pvy” p/ werden
tiber (C.11)) vereinfacht. Somit wird obiger Ausdruck zu

[4]) . p/C'O +4p - p’(Cl + CQ) + (2 — D)(DCOQ —2p- p/Cm)]"yV. (022)

Setzt man zuletzt noch obige Identifizierungen fiir die Tensorintegrale in (C.22)) ein, so gelangt
man zu folgendem Endergebnis fiir die Teilamplitude:

M = O£57TCF5jk . [4p . p/(CQ +Ch + C’Q) + (2 — D)(DC@O —2p- plclg)]’yy. (C.23)

Dieses Ergebnis kann als Basis fiir die Herleitungen in Kapitel verwendet werden. Dalfiir
miissen die skalaren Integrale in explizit ausgewertet werden. Es verschwinden die UV-
Divergenzen in den skalaren Integralen durch die zusétzliche Betrachtung von Selbstenergie-
schleifen (Abbildung [2.5b - deren Amplituden analog zum auf den letzten Seiten vorgestellten
Rechenweg ermittelt werden kénnen. Gleiches gilt fir die Abstrahlung reeller Gluonerﬁ Abbil-

dungen und 2 -

4Entsprechende Rechnungen kénnen in [I3], Kapitel 20 nachvollzogen werden.
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