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1 Einleitung

Tiefinelastische Streuung und damit auch die DGLAP1-Gleichung haben ihre Ursprünge in den
Rutherfordschen Streuexperimenten des frühen 20. Jahrhunderts. Die grundlegende Idee, durch
Beschuss von Teilchen2 Informationen über Materie, das heißt die beschossenen Teilchen3 zu
sammeln, zieht sich im Wesentlichen durch die gesamte Geschichte der Teilchenbeschleuniger.
Im Laufe der Jahre führte der technische Fortschritt zu immer größeren Beschleunigern, die

Teilchen auf immer größere Energien beschleunigen konnten. Mit diesen neuen Möglichkeiten
kamen auch neue Erkenntnisse: War zu Beginn noch das Rutherfordsche Atommodell samt eines
punktförmigen Kernes „state of the art“, wurde schon bald klar, dass der Atomkern keineswegs
scharf auf einen Raumpunkt lokalisiert ist, sondern vielmehr aus Nukleonen, also Neutronen
und Protonen besteht. Ab den 1950er Jahren war es dann möglich, auch die Nukleonen auf eine
etwaige Substrukur zu untersuchen4. Die Experimente zeigten, dass Proton und Neutron eine
magnetische und elektrische Ladungsverteilung besitzen, ein konkreter innerer Aufbau blieb je-
doch ein Rätsel. In den 1960er Jahren setzte sich dann aus mehreren konkurrierenden Modellen
das von R. P. Feynman entwickelte Partonmodell durch, in dem die Quarks5 und Gluonen der
Quantenchromodynamik als Partonen identifiziert wurden. Implementiert man diese Theorie
konsequent in das Partonmodell, so ergibt sich die DGLAP-Gleichung. Die Partonverteilungs-
funktionen, also die Wahrscheinlichkeitsdichten des Partonimpulses, deren Verhalten von dieser
Gleichung beschrieben wird, besitzen aufgrund ihrer universellen Anwendbarkeit auch heute
noch hohe Relevanz. Zwar wird in dieser Arbeit nur von der Streuung eines Elektrons am Pro-
ton die Rede sein, jedoch lassen sich die gewonnenen Erkenntnisse auf beliebige andere Prozesse
übertragen.
Diese Arbeit soll sich mit der Herleitung und Lösung der DGLAP-Gleichung beschäftigen.

Begonnen wird mit einer Einführung in die tiefinelastische Streuung, das Partonmodell und Kor-
rekturen6 an diesem aus der Quantenchromodynamik, an deren Ende die DGLAP-Gleichung
steht. Diese Integro-Differentialgleichung lässt sich nur numerisch lösen, weshalb danach diverse
Umformungen erläutert werden, die für eine numerische Implementierung nötig sind. Zu die-
sen gehört auch die Mellin-Transformation, eine Integraltransformation, die die Struktur der
DGLAP-Gleichung maßgeblich vereinfacht. Abschließend wird ein in Python 3.6 verfasstes Pro-
gramm vorgestellt, mit dem durch Lösen der DGLAP-Gleichung Partonverteilungsfunktionen
bei beliebigen Energieskalen ausgegeben werden können.

1Ausgeschrieben: Dokshitzer-Gribow-Lipatow-Altarelli-Parisi.
2Bei Rutherford Helium-Kerne, also α-Strahlung, im weiteren Verlauf dieser Arbeit Elektronen.
3Bei Rutherford Goldatome, im weiteren Verlauf dieser Arbeit Protonen.
4Die Nobelpreisvorlesungen [14],[8] und [4] von R. E. Taylor, H. W. Kendall und J. I. Friedmann aus dem Jahr
1990 enthalten ausführliche Schilderungen zur Geschichte der tiefinelastischen Streuung.

5Eingeführt durch M. Gell-Mann.
6Wir beschränken uns dabei auf Korrekturen in der ersten Ordnung Störungstheorie.
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2 Über den theoretischen Hintergrund - eine
Herleitung der DGLAP-Gleichung

In den nachfolgenden Abschnitten soll eine kurze Einführung in die tiefinelastische Streuung und
das Partonmodell samt „next-to-leading order“-Korrekturen gegeben werden. Die Darstellungen
orientieren sich an den Kapiteln 6.3, 8 und 9 aus [6] sowie dem Kapitel 32 aus [13].
Selbstverständlich kann es sich nicht um eine vollständige Darstellung der Quantenelektrody-

namik (QED) oder -chromodynamik (QCD) handeln. Vielmehr wird an entsprechenden Stellen
auf relevante Punkte dieser Theorien zurückgegriffen. Eine Zusammenfassung der Feynmanre-
geln und der SU(3)-Symmetrie der QCD sowie eine längere Beispielrechnung eines Schleifenin-
tegrals wurden aus Gründen der Übersicht in den Anhang ausgelagert.

2.1 Elastische Streutheorie zweier Dirac-Punkt-Teilchen
Um durch experimentelle Methoden Informationen über das Proton zu gewinnen, lässt man,
wie schon in der Einleitung erwähnt, Elektronen mit Energie E an diesem streuen und misst
deren Austrittswinkel Θ (vgl. Kugelkoordinaten) und -energie E′. Als Bindeglied zwischen Mes-
sung und theoretischer Vorhersage dient der Wirkungsquerschnitt σ, definiert als Proportiona-
litätsfaktor zwischen gestreuten Teilchen pro Zeiteinheit ∆Ṅ und Stromdichte der einfallenden
Teilchen j:

∆Ṅ = σj (2.1)

Da Detektoren meist nur einen bestimmten Raumwinkel Ω einnehmen, wird üblicherweise der
differentielle Wirkungsquerschnitt dσ

dΩ angegeben. Wie kann nun der differentielle Wirkungs-
querschnitt theoretisch ermittelt werden?
Zum Einstieg soll von zwei punktförmigen streuenden (Elementar-)Teilchen ausgegangen wer-

den, zum Beispiel einem Elektron e mit Masse m und einem Myon µ mit Masse M , beide mit
negativer Elementarladung −e. Betrachtet wird also der Prozess1 eµ → eµ, dargestellt in Ab-
bildung 2.1.

p’

k k’

q

p

Abbildung 2.1: Elektromagnetische Elektronstreuung (Impulse k und k′) am Muon (Impulse p
und p′) durch Austausch eines virtuellen Photons mit Impuls(-übertrag) q =
k − k′.

1Hier und im Folgenden wird sich auf elektromagnetische Streuung beschränkt.

2



2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Da aufgrund sehr hoher Teilchenenergie im GeV-Bereich die Geschwindigkeiten nahe der
Lichtgeschwindigkeit liegen, greift man auf relativistische Quantenmechanik zurück. Elektron
und Myon sind Fermionen, werden also durch die Dirac-Gleichung2 beschrieben:

(iγµ∂µ −m)ψ = 0. (2.2)

Hier wird die kovariante Form mit vierdimensionalem Nabla-Differentialoperator ∂µ und dem
Vierervektor der Dirac-Matrizen

γµ = (β, β~α) (2.3)

benutzt. Sie gehorchen der Clifford-Algebra

{γµ, γν} = 2gµν1 (2.4)

sowie der Relation
γµγµ = gµµ = 4. (2.5)

Es ist nun möglich, den Einfluss des Myons auf das Elektron über Störungstheorie darzustellen.
Der ungestörte Zustand ist hierbei das über die Dirac-Gleichung (2.2) beschriebene ein- und
auslaufende freie Elektron, das elektromagnetische Potential des Myons die Störung.
In erster Ordnung Störungsrechnung ergibt sich3 eine invariante Amplitude zwischen initialem

und finalen Zustand des Elektrons von

M = (u(k′)ieγµu(k))
(−igµν

q2

)
(u(p′)ieγνu(p)). (2.6)

Sie hängt wie folgt mit der Übergangsamplitude zwischen initialem und finalem Elektronenzu-
stand Tfi zusammen:

Tfi =M(2π)4δ(p+ k − p′ − k′). (2.7)

Die AmplitudeM wird über die Feynmanregeln gebildet, näheres dazu findet sich im Anhang,
Abschnitt A.

Bis hierhin wurde der Spinzustand beider Teilchen mit Spins sElektron = sMyon = 1
2 beliebig

gehalten. Da in den betrachteten Streuexperimenten der Spin unbestimmt bleibt, muss über
alle finalen Spinzustände summiert und über alle initialen der Durchschnitt gebildet werden.
Anstatt |M|2 ergibt sich deshalb

|M|2 = 1
(2sElektron + 1)(2sMyon + 1)

∑
alle Spinzustände

|M|2 ≡ e4

q4L
µν
ElektronL

Myon
µν . (2.8)

Es wurde der leptonische Tensor

LµνElektron ≡
1
2

∑
alle Spinzustände

[u(k′)γµu(k)][u(k′)γνu(k)]∗ (analog LµνMyon) (2.9)

eingeführt.
Die Vollständigkeitsrelation∑

alle Spinzustände
u(k)u(k) = γµkµ +m ≡ /k +m (2.10)

führt zu
LµνElektron = 1

2Tr
{

(/k′ +m)γµ(/k +m)γν
}
. (2.11)

2Hier für ein freies Teilchen, d.h. ohne Potential.
3Die Rechnungen der gesamten Arbeit werden in Feynman-Eichung durchgeführt.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Durch Ausmultiplizieren und das Ausnutzen der Pfadtheoreme

Tr(/a/b/c/d) = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)] (2.12)
Tr(−ungerade Anzahl an γ-Matrizen−) = 0 (2.13)

sowie der Relation4

γµ = γαe
α
−µ− = /e−µ− (2.14)

gelangt man schließlich zur finalen Form:

|M|2 = 8e4

q4

[
(k′ · p′)(k · p) + (k′ · p)(k · p′)−m2p′ · p−M2k′ · k + 2m2M2

]
. (2.15)

Durch
dσ = |M|

2

F
dQ (2.16)

kann dann der Wirkungsquerschnitt bestimmt werden. dQ ist hierbei der lorentzinvariante Pha-
senfaktor, F der einfallende Fluss der Elektronen. Über die Kinematik im jeweiligen Inertial-
system, zum Beispiel dem Laborsystem

pMyon = (M,~0) (2.17)

oder dem Schwerpunktssystem
~pElektron = −~pMyon, (2.18)

lässt sich abschließend der jeweilige differentielle Wirkungsquerschnitt dσ
dΩ theoretisch ermitteln.

Im Laborsystem gilt bei Vernachlässigung der Elektronmasse m:

dσ

dE′dΩ = α2

4E2 sin4 Θ
2

(
cos2 Θ

2 −
q2

2M2 sin2 Θ
2

)
δ

(
ν + q2

2M

)
. (2.19)

Die zusätzliche Differentiation nach E′ kann wegen des Faktors δ
(
ν + q2

2m

)
sofort durch Inte-

gration aufgehoben werden kann. Diese δ-Funktion wird allerdings genau wie

ν ≡ p · q
M

im Laborsystem, s. (2.17)= E − E′ (2.20)

weiter unten benötigt.
Abschließend soll noch einmal betont werden, dass im gesamten Abschnitt von punktförmi-

gen Teilchen ausgegangen wurde. Diese Annahme hat ihren Ursprung in der Dirac-Gleichung
(2.2), dessen Lösungen Punkt-Teilchen beschreiben. Im finalen Resultat schlägt sich dies im
leptonischen Tensor (2.9) nieder, der die Spinoren der Punkt-Dirac-Teilchen enthält.

2.2 Hadronischer Tensor
Für die Elektron-Proton-Streuung kann der im vorherigen Abschnitt vorgestellte Formalismus
analog verwendet werden. Das Myon wird unter Beibehalt der Impulse p bzw. p′ und Masse M
durch das Proton mit jetzt positiver Elementarladung e ausgetauscht:

ep→ ep.

Spätestens bei Energien im GeV-Bereich bricht allerdings die Annahme eines punktförmigen
Protons zusammen, die Streuung wird inelastisch. Die innere Struktur des Protons führt dazu,
dass sich das Proton durch die Streuung verändert:

ep→ eX, dargestellt in Abbildung 2.2.
4e−µ− ist der µ-te Einheitsvektor, eα−µ− = δµα.

4



2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

k k’

q

p

? X

Abbildung 2.2: Elektromagnetische Elektronstreuung (Impulse k, k′) am Proton (Impuls p) mit
unbekannten Produkten X.

Es stellt sich die Frage, was anstelle des leptonischen Tensors nun das Proton repräsentieren
soll. An der vorherigen Form von |M|2 wird weiterhin festgehalten, allerdings tritt nun an die
Stelle des zweiten leptonischen Tensors ein noch unbekannter hadronischer Tensor Wµν :

|M|2 = e4

q4L
µν
ElektronWµν (2.21)

Wµν wird nun so allgemein wie möglich angesetzt. Antisymmetrische Beiträge geben keinen
von 0 verschiedenen Beitrag, da Lµν symmetrisch ist (s. (2.9)). Außerdem enthält der hadro-
nische Tensor analog zum leptonischen schon die Spinsummation. Damit ist jedes γµ in den
Pfadtheoremen verwertet worden. Was überbleibt, ist ein Anteil des metrischen Tensors gµν
und symmetrische Kombinationen aus dem Protonimpuls pµ sowie dem Impulsübertrag qµ:

Wµν = −W1g
µν + W2

M2 p
µpν + W4

M2 q
µqν + W5

M2 (pµqν + qµpν). (2.22)

W3 steht für einen paritätsverletzenden Anteil, der nur für die schwacheWechselwirkung relevant
ist und deshalb hier nicht weiter betrachtet wird. Aus der Kontinuitätsgleichung ∂µJµ = 0 folgt
die Ward-Identität

qµW
µν = qνW

µν = 0. (2.23)

Damit sind zwei Variablen, wahlweise W4 und W5, nicht mehr unahhängig und können durch
W1 und W2 ausgedrückt werden. Final ergibt sich:

Wµν = −W1

(
gµν + qµqν

Q2

)
+W2

(
pµ + p · q

Q2 q
µ
)(

pν + p · q
Q2 q

ν
)

(2.24)

Hier wurde die positive Größe Q2 = −q2 eingeführt.
Aus dem hadronischen Tensor (2.24) erhält man via (2.21) und dem in Abschnitt 2.1 vorge-

stellten Formalismus im Laborsystem:
(

dσ

dE′dΩ

)
eX

= α2

8πE2 sin4 Θ
2

(
M

2 W2 cos2 Θ
2 + 1

M
W1 sin2 Θ

2

)
(2.25)

Die Formfaktoren W1 und W2 hängen aufgrund der inelastischen Streuung von zwei Variablen
ab, wahlweise dem Impulsübertrag Q2, der in (2.20) eingeführten Differenzenenergie ν oder
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

deren Verhältnis, der Bjorkenschen Skalenvariable

Q2

2Mν
= Q2

2p · q ≡ x. (2.26)

Im Folgenden soll W1,2 = W1,2(x,Q2) gelten.

2.3 Das Partonmodell
2.3.1 Tiefinelastische Streuung
Bei ausgetauschten Energien Q2 > 4 GeV2 legen experimentelle Daten5 nahe, dass das Elektron
an punktförmigen Teilchen gestreut wird. Dadurch lässt sich der hadronische Tensor (2.24), der
bis jetzt die Unkenntnis über Streuprodukte und damit die Struktur des Protons charakteri-
sierte, näher spezifizieren (s. Abbildung 2.3). Jegliche Ausführungen dieses Kapitels fußen auf
dieser Rückführung auf die Streuung zweier Dirac-Teilchen in der tiefinelastischen Streuung.
Dass das Elektron anstatt am Proton nun an Punkt-Teilchen streut, motiviert einen Forma-

lismus, in dem der Gesamtimpuls des Protons aus den Teilimpulsen der punktförmigen Teilchen,
von nun an Partonen genannt, aufgeteilt wird. Der Impulsanteil der Partonen am Gesamtim-
puls wird als ξ ∈ [0, 1] bezeichnet, das partonische Analogon zur kinematischen Variable x des
Protons (s. (2.26)) ist

z ≡ Q2

2pParton · q
= Q2

2mPartonν
= x

ξ
. (2.27)

Für Impuls und Masse des Partons ergibt sich

pParton = ξpProton = (ξE, ξ~pProton),

mParton =
√
p2

Parton =
√
ξ2p2

Proton = ξM. (2.28)

p’

k k’

q

p

ξ p

Abbildung 2.3: Elektromagnetische Elektronstreuung (Impulse k, k′) am Proton (Impulse p, p′)
bestehend aus Partonen mit Impuls ξp.

Vor der näheren Betrachtung dieses Modells soll zuerst auf dessen Voraussetzungen eingegan-
gen werden. Eine variable Masse des Partons ξM ist fernab jeglicher physikalischer Realität,
da die Masse punktförmiger Teilchen wohldefiniert ist. Um dieses Problem vernachlässigen zu

5Hierauf wird später genauer eingegangen, s. Abbildung 2.4.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

können, muss das Proton in einem Initialsystem betrachtet werden, in dem |~p| � M gilt und
Massen demnach vernachlässigt werden können.
Die verschwindenden Massen von Proton und Parton verhindern zudem, dass Letzteres einen

transversalen Impuls besitzt, beide Impulse sind also parallel. Durch die Zeitdilatation in diesem
Inertialsystem kann zudem die Interaktion der Partonen untereinander vernachlässigt werden,
da diese auf einer viel größeren Zeitskala als die Streuung stattfindet. Jegliche Prozesse der
entstandenen Produkte X nach der Streuung werden aus dem gleichen Grund nicht betrachtet.

2.3.2 Partonverteilungs- und Strukturfunktionen
Die Aufteilung des Protons in Partonen hat auch eine additive Aufteilung des Wirkungsquer-
schnitts zufolge:

dσ(ep→ eX)
dE′dΩ =

∑
i

1∫
0

dξfi(ξ)
dσParton(epi → epi)

dE′dΩ (2.29)

In obiger Gleichung wurden die Partonverteilungsfunktion fi(ξ) eingeführt. Diese beschreiben
die Wahrscheinlichkeit, das Parton pi, wobei mit i die Teilchenart beschrieben wird, mit ei-
nem Impulsanteil von ξ vorzufinden. Analog zum Wirkungsquerschnitt (2.29) kann auch der
hadronische Tensor über eine Partonsumme dargestellt werden:

Wµν(x,Q2) =
∑
i

1∫
0

dz

1∫
0

dξfi(ξ)Wµν
Parton(z,Q2)δ(x− zξ)

=
∑
i

1∫
x

dξ

ξ
fi(ξ)Wµν

Parton

(
x

ξ
,Q2

)
. (2.30)

Die δ-Funktion hat ihren Ursprung in (2.27), durch die z-Integration wird die untere Integrati-
onsgrenze der ξ-Integration aufgrund der Bedingung

x

ξ

!
∈ [0, 1]⇒ x

ξ
≤ 1⇔ ξ ≥ x (2.31)

nach x verschoben. Für alle ξ < x verschwindet die z-Integration.
Die physikalisch sinnvollere Summation über Teilchenarten (anstatt über jedes einzelne Teil-

chen) in (2.29) und (2.30) muss durch die Normierung der Verteilungsfunktion auf die Teilchen-
zahl Ni einer Teilchenart kompensiert werden:

1∫
0

dξfi(ξ) = Ni. (2.32)

Dass dies notwendig ist, wird an (2.29) deutlich. Ist Parton pi mehrmals im Proton vorhanden,
so muss der Wirkungsquerschnitt auch mehrfach beitragen. Es handelt sich deshalb nicht um
eine klassische Wahrscheinlichkeitsdichte, wodurch obige Wahrscheinlichkeitsinterpretation nur
eingeschränkt gültig ist.
Die Summe der Erwartungswerte aller Partonimpulsanteile dagegen muss auf 1 normiert sein,

um den Gesamtimpuls des Protons zu erhalten:

∑
i

1∫
0

ξfi(ξ)dξ = 1. (2.33)

Mithilfe des Partonmodells ist es nun auch möglich, die Strukturfunktionen W1 und W2 aus
dem hadronischen Tensor Wµν (s. (2.24)) näher zu beschreiben. Setzt man in die Partonsum-
me im Wirkungsquerschnitt (2.29) die Wirkungsquerschnitte (2.19) für die Streuung zweier

7



2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Punktteilchen (Elektron und Parton) ein6, so ergibt sich

dσ(ep→ eX)
dE′dΩ = α2

4E2sin4 Θ
2

∑
i

e2
i

1∫
0

dξfi(ξ)
(

cos2 Θ
2 + Q2

2m2
Parton

sin2 Θ
2

)
δ

(
ν − Q2

2mParton

)
.

(2.34)
ei bezeichnet hierbei die Ladung des i-ten Partons.
Mit

δ

(
ν + q2

2mParton

)
= δ

(
Q2

2mPartonx
− Q2

2mPartonξ

)
= 2mParton

Q2 δ

(
ξ − x

)
(2.35)

wird der Wirkungsquerschnitt zu

dσ(ep→ eX)
dE′dΩ = α2e2

4E2sin4 Θ
2

∑
i

e2
i fi(ξ)

(2mParton
Q2 x2 cos2 Θ

2 + 1
mParton

sin2 Θ
2

)
. (2.36)

Dieser Wirkungsquerschnitt muss nun aber offensichtlich gleich dem sein, der aus dem hadroni-
schen Tensor gewonnen wurde (s. (2.25)). Per Koeffizientenvergleich können die Strukturfunk-
tionen durch

W1(ξ,Q2) = 2π
∑
i

e2
i fi(ξ),

Q2W2(ξ,Q2) = 8πx2∑
i

e2
i fi(ξ)

(2.37)

(2.38)

dargestellt werden.
Hier manifestiert sich eine der wichtigsten Eigenschaften des Partonmodells bei Anwendung

auf Elektron-Proton-Streuung, die Bjorken’sche Skaleninvarianz: Die den Wirkungsquerschnitt
charakterisierenden Strukturfunktionen sind unabhängig von Q2. Dies ist Folge des Zurückfüh-
rens des inelastischen Wirkungsquerschnitts (2.25) auf den elastischen (2.19) durch die Parton-
summe im Wirkungsquerschnitt (s. 2.29). Letzterer hängt von zwei Variablen ab, ersterer nur
noch von einer, zum Beispiel der Bjorkenschen Skalenvariable x. Die zu Beginn des Abschnitts
angesprochenen experimentellen Hinweise auf den Aufbau des Protons aus Punktteilchen be-
standen in genau dieser Skaleninvarianz bei der Messung der Formfaktoren (2.37) und (2.38),
zu sehen in Abbildung 2.4.

Abbildung 2.4: Messung des Formfaktors νW2 in Abhängigkeit der Energie Q2 am Stanford
Linear Accelerator bei x = 1

4 . Entnommen aus [6], S. 190.
6Mit der Ersetzung der Muonmasse durch die Partonmasse mParton.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Die Identität, die sich aus (2.37) und (2.38) ergibt,

W1(x) = Q2

4x2W2(x), (2.39)

wird als Callan-Gross-Relation bezeichnet. Ihre Gestalt wäre eine andere, würde man nicht
vom Wirkungsquerschnitt zweier Spin-1

2 -Teilchen ausgehen. Deshalb war ihr experimenteller
Nachweis7 ein deutlicher Hinweis darauf, dass die Partonen im Proton Fermionen sind.

2.3.3 Quarks und Gluonen als Partonen
Im Folgenden sollen die bis jetzt sehr allgemein gehaltenen Partonen näher spezifiziert werden.
Das statische Quarkmodell zusammen mit der Quantenchromodynamik impliziert eine Struktur
aus drei Valenzquarks (uud), die durch Gluonen wechselwirken. Gluonen können zudem noch
in Quark-Antiquark-Paare aufspalten, die sogenannten Seequarks.
Obiges Modell soll als Grundlage genommen und sich auf die Flavour up, down und strange

beschränkt werden8. Die Flavouranzahl wird mit nf angegeben, in dieser Arbeit gilt damit
nf = 3. Aus Gründen der Lesbarkeit wird die Notation fi(ξ) = q(ξ) eingeführt9.
Eine beliebige Parton-Verteilungsfunktion lässt sich additiv in Valenz- und Seeanteil aufteilen:

q(ξ) = qV (ξ) + qS(ξ). (2.40)

Unter der Annahme, dass Flavour und Anti-Flavour nur aus Paarbildung der Gluonen entstehen
und demnach den gleichen Seeanteil haben, gilt

qV (ξ) = q(ξ)− q(ξ), (2.41)

da Anti-Flavour im Proton keinen Valenz-Anteil besitzen.

2.4 Einflüsse der QCD durch Prozesse nächster Ordnung
Bis jetzt wurde der Prozess samt Amplitude nur in führender Ordnung („leading order“, LO) der
Störungstheorie betrachtet, da auf Amplituden von Feynmandiagrammen der führenden Ord-
nung zurückgegriffen wurden. Zu den Annahmen des Modells im Abschnitt 2.3.1 zählte, dass
die Partonen nicht untereinander wechselwirken. Die Berücksichtigung von Gluonen und See-
quarks als Folge der Wechselwirkung der Quarks im letzten Abschnitt ist folglich inkonsequent.
Um diese Teilchen nun auch physikalisch zu rechtfertigen, werden Prozesse der nächstführenden
Ordnung („next-to-leading order“, kurz NLO), zu sehen in Abbildung 2.5, berücksichtigt.
Es liegt von nun an der Fokus auf dem Verhalten der Quarks und Gluonen in der ersten

Ordnung, da der Beitrag des streuenden Elektrons sich nicht verändert. Genauer formuliert:
Der leptonische Tensor Lµν und der Photonpropagator bzw. der erste Teil der Amplitude,

u(k′)γµu(k)−gµν
q2 , (2.42)

bleibt erhalten, lediglich der hadronische TensorWµν bzw. der letzte Teil der Amplitude erfährt
eine Veränderung in den betrachteten Prozessen.
Eine ausführliche Berechnung der Amplitude der Vertexkorrektur findet sich im Anhang C.

Die Amplituden der anderen Beiträge sollen vorausgesetzt werden.

7Unter anderem in [8] beschrieben.
8Andere Flavour besitzen eine weit höhere Masse, die nicht mehr ignoriert werden kann. Dies führt zu einigen
Sonderbehandlungen, die nicht Teil dieser Arbeit sein sollen.

9q ist ein (Anti-)Flavour

9



2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

(a) Vertexkorrektur: Emission eines virtu-
ellen Gluons vor der Streuung und Ab-
sorption danach.

(b) Selbstenergie: Emission und Absorpti-
on eines virtuellen Gluons.

(c) Abstrahlung eines reellen Gluons vor
der Streuung.

(d) Abstrahlung eines reellen Gluons nach
der Streuung.

Abbildung 2.5: NLO-Korrekturen.

2.5 Herleitung der DGLAP-Gleichung
2.5.1 Der Formfaktor W0 in LO
Im Folgenden steht die Frage im Fokus, wie diese zusätzlichen Amplituden Einfluss auf das
in den letzten Abschnitten etablierte Partonmodell in führender Ordnung nehmen. Am Ende
dieser Betrachtungen wird dann eine Verletzung der Bjorken’schen Skaleninvarianz durch einen
logarithmischen Term und die daraus folgende DGLAP-Gleichung stehen.
Zuerst muss ein Weg gefunden werden, mit dem die Amplituden der betrachteten Korrektu-

ren in die schon bestehenden Strukturfunktionen der führenden Ordnung ((2.37) und (2.38))
implementiert werden können. Es soll hierfür der neue Formfaktor

W0(x,Q2) ≡− gµνWµν (2.24)= W1(x,Q2)
(

4− q2

Q2

)
−W2(x,Q2)

×
(
p2 + 2(p · q)2

Q2 + (p · q)2

Q2 ·Q2 · q
2
)

(2.26)= 3W1(x)−W2(x)
(
M2 + Q2

4x2

)
Q2�M2,(2.39)= 2W1(x) = 4π

∑
q

q(x) (2.43)

etabliert werden. Die Näherung Q2 � M2 ist gerechtfertigt, da tiefinelastische Streuung be-
trachtet wird.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Aus der Darstellung in der Partonsumme (2.30) folgt zudem bei Anwendung von gµν :

W0(x,Q2) =
∑
q

1∫
0

dξ

ξ
q(ξ)W0,Parton

(
x

ξ
,Q2

)
=
∑
q

1∫
0

dzq(ξ)W0,Parton(z,Q2). (2.44)

Beim Vergleich von (2.43) und (2.44) ergibt sich

WLO
0,Parton = 4πe2

qδ(1− z). (2.45)

Diese Identität gilt allerdings nur in führender Ordnung, da sie auf Basis des Wirkungsquer-
schnitts führender Ordnung entwickelt wurde. Gleichermaßen kann allerdings nun in höheren
Ordnungen vorgegangen werden.

2.5.2 Der Formfaktor W0 in NLO
Hat man die Amplitude der nächsten Ordnung ermittelt, so kann diese auf W0 übertragen
werden und nimmt so Einfluss auf die Verteilungsfunktionen (s. (2.44)). Mit den Korrekturen aus
virtuellem Gluon am Vertex WV

0,Parton (s. Abbildung 2.5a) und reellen Abstrahlungen WR
0,Parton

(s. Abbildung 2.5c und 2.5d) ergibt sich10

W0,Parton =WLO
0,Parton +WV

0,Parton +WR
0,Parton = 4πe2

q

{[
δ(1− z)

− 1
ε

αs
π
Pqq(z)

(
4πµ2

Q2

) ε
2 Γ(1− ε

2)
Γ(1− ε)

]
+ αs

2πCF

[
(1 + z2)

[
ln(1− z)

1− z

]
+

− 3
2

[ 1
1− z

]
+
−1 + z2

1 + z
ln(z) + 3 + 2z −

(
9
2 + π2

3

)
δ(1− z)

]}
(2.46)

mit den DGLAP Splitting-Funktionen

Pqq(z) = CF

{
(1 + z2)

[ 1
1− z

]
+

+3
2δ(1− z)

}
(2.47)

und der Distribution
[

1
1−z

]
+

, die über folgende beide Bedingungen definiert ist:

[
1

1− z

]
+

= 1
1− z , falls z 6= 1

und
1∫

0

dzf(z)
[

1
1− z

]
+

=
1∫

0

(f(z)− f(1))
1− z . (2.48)

Es wurde die Feinstrukturkonstante der starken Wechselwirkung αs benutzt, CF ist eine Grup-
penkonstante der QCD zugrunde liegenden SU(3) Eichsymmetrie11. µ und ε haben ihren Ur-
sprung in der im Anhang C erläuterten dimensionalen Regulierung, also der Überführung des
Schleifenintegrals in D = 4−ε Dimensionen. Um ein physikalisches Ergebnis zu erhalten, ist der
Limes ε→ 0 zu bilden. Mit µ wird eine Skala bezeichnet, die die physikalisch richtige Dimension
wahrt.
10Hier wird implizit der Formfaktor W0 mit der AmplitudeM des Prozesses in Zusammenhang gebracht. Dass
Wµν in der Gesamtamplitude das wechselwirkende Proton und damit auch die QCD-Korrekturen am Quark
charakterisiert, soll diesen Schritt motivieren. Es wird die Eulersche Gammafunktion Γ(n) =

∫∞
0 dxe−xxn−1

eingeführt.
11Näheres dazu im Anhang, Kapitel B.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

2.5.3 Splitting-Funktionen und Renormierung der Partonverteilungsfunktionen
Eine genaue Erläuterung von (2.46) setzt die in dieser Arbeit nicht explizit betrachteten Ampli-
tuden der reellen Abstrahlungen und Selbstenergien voraus und wird deshalb übergangen. Bevor
die letzten Schritte bis zur DGLAP-Gleichung unternommen werden, sollen aber zumindest die
Splitting Funktionen Pqq(z) und ihr Auftauchen in (2.46) diskutiert werden. Alle Prozessen ist
zu eigen, dass ein Quark ein virtuelles oder reelles Gluon abstrahlt. Der Impuls eines ein- oder
auslaufenden Quarks bleibt also nicht konstant, er teilt sich in den Impuls des abstrahlenden
Gluons und den des Quarks nach der Abstrahlung auf. Pqq kann als Wahrscheinlichkeit inter-
pretiert werden, mit der ein Quark mit Flavour q nach einer Gluonabstrahlung nur noch einen
Anteil z des Quarkimpulses vor der Abstrahlung besitzt. Hier wurde implizit wieder die glei-
che Identifizierung zwischen kinematischer Größe z und Impulsanteil auf Quarkebene gemacht,
wie sie auch schon im Partonmodell (2.35) auf Protonebene vorgenommen wurde. Vor diesem
Hintergrund lässt sich auch der LO-Beitrag (2.43) physikalisch interpretieren. Da hier keine
Abstrahlung stattfindet, muss der Impulsanteil durch die δ-Funktion in der Integration über z
auf 1 festgelegt werden.
Um nun den finalen Ausdruck für W0 (2.46) mit den Verteilungsfunktionen in Verbindung
zu bringen, wird W0,Parton in den Formfaktor des gesamten Protons (2.44) eingesetzt und(

4πµ2

Q2

) ε
2

Γ(1− ε2 )
Γ(1−ε) bis zur ersten Ordnung in ε entwickelt. Es ergibt sich

W0(x,Q2) = 4π
∑
q

e2
q

1∫
x

dξ

ξ
q(ξ)

[
δ

(
1− x

ξ

)
− αs

2πPqq
(
x

ξ

)(2
ε

+ ln µ2

Q2

)
+R

(
x

ξ

)]
. (2.49)

Unter R(xξ ) werden jegliche endliche Teile von W0 zusammengefasst, die für die weiteren Aus-
führungen nicht mehr von Relevanz sind.
In (2.49) findet sich eine (Infrarot-)Divergenz der Form 1

ε
12, die auch schon in (2.46) aufge-

treten ist.13. Divergierende Amplituden sind jedoch unphysikalisch, denn nach (2.16) geht mit
ihnen auch ein divergenter Wirkungsquerschnitt einher. Man spricht von infraroter Divergenz,
da sie bei einem sehr kleinen Gluonimpuls auftaucht. Um diese Divergenz zu umgehen, wird auf
die Renormierung einer physikalischen Größe14 zurückgegriffen.
Die zentrale Idee der Renormierung liegt in der Neudefinierung physikalischer Größen, um die

entstandenen Divergenzen in den Prozessen höherer Ordnungen zu absorbieren: Größen, die zu
Beginn der Rechnung als physikalisch, insbesondere also auch als endlich angenommen wurden,
stellen sich bei Auftauchen der Divergenzen als schlecht definiert heraus. Die renormalisierte
Größe tritt deshalb an den Platz der vorherigen.
Konkret soll der (divergente) Formfaktor der ersten Ordnung (2.49) in den (endlichen) Form-

faktor der führenden Ordnung (2.43) überführt werden.
Hierfür renormiert man die Verteilungsfunktionen auf15

qR(x,Q2) = αs
2π

1∫
x

dξ

ξ
q(ξ)

{
δ

(
1− x

ξ

)
− αs

2πPqq
(
x

ξ

)(2
ε

+ ln
(
Q2

µ2

))
+R

(
x

ξ

)}
. (2.50)

12Beachte den Limes aus der dimensionalen Regulierung.
13Anders als in der QED kompensieren reelle Abstrahlungen hier nicht jegliche Infrarot-Divergenzen.
14Selbiges Prinzip wird bei ultravioletten Divergenzen angewandt, was eine Redefinierung von zum Beispiel der
Masse m, der Ladung e oder auch der Feinstrukturkonstante αs zur Folge hat. Eng damit verbunden ist die
Renormierungsgruppengleichung der entsprechenden Größe, auf die in Kapitel 3.3.1 eingegangen wird.

15Eine Renormierung ist auf unterschiedliche Weisen möglich, man spricht von einer Renormierung in einem
bestimmten Schema. Hier werden alle, insbesondere auch die endlichen Teile der Strukturfunktion (2.49) in
die renormierte Verteilungsfunktion aufgenommen, die Renormierung erfolgt daher im DIS (Deep inelastic
scattering) - Schema.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Der Index R wird im weiteren Verlauf unterschlagen, da nur noch mit den renormierten Par-
tonverteilungsfunktionen gearbeitet wird.

Die renormierten Partonverteilungsfunktionen sind offensichtlich Q2-abhängig, verletzen also
die Bjorken’sche Skaleninvarianz. Aussagen über Verteilungsfunktionen selbst kann man treffen,
wenn man sie in Relation zu einer neuen, beliebigen Impulsskala Q2

0 betrachtet. Bildet man die
Differenz zwischen beiden Skalen, so verschwinden die infraroten Divergenzen und man erhält

q(x,Q2)− q(x,Q2
0) = αs

2π

1∫
x

dξ

ξ
q(ξ,Q2)

{
−αs2πPqq

(
x

ξ

)(
ln Q

2

µ2 − ln µ2

Q2
0

)
+R

(
x

ξ

)}

⇔ q(x,Q2) = q(x,Q2
0) + αs

2π

1∫
x

dξ

ξ
q(ξ,Q2)Pqq

(
x

ξ

)
ln Q

2

Q2
0
. (2.51)

Daraus folgt sofort

∂q(x,Q2)
∂ lnQ2 = αs

2π

1∫
x

dξ

ξ
q(ξ,Q2)Pqq

(
x

ξ

)
. (2.52)

Dies ist die vorläufige Form der DGLAP-Gleichung für einen beliebigen Quarkflavour. Hier und
im Folgenden sollen die Splitting-Funktionen nicht flavourabhängig sein.
In obigen Ausführungen wurden allerdings nur die Wechselwirkungen zwischen Quarks in der

ersten Ordnung Störungstheorie betrachtet. Seequarks, also die Aufspaltung eines Gluons in
Quark und Antiquark sowie Wechselwirkungen des Gluons, tauchen bis jetzt nicht auf, müssen
aber als zusätzliche Prozesse in der DGLAP-Gleichung berücksichtigt werden. Tabelle 2.1 führt
diese Prozesse samt zugehöriger Splitting-Funktion auf.
Neben der Sonderbehandlung von Gluonen durch Pgg(x) führen diese zusätzlichen Splitting-

Funktionen dazu, dass Quark-Verteilungsfunktionen auch von der Gluon-Verteilungsfunktion
und nicht nur (wie in der vorläufigen DGLAP-Gleichung (2.52)) von sich selbst beeinflusst
werden. Dieses „Mischen“ lässt sich über einen Vektor-/Matrixformalismus ausdrücken. Die
finale DGLAP-Gleichung16 hat somit folgende Form:

∂

∂ lnQ2


u(x,Q2)
ū(x,Q2)
d(x,Q2)

...
g(x,Q2)

 = αs
2π

1∫
x

dξ

ξ


Pqq
(
x
ξ

)
0 . . . Pqg

(
x
ξ

)
0 Pqq

(
x
ξ

)
Pqg

(
x
ξ

)
... . . . ...

Pgq
(
x
ξ

)
Pgq

(
x
ξ

)
. . . Pgg

(
x
ξ

)

 ·

u(x,Q2)
ū(x,Q2)
d(x,Q2)

...
g(x,Q2)

 (2.53)

Mit obiger Gleichung schließt dieser Abschnitt und das gesamte Kapitel. Durch Zulassen von
Partoneninteraktionen über die QCD musste zwar die sehr einfache Struktur des Partonmo-
dells in Abschnitt 2.3.2 samt der Bjorkenschen Skaleninvarianz aufgegeben werden, allerdings
bietet die DGLAP-Gleichung (2.53) nun eine Möglichkeit, durch die numerische Lösung die-
ser Integro-Differentialgleichung die explizite Gestalt der Partonverteilungsfunktionen für die
Quark-Flavour und Gluonen zu bestimmen. Bevor in Kapitel 4.1 ein solches Programm vorge-
stellt wird, werden im folgenden Kapitel zunächst noch einige vorbereitende Umformungen an
(2.53) für die numerische Implementierung vorgenommen.

16Bzw. DGLAP-Gleichungen, falls jede Zeile einzeln betrachtet wird.
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2 Über den theoretischen Hintergrund - eine Herleitung der DGLAP-Gleichung

Tabelle 2.1: DGLAP-Splitting-Funktionen zu verschiedenen Quark-Gluon-Prozessen.
Beschreibung physikalischer Prozess entsprechende Splitting-Funktion17

Gluonabstrahlung
eines Quarks Pqq(x′) = CF

[
1+x′2

(1−x′)+
+ 3

2δ(1− x
′)
]

Gluon teilt sich in
Quark und Anti-
Quark auf

Pqg(x′) = TF [x′2 + (1− x′)2]

Quarkabstrahlung
unter Umwand-
lung zum Gluon

Pgq(x′) = CF

[
1+(1−x′)2

x′

]

Gluonabstrahlung
eines Gluons

Pgg(x′) = 2CA
[

x′

(1− x′)+
+ (1− x′) · (x′ + 1

x′
)
]

+ 11CA − 4nfTF
6 δ(1− x′)

17Aus Übersichtsgründen wird die Abkürzung x′ = x
ξ
benutzt. TF , CF und CA stammen aus der Eichgruppe der

QCD (s. Anhang B). Entnommen aus [15], S. 12.
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3 Vorbereitungen für die numerische
Implementierung der DGLAP-Gleichung

Nachdem die DGLAP-Gleichung (2.53) hergeleitet wurde, soll sie nun gelöst werden. Es handelt
sich allerdings um eine matrixwertige Integro-Differentialgleichung. Dadurch wird eine analyti-
sche Herangehensweise von vornherein ausgeschlossen und zudem eine numerische Lösung sehr
erschwert. Durch verschiedene Umformungen kann die Implementierung allerdings deutlich ver-
einfacht werden.
Begonnen wird mit der Mellin-Transformation, die die DGLAP-Gleichung auf eine Differen-

tialgleichung reduziert. Die Matrixwertigkeit wird dann durch Diagonalisierung umgangen.

3.1 Die Mellin-Transformation
Die Mellintransformation ist wie folgt definiert:

MT
[
f(x)

]
≡ f(n) ≡

1∫
0

dxf(x)xn−1, n ∈ C. (3.1)

Durch diese Integraltransformation lässt sich der rechtsseitige Ausdruck der DGLAP-Gleichung
(2.53) entscheidend vereinfachen, da sie aufgrund von

MT
[ 1∫
x

dξ

ξ
q(ξ)Pqq

(
x

ξ

)]
=

1∫
0

dxxn−1
1∫
x

dξ

ξ
q(ξ)Pqq

(
x

ξ

)

=
1∫

0

dxxn−1
1∫

0

dz

1∫
0

dξq(ξ)Pqq
(
x

ξ

)
δ(x− ξz)

=
1∫

0

dzzn−1Pqq(z)
1∫

0

dξξn−1q(ξ) = q(n) · Pqq(n) (3.2)

im Mellin-Raum die Gestalt einer einfachen Differentialgleichung hat:

∂

∂ lnQ2


u(n,Q2)
ū(n,Q2)
d(x,Q2)

...
g(n,Q2)

 = αs
2π


Pqq(n) 0 . . . Pgq(n)

0 Pqq(n) Pgq(n)
... . . . ...

Pqg(n) Pqg(n) . . . Pgg(n)

 ·

u(n,Q2)
ū(n,Q2)
d(n,Q2)

...
g(n,Q2)

 (3.3)
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Wie simple Integration zeigt, ergeben sich die Mellin-Transformierten der Splitting-Funktionen1

zu

Pqq(n) = CF ·
(3

2 − I(n− 1)− I(n+ 1)
)
, (3.4)

Pgq(n) = CF ·
2− n− n2

(n− 1) · n · (n+ 1) , (3.5)

Pqg(n) = TF ·
2 + n+ n2

n · (n+ 1) · (n+ 2) , (3.6)

Pgg(n) = 2CA ·
( 1
n− 1 −

1
n

+ 1
n+ 1 −

1
n+ 2 − I(n)

)
+ 11CA − 4nfTF

6 . (3.7)

Aufgrund der Komplexwertigkeit der Mellin-Transformierten erfolgt die Rücktransformation
über eine Kontur in der komplexen Ebene2 (s. auch Abb. 3.1):

xf(x) = 1
2πi

{ ∞∫
0

dz
[
eiφx1−c−z exp(iφ)f(n = c+ zeiφ)

]

−
∞∫
0

dz
[
e−iφx1−c−z exp(−iφ)f(n = c+ ze−iφ)

]}
. (3.8)

Abbildung 3.1: Die Kontur in der komplexen Ebene, über die die Mellin-Rücktransformation
erfolgt, festgelegt durch die Parameter c und φ. Die Singularitäten der Mellin-
Funktionen sind durch Kreuze eingezeichnet. Entnommen aus [16], S. 12.

c ∈ R, das auf der reellen Achse rechts neben allen Singularitäten liegen muss, legt den Punkt
der Kontur auf der reellen Achse fest, φ ∈ [0, 2π] den Winkel der Kontur zur reellen Achse.
Den am weitesten rechts liegenden Pol aller hier betrachteten Funktionen besitzen die Mellin-
Transformierten der Splitting-Funktionen an der Stelle n = 13. Zudem sind alle Funktionen im
x-Raum reellwertig, sodass die Mellin-Transformierten nur durch ihre Argumente komplexwertig
werden (f∗(n) = f(n∗)). Wegen u− u∗ = 2iIm(u) lässt sich (3.8) deshalb zu

xf(x) = 1
π

∞∫
0

dzIm
(
eiφx1−c−z exp(iφ)f(n = c+ zeiφ)

)
(3.9)

vereinfachen.
1Für das Integral I(n) =

∫ 1
0 dx

1−xn

1−x gilt I(n) ≈ γE +ψ(n+ 1). γE ist die Euler-Mascheroni-Konstante und ψ(n)
die logarithmische Ableitung der Eulerschen Gammafunktion.

2Dafür müssen mathematische Voraussetzungen wie Holomorphie und und gleichmäßige Konvergenz im Unend-
lichen gegeben sein, für detaillierte Ausführungen siehe [2], Kapitel 11.

3Man beachte den Faktor (n− 1) im Nenner von Pgq(n) und Pgg(n).
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3 Vorbereitungen für die numerische Implementierung der DGLAP-Gleichung

3.2 Wahl einer neuen Basis
Nachdem durch die Mellin-Transformation die Integralauswertung in der DGLAP-Gleichung
umgangen werden konnte, soll nun die Matrixstruktur vereinfacht werden. Wählt man eine
Darstellung in einer entsprechenden Basis, wird das Mischen der Quarkverteilungen mit der
Gluonverteilung auf ein Basiselement reduziert und gleichzeitig ein großer Anteil der Matrix
diagonalisiert.
Auf folgende Linearkombinationen der physikalischen Basiselemente wird ab jetzt zurückge-

griffen:

Non-Singulett : q±ij ≡ (qi ± q̄i)− (qj ± q̄j), i und j sind Quarkflavour

Valenz : qV ≡
∑
q

(q − q̄)

Singulett : qS ≡
∑
q

(q + q̄)

Gluon (unverändert) : g ≡ g

Die physikalische Basis hat allerdings 2nf + 1 = 7 Elemente. Um die gleiche Anzahl auch in der
neuen Basis zu erhalten, werden aus den Non-Singulett-Kombinationen nur die ausgewählt, die
den up-Flavour an zweiter Position enthalten: q+

du, q+
su, q−du und q−su. Die Basiswechselmatrizen4

von der neuen Basis in die physikalische und zurück ergeben sich dann zu

U =



1 −1 1 −1 1 −1 0
−1 −1 1 1 0 0 0
−1 −1 0 0 1 1 0
−1 1 1 −1 0 0 0
−1 1 0 0 1 −1 0
1 1 1 1 1 1 0
0 0 0 0 0 0 1


(3.10)

und

U−1 = 1
6



1 −1 −1 −1 −1 1 0
−1 −1 −1 1 1 1 0
1 2 −1 2 −1 1 0
−1 2 −1 −2 1 1 0
1 −1 2 −1 2 1 0
−1 −1 2 1 −2 1 0
0 0 0 0 0 0 1


. (3.11)

U−1 liefert die Darstellungen der neuen in der physikalischen Basis, auf die in der Rücktrans-
formation zurückgegriffen wird.
Die Splitting-Matrix P aus (2.53) wird in der neuen Basis durch

P ′ = U−1PU =


Pqq
(
x
ξ

)
0 . . . 0

0 . . . ...
... Pqq

(
x
ξ

)
6Pqg

(
x
ξ

)
0 . . . Pgq

(
x
ξ

)
Pgg

(
x
ξ

)

 (3.12)

dargestellt, ist also bis auf den Singulett/Gluon-Anteil diagonal. Die Ansätze und Anfangsbe-
dingungen für die Verteilungsfunktionen sind später in dieser Basis formuliert.
4Einträge in U reihenweise nach der Reihenfolge der oben stehenden Definitionen: (qV , q+

du, q
+
su, q

−
du, q

−
su, qS , g).
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3 Vorbereitungen für die numerische Implementierung der DGLAP-Gleichung

3.3 Lösung der DGLAP-Gleichung im Mellin-Raum
3.3.1 Renormierungsgruppengleichung von αs in erster Ordnung
Die DGLAP-Gleichung ist nun in eine Form gebracht worden, die eine einfache Lösung ermög-
licht. Bevor diese allerdings diskutiert wird, muss zuerst noch auf die Skalenabhängigkeit5 von
αs eingegangen werden. Diese manifestiert sich auch in bekannten Effekten der starken Wechsel-
wirkung, „Confinement“ und „asymptotischer Freiheit“. Dass bei hohen Energien/kleinen Ab-
ständen die Kopplungsstärke klein (asymptotische Freiheit) und bei geringen Energien/großen
Abständen die Kopplungsstärke groß wird, erklärt die Nicht-Existenz freier Quarks und ist somit
Ausdruck der Energieabhängigkeit von αs.

In erster Ordnung ergibt sich durch die Renormierungsgruppengleichung

αs(Q2) = 12π
(33− 2nf ) · ln

( Q2

Λ2
QCD

) nf=3
= 12π

27 ·
1

ln
( Q2

Λ2
QCD

) , (3.13)

ΛQCD = 0,2994 GeV ist eine in der Renormierung von αs eingeführte Konstante6. Sie wird auch
als Landau-Pol bezeichnet, da αs für Q2 → Λ2

QCD divergiert. Streng genommen kann hier erst
gerechtfertigt werden, dass die QCD-Korrekturen in 2.4 störungstheoretisch behandelt werden:
Die Reihenentwicklung von αs in der Störungstheorie konvergiert, denn es werden Energien im
GeV-Bereich betrachtet, für die αs < 1 gilt.

3.3.2 Non-Singulett-Verteilungen
Für alle Basiselemente außer Singulett- und Gluon-Verteilung ist die Splitting-Matrix diagonal.
Im Mellin-Raum ist also nur noch die partielle Differentialgleichung erster Ordnung

∂fNon-Singulett(n,Q2)
∂ lnQ2 = αs(Q2)

2π Pqq(n) · fNon-Singulett(n,Q2) (3.14)

zu lösen. Über elementare Lösungsverfahren, zum Beispiel Trennung der Variablen, erhält man

fNon-Singulett(n,Q2) = fNon-Singulett(n,Q2
0) ·

( ln
( Q2

Λ2
QCD

)
ln
( Q2

0
Λ2

QCD

)
) 6

27 ·Pqq(n)

. (3.15)

Zur Bestimmung der Anfangsbedingung wird die Verteilung fNon-Singulett bei einer frei wählba-
ren Übertragsenergie Q0 experimentell vermessen und kann dann durch einen Fit als Funkti-
on dargestellt werden. In dieser Arbeit werden die folgenden Ansatzfunktionen7 mit den Fit-
Parametern p1 bis p6 verwendet:

q(x) = p1 · (1− x)p2 · xp3 · (1− p5x
p4 + p6x)

g(x) = p1 · (1− x)p2 · xp3

(3.16)
(3.17)

Die entsprechenden Mellin-Transformierten lauten8

q(n) = p1·
{
B(p2 + n− 1, p3 + 1) ·

[
1 + p6 · (p2 + n− 1)

p2 + p3 + n

]

+ p5 ·B(p2 + p4 + n− 1, p3 + 1)
}
, (3.18)

g(n) = p1·B(p2 + n− 1, p3 + 1). (3.19)
5Diese Skalenabhängigkeit hat ihren Ursprung analog zu den Partonverteilungsfunktionen in der Renormierung
der Feinstrukturkonstante.

6Und zudem noch von der Flavourzahl nf abhängig. Entnommen aus [5].
7Entnommen aus [5].
8Nach [7].
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3 Vorbereitungen für die numerische Implementierung der DGLAP-Gleichung

B(a, b) ist die Eulersche Betafunktion9:

B(a, b) = Γ(a) · Γ(b)
Γ(a+ b) . (3.20)

Die Parameter für jede Verteilungsfunktion sind im Programmcode in Kapitel 4.1 zu finden.
Die Lösung der DGLAP-Gleichung (3.15) ermöglicht es nun, Non-Singulett-

Verteilungsfunktionen bei jeder beliebigen Übertragsenergie Q zu ermitteln, falls sie bei
einer bekannt sind10. Das Vorgehen im Singulett-/Gluon-Fall ist ist ähnlich, gestaltet sich
allerdings durch die fehlende Diagonalisierung aufwändiger.

3.3.3 Singulett- und Gluon-Verteilung
Die Splitting-Matrix ist für Singulett- und Gluon-Verteilungen nicht diagonal, es gilt (s. (3.12))

∂

∂ lnQ2

(
qS(n,Q2)
g(n,Q2)

)
= αs

2π

(
Pqq(n) 6Pqg(n)
Pgq(n) Pgg(n)

)
·
(
qS(n,Q2)
g(n,Q2)

)
. (3.21)

Zuerst muss also eine zweite Diagonalisierung erfolgen. Die entsprechenden Basiswechselmatri-
zen ergeben sich zu

S =

−Pgq(n)√
...

Pqq(n)−Pgg(n)+√...
2√...

Pgq(n)√
...

−Pqq(n)+Pgg(n)+√...
2√...

 (3.22)

und

S−1 =
(
Pqq(n)−Pgg(n)−√...

2Pgq(n)
Pqq(n)−Pgg(n)+√...

2Pgq(n)
1 1

)
, (3.23)

die diagonalisierte Matrix zu

P ′′Singulett/Gluon =
(
Pqq(n) + Pgg(n)−√. . . 0

0 Pqq(n) + Pgg(n) +√. . .

)
. (3.24)

Hierbei wurde die Abkürzung

√
. . . =

√
Pqq(n)2 − 2Pqq(n) · Pgg(n) + Pgg(n)2 + 24Pqg(n) · Pgq(n) (3.25)

verwendet.
Singulett- und Gluon-Verteilungen werden also zuerst mittels S transformiert, die Evolution

in die gewünschte Energie findet dann wieder über (3.15) statt11. Durch Anwenden von S−1

gelangt man dann zu den Singulett- und Gluon-Verteilungen in der „Ziel“-Energie Q.
Es sind nun alle Vorbereitungen getroffen worden, um den Programmcode vorstellen zu kön-

nen, der das Ziel dieser Arbeit realisiert: Die Lösung der DGLAP-Gleichung.

9Mit der schon in Kapitel 3.1 eingeführten Eulerschen Gammafunktion Γ(a).
10Die Verteilungsfunktionen von Q0 nach Q zu überführen, wird auch als „Evolution“ bezeichnet.
11Hier allerdings mit den entsprechenden Eigenwerten in P ′′Singulett/Gluon anstelle von Pqq(n).
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4 Die numerische Lösung der
DGLAP-Gleichung

4.1 Der Programmcode
Der nachstehende Text samt Programmcode ist eine .tex-Konvertierung einer „Jupyter-
Notebook“-Datei der Version Python 3.6. Im Folgenden wechseln sich erläuternde Kommentare
mit Code-Abschnitten ab.
Es soll begonnen werden mit der Definition der Hilfsfunktion I(n) und der Eulerschen Be-

tafunktion. Außerdem werden die Gruppenkonstanten der SU(3) Lie-Gruppe der QCD 1 und
ΛQCD aus der Renormierungsgruppengleichung (3.13) definiert.

Anschließend werden die Basisfunktionen im Mellin-Raum bei der Energie Q0 =
√

0, 4GeV
samt der Fit-Parameter für die jeweiligen Ansätze (s. Kapitel 3.3.2) aus [5] eingeführt. Zwei
Dinge sind zu beachten: In [5] werden nur zwei Flavour berücksichtigt, daher wird für den
strange-Flavour ein Ansatz aus [1] verwendet. Da keine Valenz-Quarks im Flavour strange exis-
tieren, kann für Quark und Anti-Quark der gleiche Ansatz gewählt werden. Ferner entsprechen
die Basisfunktionen aus der Literatur nicht der in dieser Arbeit gewählten aus Kapitel 3.2,
deshalb wird in den danach folgenden Zeilen in diese Basis transformiert.
Nach der abschließenden Definition der Splitting-Funktionen im Mellin-Raum sind alle grund-

legenden Bausteine für die Evolution vorhanden.

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy import special
#Gruppenkonstanten der SU(3):
C_F=4/3
C_A=3
T_F=0.5

Lambda_QCD=0.2994#in GeV

#Hilfsfunktionen:
def I(n):
eulermascheroni=0.577215664901532

return (eulermascheroni+0j)+sp.special.digamma(n+(1+0j))
def beta(a, b):

return sp.special.gamma(a)*sp.special.gamma(b)/sp.special.gamma(a+b)

#Basis aus Literatur:
Q_0=np.sqrt(0.4)#in GeV, s. GRV98 NLO S.4
def PDFstartu_V(n):

p_1=0.632
p_2=0.43

1Für nähere Erläuterungen siehe Anhang B.
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4 Die numerische Lösung der DGLAP-Gleichung

p_3=3.09
p_4=0.5
p_5=0
p_6=18.2
return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )*\
((1+0j)+((p_6+0j)*((p_2+0j)+n-(1+0j)))/((p_2+0j)+(p_3+0j)+n))\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

def PDFstartd_V(n):
p_1=0.394368
p_2=0.43
p_3=4.09
p_4=0.5
p_5=0
p_6=18.2
return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )*\
((1+0j)+((p_6+0j)*((p_2+0j)+n-(1+0j)))/((p_2+0j)+(p_3+0j)+n))\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

def PDFstartDelta(n):#Anti-d - Anti-u
p_1=0.2
p_2=0.43
p_3=12.4
p_4=0.5
p_5=-13.3
p_6=60
return p_1*( beta( (p_2+0j)+n-(1+0j), p_3+1 )*\
((1+0j)+((p_6+0j)*((p_2+0j)+n-(1+0j)))/((p_2+0j)+(p_3+0j)+n))\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

def PDFstartSigma(n):#Anti-d + Anti-u
p_1=1.24
p_2=0.2
p_3=8.5
p_4=0.5
p_5=-2.3
p_6=5.7
return p_1*( beta((p_2+0j)+n-(1+0j), p_3+1 )*\
((1+0j)+((p_6+0j)*((p_2+0j)+n-(1+0j)))/((p_2+0j)+(p_3+0j)+n))\
+(p_5+0j)*beta( (p_2+0j)+(p_4+0j)+n-(1+0j),p_3+1 ) )

def PDFstarts(n):#identisch zu Anti-strange
return 0.2*PDFstartSigma(n)

def PDFstartGluon(n):
p_1=20.8
p_2=1.6
p_3=4.1
return p_1*beta( (p_2+0j)+n-(1+0j), p_3+1 )

#In Singulett/Non-Singulett-Basis:
def PDFstartValenz(n):

return PDFstartu_V(n)+PDFstartd_V(n)
def PDFstartdu_plus(n):

return -PDFstartu_V(n)+PDFstartd_V(n)+2*PDFstartDelta(n)
def PDFstartsu_plus(n):
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return -PDFstartu_V(n)+PDFstartDelta(n)-PDFstartSigma(n)+2*PDFstarts(n)
def PDFstartdu_minus(n):

return -PDFstartu_V(n)+PDFstartd_V(n)
def PDFstartsu_minus(n):

return -PDFstartu_V(n)
def PDFstartSingulett(n):

return PDFstartu_V(n)+PDFstartd_V(n)+2*PDFstartSigma(n)+2*PDFstarts(n)

#Mellin-Splitting-Funktionen:
def P_qq(n):

return C_F*(1.5-I(n-(1+0j))-I(n+(1+0j)))
def P_gq(n):

return C_F*((2+0j)-n-n**2)/((n-(1+0j))*n*(n+(1+0j)))
def P_qg(n):

return T_F*((2+0j)+n+n**2)/(n*(n+(1+0j))*(n+(2+0j)))
def P_gg(n):

return (11*C_A-12*T_F)/6+2*C_A*(1/(n-(1+0j))-1/n+1/(n+(1+0j))-1/(n+(2+0j))-I(n))

Es kann nun schon die Evolution der Non-Singulett-Verteilungen gemäß Vorschrift (3.15) durch-
geführt werden.

def PDFzielValenz(n, Q):
return PDFstartValenz(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_qq(n)/27)

def PDFzieldu_plus(n, Q):
return PDFstartdu_plus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_qq(n)/27)

def PDFzielsu_plus(n, Q):
return PDFstartsu_plus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_qq(n)/27)

def PDFzieldu_minus(n, Q):
return PDFstartdu_minus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_qq(n)/27)

def PDFzielsu_minus(n, Q):
return PDFstartsu_minus(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_qq(n)/27)

Für Singulett- und Gluon-Verteilungen muss zuerst (nach Definition des √. . .-Ausdrucks
(3.25)) eine weitere Basistransformation durchgeführt werden. In dieser nun diagonalen Dar-
stellung kann die Evolution stattfinden. Abschließend wird wieder in die Ausgangsbasis zurück-
transformiert.

def PWurzel(n):
return np.sqrt(P_qq(n)**2-2*P_qq(n)*P_gg(n)+P_gg(n)**2+24*P_qg(n)*P_gq(n))

#Bilde neue Basis:
def V1start(n):

return -P_gq(n)/PWurzel(n)*PDFstartSingulett(n)\
+(P_qq(n)-P_gg(n)+PWurzel(n))/(2*PWurzel(n))*PDFstartGluon(n)

def V2start(n):
return P_gq(n)/PWurzel(n)*PDFstartSingulett(n)\
+(-P_qq(n)+P_gg(n)+PWurzel(n))/(2*PWurzel(n))*PDFstartGluon(n)
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#Eigenwerte der P-Matrix für Singulett und Gluon:
def P_1(n):

return 0.5*(P_qq(n)+P_gg(n)-PWurzel(n))
def P_2(n):

return 0.5*(P_qq(n)+P_gg(n)+PWurzel(n))

#Evolution:
def V1ziel(n, Q):

return V1start(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_1(n)/27)

def V2ziel(n, Q):
return V2start(n)*(np.log(Q**2/Lambda_QCD**2)\
/np.log(Q_0**2/Lambda_QCD**2))**(6*P_2(n)/27)

#Basisrücktransformation:
def PDFzielSingulett(n, Q):

return (P_qq(n)-P_gg(n)-PWurzel(n))/(2*P_gq(n))*V1ziel(n, Q)\
+(P_qq(n)-P_gg(n)+PWurzel(n))/(2*P_gq(n))*V2ziel(n, Q)

def PDFzielGluon(n, Q):
return V1ziel(n, Q)+V2ziel(n, Q)

Es wurde nun die Evolution aller Elemente der Singulett-/Non-Singulett-Basis durchge-
führt. Nun kann also die Rücktransformation gemäß der Einträge der inversen Basiswechsel-
matrix (3.11) stattfinden. Zuletzt werden noch wegen ihrer physikalischen Relevanz die Valenz-
Verteilungen aller Flavour definiert.

PDFu(n, Q):
return 1/6*(PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)-PDFzieldu_minus(n, Q)\
-PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti_u(n, Q):
return 1/6*(-PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)+PDFzieldu_minus(n, Q)\
+PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFd(n, Q):
return 1/6*(PDFzielValenz(n, Q)+2*PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)+2*PDFzieldu_minus(n, Q)\
-PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti_d(n, Q):
return 1/6*(-PDFzielValenz(n, Q)+2*PDFzieldu_plus(n, Q)\
-PDFzielsu_plus(n, Q)-2*PDFzieldu_minus(n, Q)\
+PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFs(n, Q):
return 1/6*(PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
+2*PDFzielsu_plus(n, Q)-PDFzieldu_minus(n, Q)\
+2*PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFanti_s(n, Q):
return 1/6*(-PDFzielValenz(n, Q)-PDFzieldu_plus(n, Q)\
+2*PDFzielsu_plus(n, Q)+PDFzieldu_minus(n, Q)\
-2*PDFzielsu_minus(n, Q)+PDFzielSingulett(n, Q))

def PDFu_V(n, Q):
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return PDFu(n, Q)-PDFanti_u(n, Q)
def PDFd_V(n, Q):

return PDFd(n, Q)-PDFanti_d(n, Q)
def PDFs_V(n, Q):

return PDFs(n, Q)-PDFanti_s(n, Q)

Nachdem jetzt die Mellin-Transformierten physikalischer Verteilungen für die Energie Q vor-
liegen, fehlt nur noch die Rücktransformation in den x-Raum. Hierfür wurde eine Routine ge-
schrieben, die das Integral in der Rücktransformationsvorschrift (3.9) über eine Newton-Cotes
Formel2 auswertet. Die Konturparameter werden wie in [5] gewählt: c = 1, 9 und φ = 3

4π.
Neben dem Fehler durch die numerische Ermittlung des Integralwertes lässt sich die Funktion

selbstverständlich nicht bis ∞ auswerten. Aus Tests mit Mellin-Transformationen elementarer
Funktionen ergab sich 100 als ausreichender Wert für die obere Grenze.
Hier zeigt sich noch einmal die große Stärke der Mellin-Transformation. Bis zum jetztigen

Zeitpunkt sind die Ergebnisse exakt3. Die einzige numerische Approximation in Form einer
einfachen Integralberechnung findet in den nächsten Zeilen statt.

def MellinInversIntegrand(z, x, PDF, Q):
c=1.9
e_iphi=np.exp((0+1j)*0.75*np.pi)
return (e_iphi*x**(1-c-z*e_iphi)*PDF(c+z*e_iphi, Q)).imag

def MellinInversIntegral(schritte, x, PDF, Q):
a=0
b=100
schrittweite=(b-a)/(schritte-1)
z=a+2*schrittweite
summe=3*MellinInversIntegrand(a, x, PDF, Q)/8\
+7*MellinInversIntegrand(a+schrittweite, x, PDF, Q)/6\
+23*MellinInversIntegrand(a+2*schrittweite, x, PDF, Q)/24
while z<b-3*schrittweite:

z+=schrittweite
summe+=MellinInversIntegrand(z, x, PDF, Q)

return schrittweite*(summe\
+23*MellinInversIntegrand(b-2*schrittweite, x, PDF, Q)/24\
+7*MellinInversIntegrand(b-schrittweite, x, PDF, Q)/6\
+3*MellinInversIntegrand(b, x, PDF, Q)/8)

Im letzten Schritt können die Ergebnisse über Ausgaberoutinen abgerufen werden. Hier ist bei-
spielhaft eine Tabellen-/Datei-Ausgabe sowie eine Python-interne Plot-Ausgabe für die Valenz-
up-Quark-Verteilung für Q = 3 GeV aufgeführt. Beiden Darstellungsmethoden ist gemein, dass
sie die oben definierte Rücktransformations-Routine für die ausgewählte Parton-Verteilung bei
vorgegebenen x-Werten aufrufen und die Ergebnisse entsprechend ausgeben. Der Konvention
nach werden die Verteilungen nicht als f(x), sondern als xf(x) dargestellt.

#Als Tabelle und .txt-Datei:
def InversMellinundDateiausgabe(PDF,Q):

f = open(str(PDF)+'.txt', 'w')
x=0.01
print('Funktionswerte von '+str(PDF)+': \n'+'x\tx*PDF')
while x<=1.01:

2Diese Formel ist invers proportional zur vierten Potenz der Schrittanzahl, zu finden in [12], S. 160.
3Ausgenommen natürlich, dass höhere Ordnungen der Störungstheorie unterschlagen werden.
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4 Die numerische Lösung der DGLAP-Gleichung

xPDFWert=MellinInversIntegral(1000, x, PDF, Q)/np.pi
f.write(str(round(x, 3)) + '\t' + str(xPDFWert)+'\n')
print(str(round(x, 3)) + '\t' + str(xPDFWert))
x+=0.01

f.close()
InversMellinundDateiausgabe(PDFu_V, 3)

#Als Plot:
x=np.arange(0.0001, 1, 0.00001)

plt.semilogx(x, MellinInversIntegral(1000, x, PDFu_V, 3)/np.pi, "r-")

4.2 Plots
In den Abbildungen4 4.1 bis 4.7 sind die Anfangsverteilungen sowie die Verteilungen nach der
Evolution für zwei Energien, Q = 3 GeV und Q = 10 GeV, zu sehen. Deutlich zu erkennen
sind die charakterisierenden Eigenschaften der verschiedenen Partonverteilungsfunktionen. Da-
zu gehören die mit Abstand größten Werte der Gluonverteilung für kleine x, die Maxima in
der Größenordnung von x = 10−1 der Valenzverteilungen von up- und down-Quark sowie die
für kleine x ansteigenden Verteilungen der Anti-Flavour. Auch die Annäherung an 0 für x→ 1
aller Verteilungen ist ein Merkmal, das reproduziert werden konnte. Es zeigt sich außerdem das
typische Evolutionsverhalten für unterschiedlichen Skalen: Mit steigender Energie steigen die
Werte der Verteilung für kleine und sinken für große x. Die nicht von 0 verschiedene Verteilungs-
funktion der strange-Valenz-Quarks bleibt von den Anfangsverteilungen bis zu den Endwerten
bis auf Abweichungen in der Größenordnung 10−15 erhalten, was ein Indikator für die korrekte
Funktionweise des Programms ist.
Physikalisch nicht erklärbar ist hingegen das Ansteigen der up- und down-Valenz-Verteilungen

für x < 10−3. In einer früheren Version des Programms wurde statt der Newton-Cote-Formel
ein Trapez-Verfahren5 zur Berechnung des Integrals benutzt. Dort war dieses Verhalten schon
für Werte von x < 10−2 zu beobachten, wodurch der Integrationsalgorithmus als Ursache für
dieses Verhalten ausgemacht werden kann.

4Alle erstellt mit der internen Plotroutine von Python 3.6.
5Das Trapez-Verfahren ist die Newton-Cote-Formel niedrigster Ordnung.
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Abbildung 4.1: Partonverteilungsfunktion in der Form xf(x) der Gluonen für x ∈ [10−4, 1],
zu sehen ist die Anfangsverteilung sowie die Verteilungen für Q = 3 GeV und
Q = 10 GeV.
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Abbildung 4.2: Partonverteilungsfunktion in der Form xf(x) der Valenz-up-Quarks für
x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilungen für
Q = 3 GeV und Q = 10 GeV.
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Abbildung 4.3: Partonverteilungsfunktion in der Form xf(x) der Anti-up-Quarks für
x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilungen für
Q = 3 GeV und Q = 10 GeV.
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Abbildung 4.4: Partonverteilungsfunktion in der Form xf(x) der down-Valenz-Quaks für
x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilungen für
Q = 3 GeV und Q = 10 GeV.
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Abbildung 4.5: Partonverteilungsfunktion in der Form xf(x) der Anti-down-Quarks für
x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilungen für
Q = 3 GeV und Q = 10 GeV.
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Abbildung 4.6: Partonverteilungsfunktion in der Form xf(x) der strange-Valenz-Quarks für
x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilungen für
Q = 3 GeV und Q = 10 GeV.
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Abbildung 4.7: Partonverteilungsfunktion in der Form xf(x) der strange- und Anti-strange-
Quarks für x ∈ [10−4, 1], zu sehen ist die Anfangsverteilung sowie die Verteilun-
gen für Q = 3 GeV und Q = 10 GeV.
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5 Fazit und Ausblick

Mit dem in Kapitel 4.1 vorgestellten Programm ist es gelungen, grundlegende Eigenschaften
der Partonverteilungsfunktionen zu rekonstruieren. Es ist allerdings nicht zu erwarten, dass die
Daten mit aktuellen Berechnungen übereinstimmen. Das kann mit folgenden Punkten begründet
werden:
Die Störungsrechnung nach der nächstführenden Ordnung (NLO) abzubrechen, ist eine of-

fensichtliche Vereinfachungen der Rechnung. Die nächsten Ordnungen führen neben einer höhe-
ren Genauigkeit in den schon etablierten Splitting-Funktion aus Tabelle 2.1 auch zu Splitting-
Funktion Pqq̄

(
x
ξ

)
zwischen Quark und Anti-Quark. Dies verändert die Struktur der Matrix in

der DGLAP-Gleichung (2.53), was eine Neuberechnung der Basiswechsel in Kapitel 3.2 und
3.3.3 nach sich zieht.

Außerdem wurden die schweren Flavour charm, top und bottom nicht beachtet. Hier wird
zwischen Energien unterschieden, für die Q2 � M2

c,t,b und Q2 � M2
c,t,b gilt. Mit „Matching“-

oder „Threshold-conditions“ werden dann beide Fälle verbunden1.
Die Integralapproximation über eine Newton-Cotes-Formel hat, wie schon in Kapitel 4.2 dis-

kutiert, einige Schwächen. Approximationen über Polynome höherer Ordnung steigern zwar
wie beschrieben den Gültigkeitsbereich, allerdings könnte auch geprüft werden, ob nicht eine
komplexere Methode eine elegantere Lösung darstellt. So finden sich zum Beispiel in [12] auch
Ansätze, uneigentliche Integrale ohne eine Verschiebung der kritischen Grenze numerisch zu
ermitteln.

1Eine ausführliche Beschreibung dieses Verfahrens findet sich in [7].
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A Feynmanregeln

Feynmandiagramme, wie zum Beispiel das der Elektron-Myon-Streuung 2.1, lassen sich direkt
via der sogenannten Feynmanregeln in die entsprechenden Amplituden übersetzen, ohne für
jeden Prozess einen störungstheoretischen Ansatz rechnen zu müssen. Sie bieten ein sehr
schnelles und intuitives Konzept zur Aufstellung der Amplitude M für einen beliebigen
Wechselwirkungsprozess auf Elementarteilchenebene. Jede Linie und jeder Vertex, d.h. jede
Linienkreuzung, entsprechen einem Term, das Produkt aus allen Termen eines Diagramms
ergibt die Amplitude. Die für diese Arbeit relevanten Regeln sind in Tabelle A.1 aufgeführt.

Tabelle A.1: Relevante Feynmanregeln.
Symbol physikalische Entsprechung Faktor inM

aus- bzw. eingehendes Fermion u(p) bzw. u(p′)
internes Photon1 −igµν

q2

internes Gluon1 −igµν
q2

internes Fermion i/p

p2

Vertexfaktor in QED bzw. QCD2 ieγµ bzw. igsγµ 1
2T

a
ij

So ergibt sich zum Beispiel aus den Regeln für interne bzw. externe Fermionen, Photonpro-
gatoren und Vertexfaktoren sofort die im Kapitel 2.1 ermittelte Amplitude (2.6) für Elektron-
Muon-Streuung.
Feynmanregeln folgen direkt aus der zur entsprechenden Theorie gehörenden Lagrangedichte
L, aus der die Bewegungsgleichungen der Theorie, wie zum Beispiel die Dirac-Gleichung für
freie Teilchen (2.2) in der QED, hergeleitet werden können.

1in Feynman-Eichung.
2Auf die Matrizen T a wird im Anhang B näher eingegangen.
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B SU(3)-Gruppe als Eichsymmetrie der QCD
An verschiedenen Stellen der Arbeit tauchen Gruppenkonstanten der SU(3)-Gruppe auf, aller-
dings nie in einem Umfang, der eine Diskussion am selbigen Ort rechtfertigen würde. Deshalb
soll hier eine grobe Übersicht gegeben werden. Detailliertere Ausführungen finden sich in [13],
Kapitel 25.
Ein wichtige Eigenschaft der QED und QCD ist die lokale Eichsymmetrie. Darunter versteht

man die Invarianz einer Lagrangedichte L unter einer Transformation des zugrundeliegenden
Feldes Ψ gemäß

Ψ→ e−iα
a(x)TaFΨ ≡ U(αa(x))Ψ, (B.1)

wobei αa(x) eine ortsabhängige Phase und T aF ein matrixwertiger Generator der Lie-Gruppe1

aller Matrizen U(αa(x)) ist. Die Generatoren formen eine Lie-Algebra durch2

[T aF , T bF ] = ifabcT cF . (B.2)

fabc werden als Strukturkonstanten der Gruppe3 bezeichnet.
Die Lagrangedichte der QCD ist invariant unter Transformationen der SU(3)-Gruppe, also

der Gruppe aller unitären dreidimensionalen Matrizen U , für die det(U) = 1 gilt. Die SU(3)
hat 32 − 1 = 8 verschiedene Generatoren4, die als Gell-Mann-Matrizen λa bezeichnet werden:

T aF = λa

2 . (B.3)

Die Generatoren werden üblicherweise wie folgt normiert:

Tr(T aFT bF ) = 1
2δ

ab ≡ TF δab. (B.4)

Zu jeder Lie-Algebra gehören Casimir-Operatoren C = C(T a) als Funktionen der Generatoren,
die

[C, T aF ] = 0 (B.5)
genügen. Eine naheliegende Wahl ist ein Vielfaches der Einheitsmatrix, auch quadratischer
Operator genannt, da diese Operatoren

8∑
a=1

T aF = 3
4 · 1 ≡ CF · 1 (B.6)

erfüllen5.
Es existieren verschiedene Repräsentationen einer Lie-Gruppe. Bis jetzt wurde in der fun-

damentalen6 Repräsentation gearbeitet, die adjungierte Repräsentation wird hingegen durch
8× 8-Matrizen mit Einträgen

(T aA)bc = −ifabc (B.7)
gebildet. Der quadratische Casimir-Operator hat hier den Wert

CA = 3. (B.8)
1Die Elemente der Gruppe sind also „nah an der Identität“, denn man erkennt durch eine Reihenentwicklung:
U(αa(x)) = 1+ αaT a.

2Der Kommutator ist insbesondere von 0 verschieden, was die Algebra und die erzeugte Gruppe nicht-abelsch
macht. Dies impliziert eine besondere Form der Eichtheorie, die Yang-Mills-Theorie.

3Ein bekanntes Beispiel ist die SU(2) erzeugende Drehimpulsalgebra, hier gilt fabc = εabc.
4Folglich läuft der Index a von 1 bis 8.
5Dies ist ein Spezialfall des Lemmas von Schur.
6Daher auch der Index in CF und T aF .
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C Berechnung der Vertexkorrektur

C.1 Schleifenamplitude und dimensionale Regularisierung
Die nachfolgenden Rechnungen orientieren sich an [9], die wiederum auf [3] und [11] basieren.
Es soll nun eine Amplitude höherer Ordnung (Diagramm C.1) ermittelt werden. In höheren
Ordnungen erlaubt man zusätzliche Prozesse im Mutterprozess, zum Beispiel das Emittieren
bzw. Absorbieren eines zusätzlichen virtuellen Gluons vor bzw. nach dem Quark-Photon-Vertex
in Diagramm C.1. Im Feynmandiagramm ist so eine sogenannte Schleife entstanden. Die Anzahl
der Schleifen ist Indikator der Ordnung des Prozesses1. Hier handelt es sich, wie schon in Kapitel
2.4 diskutiert, um einen NLO-Prozess.
Auch Schleifen lassen sich über Feynmanregeln in Amplituden übersetzen. Es muss zusätzlich

eine Schleifenrichtung festgelegt werden, um interne Impulse über ihre Erhaltung charakteri-
sieren zu können. In Diagramm C.1 wurde die Schleifenrichtung in Flussrichtung der Quarks
gelegt, entsprechend ergeben sich dann die internen Impulse. Außerdem bleibt der Gluonimpuls
k unbestimmt, daher wird über alle möglichen Impulswerte integriert. Damit ergibt sich für die
Amplitude des Gesamptprozesses

M =
(
u(p′1)ieγµu(p1)

)(
− igµν

q2

)(
u(p′2)ieΓνu(p2)

)
. (C.1)

Der einzige Unterschied bei Berücksichtigung der Schleife ist der neue Tensor Γν anstelle des
Vertexfaktors ieγµ. Für die Auswertung der Schleife ist also nur noch die rechte Klammer in der
Amplitude relevant. Unter Anwendung der Feynmanregeln in Tabelle A.1 sowie des Integrals
über den Gluonimpuls k ergibt sich für den betrachteten Prozess (dargestellt in Abbildung C.1):

u(p′)Γνu(p) =
∫

d4k

(2π)4u(p′)
[igsγα 1

2T
a
ij ][i(/p′ + /k)][igeγν ][i(/p+ /k)][igsγβ 1

2T
a
jk][−igαβ]

[p′ + k]2[p+ k]2k2 u(p)

= 1
4g

2
sCF δjk

∫
d4k

(2π)4u(p′)
γα[/p′ + /k]γν [/p+ /k]γα

[p′ + k]2[p+ k]2k2 . (C.2)

Massen werden wie in allen anderen Rechnungen unterdrückt, gs ist Stellvertreter für die Kopp-
lungskonstanten des Quarks2. Die Gell-Mann-Matrizen3 T a wurden schon in Anhang B definiert.
In den Vertexfaktoren veranschaulichen sie den Wechsel von Farbladung i nach j bzw. j nach k
durch das entsprechende Matrixelement. Die Farbladung j in der Schleife ist beliebig, deshalb
wird per Summenkonvention über diese summiert. Gleiches gilt für das Gluon, das durch die
a-te Gell-Mann-Matrix repräsentiert wird. Damit ergibt sich

T aijT
a
jk =

∑
a

(T a)2
jk

(B.6)= CF δjk (C.3)

1Dies gilt, da die Potenz der Kopplungskonstante proportional zur Störungsordnung ist.
2Es gilt αs = g2

s
4π .3Hier und im Weiteren in fundamentaler Repräsentation, der Index F wird unterschlagen.
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C Berechnung der Vertexkorrektur

p p’

q

k

p+k p’+k

Abbildung C.1: Quark (Impulse p, p′) streut am virtuellen Photon (Impuls q), dabei emittiert
es vor der Streuung ein virtuelles Gluon (Impuls k) und absorbiert es nach der
Streuung wieder.

Viele Schleifenintegrale, darunter auch das obige, sind divergent. Man unterscheidet zwischen
infraroter und ultravioletter Divergenz bei sehr kleinen bzw. sehr großen Impulswerten. Diver-
gentes Verhalten der Amplitude ist unphysikalisch, weil es nach (2.16) auch einen divergierenden
Wirkungsquerschnitt zur Folge hat. Das hier benutzte Konzept zum Umgang mit divergenten
Schleifenintegralen ist die dimensionale Regularisierung:
Ziel ist es, die Integration nicht in 4, sondern in D Dimensionen durchzuführen. Abschlie-

ßend wird mithilfe von D = 4 − ε der Limes D → 4 oder äquivalent ε → 0 gebildet. Dort
manifestiert sich die Divergenz des Integrals in Form von Polen bei ε = 0. Die zugrundeliegen-
de Clifford-Algebra der Dirac-Matrizen (2.4) bleibt erhalten, die Relation(2.5) wird wegen der
D-Dimensionalität der Matrizen zu

γµγµ = D. (C.4)

Aus der Teilamplitude (C.2) wird nun

1
4g

2
sCF δjk

∫
dDk

(2π)D u(p′)
γα[/p′ + /k]γν [/p+ /k]γα

[p′ + k]2[p+ k]2k2 u(p). (C.5)

Um dieses Integral zu berechnen, soll zuerst die Tensorstruktur im Zähler vereinfacht werden:

γα[/p′ + /k]γν [/p+ /k]γα = γαγβ[p′β + kβ]γνγδ[p′δ + kδ]γα = γαγβγνγδγα[p′β + kβ][pδ + kδ]
=[−2γδγνγβ + (4−D)γβγνγδ][p′β + kβ][pδ + kδ]
=− 2[/pγν/p′ + /pγ

νγβkβ + γδγν/p
′kδ + γδγνγδkβkδ]

+ (4−D)[/p′γν/p+ γβγν/pkβ + /p
′γνγδkδ + γβγνγδkβkδ]. (C.6)

Im vorletzten Schritt wurde eine Identität benutzt, die aus den Kommutationseigenschaften der
Dirac-Matrizen (s. (2.4)) und der modifizierten Identität (C.4) hergeleitet werden kann.
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C Berechnung der Vertexkorrektur

Mit diesem Nenner ergibt sich dann das Integral zu

u(p′)
{

[−2/pγν/p′ + (4−D)/p′γν/p]
∫
dDk

1
[p′ + k]2[p+ k]2k2

+[−2(/pγνγβ + γβγν/p
′) + (4−D)(γβγν/p+ /p

′γνγβ)]
∫
dDk

kβ
[p′ + k]2[p+ k]2k2

+[−2γδγνγβ + (4−D)γβγνγδ]
∫
dDk

kβkδ
[p′ + k]2[p+ k]2k2

}
u(p) (C.7)

= u(p′)
{

[−2/pγν/p′ + (4−D)/p′γν/p]C0

+[−2(/pγνγβ + γβγν/p
′) + (4−D)(γβγν/p+ /p

′γνγβ)]Cβ

+[−2γδγνγβ + (4−D)γβγνγδ]Cβδ
}
u(p). (C.8)

Vorfaktoren werden ab hier zugunsten der Übersichtlichkeit unterschlagen. Bevor näher auf die
im letzten Schritt eingeführte Notation eingegangen wird, soll zunächst die Dirac-Gleichung
(2.2) ausgenutzt werden. Diese wird im Fall verschwindender Massen zu

/pu(p)−mu(p) = 0
⇔ /pu(p) = 0 = −u(p)/p. (C.9)

Alle Summanden im obigen Integral mit führendem /p′ und/oder nachstehendem /p fallen also
weg:

u(p′)
{
− 2/pγν/p′C0 − 2(/pγνγβ + γβγν/p

′)Cβ

+[− 2γδγνγβ + (4−D)γβγνγδ]Cβδ
}
u(p). (C.10)

Zuletzt soll noch der Vorfaktor des ersten Summanden −2/pγν/p′ näher betrachtet werden. Nutzt
man die Algebra der Dirac-Matrizen (2.4) aus, so erhält man:

/pγ
ν
/p
′ = γαγνγρpαp

′
ρ = [2γαgνρ − γαγργν ]pαp′ρ = [2γαgνρ − 2gαργν + γργαγν ]pαp′ρ

= 2/pp′ν − 2p · p′γν + /p
′
/pγ

ν Anwenden von u(p′), u(p)→ −2p · p′γν . (C.11)

C.2 Tensorreduktion und finale Schritte
Die in (C.8) eingeführten Integrale unterliegen folgender Nomenklatur: Der Anzahl der internen
Propagatoren, hier 3, wird gemäß dem Alphabet ein Buchstabe, hier also C, zugeordnet, die
Tensorwertigkeit der Integrationsvariable im Zähler wird an diesem Buchstaben notiert. Falls
kein Tensor im Zähler steht, also ein skalares Integral vorliegt, wird stattdessen eine 0 im Index
geführt. Allgemein ergibt sich bei Vernachlässigung der Massen:∫

dDr
rµ1 . . . rµN

r2[p1 + r]2 . . . [pL−1 + r]2 = Xµ1...µN (p2
1, . . . , p

2
L−1). (C.12)

X ist hierbei der L-te Buchstabe des Alphabets.
Ziel ist es nun, jegliches tensorwertiges Integral, in diesem Fall also Cβ und Cβδ, auf eine

Kombination skalarwertiger Integrale, deren Werte dann in der Literatur nachgeschlagen werden
können, zu reduzieren. Erreichen lässt sich dies durch die Tensorreduktion.
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C Berechnung der Vertexkorrektur

Dafür wird im ersten Schritt jedes Tensorintegral durch eine symmetrische Linearkombination
aus den Impulsen p und p′ ausgedrückt, hier beispielhaft die für Rechnung relevanten Integrale:

Cβ = pβC1 + p′βC2 und (C.13)
Cβδ = gβδC00 + pβpδC11 + p′βp′δC22 + (pβp′δ + pδp′β)C12. (C.14)

Dann erfolgt die namensgebende Reduktion durch Multiplikation von kovarianten Tensoren
entsprechender Wertigkeit:

pβC
β ≡ R1 = p2C1 + p′ · pC2 = p′ · pC1 ⇔ C1 = 1

(p · p′)2R1, (C.15)

p′βC
β ≡ R2 = p′ · pC11 + p′2C2 = p′ · pC2 ⇔ C2 = 1

(p · p′)2R2. (C.16)

Wenn R1 und R2 näher betrachtet werden, ergibt sich

R1 =
∫
dDk

p · k
k2[p+ k]2[p′ + k]2 = 1

2

∫
dDk

[p+ k]2 − k2

k2[p+ k]2[p′ + k]2

= 1
2[B0(p′2 = 0)−B0((p− p′)2)], (C.17)

analog R2 = · · · = R1, (C.18)

womit insgesamt das Tensorintegral Cβ durch skalare Integrale des TypsX0 ausgedrückt werden
konnte. Analog wird bei Cβδ vorgegangen, hier erhält man

C00 = 1
4[B0((p− p′)2) + 1] +O(ε), (C.19)

C12 = − 1
p · p′

[C00 −
1
4B0((p− p′)2)]. (C.20)

C11 und C22 sind nicht weiter relevant, da sie in dieser Rechnung keinen Beitrag liefern werden
(s. (C.22)).
Setzt man nun (C.11) und die Identitäten im obigen Abschnitt in die Amplitude (C.10) ein,

so erhält man

u(p′)
{

4p · p′C0 − 2[/pγνγβ + γβγν/p
′](pβC1 + p′βC2)

+[− 2γδγνγβ + (4−D)γβγνγδ]

× [gβδC00 + pβpδC11 + p′βp
′
δC22 + (pβp′δ + pδp′β)C12]

}
u(p). (C.21)

Hier verschwinden wieder Terme aufgrund der Dirac-Gleichung (C.9), auftretende /pγν/p′ werden
über (C.11) vereinfacht. Somit wird obiger Ausdruck zu

[4p · p′C0 + 4p · p′(C1 + C2) + (2−D)(DC00 − 2p · p′C12)]γν . (C.22)

Setzt man zuletzt noch obige Identifizierungen für die Tensorintegrale in (C.22) ein, so gelangt
man zu folgendem Endergebnis für die Teilamplitude:

M = αsπCF δjk · [4p · p′(C0 + C1 + C2) + (2−D)(DC00 − 2p · p′C12)]γν . (C.23)

Dieses Ergebnis kann als Basis für die Herleitungen in Kapitel 2.4 verwendet werden. Dafür
müssen die skalaren Integrale in (C.23) explizit ausgewertet werden. Es verschwinden die UV-
Divergenzen in den skalaren Integralen durch die zusätzliche Betrachtung von Selbstenergie-
schleifen (Abbildung 2.5b), deren Amplituden analog zum auf den letzten Seiten vorgestellten
Rechenweg ermittelt werden können. Gleiches gilt für die Abstrahlung reeller Gluonen4 (Abbil-
dungen 2.5c und 2.5d).
4Entsprechende Rechnungen können in [13], Kapitel 20 nachvollzogen werden.
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