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1. Introduction

1. Introduction

Parton distribution functions (PDFs) are commonly used in high-energy physics to de-
scribe scattering processes. They describe the probability of a specific parton (i.e. quark
or gluon) to have the momentum fraction x of a hadron, which they are a part of. Since
the PDFs are non-perturbative quantities they have to be determined from experimen-
tal data. Usually these PDFs are calculated for an initial energy scale using data from
deep inelastic scattering experiments where a virtual photon collides with a proton or
nucleus. Using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tions these PDFs can then be evolved to higher energy scales.
For proton and nuclei the DGLAP equations are homogeneous differential equations. For
the deep inelastic scattering of a virtual with a real photon (i.e. for photon PDFs) they
become inhomogeneous. The reason for that is that the real photon does not only behave
hadron-like, i.e. similar to for example a proton, but also interacts with/fluctuates into
quark-antiquark pairs. This is called the point-like contribution which is responsible for
the inhomogeneous part of the DGLAP evolution equations.
The photon PDFs have already been extracted in previous literature, however there were
always some shortcomings.
This thesis aims to improve on that by calculating the photon PDFs using a modified
version of the evolution library APFEL++ written in C++ [1, 2], which is a more modern
evolution library than used in previous publications. Furthermore the calculated photon
PDFs will not violate the momentum sum rule and include new research data. Most
importantly the uncertainties of the photon PDFs (i.e. error PDFs) will be calculated
and the methods used for their calculation will be provided.

This thesis is structured as follows:

Chapter 2: This chapter gives a short theoretical overview on QCD, deep inelastic scat-
tering of the proton and the associated DGLAP equations.

Chapter 3: Building upon the previous chapter the theory describing the deep inelastic
scattering of real photons is given.

Chapter 4: Next the implementation of the inhomogeneous DGLAP evolution equation
into APFEL++ is explained.

Chapter 5: In this chapter it is shown how the fitting of the free initial parameters to
the available F γ

2 data is done by minimizing the χ2 using MINUIT.

Chapter 6: Here the calculation of error PDFs using the Hessian method is explained.

Chapter 7: The results of the previous chapters are presented and the calculated PDFs
and F γ

2 structure functions are compared to previous photon PDFs and the exper-
imental data respectively.
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2. Structure of the Proton in QCD

2. Structure of the Proton in QCD

Unless stated otherwise, sections 2.2 and 2.3 follow the theoretical parts of [3, 4] closely.
For further details please refer to these sources.

2.1. Quantum Chromodynamics (QCD)

The theory of strong interactions is called quantum chromodynamics (QCD). It explains
the interactions between hadrons and also the particles they are made of. These parti-
cles, gluons and quarks, are called partons. One of the most prominent tools to analyse
these interactions is pQCD, where the result is approximated by expressing it as a power
series. This can be done because of the asymptotic freedom which is, next to the con-
finement, one of the main features of QCD. The asymptotic freedom states that with
large enough momentum

(
Q2 ≫ 1GeV2

)
or probed distances smaller than the size of

the probed hadron, the interaction strength, i.e. the strong coupling constant αs (Q
2),

becomes weaker.

When the goal is to observe the distribution of partons inside a hadron, deep inelastic
scattering (DIS) is used on the experimental side to gather data. Since the description
of the distribution however should be independent of the process, factorization is used to
split the description of the experimental results into two parts. One of these parts, the
parton distribution functions (PDFs), are process-independent, meaning they universally
describe the partonic structure/distribution of the probed hadron [4].

2.2. Deep Inelastic Scattering (DIS) on Protons

Figure 1: Electron - Proton DIS. [3]

If the momentum transfer squared Q2 = −q2 of the virtual photon during e + p →
e′ +X processes (see fig. 1) becomes large enough, the (target) proton does not scatter
elastically, but inelastically. This means that now the proton does not behave like a
point-like particle anymore, but rather as a particle made up of structureless partons.

- 2 -



2. Structure of the Proton in QCD

The inelastic electron - proton scattering can be seen as an elastic scattering of the
electron and a ’free’ quark within the proton. This means that large Q2 virtual photons
resolve the ’point’ constituents of the proton [5].

The scattering amplitude of such a process is given by

M =
4πα

q2
ū (k′) γµu(k) ⟨X |Jµ(0)| p⟩ , (2.1)

with the electromagnetic fine-structure constant α = e2/4π and the matrix element
⟨X |Jµ(0)| p⟩ of the current Jµ between the initial proton and the final X states. The

variable x = Q2

2(p·q) is the fraction of the momentum of the proton carried by the parton
interacting with the virtual photon.
The cross section then reads

dσ =
16π3α2M

q4(k · p)
LµνWµν

d3
−→
k ′

2Ek′(2π)3
, (2.2)

where Lµν stands for the leptonic tensor

Lµν =
1

2

∑
pol

ū(k)γνu (k′) ū (k′) γµu(k) = 2 (k′µkν + k′νkµ − gµν (k′ · k)) (2.3)

and Wµν for the hadronic tensor

Wµν =
1

4πM

1

2

∑
pol

∑
X

(2π)4δ4 (k + p− k′ − pX) ⟨p |Jν(0)|X⟩ ⟨X |Jµ(0)| p⟩
d3pX

2EpX (2π)
3

= −F1

M

(
gµν −

qµqν
q2

)
+

F2

νM2

(
pµ −

(p · q)
q2

qµ

)(
pν −

(p · q)
q2

qν

)
.

(2.4)
The hadronic tensor can be expressed in terms of the structure functions F1 and F2 with

F1 =

(
−1

2
gµν +

2x2

Q2
pµpν

)
MWµν

F2

x
=

(
−gµν +

12x2

Q2
pµpν

)
MWµν .

(2.5)

This leads to the DIS cross section

dσ

dxdQ2
=

4πα2

Q4

1

x

(
xy2F1 + F2

(
1− y − x2y2M2

Q2

))
(2.6)

with y = (p·q)
(p·k) .
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2. Structure of the Proton in QCD

For the so called quark parton model, i.e. electron - proton DIS without gluon emission
and loops, one receives as expressions for the structure functions

F1(x) =
1

2

∑
q

e2qfq(x)

F2(x) =
∑
q

e2qxfq(x),
(2.7)

where fq(x) is the density of the quark q in the proton.
Together with eq. (2.6) this leads to the cross section for DIS in the quark parton model

dσ

dxdQ2
=

4πα2

Q4

(
y2

2
−
(
1− y − x2y2M2

Q2

))∑
q

e2qfq(x) =
dσ̂0

dxdQ2

∑
q

e2qfq(x), (2.8)

with the partonic Born cross section

dσ̂0

dxdQ2
=

4πα2

Q4

(
y2

2
−
(
1− y − x2y2M2

Q2

))
. (2.9)

2.3. QCD Corrections

As already mentioned the parton model does not show the whole picture. There are still
two types of QCD corrections to the DIS cross section to consider:

• real gluon and quark emission off quark and gluon legs

• virtual corrections, i.e. loop corrections to quark and gluon propagators and quark-
gluon vertices

These calculations in pQCD are simplified by using the axial gauge for the gluon prop-
agator.

Figure 2: Real gluon emission off incoming quark (quark-initiated parton ladder) in cut dia-
gram notation. [3]
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2. Structure of the Proton in QCD

The main contributor to the corrections is the emission of a real gluon off the incoming
quark. This is shown in fig. 2. The corresponding hadronic tensor can be calculated as

−gµνMWµν =
∑
q

e2q
αs

2π
ln

(
Q2

m2

) 1∫
x

dz

z
Pqq(z)fq

(x
z

)
(2.10)

in the leading logarithmic approximation (LLA), where the m2 was introduced as an ar-
bitrary cutoff and Pqq(z) = CF

1+z2

1−z
is the quark-quark splitting function with CF = 4/3.

Combining eq. (2.10) with the result for the parton model at leading-order, eq. (2.8),
results in the DIS cross section in LLA:

dσ

dxdQ2
=

dσ̂0

dxdQ2

∑
q

e2q

(
1 +

αs

2π
ln

(
Q2

m2

)
Pqq

)
⊗ fq, (2.11)

with the convolution ⊗ defined as

1⊗ fq ≡
1∫

x

dz

z
δ(z − 1)fq

(x
z

)
= fq(x)

Pqq ⊗ fq ≡
1∫

x

dz

z
Pqq(z)fq

(x
z

)
.

(2.12)

By adding more gluon ’steps’ to the ladder, the cross section becomes

dσ

dxdQ2
=

dσ̂0

dxdQ2

∑
q

e2q exp

[
αs

2π
ln

(
Q2

m2

)
Pqq

]
⊗ fq (2.13)

with the convolution

Pqq ⊗ Pqq ⊗ fq ≡
1∫

x

dz′

z′
Pqq(z

′)

1∫
x/z′

dz

z
Pqq(z)fq

( x

zz′

)
. (2.14)

For the gluon-initiated parton ladder (see fig. 3) the contribution to the DIS cross section
in LLA is

dσ

dxdQ2
=

dσ̂0

dxdQ2

∑
q

e2q
αs

2π
ln

(
Q2

m2

)
Pqg ⊗ fg (2.15)

with the quark-gluon splitting function Pqg(z) = TR (z2 + (1− z)2) where TR = 1/2.

- 5 -



2. Structure of the Proton in QCD

Figure 3: Gluon-initiated parton ladder in cut diagram notation. [3]

Including more quark ’steps’, all corrections so far can be combined and are equivalent to
replacing the Q2-independent fi(x) with the to the parton distribution functions (PDF)
fi(x,Q

2) for the quark and gluon(
fq(x)
fg(x)

)
→
(
fq(x,Q

2)
fg(x,Q

2)

)
= exp

[
αs

2π
ln

(
Q2

m2

)(
Pqq Pqg

Pgq Pgg

)]
⊗
(
fq
fg

)
(2.16)

in the result for the parton model, eq. (2.8). From eq. (2.16) one obtains the famous
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation

Q2 ∂

∂Q2

(
fq(x,Q

2)
fg(x,Q

2)

)
=

αs

2π

(
Pqq Pqg

Pgq Pgg

)
⊗
(
fq(Q

2)
fg(Q

2)

)
, (2.17)

describing the higher-order corrections to the parton model predictions.

Figure 4: Virtual correction to quark-initiated parton ladder. [3]

The virtual corrections (see fig. 4) lead to a DIS cross section in LLA, including quark
contributions, of

dσ

dxdQ2
=

dσ̂0

dxdQ2

∑
q

e2q

(
Zq(−m2) +

αs

2π
ln

(
Q2

m2

)
Pqq

)
⊗ fq

=
dσ̂0

dxdQ2

∑
q

e2q

(
Zq(−Q2) +

αs

2π
ln

(
Q2

m2

)
P̃qq

)
⊗ fq

- 6 -



2. Structure of the Proton in QCD

with

Zq(−Q2) = 1− αs

2π
CF ln

(
Λ2

Q2

) 1∫
0

dz
1 + z2

1− z
(2.18)

and the plus-prescription of the quark-quark splitting function

P̃qq(z) = CF

(
1 + z2

1− z

)
+

(2.19)

with (
1 + z2

1− z

)
+

≡
(
1 + z2

1− z

)
− δ(1− z)

1∫
0

dz′
(
1 + z′2

1− z′

)
. (2.20)

The plus-prescription does not have the z = 1 singularity meaning it is canceled by the
virtual corrections.
Eq. (2.18) can be compared to eq. (2.11), where the only difference are the missing
virtual corrections.
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3. Parton Distribution Functions in the Real Photon

Figure 5: Electron - photon DIS. [3]

3. Parton Distribution Functions in the Real Photon

The discussion of the theory follows [3, 6] closely, unless stated otherwise. For further
information please refer to these references and [7, 8, 9].

3.1. Introduction

The photon, as a boson, plays a dual role in strong interactions. It can interact directly
with charged particles aswell as indirectly through particles created by fluctuating into
a charged fermion antifermion pair. This pair carries the same quantum numbers as
the photon. The photon is called resolved during the indirect interactions, whereas it
is called direct or bare in the first case. The different interactions of the photon can be
seen in fig. 6.

Figure 6: The different appearances of the photon. Shown are (a) the direct or bare photon,
and (b,c) the resolved photon, which can be either point-like, (b), or hadron-like,
(c) [6, Fig. 2.].

For the calculation of photon PDFs during DIS on a real photon (see fig. 5) the direct

- 8 -



3. Parton Distribution Functions in the Real Photon

interaction with particles is not of interest since it does not reveal the structure of the
photon. Interactions with the resolved photon however reveal it’s structure.
As illustrated in fig. 6 the resolved photon appears in two distinguishable forms. The
point-like and the hadron-like (or also called hadronic).

Figure 7: Quark box diagram in cut diagram notation. [3]

The point-like part, where the photon splits into a quark antiquark pair, leads to the
interaction shown in the so called quark box diagram fig. 7. This part can be calulated
perturbatively and is represented by the inhomogeneous part of the DGLAP evolution
equations for the photon.
On the other hand the hadron-like part appears if the photon, as the name suggests,
fluctuates into a hadronic state. This part can not be calculated perturbatively.

3.2. Inhomogeneous DGLAP Equations for Photon DIS

The DGLAP eqvolution equations for the photon DIS are given by

dqγi
d lnQ2

=
α

2π
Pqiγ ⊗ Γγ +

αs

2π

{
f∑

k=1

[Pqiqk ⊗ qγk + Pqiq̄k ⊗ q̄γk ] + Pqig ⊗ gγ

}
dq̄γi

d lnQ2
=

α

2π
Pq̄iγ ⊗ Γγ +

αs

2π

{
f∑

k=1

[Pq̄iqk ⊗ qγk + Pq̄iq̄k ⊗ q̄γk ] + Pq̄ig ⊗ gγ

}
dgγ

d lnQ2
=

α

2π
Pgγ ⊗ Γγ +

αs

2π

{
f∑

k=1

[Pgqk ⊗ qγk + Pgq̄k ⊗ q̄γk ] + Pgg ⊗ gγ

}
dΓγ

d lnQ2
=

α

2π
Pγγ ⊗ Γγ +

α

2π

{
f∑

k=1

[Pγqk ⊗ qγk + Pγq̄k ⊗ q̄γk ] + Pγg ⊗ gγ

}
,

(3.1)

- 9 -



3. Parton Distribution Functions in the Real Photon

where the parton distributions for the quarks and antiquarks are qγi (x,Q
2) and q̄γi (x,Q

2),
the gluon distribution is gγ (x,Q2) and the photon distribution Γγ (x,Q2). The Pab are
the usual splitting functions. They are illustrated in fig. 24. nf refers to the number of
active quark flavours, i.e. the number of quark flavours which can be produced at the
given Q2.
For the case of the photon qγi = q̄γi .

Because the QED coupling constant α ≈ 1/137 ≪ 1 it is sufficient to expand eq. (3.1)
only up to O(α). This means that Pγqk , Pγq̄k and Pγg do not contribute and since photon
radiation starts at α2 one can use

Pγγ ∝ δ(1− x) (3.2)

for all orders in αs. The photon distribution function can now be calculated explicitly
as

Γγ
LO

(
x,Q2

)
= δ(1− x)

[
1− α

π

(
nf∑
k=1

e2qk ln

(
Q2

Q2
0

+ c1

))]
, (3.3)

where Q2
0 is the starting scale of the evolution and c1 is an unknown parameter.

To keep the distribution functions at O(α), only the O(α0) contribution of Γγ will be
used, resulting in

dqγi
d lnQ2

=
α

2π
Pqiγ +

αs

2π

{
f∑

k=1

[Pqiqk + Pqiq̄k ]⊗ qγk + Pqig ⊗ gγ

}
dgγ

d lnQ2
=

α

2π
Pgγ +

αs

2π

{
f∑

k=1

[Pgqk + Pgq̄k ]⊗ qγk + Pgg ⊗ gγ

}
.

(3.4)

Rewriting these equations in terms of the non-singlet and singlet quark and perturba-
tively expanding the splitting functions in αs one receives

dqγNS(x,Q
2)

d lnQ2
=

α

2π

(
k
(0)
NS(x) +

αs

2π
k
(1)
NS(x)

)
+

αs

2π

(
P (0)
qq +

αs

2π
P (1)
qq

)
⊗ qγNS

dΣγ(x,Q2)

d lnQ2
=

α

2π

(
k(0)
q (x) +

αs

2π
k(1)
q (x)

)
+

αs

2π

(
P (0)
qq +

αs

2π
P (1)
qq

)
⊗ Σγ

+
αs

2π

(
P (0)
qg +

αs

2π
P (1)
qg

)
⊗ gγ

dgγ(x,Q2)

d lnQ2
=

α

2π

αs

2π
k(1)
g (x) +

αs

2π

(
P (0)
gq +

αs

2π
P (1)
gq

)
⊗ Σγ

+
αs

2π

(
P (0)
gg +

αs

2π
P (1)
gg

)
⊗ gγ,

(3.5)
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3. Parton Distribution Functions in the Real Photon

where the quark non-singlet is

qγNS

(
x,Q1

)
=

nf∑
q=1

(
e2q − ⟨e2⟩

) (
qγ
(
x,Q2

)
+ q̄γ

(
x,Q2

))
(3.6)

and the quark singlet

Σγ
(
x,Q2

)
=

nf∑
q=1

(
qγ (x,Q) + q̄γ

(
x,Q2

))
. (3.7)

Here

⟨ei⟩ = 1

nf

nf∑
q=1

e2i (3.8)

was used.
The splitting functions P

(0,1)
ij are the same as in the proton case and can be seen in

eq. (A.1). The splitting functions stemming from the point-like coupling, i.e. the quark
box diagram, can be calculated from the splitting functions in eq. (3.4) and are given
by [7, 8]

k
(0)
NS = 3nf

(
⟨e4⟩ − (⟨e2⟩)2

)
2(x2 + (1− x)2)

k
(1)
NS = 3nf

(
⟨e4⟩ − (⟨e2⟩)2

)
k(x)

k(0)
q = 3nf⟨e2⟩2(x2 + (1− x)2)

k(1)
q = 3nf⟨e2⟩k(x)

k(1))
g = 3nf⟨e2⟩

4

3

[
−16 + 8x+

20

3
x2 +

4

3x
− (6 + 10x) ln(x)− 2(1 + x)(ln(x))2

]
(3.9)

with

k(x) =
4

3

[
4− 9x− (1− 4x) ln(x)− (1− 2x)(ln(x))2 + 4 ln(1− x)

+ (4 ln(x)− 4 ln(x) ln(1− x) + 2(ln(x))2 − 4 ln(1− x) + 2(ln(1− x))2

− 2

3
π2 + 10)(x2 + (1− x)2)

]
.

(3.10)

The DGLAP evolution equations for the photon, eq. (3.5), are inhomogeneous because
of the point-like couplings, i.e. the coupling of photons to quarks. Without this coupling
the evolution equations would be homogeneous and the same as for the proton. Because
of this the homogeneous solution of eq. (3.5) is called the hadronic solution and the
particular solution the point-like. The general solution of the inhomogeneous DGLAP
equations is given by the sum of the two solutions

qγ(x,Q2) = qγpl(x,Q
2) + qγhad(x,Q

2)

gγ(x,Q2) = gγpl(x,Q
2) + gγhad(x,Q

2).
(3.11)
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3. Parton Distribution Functions in the Real Photon

3.3. F γ
2 Structure Function for Photon DIS

The contribution of the quark box diagram, i.e. the point-like contribution, to the F γ
2

structure function is given by [3]

F γ
2 (x,Q

2)

x
=

α

2π
2
∑
f

e4fNc

[
(x2 + (1− x)2) ln

(
1− x

x

)
− 1 + 8x(1− x)

]
. (3.12)

In the so called MS factorization scheme (see section 3.4) at NLO the complete F γ
2 (x,Q2)

structure function reads [3, 7, 8]

F γ
2 (x,Q

2)

x
=

(
1 +

αs(Q
2)

4π
Bq

)
⊗ qγNS + ⟨e2⟩

(
1 +

αs(Q
2)

4π
Bq

)
⊗ Σγ

+ ⟨e2⟩αs(Q
2)

4π
Bg ⊗ gγ + 3nf⟨e4⟩

α

4π
Bγ(x),

(3.13)

where Bq and Bg are standard NLO coefficient functions

Bq(x) =
8

3

[
9 + 5x

4
− 1 + x2

1− x
lnx− 3

4

1 + x2

(1− x)+
+ (1 + x2)

(
ln(1− x)

1− x

)
+

−
(
9

2
+

π2

3

)
δ(1− x)

]
(3.14)

Bg(x) = 2nf

[
(x2 + (1− x)2) ln

(
1− x

x

)
− 1 + 8x(1− x)

]
. (3.15)

The photon coefficient function Bγ(x), representing the point-like contribution to the
structure function, is

Bγ(x) =
2

nf

Bg(x). (3.16)

In eq. (3.13) the Bγ(x) will lead to numerical instabilites. The reason for that is the
ln(1−x)/x term in eq. (3.16) which becomes large and negative for x → 1. This however
can be avoided by using the DISγ factorization scheme proposed in [8].

3.4. DISγ Factorization Scheme

In general cross sections for processes with hadrons in the initial state show a combination
of short- and long-distance behaviour, which means that they are not directly computable
in pQCD. The cross section for DIS on a real photon shows the same behaviour.
The factorization theorems allow to derive predictions for these cross sections by separat-
ing (factorizing) the long-distance (non-perturbative) behaviour from the short-distance
(perturbative) behaviour in a systematic fashion [10].
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3. Parton Distribution Functions in the Real Photon

For F2 (x,Q
2) structure functions the factorization leads to [11]

F2(x,Q
2) =

∑
i=q,q̄,g

1∫
x

dξCi

(
x

ξ
,
Q2

µ2
,
µ2
f

µ2
, αs(µ

2)

)
fi(ξ, µ

2
f , µ

2) (3.17)

where i is the parton flavour, Ci are called coefficient functions (they are the same as
Bi) and fi are parton distributions. µ is the renormalization scale appearing in any
perturbative calculations [5] (µ2 = m2 is used here), while µf is the factorization scale
separating the perturbative and non-perturbative effects. It is often chosen that µf = µ.
The short-distance behaviour is described by the coefficient functions Ci, which are
target indepent and can be calculated using perturbation theory.
The long-distance behaviour on the other hand is given by the parton distributions fi
which only depend on the target and not on the process.
To calculate these coefficient functions and parton distributions one needs a prescrip-
tion for separating the two. This prescription, involving a degree of choice, is called a
factorization scheme. One of the most commonly used factorization schemes is called
the modified minimal subtraction, MS, factorization scheme.

For the calculation of Ci and fi in this scheme, each involved quantity is written as a
power series of αs as indicated by the superscript

fi = f
(0)
i + f

(1)
i + . . .

Ci = C
(0)
i + C

(1)
i + . . .

F2,i = C
(0)
i ⊗ f

(0)
i + C

(0)
i ⊗ f

(1)
i + C

(1)
i ⊗ f

(0)
i . . . .

(3.18)

For the example of DIS on a quark target for O (α0
s), i.e. without interactions, the

parton distribution is
f
(0)
i (ξ) = δ(1− ξ) (3.19)

and since F2,i(x) = e2qδ(1− x) this results in

C(0)
q (x) = e2qδ(1− x). (3.20)

To one-loop accuracy, i.e. for O (αs), the coefficient functions and parton distributions
can be calculated by comparing the F2 (x,Q

2) structure functions, the DGLAP evolution
equations and eqs. (3.17) and (3.18). Using this approach one will be able to derive the
standard coefficient functions and splitting functions. This is described in detail in [11].
Please refer there and to [10] for further information on factorization.
The splitting functions, PDFs and coefficient functions given so far are given in this
scheme.
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3. Parton Distribution Functions in the Real Photon

The factorization scheme commonly used for the calculation of photon PDFs is called
DISγ. It is defined such that the point-like contribution to the F γ

2 (x,Q2) structure func-
tions is absorbed in the quark distribution. This avoids the aforementioned numerical
instabilities at large x.
The PDFs can be changed from the MS to the DISγ factorization scheme using

(qγ(x) + q̄γ(x))DISγ
= (qγ(x) + q̄γ(x))MS + e2q

3α

4π
Bγ(x)

gγ(x)DISγ = gγ(x)MS.
(3.21)

The point-like splitting functions at NLO in DISγ are given by

k
(1)
NS(x)DISγ = k

(1)
NS(x)MS −

3nf

2

(
⟨e4⟩ − ⟨e2⟩2

)
P (0)
qq ⊗Bγ

k(1)
q (x)DISγ = k(1)

q (x)MS −
3nf

2
⟨e2⟩P (0)

qq ⊗Bγ

k(1)
g (x)DISγ = k(1)

g (x)MS −
3nf

2
⟨e2⟩P (0)

gq ⊗Bγ.

(3.22)

As already mentioned, in the DISγ scheme, the F γ
2 (x,Q2) structure function at NLO

does not contain the Bγ term anymore, which led to the numerical instabilities at large
x. Neglecting higher-order terms the structure function is now given by

F γ
2 (x,Q

2)

x
=

(
1 +

αs(Q
2)

4π
Bq

)
⊗ qγNS + ⟨e2⟩

(
1 +

αs(Q
2)

4π
Bq

)
⊗Σγ + ⟨e2⟩αs(Q

2)

4π
Bg⊗gγ.

(3.23)
This is the same expression as for the proton case.

3.5. Heavy Quarks

At low energy scales not every quark flavour is available. This means that by moving
to higher Q2 during the evolution the number of flavours nf changes. The unavailable
quark flavours are called heavy quarks and when their so called heavy quark threshold
(corresponding with the quark mass) is crossed they become available. The way this is
handled is referred to as a heavy quark scheme.

One way to handle the heavy quarks is called the zero-mass variable flavour number
scheme (ZM-VFNS), where all quarks are treated as massless partons. Furthermore the
PDFs of the heavy quarks (quarks with thresholds below the current Q2) are zero. By
crossing a quark threshold, nf is increased by one and the PDFs of the corresponding
quark can be non-zero. This also means that different evolution equations have to be
solved for below and above these thresholds and connected using matching conditions
at the threshold [1, 3].
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3. Parton Distribution Functions in the Real Photon

The program used for this thesis, APFEL++, handles the heavy quarks and matching
conditions on its own. Therefore the heavy quarks do not affect the theory discussed so
far.

Opposite to the VFNS is the fixed flavour number scheme (FFNS) were, as the name
suggestes, the number of flavours stays fixed. It is common to choose nf = 3 and u, d
and c are therefore treated as massless [3].
For more details on ZM-VFNS and FFNS please refer to [12].

The two different heavy quark schemes both have their use cases. FFNS is known to
be better for low Q2 values while ZM-VFNS should be used at high Q2. Therefore a
combination of the two could result in an improvement over the whole Q2 range [12].
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4. Numerical Implementation of the Evolution of
Photon PDFs using APFEL++

For the evolution a program called APFEL++ [13] will be used. This program can, amongst
other things, evolve PDFs and calculate structure functions. APFEL++ however was
originally written with proton and neutron PDFs in mind, which means that the code
has to be modified to be able to evolve photon PDFs.

4.1. Implementation

As APFEL++ is originally meant for proton and neutron PDFs, it calculates the results
of homogeneous differential equations (DEs), i.e.

dy(t, x)

dt
= f(t, x, y(t, x)), y(t0, x) = y0(x). (4.1)

The photon PDFs however are inhomogeneous DE due to the point-like contribution,
i.e.

dy(t, x)

dt
= f(t, x, y(t, x)) + fPL(t, x) = f ′(t, x, y(t, x)), y(t0, x) = y0(x). (4.2)

The calculation of these DEs is done by using the Runge-Kutta 4 method, inside the func-
tion EvolveObject in matchedevolution.cc. Originally in APFEL++ the RK4 method
only has a function as input, which returns Derivative of the PDFs at a given t. The
function Derivative returns f(t, x, y(t, x)).

By simply adding fPL(t, x) to Derivative, i.e. adding the point-like term to the right-
handside of the hadronic DGLAP evolution equation, EvolveObject now calculates
inhomogeneous DEs, i.e. the photon PDFs.

The point-like contributions, which are added to the hadronic part, can be seen in
eqs. (3.5) and (3.9). However, since APFEL++ uses the QCD evolution basis, and these
point-like contributions are in the physical basis, the conversion still has to be calculated.

4.1.1. QCD Evolution Basis

In the following part the x-dependence of the PDFs will not be explicitly mentioned.
APFEL++ does all calculations in a basis called QCD evolution basis. This basis is given
in eqs. (4.3) to (4.5):

g = g (4.3)
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Σ =
∑
q

q+

T3 = u+ − d+

T8 = u+ + d+ − 2s+

T15 = u+ + d+ + s+ − 3c+

T24 = u+ + d+ + s+ + c+ − 4b+

T35 = u+ + d+ + s+ + c+ + b+ − 5t+

(4.4)

V =
∑
q

q−

V3 = u− − d−

V8 = u− + d− − 2s−

V15 = u− + d− + s− − 3c−

V24 = u− + d− + s− + c− − 4b−

V35 = u− + d− + s− + c− + b− − 5t−

(4.5)

with q± = q ± q̄.
To get the DGLAP equations in this basis, the first step is to calculate how the q± relate
to qNS and Σ.

We know that

q
(nf )
NS =

nf∑
q=1

(
e2q −

〈
e2
〉)

(q + q̄), (4.6)

where the nf at the qNS is introduced for later book keeping. Now, using a function

c
(nf )
q := e2q− < e2 >= e2q −

1

nf

nf∑
q=1

e2q, (4.7)

we can rewrite the q
(nf )
NS , for example:

q
(2)
NS = c(2)u u+ + c

(2)
d d+. (4.8)

From this it is now possible to calculate equations for u+, s+, c+, b+, t+, only dependent
on d+ and qNS at different nf . It would be possible as well to calculate d+ but this is
not necessary for the following calculations.

- 17 -



4. Numerical Implementation of the Evolution of Photon PDFs using APFEL++

Starting from q
(2)
NS and then going to higher nf we can calculate the aforementioned

equations. The calculation of u+ is given as an example:

u+ =
q
(2)
NS

c
(2)
u

− c
(2)
d

c
(2)
u

d+

=
q
(2)
NS

c
(2)
u

+ d+
(4.9)

The resulting equations are:

u+ =
q
(2)
NS

c
(2)
u

+ d+

s+ =
2q

(2)
NS

c
(2)
u

+
q
(3)
NS

c
(3)
s

+ d+

c+ =
q
(2)
NS

c
(2)
u

+
q
(3)
NS

c
(3)
s

+
q
(4)
NS

c
(4)
c

+ d+

b+ =
q
(2)
NS

c
(2)
u

+
q
(3)
NS

2c
(3)
s

+
3q

(4)
NS

2c
(4)
c

+
q
(5)
NS

c
(5)
b

+ d+

t+ =
q
(2)
NS

c
(2)
u

+
q
(3)
NS

2c
(3)
s

+
q
(4)
NS

2c
(4)
c

+
q
(5)
NS

c
(5)
b

+
q
(6)
NS

c
(6)
t

+ d+

(4.10)

From these equations the QCD evolution basis can now be calculated.

Σ : already given

T3 =
q
(2)
NS

c
(2)
u

for nf ≤ 2

T8 = −2q
(3)
NS

c
(3)
s

− 3q
(2)
NS

c
(2)
u

for nf ≤ 3

T15 = −3q
(4)
NS

c
(4)
c

− 2q
(3)
NS

c
(3)
s

for nf ≤ 4

T24 = −4q
(5)
NS

c
(5)
b

− 5q
(4)
NS

c
(4)
c

for nf ≤ 5

T35 = −5q
(6)
NS

c
(6)
t

− 4q
(5)
NS

c
(5)
b

for nf ≤ 6

(4.11)

The equations which require higher nf than the current (i.e. Q2 has not surpassed the
threshold of all included quarks) simplify to Σ, i.e.

T
(nf=3)
15 = u+ + d+ + s+ − 3c+ = u+ + d+ + s+ = Σ(nf=2). (4.12)
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All valence-terms (see eq. (4.5)) are zero, since the quark and anti-quark are set to have
the same PDFs in the real photon, i.e.

q− = q − q̄ = 0. (4.13)

4.1.2. Continuation of Implementation

Using the procedure shown in section 4.1.1 the DGLAP equations in the QCD evolution
basis can be calculated, e.g.:

dT15

d lnQ2
= − 3

c
(4)
c

dq
(4)
NS

d lnQ2
− 2

c
(3)
s

dq
(3)
NS

d lnQ2

= −αs

2π
PNS ⊗

(
3

c
(4)
c

q
(4)
NS +

2

c
(3)
s

q
(3)
NS

)
− α

2π

(
3

c
(4)
c

k
(4)
NS +

2

c
(3)
s

k
(3)
NS

)
= −αs

2π
PNS ⊗ T15 −

α

2π

(
3

c
(4)
c

k
(4)
NS +

2

c
(3)
s

k
(3)
NS

)
,

(4.14)

where
k
(nf )
NS = k

(0,nf )
NS +

αs

2π
k
(1,nf )
NS

PNS = P (0)
qq +

αs

2π
P (1)
qq .

(4.15)

This means that it is now known, in which way the point-like contributions in the QCD
evolution basis can be calculated from the ones in the physical basis.

At this point it is worth mentioning that the PDFs in APFEL++ are used as PDF · x
α
,

which has to be accounted for aswell, but is not shown here.

With these changes done to APFEL++, it can now evolve photon PDFs. Using a file like
Evolution.cc provided in [14] or the EvolutionLHAPDF.cc file in the GitHub repository
[15], APFEL++ can now evolve photon PDFs from LHAPDF files. By using a file like
Evolution.cc in the GitHub repository it is also possible to evolve initial PDFs (PDFs
given at the input scale Q0) with given parameters.

4.2. Input

To compare APFEL++’s results for the evolution of the PDFs to the results of GRV, the
following parameters were used:

Q0 = 1.3GeV mb = 4.5GeV

mc = 1.5GeV mt = 100GeV.
(4.16)
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The masses of the quarks are the same that GRV [16] used. The Q0 is the same as used
by nCTEQ15 [17] and will always be used from now on.

GRV used a fixed equation for αs [7]

4π

αs (Q2)
= β0 ln

Q2

Λ2
+

β1

β0

ln ln
Q2

Λ2
, (4.17)

instead of evolving it from an input scale like APFEL++ does. Therefore, to compare the
GRV and APFEL++ results, it is wise to use the same method for the calculation of αs as
GRV. This was only done for the results shown in section 4.3.
The PDF values calculated by GRV were saved as a LHAPDF set using the parameters
given in [16]. Then they were evolved from the input scale up to the desired energy
where they can be compared to the LHAPDF values of GRV at the same energy.

4.3. Results

Using the inputs given in section 4.2 the results in figs. 8 and 9 were calculated.
These plots show that the modified APFEL++ code does reproduce the results from GRV
very well. This shows that the evolution of the PDFs itself does work.

There was also a cross check done with a modified version of QCDNUM by Vadim
Guzey (for the QCDNUM results see [3]) which yielded very good results. This cross
check however will not be shown here.

Therefore the functionality of the evolution of photon PDFs is validated.

- 20 -



4. Numerical Implementation of the Evolution of Photon PDFs using APFEL++

10 4 10 3 10 2 10 1 100

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

xu
/

Q
ED

up quark PDF APFEL++, (1.3)² GeV²
GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

10 4 10 3 10 2 10 1 100

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

xd
/

Q
ED

down quark PDF APFEL++, (1.3)² GeV²
GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

10 4 10 3 10 2 10 1 100

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

xs
/

Q
ED

strange quark
 PDF APFEL++, (1.3)² GeV²

GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

10 4 10 3 10 2 10 1 100

x

0.0

0.1

0.2

0.3

0.4

0.5
xc

/
Q

ED

charm quark PDF APFEL++, (1.3)² GeV²
GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

10 4 10 3 10 2 10 1 100

x

0

1

2

3

4

5

x
(x

)/
Q

ED

singlet PDF APFEL++, (1.3)² GeV²
GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

10 4 10 3 10 2 10 1 100

x

0

5

10

15

20

25

30

35

xg
/

Q
ED

gluon PDF APFEL++, (1.3)² GeV²
GRV, (1.3)² GeV²
APFEL++, 10 GeV²
GRV, 10 GeV²

Figure 8: PDFs calculated using the inputs from section 4.2 at Q2 = (1.3GeV)2 and Q2 =
10GeV2 for LO. The lines for APFEL++ are partially hidden behind the ones for
GRV.
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Figure 9: PDFs calculated using the inputs from section 4.2 at Q2 = (1.3GeV)2 and Q2 =
10GeV2 for HO. The lines for APFEL++ are partially hidden behind the ones for
GRV.
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5. Fitting of Initial Parameters using χ2-Minimization

Now that the photon PDFs can be evolved, the next step is to write a program which
takes input PDFs with free parameters and calculates the structure functions from them.
The program can be used to fit the free parameters of the input PDFs to the experimental
data. This fit is done using a MINUIT C++ library [18].

5.1. Input PDFs

The input PDFs are motivated by SAL [12]. They are given by

1

α
xūγ (x,Q0) = Ahad

q xBhad
q (1− x)C

had
q + APL

q e2ux
x2 + (1− x)2

1−BPL
q ln (1− x)

1

α
xd̄γ (x,Q0) = Ahad

q xBhad
q (1− x)C

had
q + APL

q e2dx
x2 + (1− x)2

1−BPL
q ln (1− x)

1

α
xs̄γ (x,Q0) = KsA

had
q xBhad

q (1− x)C
had
q + APL

q e2sx
x2 + (1− x)2

1−BPL
q ln (1− x)

1

α
xgγ (x,Q0) = Ahad

g xBhad
g (1− x)C

had
g .

(5.1)

Since too many free parameters could lead to overfitting, some of them will be fixed.
The parameters Chad

q and Chad
g are set to Chad

q = 1 and Chad
g = 3 as done by SAL [12].

These values are suggested by counting rules based on dimensional arguments. Another
parameter adopted by SAL is Ks = 0.3.

With these assumptions there are 6 free parameters left; the same number as SAL has.
The fixed parameters are the same as used by SAL aswell.

However, as will be discussed in more detail in section 5.2, the parameter Ahad
g will be

determined by the momentum sum rule and is therefore not free. This leaves at most 5
free parameters: Ahad

q , Bhad
q , APL

q , BPL
q and Bhad

g .

For the calculations three different input PDFs are used: Fit3, Fit4 and Fit5. The
number refers to the number of free parameters.
Fit5 includes all free parameters. Fit3 sets the free parameters belonging to the point-like
part of the PDFs to zero, i.e. APL

q = BPL
q = 0. Fit4 only sets BPL

q to zero.
The three input PDFs can be seen in appendix A.2.

In the code Fit3, Fit4 and Fit5 are refered to as SAL3, SAL4 and SAL5.
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5.2. Momentum Sum Rule

To ensure the momentum sum rule, the parameter Ahad
g (see section 5.1) will not be

chosen by MINUIT. Rather it is calculated from the other parameters using the FG
momentum sum rule [12]

1

αem

1∫
0

dxx
[
Σ
(
x,Q2

)
+G

(
x,Q2

)]
≈ 1 +

2

3π
ln

Q2

4GeV2 , (5.2)

where Σ is the singlet PDF and G the one for the gluon.
From this the Ahad

g can be calculated:

Ahad
g =

[
r.h.s.− 2 (2 +Ks) l.h.s.

had
q − 2

(
e2u + e2d + e2s

)
l.h.s.PLq

]
/l.h.s.hadg

r.h.s. = 1 +
2

3π
ln

Q2

4GeV2

l.h.s.hadg =

1∫
0

xBhad
g (1− x)C

had
g = B

(
Bhad

g + 1, Chad
g + 1

)

l.h.s.hadq = Ahad
q

1∫
0

xBhad
q (1− x)C

had
q = Ahad

q B
(
Bhad

q + 1, Chad
q + 1

)
l.h.s.PLq = APL

q x
x2 + (1− x)2

1−BPL
q log (1− x)

=


APL

q

3
for BPL

q = 0

−APL
q

BPL
q

(F1 − 3F2 + 4F3 − 2F4) for BPL
q ̸= 0

(5.3)

with the Beta function

B (z1, z2) =
Γ (z1) Γ (z2)

Γ (z1 + z2)
(5.4)

and
Fn = exp

(
n/BPL

q

)
Ei
(
−n/BPL

q

)
, (5.5)

where Ei is the Exponential Integral.

5.3. Implementation

As mentioned in section 3.4, the structure function F γ
2 in the DISγ factorization scheme

is the same as in the hadronic/proton case [16]. Therefore the structure functions do not
have to be changed in APFEL++ and one can simply use the function InitializeF2NCObjectsZM
when initializing the structure functions.

- 24 -



5. Fitting of Initial Parameters using χ2-Minimization

There is however an equation for F γ
2 which eliminates spurious higher order terms [16],

but the difference is said to be not significant. This will not be used.

As already mentioned the fitting of the free parameters is done using MINUIT (C++
library minuit-cpp [18]). MINUIT fits these parameters by minimizing the χ2 function.

The program starts with input PDFs, which have to be given by the user. They can
have an arbitrary but fixed number of free parameters. The input PDFs used in this
thesis are given in section 5.4. For these free parameters the user can set a range in
which the final value will lie in as well as a starting value. The range of these parameters
are motivated mostly by physical considerations (i.e. PDFs have to be positive). They
are discussed in section 5.4.1.

With these starting values the input PDFs are evolved in Q2 and the F γ
2 structure

functions are calculated.The calculated F γ,calc.
2 values and the experimental F γ,exp.

2 values
are then used to calculate the χ2 function:

χ2 (α) =
n∑

i=1

(
F γ,calc.
2 (xi, Qi, α)− F γ,exp.

2,i

)
σ2
i

, (5.6)

where σi is the uncertainty on the measured value F γ,exp.
2,i .

By varying the values of the free parameters within the given range, MINUIT determines
the optimal set of parameters {a0i } for which the χ2 is minimal, i.e.

χ2
({

a0i
})

= χ2
0. (5.7)

5.4. Input

5.4.1. Initial Free Parameters

The free parameters of the input PDFs all have the initial value 0.5. Their initial error
is 0.1.

The boundaries for the free parameters are:

0 ≤Ahad
q ≤ 40 0 ≤APL

q ≤ 40

−1 ≤Bhad
q ≤ 1 0 ≤BPL

q ≤ 40

−1 ≤Bhad
g ≤ 1

(5.8)

The upper boundaries of 40 were chosen big enough to have no effect on the result but
small enough that the minimization does not take too long.
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5.4.2. Evolution Parameters

The used parameters for the evolution are:

Q0 = 1.3GeV mb = 4.5GeV

mc = 1.3GeV mt = 174GeV

Qref = mZ = 91.188GeV αs,ref = αs (Qref) = 0.1179973.

(5.9)

These parameters are the same as used by nCTEQ15 [17].

5.4.3. Used Data on F γ
2

Table 1: Available experimental Data on F γ
2 structure function. The Q2 values written in

italics are values left out. Please note that the values for OPAL2 (without the left
out values) are called OPAL2 less in the code as an artifact of earlier versions.

Facility Experiment < Q2 >, GeV2 # points Used # points Name
1 LEP (CERN) ALEPH [19] 9.9, 20.7, 284 11 11 ALEPH1
2 ALEPH [20] 17.3, 67.2 16 16 ALEPH2
3 DELPHI [21] 12 4 4 DELPHI
4 L3 [22] 1.9, 5 12 12 L3
5 L3 [23] 10.8, 15.3, 23.1 11 11
6 OPAL [24] 7.5, 14.7, 135 10 10 OPAL1
7 OPAL [25] 9, 14.5, 30, 59 14 14
8 OPAL [26] 1.86, 3.76 8 8
9 OPAL [27] 5.9, 14.7 7 7 OPAL2
10 OPAL [28] 1.9, 3.7, 8.9, 10.7, 17.5, 17.8 22 0
11 OPAL [29] 12.1, 19.9, 39.7, 76.4, 780 13 3
12 TRISTAN (Japan) AMY [30, 31] 73, 390 5 5 AMY
13 AMY [32] 6.8 3 3
14 TOPAZ [33] 5.1, 16, 80 8 8 TOPAZ
15 PETRA (DESY) JADE [34] 24, 100 8 8 JADE
16 PLUTO [35] 2.4, 4.3, 9.2, 5.3 15 15 PLUTO
17 PLUTO [36] 45 4 4
18 TASSO [37] 23 5 5 TASSO
19 PEP (SLAC) TPC/2γ [38] 0.24, 0.38, 0.71, 1.3, 2.8, 5.1 22 0 TPC

Total # points 198 144

All the data available on the F γ
2 (x,Q2) structure function can be seen in table 1. How-

ever not all of the data was used for the fitting as indicated in the table.

Since the input scale of Q2
0 = (1.3)2 GeV2 = 1.69GeV2 is bigger than some of the

Q2 values of the TPC/2γ data [38], these data points can not be used. Furthermore, as
can be seen by running the minimization of the χ2 and looking at the contributions of
each experiment, the TPC/2γ data is inconsistent with the rest. This inconsistency with
other measurements (in particular PLUTO, L3 and OPAL) is discussed in previous liter-
ature aswell [39, 40]. Hence, all data from TPC/2γ is excluded from further calculations.
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5. Fitting of Initial Parameters using χ2-Minimization

Table 2: Parameters calculated for the input PDFs for the inputs given in section 5.4.

Fit3 Fit4 Fit5
LO HO LO HO LO HO

Ahad
g 0.162077 0.162793 0.427143 0.267262 0.482187 0.243060

Bhad
g -0.384581 -0.182473 -0.224452 -0.215028 -0.202210 -0.272855

Chad
g 3 3 3 3 3 3

Ahad
q 0.439775 0.471788 0.436453 0.491192 0.524953 0.591875

Bhad
q 0.256241 0.263275 0.570871 0.505920 0.665115 0.610880

Chad
q 1 1 1 1 1 1

APL
q 0 0 0.320468 0.247174 0.348421 0.297112

BPL
q 0 0 0 0 0.648468 1.116165
Ks 0.3 0.3 0.3 0.3 0.3 0.3

Using the χ2 analysis some other data could be identified to lead to large χ2 values.
This is in particular the small-x data from OPAL [28]. Furthermore the most recent
data from the OPAL collaboration [29] seems to be not fully compatible with their ear-
lier data [25]. Therefore the latest OPAL data [29] is not used. An exception to this
are the three data points at Q2 = 780GeV2 since they uniquely constrain the F γ

2 (x,Q2)
structure functions at very large values of Q2.
To sum it up the small-x data and the most recent data (except for Q2 = 780GeV2)
from the OPAL collaboration are excluded from further calculations.

This leads to a total of 144 used data points out of 198 possible.

5.5. Results

Using the inputs given in section 5.4 the following initial PDFs (i.e. input PDFs with
initial parameters) are calculated (see figs. 10 and 11).

The calculated initial parameters, the parameters for which the overall χ2 was the min-
imum, can be seen in table 2. The corresponding χ2 values (including the χ2 values
for each experiment) are shown in table 4 and the χ2 values per degree of freedom in
table 3.
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Figure 10: Initial PDFs calculated using the inputs and data from section 5.4 for LO.
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Figure 11: Initial PDFs calculated using the inputs and data from section 5.4 for HO.
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Table 3: Global χ2 per degree of freedom and χ2 per degree of freedom for each experiment for
the calculated initial parameters given in table 2. The global χ2 is included aswell.

Fit3 Fit4 Fit5
LO HO LO HO LO HO

χ2 129.127 122.271 113.702 116.328 109.416 111.309
χ2 per d.o.f. 0.896717 0.849104 0.7896 0.807835 0.759835 0.772977
ALEPH1 0.421091 0.426659 0.476703 0.495389 0.450164 0.479691
ALEPH2 0.963674 0.893105 0.811291 0.853296 0.748735 0.789305
AMY 0.744302 1.002104 0.903917 1.209668 0.844452 1.144132

DELPHI 0.672708 0.884293 0.662400 0.883335 0.652354 0.871593
JADE 1.583556 2.029574 1.875657 2.325547 1.743700 2.217579
L3 1.355817 0.900927 0.968091 0.599797 0.941752 0.574012

OPAL1 0.412068 0.380778 0.322756 0.322407 0.311830 0.305648
OPAL2 0.860177 1.138335 0.854554 1.143037 0.803848 1.095700
PLUTO 0.641030 0.397736 0.371374 0.306365 0.408288 0.306797
TASSO 1.470840 1.571826 1.336956 1.568040 1.276440 1.461923
TOPAZ 1.907161 1.973974 1.963891 2.025911 1.919130 1.993053

6. Calculation of Error PDFs

6.1. Implementation

Now that the optimal set of parameters for the input PDFs is obtained, it is helpful to
look at the uncertainties of these PDFs. The method used for calculating the so called
error PDFs is called the Hessian method.
The description of this method follows nCTEQ15 [17].
The goal of the Hessian method is to calculate the 2n error PDFs, where n is the number
of free parameters ai. These error PDFs most importantly depend on the tolerance ∆χ2

and the eigenvectors and -values of the Hessian matrix of the χ2.

6.1.1. Hessian Matrix

The Hessian matrix of the χ2 is given by

Hi,j =
1

2

(
∂2χ2

∂yi∂yj

)
ai=a0i

, (6.1)

where yi = ai − a0i are the free parameters ai but centered around a0i . a
0
i are the n free

parameters, which result in the lowest overall χ2, i.e. χ2 ({a0i }) = χ2
0 (see table 2).

The calculation is done by calculating the second derivative of the χ2 function using the
standard central differences method (step width h = 0.005). The results of these deriva-
tives are saved in a matrix using the Eigen-library. In the next step the n eigenvectors
V (k) and eigenvalues λk are calculated using this library aswell.
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6.1.2. Tolerance ∆χ2

The tolerance ∆χ2 is the difference of the χ2 with some specific free parameters and
the ideal free parameters, i.e. ∆χ2 = χ2 − χ2

0. As explained in for example [41], for a
truly global PDF analysis the choice of ∆χ2 = 1, as done in the statistically ideal case,
is not sufficient, since this analysis tries to include as many independent experiments
as possible. Therefore it is necessary to calculate the tolerance for each set of intial PDFs.

The first goal for obtaining ∆χ2 is to calculate ξp. ξp is the value where there is a
probability of p% for a set of parameters, which results in χ2 < ξp, to genuinley describe
the given data. It can be calculated by solving

ξp∫
0

P
(
χ2
k, Nk

)
dχ2

k = p%, (6.2)

where χ2
k is the contribution of the experiment k with Nk datapoints to χ2. The proba-

bility distribution for χ2
k is

P
(
χ2
k, Nk

)
=

(χ2
k/2)

Nk/2−1
e−χ2

k/2

2 · Γ (Nk/2)
. (6.3)

The solution of eq. (6.2) is the normalized lower incomplete gamma function

γ(a, x)

Γ(a)
=

∫ x

0
ta−1e−tdt

Γ(a)
, (6.4)

using a = Nk/2, x = ξp and t = χ2
k/2. Therefore, to calculate ξp, one has to calculate

the inverse of the normalized lower incomplete gamma function.
These calculations are done using the boost-library in C++. The function gamma p(a,x)

is the normalized lower incomplete gamma function of a and x and gamma p inv(a,p)

is the inverse of it. This means that

gamma p inv(Nk/2, p%) = ξp. (6.5)

For the same reasons as given in [17, Appendix A] the ξp have to be rescaled here aswell.
The ξ90, which will be used later, therefore becomes

ξ̃90 → ξ90

(
χ2
k,0

ξ50

)
, (6.6)

where χ2
k,0 is the contribution of experiment k to the global minumum χ2

0, i.e. χ2
k,0 =

χ2
k ({a0i }) (see table 4).
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At this point it is sensible to introduce a new basis z ≡ {zi}. This basis is defined such
that the Hessian becomes diagonal. The relation to {yi} is

yi =
∑
j

V
(j)
i zj ≡

∑
j

V
(j)
i

z̃j√
λj

, (6.7)

where z̃i =
√
λizi is a new, rescaled basis. The inverse transformations are given by

zi =
∑
j

yjV
(i)
j (6.8)

z̃i =
√

λi

∑
j

yjV
(i)
j . (6.9)

This means that just as for {yi}, {zi} and {z̃i} become zero for ai = a0i .

For the next step in determining ∆χ2 one has to calculate an interval

z
(k)−
i ≤ z̃i ≤ z

(k)+
i (6.10)

for each eigenvector direction and experiment, where χ2
k stays smaller than ξ̃90. This

means that the probability for each z̃i in this interval to genuinely describe the data of
experiment k is at least 90%.

With these intervals the interval
(
z−i , z

+
i

)
can now be calculated for each eigenvector

direction. This interval spans over all z̃i where χ2
k < ξ̃90 for all experiments k, meaning

that the probability for each z̃i in this interval to genuilely describe the data of all
considered experiments is at least 90%:(

z−i , z
+
i

)
≡
⋂
k

(
z
(k)−
i , z

(k)+
i

)
. (6.11)

Finding these intervals is computationaly quite an intensive part of the program. The
calculation time of this function however is lessened by immediately calculating the in-
terval in eq. (6.11) and skipping the calculation of eq. (6.10).

It is implemented as follows:

• the function receives as inputs, amongst others, the optimal free parameters
{
a0j
}
,

the index i of the parameter z̃i, a stepsize and a precision

• the default for the stepsize is 100 and for the precision 10−6

• in the beginning of the function the variation of the parameter z̃i, ∆z, is set to
zero
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• after that the function moves through the following steps:

1. if the stepsize is larger or equal to the precision, increase ∆z by the stepsize,
otherwise the function ends

2. calcualte {z̃j} for aj = a0j (i.e. set all z̃j to zero) and add/subtract ∆z to/from
z̃i, depending on if z+i or z−i is being calculated

3. transform {z̃j} to {aj} and calculate the χ2
k from these values

4. compare each χ2
k to its corresponding ξ̃90

5. if χ2
k ≥ ξ̃90 holds for no experiment, increase ∆z by the stepsize and go to

step 2

6. if however there is at least one experiment for which χ2
k ≥ ξ̃90 holds, meaning

the probability that the parameters {z̃j} with ∆z added to z̃i genuinley de-
scribe the data of an experiment is lower than 90%, then subtract the stepsize
from ∆z (because the ∆z for which χ2

k < ξ̃90 holds is smaller than the one
used) and divide the stepsize by 10

7. go to step 1

The resulting ∆z is the z+i or z−i , depending on what was being calculated.

The global tolerance ∆χ2 can now be calculated using

∆χ2 =
n∑

i=1

(
z+i
)2

+
(
z−i
)2

2n
, (6.12)

where n is the number of free parameters.

6.1.3. Error PDF Parameters

The error parameters, i.e. the n2 parameters for the 2n error PDFs, can be calculated
using

a±i,j = a0i ±

√
∆χ2

λj

V
(j)
i , (6.13)

where
{
a±1,j, ..., a

±
n,j

}
are the parameters which result from varying the jth free parame-

ter; a0i are the parameters for which χ2 is minimal.

From the error parameters follow the 2n error PDFs

f±
j = f

({
a±i,j
})

, for j = 1, 2, · · · , n. (6.14)
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At this point it is worth mentioning that the Ahad
G are calculated after the calculation of

the error parameters such that the error PDFs follow the momentum sum rule.

Any observables X, which depend on the PDFs, also receive an uncertainty ∆X. This
uncertainty can be calculated using

∆X =
1

2

√∑
k

(
X
(
f+
j

)
−X

(
f−
j

))2
. (6.15)

The error bands for the PDFs can be calculated in the same way by using

∆f =
1

2

√∑
k

(
f+
j − f−

j

)2
(6.16)

and then adding/subtracting ∆f to/from the PDFs with the optimal free parameters.
The area between these two is the so called error band.
To calculate the error bands for evolved PDFs, evolve the 2n error PDFs seperately and
use eq. (6.16) after that. For the structure functions, evolve the error PDFs seperately
aswell and then plug them into eq. (6.15).

6.2. Inputs

The inputs are the same as already covered in section 5.4.

6.3. Results

The calculations for the error PDFs were run for Fit3, Fit4 and Fit5.

The resulting error parameters
{
a±i
}
can be seen in tables 5 to 7, the tolerances ∆χ2

can be seen in eq. (6.17).

∆χ2
Fit3LO = 51.5881 ∆χ2

Fit3HO = 17.6415

∆χ2
Fit4LO = 14.4173 ∆χ2

Fit4HO = 9.13941

∆χ2
Fit5LO = 14.2932 ∆χ2

Fit5HO = 8.65906

(6.17)

The error PDFs are shown in figs. 12 to 17.

For the high Q2 fits the comparion of LO and HO shows that down-quark PDF has its
highest point for the LO at the bump at high x while the highest value at the HO is at
very low x. For the up- and strange-quark the distributions seem to be weighted more
to the higher x region for the LO aswell. The up-, strange- and charm-quark at LO have
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a positive gradient close to x = 1 whereas they have a negative gradient in this region
at HO. The charm-quark PDF has, unlike the other quarks, no bump at higher x. It
falls up to x ∼ 0.1 from where on it keeps rising.
At low Q2 values all quark PDFs start at or close to zero, rise exponentially until they
reach their maximum between x ∼ 0.1 and x = 1 after which they fall, resulting in a
bump. The charm-quark PDF is zero for this Q2 value, since Q2 = mc.
The gluon PDF for all fits has a continuous negative slope, where the low Q2 fit is always
higher than the high Q2 fit. This means that by evolving the gluon PDF it becomes
smaller. It is also worth mentioning that the starting value for the gluon PDF is around
one to two orders of magnitude bigger than the starting values for the quarks.

The error bands of the PDFs become very large when going to low x for the high Q2 plots
and smaller for higher x. This can be especially seen for the gluon and charm-quark.
At low Q2 the error bands for the quark PDFs seem to stay approximately similarly big
throughout the whole x region. The behaviour of the error bands for the gluon PDFs
at low Q2 is very similar to the behaviour at high Q2.

Looking at the error parameters of Fit5 (see table 7) a problem can be seen. Some of
the values for BPL

q are smaller than zero, which means that the point-like contribution
goes to infinity for some x-values. This results in some spikes in the error PDFs, as can
be seen in figs. 16 and 17.
These spikes can also not be avoided by choosing another tolerance. For all BPL

q to be
positive, the maximum value for the tolerance would be ∆χ2 ≈ 1.23. This value is up
to one order of magnitude smaller than the calculated tolerances which means that it is
no good choice, because it would underestimate the inconsistency in the experimental
data.
Because of this unavoidable unphysical behaviour the Fit5 input PDFs should not be
considered for further discussions.
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Figure 12: Fit3 input PDFs at LO at 2GeV2 and 10GeV2 including the error bands.
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Figure 13: Fit3 input PDFs at HO at 2GeV2 and 10GeV2 including the error bands.
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Figure 14: Fit4 input PDFs at LO at 2GeV2 and 10GeV2 including the error bands.
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Figure 15: Fit4 input PDFs at HO at 2GeV2 and 10GeV2 including the error bands.
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Figure 16: Fit5 input PDFs at LO at 2GeV2 and 10GeV2 including the error bands.
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Figure 17: Fit5 input PDFs at HO at 2GeV2 and 10GeV2 including the error bands.
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7. Comparison to measured F γ
2 and other Photon PDFs

For illustration purposes only the results for Fit4 input PDFs will be shown here.

7.1. Comparison of Structure Functions

For the comparison of the calculated F γ
2 structure functions to experimental data, experi-

ments from every facility (except for PEP) were chosen as an example. For LEP, ALEPH
(9.9GeV2, 20.7GeV2 and 284GeV2) and OPAL (7.5GeV2, 14.7GeV2 and 780GeV2)
were chosen. TRISTAN is represented by AMY (6.8GeV2, 73GeV2 and 390GeV2).
PLUTO (2.4GeV2, 4.3GeV2 and 9.2GeV2) represents the PETRA facility.
The experiments and Q2 values were chosen to be representative of all of the data used
for the fitting.
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Figure 18: Calculated F γ
2 structure functions at 2.4GeV2, 4.3GeV2 and 9.2GeV2 including

their error bands compared to PLUTO experimental data at these Q2 values.

In fig. 18 it can be seen that the line for the structure function crosses the error bars
of all experimental data values. This is to be expected looking at the χ2 per degree of
freedom table, table 3, as PLUTO has the lowest value there.
Looking at fig. 19 the structure functions for the lowest two shown energies seem to
represent the data points in a good way aswell. Only the value with the lowest x in the
first plot and two values in the last plot do not cross the calculated structure function.
The one value in the first plot however is still in the error bands and the other two values
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Figure 19: Calculated F γ
2 structure functions at 7.5GeV2, 14.7GeV2 and 780GeV2 including

their error bands compared to OPAL experimental data at these Q2 values.

are from the OPAL2 data set, which was only included because of it’s unique high Q2.
Looking at table 3 it can be seen that OPAL2 has one of the highest values, meaning
it can be expected that some values from OPAL2 deviate from the calculated structure
function.
The structure function seems to describe the ALEPH values quite good in fig. 20. All
values except one have at least their error bars inside the error band of the structure
function and more than half of these values also cross the structure function with their
error bars.
For AMY three values have their error bars outside of the error band of the structure
function but the structure function crosses the error bars of four values in fig. 21.

Overall the structure function and the error bands seem to represent the experimental
data points quite good. One thing to note however are the very large error bands at
low-x values. This is due to there being very little available data points which means
that the structure function is not very precise here. This could be fixed by new F γ

2 data
for the low-x region or by including dijet-data which constraints this region aswell.
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Figure 20: Calculated F γ
2 structure functions at 9.9GeV2, 20.7GeV2 and 284GeV2 including

their error bands compared to ALEPH experimental data at these Q2 values.
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Figure 21: Calculated F γ
2 structure functions at 6.8GeV2, 73GeV2 and 390GeV2 including

their error bands compared to AMY experimental data at these Q2 values.
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7.2. Comparison of PDFs

The SAL results for higher energies than 2GeV2 were evolved from their input PDFs
using APFEL++.

The comparison to SAL [12] and GRV [16] at HO can be seen in figs. 22 and 23.
Looking at the plot at a lower Q2 value, fig. 22, it can be seen, that Fit4 is, except for
the strange quark, always the lowest at low-x. However the uncertainty at low-x is also
very big. One reason for that is that there is very few F γ

2 -data at low-x. This could be
compensated up to some degree by using dijet-data, which SAL does. Another thing to
note is that Fit4 seems to have, except for the up- and charm-quark, a more prominent
’bump’ at higher-x. Some of it might be up to a more prominent point-like contribution
for Fit4 but not all of it. It is also worth mentioning that at this Q2 there is already a
charm quark because of the lower mass assumed by APFEL++ in comparison to SAL and
GRV.

If one goes to higher Q2 values as can be seen in fig. 23, SAL and Fit4 become very
similar. For all x-values the SAL PDFs lie within the error bands of Fit4. Up to some
degree this should be expected since the SAL PDFs are being evolved using the same
code as used for Fit4. However even GRVHO is also very much closer to Fit4 than it
was in fig. 22 and it was not evolved using APFEL++.

Comparing fig. 22 with fig. 23 it can be seen that Fit4 becomes more like SAL (at
low and high Q2 values), meaning the values for low-x become larger and the ’bump’
at higher-x becomes smaller. The SAL results and Fit4, i.e. the results produced by
APFEL++, are converging when evolving to higher Q2.

One general thing to mention is that GRV violates the momentum sum rule by exceeding
it by about 49% at Q2 = 2GeV2, which leads to high values for the gluons. Another
difference are the used heavy quark schemes (GRV used FFNS [16]) and that GRV used
less data points than were used for Fit4.
The differences to SAL could, apart from the reasons mentioned above, stem from their
use of other and more data than was used here. Furthermore they used a different heavy
quark scheme as well. This heavy quark scheme is more adequate for lower Q2 than the
one used for the calculation of Fit4, since it is a combination of ZM-VFNS and FFNS [12].

To get more similar results to SAL and GRVHO one could use different input PDF
forms, which favour higher values at low-x. Furthermore the inclusion of dijet-data will
certainly fix the high uncertainties at low-x and will probably also lead to higher values
in this region. The use of a combination of ZM-VFNS and FFNS, as done by SAL, could
also lead to more acurate results in the low Q2 region.
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Figure 22: Fit4 input PDFs at HO at 2GeV2 including the error bands, compared to SAL
and GRVHO.
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Figure 23: Fit4 input PDFs at HO at 20GeV2 including the error bands, compared to SAL
and GRVHO.
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8. Conclusion and Outlook

8.1. Conclusion

In this thesis it was managed to implement the inhomogeneous DGLAP evolution equa-
tions into the evolution library APFEL++. This provides the ability to calculate photon
PDFs and structure functions in a fast and modern way. The faster evolution of PDFs
allows for the calculation of the uncertainties of the PDFs providing additional crucial
information on the predictive power of the calculated structure functions.
Notably, despite deviations from PDFs of SAL and GRV, particularly at lower Q2 values,
this serves as a robust foundation for subsequent calculations with expanded datasets
and refined input PDFs. The ability to compute photon PDFs without violating the
momentum sum rule and accounting for uncertainties marks a significant advancement,
paving the way for more accurate predictions in the future.

8.2. Outlook

Due to the modern and robust foundation this work and the modified evolution library
provide, it can serve as a good starting point for future advancements in the calculation
of photon PDFs. Some possible changes and additions which can be done to improve
on the results presented here are discussed below.

The biggest improvements can be expected from the addition of dijet data and/or future
data; especially in the low x region.
As highlighted in section 3.5 adopting a heavy quark scheme that combines the fixed
flavour number scheme (FFNS) and the zero-mass variable flavour number scheme (ZM-
VFNS) holds promise for enhancing the results aswell.

For validating the accuracy of the calculated structure functions a comparison to exper-
imental data not used in the fit, such as dijet data or future datasets, could be used.
However, a good balance should be found as excluding data points for validation might
compromise the accuracy of the fit.
The same holds for the addition of free parameters as this risks overfitting, where the
calculated structure function closely mimics the fitted data and therefore lacks the pre-
dictive power for future measurements.
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A.1. Splitting Functions

The LO splitting functions are given by

P (0)
qq (x) = CF

(
1 + x2

1− x

)
+

P (0)
qg (x) = 2nfTR(x

2 + (1− x)2)

P (0)
gq (x) = CF

1 + (1− x)2

x

P (0)
gg (x) = 6

(
x

(1− x)+
+

1− x

x
+ x(1− x) +

(
11

12
− nf

18

)
δ(1− x)

)
(A.1)

with CF = 4/3, TR = 1/2 and nf being the number of quark flavours
They are illustrated in fig. 24.

Figure 24: Feynman diagrams illustrating the splitting functions. Shown are (a) the branch-
ing of a photon into a quark pair, (b) the branching of a quark into a quark and
a gluon, (c) the branching of a gluon into a quark pair, and (d) the branching of
a gluon into two gluons.[6, Fig. B.1.]
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A.2. Input PDFs

The input PDFs used in this thesis.

Fit3:
1

α
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(A.2)
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A.3. χ2 Values

Table 4: Global χ2 and χ2 for each experiment for the calculated initial parameters given in
table 2.

Fit3 Fit4 Fit5
LO HO LO HO LO HO

χ2 129.127 122.271 113.702 116.328 109.416 111.309
ALEPH1 4.631999 4.693253 5.243729 5.449274 4.951805 5.276600
ALEPH2 15.418790 14.289682 12.980662 13.652734 11.979753 12.628888
AMY 5.954416 8.016832 7.231337 9.677344 6.755615 9.153060

DELPHI 2.690830 3.537173 2.649599 3.533339 2.609416 3.486373
JADE 12.668449 16.236593 15.005252 18.604377 13.949602 17.740634
L3 31.183795 20.721322 22.266086 13.795326 21.660302 13.202273

OPAL1 13.186186 12.184885 10.328188 10.317035 9.978544 9.780750
OPAL2 8.601775 11.383352 8.545542 11.430371 8.038476 10.956999
PLUTO 12.179568 7.556982 7.056111 5.820943 7.757468 5.829135
TASSO 7.354201 7.859130 6.684778 7.840202 6.382201 7.309615
TOPAZ 15.257284 15.791789 15.711129 16.207289 15.353038 15.944428

A.4. Error Parameters

Table 5: Error parameters calculated for the Fit3 initial PDFs with a tolerance of ∆χ2 =
51.5881 for LO and ∆χ2 = 17.6415 for HO.

Fit3 Ahad
q Bhad

q APL
q BPL

q Ahad
g Bhad

g

LO

{
a−i
} 0.410966 0.241663 6.162709 1.701252

0.415975 0.289040 0.264201 -0.384680
0.613191 0.382083 -0.062629 -0.381306{

a−i
} 0.468584 0.270819 0.006560 -2.470414

0.463575 0.223442 0.052119 -0.384482
0.266359 0.130399 0.478590 -0.387856

HO

{
a+i
} 0.471788 0.263275 -0.008044 -1.584507

0.497361 0.265353 0.050702 -0.182259
0.597581 0.365750 -0.089042 -0.184680{

a−i
} 0.494360 0.308351 1.684169 1.219561

0.468787 0.306273 0.269892 -0.182687
0.368567 0.205876 0.481466 -0.180266
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Table 6: Error parameters calculated for the Fit4 initial PDFs with a tolerance of ∆χ2 =
14.4173 for LO and ∆χ2 = 9.13941 for HO.

Fit4 Ahad
q Bhad

q APL
q BPL

q Ahad
g Bhad

g

LO

{
a+i
} 0.423601 0.587038 0.293050 0.0 0.510566 -0.224523

0.419789 0.646472 0.369970 0.0 3.637302 0.891686
0.554525 0.567427 0.263078 0.0 0.161463 -0.219911
0.532487 0.940363 0.493398 0.0 0.374764 -0.255715

{
a−i
} 0.449305 0.554704 0.347886 0.0 0.342019 -0.224381

0.453117 0.495270 0.270966 0.0 -0.022813 -1.340590
0.318381 0.574315 0.377858 0.0 0.684556 -0.228993
0.340419 0.201379 0.147538 0.0 0.414053 -0.193189

HO

{
a+i
} 0.501738 0.492109 0.264223 0.0 0.194853 -0.214520

0.477027 0.526221 0.299600 0.0 -0.011561 -1.129076
0.392882 0.496229 0.300003 0.0 0.497476 -0.210690
0.569403 0.813966 0.447821 0.0 0.269517 -0.197890

{
a−i
} 0.480646 0.519731 0.230125 0.0 0.338076 -0.215536

0.505357 0.485619 0.194748 0.0 1.342914 0.699020
0.589502 0.515611 0.194345 0.0 0.047642 -0.219366
0.412981 0.197874 0.046527 0.0 0.176783 -0.232166

Table 7: Error parameters calculated for the Fit5 initial PDFs with a tolerance of ∆χ2 =
14.2932 for LO and ∆χ2 = 8.65906 for HO.

Fit5 Ahad
q Bhad

q APL
q BPL

q Ahad
g Bhad

g

LO

{
a+i
} 0.535753 0.648331 0.379272 0.647915 0.411621 -0.202163

0.418741 0.693203 0.401024 0.655961 0.752809 -0.206463
0.525042 0.750064 0.392915 0.647863 3.917671 0.905852
0.691142 1.031506 0.489169 0.623470 0.426054 -0.235978
0.696122 0.726785 0.359916 2.760467 0.243766 -0.206259

{
a−i
} 0.514153 0.681899 0.317570 0.649021 0.551227 -0.202257

0.631165 0.637027 0.295818 0.640975 0.189035 -0.197957
0.524864 0.580166 0.303927 0.649073 -0.024714 -1.310272
0.358764 0.298724 0.207673 0.673466 0.593631 -0.168442
0.353784 0.603445 0.336926 -1.463531 1.209678 -0.198161

HO

{
a+i
} 0.601786 0.595853 0.316540 1.115821 0.191225 -0.272153

0.672186 0.593869 0.243075 1.113081 0.049973 -0.276829
0.579399 0.556545 0.230116 1.135448 1.208965 0.603607
0.747812 0.896306 0.437117 1.109835 0.250495 -0.242100
0.706345 0.619386 0.300060 4.079597 0.045660 -0.335672

{
a−i
} 0.581964 0.625907 0.277684 1.116509 0.293530 -0.273557

0.511564 0.627891 0.351149 1.119249 0.433116 -0.268881
0.604351 0.665215 0.364108 1.096882 -0.013635 -1.149317
0.435938 0.325454 0.157107 1.122495 0.269378 -0.303610
0.477405 0.602374 0.294164 -1.847267 0.826358 -0.210038
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