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Introduction 1
The Standard Model of particle physics describes all known particles and in-
teractions. It has been extremely successful in explaining observed phenomena
as well as predicting particles which were then found experimentally. With the
discovery of the Higgs boson in 2012 the final piece was found [4, 5]. Despite
this success, the Standard Model cannot be a complete description of nature.
As it fails to incorporate a description of gravity, the Standard Model must
break down at some high energy scale. There are also some phenomena that
are not related to quantum gravity, which are not explained by the Standard
Model. This thesis is devoted to two of the main open question of parti-
cle physics: the nature of dark matter and the question of why the neutrino
masses are so tiny.

Astrophysical observations tell us that there must be a large amount of
matter in the Universe that does not interact electromagnetically but its pres-
ence can be deduced from the gravitational effects. This so called dark matter
(DM) makes up the majority of mass in our universe however it is not known
what kind of particle makes up dark matter. The Standard Model does not
incorporate a fitting candidate. A widely studied concept for the dark matter
particle is the so called WIMP (weakly interacting massive particle). Many
experiments search for such WIMPs for example collider experiments such as
the LHC and direct detection detectors. However no conclusive evidence for
WIMPs and their properties has been found.

The Standard Model describes neutrinos as massless Weyl spinors. With
the discovery of neutrino oscillations [6, 7] it has been shown that these par-
ticles do in fact have masses. The mass differences are known from oscillation
experiments but their absolute mass scale is still unknown. The Katrin ex-
periment is dedicated to probe the mass of the electron neutrino and has set
a stringent upper limit of 1.1 eV on the electron neutrino mass [8]. All other
fermion masses are generated by the Higgs mechanism and thus have a natural
mass scale of O(100 GeV). The neutrino masses are eleven orders of magnitude

− 1 −



2 Chapter 1. Introduction

below this scale. This raises the question why neutrinos are so light.
For many years the focus of beyond standard model (BSM) physics has been

on well motivated but complicated theories with often many free parameters
such as the minimal supersymmetric standard model (MSSM) or grand unified
theories (GUTs). As there is no experimental evidence found for these theories,
the focus has somewhat shifted to a simpler approach. Minimal models do not
claim to explain nature at high energy scales such as the GUT scale but try to
explain as many open questions of the Standard Model as possible while only
introducing few new fields and parameters.

In this thesis we study minimal models that combine both dark matter
and neutrino masses. This is done by generating neutrino masses through one
loop diagrams where the dark matter particle is running in the loop. The
simplest and most famous of these models is Ma’s scotogenic model [9] which
only requires two new fields, a scalar doublet and three generations of right
handed neutrinos. A systematic study of possible minimal models with dark
matter and radiative neutrino masses has been carried out in Refs. [10, 11].

This thesis is organized as follows: In Chap. 2 we present the evidences for
dark matter and give an overview of the searches for WIMPs. Neutrino masses
and oscillations as well as experiments testing those are discussed in Chap. 3.
Chapter 4 introduces further experiments that set constraints on our models
but do not rely on producing the new particles. The theoretical foundations as
well as some conventions are introduced in Chap. 5. In Chap. 6 we introduce
the minimal models and their classification. Two specific models i.e. the
scotogenic model (T3-B with α = −1) and T1-3-B (α = 0) are discussed in
detail as they are studied further in this work. Chapter 7 covers the findings
published in our paper Ref. [1] where we investigated the impact of the absolute
neutrino mass on the parameter space of the scotogenic model with fermionic
dark matter. A detailed treatment of the WIMP nucleus scattering formalism
is given in Chap. 8. Indirect detection constraints are discussed in Chaps. 8
and 9 with Chap. 8 interpolating our paper Ref. [3] and treating scalar dark
matter in the scotogenic model while Chap. 9 covers the model T1-3-B (α = 0)
and is based on our publication Ref. [2]. In Chap. 10 we promote the stabilizing
symmetry to a local U(1) and discuss how this affects the phenomenology. We
also put these new models in the context of Grand Unified Theories (GUTs).
Finally we draw our conclusions in Chap. 11.



Dark matter 2
One of the most intriguing open questions in physics is the nature of dark mat-
ter. Over the last 100 years more and more evidence accumulated suggesting
that there is a form of mass present in our universe which is not detectable by
its interactions with light. Roughly 85% of the mass in the universe is made
of a non luminous form of matter, called dark matter. The Standard Model of
particle physics, which has been extremely successful in describing high energy
physics to high precision, does not encompass a suitable dark matter candi-
date. This chapter is devoted to a review of the cosmological evidence for dark
matter and the experimental status constraining WIMP dark matter.

2.1 Evidence

The history of dark matter goes back to the early 1930’s. Fritz Zwicky studied
the orbital velocities of galaxies in the Coma cluster. He found that these
velocities differ by roughly a factor of ten from the expected velocity calcu-
lated by the observed mass in the cluster. To explain this discrepancy Zwicky
suggested that there must be large amounts of dark (invisible) matter [12].

The motion of stars and galaxies is decribed by the viral theorem assuming
that they are gravitationally bound and in equilibrium. This gives the following
estimate of the velocity v

v ∝
√
M

r
(2.1.1)

where M is the mass of the system and r is the radial distance [14]. Figure
2.1 shows the rotational curve for a galaxy. We can see that the expected
curve shows a 1√

r
behavior for large r as expected from the viral theorem.

The observed velocities for such distances are however larger than expected
from this theorem. These observation cannot be explained with the amount

− 3 −



4 Chapter 2. Dark matter

Figure 2.1: Observed rotational curve and expected curve from visible matter
for the M33 galaxy. Figure taken from Ref. [13].

and distribution of visible matter. There must be a significant amount dark
matter present.

Since the original proposal by Zwicky, more and more evidence that sup-
ports the idea of dark matter has been discovered. As known from general
relativity, massive objects deflect light. This is known as gravitational lensing.
This effect can be used to find mass distributions in galaxies. A figure of the
bullet cluster, consisting of two colliding galaxies, is shown in Fig. 2.2. The
distribution of hot gas which makes up most of the luminous matter, observed
using X-Ray telescopes is highlighted in red. The blue regions indicate the
distribution of mass, measured by gravitational lensing. In the collision pro-
cess the luminous matter (hot gas) interacts electromagnetically and is slowed
down. Dark matter on the other hand does not interact electromagnetically
and is thus not slowed down. This leads to the separation visible in Fig. 2.2
[15].

Another very compelling piece of evidence can be obtained by measuring
the cosmic microwave background (CMB), a nearly uniform background ra-
diation with a temperature of around 2.725 K which originated in the early
universe when photons decoupled from thermal equilibrium with matter. The
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Figure 2.2: Lensing map of the Bullet Cluster. Red: Distribution of lumi-
nous matter from X-Ray emission. Blue: Distribution of mass from gravi-
tational lensing. Figure taken from https://chandra.harvard.edu/photo/
2006/1e0657/.

CMB shows fluctuations at the scale of 30 µK which are an imprint of primor-
dial density fluctuations. Dark matter can accumulate in over dense regions
whereas for electromagnetically interacting matter the radiation pressure coun-
teracts the gravitational potential. The standard cosmological model ΛCDM
containing dark energy (Λ) and non relativistic (cold) dark matter can be used
for a fit to the measured spectrum. This yields the densities of baryonic matter
and non baryonic dark matter. The most recent measurements of the Planck
satellite constrain the abundance of dark matter, the so called relic density to
Ωh2 = 0.120± 0.001 [16]. These cosmological observations are nearly indepen-
dent of the mass, as long as the dark matter is non relativistically. Thus there
is no limit on the mass of dark matter.

2.2 WIMPs and other dark matter candidates

Over the years, there have been several suggestions to explain the observations
discussed above ranging from modifying gravity such as the MOND theory [17]

https://chandra.harvard.edu/photo/2006/1e0657/
https://chandra.harvard.edu/photo/2006/1e0657/


6 Chapter 2. Dark matter

to MACHOs [18] and primordial black holes [19]. Theories predicting particle
dark matter range from Axions [20–23] to Kaluza-Klein excitations [24–26] in
compactified extra dimensions. In this work however, we focus on weakly in-
teracting massive particles (WIMPs). It turns out that WIMPs of mass scale
O(100 GeV) and weak scale interactions yield the correct relic density [27].
This is sometimes called the “WIMP miracle”. Such weak scale WIMPs are in
the range of current and future detectors and theories predicting such WIMPs
are being tested by experiments. A well know example for a theory predicting
WIMPs is the minimal supersymmetric standard model (MSSM). Supersym-
metric theories often lack predictability due to the high number of unknown
parameters and large parts of the parameter space are already excluded by
experimental searches [28]. In this thesis, we study WIMPs in minimal models
which have only few free parameters and convince through their simplicity.

2.2.1 Properties of dark matter

The cosmological measurements set some constraints on the properties of dark
matter. As dark matter is a non luminous type of matter, the coupling to
photons must vanish. Thus dark matter does not have an electric charge.1

Dark matter is still abundant at the present time. Therefore the decay
of WIMPs must be suppressed such that the lifetime of dark matter is long
compared to cosmological timescales. Hence the couplings for a decay must be
suppressed or forbidden. Usually there is a symmetry which prevents the decay
of dark matter. In supersymmetry, R-parity gives a mechanism that stabilizes
the lightest supersymmetric particle and thus the dark matter candidate can-
not decay. In this work we consider models where the discrete symmetry Z2

is imposed. All the Standard Model particles have an even charge under this
symmetry whereas all new particles have an odd charge. At any vertex there
must always be an even number of new particles involved and hence the decay
of the lightest new particle is forbidden. We also study the case where the Z2

is promoted to a continuous group, a local U(1).
The ΛCDM cosmological model required dark matter to move at non rela-

tivistic velocities. Standard model neutrinos come close to the desired proper-
ties however, due to their small mass, they move relativistically and have been

1Note that milli charges arising from gauge kinetic mixing with a dark photon field is
possible, however constrained [28].
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shown to account for only 0.5% to 1.6% of the non baryonic matter content in
our universe [28].

2.2.2 Genesis of dark matter

There are different scenarios, how the relic density was produced in the early
universe, the most prominent being the freeze out scenario. More exotic scenar-
ios include the freeze in, where dark matter never reaches thermal equilibrium
[29, 30] and dark matter produced at cosmic strings [31]. For the models stud-
ies in this thesis, the freeze out scenario is relevant. We briefly sketch the
formalism necessary to calculate the relic density in this scenario, following
Refs. [27, 32].

The freeze out scenario assumes, that the dark matter density is in thermal
equilibrium after the big bang. The number of particles produced is equal to
the number of particles annihilating. The number density neq is proportional to
T 3. As the Universe expands, the temperature drops and the energy becomes
too low to produce dark matter particles while the annihilation continues. If
the expansion of the Universe was so slow that equilibrium was maintained,
the number density of dark matter would be given by

neq = g
(
mχT

2π

) 3
2
e−

mχ
T (2.2.1)

where T is the temperature, mχ is the dark matter mass and g is the number
of degrees of freedom. Since the Universe does expand fast, neq does not
describe the number density accurately but one must account that, due to the
fast expansion, the WIMPs fall out of equilibrium and stop annihilating. This
behaviour is described by the Bolzmann equation

ṅ(t) + 3H(t)n(t) = −〈σχχv〉
[
n(t)2 − neq(t)2

]
(2.2.2)

where H(t) is the Hubble parameter and 〈σχχv〉 is the thermally averaged
dark matter self annihilation cross section. Numeric solutions to the Bolzmann
equation are shown in Fig. 2.3. Note that the abundance of dark matter is
inverse proportional to the annihilation cross section.

The above considerations hold true if only one particle is relevant for the
freeze out scenario. Many models predict several new particles which can be
close in mass and interact with each other. If at the time of decoupling from
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Figure 2.3: The evolution of the dark matter number density over time as-
suming equilibrium at all times (solid curve) and in the freeze out scenario for
different annihilation cross sections (dashed curves). Figure taken from Ref.
[27].

equilibrium, several non Standard Model particles are abundant, one must
consider all of them. The number density of the particle χi at the time of
decoupling, with χ1 being the lightest one, is given by

ni
n1

= gi
g1

(
1 + ∆mi1

mχ1

) 3
2

e−
∆mi1
T (2.2.3)

where ∆mi1 = mχi − mχ1 . Note how the density of the heavier particles is
exponentially suppressed by the mass difference. To calculate the relic density,
one must now include the annihilation between χ1χi and χiχi. Including coan-
nihilations can yield a larger or smaller relic density depending on the details
of the model.

2.3 Experimental searches
Different ideas to search for dark matter are pursued. Most of them can be
related to the Feynman diagram shown in Fig. 2.4. All three possible ways of
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Figure 2.4: Illustration of the different ways to search for WIMP dark matter.
Figure taken from https://particleastro.brown.edu/dark-matter/.

reading this diagram are being probed.

2.3.1 Direct detection

Direct searches for dark matter probe the diagram in Fig. 2.4 from bottom to
top. Dark matter particles scatter on Standard Model particles (quarks and
gluons) in nuclei. In this scattering process, energy is transferred to the nucleus
and the recoil energy can be measured. The interaction is often mediated by
a Higgs or a Z0 boson in the t-channel. Other types of diagrams can also
contribute. In theories where the dark matter particle couples to quarks, s-
channel diagrams with colored particles (e.g. squarks in SUSY) as mediator
are possible. For WIMPs with masses at the TeV-scale, the velocities in the
dark matter halo are of O(100 km/s) and thus non relativistically.

The dark matter-nucleus interaction is often classified into spin dependent
(SD) and spin independent (SI) interactions. SD interactions couple to the
spin of nucleons. For nuclei, the spin is mostly carried by unpaired nucleons.
Thus there is no enhancement for heavier nuclei. SI interactions couple to the
nucleons in a nucleus coherently. Thus there is a A2 enhancement for heavy

https://particleastro.brown.edu/dark-matter/
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Figure 2.5: Limits on the spin independent scattering cross section on pro-
tons set by the direct detection experiments XENON1T[34], LUX [35] and
PandaX-II [36] as well as annihilation channel dependent limits set by the
neutrino telescopes ANTARES [37], IceCube [38] and Super-Kamiokande
[39]. Also shown is the neutrino floor for direct detection experiments [40].

nuclei, assuming that the coupling on protons and neutrons are identical [33].
As a consequence, the limits on the SI cross section are often stronger than
the limits on the SD cross section. If the scattering process is mediated by
the Standard Model Higgs boson, then it always contributes to SI scattering
regardless of the dark matter candidate. In case of scalar dark matter the
exchange of a Z0 boson also contributes to SI scatting. However, for Majorana
dark matter, this process generates a SD cross section [33]. In this thesis, only
the Higgs and Z0 boson as mediator as well as the new vector boson called the
Z ′ are relevant.

So far, most direct detection experiments have not detected any signal from
dark matter and have thus published upper limits on the dark matter-nucleon
scattering cross sections. The limits from XENON1T, LUX and PandaX-II
on the spin independent scattering cross section are shown in Fig. 2.5. We
also show the WIMP discovery limit (neutrino floor), where the dark matter
detectors become sensitive to coherent neutrino scattering. For SI scattering
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XENON1T sets the strongest limits in the mass range of O(100 GeV). In Fig.
2.6 we show the limits on the spin dependent cross section set by XENON1T,
LUX, PandaX-II and PICO-60. We also show the detector and annihilation
channel dependent sensitivity floors where the neutrino telescopes become sen-
sitive to neutrinos from cosmic ray interaction in the sun’s atmosphere. For SD
scattering on neutrons, XENON1T also imposes the strongest limit whereas
for SD scattering on protons PICO-60 sets the most stringent model indepen-
dent limit. Many other experiments have set limits on dark matter nucleon
scattering for different ranges of dark matter masses [28]. The DAMA/LIBRA
collaboration reports an annual modulation signal with a confidence level (C.L)
of 12.9σ when taking into account the previous results from DAMA/NaI and
DAMA/LIBRA-Phase1 [41]. This results are however in strong tension with
other direct detection experiments.

2.3.2 Indirect detection

Dark matter annihilating in the cosmos is probed by indirect detection. Figure
2.4 read from left to right represents the annihilation of dark matter particles
into Standard Model particles. Indirect detection experiments look for these
final state particles. The thermally averaged self annihilation cross section
〈σv〉 is probed by experiments including the search for gamma rays, cosmic
ray anti matter and neutrinos [28].

Indirect detection experiments can also probe the same scattering cross
sections on nuclei as direct detection, described in Sec. 2.3.1. Scattering of
dark matter in celestial bodies such as the sun can lead to a capture in the
gravitational potential and yield an overdensity of dark matter boosting the an-
nihilation rate. Neutrinos produced from this annihilations can then be probed
by neutrino telescopes such as IceCube and ANTARES. Limits obtained by
these two experiments with the sun as source of neutrinos from dark matter
annihilations are also shown in Figs. 2.5 and 2.6. These limits are obtained
assuming that the dark matter particles annihilate into the given Standard
Model particles (e.g. W+W−). The limits on the SI are significantly weaker
than the ones set by direct detection experiments. However due to the lack of
enhancement for scattering on heavy nuclei and the high abundance of hydro-
gen in the sun, the SD limits on protons are competitive. Neutrino telescopes
are less sensitive to the SD scattering cross section on neutrons since there are
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Figure 2.6: Limits on the spin dependent scattering cross section on pro-
tons (top) and neutron (bottom) set by the direct detection experiments
XENON1T[42], PICO-60 [43], LUX [44] and PandaX-II [45] as well as
annihilation channel dependent limits set by the ANTARES [37], IceCube
[38] and Super-Kamiokande [39]. Limits from neutrino telescopes and from
PICO are only published for scattering on protons. Also shown are the sensi-
tivity floors for the W+W− and the bb̄ channel for IceCube [46].
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Figure 2.7: Limits on the self annihilation cross section in the galactic cen-
ter obtained by a combined analysis of ANTARES and IceCube [47]. We
show the limits for NFW dark matter halo profile. Limits from Super-
Kamiokande [48] are also shown.

fewer neutrons than protons in the sun. We also show the sensitivity floor,
where neutrinos from dark matter become indistinguishable from neutrinos
produced from cosmic ray interactions with the suns atmosphere [46].

Neutrino telescopes can also probe the dark matter self annihilation cross
section using neutrino signals from the galactic center. As dark matter is
abundant in the galactic center it can annihilate with itself possibly producing
neutrinos. The rate at which such annihilations happen is governed by the
density and the self annihilation cross section and the number of neutrino
is dependent on the annihilation channel. A combined analysis of IceCube
and ANTARES has set the limits on the annihilation cross sections assuming
different main annihilation channels. Their results and similar limits obtained
by Super-Kamiokande are shown in Fig. 2.7.
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2.3.3 Collider searches
The third way to read the diagram in Fig. 2.4 is from right to left represent-
ing the search for dark matter at colliders. In the collision of two Standard
Model particles with high kinetic energy, new particles with larger mass can
be produced. Examples for colliders are the Large Electron-Positron Collider
(LEP) and the Large Hadron Collider (LHC). Limits set by the LHC are usu-
ally model dependent and obtained making some assumptions on the type of
interaction. Thus one need to take care when applying these limits to a spe-
cific model. Despite the smaller center of mass energy, the model independent
limits on new particles come from LEP since due to the absence of ingoing
hadrons there are cleaner signals. The lower limit on the masses of charged
fermions obtained by the OPAL collaboration at LEP is 102 GeV and the
corresponding lower limit for charged scalar fields is 98 GeV [49].



Neutrinos 3
Neutrinos are some of the most mysterious particles in the Standard Model.
They only interact via the weak interaction and are thus hard to detect. About
20 years ago, the fact that at least two of the three neutrinos are massive has
been deduced from atmospheric [6] and solar [7, 50] neutrino oscillations. The
absolute mass scale and hierarchy are still unknown. Why the neutrino masses
are so small or equivalently, how they are generated, is a hot topic in BSM
physics.

3.1 Neutrinos in the Standard Model
In the Standard Model, all fermions except neutrinos obtain their mass via
interactions with the Higgs vacuum expectation value (vev). This is described
by Yukawa interactions which after EWSB take the following form

L ⊃ yij〈H0〉ψiLψ
j
R + H. c. = mijψ

i
Lψ

j
R + H. c.. (3.1.1)

where both ψL and ψR are left handed Weyl spinors. (See Chap. 5 for con-
ventions on the product.) Such mass terms are so called Dirac masses. If one
would try to write down a similar interaction for neutrinos, a number of prob-
lems arise. First of all, one would need to introduce a right handed neutrino
spinor, which is a singlet under the Standard Model gauge group. Such a right
handed neutrino would have no electric charge and interact with none of the
Standard Model gauge bosons. The only interaction to other Standard Model
particles would take place via a Higgs exchange. However such interactions
are strongly suppressed, as the Higgs couplings scale with the masses of the
particles. Such a right handed neutrino would be practically impossible to
detect. More importantly, as the neutrino masses are extremely small com-
pared to the Standard Model Higgs vev of v = 〈H0〉

√
2 = 246.22 GeV [28], the

Yukawa couplings must be of O(10−11). As these couplings are dimensionless

− 15 −
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couplings, one would expect them to be naturally of O(1) which leaves us with
the problem to explain why the couplings are so small. With no appealing
way to generate neutrino masses within the Standard Model, neutrinos are
described as massless left handed Weyl spinors. There are three neutrinos cor-
responding to the three generations of charged leptons l = e, µ, τ and with all
neutrinos massless, the Standard Model has an accidental global lepton flavor
symmetry

U(1)Le × U(1)Lµ × U(1)Lτ . (3.1.2)

3.2 Neutrino oscillations and masses

The phenomenon that neutrinos of different flavors can transform into each
other is known as neutrino oscillations. This is only possible if the propagat-
ing states which are the mass eigenstates differ from the interaction (flavor)
eigenstates. Thus the discovery of neutrino oscillations not only shows that
lepton flavor is violated but also that neutrinos do in fact have a mass. This
section follows the review given in Ref. [28]. It should be noted, that one can
assume more than three neutrinos relevant for oscillations, which yield slightly
differing formulas. We will restrict ourselves to the case with three neutrinos.

Neutrinos in the weak interaction eigenstates να, which are the eigenstates
occuring in charged current interactions involving the lepton lα, can be written
as a linear combination of the propagating (mass) eigenstates νi

|να〉 =
3∑
i=1

(U∗PMNS)αi |νi〉. (3.2.1)

UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata matrix. After traveling a
distance L (L ≈ ct for relativistic neutrinos), the state is given by

|να(t)〉 =
3∑
i=1

(U∗PMNS)αi |νi(t)〉 (3.2.2)

where |νi(t)〉 are, since they are the propagating states, given by |νi(t)〉 =
e−iEit|νi(0)〉 with the neutrino energy Ei =

√
p2
i +m2

i and the mass of the
propagating eigenstatemi. The probability that a neutrino of flavor α oscillates
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Figure 3.1: An illustration of the neutrino hierarchies. Figure taken from
https://neutrinos.fnal.gov/mysteries/mass-ordering/#moreinfo.

to a neutrino of flavor β, is given by

Pαβ =|〈νβ|να(t)〉|2

=δαβ − 4
3∑
i<j

Re
[
(UPMNS)αi (U

∗
PMNS)βi (U

∗
PMNS)αj (UPMNS)βj

]
sin2(Xij)

+ 2
3∑
i<j

Im
[
(UPMNS)αi (U

∗
PMNS)βi (U

∗
PMNS)αj (UPMNS)βj

]
sin(2Xij)

(3.2.3)

with

Xij =
(m2

i −m2
j)L

4E (3.2.4)

where the approximation for relativistic neutrinos pi ≈ pj := p ≈ E has been
made. The expression for anti neutrinos is similar, but with UPMNS → U∗PMNS
exchanged. Note how the oscillation depends on the mass difference of the
neutrinos as well as the entries of the PMNS matrix but not on the absolute
mass scale. The hierarchy of the neutrino masses is still unknown (see Fig.
3.1), however normal hierarchy is favoured in analyses of the full data [28].

In case of three Majorana neutrinos, the PMNS matrix can be parametrized
by three angles and three phases. Two of these phases, the Majorana phases
can be absorbed into neutrino states leaving one physical phase, the CP phase.

https://neutrinos.fnal.gov/mysteries/mass-ordering/#moreinfo
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The PMNS matrix can be written as

UPMNS =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23


(3.2.5)

with cij = cos(θij), sij = sin(θij) and the CP phase δCP .

3.3 Neutrino experiments

There are a number of experiments probing the neutrino oscillation parameters.
Historically important are solar neutrinos. In the nuclear fusion cycle in the
sun, electron neutrinos are produced. The number of detected neutrinos from
the sun on earth is significantly smaller than the theoretical prediction indicat-
ing that these neutrinos oscillate into muon and tau neutrinos and are thus not
detected. As electron neutrinos are always involved, solar neutrino experiments
are sensitive to the upper row of the PMNS matrix and thus can probe the
angles θ12 and θ13. Solar neutrinos are probed e.g. by Super-Kamiokande
and Borexino. Neutrinos produced on earth using accelerators are tested for
example with long-baseline experiments such as T2K and NOνA. For these ex-
periments neutrinos are usually produced by colliding a beam of protons with
a target producing mostly pions which in turn decay mainly into muon neu-
trinos and muons. Probing the number of disappearing muon neutrinos gives
sensitivity to the angle θ23 and ∆m2

3l while the number of appearing electron
neutrinos allows one to probe the CP-violating phase. Atmospheric neutri-
nos, stemming from interaction of cosmic rays and the earth atmosphere, are
detected for example by IceCube, ANTARES and Super-Kamiokande.
Other neutrino sources include nuclear reactors which are being tested by e.g.
KamLAND and Daya-Bay. As an overview of experiments for each neutrino
source and the parameters they are sensitive to we give Tab. 3.1 which was
taken from Ref. [28]. The data from these experiments combined can be used
to fit the mixing angles phases and mass differences. The results of such a fit
are shown in Tab. 3.2. It is worth mentioning that there are some disagree-
ments between experiments concerning the CP phase. An analysis of the T2K
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Table 3.1: Overview of neutrino experiments and the oscillation parameters
they are sensitive to with ∆m2

3l := ∆m2
31 > 0 for normal hierarchy and ∆m2

3l :=
∆m2

32 < 0 for inverted hierarchy. Table taken from Ref. [28].

Experiment Dominant Important

Solar neutrino experiments θ12 ∆m2
21, θ13

Reactor long-baseline experiments
(KamLAND)

∆m2
21 θ12, θ13

Reactor medium-baseline experiments
(Daya-Bay, Reno, D-Chooz)

θ13, |∆m2
3l|

Atmospheric Experiments
(Super-Kamiokande, IC-DC)

θ23, |∆m2
3l|, θ13, δCP

Accel LBL µµ, ν̄µ, Disappearing
(K2K, MINOS, T2K, NOνA)

|∆m2
3l|, θ23

Accel LBL νe, ν̄e, Appearing
(MINOS, T2K, NOνA)

δCP θ13, θ23

Table 3.2: The fit values and the ±3σ ranges for the neutrino oscillation pa-
rameters for both hierarchies with ∆m2

3l := ∆m2
31 > 0 for normal hierarchy

and ∆m2
3l := ∆m2

32 < 0 for inverted hierarchy. The values are taken from [51]
(with SK-atm).

Normal hierarchy Inverted hierarchy

sin2 θ12 0.310+0.040
−0.035 0.310+0.040

−0.035

sin2 θ23 0.582+0.042
−0.154 0.582+0.041

−0.149

sin2 θ13 0.02240+0.00197
−0.00196 0.02263+0.00198

−0.00196

δCP [◦] 217+149
−82 280+71

−84

∆m2
21[10−5 eV2] 7.39+0.62

−0.60 7.39+0.62
−0.60

∆m2
3l[10−3 eV2] +2.525+0.097

−0.094 −2.512+0.099
−0.094
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data excludes CP-conservation at 95% CL [52] whereas NOνA data does not
show significant indication of CP violation [53].

As the absolute neutrino mass scale does not have an impact on neutrino
oscillations, the experiments mentioned above are not sensitive to the masses of
the neutrinos. The KATRIN experiment is dedicated to the determination of
the effective electron neutrino mass. Once this mass is known, the other masses
can be calculated using the mass differences known from neutrino oscillations.
Recently the KATRIN experiment has published a new upper limit of mνe ≤
1.1 eV [8] and aims for a sensitivity of 0.2 eV [54]. Limits on the sum of all
three neutrino masses can be obtained from cosmological fits assuming the
ΛCDM model with the most recent one being ∑imνi < 0.12 eV [16, 55].

As described above, the mechanism that generates the neutrino masses is
still unknown. In fact it is still unclear whether neutrinos have Majorana or
Dirac masses or some contributions of both types. Dirac masses would require
right handed neutrinos whereas Majorana masses, predicted e.g. by the see-
saw mechanism, violate not only lepton flavor, but also lepton number. The
search for neutrinoless double beta decay 0νββ probes the Majorana nature
of neutrinos. If a nucleus undergoes two beta decays at the same time, then
the neutrinos can cancel each other out provided they have Majorana masses.
In this process the nucleus emits two electrons but no neutrinos and lepton
number is violated by two units. Experiments searching for double beta de-
cay include GERDA and KamLAND-Zen with the strongest bound on the
effective Majorana mass being

mββ < 61− 165 meV (3.3.1)

set by KamLAND-Zen [56].



BSM physics with heavy
mediators 4
Most experiments searching for new particles need either a large enough cen-
ter of mass energy to produce these particles (e.g. collider searches) or the
particles must already exist (e.g. direct dark matter detectors) and are thus
limited in the mass region due to the mass threshold or decreasing number
densities. However it is also possible to probe new physics without producing
the corresponding particles. As quantum field theory tells us, virtual particles
can show effects even at energy scales below their mass. Despite the suppres-
sion by the mass of the new particles, they can be probed, especially if they
induce transitions forbidden or suppressed in the Standard Model.

4.1 Lepton flavor violation
The Standard Model, with massless neutrinos, has an accidental lepton flavor
symmetry which forbids decays such as lα → lβγ and lα → 3lβ1 for charged
leptons lα, lβ = e, µ, τ . This lepton flavor symmetry is broken by the neutrino
mass mixing. This induces flavor violation for charged leptons which is however
strongly suppressed by mνi . For example the Standard Model decay rate for
the branching ratio for µ→ eγ is given by

BR(µ→ eγ) = 3α
32π

∣∣∣∣∣∑
i

(U∗PMNS)µi (UPMNS)ei
m2
νi
−m2

ν1

m2
W

∣∣∣∣∣
2

< 10−54 (4.1.1)

and thus virtually impossible to detect [28]. As lepton flavor is an accidental
symmetry, there is no reason for new physics to obey this symmetry. If the new
particles have large masses, the contributions, arising from loop corrections,
are suppressed by these masses. As the Standard Model rates are vanishingly
small, BSM contributions are dominant and a Lepton Flavor Violation signal
would be a clear indication of new physics. Dedicated experiments such as

1Note that 3lβ=̂lβlβ l̄β so that electric charge is conserved.

− 21 −
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Table 4.1: Current limits and future sensitivities for some LFV observables.

LFV Process Present Bound Future Sensitivity

BR(µ→ eγ) 4.2 · 10−13[57] 2 · 10−15[58]

BR(µ→ 3e) 1.0 · 10−12[59] 10−16[60]

CR(µ− e,Ti) 4.3 · 10−12[61] 10−18[62]

MEG and SINDRUM have set strong limits on LFV. The most stringent
limits and future sensitivities are given in Tab. 4.1.

4.2 Muon anomalous magnetic moment
The magnetic moment of leptons is at tree level predicted by the Dirac equation
and given by ~M = gl

e
2ml

~S where ~S is the spin and gl = 2. The “g-factor” gl
receives corrections through loop contributions. The deviation from 2 is called
the anomalous magnetic moment and parameterized by

al := gl − 2
2 . (4.2.1)

The most general form of the matrix element relevant for the lepton photon
interaction with on shell leptons can be written as [63]

iMµ =
p1

q

p2

=− ieū(p2)
[
γmuFE(q2) +

(
γµ − 2mlq

µ

q2

)
γ5FA(q2) (4.2.2)

+iσµν qν2ml

FM(q2) + σµν
qnu

2ml

γ5FD(q2)
]
u(p1).

FE renormalizes the electric charge while FA is the anapole moment and FD
is the electric dipole moment. The anomalous magnetic moment is related to
the form factor FM by

al = FM(0). (4.2.3)
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The anomalous magnetic moment for the muon has been calculated up to
high loop orders (5-loop for QED). The calculated value can be compared to
the experimental results measured at Brookhaven and recently at Fermilab.
At the time of the making of this thesis the deviation between the Standard
Model prediction and the experimental value is [64]

∆aµ = aexp
µ − aSM

µ = (251± 59) · 10−11 (4.2.4)

which has a significance of 4.2σ.2 New particles running in the loop could give
new contributions to the anomalous magnetic moment and in principle explain
the deviation from the Standard Model prediction.

4.3 Proton decay
In the Standard Model there is an accidental symmetry that conserves Baryon
number. As the proton is the lightest hadron with Baryon number B = 1, this
symmetry is the reason why the proton is stable. However Baryon number
in the Standard Model is not motivated by a deeper principle and there is no
reason for new physics to obey such an accidental symmetry. In fact, Grand
Unified Theories (GUTs) usually have multiplets containing both leptons and
quarks. The corresponding gauge bosons then mediate Baryon number violat-
ing transitions.3

One can write down effective operators that respect the Standard Model
gauge symmetry but violate Baryon number. The lowest order operators with
Standard Model fields as external legs are of dimension six and given by [65]4

Leff ⊃
c1

Λ2 ε
ijk(ūcR)iσ̄µQj ē

c
Rσ̄µQk + c2

Λ2 ε
ijk (ūcR)i σ̄

µQj(d̄cR)kσ̄µL

+ c3

Λ2 ε
ijk(d̄cR)iσ̄µQj(ūcR)kσ̄µL+ H. c. (4.3.1)

where i, j, k are color indices. For details on gauge and Lorentz invariant prod-
ucts which we have implicitly used see Chap. 5. These operators are suppressed

2It is important to mention that there is a ongoing debate about the theoretical value,
especially about the hadronic contributions. Thus one needs to take care when interpreting
the deviation from the Standard Model.

3One should mention that there is also Baryon number violation arising from instanton
effect. The rates are however of order 10−173 and thus negligible [65].

4There are also operators involving non Standard Model fields e.g. right handed neutrinos
as external legs.
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by the scale Λ which is the given by the mass of the fields mediating the Baryon
number violating processes. The above operators allow the proton to decay
for example into pions and positrons. The realizations of these operators are
model dependent. Following Ref. [65] we make a naive estimate on the proton
life time

τ(p→ π0e+) ≈ Λ4

α2
GUTm

5
p

(4.3.2)

where αGUT is the gauge coupling strength at unification scale and mp is the
proton mass. With the limits on the proton life time for p → π0e+ set by
Super-Kamiokande τ(p → π0e+) > 2.4 × 1034 years [66] and assuming
αGUT ≈ 1/25 we obtain

Λ & 6.5× 1015 GeV. (4.3.3)

As the masses of the fields mediating proton decay are usually of the scale
where the GUT gauge group is broken, this is often interpreted as a lower
limit on the unification scale.
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5.1 Group theory in BSM physics

One of the most important tool for a model builder are symmetry groups.
The standard model Lagrangian can for the most part be built by imposing
a number of symmetries and then writing down all possible terms that are
allowed by these symmetries1. A typical approach to build a new extension
of the Standard Model is to add new particles and new symmetries and then
define how each particle transforms under the symmetries of the model. The
Lagrangian of this model can the simply be found by writing down all terms
not forbidden by any symmetry.

Generally one distinguished between to type of symmetries: global and lo-
cal symmetries. In case of global symmetries, the parameter describing the
symmetry transformation does not depend on space time. For local symme-
tries, also called gauge symmetries, the transformation varies at every space
time point. Local symmetries are often considered to be more attractive as
they have a physical meaning due to their intrinsic connection to gauge bosons.

5.1.1 Representations of a group

Symmetries are generally described using groups.2 It is crucial to define how
each field in the Lagrangian transforms under a symmetry transformation.
This is done by choosing a representation of the group. We will focus on
groups that depend continuously on one or several parameter, so called Lie
groups. Any element of a Lie group g can be described using the generators

1Exceptions include the strong CP-problem, where a CP-violating term in the QCD
Lagrangian is allowed from a symmetry perspective but does not seem to be realized in
nature.

2“Group” is here meant in the mathematical sense, meaning a set together with an
operation fulfilling the group axioms.

− 25 −
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Xa of the group:

g = exp(αaXa). (5.1.1)

If Xa is given by a matrix, then exp is the matrix exponential. Conversely
the generators can be obtained by taking the derivative regarding αa. The
generators span the Lie algebra and obey the relation[

Xa, Xb
]

= ifabcXc (5.1.2)

with the structure constants fabc. A representation is now given by a homo-
morphism3 D from the Lie group to invertible linear operators acting on a
vector space, often represented by matrices U ∈ GL(n,K) for a vector space
of dimension n over K. Since D is a homomorphism, we obtain the following
conditions following from the group axioms:

D(g1 ◦ g2) = D(g1) ·D(g2), (5.1.3)
D(I) = 1 (5.1.4)

where I is the identity element of the group and 1 the unit matrix. From Eq.
(5.1.1) we can define the representation of the Lie algebra D:

U = D(g) = D (exp(αaXa)) := exp (αaD(Xa)) . (5.1.5)

The representation of a group is not unique. For example, there is a trivial
representation that maps all group elements to 1.

Now we turn our attention to the transformation of fields. As described
above a representation projects onto linear operators acting on a vector space.
We embed our fields into this vector space by writing them as a vector. Equiv-
alently one can write it componentwise as φi where i denotes the vector index.
The field then transforms under a symmetry transformations as

Uijφj = exp (αaD(Xa))ij φj
.= φi + αaD(Xa)ijφj (5.1.6)

where in the second equality we take the limit for infinitesimal transforma-
tions. Note the the vector space and the dimension of this vector space vary
depending on which representation we choose. The Lagrangian is required to
be invariant under such symmetry transformations with arbitrary αa. Two of

3A homomorphism is a map preserving the group structure.
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the most commonly used representations are the fundamental and the adjoint
representations. For the symmetry group SU(N) fundamental representation
is a N dimensional representation consisting of traceless N ×N matrices. The
adjoint representation where the components of the generators are given by
the structure constants (Xa)bc = ifabc.

In case of a local symmetry, the parameter αa is promoted to have a space
time dependence αa(x). This leads to the introduction of gauge bosons to
keep the Lagrangian invariant under the symmetry transformation. With the
physical meaning of local symmetries, it is crucial to define the transformation
properties of each field under these local symmetries. This can be done by sim-
ply choosing a representation of the group. The gauge group of the Standard
Model is given by

U(1)Y × SU(2)L × SU(3)c. (5.1.7)

To specify the transformation properties of a particle, we will use the notation
(Y, nL, nc) where Y denotes the hypercharge and nL and nc are the dimen-
sions of the representation under which the particle transforms for SU(2)L
and SU(3)c respectively while the conjugate representations are labeled as n̄.
For example the transformation of left handed quarks is described by (1

6 , 2, 3)
whereas the right handed electron transforms as (−1, 1, 1). In this work we
only add particles without color charge e.g. in the trivial representation of
SU(3)c to the Standard Model. If a field transforms under the trivial repre-
sentation of SU(2)L we call it a singlet, whereas particles transforming under
the fundamental and adjoint representation are called doublets and triplets
respectively. For reference, we give the particles of the Standard Model and
the representations in Tab. 5.1. The fields are given in terms of left handed
Weyl spinors. For example the right handed electron is given by ēcR. This
connection is explained in more detail in Sec. 5.2.2.

5.2 Weyl spinors

5.2.1 Representation of the Lorentz group
The group describing Lorentz transformations is given by SO(1,3). As this
group has the same Lie algebra as SU(2)×SU(2), the representations of the
Lorentz group can be described by (j1, j2). The notation for ji is the same as
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Table 5.1: Particle content of the Standard Model. All fields are given in terms
of left handed Weyl spinors

Field Generations Spin U(1)Y × SU(2)L × SU(3)c

L =

 νL

eL

 3 1
2

(
−1

2 , 2, 1
)

ecR 3 1
2 (1, 1, 1)

Q =

 uL

dL

 3 1
2

(
1
6 , 2, 3

)

ucR 3 1
2 (−2

3 , 1, 3̄)

dcR 3 1
2 (1

3 , 1, 3̄)

H 1 0 (1
2 , 2, 1)

Bµ - 1 (0, 1, 1)

Wµ - 1 (0, 3, 1)

Gµ - 1 (0, 1, 8)

for Spin and angular momentum in Quantum mechanics. The nature of a field
(scalar, fermion, vector) is fixed by the representation of the Lorentz group.
The trivial representation (0, 0) describes scalar fields. If one ji takes the value
1
2 while the other is zero, this describes two component objects, called Weyl
spinors. A field ψL in the (1

2 , 0) representation is called a left handed Weyl
spinor and transforms as

ψL → e
1
2 (iθj−βj)σjψL (5.2.1)

where θj are the rotation angles and βj are the boost angles. σj are given by
the Pauli matrices. Similarly, right handed Weyl spinors ψR are in the (0, 1

2)
representation and their transformation is given by

ψR → e
1
2 (iθj+βj)σjψR. (5.2.2)

Left and right handed Weyl spinors can be combined to four component
spinors, called Dirac spinors. These are in the (1

2 , 0) ⊕ (0, 1
2) representation
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and with the gamma matrices in the Weyl representation, Dirac spinors Ψ can
be written as

Ψ =

ψL
ψR

 . (5.2.3)

Finally, vector bosons Aµ live in the (1
2 ,

1
2) representation and have four

degrees of freedom. They only occur as gauge bosons connected to a local
symmetry.

5.2.2 Van der Waerden notation

Writing down fermion fields in terms of Dirac spinors can become confusing
when working with particles transforming under SU(2)L. The left handed com-
ponents of the Dirac spinors often transform differently under SU(2)L than the
right handed components. For example the Dirac spinor describing charged
leptons contains the eL component of the lepton doublet as well as ecR which is
a singlet under SU(2)L. Often it is more clear to write down the Lagrangian
in terms of Weyl spinors. In terms of Dirac spinors the Lagrangian can be
obtained by combining the left and right handed Weyl spinors to Dirac spinors
and using projection operators whenever necessary. Similar to the component
notation for four vectors (with greek indices µ, ν, ...), one can introduce indices
for the two component Weyl spinors to define a Lorentz invariant scalar prod-
uct. An extensive treatment of this notation can be found in Ref. [67]. For
left handed Weyl spinors χ, ξ we use undotted roman letter indices and define
the product

χξ = χaξa = χ1ξ1 + χ2ξ2 (5.2.4)

and for right handed spinors χ̄, ξ̄ we use dotted roman letters and the product
is defined as4

χ̄ξ̄ = χ̄ȧξ̄
ȧ = χ̄1̇ξ̄

1̇ + χ̄2̇ξ̄
2̇. (5.2.5)

4One needs to be careful not to confuse notation for right handed Weyl spinors and the
bar notation for Dirac spinors Ψ̄ = Ψ†γ0. This is however usually clear from context.
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We introduce, similar to ηµν , an invariant tensor to raise and lower the indices
as

εab = εȧḃ = +iσ2 =

 0 1

−1 0

 , (5.2.6)

εab = εȧḃ = −iσ2 =

 0 −1

1 0

 , (5.2.7)

where σ2 is the second Pauli matrix. These tensors then raise and lower the
indices of Weyl spinors as

χa = εabχb χa = εabχ
b χ̄ȧ = εȧḃχ̄ḃ χ̄ȧ = εȧḃχ̄

ḃ. (5.2.8)

Since the components of the spinors (operators) anticommute, this yields a
symmetric product

χξ = ξχ χ̄ξ̄ = ξ̄χ̄. (5.2.9)

As iσ2χ
∗ transforms as a right handed spinor, given a left handed spinor χ, it

follows that in component notation

(χa)∗ = χ̄ȧ, (χ̄ȧ)∗ = χa. (5.2.10)

In this section we will denote Dirac spinors with capital greek letters e.g. Ψ
and Weyl spinors with uncapitalised greek letters e.g. ψ. In chiral (Weyl)
representation the gamma matrices have the index structure

γµ =

 0 (σµ)aḃ

(σ̄µ)ȧb 0

 (5.2.11)

with

σµ = (1, σi), σ̄µ = (1,−σi). (5.2.12)

A Dirac spinor is then, in component notation, given by

ΨD =

 ψa

χ̄ȧ

 , (5.2.13)

Ψ̄D =
(
χa, ψ̄ȧ

)
. (5.2.14)
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As we will need it later, we give the Fierz replacement which holds true for
anticommuting Weyl spinors and can be easily checked:

ξa(σµ)aḃχ̄ḃ = −χ̄ȧ(σ̄µ)ȧbξb. (5.2.15)

5.3 Some points about Majorana fermions
Feynman rules are derived in many quantum field theory textbooks [68, 69].
Most textbooks focus on the treatment of scalar and vector fields as well as
Dirac fermions but only briefly introduce Majorana fermions and do not discuss
the Feynman rules for these. This section is devoted to introducing Feynman
rules and conventions for Majorana fermions. Some treatment of Majorana
fermions can also be found in Ref. [70].

5.3.1 Charge conjugation and Majorana particles
Majorana fermions are defined as being invariant under charge conjugation.
The operator that defines the charge conjugation acting on Dirac spinors is

C : Ψ→ −iγ2Ψ∗ = −iγ2γ0Ψ̄T . (5.3.1)

The condition which defines Majorana fields is given by

ΨM = CΨ̄T
M = −iγ2γ0Ψ̄T

M . (5.3.2)

Note how this condition reduces the degrees of freedom from four to two and
the Majorana spinors become their own antiparticles. For the remainder of
this section, we will drop the index M as we will almost exclusively work with
Majorana spinors. Using

C−1 = C† = CT = −C (5.3.3)

the Majorana condition can be rewitten to

Ψ̄ = ΨTC. (5.3.4)

Charge conjugation should flip the sign of the charge. By applying C on the
Dirac equation and requiring the resulting equation to describe a field with
opposite charge, we obtain the relation

C(γµ)TC−1 = −γµ. (5.3.5)
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From the Majorana condition, it follows that the Dirac spinor describing Ma-
jorana fermions is in terms of Weyl spinors given by

ΨM =

 ψ

ψ̄

 (5.3.6)

where ψ is a left handed Weyl spinor. Note how only one Weyl spinor is
required and thus the degrees of freedom are two.

5.3.2 Majorana Lagrangians
We now turn to the kinetic terms in a Lagrangian describing Majorana fields.
We will give the equations in terms of both Dirac and Weyl spinors. To distin-
guish both notations we will, in this section, use capital letters for Dirac spinors
and write the (un)dotted indices for Weyl spinors explicitly. The Lagrangian
for free Majorana femions is given by

L = 1
2Ψ̄(iγµ∂µ −m)Ψ

= 1
2
[
ψai(σµ)aḃ∂µψ̄ḃ + ψ̄ȧi(σ̄µ)ȧb∂µψb − ψamψa − ψ̄ȧmψ̄ȧ

]
. (5.3.7)

Using Eq. 5.2.15 and partial integration this can be rewritten to

L = ψ̄ȧi(σ̄µ)ȧb∂µψb −
m

2
(
ψaψa + ψ̄ȧψ̄

ȧ
)
. (5.3.8)

The Euler Lagrange equations of motion for ψ̄ȧ are then5

i(σ̄µ)ȧb∂µψb −mψ̄ȧ = 0 (5.3.9)

or for ψa

−∂µψ̄ȧi(σ̄µ)ȧb −mψb = 0. (5.3.10)

These two differential equations are equivalent as can easily be seen by her-
mitian conjugation. They represent the so called Majorana equation which
describes a Majorana particle of mass m. Now it becomes obvious, why the
Lagrangian for Majorana fermions differs from the Dirac Lagrangian by a fac-
tor of 1

2 . As Majorana fermions only have half the degrees of freedom compared
5Note that ψ̄ or rather ψ∗ is independent from ψ.
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to Dirac fermions and are their own antiparticle, the factor of 1
2 cancels when

taking the derivative6.
With the Van der Waerden notation one can easily show that Majorana

spinors cannot couple to a vector current. We start with the case where both
spinors belong to the same field. Then we simply have

Ψ̄γµΨ = ψa(σµ)aḃψ̄ḃ + ψ̄ȧ(σ̄µ)ȧbψb (5.3.11)

= ψa(σµ)aḃψ̄ḃ − ψa(σµ)aḃψ̄ḃ (5.3.12)
= 0 (5.3.13)

where we used Eq. (5.2.15) in the second equality. In case of two different
spinors Ψ and Ψ′, we have the Lagrangian

L =1
2Ψ̄(iγµ∂µ −m)Ψ + 1

2Ψ̄′(iγµ∂µ −m′)Ψ′ + gΨ̄′γµΨJµ (5.3.14)

=ψ̄ȧi(σ̄µ)ȧb∂µψb −
m

2
(
ψaψa + ψ̄ȧψ̄

ȧ
)

+ ψ̄′ȧi(σ̄µ)ȧb∂µψ′b −
m′

2
(
ψ′aψ′a + ψ̄′ȧψ̄

′ȧ
)

+ g
(
ψ′a(σµ)aḃψ̄ḃ + ψ̄′ȧ(σ̄µ)ȧbψb

)
Jµ (5.3.15)

=ψ̄ȧi(σ̄µ)ȧb∂µψb −
m

2
(
ψaψa + ψ̄ȧψ̄

ȧ
)

+ ψ̄′ȧi(σ̄µ)ȧb∂µψ′b −
m′

2
(
ψ′aψ′a + ψ̄′ȧψ̄

′ȧ
)

+ g
(
ψ′a(σµ)aḃψ̄ḃ − ψa(σµ)aḃψ̄′ḃ

)
Jµ (5.3.16)

where we used Eq. (5.2.15) in the last equality. Now we calculate the Euler
Lagrange equations of motion for ψ̄ȧ. We obtain

0 = i(σ̄µ)ȧb∂µψb −mψ̄ȧ + g
(
(σµ)aḃψ̄′ḃ

)
Jµ. (5.3.17)

Since ψ and ψ′ are different fields, we can decompose this equation to the
Majorana equation for ψa and

g
(
(σµ)aḃψ̄′ḃ

)
Jµ = 0. (5.3.18)

Thus the coupling to the vector current must vanish.
6This is similar to the case of real scalar field compared to complex ones.
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5.3.3 Majorana Feynman rules
The quantized Majorana field is given by

Ψ(x) =
∑
s

∫ d3p

(2π)3
1
√2ωp

[
aspu

s
pe
−ipx + as†p v

s
pe
ipx
]
, (5.3.19)

Ψ̄(x) =
∑
s

∫ d3p

(2π)3
1
√2ωp

[
as†p ū

s
pe
ipx + aspv̄

s
pe
−ipx

]
(5.3.20)

with the usual anti-commutation relations for the ladder operators. Note the
similarity to Dirac spinors except from the fact that there is only one ladder
operator asp. In the Weyl basis, the Dirac spinors usp and vsp are as usual given
by

usp =


√
pµσµξs
√
pµσ̄µξs

 , vsp =


√
pµσµξs

−√pµσ̄µξs

 (5.3.21)

with ξ1 = (1, 0)T and ξ2 = (0, 1)T . The quantized Weyl spinors can now be
deduced

ψa(x) =
∑
s

∫ d3p

(2π)3
1
√2ωp

[
aspe
−ipx + as†p e

ipx
]√

pµ(σµ)aḃδḃs, (5.3.22)

ψ̄ȧ(x) =
∑
s

∫ d3p

(2π)3
1
√2ωp

[
aspe
−ipx − as†p eipx

]√
pµ(σ̄µ)ȧbδsb . (5.3.23)

We can now evaluate the Feynman rules. For in and outgoing Majorana
fermions in terms of Dirac spinors we have in momentum space

Ψ|p, s〉 ∝
pfafp = usp, Ψ̄|p, s〉 ∝

pfafp = v̄sp, (5.3.24)

〈p, s|Ψ ∝
pfapf = vsp, 〈p, s|Ψ̄ ∝

pfapf = ūsp. (5.3.25)

In component notation the corresponding Feynman rules are

ψa|p, s〉 ∝
pfafp =

√
pµ(σµ)aḃδḃs, ψ̄ȧ|p, s〉 ∝

pfafp =
√
pµ(σ̄µ)ȧbδsb ,

(5.3.26)

〈p, s|ψa ∝
pfapf =

√
pµ(σµ)aḃδḃs, 〈p, s|ψ̄ȧ ∝

pfapf = −
√
pµ(σ̄µ)ȧbδsb .

(5.3.27)
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For propagators, we have the same contraction as for Dirac fermions given
by

〈0|ΨaΨ̄b|0〉 ∝
pff =

i(/p+m)ab
p2 −m2 + iε

, (5.3.28)

where a, b denote the components of the spinors. In contrast to Dirac spinors,
the following contractions also do not vanish in case of Majorana spinors

〈0|Ψ̄aΨ̄b|0〉 = 〈0|C−1
ac ΨcΨ̄b|0〉 ∝

pff =
iC−1

ac (/p+m)cb
p2 −m2 + iε

, (5.3.29)

〈0|ΨaΨb|0〉 = 〈0|C−1
bc ΨaΨ̄c|0〉 ∝

pff =
iC−1

bc (/p+m)ac
p2 −m2 + iε

, (5.3.30)

where we used that Ψ = CΨ̄T and Ψ̄T = C−1Ψ which follows from the Ma-
jorana condition. In component notation the relevant propagators are given
by

〈0|ψaψb|0〉 ∝
pff = imδba

p2 −m2 + iε
, (5.3.31)

〈0|ψaψ̄ḃ|0〉 ∝
pff = ipµ(σµ)aḃ

p2 −m2 + iε
, (5.3.32)

〈0|ψ̄ȧψb|0〉 ∝ pff = ipµ(σ̄µ)ȧb
p2 −m2 + iε

, (5.3.33)

〈0|ψ̄ȧψ̄ḃ|0〉 ∝
pff =

imδȧ
ḃ

p2 −m2 + iε
. (5.3.34)

All other propagators can be obtained by raising or lowering the indices. Note
how the C−1 = iγ2γ0 in Eqs. (5.3.29) and (5.3.30) operation has a similar
effect, as raising and lowering indices.

There are several mathematical expressions for the same graphical line of
propagators as well as in and outgoing particles in both Dirac and Weyl spinor
notation. Which formula to use can at this point only be determined by writing
down all possible contractions as stated in the Wick theorem. However, using
the Majorana condition, one can rewrite the contractions in such a way, that
the same Feynman rules as for Dirac fermions can be used. To show this, we
consider a Lagrangian with interaction terms of the shape

Lint ⊂ Ψ̄i
aΓ

ij
abΨ

j
b (5.3.35)
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where we use upper indices to denote different fields and lower indices to denote
the spinor structure. Γij in general contains scalar or vector fields as well as
Gamma matrices. Since Majorana fermions do not have vector interactions,
the spinor structure of Γij is given by a sum of 1, γ5 and γµγ5.7 Using Eq.
(5.3.5), it follows that

CabΓijcbC−1
cd = Γijad. (5.3.36)

This allows us to switch spinors as follows

Ψ̄i
aΓ

ij
abΨ

j
b = Ψi

aCabΓ
ij
bcCcdΨ̄

j
d (5.3.37)

= −Ψ̄j
dCabΓ

ij
bcCcdΨi

a (5.3.38)
= Ψ̄j

dCdcΓ
ij
bcC

−1
ba Ψi

a (5.3.39)
= Ψ̄j

dΓ
ij
daΨi

a (5.3.40)

where we used the Majorana condition in the first equality, then the anti
commutation relation for spinors and finally CT = C−1 = −C. This tells us
that we can switch the Majorana spinors on both sides of the operator Γij.
Using this relation, we can write any Wick contracted expression as

O1Ψ̄iΓijΨjΨ̄kΓkl...ΓmnΨnΨ̄oΓopΨpO2 (5.3.41)

where we do not write the contractions for non Majorana fields (e.g. contained
in Γij). The operators Oi in general contain the initial and final states and the
corresponding contractions give the expressions for in and out going particles.
Note that in case of loops, the fermion field on the left and on the right
should be contracted with each other. This case works similar to the case
above. All contractions now give the same propagator as known from Dirac
Feynman rules. Graphically speaking, ordering the Wick contractions like this
corresponds to drawing arrows on the fermions lines (just like for charge flow)
and then evaluating the graph just like a graph containing Dirac fermions. In
component notation this procedure is equivalent to raising and lowering the
indices in such a way, that Eqs. (5.3.26), (5.3.27) and (5.3.31) to (5.3.34) can
be used.

7The projection operators PR,L are also contained as they are a combination of 1 and
γ5.
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As Majorana particles are there own anti particles, one needs to take care
with interactions where the same field occurs twice such as

Lint ⊂ Ψ̄ΓΨ. (5.3.42)

Say there is a contraction such as

O1Ψ̄ΓΨO2 (5.3.43)

one also needs to include the contraction

O1Ψ̄ΓΨO2 (5.3.44)

which gives the same expression as the first contraction as Eq. (5.3.40) tells us.
Thus, for each vertex with the same Majorana field twice, we obtain a factor
of two. Similarly to the case of real scalar bosons, we include a factor of 1

2 in
each vertex where a Majorana field occurs twice.

5.4 Gauge invariant products
The Van der Waerden notation introduced in Sec. 5.2.2 defines a Lorentz in-
variant product. As all products in the Lagrangian should be gauge invariant,
it is useful to define a gauge invariant product for SU(2)L as well. Similar to
the Van der Waerden notation, we introduce a tensor ε that raises and lowers
the SU(2)L indices

εab = +iσ2 =

 0 1

−1 0

 , (5.4.1)

εab = −iσ2 =

 0 −1

1 0

 . (5.4.2)

Fields in different representations have different index structures and must be
treated differently. Fields in the trivial representation, so called singlets, do not
have any SU(2)L index. Doublets are objects with one index which transform
as

χa → Ua
bχb (5.4.3)

(5.4.4)
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where U is the gauge transformation for fields in the fundamental representa-
tion of SU(2)L given by

U = exp
(
i

2α
iσi

)
. (5.4.5)

Using εUε−1 = (U−1)T we can find the inverse transformation as

Ua
d = (U−1)d

a
. (5.4.6)

From definition, triplets (i.e. fields on the adjoint representation of SU(2)L)
transform as

φj → exp
(
αiT iA

)
jk
φk (5.4.7)

where (T iA)jk = −iεijk is the SU(2)L generator in the adjoint representation
whose elements are given by the structure constants. One usually defines
triplets as matrices by contracting the fields with the Pauli matrices

∆ = σjφj. (5.4.8)

With the triplets written like this, we can express the gauge transformation as

∆a
b = (σj)a

b
φj →(σj)a

b exp
(
αiT iA

)
jk
φk (5.4.9)

.= (σj)a
b
[
δjk + αi(T iA)jk

]
φk (5.4.10)

=
[
(σk)a

b − iαiεijk(σj)a
b
]
φk (5.4.11)

=
[
(σk)a

b + 1
2α

i[σi, σk]a
b
]
φk (5.4.12)

=
{[
1+ i

2α
iσi

]
σkφ

k
[
1− i

2α
iσi

]}
a

b

(5.4.13)
.= Ua

c∆c
d(U−1)d

b
. (5.4.14)

With the index structure and gauge transformations fixed, we define the prod-
uct for the SU(2)L structure by contracting upper and lower indices, for ex-
ample for two doublets

χξ = χaξa = χbε
baξa (5.4.15)

or for a triplet and a doublet

∆χ = ∆a
bχb. (5.4.16)
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The gauge transformation for the latter product is

∆χ = ∆a
bχb →Uac∆c

d(U−1)d
b
Ub

eχe (5.4.17)
= Ua

c∆c
dχd. (5.4.18)

This is the same transformation as for a single doublet. Similarly one can
show, that objects with two indices (e.g. a product of two triplets) transforms
the same way as a triplet whereas a product of two doublets (with no free
index) transforms trivially. Finally if we have an object with two indices and
take the trace, the resulting object transforms trivially since

∆a
a → Ua

b∆b
c(U−1)c

a = (U−1)c
a
Ua

b∆b
c = ∆b

b. (5.4.19)

This should also be expected as after taking the trace there are no free indices.
Every term in the Lagrangian must not only be invariant under SU(2)L

gauge invariance, but also has to obey the U(1)Y group of hypercharge. For a
scalar doublet χ one can define a conjugate field φ† which has opposite hyper-
charge but has index structure (φ†)a and transforms as a doublet8. Similarly
one can define ∆† for a scalar triplet. This object transforms as a triplet under
SU(2)L and again has opposite hypercharge to ∆. For fermion fields we must
also make sure that all products are invariant under Lorentz transformations.
The corresponding formalism has been introduced in Sec. 5.2.2. In that section
we introduced right handed Weyl spinors χ̄ which could be obtained by com-
plex conjugation from left handed Weyl spinors χ. The complex conjugation
also ensures that χ̄ has opposite hypercharge to χ. By multiplying with iσ2 in
SU(2)L space, we can make sure that this object transforms under SU(2)L as
a singlet (i.e. no SU(2)L index), a doublet (i.e. a lower SU(2)L index) or as a
triplet (with one lower and one upper SU(2)L index). Note that for fermions
one now has the (un)dotted indices from the Warden notation as well as the
indices for the SU(2)L products. These indices are often not written explicitly
but all products in the Lagrangian and simply assumed to be Lorentz and
SU(2)L invariant.

8When one does not define conventions such that all products are gauge invariant, then
φ† is given by φ̃ = iσ2φ∗.
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a

b

c

Figure 5.1: Triangle diagram responsible for gauge anomalies.

5.5 Anomalies
For a given Lagrangian one can consider both the classical theory with ordinary
fields as well as the quantum theory, where the fields are promoted to operators.
The classical theory already describes many features of the model, however it
fails to describe effects arising from loops. It turns out that the symmetries
of the classical Lagrangian are not necessarily symmetries of the quantum
theory. In this case the symmetry is said to be anomalous. In case of global
symmetries this does not pose a problem. In fact a number of symmetries
in the Standard Model are anomalous, for example Baryon number. Gauge
symmetries however cannot be anomalous. In such a case the theory would
be unphysical as unitarity breaks down. These so called gauge anomalies are
connected to triangle diagrams with three gauge bosons as external legs and a
fermion running in the loop. An illustration of such triangle diagrams is shown
in Fig. 5.1. The contributions of these diagrams must cancel in order to ensure
that a symmetry is gauge anomaly free.

For a triangle diagram where the external vector bosons have indices a, b, c,
the contribution is proportional to [69]

dabcR = 2Tr
[
T aR{T bR, T cR}

]
:= 2A(R)Tr

[
T aF{T bF , T cF}

]
:= 2A(R)dabc (5.5.1)

where T iR are the generators of the gauge symmetry corresponding to the gauge
boson with index i = a, b, c in the representation R where R = F is the fun-
damental representation. A(R) is the so called anomaly coefficient. From the
definition it follows that in the fundamental representation, A(F ) = 1. The
contributions of the triangle diagrams vanish if either dabc = 0 or the sum
over all fermion fields cancels. The latter case yields the so called anomaly
constraints. The anomaly arising from a specific triangle diagram is usually
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Table 5.2: Conditions for gauge anomaly cancellation for the Standard Model
gauge group SU(3)c×SU(2)L×U(1)Y . The sums run over all components of
fermion fields ψ. Note that all fields are assumed to be left handed Weyl
spinors. For SU(3)c we assume singlets 13 and triplets 33 and for SU(2)L we
consider singlets 12, doublets 22 and triplets 32.

Anomaly Constraint

U(1)3
Y

∑
ψ
Y 3
ψ = 0

SU(3)2
c×U(1)Y

∑
ψ∈33

Yψ = 0

SU(2)2
L×U(1)Y

∑
ψ∈22

Yψ + 4 ∑
ψ∈32

Yψ = 0

grav2×U(1)Y
∑
ψ
Yψ = 0

denoted by a product of the symmetry groups corresponding to the gauge
bosons involved. One also must consider diagrams with the graviton as exter-
nal legs. These anomalies are then denoted similarly with grav as the symmetry
group. For a given gauge symmetry and particle content, we can now calcu-
late whether there are gauge anomalies in this theory. In Tab. 5.2 we give
the conditions for anomalies to cancel for the Standard Model gauge group
assuming all fields are in the trivial or fundamental representation of SU(3)c
and for SU(2)L we in addition allow for fields in the adjoint representation. As
we use the anomaly coefficient for the SU(2)2

L×U(1)Y anomaly with fermions
in adjoint representation, we give the calculation of this coefficient. With the
SU(2)L generators in the adjoint representation (T aA)bc = εabc we have

Tr
[
Y {T bA, T cA}

]
= Tr (Y )

(
εbijεcji + εcijεbji

)
= −4δbcTr (Y ) = 4dabc = A(A)dabc

(5.5.2)

where we have used dabc = −δbcTr (Y ) for the SU(2)2
L×U(1)Y anomaly. It

follows that for this anomaly, A(A) = 4.
There is one more anomaly which we must consider, the Witten anomaly

[71]. It is related to the SU(2) gauge group. For our purposes, it states that
there always must be an even number of fermion SU(2)L doublets.

In model building one usually makes sure that the model is gauge anomaly
free. There is one object that comes in handy when doing so, vector like
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fermions. Consider two fermions fields ψ, ψ′ in the same representation of
SU(3)c×SU(2)L and opposite U(1) charges.9 One can easily see these two
fields together do not contribute to any gauge anomaly. Both field together
form a gauge invariant mass term mψψ′. This motivates combining both of
them to a Dirac spinor

Ψ =

 ψ

ψ̄′

 . (5.5.3)

5.6 Unification

The parameters in the Lagrangian such as gauge couplings are not constant
but depend on the energy scale at which one measures them. When calculating
loops, divergences occur which are then absorbed into the bare quantities in the
Lagrangian. This renormalization procedure makes the physically measurable
couplings dependent on the energy scale µ. In this section we are particularly
interested in the scale dependence of the Standard Model gauge couplings.
How these couplings run, depends on the particles contributing in the loop.
Given the particle content of the Standard Model, we can calculate the running
of the three gauge couplings. Their running is shown in Fig. 5.2. We see that
the coupling strengths of all three couplings are running towards each other.
This motivates the so called Grand Unified theories (GUTs). Should all three
gauge couplings intersect at one point, it is plausible, that at this energy scale
the Standard Model gauge group is embedded into a larger symmetry, which is
spontaneously broken at this scale. The differences in the coupling strengths
we now measure, would then simply arise from the fact that these coupling
run differently. All Standard Model fields must then be placed into multiplets
of this larger symmetry so that at energy scales above the unification scale
the models is invariant under this grand unified gauge symmetry. From Fig.
5.2 it becomes obvious that the Standard Model coupling do not unify at one
point. As mentioned above the running of couplings depends on the fields
running in the loop. Should there be additional fields at a low energy scale,
then the running would change possibly leading to a unification of all three

9To be precise for triplets under SU(3)c one field must be in the 3 representation and the
other in the 3̄. In general ψ and ψ′ must be in representations conjugate to one another.
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Figure 5.2: Running of couplings in the Standard Model. The RGEs have
been calculated using SARAH [72, 73] at two loop. The couplings are set to
α1(mZ0) = 0.01704, α2(mZ0) = 0.03399 and α3(mZ0) = 0.1185 with mZ0 =
91.1876 GeV and the Yukawa coupling of the top-quark has been set to one.
The parameters have been chosen as in Ref. [74].

gauge couplings at one point. It is worth mentioning, that the particle content
of the MSSM with superpartners at TeV scale does lead to unification [75–77].

5.7 Neutrino Masses
The generation of the neutrino masses cannot be explained with the Standard
Model. As explained in Chap. 3, the neutrinos cannot obtain their masses
via the Standard Model Higgs mechanism, as their masses are extremely small
compared to the Higgs vev. In this section we discuss how Majorana neutrino
masses can be generated by new physics at high energy scales.

5.7.1 Dimension 5 Weinberg operator

In order to systematically study the generation of Majorana neutrino masses,
one can introduce the d = 5 Weinberg operator [78] which in Weyl spinor
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notation is given by

L ⊃ −cαβΛ (LαH) (LβH) + H. c. (5.7.1)

cαβ is a coefficient obtained by integrating out new physics and Λ is the energy
scale of new physics introduced to make cαβ dimensionless. After EWSB this
expression turns into a Majorana mass term for neutrinos

L ⊃ −cαβΛ 〈H
0〉2

[
ναLν

β
L + ν̄αL ν̄

β
L

]
:= −1

2 (Mν)αβ
[
ναLν

β
L + ν̄αL ν̄

β
L

]
(5.7.2)

with the Higgs vev v = 〈H0〉
√

2 = 246.22 GeV [28]. The neutrino mass matrix
(Mν)αβ is then proportional to 1/

√
Λ. As the d = 5 Weinberg operator has

mass dimension 5, this term is non renormalizable and thus needs an UV
completion. With new physics at high energy scales, the neutrino masses are
automatically suppressed, hence the name seesaw mechanism. Assuming cαβ
of O(1), we find that new physics should occur at a mass scale of O(1015 GeV).
Such mass scales for new physics coincide with the mass scales expected from
grand unified theories. Loop realisations of the d = 5 operator can lower the
mass scale of new physics to the TeV scale as cαβ is then small since it arises
from a loop.

5.7.2 Seesaw Type I-III

There are three ways to realize the d = 5 Weinberg operator at tree level [79]
called the seesaw mechanism type I-III. The seesaw type I requires three right
handed neutrinos, singlets under SU(2), for three massive Standard Model
neutrinos. With these right handed neutrinos N one can write down a Yukawa
interaction

L ⊃− yαiLαHNi + H. c. (5.7.3)

which after EWSB turns into a Dirac mass term

L ⊃ −yαi〈H0〉
[
ναLNi + ν̄αLN̄i

]
:= − (MD)αi

[
ναLNi + ν̄αLN̄i

]
. (5.7.4)
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As the right handed neutrinos have zero hypercharge and are singlets under
all Standard model gauge groups, one can write down a Majorana mass term

L ⊃− 1
2 (MM)ij

[
NiNj + N̄iN̄j

]
. (5.7.5)

Note that the Standard Model neutrinos cannot have a Majorana mass (before
EWSB) as this would break SU(2) invariance explicitly. Putting this together
into one (Majorana) mass matrix for both left as well as right handed neutrinos,
we obtain

M =

 0 MT
D

MD MM

 . (5.7.6)

The diagonalization of such a 6 × 6 matrix is quite tedious. For illustrative
purposes we now assume only one generation for both the left and right handed
neutrinos. Then the matrix has eigenvalues

m1,2 = 1
2

[
MM ±

√
M2

M − 4M2
D

]
(5.7.7)

which in the limit of MN �MD, keeping only the leading order, turns into

m1 = MM , (5.7.8)

m2 = M2
D

MM

. (5.7.9)

Note how one of the masses is suppressed which explains the smallness of the
neutrino masses.

To realize the seesaw type II, a scalar triplet with hypercharge Y = 1 needs
to be introduced. This triplet can obtain a naturally small vacuum exception
value suppressed by the mass of the triplet [80]. Interactions with this vev
generate Majorana neutrino masses. Note that only one triplet is required to
generate three massive neutrinos.

Replacing the right handed neutrinos in the seesaw type I by a fermion
triplets with zero hypercharge yields the seesaw type III. The mass suppression
works similar to seesaw type I.

5.7.3 Radiative Seesaw
The d = 5 Weinberg operator can be realized not only at tree level, but also by
loop corrections. The tree level contributions will dominate unless suppressed
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or forbidden. Assuming that there are no tree level contributions, the neutrino
masses can be generated at loop level10 which gives an additional suppression
by the masses of the particles running in the loop. One loop realizations of
the d = 5 operator allow for new physics at the electro weak scale making
it accessible to current experiments. Such one loop realizations have been
systematically studied in Ref. [10]. In order to have only loop contributions
to the neutrino masses often a symmetry prohibiting the tree level seesaw
is required. This symmetry could also be connected to the stability of dark
matter. Radiative seesaw and the connection to dark matter is described in
more detail in Chap. 6.

10Note that the neutrino loop diagrams must not be divergent as there are no tree level
quantities in the Lagrangian that can absorb the divergences.



Minimal Models with
radiative neutrino masses6
The main goal of this thesis is to study minimal extensions of the Standard
Model which can explain both the dark matter phenomenon as well as the
smallness of neutrino masses. Following previous work [11], we require the
number of new fields to be less than (or equal to) four to fulfill the minimality
criterion. The neutrino masses are generated at one loop with the tree level
contribution being forbidden by a Z2 symmetry. The case where the Z2 sym-
metry is promoted to a local U(1) is considered in Chap. 10. In this chapter
we give an overview of the models in general and discuss two models in detail.

6.1 Classification of minimal dark matter mod-
els with radiative neutrino masses

The possible realizations of the dimension 5 Weinberg operator at one loop are
categorized in Ref. [10]. Ref. [11] gives a list of 35 models that, integrating out
the new particles, yield the dimension 5 Weinberg operator and also contain
viable dark matter candidates. The number of new fields is required to be
maximally four with at least two being necessary to generate neutrino masses
at loop level. All fields transform under the SU(2)L either trivially (singlets)
or are in the fundamental (doublet) or adjoint (triplet) representation. All
new particles are odd under a discrete Z2 symmetry with all standard model
particles having an even charge. This symmetry forbids any vertex where one
new particle couples to any number of Standard Model particles and therefore
prevents tree level contributions to the neutrino masses as well as the decay
of dark matter. In Ref. [11] they find four different topologies for the loops
that give rise to neutrino masses. These topologies are shown in Fig. 6.1. The
possible models are named after the neutrino topology with a roman letter
(A,B,C...) appended for numeration. The neutrino masses are naturally small
due to the suppression from the masses in the propagators. In contrast to

− 47 −
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Figure 6.1: Topologies for neutrino mass generation at one loop. With the
notation on Ref. [11] from left to right and top to bottom: T3, T1-1, T1-2
and T1-3 topology.

models with tree level seesaw where the right handed neutrinos must have a
mass scale of O(1015 GeV), the radiative seesaw mechanism allows the masses
of the new particles to be at electroweak scale making them accessible by
current and near future experiments e.g. collider experiments such as the LHC
and direct detection experiments such as XENON1T. The neutrino loop also
allows for lepton flavor violating processes yielding a way to test them. The
limits on the neutrino mass set e.g. by KATRIN and the mixing parameters
known from neutrino oscillations can be taken into account by inverting the
formula for the neutrino mass matrix obtained by the one loop calculation.
This so called Casas-Ibarra parametrization yields a formula for the Yukawa
couplings [81].

We will investigate the phenomenology of two specific models in this work.
The remainder of this chapter is dedicated to describing those models in detail.

6.2 Scotogenic Model

The scotogenic model, proposed by Ernest Ma in 2006 [9], is the simplest and
most famous of the minimal extensions described above. It explains neutrino
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Table 6.1: Particle content of the scotogenic model.

Field Generation Spin U(1)Y × SU(2)L × SU(3)c Z2

η 1 0 (1
2 , 2, 1) −1

N 3 1
2 (0, 1, 1) −1

SM particles - - - +1

masses with the T3 topology and dark matter while containing only two new
fields. In Ref. [11] this model is denoted by T3-B with α = −1. In this section
we give a model description which interpolates the description given in our
papers Refs. [1, 3].

6.2.1 Particle content
The scotogenic model extends the Standard Model by three generation of sin-
glet fermion fields (right handed neutrinos) and one complex scalar SU(2)L-
doublet [9]. All new particles are odd under a Z2 symmetry whereas the Stan-
dard Model particles have an even charge (see Tab. 6.1). This implies that
the lightest new particle, either a fermion or a scalar, must be stable. If this
particle is electrically neutral, it is a Dark Matter candidate. The Lagrangian
for the fermions reads

LN = −mNi

2 NiNi + yiα(ηLα)Ni + H. c., (6.2.1)

where Lα is the SU(2)L-doublet for the α’th lepton generation. The fermions
are defined in terms of Weyl spinors. The scalar potential is given by

V =m2
HH

†H +m2
ηη
†η + λ1

2 (H†H)2 + λ2

2 (η†η)2 + λ3(H†H)(η†η)

+ λ4(H†η)(η†H) + λ5

2
[
(H†η)2 + (η†H)2

]
. (6.2.2)

H is the Standard Model Higgs-doublet. Therefore mH and λ1 are given by
the Standard Model Higgs potential. We assume that η does not acquire
a vev.1 Thus λ2 only induces self-interactions and has little effect on the

1Such a vev would break the Z2 symmetry and thus allow for dark matter decay and tree
level seesaw.
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Figure 6.2: Neutrino mass generation in the scotogenic model.

phenomenology. After electroweak symmetry breaking, there are four scalar
particles, the physical Standard Model Higgs boson, the charged component
η+ and the two neutral components η0 = (ηR + iηI)/

√
2 of the inert doublet.

The masses are given by

m2
η+ = m2

η + λ3〈H0〉2, (6.2.3)
m2
R = m2

η + (λ3 + λ4 + λ5)〈H0〉2, (6.2.4)
m2
I = m2

η + (λ3 + λ4 − λ5)〈H0〉2, (6.2.5)

where 〈H0〉 = v√
2 with the Higgs vev v = 246.22 GeV [82]. To ensure that

the vacuum is stable, the following conditions for the scalar couplings must be
fulfilled [83]

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, (6.2.6)

λ3 + λ4 − |λ5| > −
√
λ1λ2. (6.2.7)

6.2.2 Neutrino masses
Neutrino masses are generated by the radiative seesaw mechanism via one-
loop interactions with the Higgs vev (see Fig. 6.2). Tree-level contributions
are forbidden by the Z2 symmetry. The neutrino mass matrix is then given by

(Mν)αβ =
3∑
i=1

yiαyiβmNi

32π2

[
m2
R

m2
R −m2

Ni

log
(
m2
R

m2
Ni

)
− (R→ I)

]
(6.2.8)

:= (yTΛy)αβ (6.2.9)

where we define the diagonal matrix Λ in the second equality. Note that
this formula differs by a factor of 1

2 from the original formula given in [9] as



6.2. Scotogenic Model 51

explained in [84]. If λ5 were zero, the mass difference m2
ηR
−m2

ηI
= 2λ5〈H0〉

would vanish and according to Eq. (6.2.8) there would be no neutrino masses.
In this case, there would be a larger symmetry, since the Majorana masses of
the neutrinos violate lepton number conservation. Therefore it is natural for
λ5 to be small. Expanding Eq. (6.2.8) for small λ5, we obtain with m2

R ≈
m2
I ≡ m2

R,I

(Mν)αβ ≈ 2λ5〈H0〉
3∑
i=1

yiαyiβmNi

32π2(m2
R,I −m2

Ni
)

[
1 +

m2
Ni

m2
R,I −m2

Ni

log
(
m2
Ni

m2
R,I

)]
.

(6.2.10)

Equation (6.2.8) is diagonalized by the PMNS matrix UPMNS,

m̂ν = diag(mν1 ,mν2 ,mν3) = UPMNSMνU
T
PMNS. (6.2.11)

The Yukawa matrix y can be calculated using the Casas-Ibarra parametrization
[81]

y =
√

Λ
−1
R
√
m̂νU

†
PMNS, (6.2.12)

where R is an orthogonal matrix.

6.2.3 Lepton flavor violation
The scotogenic model allows for LFV at one-loop level. The contributing
diagrams leading to lα → lβγ are shown in Fig. 6.3. For the process lα → 3lβ
one has similar diagrams, but the photon decays into lβ l̄β. In addition one
can replace the photon by a Z-boson. Moreover there are box diagrams and
Higgs-penguins contributing to this process [85]. LFV tends to be an important
constraint for the scotogenic model. Generally the most stringent limits come
from the diagrams with lα = µ and lβ = e. The experimental constraints
are discussed in Chap. 4 and Tab. 4.1 shows the current limit and future
sensitivities for these processes. The impact of the current and future LFV
limits has been studied in Refs. [85, 86].

6.2.4 Nucleon scattering
As described above, the scotogenic model can provide either a fermionic (Ni)
or scalar (ηR, ηI) dark matter candidate, whichever is the lightest particle of
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Figure 6.3: 1-loop Feynman diagrams leading to the lepton flavor violating
process lα → lβγ.
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Figure 6.4: Feynman diagrams of the elastic (left) and inelastic (right) scalar
dark matter-nucleon scattering processes in the scotogenic model. If η0I is the
dark matter candidate, η0R and η0I change their roles. For mass splittings
larger than a few hundred keV, the right diagram is kinematically forbidden.

the Z2 odd sector. The fermionic dark matter candidate is a singlet under
the Standard Model gauge group and thus does not give rise to dark matter-
nucleon scattering cross sections, neither in the spin-dependent nor the spin-
independent case rendering it undetectable for direct detection experiments.
Scalar dark matter, on the other hand, has a non-zero spin-independent dark
matter-nucleon cross section.

The diagrams for scalar dark matter scattering off nucleons are shown in
Fig. 6.4. Usually these scattering processes are described by diagrams with the
same in- and outgoing dark matter particle. This is the elastic case. However,
as originally pointed out in Ref. [87], the existence of a slightly heavier state
allows also for inelastic scattering of the dark matter particle, provided that
the mass splitting between the two states δ = |mη0R −mη0I | fulfills

δ <
µv2

2 , (6.2.13)

where µ is the WIMP nucleus reduced mass and v is the relative velocity.
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Thus inelastic scattering with typical dark matter velocities is only possible
for tiny mass splittings of O(100 keV). In the scotogenic model, the mass
splitting between the neutral scalar components is governed by λ5. Since λ5

is naturally small (see above), the mass splitting is small as well and can be
approximated by

δ ≈ λ5〈φ0〉2

mη0R,I
. (6.2.14)

Therefore we need to consider the inelastic scattering case in addition to the
“standard” elastic case. Note that the inelastic scattering is mediated by the
Z0 boson and thus governed by gauge couplings. Hence this process tends to
give large scattering cross sections if kinematically allowed. The formalism for
elastic and inelastic scattering of nucleons is described in detail in Chap. 8.

6.3 T1-3-B(α = 0)

The models in Ref. [11] contain a number of multiplets ranging from two to
four. Fewer multiplets are generally more attractive as they introduce fewer
unknown parameters. There are only two viable models with two new mul-
tiplets: The above described scotogenic model [9] and a modification of this
model with a fermion triplet [88]. The next option is to add three multiplets
to the Standard Model with 15 such models given in [11]. Four of these models
allow for spin dependent scattering on nucleons while the corresponding dark
matter candidate being not excluded by direct detection. We choose the model
T1-3B(α = 0) for further investigation. This model has been studied before in
Ref. [89]. The model description given in this section is based on our paper
Ref. [2].

6.3.1 Particle content

The model T1-3-B extents the Standard Model by fermion singlet and doublet
and scalar triplet fields. α denotes the hypercharge convention established in
Ref. [11] and we use the model with α = 0. The neutrino masses are generated
via the T1-3 topology (see Fig. 6.1). The fields that are added to the Standard
Model in this case are listed in Tab. 6.2. Componentwise these fields are given
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Table 6.2: New fields in the model T1-3-B with α = 0.

Field Type Generations U(0)Y × SU(2)L × SU(3)C Z2

Ψ Majorana spinor 1 (0, 1, 1) −1

ψ Weyl spinor 1
(

1
2 , 2, 1

)
−1

ψ′ Weyl spinor 1
(
−1

2 , 2, 1
)

−1

φ Real scalar 2 (0, 3, 1) −1

by

Ψ = Ψ0, ψ =

ψ0

ψ−

 , ψ′ =

ψ′+
ψ′0

 , φi =

 1√
2φ

0
i φ+

i

φ−i − 1√
2φ

0
i

 , (6.3.1)

where the index i denotes the generations of the scalar triplet and the super-
scripts denote the electric charge. We assume only one generation for each
fermion field. The scalar triplet has zero hypercharge and therefore its neutral
component is a real scalar while the two charged components can, after EWSB,
be combined to one charged field. The two fermion doublets form a vector-like
doublet and we can build Dirac spinors as follows:

ψ0
D =

ψ0

ψ̄′
0

 , ψ−D =

ψ−
ψ̄′

+

 . (6.3.2)

However, throughout this work we stick to using Weyl spinors instead of these
Dirac spinors.

Following the notation of Refs. [89, 90], the Lagrangian of the model is
given by

L =LSM + Lkin −
1
2(M2

φ)ijTr(φiφj)−
(1

2MΨΨΨ + H. c.
)
− (Mψψ′ψψ

′ + H. c.)

− (λ1)ij(H†H)Tr(φiφj)− (λ3)ijkmTr(φiφjφkφm)
−
(
λ4(H†ψ′)Ψ + H. c.

)
− (λ5(Hψ)Ψ + H. c.)−

(
(λ6)ijLiφjψ′ + H. c.

)
.

(6.3.3)

The λ6 term couples the Standard Model leptons Li to the new fields, which
allows the neutrinos to obtain their masses. M2

φ > 0 is required so that the



6.3. T1-3-B(α = 0) 55

scalar triplets do not aquire a vacuum expectation value (vev). Therefore the
λ3 term only induces self interactions which have no significant impact on the
phenomenology. Hence λ3 is set to zero in this work. The scalar triplets couple
to the Standard Model Higgs H through the λ1 term. The λ4 and λ5 terms
are similar to Yukawa terms and link the new fermions to the Standard Model
Higgs field. After electroweak symmetry breaking (EWSB) these terms will
appear in the mass matrix of the fermions and induce mixing between the
fermion singlet and the vector-like doublet.

To obtain the physical states (mass eigenstates), the mass matrices must
be diagonalized. After EWSB, the mass matrix for the neutral fermions is
given by

Mf =


MΨ

λ5v√
2

λ4v√
2

λ5v√
2 0 Mψψ′

λ4v√
2 Mψψ′ 0

 , (6.3.4)

and it is diagonalized by the unitary mixing matrix Uχ. This results in three
Majorana mass eigenstates with masses mχ0

i
, given by

χ0
1

χ0
2

χ0
3

 = Uχ


Ψ0

ψ0

ψ′0

 . (6.3.5)

Due to the interaction of the scalar triplet with the Standard Model Higgs
boson, the scalar mass matrix also obtains a contribution through EWSB

M2
φ0 = M2

φ± = M2
φ + λ1v

2. (6.3.6)

The scalar mass matrix is diagonalized by Oη, which yields the squared masses
of the scalar components m2

η0,±
i

. The mass eigenstates are defined by
η

0,±
1

η0,±
2

 = Oη

φ
0,±
1

φ0,±
2

 . (6.3.7)

In this work we choose M2
φ and λ1 to be diagonal and thus neglect mixing

between the two generations of scalar particles, as this does not affect the



56 Chapter 6. Minimal Models with radiative neutrino masses

phenomenology. Note that the neutral and charged components have equal
masses at tree level. Loop corrections induce a mass splitting between both
components, making the charged component 166 MeV heavier at one loop
[91]. This ensures that the lightest scalar is always neutral and viable as a
dark matter candidate.

6.3.2 Neutrino masses
The neutrino loop can be calculated analytically resulting in the following
formula for the neutrino mass matrix:

(Mν)ij = 1
32π2

ns∑
l=1

λim6 λjn6 (Oη)ln(Oη)lm
nf∑
k=1

(Uχ)∗k3
2 m3

χ0
k

m2
η0
l
−m2

χ0
k

m2
χ0
k

m2
η0
l

=: 1
32π2

ns∑
l=1

λim6 λjn6 (Oη)ln(Oη)lmAl. (6.3.8)

Here, ns is the number of neutral scalars and nf is the number of neutral
fermions. In our model with two generations of a real scalar triplet, ns = 2.
This implies that the rank of the matrix Mν ≤ 2. Thus this model only allows
for two massive neutrinos. One could consider the case with three massive
neutrinos, which requires a minimum of ns = 3. For our model with two
massive neutrinos, Eq. (6.3.8) can be inverted leading to the Casas-Ibarra
parameterization [81]

λim6 = U ij
PMNS

√
mνjR

jl
√
Al
−1
Olm
η . (6.3.9)

mνj are the eigenvalues of the neutrino mass matrix Mν , and UPMNS the PMNS
matrix [28]. R is a 3× 2 matrix fulfilling the condition

RRT =


0 0 0

0 1 0

0 0 1

 , (6.3.10)

meaning that R can be parameterized as

R =


0 0

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (6.3.11)



6.3. T1-3-B(α = 0) 57

by an angle θ, which is allowed to take any value between 0 and 2π.

6.3.3 Spin independent and spin dependent cross sec-
tions

Both dark matter candidates can scatter on nucleons and the cross sections
can be tested by experiments. In Ref. [89] impact of current and future limits
from XENON1T has been investigated.

Scalar dark matter can only scatter via the SI process through the Higgs
boson. Contributions with a Z0-boson as mediator are not present here, re-
sulting in a lower cross section. As we will show later, this has a clear effect
on the IceCube event rate. For fermionic dark matter there is one diagram
contributing to the SI and SD cross sections each [27]. The diagram for spin
(in)dependent scattering is a t-channel diagram with a (Higgs-) Z0-boson as
mediator. Scattering processes through s-channel diagrams are not possible,
since none of the new particles couples to quarks. As it turns out, the SI and
SD cross sections are correlated with each other, as both are dependent on
the mixing between the fermion singlet and doublet, governed by λ4 and λ5.
We will now discuss the explicit Feynman rules for the dark matter-mediator
vertices as well as the impact of singlet-doublet mixing on the cross sections.

The spin (in)dependent cross sections mainly depend on the three point
vertex between two dark matter particles and the (Higgs-) Z0-boson. We
focus on the fermion dark matter case since the spin dependent cross section
for a scalar triplet is always zero and its coupling to the Higgs boson is given
by λ1. The vertices for the mass eigenstates of the fermions can be calculated
by SARAH [72, 73]:

χg

dh
h0

χg′
e

=− 1√
2
i
{

(Uχ)∗g1
[
λ4(Uχ)∗g′3 + λ5(Uχ)∗g′2

]
+ λ4(Uχ)∗g3(Uχ)∗g′1+

+λ5(Uχ)∗g2(Uχ)∗g′1
}
PL

− 1√
2
i {(Uχ)g1 [λ4(Uχ)g′3 + λ5(Uχ)g′2] + λ4(Uχ)g3(Uχ)g′1+

+λ5(Uχ)g2(Uχ)g′1}PR, (6.3.12)
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χg

dg
Zµ0

χg′
e

=− 1
2i [g1 sin(θW) + g2 cos(θW)]

[
(Uχ)g2(Uχ)∗g′2 − (Uχ)g3(Uχ)∗g′3

]
γµPL

+ 1
2i [g1 sin(θW) + g2 cos(θW)]

[
(Uχ)g′2(Uχ)∗g2 − (Uχ)g′3(Uχ)∗g3

]
γµPR.

(6.3.13)

Since the three mass eigenstates are generally not mass degenerate, only the
elastic case where g = g′, with χg being dark matter, contributes to the spin
(in)dependent cross section. Both vertices depend on the mixing matrix Uχ
between the fermion singlet and doublet. Since the singlet-doublet mixing is
induced by λ4,5 as can be seen from the fermionic mass matrix in Eq. (6.3.4),
the mixing matrix Uχ depends on λ4,5.

Diagonalizing the fermionic mass matrix proves to be difficult and gives
quite unwieldy results. We can however, expand the problem for small λ4,

Mf = M0 + λ4Mλ =


MΨ 0 0

0 0 Mψψ′

0 Mψψ′ 0

+ λ4


0 λ̃v√

2
v√
2

λ̃v√
2 0 0
v√
2 0 0

 (6.3.14)

and then (keeping λ̃ = λ5
λ4

fixed) use perturbation theory to diagonalize this
matrix approximately.2 At second order in λ4 we obtain for the mixing matrix

2Time independent perturbation theory from quantum mechanics is basically a recipe for
approximate matrix diagonalization.
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Uχ =


1 0 0

0 − 1√
2

1√
2

0 1√
2

1√
2

+


0 − (λ4−λ5)v

2(MΨ+Mψψ′ )
− (λ4+λ5)v

2(MΨ−Mψψ′ )

(λ4Mψψ′+λ5MΨ)v√
2(MΨ−Mψψ′ )(MΨ+Mψψ′ )

0 0
(λ4MΨ+λ5Mψψ′)v√

2(MΨ−Mψψ′ )(MΨ+Mψψ′ )
0 0

+ (6.3.15)



λ2
5+λ2

4
4

(
M2

Ψ+M2
ψψ′

)
+λ4λ5MΨMψψ′

(MΨ−Mψψ′ )2(MΨ+Mψψ′ )2 0 0

0
(λ2

4−λ
2
5) MΨ

2Mψψ′
+λ4(λ4−λ5)

4
√

2(MΨ+Mψψ′)2

(λ2
4−λ

2
5) MΨ

2Mψψ′
−λ4(λ4+λ5)

4
√

2(MΨ−Mψψ′)2

0
(λ2

4−λ
2
5) MΨ

2Mψψ′
+λ5(λ4−λ5)

4
√

2(MΨ+Mψψ′)2

(λ2
5−λ

2
4) MΨ

2Mψψ′
−λ5(λ5+λ4)

4
√

2(MΨ−Mψψ′)2


v2

and for the diagonalized mass matrix


MΨ + v2(λ2

5MΨ+2λ4λ5Mψψ′+λ2
4MΨ)

2(MΨ−Mψψ′ )(MΨ+Mψψ′ )
0 0

0 −Mψψ′ − (λ4−λ5)2v2

2(MΨ+Mψψ′ )
0

0 0 Mψψ′ − (λ4+λ5)2v2

2(MΨ−Mψψ′ )

 .
(6.3.16)

One can see that in the case MΨ < Mψψ′ (assuming λ2
4,5v

2 < M2
ψψ′ −M2

Ψ) 3,
χ1 is the lightest fermion whereas in the case Mψψ′ < MΨ, χ3 is the lightest
one. Now we can use the result for Uχ to calculate how the vertices depend
on λ4,5 and the mass parameters MΨ,Mψψ′ . We expand the results again for
small λ4,5, omitting all terms that contain higher orders than λ2

4, λ
2
5 or λ4λ5.

3Otherwise a more careful analysis is required. E.g. if λ4λ5 > 0 or λ4,5 < λ5,4
MΨ
Mψψ′

, the
statement above is also true.
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The results are:

χ1χ1h
0 : − iv (MΨλ

2
5 + 2Mψψ′λ5λ4 +MΨλ

2
4)

M2
Ψ −M2

ψψ′
+O

(
λ3

4,5

)
, (6.3.17)

χ2χ2h
0 : iv (λ4 − λ5)2

2(MΨ +Mψψ′)
+O

(
λ3

4,5

)
, (6.3.18)

χ3χ3h
0 : iv (λ4 + λ5)2

2(MΨ −Mψψ′)
+O

(
λ3

4,5

)
, (6.3.19)

χ1χ1Z
µ
0 : [g1 sin(θW) + g2 cos(θW)] iv2

4
(
M2

Ψ −M2
ψψ′

)×
×
(
λ2

4 − λ2
5

)
γ5γµ +O

(
λ3

4,5

)
, (6.3.20)

χ2χ2Z
µ
0 : [g1 sin(θW) + g2 cos(θW)] −iv2

8Mψψ′(MΨ +Mψψ′)
×

×
(
λ2

4 − λ2
5

)
γ5γµ +O

(
λ3

4,5

)
, (6.3.21)

χ3χ3Z
µ
0 : [g1 sin(θW) + g2 cos(θW)] iv2

8Mψψ′(MΨ −Mψψ′)
×

×
(
λ2

4 − λ2
5

)
γ5γµ +O

(
λ3

4,5

)
. (6.3.22)

We include the vertices for χ2 even though χ2 is never the lightest fermion and
thus not abundant. The spin dependent cross section becomes zero if |λ4| =
|λ5|. If χ3 is the dark matter candidate, then the spin independent cross section
vanishes for λ4 = −λ5. For χ1 the spin independent cross section vanishes for
λ4 = λ5

(
±
√(

Mψψ′

MΨ

)
− 1− Mψψ′

MΨ

)
. We can compare these results with the cross

sections calculated by SPheno 4.0.3 [92, 93] and micrOMEGAs 5.0.8 [94].
Fig. 6.5 shows the numerical results and our rescaled vertex factors squared.
For χ3 the results agree remarkably well. For χ1 the qualitative behavior is the
same, but we see some deviations, which become larger for larger |λ4|. This is
not surprising since we expanded the vertex factors for small λ4,5 and thus our
formulas are only correct for λ2

4,5 � 1.
From Eqs. (6.3.17)-(6.3.22) it is clear that, except from special cases such

as |λ4| = |λ5|, both cross sections scale with the larger of the two Yukawa
couplings λ4,5. This yields a correlation between the spin dependent and spin
independent cross section. This correlation can be made explicit using the
data from the scan described in in Chap. 9 as shown in Fig. 6.6. Note that
this data contains points from a random scan over the entire parameter space
and no special relation between the parameters is enforced. The points scatter



6.3. T1-3-B(α = 0) 61

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
λ4

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

σ
[p

b]

λ5 = 0.36
MΨ = 200GeV
Mψψ′ = 300GeV

σp(SI)

σp(SD)

(χ1χ1h
0)2

(χ1χ1Z
0)2

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
λ4

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

σ
[p

b]

λ5 = 0.36
MΨ = 300GeV
Mψψ′ = 200GeV

σp(SI)

σp(SD)

(χ3χ3h
0)2

(χ3χ3Z
0)2

Figure 6.5: Spin dependent (orange) and independent (blue) cross sections
calculated numerically and the vertex factors squared (red and blue) for both
χ1 (top) and χ3 (buttom) as dark matter. The vertex factors have been rescaled
so they agree with the cross sections at λ4 = 0. The scalar singlet has been
decoupled by setting mφ = 10 TeV and λ1 has been set to zero (cf. Ref. [90],
Fig. 7.1).
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Figure 6.6: Dependence of the spin dependent cross section on the spin inde-
pendent cross section using the data from Chap. 9.

around a linear relation. In (finetuned) scenarios where the correlation is
lifted, the points depart from the points following the linear relation. This
relation explains how the limits on the spin independent cross section set by
XENON1T also indirectly restrict the spin dependent cross section. Note
that the derivation for the vertices is independent of the dark scalar sector
and the neutrino loop and our results thus are true for general models with
singlet-doublet mixing.



Absolute neutrino mass
in the scotogenic model 7
In this chapter we investigate the phenomenology of the scotogenic model
introduced in Sec. 6.2. We focus on the case where the fermion singlet is
the dark matter candidate and investigate how the absolute neutrino mass
influences the parameter space and observables. Scalar dark matter yields a
different phenomenology. This chapter extends the results published in our
paper Ref. [1] which was created in joint work together with Sybrand Zeinstra,
Caroline Rodenbeck and Michael Klasen.

7.1 Motivation

In the scotogenic model, the Standard Model neutrinos ν obtain mass by one
loop contributions arising from a dark sector odd under a discrete Z2 sym-
metry, which contains one additional scalar doublet η and (for three massive
Standard Model neutrinos) three generations of fermion singlets Ni (sterile
neutrinos with i = 1, 2, 3) [9]. The parameter space is therefore much smaller
than, e.g., the one of supersymmetry and can be better constrained with neu-
trino oscillation data via the Casas-Ibarra method [81], limits on lepton fla-
vor violation (LFV) [85], and measurements of the dark matter relic density
[86]. Nevertheless, these previous analyses found that the dark scalar/fermion
masses as well as their scalar and Yukawa couplings could still vary over several
orders of magnitude.

We scan over the parameter space and demonstrate that a determination
of the absolute electron neutrino mass, which has now come into reach, will
provide additional stringent constraints on the dark sector of the scotogenic
model in a way that is almost independent of the neutrino hierarchy and CP
phase. In particular, we determine the linear relation between the absolute
electron neutrino mass and the scalar coupling associated with the mass split-
ting of the dark neutral scalars. This linear dependence induces correlations

− 63 −
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among the other parameters of the model, i.e. the dark matter and scalar
masses and their Yukawa couplings, which we can also quantify. Together,
current neutrino mass and future LFV experiments can then probe almost the
entire fermion dark matter parameter space.

7.2 Experimental constraints

The scotogenic model can be tested with a number of experiments. We require
our parameter points to yield a phenomenology that is in compliance with
current experiments.

Lepton flavor violating processes, forbidden in the standard model, occur
in the scotogenic model (see Sec. 6.2). The experimental situation for LFV is
discussed in Chap. 4 and we impose the current limits on the branching ratios
BR(µ→ eγ), BR(µ→ 3e) and the conversion rate CR(µ− e,Ti) given in Tab.
4.1.

The dark matter relic density measured by Planck is Ωh2 = 0.12 ± 0.001
[16]. We allow a theoretical uncertainty of 0.02 to account for theoretical and
numerical uncertainties. In the standard freeze in scenario, the relic density
results from dark matter annihilation in the early Universe.

The neutrino masses and mixing parameter constrain the parameter space
of the scotogenic model through the Casas-Ibarra parametrization given in
Eq. (6.2.8). KATRIN has recently published a new upper limit on the electron
neutrino mass of 1.1 eV [8] and ultimately aims for a sensitivity of 0.2 eV
[54]. Assuming Normal Hierarchy and the ΛCDM cosmological constraints
impose an upper limit on the sum of the neutrino masses ∑imνi < 0.12 eV
[55] whereas the minimal value from neutrino oscillation is ∑imνi < 0.06 eV
[16]. In addition the neutrino mass differences and mixing angles, for which
we use the 3σ ranges [51], enter the Casas-Ibarra parametrization.

7.3 Numerical results

In this section we study how the experimental constraints limit the parameter
space of the scotogenic model. We sample the lightest neutrino mass and use
the mass differences [51] to calculate the masses of the remaining neutrinos.
The orthogonal matrix R in the Casas-Ibarra parametrization is parametrized
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by three random angles 0 < θi < 2π. Unless specifically mentioned otherwise,
the CP violating phase is set to zero δCP = 0. We impose a pertubativity
limit on the Yukawa and dark sector-Higgs couplings and the Yukawa cou-
plings |λ3,4|, |yiα|2 < 4π. We use the Casas-Ibarra parametrization to calculate
the Yukawa couplings and then calculate the branching ratios (BRs) and con-
version rates (CRs) with SPheno 4.0.3 [92, 93] and the relic density with
micrOMEGAS 5.0.8 [94]. The required model files have been generated
with SARAH-4.13.0 [73].

7.3.1 Fermionic dark matter without CP-Violation

The scalar coupling λ5 affects both the LFV processes as well as the relic
density. Larger values of λ5 increase the relic density and suppress LFV. This
can be seen in Fig. 7.1. Increasing the neutrino mass has the opposite effect.
This is true for both Normal and Inverted Hierarchy. From Eq. (6.2.10), it can
be seen that for fixed masses increasing λ5 decreases the Yukawa couplings.
Similarly for increasing neutrino masses, the couplings increase. The main dark
matter annihilation processes are topologically similar to the loop diagram
Fig. 6.2 when cut on the internal fermion line and therefore the cross section
scales with the Yukawa couplings. The LFV processes scale with the Yukawa
coupling as well, as apparent from Fig. 6.3. Hence there is an interplay between
the observables, the neutrino mass and λ5. This interplay still holds, when one
varies the masses of the new particles and all scalar couplings as we will show
next.

We scan over the entire parameter space of the scotogenic model in the
following ranges

100 GeV <Mi < 10 TeV, (7.3.1)
100 GeV <mη < 10 TeV, (7.3.2)

λ2 = 0.5, (7.3.3)
|λ3,4| < 4π, (7.3.4)

10−12 <|λ5| < 10−08, (7.3.5)
4 · 10−3 <mν1,3 < 2 eV. (7.3.6)

Collider searches require the scalar masses to be above 100 GeV [49]. For most
of the parameter space the scalar masses dominate over 〈H0〉 and therefore
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Figure 7.1: Dependence of the BR(µ → eγ) (top) and relic density (bottom)
on the lightest neutrino mass. Vertical lines show the current limits on the
neutrino masses set by KATRIN (solid orange line) and sensitivity goal of
KATRIN (dashed orange line). Left for NH and right for IH. The masses of
the right handed neutrinos have been set to mNi = [1, 4, 8] TeV, the scalar
mass to mη = 2 TeV and the scalar couplings to λ3 = 0.5 and λ4 = −0.5.

the scalar particles are all close in mass. As mentioned earlier, λ2 only induces
self interactions an has little effect on the phenomenology. Therefore we can
fix it to one value without loosing generality. We require coannihilations to
contribute less than 1% since they require a unexplained degeneracy of the
masses. Generally coannihilations alter the phenomenology resulting i.e. in
smaller BRs for LFV as shown in [86].

We find that for NH there are viable models for any neutrino mass in our
range. For IH there there are no model with mν3 . 1 · 10−2 eV. This is
mostly related to the relatively small statistics for the models that meet all
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Figure 7.2: Ratio of the eigenvalues of the Yukawa matrix as a function of
the lightest neutrino mass with neutrino mass differences and mixing (grey),
current LFV constraints (blue), yielding the right relic density (green). The
red point fulfill all experimental constraints. Vertical lines show the current
limits on the (effective) electron neutrino mass set by KATRIN (solid orange
line) and sensitivity goal of KATRIN (dashed orange line). Left for normal
hierarchy and right for inverted hierarchy.
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experimental constraints (see Fig. 7.2 and 7.3). In addition for both hierarchies
the number of valid models decreases for mν1,3 . 5 · 10−2 eV.

In case of large mν1 the neutrino mass differences play only small role result-
ing in nearly degenerate neutrino masses. This leads to the same eigenvalues
of the Yukawa matrix as can be seen in Fig. 7.2. The ratio |y2/y1| varies only
slightly at large mν1,3 and over two orders of magnitude for small neutrino
masses. LFV processes impose upper limits on both Yukawa eigenvalues and
limit the ratio further. The relic density constraint requires the coupling to
be not too small. This results that the combination of all constraints leads
to |y2/y1| ≈ 1. We have checked that this is true for all possible ratios of
eigenvalues of the Yukawa matrix.

In Eq. (6.2.10) there is a linear dependence between the neutrino mass
matrix Mν and λ5. If the lightest neutrino mass dominates over the mass dif-
ferences, the neutrino mass matrix is approximately diagonal (since all eigen-
values are the same) and the dependence reduces to a linear relation between
mν1,3 and λ5. The slope of this linear relation depends on the masses of the
new particles and the Yukawa couplings which are both varied in the scan.
This dependence reemerges in a scan over the entire parameter space once
one imposes the relic density constraint as can be seen in Fig. 7.3. For small
neutrino masses the mass differences play an important role and therefore the
dependence changes, giving a wider constant band. Since the LFV constraints
require small Yukawa couplings and thus larger λ5, the point fulfilling both
constraints are on the upper range of this band. For these points λ5 is a con-
stant. We fit a linear function for large neutrino masses and a constant for
small mν1,3 to the points fulfilling all constraints. At 90% C.L. we obtain

|λ5| =

1.6± 0.7 · 10−10 for mν1 < 0.052 eV
3.08± 0.05 · 10−9mν1 eV−1 for mν1 > 0.052 eV

(7.3.7)

for NH and

|λ5| =

1.7± 1.5 · 10−10 for mν3 < 0.056 eV
3.11± 0.06 · 10−9mν3 eV−1 for mν3 > 0.056 eV

(7.3.8)

for IH. Thus, once the absolute neutrino mass scale is known we can predict
the dark sector-Higgs coupling λ5. The sign of λ5 is arbitrary.

We will now focus on the points that meet all constraints. For these points
mν1,3/|λ5| is constant. Thus the Yukawa couplings become correlated with the
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Figure 7.3: The dark sector-Higgs coupling |λ5| as a function of the lightest
neutrino mass. The blue points fulfill the current LFV constraints, the green
point yield the right relic density and the red point fulfill all experimental
constraints. Vertical lines show the current limits on the (effective) electron
neutrino mass set by KATRIN (solid orange line) and sensitivity goal of KA-
TRIN (dashed orange line). Left for normal hierarchy and right for inverted
hierarchy.
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masses of the new particles. All tree level dark matter annihilation processes
involve a dark sector scalar in the t-channel. Thus for scalar masses much larger
than the dark matter mass, the annihilation processes are suppressed. On the
other hand, if the scalar particle has a mass too close to the dark matter mass,
there will be coannihilations and we disregard all points with coannihilations.
From Fig. 7.4 it is apparent, that the ratio mR,I/mNi ∼ 1.5. With this ratio
fixed and assuming a diagonal Yukawa matrix (since all eigenvalues are the
same) mν1,3/|λ5| becomes proportional to |y1|2/mN1 as can be seen from Eq.
(6.2.10) when neglecting |y2,3|2/mN2,3 since we can assume mN1 � mN2,3 . This
is just a rough assessment of the relation, so we do not expect the points to
follow this dependence very closely. Remembering that mν1,3/|λ5| is constant,
we fit this dependence obtaining at 90% CL

|y1| =

0.078± 0.021
√
mN1/ GeV for NH

0.081± 0.012
√
mN1/ GeV for IH

. (7.3.9)

The points and fit are shown in Fig. 7.4. This finding allows us to predict the
Yukawa couplings and the scalar masses, if the dark matter mass is known.

The parameter space of the scotogenic model will be almost completely
tested with future experiments on LFV and the absolute neutrino mass, as
can be seen in Fig. 7.5. Currently the limit on BR(µ→ eγ) imposes a stronger
bound than BR(µ→ 3e). With future sensitivities this is expected to change
(see Tab. 4.1). The future limits will restrict the parameter space considerably.
If the neutrino masses indeed reach into the cosmological favoured region of∑
imνi < 0.12 eV, they will restrict the parameter space in an orthogonal way,

excluding, in combination with the future BR(µ→ 3e) limit, almost the entire
parameter space.

7.3.2 Fermionic dark matter with CP-Violation

The T2K experiment has published the finding of CP-Violation at 95% CL in
the weak sector [52]. We now want to find out how the CP violating phase δCP
affects our findings. Figure 7.6 shows the relic density as a function of δCP . The
masses of the three right handed neutrinos have been set to mNi = [1, 4, 8] TeV,
the scalar mass to mη = 2 TeV and the scalar couplings to λ3 = 2, λ4 = 3
and λ5 = 1 · 109. In addition, we have set mν1,3 = 0.315 eV. We see that the
relic density in fact changes, when δCP is varied. The CP phase has no effect
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Figure 7.4: The first eigenvalue of the Yukawa matrix as a function of the dark
matter mass. Ratio of neutral scalar masses to dark matter mass are given on
the temperature scale. The points fulfill all experimental constraints. Left for
normal hierarchy and right for inverted hierarchy.
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Figure 7.5: The branching ratios BR(µ → eγ) (blue Points) and BR(µ →
3e) (red points) as a function of the lightest neutrino mass. Horizontal solid
lines show the current LFV limits and dashed lines the future limits. Vertical
lines show the current limits on the (effective) electron neutrino mass set by
KATRIN (solid orange line) and sensitivity goal of KATRIN (dashed orange
line). The point fulfill all experimental constraints. Left for normal hierarchy
and right for inverted hierarchy.
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Figure 7.6: The relic density as a function of the CP violating phase δCP . The
masses of the new particles, the neutrino masses and the scalar couplings have
been fixed. (See text for details.) The BR(µ→ eγ) is given on the temperature
scale.Left for normal hierarchy and right for inverted hierarchy.

on the BR(µ → eγ). It varies randomly as can be seen on the temperature
scale. The points scatter due to the three random angles in the Casas-Ibarra
parametrization changing the elements of the Yukawa matrix. When varying
δCP , the relic density changes up to ∼ 0.01. In comparision, if one varies λ5

the relic density changes up to several orders of magnitude as can be seen in
Fig. 7.1. Similarly this is true for changes of the absolute neutrino mass. We
see that even small changes in λ5 or mν1,3 overshadow the δCP dependence.
Due to the almost insignificant dependence on δCP , the results from Sec. 7.3.1
generalize to the case where the CP phase is varied as well. We have checked
this explicitly for the behavior in Fig. 7.3. The determination of the CP phase
does not restrict the parameter space of the scotogenic model further.

7.3.3 The effect of coannihilations

In this chapter we have, until now, disregarded all points, where coannihila-
tions plays a non negligible role. Coannihilation’s occur when the masses of
two particles are nearly degenerate and are exponentially suppressed by the
mass difference. The N1 − N1 annihilation process is described by diagrams
quadratic in the Yukawa couplings. In case of N1-η coannihilations there are
also diagrams linear in the Yukawa couplings contributing to the relic density.
This changes the relic density and allows for smaller Yukawa couplings and
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Figure 7.7: The dark sector-Higgs coupling |λ5| as a function of the lightest
neutrino mass. The yellow point fulfill all experimental constraints but were
previously disregarded due to coannihilations. Left for normal hierarchy and
right for inverted hierarchy.

in turn LFV is suppressed [86]. The mass splitting between the dark matter
particle and the second lightest dark particle now has as major impact on the
phenomenology. In Fig. 7.7 we show the points we previously disregarded due
to coannihilations. We still require them to yield the correct relic density and
to be not excluded by LFV experiments. These points scatter randomly over
the space allowed by LFV and our previously found relation does not hold in
this case. Due to the sensitive dependence on the mass splitting, previously
dominant dependencies are now less important.



Neutrino signals from
scotogenic dark matter 8
In this chapter we study the prospect of detecting scalar dark matter at Ice-
Cube in the framework of the scotogenic model. We compute expected event
rates in the 86-string configuration for neutrino signals from dark matter an-
nihilating in the sun. Dark matter nucleon scattering allows for capture and
accumulation of dark matter in the sun resulting in an overdensity. Since the
mass splitting between both neutral scalar components in naturally small, we
have to take inelastic scattering into account. As the relative dark matter
nucleon velocity is larger in the sun as on earth, the suppression due to the
inelasticity is less important for the accumulation of dark matter in the sun al-
lowing neutrino telescopes to probe larger mass splittings than direct detection
experiments on earth. This chapter extends the work presented in our paper
Ref. [3] with a focus on the formalism for dark matter nucleus scattering. The
paper was created together with Raffaela Busse, Alexander Kappes, Michael
Klasen and Sybrand Zeinstra.

8.1 Motivation

In radiative seesaw models, dark matter in the form of WIMPs can annihilate
either directly into neutrinos or via the decays of other intermediately produced
Standard Model particles. Previous work focused on monochromatic neutrinos
from direct decays, as they are easier to distinguish from the background [95–
98]. Here, we consider both direct as well as secondary neutrinos from the
decays of intermediate other Standard Model particles.

In order to boost the amount of WIMP annihilations, one can consider
regions with a local overdensity [27]. Since our solar system is embedded in
the galactic dark matter halo, WIMPs can accumulate in large celestial bodies
like the Sun, which we focus on in this chapter. Upon scattering with a nucleus
inside the Sun, a WIMP can lose enough kinetic energy to be captured by the

− 75 −
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Sun’s gravitational potential. Thus the WIMP-nucleon scattering cross section
plays an important role in this capture process. We go beyond the standard
scenario of elastic dark matter-nucleon scattering by considering also inelastic
scattering processes, in which a WIMP up-scatters to a slightly heavier state.
This so-called inelastic dark matter had originally been proposed by Smith and
Weiner [87] to explain the annual modulation signal at DAMA/LIBRA [41,
99]. While these authors considered the sneutrino as a specific dark matter
candidate, they concluded generally that due to the larger dark matter velocity,
the inelasticity is in fact less relevant in the Sun than at direct detection
experiments, leaving ample room for indirect detection experiments.

Other previous work that considered the prospect of detecting inelastic
dark matter indirectly includes Refs. [100–102]. Their work was motivated by
the DAMA/LIBRA signal and principally considered the parameter space
that fitted this signal. A comparison between IceCube and direct detection
experiments in a more general inelastic scenario has been carried out within the
context of effective field theory in Ref. [103]. There it was found that neutrino
telescopes should place stronger limits than direct detection experiments for
mass splittings larger than about 200 keV for dark matter particles of mass 1
TeV.

Of the many models that connect neutrinos masses and dark matter, the
scotogenic model is the best-known example [9]. Its main strength is the
relatively simple extension of the Standard Model with only two new fields,
whilst still providing enough interesting phenomenology, in particular naturally
occurring inelastic dark matter. The neutrino masses are generated at loop
level through the radiative seesaw mechanism, whereas the tree level seesaw is
forbidden by a Z2 symmetry under which all new particles have an odd charge.
In this chapter we focus on the scotogenic model with scalar dark matter. For a
similar model, extended by a real scalar singlet to account for inflation, elastic
scattering in the Sun was found to produce neutrino signals at least two orders
of magnitude below the current sensitivity of neutrino telescopes [104].

As the largest neutrino telescope worldwide, the IceCube Observatory
[105] is predestined to search for neutrino signals from annihilating WIMPs
and thereby contribute to the search for physics beyond the Standard Model.
We investigate the parameter space of the scotogenic model for a detectable
neutrino flux in IceCube from WIMP annihilations in the Sun and Galactic
Center, which could therefore be used to constrain the scotogenic parameter
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space with dedicated IceCube data analyses.

8.2 Scattering and capture of dark matter
In this subsection we review the capture rate of dark matter. For the general
formula and the elastic case, we follow closely the original derivation by Gould
[106]. Gould initially assumes an isotropic velocity distribution. The derived
formulas are correct in the general case as explained by Gould in the same
paper.

8.2.1 General considerations for the capture rate
First consider a sphere with radius R which is large enough to neglect gravity
at surface. The flux of dark matter going into the sphere is given by [107]

1
4f(u)u du d cos2 θ, (8.2.1)

where θ is the angle between the radial direction and the velocity and u is
the WIMP velocity. f(u) is the velocity distribution function. In this work
we always assume a Maxwell-Bolzmann distribution. If we substitute angular
momentum per unit mass

J = Ru sin θ (8.2.2)

and integrate over the surface of the sphere, we obtain the total number of
WIMPs entering the region per unit time:∫ 2π

0

∫ 1

−1

1
4f(u)u du d cos2 θ dφs d cos θs = 4πR2 1

4f(u)u du dJ
2

R2u2 . (8.2.3)

Now consider a thin shell of material (e.g. a layer of the sun). The velocity u
of a WIMP at the shell is given by

w2 = u2 + v2
esc (8.2.4)

where u is the velocity at infinity and vesc is the velocity needed to escape
the gravitational potential starting from the shell. If the WIMP scatters to a
velocity lower than vesc, the particle is captured. The probability for this is
given by

Ω−v
dl

w
. (8.2.5)
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dl is the distance the WIMP travels through the material of the shell given by

dl =
[
1−

(
J

rw

)2]− 1
2

2 dr θ(rw − J). (8.2.6)

dr is the thickness of the shell. The factor of two arises since the WIMP passes
the shell twice and the theta function appears since, if rw is smaller than the
angular momentum, the WIMP cannot reach the shell. The capture rate for
a shell per unit velocity can now be obtained by multiplying the number of
WIMP entering the sphere Eq. (8.2.3) with the capture probability Eq. (8.2.5)
and integrating over all angular momenta. This gives

4πr2wΩ−v
f(u) du

u
dr. (8.2.7)

After integrating over all velocities, we can rewrite this to the capture rate per
shell volume

dC

dV
=
∫ ∞

0
du
f(u)
u

wΩ−v . (8.2.8)

This formula describes the capture rate for both the elastic and inelastic case.
The velocity distribution function f(u) for an observer moving with v� is given
by

f(u) du = 4ρχ
mχπ

1
2
x2e−x

2−η2 sinh(2xη)
2xη dx (8.2.9)

where ρχ is the local dark matter density, mχ is the dark matter mass, x2 =
u2/v2

0 and η2 = v2
�/v

2
0. v0 is connected to the WIMP velocity dispersion v̄ by

v2
0/v̄

2 = 2/3.

8.2.2 Capture of elastic dark matter

Now we focus on the case where dark matter particles scatter elastically on
nucleons. From non relativistic kinematics, we know that the energy transfer
Q in a scattering process with a WIMP and a nucleus in the nucleus rest frame
must be in the interval

0 ≤ Q ≤ Qmax = 1
2mχw

2 4mNmχ

(mN +mχ)2 , (8.2.10)
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where mN denotes the nucleus mass. To be captured the velocity after the
scattering process must be smaller than the escape velocity. This requires a
momentum energy transfer of

Q > Qcap = 1
2mχ(w2 − v2

esc). (8.2.11)

The scattering function Ω−v is given by the total rate of scattering σNnNw

multiplied with the probability that the WIMP has a velocity smaller that the
escape velocity. σN is the WIMP-nucleus cross section and nN is the number
density of nuclei. Finally, if the nucleus is not a proton or nucleon, we need
to add a nuclear form factor F (Q), to take the inner structure of the nucleus
into account. We obtain

Ω−v = σNnNw

Qmax

∫ Qmax

Qcap
dQF (Q)θ(Qmax −Qcap). (8.2.12)

8.2.3 Capture of inelastic dark matter

In the previous section, we considered elastic scattering. In most scenarios this
is the only contributing case. However, if there is an excited state of the dark
matter particle with a small mass splitting of O(100 keV), the dark matter
particle can upscatter into the heavier particle. This scenario has originally
been proposed by Thucker-Smith and Weiner [87] to explain the annual mod-
ulation signal at DAMA and the absence of signals in CDMS. However, for
more recent results of DAMA-LIBRA the tension with other direct detec-
tion experiments cannot (or only partially for mχ ≈ 10 GeV) be relieved by
inelastic scattering [108]. In the scotogenic model such small mass splittings
occur naturally for scalar dark matter. In this subsection we examine how the
formulas for the capture rate change for the inelastic scenario. We follow the
derivations given in [100, 101].

The derivation in Sec. 8.2.1 does not depend on the scattering process itself.
Only the considerations for the scattering function Ω−v in Sec. 8.2.2 need to be
altered. The differential cross section in not effected by the inelasticity [101]

dσelastic

dER
= dσinelastic

dER
, (8.2.13)

where ER is the recoil energy. Assuming an inelasticity of δ and approximating
mχ+δ = mχ, non relativistic kinematics yield the minimal and maximal energy
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transfer in the nucleon rest frame

Qmax = 1
2mχw

2

1− µ2

m2
N

(
1− mN

mχ

√
1− δ

µw2/2

)2− δ, (8.2.14)

Qmin = 1
2mχw

2

1− µ2

m2
N

(
1 + mN

mχ

√
1− δ

µw2/2

)2− δ, (8.2.15)

where µ is the WIMP-nucleus reduced mass. The minimal energy transfer
required for capture is given by

Qcap = 1
2mχ(w2 − v2

esc)− δ. (8.2.16)

The boundaries on the energy transfer Qmax, Qmin together with Eq. (8.2.13)
yield for the total cross section

σinelastic =
√

1− δ

µw2/2σelastic. (8.2.17)

The scattering function Ω−v is again given by the total rate of scattering mul-
tiplied by the capture probability. Including a nuclear form factor we obtain

Ω−v = σN,inelnNw

Qmax −Qmin

∫ Qmax

Q′min

dQF (Q)θ(Qmax −Qcap), (8.2.18)

where Q′min = max(Qcap, Qmin). σN,inel is the cross section for inelastic scatter-
ing off nucleons (see Eq. (8.2.17)). Note that the lower integration boundary
differs from [100] as pointed out in [102].

8.2.4 Scattering cross sections
In this section, we describe how to obtain the cross section for WIMP scattering
on nuclei from the high energy Lagrangian. We will focus on interactions with
Higgs and Z0 bosons as mediator as they are the most relevant for our models
and carry out the calculation at tree level. The formalism described also
generalizes to other WIMP nucleus interactions. The scattering cross sections
are relevant for direct detection experiments (see Chap. 2) as well as for the
capture rate in celestial bodies. In this section, we consider both scalar as
well as fermion dark matter which we denote with φi and χi respectively. We
allow the outgoing particle to be different from the ingoing particle in order
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to incorporate inelastic scattering, while approximating the masses to be the
same. We largely follow the derivation for the WIMP nucleon cross section in
the zero momentum transfer limit given in [33] while generalizing for inelastic
dark matter and working out some details.

Scattering on quarks

The starting point is the Lagrangian of the full theory (after EWSB) which
describes the coupling of WIMPs to Higgs and Z0 bosons and the coupling of
these bosons to quarks. Note that we use Dirac spinors instead of Weyl spinors
throughout this section. The interaction terms in the Lagrangian are

Lφ ⊃+ gφ2h
1
2φ

2h+ gq̄qhq̄qh, (8.2.19)

Lφ12 ⊃+ gφ1φ2Z0(∂µφ1φ2 − φ1∂
µφ2)Z0

µ + q̄γµ(gq̄qZ0,V + gq̄qZ0,Aγ
5)qZ0

µ

+ gφ1φ2hφ1φ2h+ gq̄qhq̄qh (8.2.20)

for real scalar fields φ, φ1 and φ2. In case of complex scalar fields, one can split
them into two real fields and then obtain similar Lagrangian. Note that there
is no elastic interaction vertex between the Z0 boson and a real scalar field.

Now we turn to possible Lagrangians involving fermions. For Dirac dark
matter we have

LD ⊃+ χ̄1γ
µ(gχ̄1χ2Z0,V + gχ̄1χ2Z0,Aγ

5)χ2Z
0
µ + q̄γµ(gq̄qZ0,V + gq̄qZ0,Aγ

5)qZ0
µ

+ χ̄1(gχ̄1χ2h,S + gχ̄1χ2h,Pγ
5)χ2h+ gq̄qhq̄qh (8.2.21)

where χ1 can be equal or different from χ2 and for Majorana dark matter we
have

LM ⊃+ 1
2gχχZ

0,Aχ̄γ
µγ5χZ0

µ + q̄γµ(gq̄qZ0,V + gq̄qZ0,Aγ
5)qZ0

µ

+ 1
2 χ̄(gχχh,S + gχχh,Pγ

5)χh+ gq̄qhq̄qh (8.2.22)

in case of elastic scattering. Since both fermions in the interaction are identical
a factor of 1

2 should be added. For the inelastic case we have

LM12 ⊃+ gχ1χ2Z0,Aχ̄1γ
µγ5χ2Z

0
µ + q̄γµ(gq̄qZ0,V + gq̄qZ0,Aγ

5)qZ0
µ

+ χ̄1(gχ1χ2h,S + gχ1χ2h,Pγ
5)χ2h+ gq̄qhq̄qh. (8.2.23)
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Figure 8.1: Feynman diagrams for dark matter scattering on quarks (nucleons)
through Z0 (left) and Higgs boson exchange (right). Both scalar and fermion
dark matter are denoted by χi.

Note that Majorana fermions do not have vector interactions (see Sec. 5.3, Ref.
[33]).

The Feynman diagrams relevant for WIMP nucleon scattering following
from these Lagrangians are given in Fig. 8.1. One can obtain the effective
Lagrangian for this theory, by integrating out the mediator. Another more
descriptive and for our purposes equivalent possibility is to write down the
scattering amplitude and take the zero momentum transfer limit in the propa-
gator. Then the effective coupling can be read of from this expression, leading
to the following effective Lagrangians for scalar dark matter:

Leff,φ ⊃+ gφ2hgq̄qh
m2
h

1
2φ

2q̄q, (8.2.24)

Leff,φ12 ⊃+ gφ1φ2Z0gq̄qZ0,V

m2
Z

(∂µφ1φ2 − φ1∂µφ2)q̄γµq + gφ1φ2hgq̄qh
m2
h

φ1φ2q̄q.

(8.2.25)

Combinations of a derivative ∂µ and the bilinear q̄γµγ5q vanish in the non
relativistic limit and thus the corresponding term (there is only one) in the
Lagrangian is dropped. For Dirac and Majorana dark matter the terms χ̄1γ

5χ2,
χ̄1γ

µγ5χ2q̄γ
µq and χ̄1γ

µχ2q̄γ
µγ5q vanish in the non relativistic limit (see e.g.
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Ref. [109]). The effective Lagrangians are then

Leff,D ⊃+ gχ̄1χ2Z0,V gq̄qZ0,V

m2
Z0

χ̄1γµχ2q̄γ
µq + gχ̄1χ2Z0,Agq̄qZ0,A

m2
Z0

χ̄1γµγ
5χ2q̄γ

µγ5q

+ gχ̄1χ2h,Sgq̄qh
m2
h

χ̄1χ2q̄q, (8.2.26)

Leff,M ⊃+ gχχZ0,Agq̄qZ0,A

2m2
Z0

χ̄γµγ
5χq̄γµγ5q + gχχh,Sgq̄qh

2m2
h

χ̄χq̄q, (8.2.27)

Leff,M12 ⊃+ gχ1χ2Z0,Agq̄qZ0,A

m2
Z0

χ̄1γµγ
5χ2q̄γ

µγ5q + gχ1χ2h,Sgq̄qh
m2
h

χ̄1χ2q̄q (8.2.28)

for Dirac, elastic and inelastic Majorana dark matter. Note that it is not ac-
tually necessary to go to an effective theory. One can calculate the amplitudes
on nuclei in the full theory. We choose to give the formulas for the effective
theory to make connection with the operator based approach used e.g. by
micrOMEGAs [94].

Scattering on nucleons and nuclei

The WIMPs scatter on quarks bound in a nucleon. Thus the initial and final
states are given by nucleons and not by quarks. To account for this we need
to recall how the Feynman rules for in- and outgoing fermions are obtained.

The Dirac fermion field is given by

Ψ(x) =
∑
s

∫ d3p

(2π3)
1
√2ωp

(
aspu

s
pe
−ipx + bs†p v

s
pe
ipx
)
. (8.2.29)

The Majorana field can be obtained from the Dirac field by setting asp = bsp. We
however only need the Dirac field since quarks a Dirac fermions. The Feynman
rules for in- and outgoing fermions arise out of the Wick contraction of the
field operators with the initial or final state particle as follows [110]:

Ψ|p, s〉 = us(p), 〈p, s|Ψ̄ = ūs(p), (8.2.30)

Ψ̄|k, s〉 = v̄s(k), 〈k, s|Ψ = vs(k). (8.2.31)

For quarks bound in a nucleon, the initial and final state particles are given
by a nucleon which we denote by |Ñ , s〉. To calculate Feynman diagrams
with in- and outgoing nucleons, we now need to use contractions of the quark
operators with the state |Ñ , s〉 instead of Dirac spinors for the Feynman rules.
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For the Lagrangians in Eqs. (8.2.24)-(8.2.28), the possible terms, arising from
the quark part of the diagram are

〈Ñ , s|q̄q|Ñ , s′〉, 〈Ñ , s|q̄γµq|Ñ , s′〉, 〈Ñ , s|q̄γµγ5q|Ñ , s′〉. (8.2.32)

To make connection to the literature (e.g. Ref. [27]), we write these expressions
in term on non relativistically normalized nucleon states |N〉 =

√
1

2ωp |Ñ , s〉 and
we will from now on drop the contraction lines. These matrix elements all need
to be evaluated differently. Before we discuss these matrix elements further,
we first bring the scattering amplitudes into the same shape.

First we focus on amplitudes containing the nucleon matrix element 〈N |q̄q|N〉.
Each of the effective Lagrangians can yield amplitudes containing such matrix
elements. Using our newly found Feynman rules for in- and outgoing nucleons,
we obtain

iMφ =
∑
q

2mN
gφ2hgq̄qh
m2
h

〈N |q̄q|N〉, (8.2.33)

iMφ12 =
∑
q

2mN
gφ1φ2hgq̄qh

m2
h

〈N |q̄q|N〉, (8.2.34)

iMD =
∑
q

2mN
gχ̄1χ2h,Sgq̄qh

m2
h

ūsχ1u
s′

χ2〈N |q̄q|N〉, (8.2.35)

iMM =
∑
q

2mN
gχχh,Sgq̄qh

m2
h

ūsχu
s′

χ 〈N |q̄q|N〉, (8.2.36)

iMM12 =
∑
q

2mN
gχ1χ2h,Sgq̄qh

m2
h

ūsχ1u
s′

χ2〈N |q̄q|N〉. (8.2.37)

Note how the factors of 1
2 in the scalar and Majorana Lagrangian cancelled with

the symmetry factor of 2! that arises from the two identical fields and how each
matrix element got a factor of 2mN from the non relativistic normalisation. In
the zero momentum transfer (and equal mass) limit, ūsus′ = 2mχδss

′ where
mχ is the dark matter mass. This leads to

iMD =
∑
q

4mNmχ
gχ̄1χ2h,sgq̄qh

m2
h

〈N |q̄q|N〉, (8.2.38)

iMM =
∑
q

4mNmχ
gχχh,sgq̄qh

m2
h

〈N |q̄q|N〉, (8.2.39)

iMM12 =
∑
q

4mNmχ
gχ1χ2h,sgq̄qh

m2
h

〈N |q̄q|N〉 (8.2.40)

where we dropped the spin delta function which will later vanish due to the
spin average over initial and sum over final spin. Now all five amplitudes have
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the same structure. This allows us to work with a general amplitude given by

iM =
∑
q

4mNmχaq〈N |q̄q|N〉 (8.2.41)

from now on.1 The quark current in 〈N |q̄q|N〉 couples to the quark content in
the nucleon. For light quarks q = u, d, s we can evaluate this as

〈N |mq q̄q|N〉 = mNf
(N)
q , (8.2.42)

where mq is the quark mass and mN is the mass of the nucleon. For heavy
quarks q′ = c, b, t the matrix element is given by

〈N |mq′ q̄
′q′|N〉 = 2

27mN

1−
∑

q=u,d,s
f (N)
q

 . (8.2.43)

In this work we use the values for f (N)
q shown in Tab. 8.1 as they are default

in micrOMEGAs 5.0.8 [94]. We can now define

fN
mN

=
∑

q=u,d,s
f (N)
q

aq
mq

+ 2
27

1−
∑

q=u,d,s
f (N)
q

 ∑
q=c,b,t

aq
mq

(8.2.44)

which is the effective coupling of the WIMP to the nucleon N = p, n. In case
of nuclei with more than one nucleon we must sum over the contribution from
each nucleon. The cross section at zero momentum transfer for scattering on
a nucleus N is then given by

σN = µ2

π
[Zfp + (A− Z)fn]2 (8.2.45)

where µ is the WIMP nucleus reduced mass. Since the contributions from each
nucleon add up coherently, this cross section contributes to spin independent
scattering.

Scattering amplitudes from our effective Lagrangians containing 〈N |q̄γµq|N〉
can only arise from scalar and Dirac dark matter since for Majorana fermions
there are no vector bilinear in the Lagrangian. The amplitudes are

iMφ12 =
∑
q

2mN
gφ1φ2Z0gq̄qZ0,V

m2
Z0

(Pφ1,µ + Pφ2,µ)〈N |q̄γµq|N〉, (8.2.46)

iMD =
∑
q

2mN
gχ̄1χ2Z0,V gq̄qZ0,V

m2
Z0

ūsχ1γµu
s′

χ2〈N |q̄γ
µq|N〉. (8.2.47)

1Note that we absorbed a factor of (2mχ)−1 into the effective coupling for scalar fields.
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Table 8.1: Nucleon form factors for quark and spin content in nucleons. Values
taken from [94].

proton neutron proton neutron

f
(N)
d 0.0191 0.0273 ∆d -0.427 0.842

f (N)
u 0.0153 0.011 ∆u 0.842 -0.427

f (N)
s 0.0447 0.0447 ∆s -0.085 -0.085

In the non relativistic and zero momentum transfer limit, Pφ1,µ + Pφ2,µ ≈
2mχδ

0
µ and ūsχ1γµu

s′
χ2 ≈ 2mχδ

0
µδss

′. Dropping the spin delta function again,
the scattering amplitudes are given by

iMφ12 =
∑
q

4mNmχ
gφ1φ2Z0gq̄qZ0,V

m2
Z0

δ0
µ〈N |q̄γµq|N〉, (8.2.48)

iMD =
∑
q

4mNmχ
gχ̄1χ2Z0,V gq̄qZ0,V

m2
Z0

δ0
µ〈N |q̄γµq|N〉. (8.2.49)

As these amplitudes have the same structure, we again work with a general
scattering amplitude given by

iM =
∑
q

4mNmχbqδ
0
µ〈N |q̄γµq|N〉. (8.2.50)

Since the vector current couples to the valence quarks only, we can make the
connection to the proton (neutron) spinors uN as follows

2mN〈N |q̄γµq|N〉 = 2ūNγµuN for q = u(d), (8.2.51)
2mN〈N |q̄γµq|N〉 = ūNγ

µuN for q = d(u). (8.2.52)

where u, d denote the up and down quark. Once we take the non relativistic
limit for the nucleon spinors ūNγµuN ≈ 2mNδ

µ
0 , the scattering amplitude turns

into

iM = 4mNmχbN (8.2.53)

where N = p, n denotes the proton and neutron and bN is given by

bp = 2bu + bd, (8.2.54)
bn = 2bd + bu. (8.2.55)
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For nuclei with more than nucleon, we must sum over all valence quarks from
each nucleon. Thus the WIMP nucleon cross section at zero momentum trans-
fer is again given by

σN = µ2

π
[Zbp + (A− Z)bn]2 (8.2.56)

where µ is the WIMP nucleon reduced mass.
Both processes discussed up to this point contribute to the spin independent

cross section. Note that some literature assumes the coupling on protons and
neutrons to be equal. For scalar interactions (Higgs boson as mediator) this is a
reasonable approximation. However for vector interactions this approximation
fails. The contribution from protons and neutrons often have different signs
and differ significantly in value.

The axial vector interaction contributes to the spin dependent interaction
which couples to the spin of the nucleus and the contribution of the nucleon
will not simply add up as for the spin independent interaction. It is useful to
work with nucleus states instead of the nucleon states for the derivation. The
possible scattering amplitudes arising from the Lagrangians above are

MD =
∑
q

2mN
gχ̄1χ2Z0,Agq̄qZ0,A

m2
Z0

ūsχ1γµγ
5us

′

χ2〈N |q̄γ
µγ5q|N〉, (8.2.57)

MM =
∑
q

2mN
gχχZ0,Agq̄qZ0,A

2m2
Z0

ūsχγµγ
5us

′

χ 〈N |q̄γµγ5q|N〉, (8.2.58)

MM12 =
∑
q

2mN
gχ1χ2Z0,Agq̄qZ0,A

m2
Z0

ūsχ1γµγ
5us

′

χ2〈N |q̄γ
µγ5q|N〉. (8.2.59)

mN is now the mass of the nucleus. In the non relativistic limit ūsχ1γµγ
5us

′
χ2 ≈

2mχσ
i
ss′δ

i
µ := 2mχ2Siχ,ss′δiµ. We drop the indices s, s′ of the WIMP spin oper-

ator for now. The scattering amplitudes are now given by

MD =
∑
q

4mNmχ
gχ̄1χ2Z0,Agq̄qZ0,A

m2
Z

2Siχδiµ〈N |q̄γµγ5q|N〉, (8.2.60)

MM =
∑
q

4mNmχ
gχχZ0,Agq̄qZ0,A

2m2
Z0

2Siχδiµ〈N |q̄γµγ5q|N〉, (8.2.61)

MM12 =
∑
q

4mNmχ
gχ1χ2Z0,Agq̄qZ0,A

m2
Z0

2Siχδiµ〈N |q̄γµγ5q|N〉. (8.2.62)

We again treat all these matrix element together by defining

M =
∑
q

4mNmχdq2Siχδiµ〈N |q̄γµγ5q|N〉. (8.2.63)
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The nuclear matrix element in the non relativistic limit becomes

〈N |q̄γµγ5q|N〉 = 2 (〈N |Sp,i∆pq|N〉+ 〈N |Sn,i∆nq|N〉) δµi (8.2.64)

where p, n denote the proton and neutron respectively and ∆q denotes the
nucleon spin content carried by the quark q. The numerical values are given
in Tab. 8.1. Sp,n are the spin operators for protons and neutron are the spin
operators for protons and neutrons. The nuclear matrix element can then be
rewritten in terms of the total nuclear angular momentum JN by using the
Wigner-Eckart theorem:

〈N |Sp,i∆pq|N〉+ 〈N |Sn,i∆nq|N〉 = λq〈N |JN,i|N〉. (8.2.65)

When the spin of the nucleus is carried by a single nucleon, λq can be evaluated
in the single-particle shell model. In case of an unpaired proton (neutron), we
have

λq = 1
2∆p(n)q

[
1− Lp(n)(Lp(n) + 1)− Sp(n)(Sp(n) + 1)

JN(JN + 1)

]
(8.2.66)

where Lp(n) is the orbital angular momentum and Sp(n) is the spin of the
unpaired nucleon. The single-particle shell model can however only applied if
only the last odd nucleon contributes to the spin. Thus we leave λq variable
in the rest of this derivation. After substituting the results for the matrix
element, the scattering amplitude is given by

M =
∑

q=u,d,s
4mNmχdq4Siχλq〈N |JN,i|N〉. (8.2.67)

Note that only the light quarks contribute, since the contibution from the
heavy quaks to the spin content is neglectable. To calculate the squared and
spin averaged over initial and spin summed over final states matrix element
we show the WIMP spin indices s, s′ and make the difference between nucleus
initial and final state explicit:

¯|M|2 :=
∑

s,s′,Ni,Nf

|M|2

2(2JN + 1) =
256m2

Nm
2
χ

2(2JN + 1)

 ∑
q=u,d,s

dqλq

2∑
s,s′

Sjχ,ss′S
i
χ,s′s×

×
∑
Ni,Nf

〈Nf |JN,j|Ni〉〈Ni|JN,i|Nf〉. (8.2.68)
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The sum over i, k = 1, 2, 3 is implicit. Now we carry out the sum over the
initial nucleus states using the completeness relation and we carry out the
WIMP spin sum using

∑
s,s′

Sjχ,ss′S
i
χ,s′s = 1

4Tr(σ
jσi) = 1

4Tr(δij1+ iεijkσ
k) = 1

2δij. (8.2.69)

We obtain

¯|M|2 =
64m2

Nm
2
χ

(2JN + 1)

 ∑
q=u,d,s

dqλq

2∑
Nf

〈Nf |J2
N |Nf〉. (8.2.70)

Finally we can evaluate J2 to be JN(JN +1) and carry out the sum over initial
polarisations which gives a factor of 2JN + 1. The squared matrix element for
the axial current is then

¯|M|2 = 64m2
Nm

2
χ

 ∑
q=u,d,s

dqλq

2

JN(JN + 1) (8.2.71)

and the scattering cross section in the zero momentum transfer limit is given
by

σN = 4µ2

π

 ∑
q=u,d,s

dqλq

2

JN(JN + 1). (8.2.72)

Spin (in)dependent scattering and nuclear form factors

At this point we take a step back and discuss the distinction between spin
dependent and spin independent scattering. For spin independent scattering,
once we figure out the effective couplings to protons and neutrons, we can
write down the scattering cross section. The contribution from the nucleons
simply add up:

σN = µ2

π
[Zbp + (A− Z)bn]2 . (8.2.73)

For scalar interaction one can approximate the coupling to the proton and
neutron to be equal. Then the cross section scales as A2. The spin indepen-
dent cross section leads to large couplings to heavy nuclei. This allows direct
detection experiments with elements in the detector such as XENON1T to
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set stringent limits on the spin independent scattering cross section. For spin
dependent scattering there is no such enhancement. The WIMP couples to
the spin of the nucleus, which is 0 or 1

2 for most nuclei and only few elements
have higher spin. The coupling to protons is of a similar order of magnitude
as the coupling to e.g. Xenon. Thus direct detection limits on the spin de-
pendent cross section are significantly weaker than those for spin independent
scattering. Indirect detection experiments are, due to the high abundance of
protons in the sun, similarly sensitive to both cross sections and competitive
in setting limits on spin dependent scattering.

Up to this point, we simply calculated the scattering cross sections in the
zero momentum transfer limit. This works fine for protons and neutrons. For
heavier elements, we need to introduce form factors to account for loss of
coherence at finite momentum transfer. These form factors have already been
mentioned in Sec. 8.2.2 and 8.2.3. There are a number of different ways to
express these form factors (see e.g. [111] for a discussion). For our purposes it is
sufficient to stick to Gaussian form factors which can be integrated analytically.
We include the form factors in the differential cross section:

dσN
d|q|2

= σN(ER = 0)
4µv2 F (ER). (8.2.74)

ER = |q|2/(2mN) denotes the recoil energy and σN(ER = 0) are the cross
sections in the zero momentum transfer and zero mass splitting limit calculated
above. µ is the WIMP nucleus reduced mass and v is the relative velocity.2
For spin independent scattering the form factor is given by [106]

F (ER) = exp

(
−ER2mNR

2

3

)
(8.2.75)

with

R =
[
0.91

(
mN

GeV

) 1
3

+ 0.3
]
× 10−13. (8.2.76)

For spin dependent scattering there is also a Gaussian form factor as discussed
in Ref. [111] given by

F (ER) = exp

(
−ERmNR

2
A

2

)
(8.2.77)

2Note that the above formula is not in conflict with Eq. (8.2.18) even though this is not
apparent at first sight.
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with

RA = 1.7A 1
3 − 0.28− 0.78

(
A

1
3 − 3.8 +

[
(A 1

3 − 3.8)2 + 0.2
] 1

2
)
. (8.2.78)

8.2.5 Numeric calculation of capture rate
To calculate the capture rate for inelastic dark matter, we manipulate existing
DarkSUSY-6.2.3 [112] routines, namely dssenu capsunnum and the routines
therein, to encompass the inelastic scenario described in Sec. 8.2.3. We use
the respective Gaussian form factors described in Sec. 8.2.4 for both spin
dependent and spin independent scattering. The Gaussian form factors can be
integrated analytically. Note that some references, e.g. [101] use different form
factors such as the Helm form factor. The different form factors can explain
some minor deviations between our results and results in the literature. For
spin dependent scattering we also use the DarkSUSY routines to utilize the
internal spin structure functions for whose we set the momentum transfer q to
zero and then use the Gaussian form factors.

We first test our routine by reproducing Fig. 2. from the DarkSUSY
manual [112]. Our results are shown in Fig. 8.2. The only difference worth
mentioning is that for for spin dependent scattering the elements Na and 13N
are swapped. Additionally 14N does not show up in the DarkSUSY manual.
The bumps show up when mχ ≈ mN . In the equal mass limit, the energy
transfer is generally larger. Note that for spin independent scattering for mχ &
100 GeV the main contribution to the capture rate is from heavy elements even
though these are less abundant. Since for light elements the energy transfer is
small, the WIMPs do not lose enough kinetic energy and can still escape the
suns gravitational field.

In order to test our code in the inelastic case, we reproduce some results
from Ref. [101] as shown in Fig. 8.3. In this reference the Helm form factor
is used. This explains the (small) deviations from our results. In Fig. 8.3
we see the capture rate due to different elements as a function of the mass
splitting. For light elements such as H and He the capture rate decreases
already for small mass splittings. For heavy elements such as Fe the capture
rate increases slightly before falling of at δ ≈ 200 keV. The right hand side of
Fig. 8.3 shows the suppression of the capture rate due to the inelasticity δ. For
small dark matter masses the inelastic case is strongly suppressed. For heavier
WIMPs (mχ ≈ 200 GeV) the inelastic scenario is less suppressed. Note that
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Figure 8.2: The capture rate due to different elements in the elastic limit
(δ = 0) for both spin independent (top) and spin dependent (bottom). The
respective cross sections are σSI = 10−43 cm2 and σSD = 10−41 cm2 as in the
DarkSUSY manual, Fig. 2 [112].
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Figure 8.3: (top) The contributions to capture rate the capture rate from
different elements as a function of the mass splitting δ. The dark matter mass is
set to mχ = 100 GeV. The (spin independent) cross section is σSI = 10−40 cm2.
(bottom) Ratio of the capture rates for the inelastic and the elastic scenario
for the mass splittings δ = 100, 150 keV. These figures are reproductions of
Fig. 3 & 4 in Ref. [101].
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in Ref. [101] Eq. (25) is incorrect and it should read Eelastic
max = 4µ2w2/(2mN).3

Figure 8.4 shows the dependence of the capture rate on the dark matter
mass and the mass splitting similar to Fig. 3 in Ref. [100]. The solid lines
correspond to the case where the lower integration bound in Eq. (8.2.18) is
given by Q′min = max(Qcap, Qmin). As explained in Sec. 8.2.3 this is the
correct way, since it takes the case where minimal energy transfer allowed for
inelastic scattering is larger than the energy transfer needed for capture into
account. This is also mentioned in Ref. [102]. The dashed lines correspond to
the (incorrect) lower integration limit given in Ref. [100]. These lines reproduce
the results of Ref. [100].

Finally we can reproduce Fig. 1. in Ref. [102]. Since this plot is similar to
Fig. 8.3 (top), it is not shown here.

8.2.6 Annihilation rate and neutrino flux

The evolution of the number of WIMPs in the sun N is given by [113]

Ṅ = C − 2ΓA − CEN with ΓA = CAN
2

2 , (8.2.79)

where C is the capture rate, ΓA is the annihilation rate and CEN is the evapora-
tion rate which we savely neglect since we study heavy dark matter candidates.
Assuming the system is in equilibrium [114] (Ṅ = 0) there is a linear relation
between the capture rate and the annihilation rate

ΓA = C

2 . (8.2.80)

The assumption of a sufficiently large scattering cross section is not trivial in
case of inelastic scattering. The case in which purely inelastic scattering is
present is discussed in Ref. [114]. There it was found that for an inelastic scat-
tering cross section of σp ≈ 10−6 pb, dark matter masses above 100 GeV and
δ > 200 keV equilibrium is not reached. For our model we have a much larger
inelastic cross section of σp ≈ 10−4 pb which allows for faster settlement to
equilibrium. As we also have elastic scattering cross sections, WIMPs can be
captured through an inelastic scattering process and subsequently thermalise

3In Ref. [101] Fig. 5 (bottom left) and Fig. 6. are inconsistent with Fig. 4 in the
same reference. The authors have been contacted to resolve these deviations, however no
explanation was found.
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Figure 8.4: Capture rate as a function of the dark matter mass with δ =
125 keV (top) and as a function of δ for mχ = 200, 400 GeV (bottom). The
lower integration bound in Eq. (8.2.18) is chosen according to Ref. [102] (solid)
and Ref. [100] (dashed). (See text for details.) The scattering cross section is
σSI = 10−40 cm2. These figures are similar to Fig. 3 in Ref. [100]. Note that
DarkSUSY uses v� = 220 km/s.
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via elastic scattering. This case has been discussed in Ref. [101], where it was
reported that for elastic scattering cross sections of approximately 10−12 pb
equilibrium is reached. It should be stressed that, while for most models the
assumption of equilibrium is safely fulfilled, there are parts of the parameter
space, namely for large mass splittings and small elastic scattering cross sec-
tions, where this is not the case. If equilibrium is not reached, the annihilation
rate and thus the IceCube event rate would be suppressed.

In Secs. 8.2.2, 8.2.3 we saw a linear relation between the scattering cross
section σ and the capture rate. Thus the annhilation rate ΓA is also propotional
to σ. When two dark matter particles annihilate, neutrinos can be produced
either direcly or in the subsequent decay chain. The resulting neutrino flux
from the sun depends greatly on the scattering cross section σ in addition to
a depedence on the annihilation channels.

8.3 Indirect detection of (in)elastic dark mat-
ter in the Sun with IceCube

Our numerical analysis of elastic and inelastic dark matter and in particular
of the expected neutrino signals at IceCube from dark matter annihilations
in the Sun is based on an implementation of the model described in Sec. 6.2
in Sarah 4.14.0 [72]. The physical mass spectrum and branching ratios, in
particular those for LFV processes, are computed with SPheno 4.0.3 [92,
93]. The dark matter relic density, direct detection cross sections and neutrino
event rates are obtained from micrOMEGAs 5.0.8 [94].

Assuming equilibrium of capture and annihilation in the core of the Sun
(Γ = C/2), the differential flux of neutrinos or antineutrinos on Earth is given
by [27, 115]

dφν
dEν

= 1
4πd2

�
Γ
∑
f

Brff̄
dNf

dEν
, (8.3.1)

where d� is the distance Earth-Sun, Brff̄ are the branching fractions into
particle-antiparticle final states ff̄ , and dNf/dEν are the corresponding neu-
trino (antineutrino) energy spectra. In micrOMEGAs, the latter are com-
puted based on tables and feature neutrino propagation and oscillation in the
Sun and in vacuum. The function neutrinoFlux automatizes the process of
calculating the capture rate, the annihilation branching ratios and spectra of
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the respective channels and provides the total neutrino flux at Earth. Since the
inelastic scenario was not implemented in micrOMEGAs, we used CalcHEP
3.7 [116] to compute the corresponding dark matter-quark scattering matrix
elements and cross sections as described in the previous section. We then use
the modified routine dssenu capsunnum in DarkSUSY 6.2.3 [112] to obtain
the inelastic capture rate, which was then fed back to micrOMEGAs.

For the prediction of the neutrino flux in the IC86 detector we use the
neutrino flux at the surface of the Earth, Eq. (8.3.1), convolved with the IC86
effective area as described later in this paragraph. That means that we make
no effort to propagate the neutrino flux through the Earth’s medium, so that
matter effects in the Earth’s interior like absorption and tau-regeneration are
ignored. These effects are expected to have only a small impact on the result,
but should be considered in an analysis which goes beyond the theoretical
approach of this study.

The differential number of signal events in the detector is given by [115]

dNs

dE
= te

(
dφνµ
dE

Aνµ(E) + dφν̄µ
dE

Aν̄µ(E)
)
, (8.3.2)

where te is the exposure time and Aνµ(ν̄µ) is the muon neutrino (muon an-
tineutrino) effective area of the detector. A routine for the effective area of
the now obsolete configuration ic22 (where 22 is the number of data-taking
strings), IC22nuAr, was already implemented in micrOMEGAs. We updated
this routine using the data from Ref. [38] for the effective area of ic86. Eight
DeepCore strings are part of the IC86 configuration. Including their effective
area lowers the energy threshold to 10 GeV. We extrapolated the data points
linearly to fit our energy range, as shown in Fig. 8.5. The corresponding data
points have been taken from Ref. [38]. In the region where both selections
overlap, we use the IceCube effective area, as it is larger than the one of the
DeepCore selection.

IceCube is sensitive to both νµ and ν̄µ. However, the corresponding energy
dependent deep-inelastic scattering cross sections with nucleons in the detector
are slightly different. Since Ref. [38] provides only the combined νµ+ν̄µ effective
area, we calculate the individual effective areas by taking into account the
different cross sections σνµ(ν̄µ) given in Ref. [117] with the relation

Aνµ(ν̄µ) = Acombined

1 +
σν̄µ(νµ)
σνµ(ν̄µ)

. (8.3.3)
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Figure 8.5: The νµ and ν̄µ effective areas of the DeepCore detector and
the IceCube detector configuration ic86 as a function of the neutrino energy.
The data for the combined effective area is taken from Ref. [38] (triangles and
crosses) and linearly extrapolated (solid black line). The individual effective
areas for neutrinos (dashed blue line) and antineutrinos (dotted red line) are
calculated with the deep inelastic scattering cross sections taken from Ref.
[117]. Both the IceCube and DeepCore selections of the effective area are
used in our work.

As there are now quite a number of tools involved for the numerical eval-
uation, we show an illustration of the toolchain in Fig. 8.6 and repeat the
steps involved. This toolchain can easily be adapted to analyse different (min-
imal) models. The Lagrangian of the model can be generated using minimal-
lagrangians [118]. The files generated by minimal-lagrangians can then
be used to run SARAH [72, 73] which generated the code necessary to imple-
ment the model in SPheno [92, 93] and micrOMEGAs [94]. The steps up
to this point only need to be executed once, whereas the following steps must
be done for every point in the parameter space. We use a Python routine to
operate the different pieces of code. First a random point in parameter space
is generated and written into a SLHA file. Then SPheno is used in order
to calculate the mass spectrum as well as observables such as the anomalous
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Figure 8.6: Illustration of the toolchain used in this work.
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Table 8.2: Parameters of the scotogenic model for our benchmark point BPA.
Shown are the coupling parameters λi, the squared mass m2

η of the new scalar
doublet, the (diagonal) mass matrix mN for the three new fermion singlets,
and the real and imaginary parts of the Yukawa matrix, yR and yI .

λ1 λ2 λ3 λ4 λ5 m2
η mN1 mN2 mN3

0.26 0.50 0.56 −0.14 2.00 · 10−7 1.00 · 106 1.32 · 103 3.13 · 103 3.44 · 103

yR/10−2 yI/10−3
−17.20 2.07 −6.91

−4.94 9.41 15.17

5.22 15.98 −8.20




2.58 4.46 5.10

−6.88 2.02 2.30

−2.08 −1.23 −1.40



magnetic moment of the muon, LFV and decay branching ratios. In order to
implement inelastic scattering, a custom CalcHEP routine is used to calcu-
late the inelastic quark nucleon scattering cross section in the non relativistic
limit. These cross sections are then used by the DarkSUSY [112] routine
dssenu capsunnum and the routines therein which we modified in order to en-
compass the inelastic scattering scenario. This routine calculates the capture
rate, which is then fed back into micrOMEGAs where it is used to calcu-
late the neutrino flux at earth. This flux is then multiplied with the ic86
effective area in order to calculate the expected event rates a IceCube. mi-
crOMEGAs is also used to calculate dark matter related observables such as
the elastic dark matter nucleon scattering cross sections, the relic density, the
thermally averaged annihilation cross section and the event rate at IceCube
stemming from elastic scattering in the sun.

We illustrate the expected neutrino fluxes at Earth and event rates in Ice-
Cube for a specific benchmark point BPA in the scotogenic model which has
been chosen randomly, and is representative for the parameter space of the
model. The corresponding parameters are listed in Tab. 8.2. With these pa-
rameters, we obtain the correct relic density of Ωh2 = 0.1217 for the scalar
dark matter candidate η0I with mass 1007.38 GeV. In descending order of im-
portance, the dark matter annihilation channels are W+W− (58.36%), Z0Z0

(23.51%), hh (12.30%) and W+W−γ (4.99%), i.e. W+W− pairs (plus an ac-
companying photon) represent the dominant channel with a branching frac-
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tion of over 63%, as is the case for most points in the parameter space with
mη0R,I > mW . Direct annihilation into neutrinos is suppressed by both the
small Yukawa couplings yiα and the large neutrino propagator masses mNi .

We show the differential neutrino and antineutrino fluxes at BPA for both
elastic (blue) and inelastic (red) scattering in the Sun in Fig. 8.7 (top). The
differences in differential fluxes between neutrinos (full) and antineutrinos
(dashed lines) that show up at high energies are due to absorption (also oscilla-
tion and regeneration) effects taking place inside the Sun [119]. Because there
is no annihilation into neutrinos directly, we do not observe a monochromatic
neutrino line in the spectrum, but instead a sharp cut-off at the dark matter
mass of about 1 TeV. The differential number of expected signal events per
year in ic86 is shown in Fig. 8.7 (bottom). After integration over the neutrino
energy, BPA yields a total number of only 0.07 expected events per year in
ic86 in the elastic case, but 8.65 · 104 in the inelastic case.

8.4 Numerical scan
Using the tool chain described in the previous chapter, we now perform a nu-
merical scan of the scotogenic parameter space by means of random sampling.
To comply with the requirements of vacuum stability, perturbativity and that
the lightest scalar must be neutral, the scalar couplings are varied within the
ranges

λ3 ∈
[
−
√
λ1λ2, 4π

]
, (8.4.1)

λ4 ∈
[
max{−

√
λ1λ2 − λ3 + |λ5| ,−4π}, 0

]
, (8.4.2)

|λ5| ∈
[
10−10, 10−3

]
(8.4.3)

As was mentioned in Sec. 6.2, λ5 is naturally small, since the Standard Model
neutrino masses would vanish and the symmetry of the Lagrangian increase if
it were exactly zero. The mass parameter of the new scalar doublet is varied
in the range

mη ∈ [1 GeV, 10 TeV] . (8.4.4)

The masses mNi of the new fermion singlets are required to be larger than the
mass of the lightest scalar, but below 10 TeV. In a second scan, we choose this
mass difference to be small (i.e. 0.1 GeV) in order to demonstrate the impact
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Figure 8.7: Top: Elastic (blue) and inelastic (red) muon neutrino (full) and
antineutrino (dashed) fluxes at Earth as a function of the neutrino energy,
calculated with the modified function neutrinoFlux in micrOMEGAs at
the parameter point BPA. The mass of the dark matter particle η0I is 1007.38
GeV. Bottom: Expected number of signal events in ic86 per year as a function
of the neutrino energy.
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of coannihilation processes [120]. The Standard Model neutrino oscillation
parameters are taken from Ref. [51] in the 3σ range, assuming normal order-
ing. The CP violating phase δCP is varied from zero to 2π, and the lightest
neutrino mass is varied in the interval [10−4, 1.1] eV in accordance with the
most recent limit set by KATRIN [8]. All mass parameters, as well as λ5 are
sampled uniformly in log space, as they are varied over several orders of magni-
tude. All remaining parameters are sampled uniformly in a linear fashion. The
Yukawa couplings are then calculated using the Casas-Ibarra parametrization
and required to satisfy |yiα|2 < 4π.

The scotogenic model is further constrained by a number of other experi-
mental measurements. In particular, we impose the relic density measurement
by Planck [16] with a relatively loose margin of Ωh2 = 0.12±0.02 in order to
account for theoretical uncertainties [121]. We also impose the LFV branching
ratios (BR) and conversion rate (CR) of

BR (µ→ e+ γ) < 4.2 · 10−13,

BR (µ→ 3e) < 1.0 · 10−12, (8.4.5)
CR (µ− e,Ti) < 4.3 · 10−12,

published by the MEG [57], SINDRUM [59] and SINDRUM II [61] collabo-
rations. Furthermore, we apply limits on the new physics invisible decay width
of the Z0 boson from LEP [122]

BR(Z0 → new) < 0.008, (8.4.6)

which effectively excludes mDM < mZ0/2 [123, 124], and on the invisible decay
width of the Standard Model Higgs boson from ATLAS (CMS) at the LHC
[125, 126]

BR(h→ inv.) < 0.11 (0.19), (8.4.7)

as well as on the elastic and inelastic scattering cross section from direct
searches with XENON1T [34], XENON100 [127, 128] and PandaX-II [129].
The possible signal from DAMA/LIBRA [41, 99], its ongoing verification
[130–132], previous limits on indirect detection from dark matter annihilation
into neutrinos in the Sun [37–39] and the Galactic Center [47, 48, 133, 134],
and expected event rates for neutrinos from the Sun in the current IceCube
configuration with 86 strings (IC86) are also discussed in the following.
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Figure 8.8: The spin independent (SI) elastic cross section with ANTARES
[37], IceCube [38], Super-Kamiokande [39] and XENON1T [34] exclusion
limits as a function of the dark matter mass. All points and lines are color
coded according to the main annihilation channel, provided there is one with
a branching ratio of over 50%. Also shown are the LEP exclusion from the
invisible Z0 boson width [123, 124] and the neutrino floor [40]. In the lower
plot, coannihilation processes are enhanced by the small scalar-fermion mass
difference.
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8.4.1 Limits on the elastic cross section

Our spin independent elastic cross section results for scalar dark matter in
the scotogenic model are shown in Fig. 8.8. Apart from the larger mass range
of our scan and considering that we imposed updated constraints from the
Higgs mass, dark matter relic density, neutrino masses/mixings and LFV, our
results agree with those in Fig. 9 in Ref. [120]. In particular, models with
low mass dark matter contain sufficiently heavy charged scalars to evade the
corresponding LEP2 bound [49], but are excluded by the LEP limit on the
invisible Z0 decay width [123, 124]. Since there are no viable models with
mZ0/2 < mDM < mh/2, there are no additional constraints from the invisible
h decay width [125, 126]. Otherwise and as well known, the correct relic den-
sity requires the dark matter to be larger than about 500 GeV (top). Fermion
coannihilation processes reduce this lower mass limit to about 200 GeV (bot-
tom) [120]. The sampled points are color coded according to the dominant
annihilation branching ratio. A point is marked as having no dominant chan-
nel when no single branching ratio reaches 50%. Above the W boson threshold,
mostly annihilation into W boson pairs occurs. The channel-dependent con-
straints derived from indirect dark matter detection with ANTARES [37],
IceCube [38] and Super-Kamiokande [39] are considerably weaker than
the direct detection constraints from XENON1T [34]. Only the latter con-
strain the parameter space, and in particular the coannihilation region. Since
the Higgs coupling to the quarks in the nucleon is relatively small, the elas-
tic cross sections are small as well. A significant part of the parameter space
for dark matter masses beyond 1 TeV results even in cross sections below the
atmospheric and diffuse supernova background (DSNB) neutrino “floor” [40],
which may render dark matter direct detection difficult.

8.4.2 Limits on the inelastic cross section

The observation of an annual modulation signal by DAMA/LIBRA [41, 99],
its interpretation as dark matter of low or (relatively) higher mass of about 10
and 50 GeV [135, 136] and the tension with other direct detection experiments
have led to the speculation that dark matter might only undergo inelastic
scattering off nuclei in DAMA/LIBRA, to which other experiments would
not be sensitive [87]. To fit the DAMA/LIBRA observation, the inelastic
nucleon cross section was usually assumed to be 10−4 pb [100–102]. This value
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Figure 8.9: Scotogenic models in the plane dark matter mass vs. neutral
scalar mass splitting, color coded for expected IC86 events (temperature
scale) and elastic scattering exclusion by XENON1T (red boxes) [34]. Also
shown are the exclusion of the low- (sodium) [108] and high-mass (iodine)
DAMA/LIBRA preferred regions [41, 99] by LEP and XENON100 [127]
and the upper limits on the mass splitting from the XENON100 Run II data
[128] and by the PandaX-II experiment with smaller recoil energy window
and larger background [129]. In the lower plot, coannihilation processes are
enhanced by the small scalar-fermion mass difference.
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is indeed close to the proton cross section of 1.7 · 10−4 pb in the scotogenic
model, where the mediator is not a Higgs (h) boson, but an electroweak gauge
(Z0), which violates isospin by bn/bp = 1/(4 sin2 θW − 1) ' −6.6.4 It also
corresponds to typical cross sections in the inert doublet model, which is in
fact the only model with a single scalar dark matter multiplet that allows for
naturally small neutral component mass splittings at the renormalizable level
[137].

In Fig. 8.9, we plot all scotogenic model points that survive Higgs mass,
dark matter relic density, neutrino mass/mixing and LFV constraints in the
plane dark matter mass and neutral scalar mass splitting. The points are color
coded for expected IC86 events (temperature scale) and exclusion of elastic
scattering by XENON1T (red boxes) [34]. Following the observations by
DAMA/LIBRA [41, 99], several other experiments have specifically searched
for inelastic dark matter. In a first analysis of 100.9 live days of data with a
fiducial volume containing 48 kg of liquid xenon, XENON100 (grey shaded
areas) excluded the high mass (iodine) preferred region with mass splittings up
to 140 keV [127]. The Run II data with 224.6 live days of data with a fiducial
volume containing 34 kg of liquid xenon was later reanalyzed in the context of
effective field theory (EFT) using the correspondence

σ0
N = (CN

1 )2µ
2
N

π
, (8.4.8)

where µN is the dark matter-nucleon reduced mass and CN
1 is the coefficient

of the spin-independent operator [128]. Since in our case the interaction is not
isospin-conserving, we translate the limits on CN

1 from Ref. [128] to the proton
cross section as [138]

σ0
p = σ0

N

[
Z

A
+
(

1− Z

A

)
bn
bp

]−2

, (8.4.9)

assuming for simplicity A = 132 for the xenon isotope with the largest abun-
dance. This excludes the mass region above 300 GeV with mass splittings
up to 250 keV (full black lines). PandaX-II, who analyzed 79.6 live days of
data with a fiducial volume containing 329 kg of liquid xenon, presented their
results only for fixed dark matter masses of 1 and 10 TeV [129]. When inter-
polated and translated for isospin violation, they give a similar, but slightly

4The neutron cross section 1/(2π)G2
Fm

2
N = 74.3 · 10−4 pb is therefore significantly larger

[104, 137].
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Figure 8.10: The expected number of events per year in the current IceCube
configuration with 86 strings (IC86) as a function of the dark matter mass
from inelastic and elastic dark matter scattering in the Sun. The black line
marks the number of expected events in the W+W− channel for IC22 [102].
The blue line marks one event per year for orientation. Also shown are the
points excluded by XENON1T [34], XENON100 [127, 128] and LEP from
the invisible Z0 boson width [123, 124]. In the lower plot, coannihilation
processes are enhanced by the small scalar-fermion mass difference.
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weaker exclusion curve (dashed black lines) as/than Xenon100 due to the
smaller recoil energy window and larger background. The exclusion of larger
mass splittings with direct detection experiments is limited by the maximum
recoil energy and would require much larger cross sections than expected from
electroweak interactions [139]. The low-mass (sodium) point (black stars), to
which a good fit is still possible, albeit with a large cross section of 10−2 pb and
different isospin violation bn/bp ' −0.7 [136, 140], as well as the (already ex-
cluded) high-mass (iodine) point to the DAMA/LIBRA signal [108] are under
intense scrutiny by the DM-Ice17 [130], COSINE-100 [131, 141], SABRE
[142] and ANAIS-112 [132] experiments, which are expected to provide a 3σ
C.L. test of this signal by autumn 2022.

8.4.3 Expected IC86 event rates from (in)elastic dark
matter scattering in the Sun

The expected number of events in the current IceCube configuration with
86 strings (IC86) was already shown by color coding in Fig. 8.9. It ranges
from less than 10−6 to more than 105 per year. For both the random and the
coannihilation scan, at least ten events are expected for neutral scalar mass
splittings δ ≤ (500± 20) keV. Points below 250 keV were already excluded by
XENON100 [128], but half of the parameter space could be tested with IC86
for the first time. From Eq. (6.2.14), the non-observation of the predicted
events would set a lower bound on

λ5 & 1.6 · 10−5 ·mDM/TeV. (8.4.10)

In the following, we analyze the expected event rates in more detail. Fig.
8.10 shows the expected number of events per year as a function of the dark
matter mass for both inelastic and elastic dark matter scattering in the Sun,
i.e. when both occurs two points are shown. Points excluded by XENON1T
[34], XENON100 [127, 128] and LEP from the invisible Z0 boson width [123,
124] are also shown. The black line shows a previous estimate of the number
of expected inelastic events in the W+W− channel for IC22 [102], which scales
roughly as expected with our IC86 predictions. Note that this and other
previous analyses of indirect detection of inelastic dark matter were motivated
by the high-mass (iodine) DAMA/LIBRA best fit point with δ = (125± 25)
keV [100–102]. In our Fig. 8.10, the blue line marks one event per year for
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orientation. As one can see, the expected event rates for models with only
elastic scattering stay below this line. In the lower plot, where coannihilation
processes are enhanced by the small scalar-fermion mass difference, models
with larger elastic scattering rates are already excluded by direct detection
experiments. Nevertheless, inelastic scattering allows for a large region of the
scalar dark matter parameter space with and without coannihilation to be
tested by IC86.

Fig. 8.11 shows the expected number of events per year as a function of
the neutral scalar mass splitting δ. Although we scan values above λ5 ≥
10−10, the neutrino masses constrain λ5 to be larger than 10−9. In addition,
in the coannihilation scenario the relic density mostly requires values above
10−8. From Fig. 8.9 we know that direct detection experiments exclude neutral
scalar mass splittings below 250 keV, which for mDM ≥ 500 (200) GeV in
the normal (coannihilation) scan translates through Eq. (6.2.14) to a limit of
λ5 & 4.1 (1.7) · 10−6. With IC86, mass splittings up to 500 keV and at least
two more orders of magnitude in λ5 could be tested up to 1.6 ·10−4 (or beyond)
for mDM = 10 TeV (or larger). While the event rate falls quickly for inelastic
scattering towards the kinematic edge, it is of course independent of both δ

and λ5 in the elastic case. This is illustrated in Fig. 8.12, where the event rate
due to inelastic and elastic processes have been summed. For higher values
of δ, the elastic process is dominant. In the other regions inelastic scattering
dominates by several orders of magnitude, such that the total event rate is in
practice determined by the inelastic scattering process alone. The scattered
points below the main bulk correspond to points with lower masses, where the
inelastic scattering rate is lower, as can be seen in Fig. 8.10.

8.4.4 Limits from dark matter annihilations in the Galac-
tic Center

Neutrino telescopes are also used to set bounds on the self annihilation of
dark matter in the Galactic Center. We test the scotogenic model with the
limits on the thermally averaged self annihilation cross section 〈σv〉 set by a
joint analysis of ANTARES and IceCube [47], assuming a NFW halo pro-
file [143]. The results are shown in Fig. 8.13. All points are color coded for
their dominant annihilation channel (i.e. bb̄ quark, W+W− and Z0Z0 boson
pairs). Points with no branching ratio larger than 50% are marked as “no
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Figure 8.11: Same as Fig. 8.10 as a function of the neutral scalar mass splitting
δ.
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have been summed.
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dominant channel”. The predictions agree roughly with the naive expectation
for a thermal relic [144], but can be considerably larger in the coannihila-
tion scenario, where the coannhiliation processes increase rather than decrease
the predicted dark matter relic density [120]. Contrary to dark matter an-
nihilation in the Sun, the direct detection experiments XENON1T [34] and
XENON100 [127, 128] now exclude points with lower expected rates, while
larger rates remain viable. This can be attributed to the fact that the dark
matter density in the Galactic Center is now fixed by the NFW profile and not
determined by (in)elastic scattering and the capture rate. Low-mass points
annihilating mostly into bb̄ quarks are already excluded by the direct detection
experiments and LEP from the invisible Z0 boson width [123, 124], whereas the
limits from Super-Kamiokande [39] are much weaker. For high-mass points,
dark matter annihilation into W+W− bosons is dominant. While the points
from our random scan lie still considerably below the limits set by ANTARES
and IceCube [47], those from our coannihilation scan are less than an order
of magnitude smaller and should be within reach of the next IC86 analysis.
It would be particularly interesting to extend the mass range of this analysis
from 1 to 10 TeV and beyond.

8.5 Summary
To summarize, we have investigated in this chapter the indirect detection
prospects of scalar dark matter in the scotogenic model. We have focused
on dark matter annihilation into neutrinos in the Sun, but also in the Galactic
Center. After a brief review of the particle content, interactions and neutrino
mass generation in the scotogenic model, we described in detail the elastic
and inelastic dark matter scattering processes induced by Higgs and Z0 boson
exchanges in the Sun, which determine the WIMP capture rate and thus also
the annihilation rate into neutrinos and particles that decay into them. We
then implemented the capture rate from inelastic scattering in DarkSUSY
6.2.3 and interfaced it with micrOMEGAs 5.0.8 and our updated routine for
the expected neutrino fluxes on Earth and the effective area of the IceCube
detector in its current 86-string configuration.

We then performed two large numerical scans spanning the theoretically
allowed parameter space, i.e. a random scan and one with enhanced scalar-
fermion coannihilation from a small dark matter-sterile neutrino mass splitting,
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Figure 8.13: Thermally averaged cross section 〈σv〉 with combined IceCube
ANTARES [47] and Super-Kamiokande [48] exclusion limits as a function
of the dark matter mass. All points are colored according to the main an-
nihilation channel, provided there is one with a branching ratio of over 50%.
Also shown are the points excluded by XENON1T [34], XENON100 [127,
128] and LEP from the invisible Z0 boson width [123, 124] as well as the ex-
pected cross section for a thermal relic [144]. In the lower plot, coannihilation
processes are enhanced by the small scalar-fermion mass difference.
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which is known to increase the relic density and extend the viable scalar dark
matter mass region from above 500 GeV to above 200 GeV. Experimental
constraints were imposed from the known neutrino mass differences and mixing
angles, LFV, the searches for new neutral and charged scalars at LEP and
LEP2, the LHC measurements of the Higgs boson mass and invisible width,
and from direct and previous indirect dark matter searches.

First, we found that direct, but not indirect detection experiments con-
strain the spin-independent elastic scattering cross section, in particular in
the coannihilation scenario. We also found that a considerable fraction of the
models lie below the neutrino floor, which may render direct detection diffi-
cult. We then showed that direct detection experiments cover only half of the
parameter space for inelastic scattering, i.e. inelasticities up to 250 keV. The
higher kinetic energy of dark matter in the Sun therefore leaves ample room
for a dedicated analysis with IC86, that would cover inelasticities up to at
least 500 keV. The expected rates extend well beyond 103 per year. The non-
observation of the predicted neutrino events would translate into a lower limit
on the scalar coupling λ5 & 1.6 · 10−5 ·mDM/TeV. For larger couplings, only
elastic scattering has to be considered. In this case, the expected event rates
for models that are not yet excluded by the direct detection experiments do
not exceed 0.1 per year. We reminded the reader that the coupling λ5 has to
be naturally small, since if it was exactly zero, the neutrinos would be massless
and lepton number would be conserved, leading to a larger symmetry of the
Lagrangian.

Models with elastic and inelastic scattering can also be tested with dark
matter annihilation in the Galactic Center, assuming e.g. a NFW dark mat-
ter profile. Here, we found that direct detection experiments exclude mostly
models with lower thermally averaged cross sections. This could be attributed
to the fact that the dark matter density in the Galactic Center was fixed by
the NFW profile and not determined by (in)elastic scattering and the cap-
ture rate. Low-mass points annihilating mostly into bb̄ quarks were already
excluded by direct detection experiments and LEP, whereas the limits from
Super-Kamiokande were much weaker. For high-mass points, dark matter
annihilation into W+W− bosons was dominant. There, a previous combined
analysis by ANTARES and IceCube led to limits that were two orders of
magnitude above our predictions. For the coannihilation scenario, our predic-
tions are, however, less than an order of magnitude smaller and thus within



116 Chapter 8. Neutrino signals from scotogenic dark matter

reach of the next IC86 analysis, in particular for TeV-scale dark matter.
Our results generalize to models with several scalar multiplets where the

mass splitting between the neutral components is small. A particularly inter-
esting case for future study would be the AMEND model with small singlet-
triplet scalar mass splitting, which could again be small due to an otherwise
larger symmetry of the Lagrangian [145].



Indirect detection
constraints on the model
T1-3-B 9
In this chapter we perform a similar analysis as in Chap. 8 but focus on a
different model. The model studied here does not allow for the rather exotic
scenario of inelastic scattering and thus the results generalize more easily to
a wider class of models. It also encompasses both spin dependent and spin
independent scattering allowing us to study the effect of both scattering types
on the IceCube event rates. As the limits on spin dependent scattering set by
direct detection experiments are generally weaker than the limits on spin inde-
pendent scattering, indirect detection is especially competitive in the former
case. For a detailed description of the model, we refer to Sec. 6.3. This chap-
ter is based on our paper [2] which was created in collaboration with Raffaela
Busse, Alexander Kappes, Michael Klasen and Sybrand Zeinstra.

9.1 Motivation

Dark matter and neutrinos are inherently linked in our model allowing for dark
matter annihilations into neutrinos. With dark matter being heavy, such an-
nihilations can lead to high energy neutrinos which are being searched for with
neutrino telescopes such as the IceCube detector. The annihilation processes
can lead to two different neutrino spectra. In particular, direct annihilation
into neutrino pairs will result in a clear, distinct line at Eν ' mDM, whereas
neutrinos produced from the decays of other Standard Model particles created
by annihilations result in a continuous spectrum. Direct annihilation into neu-
trinos has been studied in Refs. [95–98]. Here, we will study the general case,
where both scenarios are taken into consideration.

Monochromatic neutrinos provide a clear and distinct signal compared to
a continuous spectrum. Since we also take into account the latter type of
signals, we consider the case where the annihilation rate is enhanced by a local
boost in the relic density. We focus on annihilations due to an increased relic

− 117 −
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density in the Sun. Other astrophysical objects that have been considered in
the literature are e.g. the Earth [146, 147], the Galactic Center [47, 48, 133,
134], or super massive black holes [97].

As our solar system moves through the galactic halo, dark matter in the
form of a weakly interacting massive particle (WIMP) can scatter off nuclei in
the Sun. If enough of the kinetic energy of the WIMP is transferred in these
scatterings, the WIMP will be gravitationally captured by the Sun [106, 148].
This will lead to an accumulation of WIMPs in the Sun’s core, enhancing the
local relic density and leading to a boost in annihilations. The capture rate
depends chiefly on the WIMP-nucleon scattering cross section, on which direct
and indirect detection experiments have put stringent constraints [28, 34, 37–
39, 42, 43, 149, 150].

For definiteness, we consider here the radiative seesaw model T1-3-B with
α = 0 [89, 90], following the notation in Ref. [11], that can contain either a
scalar or a fermionic dark matter candidate. The model is explained in all
detail in Sec. 6.3 with a special emphasis on the spin (in)dependent scattering
cross sections. Previous studies have shown that triplet scalar [91, 151–154]
and singlet-doublet fermion dark matter [155–158] can both reproduce the relic
density in agreement with the PLANCK satellite data [16].

9.2 Detecting neutrinos from dark matter in
the Sun with IceCube

For our numerical analysis, we use the same routine already described in Chap.
8. As the model T1-3-B does not have naturally small mass splittings, inelastic
scattering does not occur. Thus we do not need the routines specific to in-
elastic scattering and can use micrOMEGAs to calculate the scattering cross
sections and the capture rate instead of our custom DarkSUSY routine.

We start by examining a typical benchmark point in order to illustrate
procedure and show the neutrino energy spectrum. The parameters used for
this point which gives rise to fermionic dark matter are given in Tab. 9.1 with
the couplings chosen in such way, that the neutrino masses are correct. Figure
9.1 shows the differential (anti) neutrino flux as well as the expected event
rates at IceCube for different neutrino energies. The neutrino flux is sharply
cut of at Eν = mDM as for non relativistic dark matter the kinetic energy
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Figure 9.1: (Anti-)neutrino flux from the Sun (left) and expected event rate
at IceCube (right) for the benchmark point given in Tab. 9.1. The dashed
lines indicate the value of the dark matter mass.
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Table 9.1: Parameters used for our benchmark point (masses in GeV). The
matrix elements not mentioned (e.g.

(
M2

φ

)
12

) are set to zero.

MΨ Mψψ′ (M2
φ)11 (M2

φ)22

362 614 2.4 · 106 4.3 · 107

λ4 λ5 λ1 λ6

−0.17 −0.65

0.011 0

0 0.012



−1.74 −5.28

0.90 −18.67

5.36 11.91

 · 10−5

of the neutrinos is limited by the dark matter mass. Furthermore for such a
typical point, there are only few monochromatic neutrinos as the annihilation
into gauge bosons or quark pairs dominates. Such annihilation channels yield
several neutrinos in the subsequent decay chain. Annihilation into leptons is
suppressed by the Yukawa couplings λ6 which are restricted to be small in
order for the model to yield the correct neutrino masses and comply with LFV
constraints [89]. Therefore we do not expect to measure a monochromatic
neutrino line at IceCube but a continuous neutrino spectrum. The neutrino
flux is highest for energies smaller that 50 GeV. Multiplying the neutrino flux
with the IceCube effective area for the 86 string configuration, we obtain
the expected event rates. As the effective area declines for small neutrino
energies, the expected event rates peak at roughly half the dark matter mass.
Integrating the differential rates, we obtain a prediction of 16 events per year
for this model. For this benchmark point, the SI cross section is σp(SI) =
1.75 · 10−8 pb and already excluded by the XENON1T limits. We will see in
the following, there are parts of the parameter space which are not excluded
but yield sizeable event rates.

9.3 Numerical results
We use the tool chain described in Chap. 8 in order to explore the parameter
space of our model by means of a numerical scan. As inelastic scattering does
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not occur naturally in the model T1-3-B (α = 0), the routines specific to
this case are omitted. We now scan over the parameter space of the model.
The mass parameters MΨ,ψψ′,φ are varied between 100 GeV and 10 TeV. As
was mentioned before, M2

φ is chosen to be diagonal. The couplings |λ1,4,5| are
varied between 1 ·10−3 and 10, where λ1 is chosen to be diagonal. The signs of
these couplings are chosen randomly. λ6 is calculated using the Casas-Ibarra
parameterization Eq. (6.3.9), which requires the other model parameters as
input. The neutrino mass differences and the PMNS angles are varied in the
3σ ranges [51], where we assume Normal Ordering. The angle θ from the Casas-
Ibarra parameterization is varied from zero to 2π. In addition we require the
Higgs mass to be (125± 2.5) GeV. Lepton Flavor Violation (LFV) constrains
the parameter space further. We impose the current limits on BR(µ→ eγ) <
4.2 · 10−13 [57] and BR(µ→ 3e) < 1.0 · 10−12 [59], as they usually impose the
most stringent constraints. We require the relic density to be Ωh2 = 0.12 [16],
allowing it to vary by ±0.02. As a cross check, we have reproduced the results
shown in Figs. 7 and 10 of Ref. [89].

9.3.1 Spin independent scattering

Our spin independent cross section results for both fermion (below about 1
TeV) and scalar (above about 1 TeV) dark matter are shown in Fig. 9.2. The
two kinds of dark matter are clearly divided by their allowed mass ranges. In
the case of scalar triplet dark matter, the thermally-averaged cross section in
the early Universe is dominated by the annihilations of the triplet components
into the electroweak gauge bosons, e.g. η0

1η
0
1 → W+W−, but co-annihilation

processes with the charged component such as η0
1η

+
1 → Z0W+ need also to be

included due to the small mass splitting between the triplet components. An
extensive overview of the possible (co)-annihilation diagrams is given in Ref.
[153]. For this case, Ref. [91] computed the thermally-averaged cross section
as well as the dark matter abundance and freeze-out temperature for a general
SU(2)L n-plet, resulting in a dark matter mass of 2.0 ± 0.05 TeV for n = 3.
The freeze-out temperature Xf = mDM/Tf ∼ 26 is in line with the results of
micrOMEGAs for this model of Xf ≈ 26. In principle, annihilation into two
Higgs bosons is also possible, but it only starts to become relevant for dark
matter masses above 2 TeV [151]. Nonetheless, the triplet-Higgs coupling λ1

does affect the mass range for which the dark matter satisfies the relic density
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Figure 9.2: The spin independent (SI) cross section in pb with ANTARES
[37], IceCube [38], Super-Kamiokande [39] and XENON1T [34] exclu-
sion limits as a function of the dark matter mass for both fermion (below
about 1 TeV) and scalar dark matter (above). All points and lines are color
coded according to the main annihilation channel, provided there is one with
a branching ratio of over 50%. Also shown is the neutrino floor [40].

constraint already at smaller masses. This has been observed in Refs. [89, 91,
152, 153], all of which placed the scalar triplet dark matter in a mass range
around 2 TeV.

For singlet-doublet fermion dark matter the situation is dependent on the
mixing between the fermion fields. This scenario is similar to MSSM neu-
tralino dark matter, in the case the Bino mixes with the Higgsinos. In the
early Universe, the thermally-averaged annihilation cross section is dominated
by the coupling of the fermions to the Higgs and Z0 boson. Through s-channel
processes the dark matter can annihilate into Standard Model quarks. These
couplings depend on the parameters λ4 and λ5, as is shown in Sec. 6.3. Further
processes include the direct annihilation of the neutral doublet component into
W boson pairs through the t-channel exchange of the charged doublet com-
ponent, as well as co-annihilations between the neutral and charged doublet
components into a W boson, of which the cross sections are given in Ref. [158].
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Additionally, an expression for the relic density depending on the cross section
is given. The masses presented in Ref. [158] are in the range of a few hun-
dred GeV. However, as a Higgs mass of 500 GeV was assumed making a direct
comparison difficult. An overview of annihilation diagrams, as well as the re-
lation to direct detection is presented in Ref. [155], which also placed a lower
bound on the mass range of the doublet component of ∼ 1 TeV. Moreover, it
was found that in the case where the dark matter is mostly doublet in nature,
the relic density constraint is satisfied for masses ∼ 1.1 TeV. More generally,
the authors presented a numerical scan satisfying relic density constraints in
the 40 GeV to 500 GeV mass range. The results obtained in Ref. [89] extend
further in both directions, from around 10 GeV up to the purely doublet case
around 1.1 TeV. Taking into account a slightly different spread of the points
due to differing scan ranges and the already imposed LFV limits, the results
agree with those in Figs. 7 and 10 of Ref. [89].

For indirect detection purposes the branching ratios of dark matter anni-
hilations in the galactic halo are important. Hence the points in Fig. 9.2 are
color coded according to their dominant decay channel. A point is marked by
its dominant channel when a single branching ratio exceeds 50%. If this is not
the case, then a point is marked as having no dominant channel.

The scalar dark matter candidates, all located around 2 TeV, mainly decay
into a pair of W -bosons. For fermionic dark matter the situation is mixed. At
masses below the W boson mass, the main channel is through bb̄ production,
after which the dominant channel becomes W+W−. For masses above the top
mass, there is mainly tt̄ production, except for the points around 1 TeV, where
W -boson production is the only dominant channel. This can be explained by
the singlet-doublet nature of the fermionic dark matter, where the parameter
points located around 1 TeV are those that have a large doublet contribution
and therefore couple more strongly to the electroweak gauge bosons. In con-
trast, the points for which the dark matter candidate is mainly a singlet with
only a small doublet admixture couple less to the gauge bosons and relatively
more to the top quark via the Standard Model Higgs boson. The charged
fermions are always heavier than 102 GeV, so that the limits by the LEP ex-
periments [49] do not restrict the parameter space. We see that the previous
limits by the ANTARES [37], IceCube [38] and Super-Kamiokande [39]
collaborations from dark matter annihilations in the Sun are several orders of
magnitude weaker than the XENON1T [34] direct detection bound, with the
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Figure 9.3: The spin dependent (SD) cross section in pb with PICO-60 [43],
XENON1T [42], ANTARES [37], IceCube [38] and Super-Kamiokande
[39] exclusion limits as a function of the dark matter mass for singlet-doublet
fermion dark matter. All points and lines are color coded according to the
main annihilation channel, provided there is one with a branching ratio of over
50%. Also shown is the neutrino floor for bb̄ final states [159].

bb̄ limits being less stringent compared to the W+W− ones. We also show the
atmospheric and diffuse supernova background (DSNB) neutrino “floor” [40],
which may render dark matter direct detection difficult.

9.3.2 Spin dependent scattering

In Fig. 9.3 we show the spin dependent cross section for singlet-doublet fermion
dark matter in our model and compare it to direct and indirect detection limits.
Different annihilation channels are again color coded as before. For certain
channels, ANTARES [37] and IceCube [38] impose stronger constraints than
XENON1T [42], while the full data set of PICO-60 [43] has similar sensitivity
as the indirect detection experiments. In a combined analysis, IceCube and
PICO-60 have removed the Standard Halo Model assumption and published
velocity independent limits following the suggestion in Ref. [160], which are
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Figure 9.4: Thermally averaged cross section 〈σv〉 with combined IceCube
ANTARES [47] and Super-Kamiokande [48] exclusion limits as a function
of the dark matter mass for both fermion (below about 1 TeV) and scalar dark
matter (above). All points are colored according to the main annihilation
channel, provided there is one with a branching ratio of over 50%. Also shown
is the expected cross section for a thermal relic [144].

however significantly weaker [161]. Also shown is the neutrino floor for bb̄ final
states due to high-energy neutrinos from cosmic-ray interactions with the solar
atmosphere, which may render indirect detection difficult [159] and leaves little
room for the bb̄ channel at low mass beyond the PICO-60 limits.

9.3.3 Limits from the Galactic Center

Fig. 9.4 shows the thermally averaged cross section 〈σv〉 for the same points
with fermionic and scalar dark matter as in Fig. 9.2. Here, we assume the
NFW dark matter halo profile [143]. The expectation for a thermal relic is
indicated by a dashed line [144]. For fermionic dark matter, it represents an
upper limit, while for scalar dark matter it is rather a lower limit. All points
are several orders of magnitude below the bounds established by IceCube
[134], ANTARES [133] and their combination [47] as well as by Super-
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Figure 9.5: The expected number of events per year in the current IceCube
configuration with 86 strings (IC86) as a function of the dark matter mass for
singlet-doublet fermion (blue) and triplet scalar (green) dark matter. Allowed
points are shown together with points excluded by direct and indirect detec-
tion (other colors and symbols). The blue line marks one event per year for
orientation.

Kamiokande [48], meaning that these measurements do not constrain the
model. For heavy scalar dark matter, the IceCube ANTARES sensitivity
must be improved less than for lighter fermion dark matter, i.e. by only a few
orders of magnitude.

9.3.4 Expected IceCube event rates
In Fig. 9.5 we show the expected event rate at IceCube for all model points
of our numerical scan. For the triplet scalar dark matter case (green points),
the spin dependent cross section is always zero. Thus in our model the ac-
cumulation of scalar dark matter in the Sun is only determined by the spin
independent cross section, which lies below the current XENON1T bound.
As can be seen, this leads to less than one event per year in the current Ice-
Cube configuration with 86 strings (IC86), whose sensitivity would therefore
have to be improved by a few orders of magnitude.
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For singlet-doublet fermion dark matter (blue and other points), the ex-
pected event rates reach values of up to 1000 events per year. However, we
have to impose all previous direct and indirect detection constraints, marked
by different symbols and colors in Fig. 9.5. Not shown previously, but also
imposed are the XENON1T limits on spin dependent scattering off neutrons,
which occurs rarely in the Sun. For indirect detection, we have always used
the limits for the main annihilation channel. As expected, viable models (blue)
lie in particular below the rates excluded previously by IceCube (black x sym-
bols). They can reach rates of up to ten events per year at IC86, making
indirect detection competitive with respect to the direct detection limits im-
posed in particular by PICO-60 (orange triangles). A considerable fraction of
the parameter space with high rates is excluded by the limits on the spin inde-
pendent cross section set by XENON1T (red squares) due to the correlation
of the spin dependent and spin independent cross sections through λ4 and λ5

(see Sec. 6.3). Note, however, that the correlation of spin dependent and spin
independent cross sections is absent in fine-tuned scenarios where the relation
between λ4 and λ5 is fixed.

9.4 Summary
To summarize, we have studied in this chapter the prospects to probe radia-
tive seesaw models with neutrino signals from dark matter annihilation and
detectors such as ANTARES, Super-Kamiokande and in particular Ice-
Cube, focusing on the model T1-3-B with α = 0 with either scalar triplet
or singlet-doublet fermion dark matter. Both dark matter candidates can in
principle directly annihilate into neutrinos. However, the relevant Yukawa
couplings involved are usually strongly constrained to be small from neutrino
masses and LFV processes, which are always present in these models. A sharp
neutrino line at an energy corresponding to the dark matter mass is therefore
not expected.

Continuous neutrino spectra are, however, produced from dark matter an-
nihilation into decaying Standard Model particles such as W and Z0 bosons, b
and t quarks as well as (at least in principle) µ and τ leptons. When boosted
through dark matter accumulation in celestial bodies such as the Earth, the
Sun or the Galactic Center, the rates are observable in neutrino telescopes.
Focusing on the most promising case of the Sun, we performed a detailed anal-
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ysis of the expected event rates in IceCube. In the case of scalar triplet dark
matter, there exists no spin dependent scattering process, and the spin inde-
pendent scattering cross section is too small to obtain enough accumulation
inside the Sun. Because of this, the event rate of neutrino signals in IceCube
would lie below one event per year, making scalar triplet dark matter currently
undetectable with neutrino telescopes.

For singlet-doublet fermionic dark matter, the situation is different. In this
scenario, the dark matter candidate can scatter via both the spin independent
as well as the spin dependent process, leading to rates of up to 1000 events
per year. Through our approximation of the fermion mixing matrix for small
Yukawa couplings λ4,5, we then showed that the dark matter-mediator vertices
in the spin (in)dependent processes, i.e. with Z0 (Higgs) bosons, both depend
on these Yukawa couplings, so that the two scattering processes become corre-
lated. This was confirmed in a numerical scan and resulted in a considerable
fraction of the parameter space with large event rates being excluded by the
stringent XENON1T limits on the spin independent cross section. Previ-
ously obtained results by ANTARES, IceCube and Super-Kamiokande
from the Sun and the Galactic Center were instead found to be much weaker.
Constraints on the spin dependent cross section from PICO-60 and previous
analyses by IceCube and ANTARES limited the viable models further to
event rates of up to ten per year, leaving indirect detection with the IceCube
neutrino telescope still competitive with respect to direct detection experi-
ments.

Our results generalize to models with either real scalar triplet dark matter
or fermion dark matter with singlet doublet mixing only, where scattering in
the Sun is governed by similar relationships. The model points of our scan are
available at https://github.com/nechnif/T13Balpha0.

https://github.com/nechnif/T13Balpha0


Anomaly free
scotogenic models
with a hidden
local U(1) 10
In this chapter we systematically study minimal models that allow for dark
matter and Majorana neutrino masses while being stabilized by a local U(1)
symmetry. All gauge anomalies are required to cancel. We then discuss impor-
tant aspects of the phenomenology and investigate the unification hypothesis
for these models. As of the time of writing this thesis, the results are not yet
published. A publication is however planned and this chapter is based on an
early manuscript. The results given in this chapter have been produced in
collaboration with Sybrand Zeinstra and Michael Klasen.

10.1 Motivation and overview

Minimal models explaining neutrino masses and dark matter such as those
studied in this work require a symmetry in order to stabilize the dark sector.
This symmetry is needed in order to prevent tree level seesaw contributions
to the neutrino masses and ensure that dark matter is stable. Often this
symmetry is assumed to be a discrete Z2 symmetry as this is the simplest
and most minimal possibility. However a Z2 symmetry lacks a fundamental
theoretical reason. Replacing the discrete symmetry group by a local U(1)
group, which is inherently connected to a new gauge boson, does give a physical
meaning to the stabilization of the dark sector.

The goal of this chapter is to systematically investigate models that allow
for Majorana neutrino masses at one loop as well as viable dark matter can-
didates. Our considerations extend the previous work of Refs. [10, 11]. All
possible minimal realizations of the d = 5 Weinberg operator have been found
and classified in Ref. [10]. The models found have then been examined whether
they contain a viable dark matter candidate in Ref. [11]. They find 35 viable
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models which are all assumed to be stabilized by a discrete Z2 symmetry. In
this chapter we promote this Z2 symmetry to a gauged U(1). When doing so
there are a number of theoretical and phenomenological constraints which need
to be taken into consideration. These constraints are imposed and discussed
in this chapter.

Previous work has considered a global U(1) with neutrino masses at 1 [162,
163] or 2 loops [164, 165], where a Zn symmetry then arises after spontaneous
symmetry breaking [166]. Some of the models we find in this chapter have
already been proposed in the literature, namely the U(1)D scotogenic model
(T3-B) [167] and the model T3-A which has a singlet-triplet scalar sector [168].
Models that predict Dirac neutrino masses with a local U(1) group have been
studied in more detail for example with B-L charge assignments [169–174] or
with a lepton number U(1)L assignment [175, 176]. A systematic analysis of
models with Dirac neutrino masses has been carried out in Ref. [177].

The addition of a new gauge group as well as the spontaneous breaking
of this group gives rise to a new phenomenology, mainly the phenomenology
of the Z ′ boson but also an extended Higgs sector. Gauge kinetic mixing
between hypercharge and the new gauge group allows for many ways the test
our models. Model independent discussions of the Z ′ phenomenology can be
found for example in Refs. [178, 179]. The prospects of collider searches for a
similar gauge and Higgs sector can be found for example in Ref. [180]. The
Higgs sector is mainly constrained by the Higgs measurements and the new
parameters are not tightly restricted [181–183].

We first give an overview of the models and the procedure. The deriva-
tion of the models and the phenomenology are then discussed in the following
sections.

We first discuss realizations of the Weinberg operator. A brief overview
was already presented in Chap. 6. As a reminder we repeat some arguments
and put them in a more general context. Neutrino masses can be generated
through interactions with new particles, which can be conveniently classified
by means of effective operators that are obtained by integrating out the new
physics. We focus on Majorana neutrino masses with the d = 5 Weinberg
operator given by

L ⊃ −cαβΛ (LαH) (LβH) + H. c. (10.1.1)

where Λ is the mass scale of the new particles and cαβ is obtained by integrating
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Figure 10.1: Topologies for neutrino mass generation at one loop. With the
notation on Ref. [11] from left to right and top to bottom: The T3, T1-1, T1-2
and T1-3 topology.

out the new fields. After EWSB, this operator turns into a Majorana mass
term for the Standard Model neutrinos

L ⊃ −cαβv
2

2Λ ναLν
β
L + H. c. (10.1.2)

which is suppressed by the scale of new physics. The d = 5 Weinberg operator
can be realized at one loop. As the loop integrals yield a suppression of the
neutrino masses, this case allows for physics in a broad range from the GeV
scale to several TeV, making it accessible to current particle physics experi-
ments. The possible realizations of this operator at the one loop level have
been systematically studied in Ref. [10] under the assumption that the number
of new field multiplets is ≤ 4. There it was found that there exist four different
topologies which are shown in Fig. 10.1.1 For each of the topologies, all possi-
ble particle contents that can generate radiative neutrino masses through the
one loop realization of the Weinberg operator were given, with the requirement
that all new fields multiplets are singlets under SU(3)c and singlets, doublets

1To be precise, they find more topologies, however, following previous work [11], we do
not consider the T4 topologies as realizations that do not allow for tree level seesaw require
lepton number conserving couplings which may be difficult to implement.
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or triplets under SU(2)L. A discrete Z2 symmetry is proposed as otherwise
some models would allow for tree level contributions to the neutrino mass. In
Ref. [11] all of these models that contain a viable dark matter candidate have
been classified. In this case the Z2 symmetry is always needed in order to
ensure dark matter stability.

The objective of this work is to replace the Z2 symmetry by a gauged
U(1) symmetry which may or may not be broken. In doing so some subtleties
occur. In a consistent theory all gauge anomalies should cancel, however this
condition is not trivially satisfied when extending the Standard Model gauge
group and particle content. A simple way to add new fermions without having
new contributions to gauge anomalies is to make these fermions vector like2.
It turns out that for our models all fermions must be vector like as no other
possibilities exist that fulfill the requirements for our models. It is also crucial
to make sure that the Standard Model Yukawa interactions do not violate
the new U(1)X symmetry and that dark matter is stable. In order to keep
the models minimal, we, similar to Refs. [10, 11], do not allow for more than
four new fields in addition to one field ζ that is needed to break the U(1)X
symmetry. In the following sections, we argue that with these requirements,
the Standard Model must have zero charge under U(1)X and all new fermions
must be vector like.

We allow for the U(1)X symmetry to be broken by a scalar field ζ. This
field must be a singlet under the Standard Model gauge group as it should
only break the new gauge symmetry. If the vev of ζ is small compared to the
scale of new physics vζ � Λ, then the neutrino masses are simply generated
by the d = 5 operator given above. In this case, charge conservation implies
that all fields running in the loop must have the same U(1)X charge. One can
also consider the case where vζ ≈ Λ. In this case, the effective operator

L ⊃ − cαβ
Λ1+2n (LαH) (LβH) |ζ|2n + H. c. (10.1.3)

is not suppressed for n 6= 0 as, once ζ obtains a vev, this turns into the usual
d = 5 operator. In order to find all models, we also need to consider this case.
As after U(1)X breaking we end up with the d = 5 Weinberg operator, we can
still use the results of Refs. [10, 11] as a complete classification. However all
mass dimension 3 vertices can violate U(1)X charge by one unit of charge of Xζ ,

2This means introducing for each new fermion an additional field in the conjugate repre-
sentation of the gauge group. These two fields then form a mass term.
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where Xζ denotes the U(1)X charge of ζ. Also the propagators can violate the
U(1)X charge by one (or two units in case of two scalar fields) as ζ obtaining
a vev can induce mixing between fields in the same Standard Model gauge
group representation. All possible charge assignments and a more extensive
discussion in this case are given in the following section where we also give list
of models with these charge assignments.

10.2 One-loop scotogenic models with local U(1)
symmetry

10.2.1 Theoretical conditions

We will now discuss the different constraints that need to be taken into ac-
count when adding an extra U(1)X gauge symmetry to a radiative seesaw
model. The aim is to obtain general statements and restrictions on the charge
assignment, such that these can then be applied to more specific cases. We
will consider several factors that need to be taken into account in assigning the
new U(1)X charges. As a gauge invariance must not be explicitly broken, the
Yukawa terms in the Standard Model Lagrangian must not violate the U(1)X
charges. Similarly, the d = 5 Weinberg operator should be allowed as well as
the couplings relevant for the neutrino loop. Furthermore all gauge anomalies
should cancel among the new fields and the Standard Model fields. Finally
we require the models to have a dark matter candidate which is stabilized by
the gauged U(1)X symmetry. We constrain ourselves to a maximum of four
new fields running in the neutrino loop in addition to the new gauge boson
and a scalar field required to break the U(1)X gauge group. All four new fields
should have no color charge and be singlets, doublets or triplets under SU(2)L.
Once all general constraints on the charge assignment are found, we can apply
these on models that realize the d = 5 Weinberg operator at one loop and also
contain a viable dark matter candidate. The particle content of these models
can be found in Ref. [11].

Yukawa couplings

The interactions in the Standard Model should not change. While the cou-
plings to gauge bosons is dictated by the representation of the fields and do



134 Chapter 10. Anomaly free scotogenic models with a hidden local U(1)

not change when extending the gauge group, we must ensure that the Yukawa
terms

L ⊃ − yd√
2
QH†dcR −

yu√
2
QHucR −

ye√
2
LH†ecR + H. c. (10.2.1)

do not violate the U(1)X charge. The neutrino masses are generated by the
effective operator

L ⊃ − cαβ
Λ1+2n (LαH) (LβH) |ζ|2n + H. c. (10.2.2)

which also must not be forbidden by gauge invariance. ζ is an singlet under
the Standard Model gauge group that is used to eventually break the U(1)X
symmetry. After ζ obtains a vev, we are left with the d = 5 Weinberg operator.
If vζ � Λ, only the case with n = 0 i.e. the d = 5 Weinberg operator
contributes whereas for vζ ≈ Λ also n ≥ 1 contribute. From the Yukawa
couplings and the neutrino mass operator we obtain the following conditions
for the U(1)X charges Xψ for a field ψ3

XQ −XH +XdcR
= 0, (10.2.3)

XQ +XH +XucR
= 0, (10.2.4)

XL −XH +XecR
= 0, (10.2.5)

XL +XH = 0. (10.2.6)

These can be brought to the following form

XdcR
= −XQ −XL, (10.2.7)

XucR
= −XQ +XL, (10.2.8)

XecR
= −2XL. (10.2.9)

Anomaly conditions

As we require the model to be anomaly free with the given particle content,
the next constraints come from gauge anomaly cancellation. The conditions
for all gauge anomalies to cancel in case of the Standard Model gauge group
extended by a local U(1) are listed in Tab. 10.1. In order to make some
following arguments more comprehensible, we calculate the contributions of

3Note that all Standard Model generations are assumed to have the same U(1)X charge.
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Table 10.1: Conditions for gauge anomaly cancellation for the gauge group
SU(3)c×SU(2)L×U(1)Y×U(1)X . Note that all fields are assumed to be left
handed Weyl spinors. For SU(3)c we assume singlets 13 and triplets 33 and for
SU(2)L we consider singlets 12, doublets 22 and triplets 32. The sums run over
all components of fermion fields ψ.

Anomaly Constraint

U(1)3
Y

∑
ψ
Y 3
ψ = 0

U(1)3
X

∑
ψ
X3
ψ = 0

U(1)2
Y×U(1)X

∑
ψ
Y 2
ψXψ = 0

U(1)2
X×U(1)Y

∑
ψ
X2
ψYψ = 0

SU(3)2
c×U(1)Y

∑
ψ∈33

Yψ = 0

SU(3)2
c×U(1)X

∑
ψ∈33

Xψ = 0

SU(2)2
L×U(1)Y

∑
ψ∈22

Yψ + 4 ∑
ψ∈32

Yψ = 0

SU(2)2
L×U(1)X

∑
ψ∈22

Xψ + 4 ∑
ψ∈32

Xψ = 0

grav2×U(1)Y
∑
ψ
Yψ = 0

grav2×U(1)X
∑
ψ
Xψ = 0

the Standard Model fields to gauge anomalies. Using Eqs. (10.2.7-10.2.9), we
find the following contributions:

SU(3)2
c × U(1)X : 0, (10.2.10)

SU(2)2
L × U(1)X : 6 [3XQ +XL] , (10.2.11)

grav2 × U(1)X : 0, (10.2.12)

U(1)2
Y × U(1)X : −3

2 [3XQ +XL] , (10.2.13)

U(1)Y × U(1)2
X : 6XL [3XQ +XL] , (10.2.14)

U(1)3
X : −6X2

L [3XQ +XL] . (10.2.15)
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The contributions of the new fields must then cancel with those given above.
Finally we also need to consider the Witten anomaly which cancels if there is
an even number of fermion doublets.

New fermions

Now we turn our attention to the charges of the new fields. The conditions for
the Standard Model charges can be used to make some observations in special
cases with only few new fermions. We state these observations and give an
argument why they hold true. Then we argue that models with one, two and
three fermions can contain only vector like fermions.

Observation 1 Only fermions that are not vector like contribute to the anomaly
cancellation conditions.

Argument: All gauge anomaly contributions from vector like fermions vanish
due to opposite contributions from the other vector like component.

Observation 2 If there is a single new fermion ψ that is not a priori part of
a vector like fermion, ψ must be made vector like.

Argument: From the Witten anomaly it is clear that if ψ is a doublet, it
must be made vector like as we must add a second doublet. If ψ is a singlet
or a triplet, the anomalies associated with hypercharge must cancel. As the
Standard Model and other new vector like fermions do not contribute to the
hypercharge anomalies, ψ must either be vector like or have zero hypercharge.
However, if a singlet or triplet has zero hypercharge, it must have a non zero
U(1)X charge as otherwise seesaw types I or III are possible.4 In this case the
grav2×U(1)X anomaly, which has no contributions from the Standard Model,
must cancel. This is only possible if ψ is vector like.

Observation 3 If there are two or more new fermions that are relevant in
the neutrino loop, at least one of these fermions must be a doublet and at least
one fermion must be a singlet or triplet.

4Note that this argument works even in the Standard Model neutrino is charged under
U(1)X as XL = −XH .
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Argument: In any minimal model with more than one fermion, there must be a
coupling of the two fermions to the Higgs doublet. This is not possible, unless
one of the new fermions is a doublet. One also needs a fermionic triplet or
singlet to complete the vertex in an SU(2)L invariant way.

Observation 4 If there are two fermion fields that are either singlets or triplets
under SU(2)L, then they must both be vector like or identified with each other
in order to form a vector like field.

Argument: In order to cancel the hypercharge anomalies, both fields must be
vector like, identified with each other or have zero hypercharge. In these cases
there is no BSM contribution to the U(1)Y × U(1)2

X . From this condition, it
can easily be seen that the Standard Model cannot contribute to the U(1)X
anomalies. It follows that all BSM contributions to the U(1)X anomalies must
cancel amongst themselves. As the singlets and triplets with zero hypercharge
must have a U(1)X charge in order to avoid seesaw type I and III, one finds
that both must be vector like or identified with each other.

With these general considerations for the fermionic sector in mind, we will
now discuss the consequences for neutrino models with different number of
fermions in more detail.

Models with one new fermion (T1-1, T3) From Observation 2 it follows
that the fermion must be vector like.

Models with two new fermions (T1-2) From Observation 3 it is clear
that one of these fermions must be a doublet and the other one is either a
singlet or a triplet. As the doublet must be vector like in order to cancel the
Witten anomaly, from Observation 2 it follows that the second fermion is also
vector like.

Models with three new fermions (T1-3) The discussion for three fermion
fields is a bit more involved. We start with the case with only one fermion
doublet, which must be vector like following from the Witten anomaly. Then
it follows from Observation 4 that the two remaining fermions must be vector
like or identified with each other. The only combinations left are the cases
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of two doublets and one singlet/triplet. From the anomaly cancellation con-
ditions for hypercharges grav2×U(1)Y and SU(2)2

L×U(1)Y , one quickly finds
that both doublets must have opposite hypercharge or both be vector like5.
Similarly the singlet/triplet must have zero hypercharge or be vector like. If
both doublets are vector like, the argument is reduced to the one given for one
fermion. Finally if the doublets are not vector like (e.g. have different U(1)X
charge), one needs to specifically calculate the anomaly cancellation conditions
SU(2)2

L×U(1)X , U(1)2
Y×U(1)X and grav2×U(1)X . Doing so, one quickly finds,

that the singlet/triplet must be vector like and both doublets must have op-
posite U(1)X charge6 in order to have no tree level seesaw mechanism.7

To sum up, we find that all new fermions must be either vector like, or be
combined with another fermion to form a vector like fermion.

Standard Model is uncharged

Because the fermions in the BSM particle content are all vector like, the con-
ditions for gauge anomaly cancellation are simplified. Having only vector like
fermions, makes the conditions for anomaly cancellation easy. As every Weyl
spinor has a partner with opposite U(1)X,Y charge, all conditions in Tab. 10.1
vanish separately for each vector like fermion. Thus all contributions to the
gauge anomalies are zero if one only sums over the BSM particle content. As
the BSM contributions all vanish separately, we can now use the results given
in Ref. [69] (Chap. 30.4) for the possibilities to assign hypercharges and a sec-
ond U(1) symmetry. They find that the new charges either must be a copy of
the hypercharge or the B − L charges

XL = −XecR
= −XνcR

= −1, XQ = −XucR
= −XdcR

= 1
3 , (10.2.16)

where XνcR
is the U(1)X of a right handed neutrino. This charge assignment

does not allow for the d = 5 Weinberg operator.8 Thus this possibility is ruled
out for our models.

5There are no doublets with zero hypercharge in Ref. [11] as this case does not allow for
an electrically neutral dark matter candidate.

6This allows us to combine both doublets to one vector like doublet.
7Solutions with irrational values for hypercharge are excluded here as they do not allow

for electrically neutral dark matter.
8A right handed neutrino with such quantum numbers would also allow for Dirac neutrino

masses of O(100 GeV) arising from the Higgs interactions i.e. tree level seesaw type I.
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In principle one can assign a U(1)X charge to all Standard Model particles
that is proportional to the hypercharge by a factor λ. In this case the Standard
Model does not contribute to the anomaly conditions. In order to conserve the
neutrino loop all new fields must also have a U(1)X charge proportional to
their hypercharge as well as a independent value that is conserved in the loop
and only violated by U(1)X breaking. The latter value is required in order to
ensure dark matter stability and prevent tree level seesaw. The charges of the
BSM particles inside the neutrino loop can be parameterized as

Xψ = λYψ +X ′ψ for all fields. (10.2.17)

Note that such a charge assignment has a similar effect to gauge kinetic mixing
as the new gauge boson couples to the hypercharge. For the case of two U(1)
groups one is free to make a basis change. Such a change of basis can be used
to shift the U(1)X charge by −λYψ for every field. This leaves us with the
case that the Standard Model is uncharged under U(1)X whereas all new fields
have a charge of Xψ = X ′ψ.

Dark matter stability

We require our model to contain a viable dark matter candidate. The stability
of dark matter requires that none of the new particles has zero charge under
the new symmetry as in that case, one could cut the neutrino loop at the dark
matter propagator and the propagator of the uncharged particle which would
allow for dark matter to decay. Thus all new particles must have non zero
U(1)X charge. If a new field has the same U(1)X charge as ζ, the neutrino loop
dictates that there must always exist a scalar field φ with Xφ = ±Xζ . Such a
charge assignment will generally lead to ways for the dark matter candidate to
decay and/or to mixing between Standard Model fields and new fields. Thus
none of the new fields should have the same charge as ζ.

Mixing

Depending on the representations and U(1)X charges of the fields, mixing can
be induced by U(1)X breaking. Through the vev of ζ9 the following interactions

9One can also replace any of these fields by their conjugate field as long as gauge and
Lorentz invariance allows this.
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that give rise to mixing after U(1)X breaking are possible

ψψ′ζ, φφ′ζ, φφ′ζζ. (10.2.18)

The fields ψ(φ) and ψ′(φ′) must be in SU(3)c× SU(2)L× U(1)Y representations
conjugate to one another. If they have zero hypercharge, one can have the
additional case of ψ = ψ′ or φ = φ′. However the vertex

φφζζ (10.2.19)

is not possible as it requires Xφ = ±Xζ which does not allow for stable dark
matter. For Xψ = −Xζ

2 the following interactions are possible

ψψζ, φφζ. (10.2.20)

10.2.2 General solutions

After discussing all factors that are relevant in assigning U(1)X charges, we
now want to find all possible charge assignments such that neutrino masses
at one-loop level can still be generated. There is always the possibility that
all fields which run in the loop have the same U(1)X charge. For vζ � Λ,
with Λ being the mass scale of the new fields, this is the only possibility. For
vζ ≈ Λ, higher dimensional operators (see Eq. (10.1.3)) are not suppressed.
The U(1)X symmetry is broken by the vev of a scalar field ζ which is a singlet
under the Standard Model gauge group. The breaking induces mixing and
U(1)X violating vertices, which must not violate the Standard Model gauge
symmetry. The U(1)X violation must always occur in units of Xζ . We will
now discuss the different possibilities for the charge assignment for each of
the topologies which are found by allowing U(1)X violation in propagators
via mixing and vertices as described above. We differentiate different values
of the hypercharge parameter α as some values of this parameter fields have
zero hypercharge which allows for mixing with the conjugate field which is not
possible in the general case. At the end of each section we give a list of non
equivalent models for the respective topology.
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T1-1

Both vertices that couple to the Higgs can violate U(1)X . Thus for any α one
can have the distributions

Xψ = Xφ′ = Xϕ = Xφ, (10.2.21)
Xψ = Xφ′ = Xϕ ±Xζ = Xφ. (10.2.22)

α = 1 In the case of α = 1, the scalar φ′ has zero hypercharge. All new possible
charge assignments can be found from the above ones by redefining φ′ → (φ′)†.
α = −1 φ has zero hypercharge. The new possibilities for charge assignments
are equivalent to the ones already found once one redefines φ→ (φ)†.
α = 0 Both ψ and ϕ have zero hypercharge. There is one more non equivalent
charge assignment given by

Xψ = −Xφ′ = Xϕ = Xφ = ±Xζ

2 . (10.2.23)

If φ and φ′ are in the same representation of SU(2)L, mixing between φ and
(φ′)† can be introduced by the breaking of U(1)X . This allows for the following
new non equivalent charge assignments for this model

Xψ = Xφ = Xφ′ ± 2Xζ = −Xϕ = ±Xζ

2 , (10.2.24)

Xψ = Xφ = Xφ′ ± 2Xζ = Xϕ ± 2Xζ = ±Xζ

2 . (10.2.25)

If φ and φ′ are in the same SU(2)L representation, and have opposite U(1)X
charges, we can identify them with each other by defining φ′ = φ†. However
in order to have at least two massive neutrinos, there must be two generations
of either ψ or φ. The latter case is equivalent to the case where the fields are
not identified with each other.

Equivalent models can be found by redefining ϕ→ ϕ† and/or ψ → ψc and
if possible φ′ → φ†.

List of models T1-1 We give a complete list of all the models found in
Tab. 10.2. Xζ is set to 2 while models with other charges of ζ are equivalent
and can be obtained by rescaling the U(1)X gauge coupling. The parameter a
must be 6= 0,±2. Note that if a scalar doublet has the charge X = ±4 there
may be mixing of the new scalar doublet and the Higgs doublet making the
dark matter candidate unstable.



142 Chapter 10. Anomaly free scotogenic models with a hidden local U(1)

Table 10.2: Non equivalent models with Topology T1-1. Xζ is set to 2.
Model α ϕ φ′ ψ φ Xϕ Xφ′ Xψ Xφ

T1-1-A ±2 1S2 2S1 1F2 2S3 a a a a

T1-1-A ±2 1S2 2S1 1F2 2S3 a± 2 a a a

T1-1-A 0 1S0 2S−1 1F0 2S1 a a a a

T1-1-A 0 1S0 2S−1 1F0 2S1 a± 2 a a a

T1-1-A 0 1S0 2S−1 1F0 2S1 1 −1 1 1
T1-1-A 0 1S0 1F0 2S1 1 1 1
T1-1-A 0 1S0 2S−1 1F0 2S1 1,−3 −3 1 1
T1-1-B ±2 1S2 2S1 3F2 2S3 a a a a

T1-1-B ±2 1S2 2S1 3F2 2S3 a± 2 a a a

T1-1-B 0 1S0 2S−1 3F0 2S1 a a a a

T1-1-B 0 1S0 2S−1 3F0 2S1 a± 2 a a a

T1-1-B 0 1S0 2S−1 3F0 2S1 1 −1 1 1
T1-1-B 0 1S0 3F0 2S1 1 1 1
T1-1-B 0 1S0 2S−1 3F0 2S1 1,−3 −3 1 1
T1-1-C ±1 2S1 1S0 2F1 1S2 a a a a

T1-1-C ±1 2S1 1S0 2F1 1S2 a± 2 a a a

T1-1-D 1 2S1 1S0 2F1 3S2 a a a a

T1-1-D 1 2S1 1S0 2F1 3S2 a± 2 a a a

T1-1-D −1 2S−1 1S−2 2F−1 3S0 a a a a

T1-1-D −1 2S−1 1S−2 2F−1 3S0 a± 2 a a a

T1-1-F ±1 2S1 3S0 2F1 3S2 a a a a

T1-1-F ±1 2S1 3S0 2F1 3S2 a± 2 a a a

T1-1-G ±2 3S2 2S1 1F2 2S3 a a a a

T1-1-G ±2 3S2 2S1 1F2 2S3 a± 2 a a a

T1-1-G 0 3S0 2S−1 1F0 2S1 a a a a

T1-1-G 0 3S0 2S−1 1F0 2S1 a± 2 a a a

T1-1-G 0 3S0 2S−1 1F0 2S1 1 −1 1 1
T1-1-G 0 3S0 1F0 2S1 1 1 1
T1-1-G 0 3S0 2S−1 1F0 2S1 1,−3 −3 1 1
T1-1-H ±2 3S2 2S1 3F2 2S3 a a a a

T1-1-H ±2 3S2 2S1 3F2 2S3 a± 2 a a a

T1-1-H 0 3S0 2S−1 3F0 2S1 a a a a

T1-1-H 0 3S0 2S−1 3F0 2S1 a± 2 a a a

T1-1-H 0 3S0 2S−1 3F0 2S1 1 −1 1 1
T1-1-H 0 3S0 3F0 2S1 1 1 1
T1-1-H 0 3S0 2S−1 3F0 2S1 1,−3 −3 1 1
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T1-2

Only the three scalar vertex can violate U(1)X . For any α we can always have
the distributions

Xψ = Xψ′ = Xφ = Xφ′ . (10.2.26)

α = −1 ψ′ and φ have zero hypercharge. This allows for the new non equivalent
charge assignment of

Xψ = −Xψ′ = Xφ = Xφ′ = ±Xζ

2 . (10.2.27)

α = 0 ψ and φ′ have zero hypercharge. We find the new non equivalent charge
assignment

Xψ = Xψ′ = −Xφ = Xφ′ = ±Xζ

2 . (10.2.28)

List of models T1-2 In Tab. 10.3, we give a list of the possible non equiv-
alent models. Xζ has been normalized to 2. Again, the parameter a 6= 0,±2
and the assignment a = ±4 may yield problems with dark matter stability if
the Standard Model Higgs mixes with a new scalar doublet.

T1-3

None of the vertices can violate U(1)X . For any α we can always have the
distributions

XΨ = Xψ = Xψ′ = Xφ. (10.2.29)

α = 0 Both Ψ and φ have zero hypercharge. There is one more non equivalent
charge assignment

XΨ = −Xψ′ = Xψ = Xφ = ±Xζ

2 . (10.2.30)

If ψ and ψ′ are in the same representation of SU(2)L, mixing between ψ and
(ψ′)c can be introduced by the breaking of U(1)X . We find the additional
possibility

−XΨ = Xψ′ = Xψ = Xφ = ±Xζ

2 . (10.2.31)
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Table 10.3: Non equivalent models with Topology T1-2. Xζ is set to 2.
Model α ψ φ φ′ ψ′ Xψ Xφ Xφ′ Xψ′

T1-2-A 0 1F0 2S1 1S0 2F1 a a a a

T1-2-A 0 1F0 2S1 1S0 2F1 1 −1 1 1
T1-2-A −2 1F−2 2S−1 1S−2 2F−1 a a a a

T1-2-B 0 1F0 2S1 3S0 2F1 a a a a

T1-2-B 0 1F0 2S1 3S0 2F1 1 −1 1 1
T1-2-B −2 1F−2 2S−1 3S−2 2F−1 a a a a

T1-2-D 1 2F1 1S2 2S1 3F2 a a a a

T1-2-D −1 2F−1 1S0 2S−1 3F0 a a a a

T1-2-D −1 2F−1 1S0 2S−1 3F0 1 1 1 −1
T1-2-F 1 2F1 3S2 2S1 3F2 a a a a

T1-2-F −1 2F−1 3S0 2S−1 3F0 a a a a

T1-2-F −1 2F−1 3S0 2S−1 3F0 1 1 1 −1

If ψ and ψ′ are in the same SU(2)L representation, and have opposite U(1)X
charges, we can combine them to form a vector like doublet instead of making
both fields vector like. However in order to have at least two massive neutrinos,
there must be two generations of either φ or ψ. The latter case is equivalent
to the case where the fields are not identified with each other.

List of models T1-3 The explicit models are given in Tab. 10.4. As before
Xζ is set to 2 and the parameter a must be 6= 0,±2 and in case of a scalar
doublet a 6= ±4.

T3

None of the vertices can violate U(1)X . For any α we can always have the
distributions

Xφ = Xφ′ = Xψ. (10.2.32)

α = −1 ψ has zero hypercharge. There are no more non equivalent charge
assignments. If φ and φ′ are in the same representation of SU(2)L, mixing
between φ and (φ′)† can be introduced by the breaking of U(1)X . We find no
additional possibilities for the charge assignments.
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Table 10.4: Non equivalent models with Topology T1-3. Xζ is set to 2.
Model α Ψ ψ′ φ ψ XΨ Xψ′ Xφ Xψ

T1-3-A 0 1F0 2F1 1S0 2F−1 a a a a

T1-3-A 0 1F0 2F1 1S0 2F−1 1 −1 1 1
T1-3-A 0 1F0 2F1 1S0 1 −1 1
T1-3-A 0 1F0 2F1 1S0 2F−1 −1 1 1 1
T1-3-B 0 1F0 2F1 3S0 2F−1 a a a a

T1-3-B 0 1F0 2F1 3S0 2F−1 1 −1 1 1
T1-3-B 0 1F0 2F1 3S0 1 −1 1
T1-3-B 0 1F0 2F1 3S0 2F−1 −1 1 1 1
T1-3-C ±1 2F1 1F2 2S1 1F0 a a a a

T1-3-D 1 2F1 1F2 2S1 3F0 a a a a

T1-3-D −1 2F−1 1F0 2S−1 3F−2 a a a a

T1-3-F ±1 2F1 3F2 2S1 3F0 a a a a

T1-3-G 0 3F0 2F1 1S0 2F−1 a a a a

T1-3-G 0 3F0 2F1 1S0 2F−1 1 −1 1 1
T1-3-G 0 3F0 2F1 1S0 1 −1 1
T1-3-G 0 3F0 2F1 1S0 2F−1 −1 1 1 1
T1-3-H 0 3F0 2F1 3S0 2F−1 a a a a

T1-3-H 0 3F0 2F1 3S0 2F−1 1 −1 1 1
T1-3-H 0 3F0 2F1 3S0 1 −1 1
T1-3-H 0 3F0 2F1 3S0 2F−1 −1 1 1 1

List of models T3 The list of non equivalent models in given in Tab. 10.5.
With the normalization Xζ = 2, the parameter a is again constrained by
a 6= 0,±2 and if a = ±4 a new scalar doublet may mix with the Standard
Model Higgs boson which makes the dark matter candidate unstable.

10.3 Phenomenology

The models proposed above give rise to a wide variety of new phenomena.
Most importantly they introduce dark matter and predict at least two massive
neutrinos. Furthermore most of these models allow for LFV at one loop via
similar diagrams as the neutrino loop. The above mentioned aspects generally
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Table 10.5: Non equivalent models with Topology T1-3. Xζ is set to 2.
Model α φ′ φ ψ Xφ′ Xφ Xψ

T3-A 0 1S0 3S2 2F1 a a a

T3-A −2 1S−2 3S0 2F−1 a a a

T3-B 1,−3 2S1 2S3 1F2 a a a

T3-B −1 2S−1 2S1 1F0 a a a

T3-C 1,−3 2S1 2S3 3F2 a a a

T3-C −1 2S−1 2S1 3F0 a a a

T3-E 0,−2 3S0 3S2 2F1 a a a

depend on the specific model and also occur in the models with a Z2 symmetry.
We will briefly comment on some of those model dependent phenomena. Intro-
ducing a gauged U(1) symmetry and the corresponding breaking mechanism
gives rise to a massive Z ′ boson. The phenomenology of this sector is mostly
model independent. We will discuss the main constraints on the parameters
that are relevant for the Z ′ boson. A general review of the phenomenology for
heavy Z ′ can be found in Ref. [184] while massless dark photons are discussed
in Ref. [185].

10.3.1 U(1)X breaking

The gauge symmetry can be broken through the addition of a new scalar. For
this purpose we take a complex scalar ζ, which we allow to develop a vev
vζ . If vζ lies at the same scale as the masses of the new particles, all charge
assignments that were listed in the overview in Tabs. 10.2-10.5 are possible.
If vζ � Λ, only models with n = 0 in the Weinberg operator Eq. (10.2.2) are
possible. In this case operators with a contribution of vζ are suppressed by the
mass of the heavier particles, which are usually around the TeV scale. In this
case, only charge assignments where all new fields in the neutrino loop have
the same U(1)X charge are possible.

Residual symmetry

A residual symmetry can remain after the breaking of the U(1)X gauge sym-
metry. As the charges of the fields only differ in units of Xζ , the ratio of Xφ
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and Xζ can for any new field φ be expressed as

Xφ

Xζ

= r + n(φ) (10.3.1)

where r ∈ R and n ∈ Z. n does depend on the fields φ, whereas r is only
dependent on the model, but not on the field. The Lagrangian after U(1)X
breaking has a residual symmetry under the transformation

φ→ exp (i2πr)φ. (10.3.2)

For example, if r = 1
3 one has a Z3 symmetry, whereas for the charge assign-

ment

Xφ =
(1

2 + n(φ)
)
Xζ (10.3.3)

we have r = 1
2 and thus a Z2 symmetry just as in Ref. [11]10. Depending on

the specific model, there may also be a larger residual symmetry (usually a
global U(1)X). See for example Ref. [167] in the case Xζ = 3.

Higgs sector

We will now work out the features of a Higgs sector involving the most general
potential containing the Standard Model Higgs doublet H and the new scalar
singlet ζ, with charges of 0 and 2 under the new U(1)X group respectively.
The scalar potential is given by

V = −m2
H(H†H)−m2

ζ(ζ†ζ) + λ

2 (H†H)2 + λζ
2 (ζ†ζ)2 + λHζ(H†H)(ζ†ζ).

(10.3.4)

In many ways this is similar to a type I 2HDM Higgs sector11, with the excep-
tion that ζ is a singlet instead of a doublet. Therefore terms like (H†ζ)(ζ†H)
and (H†ζ)2 + H. c. do not appear. The first step is to find the minimum of

10Note that the particle content still differs from the one given in Ref. [11], as before
U(1)X breaking all scalar fields are complex and all fermions are vector like. After U(1)X
breaking, these fields are still there. Also we have a heavy Z ′ and the real scalar σ.

11In these models the second Higgs doublet φ2 is odd under a Z2 symmetry, as are the
right-handed fermions. Thus only φ2 couples to the Standard Model fermions.
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the potential, which should be the case when H and ζ obtain their vevs. We
denote the vevs of these fields by

〈H〉 =

 0
v+h√

2

 〈ζ〉 = vζ + σ√
2
. (10.3.5)

Inserting these expressions in Eq. (10.3.4) results in the vacuum state of the
potential 〈V 〉. Ignoring the fluctuations around the minimum by h and σ, it
is given as

〈V 〉 = −m
2
H

2 v2 −
m2
ζ

2 v2
ζ + λ

8v
4 + λζ

8 v
4
ζ + λHζ

4 v2v2
ζ . (10.3.6)

In order to be a minimum, this must satisfy

∂〈V 〉
∂v

= 0, ∂〈V 〉
∂vζ

= 0, (10.3.7)

from which one can derive the two minimum equations, which we solve for the
mass terms. This results in

m2
H = λv2

2 +
λHζv

2
ζ

2 , (10.3.8)

m2
ζ =

λζv
2
ζ

2 + λHζv
2

2 . (10.3.9)

With this relation in place, let us now look at the mass terms that arise. If we
consider V , where we now include the terms with h and σ one finds that the
terms containing two fields are

V = −m
2
H

2 h2 −
m2
ζ

2 σ2 + 3λ
4 v2h2 + 3λζ

4 v2
ζσ

2 + λHζ
4
(
v2
ζh

2 + v2σ2 + 4vvζhσ
)
,

(10.3.10)

in which one can substitute the solutions of Eqs. (10.3.8, 10.3.9), so that the
m2 terms drop out of the expression. This results in the mass matrix

M =

 λv2 λHζvvζ

λHζvvζ λζv
2
ζ ,

 (10.3.11)
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with eigenvalues

m2
h1 = 1

2
(
λv2 + λζv

2
ζ −

√
(λv2 − λζv2

ζ )2 + 4λHζv2v2
ζ

)
, (10.3.12)

m2
h2 = 1

2
(
λv2 + λζv

2
ζ +

√
(λv2 − λζv2

ζ )2 + 4λHζv2v2
ζ

)
, (10.3.13)

that are obtained by diagonalizing M through an orthogonal matrix, with a
mixing angle given by

tan 2α = 2λHζvvζ
λv2 − λζv2

ζ

. (10.3.14)

The mixing in the scalar sector has an effect on the Yukawa couplings.
Remember that the Standard Model Yukawa couplings can be written as

L ⊃ − yd√
2
QH†d− yu√

2
QHu− ye√

2
LH†e+ H. c. (10.3.15)

through which the Standard Model fermions obtain their masses. The Stan-
dard Model fermions do not couple to ζ in the unbroken phase, and receive
no contribution from vζ . In the Standard Model, the couplings of a fermion f
can be brought to the form

mf

v
, (10.3.16)

with which they couple to h. Because of the mixing between h and σ to h1

and h2, these couplings get modified. One can rewrite

h = cosαh1 − sinαh2. (10.3.17)

We identify h1 with the Standard Model-like Higgs boson. The couplings of
h1 and h2 to the Standard Model fermion are then

mf cosα
v

mf sinα
v

(10.3.18)

respectively. Through mixing, the Standard Model fermions obtain a coupling
to h2. Constraints on the mixing angle have been set by Refs. [181–183, 186].
For example Ref. [186] constrains sin2 α to be smaller than 0.12.
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10.3.2 Gauge sector
Gauge kinetic mixing

Gauge kinetic mixing occurs when there are several abelian gauge groups [187].
As the field strength tensor F µν itself is gauge invariant, products of different
field strength tensors in the kinetic Lagrangian are allowed by gauge invariance.
For theories with two abelian gauge groups, the kinetic Lagrangian for the
gauge fields can be written as

Lkin = −1
4 F̃1µνF̃

µν
1 −

1
4 F̃2µνF̃

µν
2 −

ε̃

2 F̃1µνF̃
µν
2 , (10.3.19)

where the final term is allowed and thus present, inducing gauge-kinetic mixing
between the field tensors. The form of the covariant derivatives, taking only
the U(1) groups into account, is most generally given by

Dµφ =
∂µ − i∑

i,j

Qi
φgijÃ

µ
j

φ. (10.3.20)

Here, Qi
φ = Xφ, Yχ is the U(1) charge of the particle φ under the gauge group

U(1)i (i = X, Y ). The coupling gij thus couples a field with charge Qi
φ to a

gauge field Aµj . Note that gij must not be diagonal as also non diagonal entries
are allowed by gauge invariance. The interactions of the gauge fields can then
be written as

L ⊃
(
Ã1µ Ã1µ

)g11 g12

g21 g22


j

µ
Y

jµX

 (10.3.21)

with the currents jµY and jµX defined in terms of the charges

jµY =
∑
φ

iYφ
(
∂µφ†φ− φ†∂µφ

)
+ Yφ

∑
i,j

Qi
φgijÃ

µ
j

 |φ|2
+
∑
ψ

Yψψ̄ȧ (σ̄µ)ȧb ψb, (10.3.22)

jµX =
∑
φ

iXφ

(
∂µφ†φ− φ†∂µφ

)
+Xφ

∑
i,j

Qi
φgijÃ

µ
j

 |φ|2
+
∑
ψ

Xψψ̄ȧ (σ̄µ)ȧb ψb. (10.3.23)
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The spinor sum is taken over Weyl spinors ψ while φ denotes scalar fields.
The basis of the gauge fields can be freely chosen, whereas it is inconvenient
to redefine the currents a priori as the charges are fixed. In order to make
the connection with literature, we first transform the coupling matrix into a
diagonal form. This is done by decomposing the matrix as follows:g11 g12

g21 g22

 =


g11
gY

g12
gX

g21
gY

g22
gX


gY 0

0 gX

 . (10.3.24)

We now redefine the gauge fields (using a non unitary transformation) byA
µ
Y

AµX

 =


g11
gY

g12
gX

g21
gY

g22
gX


Ã

µ
1

Ãµ2

 . (10.3.25)

gX and gY need to be chosen in such a way, that the kinetic Lagrangian takes
the canonical form as in Eq. (10.3.19).12 Such a field redefinition also gives new
contributions to the kinetic mixing term which shifts ε̃ → ε. The Lagrangian
now takes the following form, which is often found in the literature as starting
point [179, 188–191]:

L ⊃− 1
4F

µν
Y FY µν −

ε

2F
µν
Y FXµν −

1
4F

µν
X FXµν +

(
AY µ AXµ

)gY 0

0 gX


j

µ
Y

jµX

 .
(10.3.26)

The kinetic terms in the Lagrangian can be diagonalized by redefining the
fields as follows A

µ
Y

AµX

 = 1√
2

 1√
1+ε

1√
1−ε

1√
1+ε

−1√
1−ε


A

µ
1

Aµ2

 . (10.3.27)

Note that this is not an orthogonal transformation. The Lagrangian in this
basis is given by

L ⊃− 1
4F

µν
1 F1µν −

1
4F

µν
2 F2µν + 1√

2

(
A1µ A2µ

)
gY√
1+ε

gX√
1+ε

gY√
1−ε

−gX√
1−ε


j

µ
Y

jµX

 .
(10.3.28)

12The analytic expressions are quite unwieldy and are thus not given here.
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The matrix coupling the gauge bosons to the currents can in general not be
diagonalized as this would reintroduce the kinetic mixing term into the La-
grangian. However using the QR decomposition it can be transformed to a
lower triangular matrix.

1√
2


gY√
1+ε

gX√
1+ε

gY√
1−ε

−gX√
1−ε

 = 1√
2


√

1 + ε
√

1− ε
√

1− ε −
√

1 + ε


 gY 0
−gY ε√
1−ε2

gX√
1−ε2

 =: QR

(10.3.29)
Note that the orthogonal matrix Q has determinant −1 in order to have pos-
itive diagonal entries in the lower triangular matrix. We can now rotate the
fields with the redefinitionAµ

A′µ

 := 1√
2


√

1 + ε
√

1− ε
√

1− ε −
√

1 + ε


A

µ
1

Aµ2

 . (10.3.30)

which leaves us with the following Lagrangian

L ⊃− 1
4F

µνFµν −
1
4F
′µνF ′µν +

(
Aµ A′µ

) gY 0
−gY ε√
1−ε2

gX√
1−ε2


j

µ
Y

jµX

 . (10.3.31)

This result agrees with case b) in Ref. [191]. If we would have chosen R to
be an upper diagonal matrix, we would have ended up with case a) in Ref.
[191]. As Q is orthogonal, the kinetic mixing term is not reintroduced. Thus
it is, starting from the most general case, always possible to transform into a
basis such that the Standard Model gauge boson Aµ couples to the charges Y
only. On the other hand, the gauge boson A′µ picks up a small coupling to the
current jµY as well, but still chiefly couples to jµX .

Z − Z ′ mixing

The previous section concerned itself with basis transformations inside the
gauge kinetic terms. However, because of couplings to the Higgs sector, the
U(1) symmetry can be broken, which was shown in Sec. 10.3.1. In this pro-
cess, the gauge bosons obtain their masses. The covariant derivative for
SU(2)L×U(1)Y×U(1)X in the basis as in Eq. (10.3.31) is given by

Dµ = ∂µ − i
(
gYAµ + −εgY√

1− ε2
A′µ

)
Y − i gX√

1− ε2
A′µX − igτaW a

µ (10.3.32)
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where X, Y and τa are the generators of U(1)X , U(1)Y and SU(2)L respectively.
The part of the Lagrangian relevant for the mass of the gauge bosons is given
by

L ⊃ |DµH|2 + |Dµζ|2 . (10.3.33)

Expanded around the minimum this expression yields for the neutral gauge
bosons

L ⊃v
2
H

8

(
gYAµ + −εgY√

1− ε2
A′µ − gW 3

µ

)2

+
v2
ζ

2

(
gX√
1− ε2

A′µXζ

)2

(10.3.34)

=
(
Aµ W 3

µ A′µ

)


g2
Y v

2
H

8 −ggY v
2
H

8 − εg2
Y v

2
H

8
√

1−ε2

−ggY v
2
H

8
g2v2

H

8
εggY v

2
H

8
√

1−ε2

− εg2
Y v

2
H

8
√

1−ε2
εggY v

2
H

8
√

1−ε2
ε2g2

Y v
2
H

8(1−ε2) + g2
Xv

2
ζX

2
ζ

2(1−ε2)




Aµ

W 3µ

A′µ

 .
(10.3.35)

Through the Weinberg angle, Aµ and W 3
µ mix to form the photon and the Z

boson. This results in the following mass matrix

(
γ Z̃ A′µ

) 1
2


0 0 0

0 M2
Z̃

∆

0 ∆ M2
X

(1−ε2)

(
1 + ε2 sin2 θw

M2
Z̃

M2
X

)




γ

Z̃

A′µ

 , (10.3.36)

with

M2
Z̃ = (g2 + g2

Y )v2
H

4 = g2v2
H

4 cos2 θw
(10.3.37)

being the Standard Model Z mass, and mixing terms

∆ = ε
gY
√
g2 + g2

Y v
2
H

4
√

1− ε2
= ε sin θw√

1− ε2
M2

Z̃ . (10.3.38)

The term in the lower right corner has been rewritten in terms of the mass

M2
X = g2

XX
2
ζ v

2
ζ (10.3.39)
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of the new gauge boson in the absence of kinetic mixing. This means the
complete term can be written as

M2
A′ = M2

X

(1− ε2)

(
1 + ε2 sin2 θw

M2
Z̃

M2
X

)
(10.3.40)

The remaining non-diagonal part can be diagonalized by a second mixing angle
θ′, whose value is given by

tan 2θ′ = 2∆
M2

Z̃
−M2

A′
. (10.3.41)

Up to second order in ε, the squared masses of γ, Z and Z ′ are then given by


0

M2
Z̃

(
1− ε2 sin2 θw

M2
Z̃

M2
X−M

2
Z̃

)
M2

X

(
1 + ε2

(
1 + sin2 θw

M2
Z̃

M2
X−M

2
Z̃

))

 . (10.3.42)

The Z0 boson mass has been experimentally measured by e.g. the LEP
experiment and matches the Standard Model prediction. As the shift in the
Z0 mass that depends on the kinetic mixing and the Z ′ mass, this can be used
to constrain the viable parameter space. We compute the Z0 mass numerically
and show the area in the mZ′− ε plane, where mZ deviates more than 3σ from
the experimental value of mZ = 91.1876 GeV. The results are presented in Fig.
10.2. We also show the limits set by BaBar [192] and NA64 [193] as well the
the favored region to explain the anomalous magnetic moment of the muon
(see below).

Couplings

The diagonalization of the mass matrix explained above can be expressed with
the following transformation

Aµ

W 3µ

A′µ

 =


c −sc′ ss′

s cc′ −cs′

0 s′ c′




γµ

Zµ

Z ′µ

 (10.3.43)
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Figure 10.2: Regions excluded by experiments and the determination of the Z
mass in the mZ′ − ε plane. For the anomalous magnetic moment of the muon
aµ, the region where the Z ′ boson can explain the discrepancy between the
Standard Model and experiment in the 3σ range is highlighted. The parameters
are gX = 0.1, Xζ = 3 while ε and vζ are varied.

where s = sin(θW ), c = cos(θW ) and similarly s′, c′ with the angle being θ′.
The interaction term in the Lagrangian with mass eigenstates can then be
expressed as

L ⊃
(
γµ Zµ Z ′µ

)


c s 0

−sc′ cc′ s′

ss′ −cs′ c′




gY 0 0

0 g 0
−gY ε√
1−ε2 0 gX√

1−ε2




jµY

jµτ3

jµX

 (10.3.44)

where jµτ3 is the current belonging to the generator τ 3 of SU(2)L. We see
that the photon does not couple to the U(1)X charge which ensures that dark
matter does not interact with the Standard Model photon. Both the Z and
Z’ boson couple to both isospin as well as the U(1)X charge. This allows for
further ways to test our models.
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10.3.3 Anomalous magnetic moment

As the new particles couple to leptons, there are generally new contributions
to the anomalous magnetic moment. In Z2 case these stem from similar loop
as the ones relevant for LFV or the neutrino masses. With LFV and neutrino
masses supressed, they usually give only small contribution’s to the anomalous
magnetic moment as has been shown e.g. in Refs. [145, 194]. The Z ′ boson is
not connected to LFV and neutrino masses and must not be heavy. Through
kinetic mixing, the Z ′ boson does couple to leptons. The couplings can be
extracted from Eq. (10.3.44). The Z ′ boson then contributes to the muon
anomalous magnetic moment aµ through similar loops as the Standard Model
photon. With

gV = 1
2(gR + gL), (10.3.45)

gA = 1
2(gR − gL) (10.3.46)

the contribution of a neutral vector boson is given by [195]

∆aµ = m2
l

8π2

∫ 1

0
dx
g2
V 2x2(1− x) + g2

A

[
2x(1− x)(x− 4)− 4 m2

l

m2
Z′
x3
]

(1− x)(m2
Z′ −m2

l x) +m2
l x

. (10.3.47)

We calculate the contribution of the Z ′ boson numerically and mark the area
where solely the contribution of the new gauge boson can explain the discrep-
ancy between Standard Model and experiment in the 3σ range [64] in Fig. 10.2.
The entire area is already excluded by other experiments such as BaBar.

10.3.4 Lepton flavor violation

LFV processes are generally present in radiative seesaw models. Mostly these
processes occur through diagrams of similar topology as the neutrino mass
loop, but then with charged leptons and charged components of the BSM field
multiplets. There can also be additional diagrams contributing. However these
contributions depend on the details of the specific model.

The coupling of the Z ′ boson to the leptons is governed by kinetic mixing
and the couplings are diagonal in flavor space. Therefore, at one loop, the
presence of a Z ′ boson does not introduce additional LFV processes.
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10.3.5 Dark matter phenomenology
One of the main motivations for our models is to explain the dark matter
phenomenon. As the lightest of the new fields is expected to be a dark matter
candidate, one can also probe these models by considering the dark matter
phenomenology. The dark matter phenomenology is dependent on the specific
model.

Relic density

The relic density is assumed to be produced in the freeze out scenario. The
annihilation process of two dark matter particles can involve the Z ′ boson
or other new particles as mediators. Furthermore the annihilation can have
Standard Model fields as mediators or in case of four point vertices, no mediator
is required. The diagrams involving the Z ′ are usually suppressed by the kinetic
mixing parameter ε and often other (model dependent) annihilation diagrams
dominate.

Direct detection

If the hidden sector is stabilized by a Z2 symmetry, dark matter can scatter
on nuclei via Higgs and Z0 exchange. Whether the WIMPs couple to these
bosons is dictated by their Standard Model gauge group representation as well
as their Lorentz representation. The coupling to the Higgs boson in given by a
new parameter of the model whereas the coupling to the Z0 boson is given by
the Standard Model gauge couplings. If the latter case is not suppressed for
example by singlet doublet mixing (see Ref. [2]), the dark matter candidate is
usually ruled out by direct detection experiments.

In the case where the Z2 symmetry is replaced by the U(1)X symmetry,
we have an additional possibility for dark matter to scatter off nuclei. As the
WIMPs are charged under U(1)X , the coupling of Z ′ is given by gXXDM at
leading order in ε. Kinetic mixing introduces some corrections so that the Z ′
boson also couples to hypercharge and weak isospin. Similarly there is always
a contribution from the Standard Model Z-boson as kinetic mixing couples
the Z boson to the dark matter candidate. If the charge of the dark matter
field is XDM = ±Xζ

2 , the vev of ζ can introduce a mass splitting between the
oppositely charged components of the dark matter field. In this case elastic
scattering via the Z ′ boson in not possible.
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As an example for a case where scattering via the Z ′ exchange is relevant,
we consider the case of Dirac dark matter. For simplicity we also assume that
the dark matter is a singlet under the Standard Model gauge group. The
couplings of the Z and Z’ boson to dark matter and to quarks can be extracted
from Eq. (10.3.44). The scattering cross section for protons is given by13 (see
e.g. Ref. [33])

σp = µ2

π
|2bu + bd|2 (10.3.48)

where µ is the WIMP nucleon reduced mass and

bq = gχ̄χZ′,V gq̄qZ′,V
m2
Z′

+ gχ̄χZ0,V gq̄qZ0,V

m2
Z0

. (10.3.49)

The g...,V are the vector couplings to the two relevant gauge bosons.
To illustrate the impact of the direct detection experiments, we calculate

the cross section for different dark matter masses and different values of gX ,
but vary the kinetic mixing parameter and vζ . We then calculate what parts
of the parameter space is excluded by XENON1T [34]. We show our results
in Fig. 10.3. One can see that large parts of the parameter space are excluded
by XENON1T. A comparison to Fig. 10.2 shows that for most values of gX ,
direct detection proves to be the most stringent limit. It is important to stress,
that this finding holds true for Dirac dark matter as well as complex scalar dark
matter while for Majorana and real scalar fields there is no elastic scattering
via the Z ′ exchange.

Inelastic scattering

Majorana and real scalar dark matter do not allow for elastic scattering off
nuclei via the Z ′ exchange. As in the Lagrangian before symmetry breaking,
all fermions are vector like and all scalar fields are complex, Majorana and real
scalar fields always stem from Dirac or complex fields where the components
obtain a mass splitting in the symmetry breaking process. For small vζ , the
mass splitting between two components may also be small while EWSB always
leads to large mass splittings. For example for vector like fermions with U(1)X

13Note that due to the vector like nature, the coupling to the WIMP is a always a vector
coupling.
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Figure 10.3: XENON1T limits for Dirac dark matter in the mZ′− ε plane for
different values of mDM and gX . The area above the lines is excluded by direct
detection. The parameters are XDM = 1, Xζ = 3 while ε and vζ are varied.

charges of Xψ = 1
2Xζ and zero hypercharge, the mass matrix is generated by

terms in the Lagrangian as

L ⊃ −mψψψ
′ − λψψψζ† − λψ′ψ′ψ′ζ + H. c.. (10.3.50)

After U(1)X breaking this turns into

L ⊃ −1
2

(
ψ ψ′

)
√

2vζλψ mψ

mψ

√
2vζλψ′


ψ
ψ′

+ H. c.. (10.3.51)

For vζ � mψ, the two mass eigenstates then have a mass splitting of

δ
.=
√

2vζ(λψ + λψ′). (10.3.52)

Thus for vζ at O(100 keV) inelastic scattering can occur naturally.

Scalar exchange

Depending on the U(1)X charge, there can also be a coupling between the dark
matter candidate and ζ. Such a scattering is model dependent, as the coupling
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of dark matter to σ is a free parameter. Through Higgs mixing, this allows
for dark matter scattering on nuclei via this channel, as h and σ mix, see Sec.
10.3.1. If a dark matter candidate is scalar, a direct coupling to the Standard
Model Higgs is always possible through a H†Hχ†χ term. For fermion dark
matter a direct coupling to the Standard Model Higgs is only possible if there
exists a singlet-doublet or triplet-doublet coupling to the Higgs. If no such
particle content is available, the only contribution is through Higgs mixing. In
this case, the scattering takes place through the exchange of h2. Compared to
the exchange of the Standard Model-like Higgs h1, its coupling to the quarks
is then suppressed by the factor sinα, see Eqs. (10.3.14) and (10.3.18). If h2

is heavier than h1, it receives an additional suppression as the scattering cross
section scales with m−4

h2 .

10.3.6 Neutrinos

In this section we discuss how many generations of the new fields are required
in order to allow for a least two massive neutrinos. In Ref. [10] the formulas
for the neutrino masses arising from each topology are given. We first assume
only one generation of each new field. In this case a simple pattern emerges
in the neutrino mass formulas. Assuming that the neutrinos have Yukawa
interactions with the new fields given by the couplings y, y′, the neutrino mass
matrix is

(Mν)αβ ∝ yαy
′
β + y′αyβ =: Aαβ + ATαβ. (10.3.53)

The proportionality factor depends on the masses and couplings of the new
fields. It is easy to see that the matrix A has rank 1. The rank of Mν and thus
the number of massive neutrinos can be estimated to be ≤ 2. As the entries of
the Yukawa couplings are not fixed a priori, the neutrino matrix will actually
have rank two unless two fields in the loop are identified with each other, which
yields y = y′.14 Some models allow for the case where two fields are identified
with each other. If one does so, the models predict only one massive neutrino
unless one introduces several generations of one of the new fields.

14Strictly speaking some entries of y and y′ could be exactly the same or a special relation
to one another. This should not pose a problem since such a scenario would be extremely
fine-tuned unless one had a reason for the entries to be the same.
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10.4 Unification
Adding new fields to the Standard Model changes the running of the gauge
couplings possibly leading to unification of all three Standard Model gauge
couplings. Previous work has examined how the models from Ref. [11] stabi-
lized by a Z2 affect the running of gauge couplings and if the couplings unify
with the new particle content [74]. As our models with a gauged U(1)X do
have a different particle content (for example all scalar fields are complex), the
running of coupling differs from the running in the Z2 case. In Ref. [74] they
found that the difference between one and two loop is small (a few %). Thus
we restrict ourselves to a analysis at one loop. The scale at which the new
fields contribute also introduces some uncertainties.

For the Standard Model gauge couplings with the GUT normalization g1 =√
5/3gY the RGEs at one loop are given by [74]

dgk
d ln(µ) = bk

g3
k

(4π)2 (10.4.1)

where µ is the energy scale. The coefficients depend on the particle content of
the model. For the Standard Model they are given by

bSM
k =


41
10

−19
6

−7

 . (10.4.2)

If one adds fields to the Standard Model the coefficients can be calculated by

bk = bSM
k +

N∑
i

nib
i
k (10.4.3)

where i is the index denoting the fields and ni is the number of generations
of i. bik are the coefficients for the fields which can be calculated from the
coefficients for complex scalars bCS

k by

bik = bCS
k



1 complex scalar
1
2 real scalar

2 Weyl fermion

4 Dirac fermion

. (10.4.4)
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Table 10.6: One loop coefficients for complex scalars. Values taken from [74].

(U(1)Y , SU(2)L, SU(3)c) bCS
k

(y, 1, 1)
(

1
5y

2, 0, 0
)

(y, 2, 1)
(

2
5y

2, 1
6 , 0

)
(y, 3, 1)

(
3
5y

2, 2
3 , 0

)

For the U(1) models, all scalars are complex and all fermions are Dirac fermions
since they are vector like. The coefficients for complex scalars in the relevant
representations are given in Tab. 10.6. At one loop the RGEs can be solved
analytically

α−1
k (µ) = α−1

k (µ0)− bk
2π ln µ

µ0
. (10.4.5)

Now we generalize the formulas to the case of two U(1) gauge groups. The
running of coupling in the basis where kinetic mixing is absent (and one off
diagonal entry of the coupling matrix is zero) is given by [196]

d

d ln(µ)g
′ = 1

(4π)2

(
AXXg′3 + 2AXY g′2gXY + AY Y g′g2

XY

)
, (10.4.6)

d

d ln(µ)gY = 1
(4π)2A

Y Y g3
Y , (10.4.7)

d

d ln(µ)gXY = 1
(4π)2

(
AY Y gXY (g2

XY + 2g2
Y ) + 2AXY g′(g2

XY + g2
Y ) + AXXg′2gXY

)
,

(10.4.8)

where Aab takes a similar role as bik and is for complex scalar fields given by

Aab = 1
3Y

aY b. (10.4.9)

g′ and gXY are related to the couplings in Eq. (10.3.31) by g′ = gX√
1−ε2 and

gXY = −gY ε√
1−ε2 . With the GUT normalization g1 =

√
5/3gY and g4 =

√
3/2g′
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Table 10.7: One loop coefficients for complex scalars for two U(1) groups.

(U(1)Y , SU(2)L, SU(3)c,U(1)X) bCS
k =̂

(
b1, b2, b3, b4, b̃

)
(y, 1, 1, x)

(
1
5y

2, 0, 0, 2
9x

2,
√

2
45xy

)
(y, 2, 1, x)

(
2
5y

2, 1
6 , 0,

4
9x

2, 2
√

2
45xy

)
(y, 3, 1, x)

(
3
5y

2, 2
3 , 0,

6
9x

2, 3
√

2
45xy

)

the running of couplings is given by
d

d ln(µ)g4 = 1
(4π)2

(
b4g

3
4 + 2b̃g2

4 g̃ + b1g4g̃
2
)

(10.4.10)

d

d ln(µ)g1 = 1
(4π)2 b1g

3
1 (10.4.11)

d

d ln(µ) g̃ = 1
(4π)2

(
b1g̃(g̃2 + 2g2

1) + 2b̃g4(g̃2 + g2
1) + b4g

2
4 g̃
)

(10.4.12)

where we also defined g̃ =
√

5/3gXY . The contributions to the new coeffi-
cients bk are given in Tab. 10.7. Note how at one loop, the running of the
Standard Model gauge couplings only depends on the particle content and the
representation of the particles, but not on the U(1)X charges or the new gauge
couplings g4 and g̃. This allows us to consider the models independent of the
U(1)X charge assignments. Once the Unification point is found, one can im-
pose at unification scale g2

4
4π = αGUT and g̃ = 0 and run these couplings down

to TeV scale.
Similar to Ref. [74] we run the couplings to the scale of new physics ΛNP = 1

TeV using bSM
i . For energy scales larger than ΛNP, we use the coefficients

calculated using Eq. (10.4.3) and the particle content of each model. The
initial values are chosen as in Ref. [74] to allow for comparisons and are given
by

α1(mZ0) = 0.01704, α2(mZ0) = 0.03399, α3(mZ0) = 0.1185
(10.4.13)

with mZ0 = 91.1876 GeV. As an example we show the running for the model
T1-2-A with α = 0 and Xψ = Xφ = Xφ′ = Xψ′ = 1 and Xζ = 2 in Fig. 10.4.

In order to quantify how good the couplings unify, we calculate the in-
tersection points. The unification scale in then given by the average (of the
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Figure 10.4: Running of coupling for the model T1-2-A with α = 0 at one
loop. The new particles contribute from ΛNP = 1 TeV upwards. ΛNP is shown
with the dashed line.

logarithmic values) of all three x-values of the intersection points and the rel-
ative error is

∆ log10(Λ)
log10(Λ) . (10.4.14)

∆ log10(Λ) is the separation of the intersection points that are the furthest
apart from each other on the Λ-axis. For the couplings we proceed in a similar
way with log10(Λ)→ α−1. Tables 10.8 to 10.11 show the Unification scale and
the coupling at this scale as well as the respective errors for the models with
the topologies T1-1, T1-2, T1-3 and T-3.

We find that in some models the couplings unify reasonably well whereas for
other models the intersection points lie far apart. The new U(1)X coupling can
always be chosen in such a way that it unifies (i.e. passes through the middle
of the triangle) as it is not fixed by experiments. Similarly the off diagonal
coupling can be chosen to be zero at the unification scale. The models that
unify do so at a scale of O(1012 GeV)−O(1014 GeV). This agrees qualitatively
with the findings of Ref. [74]. The scale is lower than the unification scale
expected from running with only the Standard Model fields as the running of
SU(3)c is not changed and the new fields affect the running of SU(2)L and
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Table 10.8: Unification results for models with Topology T1-1. Models marked
with ∗ have two generations of ψ while φ′ = φ†.

Model m Λ [GeV] ∆ log10(Λ)
log10(Λ) [%] α−1(Λ) ∆α

α
[%]

T1-1-A 2 1.43e+13 35.66 39.54 20.75

T1-1-A 0 2.21e+14 18.47 41.55 10.32

T1-1-A∗ 0 3.34e+14 22.55 42.27 12.78

T1-1-B 2 3.23e+11 12.12 31.77 6.03

T1-1-B 0 4.99e+14 57.09 34.11 24.94

T1-1-B∗ 0 3.55e+21 153.25 21.04 201.32

T1-1-C 1 5.37e+13 9.31 39.36 5.04

T1-1-D 1 1.86e+13 4.08 37.10 2.11

T1-1-D -1 4.01e+13 8.77 37.53 4.47

T1-1-F 1 1.89e+13 20.96 35.43 10.24

T1-1-G 2 3.59e+12 21.33 37.20 11.86

T1-1-G 0 1.27e+14 1.13 39.50 0.59

T1-1-G∗ 0 1.70e+14 2.45 40.11 1.30

T1-1-H 2 2.04e+11 21.32 30.22 11.76

T1-1-H 0 2.59e+15 77.36 32.03 38.94

T1-1-H∗ 0 3.94e+28 192.07 9.68 780.08

U(1)Y in such a way that α−1 declines faster than in the Standard Model case.

When all couplings unify one would like to combine the gauge symmetry
group to a larger gauge symmetry that is broken at this scale. In this grand
unified group quarks and leptons are placed in the same representations and
interactions with the gauge bosons of the larger symmetry allow for transitions
between both. Such transitions are suppressed by the mass of the gauge bosons
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Table 10.9: Unification results for models with Topology T1-2.

Model m Λ [GeV] ∆ log10(Λ)
log10(Λ) [%] α−1(Λ) ∆α

α
[%]

T1-2-A 0 7.74e+13 7.10 39.60 3.82

T1-2-A -2 1.46e+13 17.48 38.49 9.65

T1-2-B 0 6.07e+13 11.24 37.76 5.69

T1-2-B -2 4.92e+12 4.39 36.33 2.32

T1-2-D 1 7.56e+11 27.49 30.96 14.37

T1-2-D -1 4.76e+14 65.96 32.39 31.85

T1-2-F 1 5.47e+11 36.60 29.32 22.36

T1-2-F -1 3.33e+15 86.49 30.11 51.83

which is given by the scale at which the group is broken. As these processes
allow for proton decay, limits on the lifetime of protons can be used to set
limits on the unification scale. As discussed in Sec. 4.3, the unification scale
should be higher than 1015 GeV and thus our values for unification are ruled
out. As our models do not claim to be complete models but only minimal
explanations for dark matter and neutrino masses, one could imagine more
(colored) new particles between the TeV and the GUT scale that change the
running of coupling and thus the unification scale.

10.5 Embedding gauged scotogenic models into
SO(10)

Additional U(1) gauge symmetries are often motivated by grand unified theo-
ries. The well known unification group SO(10) can be broken to the Standard
Model gauge group and an additional U(1) symmetry. In this section we in-
vestigate whether the Standard Model uncharged under the extra U(1) can
be embedded into irreducible representations of SO(10). We use LieART
[197] to decompose the irreducible representations of SO(10) into SU(5)×U(1)
representations and SU(5) representations into SU(3)×SU(2)×U(1) represen-
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Table 10.10: Unification results for models with Topology T1-3. Models
marked with ∗ have two generations of φ while ψ′ is combined with ψ into
a vector like doublet.

Model m Λ [GeV] ∆ log10(Λ)
log10(Λ) [%] α−1(Λ) ∆α

α
[%]

T1-3-A 0 3.41e+13 3.16 37.86 1.64

T1-3-A∗ 0 1.07e+14 10.75 40.23 5.86

T1-3-B 0 3.42e+13 20.59 36.14 10.08

T1-3-B∗ 0 8.64e+13 26.03 36.58 12.54

T1-3-C 1 1.98e+13 15.53 38.70 8.54

T1-3-D 1 3.57e+13 51.69 31.90 25.70

T1-3-D -1 1.06e+12 29.78 31.05 15.50

T1-3-F 1 6.17e+13 92.44 23.21 100.62

T1-3-G 0 5.13e+14 74.63 30.64 42.35

T1-3-G∗ 0 4.77e+14 63.03 32.97 28.84

T1-3-H 0 4.95e+15 95.56 28.10 68.46

T1-3-H∗ 0 5.78e+16 106.39 27.89 77.93

tations. Putting the results together we find the decompositions of SO(10)
irreducible representations into SU(3)×SU(2)×U(1)×U(1). For the SO(10)
representations up to 144, we find the following decompositions:

10 = (3, 1, 2, 2)VL + (1, 2,−3, 2)VL, (10.5.1)

16 =(3, 2,−1,−1) + (3, 1, 4,−1) + (1, 1,−6,−1)+
(3, 1,−2, 3) + (1, 2, 3, 3) + (1, 1, 0,−5), (10.5.2)

45 =(8, 1, 0, 0) + (3, 2, 5, 0)VL + (1, 3, 0, 0) + (1, 1, 0, 0)+
(3, 2,−1, 4)VL + (3, 1, 4, 4)VL + (1, 1,−6, 4)VL + (1, 1, 0, 0), (10.5.3)
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Table 10.11: Unification results for models with Topology T3.

Model m Λ [GeV] ∆ log10(Λ)
log10(Λ) [%] α−1(Λ) ∆α

α
[%]

T3-A 0 2.35e+13 0.88 37.64 0.46

T3-A -2 5.04e+13 5.52 38.08 2.85

T3-B 1 1.84e+13 33.96 39.73 19.69

T3-B -1 2.21e+14 18.47 41.55 10.32

T3-C 1 1.00e+13 34.83 32.98 16.27

T3-C -1 7.45e+13 46.67 33.59 21.05

T3-E 0 2.23e+13 18.02 35.94 8.89

54 =(8, 1, 0, 0) + (3, 2, 5, 0)VL + (1, 3, 0, 0) + (1, 1, 0, 0)+
(6, 1, 4, 4)VL + (3, 2,−1, 4)VL + (1, 3,−6, 4)VL, (10.5.4)

120 =(8, 2,−3, 2)VL + (6, 1, 2, 2)VL + (3, 3, 2, 2)VL + (3, 2, 7, 2)VL+
(3, 1,−8, 2)VL + (3, 1, 2, 2)VL + (1, 2,−3, 2)VL + (3, 2,−1,−6)VL+
(3, 1, 4,−6)VL + (1, 1,−6,−6)VL + (3, 1, 2, 2)VL + (1, 2,−3, 2)VL,

(10.5.5)

126 =(8, 2,−3, 2)VL + (6, 3, 2, 2) + (6, 1,−8, 2) + (3, 2, 7, 2)VL + (3, 1, 2, 2)VL+
(1, 1, 12, 2) + (6, 1,−2,−2) + (3, 3,−2,−2) + (3, 1, 8,−2)+
(1, 2, 3,−2)VL + (6, 1, 4,−6) + (3, 2,−1,−6)VL + (1, 3,−6,−6)+
(3, 1,−4, 6) + (1, 1, 6, 6) + (3, 1, 2, 2) + (1, 1, 0, 10), (10.5.6)

144 =(8, 2, 3, 3) + (6, 1,−2, 3) + (3, 3,−2, 3) + (3, 2,−7, 3) + (3, 1, 8, 3)+
(3, 1,−2, 3) + (1, 2, 3, 3) + (8, 1,−6,−1) + (6, 2,−1,−1) + (3, 3, 4,−1)+
(3, 2,−1,−1) + (3, 1, 4,−1) + (1, 2, 9,−1) + (8, 1, 0,−5) + (3, 2, 5,−5)+
(3, 2,−5,−5) + (1, 3, 0,−5) + (1, 1, 0,−5) + (6, 1, 4,−1)+
(3, 2,−1,−1) + (1, 3,−6,−1) + (3, 2,−1,−1) + (3, 1, 4,−1)+
(1, 1,−6,−1) + (3, 1,−2, 3) + (1, 2, 3, 3) + (3, 1, 2, 7) + (1, 2,−3, 7).

(10.5.7)
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We marked fields for which also a field in the conjugate representation oc-
curs with the subscript VL as these are vector like fields. The fermions in
the Standard Model are for our models in the following representations of
SU(3)c×SU(2)L×U(1)Y×U(1)X

Q :
(

3, 2, 1
6 , 0

)
, L :

(
1, 2,−1

2 , 0
)
, (10.5.8)

ucR :
(

3, 1,−2
3 , 0

)
, dcR :

(
3, 1, 1

3 , 0
)
, ecR : (1, 1, 1, 0) . (10.5.9)

As there are two U(1) groups, we are free to make a change of basis (including
rescaling) for the two corresponding charges. Usually the Standard Model
is embedded into the 16 representation. However one can easily see, that
all Standard Model fields then do have a U(1)X charge. Looking at higher
representations we can find cases where some Standard Model fields do not
have U(1)X charge. This however fixes the basis and we do not find any basis
where all the fields given in Eqs. (10.5.8, 10.5.9) occur at the same time. As
for all of our models, the Standard Model fields must be uncharged, it is not
possible to embed our models into a grand unified theory with a SO(10) gauge
group. If we look at groups of higher rang, e.g. E6, which has the subgroup
SO(10)×U(1), we end up with three abelian groups and more different ways
to choose the basis are possible.

Another issue with embedding our models into GUTs is that in many ir-
reducible representations, a right handed neutrino arises. This almost always
allows for type I seesaw which can yield to correct neutrino masses if the right
handed neutrino has a Majorana mass term of O(ΛGUT).

10.6 Summary and outlook

Minimal extensions of the Standard Model can introduce viable dark matter
candidates and generate neutrino masses. To stabilize the dark sector a new
symmetry must be introduced. This symmetry can be a local U(1) symmetry.
Arguments based on anomaly cancellation and the neutrino topologies restrict
the possible charge assignments. We find that the Standard Model must be
uncharged under the new gauge group and all new fermions must be vector
like. We then give the particle content of all possible models and the charge
assignments.
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An additional scalar field is introduced in order to break the new U(1)
symmetry. The extended gauge and Higgs sector give rise to a number of
new phenomena. Especially gauge kinetic mixing which introduces mixing
between the Standard Model Z0 boson and the new Z ′ boson can be severely
constrained by experiments. Other phenomenological aspects such as LFV and
the dark matter phenomenology are dependent on the specific particle content
of the model.

We run the Standard Model gauge couplings in order to find out whether,
with the particle content of the new models, the unification hypothesis is ful-
filled. Some models allow for grand unification, however the unification scale
is generally to low to comply with the limits on the proton lifetime.

We decompose irreducible representations of SO(10) along the breaking
chain SO(10)→SU(5)×U(1)→SU(3)×SU(2)×U(1)×U(1) in order to find out
whether the new models can be embedded into such a GUT. We find that it
seems to be impossible to have an uncharged Standard Model and thus our
models cannot be embedded into a SO(10).

As future work it would be interesting to investigate the full phenomenology
of some specific models, similarly to the studies of models with a Z2 symmetry
presented in this thesis. As a starting point one could choose models with only
three new fields preferably in trivial or fundamental representations such as
T3-A or T1-3-A as these are more simple and have less free parameters. Fur-
thermore the case of very light or massless dark photons could be investigated
under astrophysical aspects as suggested in Ref. [167]. With the limits on ki-
netic mixing in this mass range being strong [198] one could also investigate
whether the running of this parameter prevents it from being small in all of
the relevant energy range and thus gives conflicts with experiments.



Conclusion and
Outlook 11
Minimals models can successfully explain both dark matter as well as neutrino
masses while being testable by current and near future experiments. New
physics at TeV scale including dark matter allows for the correct neutrino
masses generated via the radiative seesaw mechanism. With maximally for
new fields in the Z2 case and maximally six new fields for the gauged models,
only few unknown parameters are introduced. This simplicity is an advantage
over complicated theories such as supersymmetry and allows detailed studies
of the entire parameter space.

In Chaps. 2, 3 and 4 we give an introduction to the question about the
nature of dark matter and the generation of neutrino masses as well as an
overview about relevant experiments and their current constraints.

Chapter 5 is devoted to the theoretical foundations necessary for describing
minimal models. Conventions are introduced and theoretical constraints are
presented. Furthermore the main mechanisms for neutrino mass generation
are discussed.

Minimal models with dark matter and neutrino masses as well as their clas-
sification are presented in Chap. 6. Arguably the simplest and most famous
of these models, the scotogenic model which extents the Standard model by
an inert doublet and three generations of right handed neutrinos is then intro-
duced in detail. Additionally another simple model with three new multiplets
is discussed. This model, called T1-3-B (α = 0), allows for fermion singlet
doublet and scalar triplet dark matter as well as two generations of massive
neutrinos.

In Chap. 7 fermionic dark matter in the framework of the scotogenic model
is studied. The scalar coupling λ5, which has a strong impact on the phe-
nomenology, is for models which yield the correct relic density found to be
solely dependent on the absolute neutrino mass. A determination of the neu-
trino mass with the KATRIN experiment would fix this coupling. In addition,
the determination of the dark matter mass fixes the value of the Yukawa cou-

− 171 −



172 Chapter 11. Conclusion and Outlook

plings. Future experiments on LFV and the absolute neutrino mass are shown
to exclude the fermionic dark matter if there are no coannihilations.

Chapter 8 treats indirect detection constraints for scalar dark matter in
the scotogenic model. As the mass splitting between both neutral scalar com-
ponents is naturally small, inelastic scatting is kinematically allowed. The
corresponding scattering formalism is discussed in detail and a code that cal-
culates the expected event rates at IceCube is introduced. Numerical results
show that indirect detection with neutrinos from dark matter in the sun is
more sensitive to inelastic scattering than direct detection on earth.

Prospects for neutrino telescopes are further discussed in Chap. 9 where the
model T1-3-B (α = 0) is studied. This model allows for both spin independent
as well as spin dependent scattering of WIMPs on nucleons. Indirect detection
is generally more competitive in the case where dark matter accumulates in the
sun through spin dependent scattering. The expected event rates at IceCube
are calculated and a numerical scan shows that there are points yielding event
rates up to 10 events per year which are not excluded by experimental limits.
A future analysis of IceCube data might exclude this part of the parameter
space.

Finally we promote the stabilizing symmetry to a local U(1) in Chap. 10.
The models are constructed in such a way that all gauge anomalies cancel and
Majorana neutrino masses are generated at one loop. The phenomenology of
these models is discussed with special emphasis on the Z ′ boson. We investigate
the gauge coupling unification for all of these models.
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