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1 Introduction

1 Introduction
The aim of this work is to learn about the working methods of theoretical particle physics
by investigating top–antitop production in proton-proton collisions at the LHC at

√
s =

8TeV. We provide a clear illustration of the leading order calculation of the tt̄ production
cross section (CS) and normalized differential cross section and compare the predictions
with experimental data from the CMS collaboration. Although the calculation is limited
to leading order and to the gluon–gluon channel, we find that the CS only has a relative
deviation of about 25% to experimental data and the normalized differential CS success-
fully predicts the general shape of the bins. This forms the foundation for future analyses
at higher orders.

The top quark, discovered in 1995 at Fermilab, is the heaviest known elementary par-
ticle in the Standard Model of particle physics. With a mass close to the electroweak
symmetry breaking scale, it plays a special role in precision tests of the Standard Model
and in searches for new physics [3]. Due to its extremely short lifetime ≈ 10−25 s [8], the
top quark decays before hadronization occurs, which allows direct access to its properties.
Measurements of top quark production and decay therefore provide valuable insights into
strong interactions at high energies. At the Large Hadron Collider (LHC), Top Antitop
(tt̄) pairs are predominantly produced in proton–proton collisions. The study of tt̄ pro-
duction cross sections is of particular importance. On the one hand, it provides stringent
tests of Quantum Chromodynamics (QCD), on the other hand, it serves as a background
to many searches for physics beyond the Standard Model.

In this thesis, the hadronic CS of tt̄ production at a center-of-mass energy
√
s = 8TeV

is calculated at leading order (LO), considering only the gluon–gluon fusion process. A
set of equally and random logarithmic distributed events is created and shaped to align
with experimental limitations. The calculation is then performed using the Monte Carlo
method, which allows an efficient evaluation of the multidimensional phase space integrals
involved. Based on this result, a set of unweighted events is generated and stored in the
Les Houches Event (LHE) format. From these events, two normalized differential cross
sections are extracted and compared with experimental data.
In chapter 2 an overview of the theoretical framework is given, introducing the proton and
the transition from hadrons to partons, where the parton distribution functions (PDFs)
and the the momentum fractions x are established. A short overview of Quantum Chromo-
dynamics is given, from which the Feynman rules are motivated. We then take a further
look at the kinematics of the process and establish the hadronic CS

σhad =
∑
i,j,k,l

∫ ∫
dx1dx2fi(x1, Q2)fj(x2, Q

2)

∫
dPS2

1

F
|M(ij −→ kl)|2,

which quantifies the likelihood of a scattering event. The main components are the PDFs
fi(x,Q

2), the phase space element dPS2 and the squared matrix element |M |2. These
are analytically calculated, partially using Mathematica, and the integration is performed
using the Monte Carlo (MC) method.
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2 Theoretical Background

2 Theoretical Background
Proton–proton interactions are studied at the Large Hardron Collider, where hadron beams
collide in order to examine the structure of the hadrons. The Standard Model summarizes
the current knowledge of the basic constituents of matter and their interactions. It is a is
a non-abelian gauge theory with the symmetry group U(1)×SU(2)×SU(3) and has a total
of twelve gauge bosons: the photon, three weak bosons and eight gluons. A gauge theory
is a field theory where the Lagrangian is invariant under transformations according to
certain Lie Groups. The color group SU(3) describes strong interactions and the SU(2)×
U(1) groups describe the electroweak interaction [11]. Quantum Chromodynamics is the
theoretical framework for describing strong interactions, which describes the binding of
the quarks inside the hadrons. Gluons are the exchange particles of the color field that
bind quarks in nucleons and also nucleons into nuclei, and since they carry a color charge,
they can directly interact with other gluons. Quarks interact by exchanging color through
gluon interaction. Due to color confinement hadrons can only be observed colorless [10].
As usual in particle physics we use natural units and set the speed of light and the reduced
planck constant to one:

c = 1 h̄ = 1 (2.1)

In the following sections we will give a short introduction to the theoretical framework used
in the calculations, establish the Feynman rules and introduce the Monte Carlo integration
used for numerical evaluation.

2.1 Constituents of the Proton

The proton is no elementary particle but consists of smaller components called quarks.
A Proton consists of three valence quarks, two up quarks and one down quark (uvuvdv),
accompanied by many quark-antiquark pairs usūs, dsd̄s, sss̄s, and so on, which are known
as sea quarks [10]. Their quantum numbers always sum to zero, therefore not changing the
quantum numbers of the proton. Protons also consist of gluons, who carry a substantial
fraction of the proton’s momentum.
If one looks at the proton in a fast moving system, as one would do in proton collisions
at the LHC, then the transverse momenta and the rest masses of the proton constituents
can be neglected. The structure of the proton is then given to a first approximation
by the longitudinal momenta of its constituents. This is the basis of the parton model
of Feynman and Bjorken. The constituents of the proton are called partons [18]. Each
parton can carry a different fraction x of the parent protons momentum and energy

pparton = xpproton , (2.2)

where Pproton = |p|(1, 0, 0, 1) is the four momentum of a proton moving along the z-axis.
The parton distribution function (PDF) fi(x,Q2) describes the probability that the parton
i carries a fraction x ∈ [0, 1] of the protons momentum p at a given energy scale Q2. All
parton momentum need to add up to one [10, p. 191]∑

i

∫
dxxfi(x,Q2) = 1 . (2.3)
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Figure 1: Parton distribution function at engery scale Q = 2mt. The used PDF is the
”CT18NLO” set [4].

The energy scale for this process is set to two top quark masses Q = 2mt. Figure 1 displays
the used PDF set ”CT18NLO” [4] at the set energy scale. The uv and dv display the up and
down valence quarks, calculated by subtracting the anti-quark- from the quark-distribution
respectively. The gluon distribution is scaled by 0.1 to allow for better visibility. One can
see that it is dominant for small x values, especially for values x < 10−2. For x ≈ 10−1,
the valence quarks carry the significant amount of the protons momentum. Because sea
quarks are produced through gluon splitting, they arise for small x values, for larger x
values they only carry small amounts of the momentum. The collision under consideration
takes place at

√
s = 8TeV, in comparison the combined mass of the top- anti-top quark

is m = 345GeV, where we use the mass of the top quark mt = 172.5GeV. This implies
that small x contribute dominantly to this process, which is why only gluon–gluon fusion
is considered.

2.2 Gauge Theory

The following section is based on the work in [19] and [15]. All elementary particle in-
teractions can be described with gauge theories. The three fundamental forces described
by the standard model: the electromagnetic, the weak and the strong force, are described
by gauge theories that correspond to the symmetry groups U(1), SU(2) and SU(3). The
Lagrangian formalism is introduced as a framework, with the Lagrangian as a Lorentz in-
variant scalar. In classical theories, we describe the physical system in terms of positions
of particles depending on time.

L = L(~q, ~̇q, t) (2.4)
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2 Theoretical Background

In field theories, fields are used to describe the physical system, the big advantage being
they treat space and time equally. The transition is achieved by introducing a Lagrangian
density

L = L (Φ, ∂µΦ) (2.5)

connected to the Lagrangian via L =
∫

d3xL , where L is a function of the field Φ and its
derivatives ∂µΦ. The correct field configurations follow from the Euler-Lagrange equation
using Fermat’s principle, where we find a minimum of the action

S =

∫
Ldt =

∫
L d4x. (2.6)

We will be guided to the correct form of the Lagrangians by gauge symmetries. For free
spin 1

2 fields/particles, the equation of motion is given by the Dirac equation with the
Dirac Lagrangian

L Dirac = Ψ̄(iγµ∂µ −m)Ψ (2.7)
(iγµ∂

µ −m)Ψ = 0 (2.8)

Because we look at strong interactions, we need to look at the symmetry group SU(3).
For this purpose, triplet objects Q(x) = (q1(x), q2(x), q3(x)) are introduced, that are
transformed by SU(3) transformations. They contain three spin 1/2 fields, which are
interpreted as quarks carrying different color. Because the Lagrangian

L = iQ̄∂µγ
µQ− Q̄mQ (2.9)

needs to be locally SU(3) invariant

Q(x) −→ U(x)Q(x) U(x) = eiTaΘa(x) , (2.10)

we need to introduce the covariant derivative

Dµ = ∂µ − igsT
aGa

µ = ∂µ − igsGµ , (2.11)

where gs =
√
4παs is the strong coupling constant, T a are the generators of SU(3), which

will be introduced below, and Ga
µ is a gluon field. The gluon field strength tensor Gαβ for

the spin 1 gluon fields is defined as:

Gαβ = ∂αGβ − ∂βGα − gs[Gα,Gβ] . (2.12)

The Lagrangian of QCD can now be quoted as

L QCD = Q̄(iDµγ
µ −m)Q− 1

4
GαβGαβ . (2.13)

SU(3) is the group of all unitary 3× 3 matrices with

U †U = 1 det(U) = 1 . (2.14)

As usual with Lie groups, these matrices can be written as exponential functions

U = eiTaΘa , (2.15)
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where the generators are required to be Hermitian and traceless

T †
a = Ta Tr(Ta) = 0 . (2.16)

In general, a color gauge group SU(N) has N2 − 1 hermitian generators which can be
represented by N×N matrices. For N=3 the generators are related to the Gell-Mann
matrices λa

(T a)ij =
λa
ij

2
. (2.17)

The Lie algebra is defined by the commutation relation

[T a, T b] = ifabcT c (2.18)

where the letters a,b and c can take on a value from 1 to 8 and fabc are the fully anti-
symmetric structure constants of the SU(3) group with the normalization

Tr
(
T aT b

)
= TF δab TF =

1

2
. (2.19)

The color matrices follow a range of rules, the ones relevant for calculating the color terms
in the squared matrix element later on are listed below.∑

a,k

T a
ikT

a
kj = CF δij CF =

N2 − 1

2N∑
cd

facdfbcd = TAδab TA = N

∑
a

T a
ijT

a
kl =

1

2

(
δilδjk −

1

N
δijδkl

) (2.20)

2.3 QCD Feynman Rules

The QCD Feynman rules for vertices can be read off the Lagrangian in eq. 2.13 when
relations 2.11 and 2.12 are plugged in and fully expanded. One term includes kinetic
energy and mass terms and the next three terms give a fermion-fermion-gluon vertex and
triple and quadruple gluon vertices [9].
A Feynman diagram represents a perturbative contribution to the amplitude of a quantum
transition from some initial quantum state to some final quantum state. Spin-12 -particles,
i.e. quarks and leptons, are represented by straight lines. Gluons are represented by
curly lines. External lines represent real particles, either incoming or outgoing, where the
arrows on fermion lines are used to distinguish particles from antiparticles: The arrow on
the fermion line points forward in time for particles and opposite to the time direction for
antiparticles. Each particle has a superscript indicating its spin. The following table show
the terms that derive from incoming and outgoing spin-12 - and spin-1-particles:
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2 Theoretical Background

Incoming Outgoing
p

= us(p)

p

= ūs(p)

p

= v̄s(p)

p

= vs(p)

p

= ελµ(p)

p

= ελ?µ (p)

(2.21)

where u(p) and v(p) are spinors with four components, which satisfy the completeness
relations ∑

s

usa(p)ū
s
b(p) = (/p+m)ab ,∑

s

vsa(p)v̄
s
b(p) = (/p−m)ab .

(2.22)

Here the Feynman slash notation is introduced:

/p ≡ pµγ
µ. (2.23)

The adjungate spinors are calculated via the dirac matrix

ū(p) = u†(p)γ0. (2.24)

We denote ελ(p) as the polarization vector of a gluon. While massive spin-1-particles have
three polarization states, massless gauge bosons like the gluon have only two polarization
states because gauge invariance requires the field polarization to be transverse to the
direction that the gluon is traveling. We set the direction of movement to the z-axis,
the polarization must be orthogonal to the direction of movement. Summing over all
polarization states of the gluons we get [16, p. 59]∑

λ

ελαε
λ?
β = −gαβ +

pαp̄β + pβ p̄α
p · p̄

, (2.25)

where we define the momentum vectors of the massless gluons as p = (p0, 0, 0, p0) and
p̄ = (p0, 0, 0,−p0).
A vertex represents a point of interaction, the strength of it is denoted by gs for strong
interaction. The momentum is conserved at each vertex. For the calculations, quark and
gluon propagators have to be considered, both can be motivated through the Lagrangian.
The quark propagator derives from a coupling between a quark and an anti quark in the
Lagrangian, which leads to the Feynman rule for the propagator between two quarks with
color i and j

p

qi qj =
i(/p+m)

p2 −m2
δij . (2.26)
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The Feynman rule for the gluon propagator 1 is

p

a, α b, β
=

−igαβδab

p2
, (2.27)

where a and b indicate the color. The delta functions ensure color conservation.
The quark gluon vertex represents the coupling of a gluon to a quark line, the strong
coupling constant gs indicates the strength of the interaction and the generator T a

ij encodes
the color structure of all particles.

qi

qj

Ga
µ = −igsT

a
ijγµ (2.28)

Because gluons can interact with each other, three- and four-gluon vertices follow from
the Lagrangian, where only the first is relevant for this calculation:

p2

p3

p1

Gb
β

Gc
γ

Ga
α = −gsf

abc
[
gαβ(p1 − p2)γ + gβγ(p2 − p3)α + gγα(p3 − p1)β

]
. (2.29)

2.4 Cross Section

Experimental results on 2 −→ 2 scattering is usually quoted in terms of a cross section. A
cross section σ may be regarded as the effective area over which the particles interact to
produce the final state [10]. The hadronic cross section for this process can be written as:

σhad =
∑
i,j,k,l

∫ ∫
dx1dx2fi(x1)fj(x2)σ(ij−→kl) , (2.30)

where the partonic cross section is given by

σ(ij−→kl) =

∫
dPS2

1

F
|M(ij −→ kl)|2 . (2.31)

The partonic cross section includes the incident flux F , the squared matrix element
|M(ij −→ kl)|2 averaged over the spins and the space space element dPS2:

dPS2 =
d3~k1
(2π)3

1

2E1

d3~k2
(2π)3

1

2E2
(2π)4δ(4)(p1 + p2 − k1 − k2) . (2.32)

1Only in Feynman gauge, one would get an extra term in axial gauge
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To calculate this cross section, we first look at the kinematics of the scattering process,
after which we will further simplify the phase space element and determine the flux factor.
After that the squared matrix element will be calculated in detail, so that the hadronic
cross section can be calculated numerically using the Monte Carlo method. Finally, we will
use the Hit or Miss Monte Carlo method to generate unweighted LHE-format events, which
will be used to compute differential cross sections and compare those to experimental data
in [7].

2.5 Monte Carlo Integration

In many problems of theoretical particle physics, one is faced with the task of evaluating
multi-dimensional integrals, for example when computing cross sections or phase space
averages. For high-dimensional integrals, deterministic numerical methods become inef-
ficient, and Monte Carlo (MC) techniques provide a powerful alternative. The following
description is based on [17].
The central observation of Monte Carlo integration is that an integral can be recast as an
average of the integrand. Consider the one-dimensional case,

I =

∫ x2

x1

f(x)dx = (x2 − x1) 〈f(x)〉 , (2.33)

where 〈f(x)〉 denotes the average value of f(x) over the interval [x1, x2]. If we generate N
random samples xi uniformly distributed in (x1, x2), then the integral can be approximated
as

I ≈ (x2 − x1)
1

N

N∑
i=1

f(xi) . (2.34)

The random sampling ensures that, in the limit of large N , this estimate converges to the
exact value of the integral.
The accuracy of the Monte Carlo estimate can be understood using the Central Limit
Theorem. The distribution of the average 〈f(x)〉 tends to a Gaussian with a standard
deviation that scales as

σMC =
σ√
N

, (2.35)

where σ is the standard deviation of f(x) with respect to the uniform distribution. Hence,
the uncertainty decreases only as 1/

√
N , which is slower than for deterministic quadrature

methods in low dimensions, but crucially independent of the dimensionality of the integral.
For convenience, one often introduces the weights Wi = (x2−x1) f(xi), so that the Monte
Carlo estimate becomes

I ≈ IN =
1

N

N∑
i=1

Wi . (2.36)

The variance can be defined as

VN ≡ σ2 =
1

N

N∑
i=1

W 2
i −

(
1

N

N∑
i=1

Wi

)2

. (2.37)

9
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From this, the Monte Carlo error estimate follows as

σMC =

√
VN

N
. (2.38)

Thus, the final result for the integral can be written as

I ≈ IN ± σMC . (2.39)

2.5.1 Hit-or-Miss Monte Carlo

In addition to weighted Monte Carlo integration, an alternative approach often used in
event generators is the so-called Hit-or-Miss method. The main idea is to generate un-
weighted events, which is advantageous when simulating realistic experimental data where
each event should carry equal importance.
The procedure can be summarized as follows. Suppose we want to integrate a function f(x)
over some domain. We first determine the maximum value fmax of the integrand within the
integration region. For each randomly generated point xi, we generate a random number
ri ∈ (0, 1). The point is then accepted if

f(xi)

fmax
> ri , (2.40)

and rejected otherwise. Accepted points are assigned equal weight, corresponding to the
“hits”, while rejected points correspond to the “misses”.

3 Kinematics
In this chapter we layout the kinematics of the process and derive a term for the phase
space element dPS2. The kinematics are based on the calculations performed in [14]. We
denote the four momenta of the two hadrons with PA and PB. In the hadronic center
of mass frame, the momenta are equal and opposite to each other with ~PA = −~PB and
EA = EB. This leads to the hadronic Mandelstamm variable S = (PA + PB)

2 = 4E2
A.

The four momenta of the partons are

p1 = x1PA p2 = x2PB (3.1)

where both hadrons and partons are assumed to be massless. x1 and x2 are momentum
fractions that specify what fraction x of the parent protons momentum and energy each
parton carries. We define the partonic CM frame by ~p1 + ~p2 = 0. In the hadronic CM
frame we get

(p1 + p2)hadr =
(
(x1 + x2)EA, (x1 − x2)~PA

)
, (3.2)

which shows that the partonic CM frame is moving with the velocity of

β =
|~p1 + ~p2|
|p01 + p02|

=
x1 − x2
x1 + x2

with EA = |~PA| . (3.3)

10



3 Kinematics

Since the collision takes place on a parton level, we define the four momenta of the incoming
partons as p1 and p2 and the four momenta of the outgoing quarks as k1 and k2 with the
scattering angle θ as can be seen in figure 2.

p1 = Ep1

 1

~ez

 p2 = Ep2

 1

−~ez

 (3.4)

k1 =

 Ek1√
E2

k1
−m2

t
~k

 k2 =

 Ek2

−
√
E2

k2
−m2

t
~k

 ~k =

(
sin θ
0

cos θ

)
(3.5)

~p1 ~p2

~k2

~k1

θ

Figure 2: Schematic visualisation of the scattering process in the partonic CM frame
defining the scattering angel θ.

The distribution of the angle ϕ is isotropic for this process, therefore it is only implicitly
included. Using the energy momentum relation E =

√
~k2 −m2 and acknowledging the

conservation of momentum and energy, one can show that all energies are equal:

Ek1 = Ek2 = Ep1 = Ep2 = E . (3.6)

Because these four momentum vectors are defined in the partonic CM system, the momenta
in the hadronic system can be calculated using a Lorentz transformation along the z-
axis. Because of this the scattering process is described in terms of the Lorentz invariant
Mandelstamm variables:

s := (p1 + p2)
2 = (k1 + k2)

2 = x1x2S (3.7)
t := (p1 − k1)

2 = (p2 − k2)
2 (3.8)

u := (p1 − k2)
2 = (p2 − k1)

2 , (3.9)

with
√
s = 2E being the center of mass energy. The Mandelstamm variables are related

through the sum of the squared masses

s+ t+ u = m2
p1 +m2

p2 +m2
k1 +m2

k2 = 2m2
t . (3.10)

11
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We can write the variables t and u in terms of the scattering angle θ, which will play a
vital role when calculating the cross section:

t = p21 + k21 − 2p1 · k1

= m2
t − 2

(
E2 − E

√
E2 −m2

t cos θ
)

= m2
t −

s

2

(
1−

√
1− 4m2

t

s
cos θ

)
,

u = 2m2
t − s− t

= m2
t −

s

2

(
1 +

√
1− 4m2

t

s
cos θ

)
.

(3.11)

Now that the kinematic framework is set up, we again focus on the hadronic cross section
(eq. 2.30), particularly on the phase space element

dPS2 =
d3~k1
(2π)3

1

2E1

d3~k2
(2π)3

1

2E2
(2π)4δ(4)(p1 + p2 − k1 − k2) ,

which can be further simplified. We start by addressing the integration over the momenta
by using the delta function δ(k21 −m2

t ) as follows:

d4k1
(2π)3

δ(k21 −m2
t ) =

dE1 d3~k1
(2π)3

δ(E2
1 − ~k21 −m2

t )

=
dE1 d3~k1
(2π)3

1

2|E1|

(
δ(

√
~k21 +m2

t − E1) + δ(

√
~k21 +m2

t + E1)
)
.

Integrating over the energy and taking into account that the energy can only be positive
we get:

d3~k1
(2π)3

∫ ∞

−∞

dE1

2|E1|

(
δ(

√
~k21 +m2

t − E1) + δ(

√
~k21 +m2

t + E1)
)
Θ(E1) =

d3~k1
(2π)3

1

2E1

⇔ d4k1
(2π)3

δ(k21 −m2
t ) =

d3~k1
(2π)3

1

2E1
(3.12)

We insert this relation into dPS2 and integrate over d4k1, thereby eliminate one delta
function:

dPS2 =
d4k1
(2π)3

δ(k21 −m2
t )

d3~k2
(2π)3

1

2E2
(2π)4δ(4)(p1 + p2 − k1 − k2)

=
1

(2π)2
δ
(
(p1 + p2 − k2)

2 −m2
t

)d3~k2
2E2

. (3.13)
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We can use the definition of the partonic CM frame (~p1 + ~p2) = 0 to further simplify the
delta function; and we transform the integration over d3~k2 into spherical coordinates:

d3~k2 = |~k2|2d|~k2| sin θdθdφ (3.14)

δ
(
(p1 + p2 − k2)

2 −m2
t

)
= δ

(
(p1 + p2)

2 − 2(p1 + p2)k2 + k22 −m2
t

)
= δ

(
s− 2

√
sE2

)
=

1

2
√
s
δ

(
E2 −

√
s

2

)
. (3.15)

The energy relationship E2 =

√
~k22 +m2

t implies

dE2

d|~k2|
=

|~k2|
E2

. (3.16)

Plugging the relations 3.14, 3.15 and 3.16 into 3.13 we get

dPS2 =
1

(2π)2
1

2
√
s
δ

(
E2 −

√
s

2

)
|~k2|2

2E2
d|~k2| sin θdθdφ

=
1

(2π)2
1

2
√
s
δ

(
E2 −

√
s

2

)
|~k2|
2

dE2 dcos θdφ . (3.17)

Integrating over the Energy dE2 we can rewrite |~k2| as follows:

|~k2| =
√
E2

2 −m2
t

=

√
s2 − 4sm2

t

2
√
s

, (3.18)

which leads to the final solution for the phase space element

dPS2 =
1

16π2

√
s2 − 4sm2

t

2s
dcos(θ)dφ . (3.19)

Looking at the hadronic cross section (eq. 2.31), the incident flux F needs to be calculated
as well. For a general collision between particles 1 and 2, the incident flux is given by [10]

F = |~v1 − ~v2| · 2E1 · 2E2 .

For the given process, the flux simplifies to:

F = 2s . (3.20)

The final expression for the partonic cross section σ(ij−→kl) can now be written as

σ(ij−→kl) =

∫ 1

−1

1

32π

√
s2 − 4sm2

t

s2
|M |2dcos(θ) . (3.21)
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4 Calculation of the Squared Matrix Element

4 Calculation of the Squared Matrix Element
The next step in calculating the hadronic cross section (eq. 2.30) is determining the
squared matrix element. For this leading order calculation we consider all Feynman dia-
grams proportional to g2s that result in a tt̄-pair in the final state. For the calculation of
the squared matrix element we only look at gg-fusion2, where we look at the s-, t-, and
u-channels. The matrix element is made up of the contributions for the three channels:
M = Ms +Mt +Mu, which results in the squared matrix element:

|M |2 = (Ms +Mt +Mu)(Ms +Mt +Mu)
†

= |Ms|2 + |Mt|2 + |Mu|2 + 2Re(MsM
†
t ) + 2Re(MsM

†
u) + 2Re(MtM

†
u) .

The relevant Feynman diagrams are listed in figure 3.

p1

p2

p3
k1

k2

Ga

Gb

ti

t̄j

(a) s-channel

p1 k1

p3

k2p2

Ga ti

t̄jGb

(b) t-channel
Ga

Gb t̄j

ti

p1

k2

p3

p2

k1

(c) u-channel

Figure 3: Feynman diagrams for gg → tt̄ in three channels.

2An explanation can be found in chapter 2.1
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4 Calculation of the Squared Matrix Element

4.1 S-Channel

The contribution of the s-channel results from the Feynman rules established in sec. 2.3:

Ms =ελ1
α (p1)ε

λ2
β (p2) · ūs1(k1)(−i)gT e

ijγεv
s2(k2)

× (−i)gγεδce

p23
(−g)fabc(gαβ(p1 − p2)γ + gβγ(p2 + p2)α + gγα(−p3 − p1)β)

=
g2

p23
ελ1
α (p1)ε

λ2
β (p2) · ūs1(k1)γγvs2(k2) · T c

ijf
abc

× (gαβ(p1 − p2)γ + gβγ(p2 + p2)α + gγα(−p3 − p1)β) . (4.1)

We further divide the contribution into four factors:

Ms = Ms,colorMs,1Ms,2Ms,3 ,

Ms,color = T c
ijf

abc , (4.2)

Ms,1 =
g2

p23
ελ1
α (p1)ε

λ2
β (p2) , (4.3)

Ms,2 = ūs1(k1)γ
γvs2(k2) , (4.4)

Ms,3 = gαβ(p1 − p2)γ + gβγ(p2 + p2)α + gγα(−p3 − p1)β , (4.5)

to make the calculation clearer. We determine the adjoint of each factor:

M †
s,color = T d

jif
abd , (4.6)

M †
s,1 =

g2

p23
ελ1?
η (p1)ε

λ2?
ϕ (p2) , (4.7)

M †
s,2 = v̄s2(k2)γ

κus1(k1) , (4.8)

M †
s,3 = gηϕ(p1 − p2)κ + gϕκ(p2 + p2)η + gκη(−p3 − p1)ϕ . (4.9)

To calculate |Ms,color|2, we need to average over the (N2− 1)2 possible color combinations
of the gluons and sum over all color combinations of the top quark and the anti-top quark.
Using the relations 2.20,this results in:

|Ms,color|2 =Ms,colorM
†
s,color

=
1

(N2 − 1)2

∑
c,d

∑
i,j

T c
ijT

d
ji

∑
a,b

fabcfabd

=
1

(N2 − 1)2

∑
c,d

∑
i,j

T c
ijT

d
jiTAδ

cd

=
1

(N2 − 1)2
TA

∑
i

∑
d,j

T d
ijT

d
ji

=
1

(N2 − 1)2
TACF

∑
i

δii

=
N

2(N2 − 1)
. (4.10)
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4 Calculation of the Squared Matrix Element

To calculate the remaining squared factors, we need to sum over the spins of the top-
anti-top-quark pair and average over the polarization of the gluons. The calculations are
as follows:

|Ms,1|2 =Ms,1M
†
s,1

=
g4

p43

1

4

∑
λ1,λ2

ελ1
α (p1)ε

λ2
β (p2)ε

λ1?
η (p1)ε

λ2?
ϕ (p2)

(2.25)
=

g4

4p43

(
p1αp2η + p1ηp2α

p1p2
− gαη

)(
p1βp2ϕ + p1ϕp2β

p1p2
− gβϕ

)
, (4.11)

|Ms,2|2 =Ms,2M
†
s,2

2.22
=
∑
s1,s2

ūs1a (k1)γ
γ
abv

s2
b (k2) · v̄s2(k2)cγκcdus1(k1)d

=γγab(k2λγ
λ −mt)bcγ

κ
cd(k1σγ

σ +mt)da

=Tr
(
γγ(k2λγ

λ −mt)γ
κ(k1σγ

σ +mt)
)

=Tr
(
γγk2λγ

λγκk1σγ
σ
)
−m2

t Tr(γγγκ)

=4k1σk2λ(g
γλgκσ − gγκgλσ + gγσgλκ)− 4m2

t g
γκ

=4(kκ1k
γ
2 + kγ1k

κ
2 − gγκ(k1 · k2 +m2

t )) , (4.12)

|Ms,3|2 =Ms,3M
†
s,3

=(gαβ(p1 − p2)γ + gβγ(p2 + p2)α + gγα(−p3 − p1)β)

× (gηϕ(p1 − p2)κ + gϕκ(p2 + p2)η + gκη(−p3 − p1)ϕ) . (4.13)

From here we calculate the contribution to the squared matrix element |Ms|2 using Wol-
fram Mathematica [12] and the FeynCalc package [20].

|Ms|2 =|Ms,color|2|Ms,1|2|Ms,2|2|Ms,3|2

=g4
2N

N2 − 1

(m2
t − t)(m2

t − u)

s2
(4.14)

4.2 T-Channel

The contribution of the t-channel results from the Feynman rules as follows:

Mt =
(
ūs1(k1)(−i)gT a

imγαελ1
α (p1)

)
·
i(/p3 +mt)

p23 −m2
t

δmn ·
(
ελ2
β (p2)(−i)gT b

njγ
βvs2(k2)

)
=

−ig2

p23 −m2
t

· ελ1
α (p1)ε

λ2
β (p2) · T a

imT b
mj · ūs1(k1)γα(/p3 +mt)γ

βvs2(k2) . (4.15)
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4 Calculation of the Squared Matrix Element

The contribution is divided into three factors Mt = Mt,1 ·Mt,2 ·Mt,color, with the adjoint
of each factor, respectively:

Mt,1 =
−ig2

p23 −m2
t

· ελ1
α (p1)ε

λ2
β (p2) M †

t,1 =
ig2

p23 −m2
t

· ελ1?
σ (p1)ε

λ2?
τ (p2) , (4.16)

Mt,2 = ūs1(k1)γ
α(/p3 +mt)γ

βvs2(k2) M †
t,2 = v̄s2(k2)γ

τ (/p3 +mt)γ
σus1(k1) , (4.17)

Mt,color = T a
imT b

mj M †
t,color = T b

jkT
a
ki . (4.18)

This is done analogously to the calculation of the s-channel to make the calculation clearer.
Averaging over the polarization of the gluons, we get:

|Mt,1|2 =Mt,1M
†
t,1

=
g4

(p23 −m2
t )

2

1

4

∑
λ1,λ2

ελ1
α (p1)ε

λ2
β (p2)ε

λ1?
σ (p1)ε

λ2?
τ (p2)

=
g4

4(p23 −m2
t )

2

(
p1αp2σ + p1σp2α

p1p2
− gασ

)(
p1βp2τ + p1τp2β

p1p2
− gβτ

)
. (4.19)

We sum over the spins of the top- anti-top quark pair to get:

|Mt,2|2 =Mt,2M
†
t,2

=
∑
s1,s2

ūs1(k1)aγ
α
ab(/p3 +mt)bcγ

β
cdv

s2(k2)d · v̄s2(k2)eγτef (/p3 +mt)fgγ
σ
ghu

s1(k1)h

=(/k1 +mt)ha · γαab(/p3 +mt)bcγ
β
cd · (/k2 −mt)de · γτef (/p3 +mt)fgγ

σ
gh

=Tr
(
(/k1 +mt) · γα(/p3 +mt)γ

β · (/k2 −mt) · γτ (/p3 +mt)γ
σ
)
. (4.20)

To calculate |Mt,color|2, we average all possible color combinations similar to eq. 4.10,
using relations 2.20:

|Mt,color|2 =Mt,colorM
†
t,color

=
1

(N2 − 1)2

∑
m,k

∑
a,b

∑
i,j

T a
imT b

mjT
b
jkT

a
ki

=
1

(N2 − 1)2

∑
m,k

∑
a,i

T a
imCF δmkT

a
ki

=
1

(N2 − 1)2
C2
FN

=
1

4N
. (4.21)
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4 Calculation of the Squared Matrix Element

Using Mathematica [12], this results in the following for the contribution to the squared
matrix element |Mt|2:

|Mt|2 =|Mt,1|2|Mt,2|2|Mt,color|2

=− g4

2N(m2
t − t)2s2

[
4m8 + 2m6(t+ 3u)−m4(3t2 + 24tu+ 5u2)

+m2(t3 + 13t2u+ 9tu2 + u3)− tu(3t2 + u2)

]
. (4.22)

4.3 U-Channel

The contribution of the u-channel results from the Feynman rules as follows:

Mu =
−ig2

p23 −m2
t

· ελ1
α (p1)ε

λ2
β (p2) · T b

inT
a
nj · ūs1(k1)γβ(/p3 +mt)γ

αvs2(k2) . (4.23)

The only difference compared to the t-channel is that the top and anti-top quarks are
switched, which will lead to a contribution to the squared matrix element |Mu|2 where u
and t switch places compared to |Mt|2 (eq. 4.22). Because of this, the calculations are
similar to those for the t-channel and are performed in Mathematica [12]. This results
in the final contribution to the squared matrix element |Mu|2 of the u-channel being the
following:

|Mu|2 =− g4

2N(m2
t − u)2s2

[
4m8 + 2m6(3t+ u)−m4(5t2 + 24tu+ 3u2)

+m2(t3 + 9t2u+ 13tu2 + u3)− tu(t2 + 3u2)

]
. (4.24)

4.4 Cross-Channels

As can be seen in equation 4.1, interference terms arise when calculating the total squared
amplitude, which must also be taken into account. We will calculate the interference term
Re
{
MtM

†
u

}
= MtM

†
u in detail and keep the calculation for the other two terms short

using Mathematica. We start by dividing the interference term into three different factors
similar to those in the previous sections:

Mt,1 =
−ig2

t2 −m2
t

· ελ1
α (p1)ε

λ2
β (p2) M †

u,1 =
ig2

u2 −m2
t

· ελ1?
σ (p1)ε

λ2?
τ (p2) , (4.25)

Mt,2 = ūs1(k1)γ
α(/pt +mt)γ

βvs2(k2) M †
u,2 = v̄s2(k2)γ

σ(/pu +mt)γ
τus1(k1) , (4.26)

Mt,color = T a
imT b

mj M †
t,color = T a

jkT
b
ki . (4.27)

Averaging over the polarizations of the gluons, we get the following:

Mt,1M
†
u,1 =

g4

4(t−m2
t )(u−m2

t )

(p1αp2σ + p1σp2α
p1p2

− gασ

)(p1βp2τ + p1τp2β
p1p2

− gβτ

)
(4.28)
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4 Calculation of the Squared Matrix Element

We sum over the spins of the top- and anti-top-quark pair to get:

Mt,2M
†
u,2 =

∑
s1,s2

ūs1(k1)aγ
α
ab(/pt +mt)bcγ

β
cdv

s2(k2)d · v̄s2(k2)eγσef (/pu +mt)fgγ
τ
ghu

s1(k1)h

=(/k1 +mt)haγ
α
ab(/pt +mt)bcγ

β
cd(/k2 −mt)deγ

σ
ef (/pu +mt)fgγ

τ
gh . (4.29)

To calculate the color term, we average all possible color combinations using relations 2.20:

Mt,color ·M †
u,color =

1

(N2 − 1)2

∑
m,k

∑
a,b

∑
i,j

T a
imT b

mjT
a
jkT

b
ki

=
1

4(N2 − 1)2

∑
m,k

∑
i,j

(
δikδmj −

1

N
δimδjk

)(
δmiδjk −

1

N
δmjδki

)
=

1

4(N2 − 1)2

∑
i,j

(
δijδji −

2

N
δiiδjj +

1

N2 δijδij

)
=

1

4(N2 − 1)2
(N +

1

N
− 2N)

=− 1

4N(N2 − 1)
. (4.30)

Using Mathematica, the three terms are combined and the interference term for the t- and
u-channel comes out as:

MtM
†
u =

g4

2N(N2 − 1)

(m4
t − tu)(8m4

t − 4m2
t (t+ u) + (t− u)2)

s2(t−m2
t )(u−m2

t )
. (4.31)

We can calculate the remaining interference terms between the s- and t-channel and the
s- and u-channel in a similar way:

MsM
†
t = − g4N

2(N2 − 1)

2m6
t − 2m4

t (t+ 2u) +m2(t2 + 4tu+ u2)− 2t2u

s2(m2 − t)
, (4.32)

MsM
†
u = − g4N

2(N2 − 1)

2m6
t − 2m4

t (2t+ u) +m2(t2 + 4tu+ u2)− 2tu2

s2(m2 − u)
. (4.33)

This results in the following squared matrix element using eq. 4.1:

|M |2 =− g4

2N(N2 − 1)s2(m2
t − t)2(m2

t − u)2
(4.34)

×
(
6m8

t −m4
t (3t

2 + 14tu+ 3u2) +m2
t (t

3 + 7t2u+ 7tu2 + u3)− tu(t2 + u2)
)

×
(
−2m2

t (N
2 − 2)(t+ u−m2) + (N2 − 1)(t2 + u2)− 2tu

)
.
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5 Numerical Evaluation
After we have established the partonic cross section in equation 3.21 and the squared
matrix element in equation 4.34, the hadronic cross section (eq. 2.30) can be evaluated
numerically using Python. First, we define the integration limits and generate a series of
evenly distributed random events. Then certain cuts are applied to the events to ensure
consistency with the experimental data. After that the hadronic cross section can be
calculated numerically using the Monte Carlo method. We create a set of unweighted
events using the Hit-or-Miss Monte Carlo method, which are stored using the LHE data
format [2]. Finally, two normalized differential cross sections as a function of rapidity the
yCM and the invariant mass mtt̄ are calculated from the unweighted events and compared
to experimental data in [13].

5.1 Integration Bounds

First we need to generate a set of random and equally distributed points for the integration
variables x1, x2 and cos(θ). We start by determining the integration bounds for the
integration over x1, x2 and cos(θ).

σhad =
∑
i,j,k,l

∫ ∫
dx1dx2fi(x1)fj(x2)σ(ij−→kl)

Although the momentum fractions are defined to be between 0 and 1 x1, x2 ∈ [0, 1],
the partons need to have enough energy to produce the final state, which leads to the
confinement condition [14]:

m2
out ≤ s = x1x2S ⇔ τ0 ≡

4m2
t

S
≤ x1x2 , (5.1)

where mout = 2mt is the mass of the top quark pair and τ0 is the threshold for the
momentum fractions. This results in the following integration bounds for x1 and x2:

σhad =

∫ 1

τ0

dx1
∫ 1

τ0
x1

dx2
∑
i,j

fi(x1)fj(x2)

∫ 1

−1

∫ 2π

0

1

16π2

√
s2 − 4sm2

t

4s2
|M |2dcos(θ)dφ .

5.2 Generating Integration Variables

The random, uniformly distributed events should be generated so they sample the function
in a way that accurately reflects its behavior. One can see in figure 6 that the cross section
shows a big increase for small x1 and x2. One possibility to account for this behavior is
to substitute the momentum fraction logarithmic as follows:

x̃1 = ln(x1) ,
x̃2 = ln(x2) ,

(5.2)

which ensures that more points are generated in this area. The distribution of generated
points can be seen in figure 4, where the logarithmic distribution is clearly visible. Taking
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into account the Jacobi determinant J = x1x2 the hadronic cross section can be written
as

σhad =

∫ 0

ln(τ0)
dx̃1x1

∫ 0

ln
( τ0
x1

) dx̃2x2
∑
i,j

fi(x1)fj(x2)

×
∫ 1

−1
dcos(θ) 2π

16π2

√
s2 − 4sm2

t

4s2
|M |2 .

(5.3)

It must be taken into account that the variables s, t and u depend on x1, x2 and cos θ and
must be transformed according to equations 3.11.
To evaluate the cross section numerically, a set of N random and equally distributed points
is created for each variable. For x̃1 and x̃2, one generates random numbers in the interval
[ln(τ0), 0] respectably. Displaying all points who fulfill the condition 5.1 on a logarithmic
scale (fig. 4b) will show a linear boundary condition. To enhance efficiency, all generated
points who did not pass condition 5.1 will be mirrored along the linear boundary, making
them usable in further calculation. Summed up, we generate N random and equally
distributed events for the variables:

x̃1 ∈ [ln(τ0), 0] ,
x̃2 ∈ [ln(τ0), 0] ,

cos(θ) ∈ [−1, 1] ,

(5.4)

with the confinement condition

ln(τ0) ≤ x̃1 + x̃2 ≤ 0 . (5.5)

(a) linear scale. (b) logarithmic scale.

Figure 4: Distribution of the momentum fractions x1 and x2 displayed on linear and
logarithmic scale. For better visibility only every hundredth event is shown.
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5.3 Cuts

To compare the theoretically calculated differential cross sections with experimental mea-
surements [13], experimental limitations have to be taken into account. The first constrain
is the rapidity of the CM system [5], the second constrain is given by the invariant mass
of the top quark pair system [6]:

|yCM | ≤ 2.5 ,

mtt̄ ∈ [345, 1600]GeV .
(5.6)

These constraints need to be addressed through cuts in the variables. The rapidity of the
CM system is given by

yCM =
1

2
ln
(
x1
x2

)
(5.7)

and the invariant mass is given by

m2
tt̄ = s = x1x2S . (5.8)

All variables who do not fulfill the conditions 5.6 are cut out and will not be used to
calculate the cross section. Table 1 gives an overview on the cut conditions and lists the
number of rejected and accepted events. Over all roughly 30% of the events got rejected.

Table 1: Overview on the number of rejected and accepted events with color code corre-
sponding to fig. 5.

Cut Condition Number of Events Color
mtt̄ < mmin 0
mtt̄ > mmax 2618324
|yCM | > ycut 418903
Number of rejected events 3037227
Number of accepted events 6962773
Total number of events 10000000

Figure 5 shows the distribution of the rejected events on the left side and the distribution
of the accepted events on the right side who will be used in the calculations later on.
Blue points represent accepted events, where red and orange points represent events who
got rejected because the invariant mass or the rapidity |yCM | exceeded the experimental
limitations. Discussing the effects of the cut conditions, one can see that the upper limit
of the invariant mass cuts out events for large values of x1 and x2, where as the limit on
the rapidity is responsible for cutting out events with a large difference between the x1
and x2values, which is in alignment to the condition 5.6. Both cut conditions lead to a
symmetrical cut in the generated points for x1 and x2. Looking at the cos θ distribution, we
see that the upper limit of the invariant mass rejects events for large x1 and x2, regardless
of the value of cos θ. Similarly, the limitation of the rapidity |yCM | is responsible for
rejecting events for both very small and very large x1 and x2 regardless of the value of
cos θ.
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Figure 5: Distribution of all generated variables on left, where the color indicates the
cut condition (see tab. 1). On the right are all points who passed the cuts. For better
visibility only every hundredth event is shown.
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5.4 Evaluation of the Hadronic Cross Section

To evaluate the hadronic cross section in equation 5.3, the partonic distribution functions
(PDF) need to be implemented. We use the PDF set ”CT18NLO” [4], where one needs
to take into account that each PDF includes a factor of x. At last, the Mandelstamm
variables s, t and u who are used in the Matrix element need to be expressed through the
variables x1, x2 and cos θ as shown in equations 3.11. Now, the hadronic cross section can
be calculated using the Monte Carlo method as explained in section 2.5

I ≈ V

N

N∑
k

ω(x
(k)
1 , x

(k)
2 , cos θ(k)) , (5.9)

where we define the integral part as

ω(x1, x2, cos θ) = x1x2
∑
i,j

fi(x1)fj(x2)
2π

16π2

√
s2 − 4sm2

t

4s2
|M |2 , (5.10)

and the Volume V as
V = 2

(0− ln(τ0))2

2

Naccepted

N
. (5.11)

The Area over the variables x1 and x2 is a triangle and can be easily calculated. This area
is multiplied by a factor of 2 derived from the variable cos θ. To account for the cuts in
the events caused by the experimental limitations, the volume is multiplied by a ratio of
accepted events to total events.
The 3D plots in figure 6 visualize the strength of the contribution to the cross-section
for the variables x1, x2 and cos θ. The x1-x2 plane in the first figure is identical to the
distribution shown in figure 5. In the brightly colored region the variables contibute most
to the total cross section, which is the case for small values of x1 and x2 and for the regions
around cos θ = ±1. The dark regions are kinematically possible but hardly produce any
events. This aligns with the behavior of the PDF shown in figure 1, where it is shown that
gluons carry the significant amount of momentum for small x. The hadronic cross section
as shown in equation 5.3 can now be calculated to

σhad = (175.79± 0.10)pb . (5.12)

The uncertainty is given by the uncertainty of the Monte Carlo approximation and cannot
be compared directly to uncertainties of experimental data. Inclusive top-quark pair
production cross-section measurements at 8TeV from the CMS collaboration [1] determine
the cross section to be

σtt̄CMS
= 244.9± 1.4(stat.)+6.3

−5.5(exp.+ theo.)± 6.4(lumi.)pb . (5.13)

The measurement has a relative deviation of about 25% from the LO prediction, which is
acceptable considering the broad approximations assumed here. This leads to the conclu-
sion that the neglected quark anti-quark annihilation and higher order corrections have
significant impact on the total cross section which needs to be studied further in future
calculations. Additionally the impact of the assumed energy scale Q needs to be studied
and combined with uncertainties from the PDFs and MC method into an uncertainty for
better comparison to the CMS data.
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5 Numerical Evaluation

Figure 6: Three dimensional distribution of the integral part ω (eq. 5.10) of the hadronic
cross section as a function of x1, x2 and cos θ. The color codes the strength of the
contribution to the cross-section.
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5 Numerical Evaluation

Figure 7: Distribution of accepted events after unweighting using Hit-or-Miss Monte Carlo.
For better visibility only every tenth event is shown.

5.5 Differential Cross Sections

Compared to total cross sections, normalized differential cross sections can provide more
information about the accuracy of the used boundaries and approximations, although it
is not possible to make statements about the actual value of the cross section because
of the normalization. We will compare the normalized differential tt̄ cross section as a
function of the rapidity ytt̄ and as a function of the invariant mass mtt̄ of the top quark
pair to the experimental data in [13], respectively the tables [5] and [6]. To calculate the
differential cross sections, the Hit-or-Miss Monte Carlo Method is used in combination
with the LHE data format [2]. We generate N = 500000 unweighted events as described
in section 2.5.1 and compute a LHE file using the unweighted events. For this number
of events no relevant fluctuations can be observed while keeping the computation time
manageable. The distribution of the accepted events for x1, x2 and cos θ can be seen in
figure 7.
Comparing the unweighted distribution in figure 7 to figure 6, one can see the strength
of the contribution to the cross section reflected in the distribution of the variables after
unweighting. Small x1 and x2 are dominant in 7, and one can see that values for cos θ ≈ ±1
contribute more to the cross section compared to values closer to 0. This proves the
unweighting method to be successful in reducing the size of generated events.
Next up we will analyze the differential cross sections and compare them to the data in
[13]. The normalized cross section in each bin i of each observable X is determined through
the relation:

1

σ

dσi
dX

=
1∑
j xj

xi

∆X
i

, (5.14)

where xi represents the number of signal events measured in data in bin i, and ∆X
i is the

bin width. The differential cross section is normalized by the sum of xi over all bins [13].
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5 Numerical Evaluation

(a) Normalized differential tt̄ production cross section as a function of mtt̄.

(b) Normalized differential tt̄ production cross section as a function of yCM .

Figure 8: Normalized differential tt̄ production cross section as a function of mtt̄ and yCM .
The leading order predictions are compared to experimental Data from [13].
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5 Numerical Evaluation

Looking at the normalized differential tt̄ production cross section as a function of mtt̄ in
figure 8a, we observe multiple relevant discrepancies between the leading order prediction
and the data. The prediction shows a peak for the mtt̄ range (400−470)GeV, whereas the
data measures a steady incline for lower mtt̄. This is most likely caused by the multiple
approximations done in this leading order calculation. The quark- anti-quark annihilation
along with higher order corrections will most likely have a non negligible impact in the
differential cross section. These terms have different effects on each bin, where it is hard
to quantify the exact effect the corrections will have on each bin respectively. The leading
order calculation predicts the measurements accurately in the range (400− 550)GeV, al-
though overshooting significantly for mtt̄ > 550GeV. Overall the leading order calculation
falsely predicts a peak for mtt̄ ≈ 435.3GeV, but the general shape of the differential cross
section for mtt̄ > 550GeV can be predicted.
Analyzing the normalized differential tt̄ production cross section as a function of yCM

in figure 8b, we see a roughly symmetrical plot around zero. The data shows the most
prominent asymmetry at yCM ≈ 0, with a bigger differential cross section for rapidity
in range [−0.3, 0] compared to the range [0, 0.3]. The leading order calculation predicts
a symmetrical behavior, with statistical fluctuations appearing when less events N are
created. The LO calculation predicts the overall shape of the differential cross section
accurately, predicting a roughly symmetrical decline with higher rapidity. The prediction
is accurate in ranges |yCM | ∈ [0.6, 1.3], while undershooting for bigger rapidity |yCM | ∈
[1.3, 2.5] and generally overshooting in the range yCM ∈ [−0.6, 0.6]. These discrepancies
are again most likely caused by not including the quark- anti-quark annihilation and NLO
and NNLO calculations.
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6 Conclusion & Outlook

6 Conclusion & Outlook
The hadronic cross section of tt̄-production in proton-proton collisions at LHC is deter-
mined using a Monte Carlo framework for a leading order calculation. The phase-space
element as well as the squared matrix element are calculated analytically partially sup-
ported by Mathematica. Because this process is gluon dominant, only gg-fusion is taken
into account. For the numerical analysis a series of equally and random logarithmic dis-
tributed events are generated who fulfill the confinement condition, given by the minimum
energy required to produce the final state. Additional cuts for the rapidity of the CM sys-
tem and the invariant mass of the top quark pair system are introduced to account for
experimental limitations. The distribution of the events are displayed in figure 5, where
both cut conditions result in symmetrical cuts, cutting out events with large values of
x1 and x2 as well as rejecting events for large differences between x1 and x2. The three
dimensional visualization of the cross section is shown in figure 6, where we see that small
values of x1 and x2 have the biggest impact to the CS, combined with values around
cos θ ≈ ±1. This confirms the gluon dominance of this process. The cross section from
our LO calculation

σhad = (175.79± 0.10)pb

compared to measurements done by CMS collaboration

σtt̄ CMS = 244.9± 1.4(stat.)+6.3
−5.5(exp.+ theo.)± 6.4(lumi.)pb

shows a relative deviation of about 25% from the CMS measurement. The uncertainty
listed in our results derives from the uncertainty of the Monte Carlo method and cannot
be compared to experimental uncertainties. This deviation is acceptable considering the
approximations assumed here. We assume that the discrepancy is caused by neglecting
the quark- anti-quark annihilation and NLO or NNLO corrections.
A series of unweighted events is generated using the Hit-or-Miss Monte Carlo method from
which LHE-format events are created. These are used to calculate normalized differential
tt̄ production cross sections as a function of mtt̄ and yCM , shown in figure 8. The LO
calculation predict the overall shape of the differential CS, although incorrectly predicting
a peak at mtt̄ ≈ 435.3GeV and failing to predict a slight asymmetrical distribution in
the normalized differential CS as a function of yCM . The neglect of the quark- anti-
quark annihilation and NLO and NNLO corrections are assumed to be responsible for the
discrepancies, having complex influence on each bin independently.
This leading order calculation lays out a solid foundation for further improvement. Future
work should include quark anti-quark annihilation and current state of the art corrections
to study how these effect the accuracy of our predictions. Additionally, future work should
focus on quantifying an uncertainty by varying the energy scale Q, including the uncer-
tainties from PDFs and combine these in some way with the uncertainty from the MC
method.
In conclusion, this thesis gave me valuable insights in the working methods of theoretical
particle physics. I learned a lot about the theoretical framework and gained experience
in analytical and numerical calculation methods. We show that for this process even LO
calculations predict experimental measurements in the correct order of magnitude, which
forms a foundation for future improvements.
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Appendix

A Appendix

Gell-Mann Matrices

In analogy to the Pauli matrices for SU(2), the eight Gell-Mann matrices λa (a = 1, . . . , 8)
span the Lie algebra of SU(3). They are defined as the following 3 × 3 Hermitian and
traceless matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (A.1)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

They satisfy the normalization condition

Tr(λaλb) = 2 δab, (A.2)

and the commutation relations

[λa, λb] = 2ifabcλc, (A.3)

where fabc are the totally antisymmetric SU(3) structure constants. The Gell-Mann ma-
trices are widely used in QCD to represent the color degrees of freedom of quarks and
gluons.

Dirac Matrices

The Dirac matrices γµ are defined as a set of 4×4 matrices that satisfy the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν I4, (A.4)

where the brackets represent the anticommutator, gµν is the metric tensor of Minkowski
space and I4 is the 4× 4 identity matrix. The matrices can also be written using the 2× 2
identity matrix I2

γ0 =

I2 0

0 −I2

 , γi =

 0 σi

−σi 0

 , i = 1, 2, 3, (A.5)

with σi the Pauli matrices. One can impose the relations

(γ0)† = γ0 (γµ)† = −γµ = γ0γµγ0 for µ = 1, 2, 3.

The Feynman slash notation is defined by

/a := γµaµ

for any four vector a.
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Appendix

Relevant Identities

The following identities follow from the fundamental anticommutation relation and are
used in the calculations:

γµγµ = 4I4 (A.6)
γµγνγµ = −2γν (A.7)

γµγνγργµ = 4gνρI4 (A.8)

Trace Relations

The cyclic property of the trace is fundamental:

Tr(AB) = Tr(BA). (A.9)

It is invariant under circular shifts and its a linear mapping:

Tr{ABCD} = Tr{BCDA} = Tr{CDAB} = Tr{DABC} (A.10)
Tr{A+B} = Tr{A}+ Tr{B} (A.11)

Tr{cA} = cTr{A} (A.12)

for all square matrices A and B and all scalars c ∈ C.
For the Dirac matrices, important trace identities are:

Tr(γµ) = 0, (A.13)
Tr(γµγν) = 4gµν , (A.14)

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) . (A.15)

Traces with an odd number of Dirac matrices vanish:

Tr(γµ1γµ2 · · · γµ2n+1) = 0. (A.16)

Metric Tensor

The metric tensor gµν defines the scalar product in Minkowski space. In the mostly-minus
convention,

gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.17)

it allows for raising and lowering of Lorentz indices:

Aµ = gµνA
ν , Aµ = gµνAν . (A.18)

Contractions with the metric also reproduce the Kronecker delta:

gµνgνρ = δµρ. (A.19)
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