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1. Einleitung

Feynmans quantenmechanischer Pfadintegralformalismus stellt eine alternative Formulierung
der QQuantenmechanik dar. Er bietet neben einer sehr anschaulichen Beschreibung der Quan-
tenmechanik zahlreiche Anwendungen in der statistischen Physik, Festkorperphysik und der
Quantenfeldtheorie[Mac99].

Die direkte Berechnung des Pfadintegrals ist oft miihsam, sodass nach MacKenzie die meiste
Arbeit mit Pfadintegralen darin besteht, sie letztendlich gar nicht auswerten zu miissen[Mac99].
Des Weiteren sind nicht immer analytische Lésungen vorhanden, sodass die Verwendung nu-
merischer Methoden erforderlich ist. Die Pfadintegraldarstellung liefert hierbei eine hilfreiche
Relation zwischen statistischer Mechanik und Quantenmechanik, welche den Gebrauch der aus
der statistischen Physik stammenden Monte-Carlo-Methode motiviert. Unter Verwendung des
Metropolis-Hastings- Algorithmus werden in dieser Arbeit eindimensionale nichtrelativistische
quantenmechanische Modelle, wie der harmonische Oszillator und eine Form des anharmo-
nischen Oszillators untersucht. Es wird hierbei die euklidische Darstellung des Pfadintegrals
gewdhlt. Die einzelnen Pfade werden auf einem diskreten imagindren Zeitgitter dargestellt
und so niederenergetische Energieeigenwerte und Aufenthaltswahrscheinlichkeitsdichten des
Grundzustandes ermittelt. Zudem werden fiir ein tiefes Doppelmuldenpotential Instantonen-
konfigurationen behandelt.

Diese Arbeit ist wie folgt gegliedert: In dem Kapitel 2| wird der Pfadintegralformalismus vor-
gestellt und die Analogie zur statistischen Physik erldutert. In dem danach folgenden Kapitel
werden die Grundlagen der numerischen Evaluation von Integralen mit Hilfe der Monte-
Carlo-Methode dargelegt und die Anwendung des Metropolis-Hastings-Algorithmus auf das
gegebene physikalische Modell beschrieben. Das Kapitel [d] prasentiert die numerischen Er-
gebnisse des harmonischen und anharmonischen Oszillators. In dem Kabpitel [5| werden die
Ergebnisse diskutiert und ein kurzer Ausblick gegeben. Zuletzt werden im Anhang [A] einige

technische Details ndher erldutert.
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2. Pfadintegralformalismus

In diesem Kapitel wird der Pfadintegralformalismus vorgestellt und die Grundidee der Zeitdis-
kretisierung erldutert. Die Ausfithrungen beziehen sich hierbei hauptséchlich auf die Quellen
[CEF&1), Mor07].

Ein nicht relativistisches Teilchen der Masse m vollfiihrt eine eindimensionale Bewegung in ei-

nem zeitunabhéngigen Potential V' (x), wobei der Hamiltonoperator folgende Form einnimmt:

P2
H=—+V(z). 1
v 1)
Die Wahrscheinlickeitsamplitude, dass sich das Teilchen zunichst zur Zeit t = t, am Ort x4

und danach zu dem Zeitpunkt ¢t = t; am Ort x; befindet, ist durch den Propagator K gegeben:

K (xp,tp; Tasta) = (p(ty)[Ta(ta)) = (wp|eTEa=t)/0|g ) (2)

iHt/h 3]s Zeitentwicklungsoperator bezeichnet wird.

wobei der Operator e
In der quantenmechanischen Formulierung des Pfadintegrals ergibt sich diese Ubergangswahr-
scheinlichkeit als Summation tiber alle moglichen Wege, welche den Anfangspunkt x,(t,) mit
dem Endpunkt x3(ty) vekniipfen. Hierbei wird jeder Pfad mit einem Phasenfaktor e~ ge-
wichtet, wobei S fiir die jeweilige klassische Wirkung des Pfades steht. In dieser Schreibweise

ergibt sich die Ubergangsamplitude zu

K(‘rbatb; xtuta) = Z €iS[Pfad]/h. (3)
Alle Pfade von a nach b

Um von obiger Gleichung Gebrauch zu machen, wird ein Zeitgitter eingefiihrt: Das Zeitinter-
vall [tq,ts] wird hierzu in Segmente der Breite ¢ und Anzahl N unterteilt, wobei dem Beginn
eines jeden Segments eine Zeitkoordinate ¢;,j = 0,1...N und eine kontinuierliche Ortskoor-
dinate x(t;) = z; zugeordnet wird. Die Punkte werden untereinander mit geraden Linien
verbunden und es gilt zg = z, und zxy = xp.

Abbildung [I] visualisiert die Darstellung eines Pfades auf dem beschriebenen Zeitgitter.
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Abbildung 1: Diskretisierung der Zeit zur Darstellung eines Pfades.
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Unter Verwendung der Gleichung kann so folgende Form der Ubergangsamplitude gewon-

nen werden:
m \V/2 )
K(antyizoto) = | I s () o0 (5Slel) OV =o0) @
wobei die Wirkung des diskreten Zeitgitters gegeben ist durch

g ! (=) vy )

Das Kontinuumslimit beschreibt fiir ein konstantes Zeitintervall [¢,,tp] den Grenzfall N — oo

und dementsprechend € — 0. In diesem Fall wird auch folgende Schreibweise verwendet:
i
K(xzn,tn;zoto) = /[d:z:] exp <ﬁ5[$]), (6)

wobei der Klammerausdruck [dz] ein Ausdruck fiir das Kontinuumslimit ist und somit [[dx]
die Integration iiber alle Funktionen z(¢) mit den entsprechenden Randbedingungen be-

schreibt. Das Wirkungsfunktional S[z] kann wie folgt geschrieben werden:
N m
S[a] = / at[2i2 - v(). (7)
to 2

2.1. Euklidisches Pfadintegral

Der oszillierende Integrand exp(iS[x]/h) des quantenmechanischen Pfadintegrals ist mathe-
matisch schwer zu handhaben. Um dieses Problem zu umgehen, wird die euklidische Zeit 7
eingefiihrt:

T=1t, 7>0. (8)

Diese Transformation wird als Wickrotation bezeichnet und fiihrt auf die euklidische Wirkung
Sk

tn

s= [ ar[3# —V(:v)]:é/TNdT[Qx FV(@)] = S (9)

to 70
In dieser Formulierung wird jeder Pfad mit einem exponentiellen Dampfungsfaktor gewichtet

und fiir die euklidische Ubergangsamplitude Kz folgt
Kg(zn,7N;%0,70) ~ / H dxj exp < SE[J}]]> (N — 0). (10)
Die diskretisierte euklidische Wirkung ist gegeben durch:

= i_vj [ <$“)2 +V(x;)

; (11)

mit a = ie.
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2.2. Beziehung zur statistischen Physik

Das euklidische Pfadintegral fiihrt auf eine formale Beziehung zur kanonischen Zustandssum-
me der statistischen Mechanik. Die thermodynamische Temperatur § erfiillt in diesem Fall
die Wahl:

T, =0 und 7, = ph. (12)

Hieraus folgt mit der Definition der Zustandssumme Z () fiir die inverse Temperatur § der

Zusammenhang[Mac99)|

Z =Tr(e PH) = ZeiﬁE” = /dxbdxaé(a}a — xp) Kg(xp,0h; 24,0). (13)
n

Im Folgenden wird A = k, = 1 verwendet. Die Zustandssumme ist somit selbst ein Pfadinte-
gral. Die Integration erfolgt zunéchst, bedingt durch die Delta-Distribution, im Propagator
iiber Wege mit gleichem Anfangs- und Endpunkt. Die anschliefende Integration iiber z; sum-
miert {iber alle periodischen Wege.
Aufgrund dieses Zusammenhangs bietet sich die Benutzung statistischer Methoden an, um
Erwartungswerte des quantenmechanischen Systems zu erhalten. Der Erwartungswert eines

Operators A im kanonischen Ensemble in der Quantenstatistik wird definiert als
(A) = Tr(e PHA)/ Tr(e PH) = Tr(e P A) /2. (14)
In der Pfadintegraldarstellung ergibt sich folgende dquivalente Darstellung:

> Hf\;l da; A(xy, a,. . . xn)e OB
S5 Ty daieSele

: (15)

wobei A(x1,x9,...,xy) eine Funktion der Koordinaten x; ist.
Die Betrachtung eines quantenmechanischen Systems mit der vollstdndigen orthonormierten

Basis |n) und den diskreten Energieniveaus E,,n = 0,1,... liefert fiir den Grenzfall § — oo

der Gleichung
>, e PP (n]Aln)

Zn efﬁEn

Dies ist in guter Ubereinstimmung mit der Analogie zur statistischen Physik: Nihert sich die

(4) = — (0] 410). (16)

Temperatur 1/8 dem Nullpunkt, frieren die statistischen Fluktuationen aus und es ergeben
sich Grundzustandserwartungswerte.

Im Weiteren wird die Zeit T statt der inversen Temperatur § verwendet. Aus obiger Gleichung
kénnen auch Grundzustandsenergien bestimmt werden. Da jedoch zu keinem Zeitpunkt
der Mittelwert der quadratischen Geschwindigkeit existiert|KR14, [CF&I1],

i1 — x)? 11
1im<(m+1—2m)>:i.ﬂ (17)
a—0 a m a
ist der Gebrauch des Virial-Theorems
1 1
—m (v]) = 5 (@ V'(2)) (18)
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zur Berechnung der kinetischen Energie zweckméifig. Fiir die Grundzustandsenergie Ey folgt:

Ey = Jim ( / [dz]e=Sele B:rV’(:v)+V(x)] / / [dx}e‘sEM>. (19)

Hohere Energieniveaus sind iiber die Definition von Korrelationsfunktionen zugénglich. In der

statistischen Physik sind diese wie folgt definiert:
C" = Tre BT x(r)a(m). .. () /2. (20)

In der Quantentheorie werden diese als n-Punkt Propagator Funktionen bezeichnet. Um eine

kompakte Form zu erhalten, wird zunichst das erzeugenden Funktional definiert
Z(J) = Tr e~ THLT Jiw], (21)

wobei J; eine komplexe Zahl ist. Obige Form enthélt alle Informationen iiber das System,

sodass sich mit §.J;/8J = 0; zunéchst folgende Form ableiten 1dsst:

o o
cm = — . —Z(J)|j=o- 22

s 57 2 l=o (22)
Die verbundene n-Punkt Propagator Funktion ergibt sich iiber den Logarithmus von Z zuﬂ

5 5
cm = ST 57 mZ()=o. (23)

Als Beispiel kann die verbundene Zweipunktfunktion betrachtet werden:
O = (a(r)x(2)) — (@(m)) {@(72)) - (24)
Unter Beriicksichtigung der Gleichung und folgt im Grenzfall T — oo

] (2) — _(En_EO)T 2
im0 = 3o O (O)ln) P (25)

Die effektive Masse ist fiir eine Korrelationsfunktion wie folgt definiert[Mor07]:

Meps(r) = lim In <C(T)) (26)

Fiir das betrachtete Beispiel bildet sich so fiir 7 — oo ein Plateau, welches mit der Energieliicke

zwischen Grundzustand und dem ersten angeregten Zustand korrespondiert:

Mes(T) = lim (m [09 (r)/CO (7 + AT)]) T20 AR (B — E). (27)

T—o0

'Tm Gegensatz zu Gleichung ist diese Form um einen Konstantanteil bereinigt.
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Die Aufenthaltswahscheinlichkeitsdichte |1 (z)| kann nach folgender Gleichung bestimmt wer-

den:
(wle” T |z) = Ze EuT (x|n) (nfa) T2 e BoT gy (2) 2. (28)

Die Analogie zur statistischen Physik motiviert den Gebrauch der Monte-Carlo-Methode zur
Bestimmung von Erwartungswerten des quantenmechanischen Systems. Diese Methode wird

im folgenden Kapitel beschrieben.

3. Monte-Carlo-Methode

In diesem Kapitel werden die Grundlagen der Monte-Carlo-Methode dargelegt und die An-
wendung auf das gegebene physikalische Modell beschrieben. Hierzu wird zunéchst von einem
Beispiel ausgegangen, um die Schwéchen der einfachen Monte-Carlo-Integration hervorzuhe-
ben. Als Alternative zu der einfachen Integration wird das Importance Sampling eingefiihrt.
Schlieflich werden Markow-Ketten behandelt und der Metropolis-Hastings-Algorithmus er-
lautert.

Die numerische Behandlung von Erwartungswerten wie in Gleichung ist Ziel dieses Ka-
pitels. Diese basiert auf der Berechnung eines N-dimensionalen Integrals. Zusétzlich wird das
Integral im Kontinuumsfall N — oo unendlich grofs. Herkémmliche numerische Verfahren wie
Trapezverfahren oder Simpson’s Regel erfordern einen grofsen Rechenaufwand zur Berechnung
dieser Integrale. Die im Folgendem beschriebene Monte-Carlo-Methode bietet eine Alternative

motiviert durch die statistische Mechanik.

3.1. Einfache Monte-Carlo-Integration

In diesem Unterkapitel wird exemplarisch die einfache Monte-Carlo-Integration behandelt und
deren Schwichen aufgezeigt. Die Ausfithrungen beziehen sich hierbei auf Quelle [Mor07].
Fiir eine kontinuierliche Funktion f(X) einer kontinuierlichen Zufallsvariablen X mit einer

Wahrscheinlichkeitsverteilung px (s) ergibt sich fiir den Erwartungswert der Funktion

_ / 7 f(s)px (s)ds. (29)

Als Beispiel kann eine Wahrscheinlichkeitsverteilung der Form

px(z) = B (30)

verwendet werden. Aus dieser wird eine Stichprobe von Ny Zufallsvariablen X;,Xs,... . X,

ausgewdhlt. Dann gilt aufgrund des Gesetzes der groken Zahlen (Beweis siehe [Mor07))

Ntot

Zf(Xi lim f = / ds px(s (31)

‘ N—oo
=1

— 1
f B Ntot
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Der Wert f wird hierbei als Monte-Carlo-Schitzwert bezeichnet und stellt fiir grofe N eine
gute Approximation des Integrals fiir flache Funktionen f(s) dar. Im Grenzfall Ny — oo
decken die Zufallsvariablen das komplette Intervall [a,b] ab. Fiir stark oszillierende oder gepe-
akte Funktionen ist eine gleichverteilte Auswahl der Zufallszahlen eher ungiinstig. Um einen
guten Schatzwert zu erhalten, werden die Zufallszahlen so gewdhlt, dass besonders viele im Be-
reich der Oszillationen beziehungsweise der Peaks liegen. Diese Methode wird als Importance
Sampling bezeichnet. Die Zufallszahlen sollten demnach aus einer Wahrscheinlichkeitsvertei-
lung g(X) gezogen werden, sodass die Funktion h(X) = f(X)/g(X) moglichst konstant ist.

Die Integration liefert

b b 1 Ntot
/ f(s)ds = / M()gls)ds = 1 > (X)), (32)
a a tot i=1

wobei die X; aus der Wahrscheinlichkeitsverteilung g(X) entnommen werden. Die Funktion
h(z) ist nahezu flach und die Zufallszahlen treten nun besonders hiufig an den gepeakten
Stellen auf. Diese Methode ist effektiver, jedoch muss die Wahrscheinlichkeitsverteilung g(x)
ermittelt werden. Fiir eindimensionale Fille sind hierzu Transformations- oder Rejektions-
Methoden verwendbar, fiir hoherdimensionale Fille sind diese jedoch nicht praktikabel. Zur
Berechnung héherdimensionaler Integrale werden stattdessen stationére stochastische Prozes-

se benutzt.

3.2. Monte-Carlo-Integration mit stationdren stochastischen Prozessen

Im vorherigen Unterkapitel wurde bereits auf die Notwendigkeit von stationdren Prozessen
hingewiesen. An dieser Stellen wird die Integration mit stationéren stochastischen Prozessen
explizit behandelt, wobei die Ausfithrungen sich auf Quelle [Mor07| beziehen.

Ein stochastischer Prozess beschreibt eine Sequenz von Zufallszahlen X;,t € T , welche einer
bestimmten Hiufigkeitsverteilung entnommen werden. Im Folgenden wird 7' = N gew#hlt und
der Parameter t als Monte-Carlo-Zeit bezeichnet. Fin stochastischer Prozess wird als stationér
bezeichnet, sofern die kumulative Wahrscheinlichkeit einer Zeitabfolge aus n Zustdnden sich

unter Verédnderung eines Parameters h € N nicht dndert:
P(Xy, <z1,.., Xy, < ap) = P(Xigan < 21y, Xopgoh < ). (33)

Dies bedeutet, dass unabhéngig von h die Sequenzen (Xy,,..., Xt,,) und (Xyg4h,--o, X¢,+1n) der
gleichen Wahrscheinlichkeitsverteilung unterliegen. Im Kapitel wurde bereits die Monte-
Carlo-Methode fiir statistisch unabhéngige Zufallsgréfen beschrieben. Zur Anwendung der
Monte-Carlo-Methode auf stationére Prozesse ist eine Erweiterung des Gesetzes der grofen
Zahlen und des zentralen Grenzwertsatzes, der zur Abschétzung des Fehler dient, erforderlich.
Nach dem Gesetz der grofen Zahlen fiir stationéire stochastische Prozessen ergibt sich fiir einen
stationdren Prozess X1, Xo,... mit (X;) = p, Autokovarianz I'(s) = (X — p)(Xgrs — 1)),
fiir die Y50, |T'(s)| < oo gilt, mit der Definition X y,,, = (X1 + X2 + .. + Xnpop)/Neot

lim P(| X, —pl <e)=0, fiiralle ¢>0. (34)

Ntot—00



8 3 Monte-Carlo-Methode

Der Beweis ist der Quelle [Mor07] zu entnehmen. Der zentrale Grenzwertsatz fiir M-abhéngige
Zufallsvariablen besagt: Sei Xi, Xa,...,Xn,,, eine stationdre Sequenz von M-abhingigen Zu-
fallsvariablen (X; und X;i4 sind unabhéngig fiir s > M) mit Mittelwert g und einer be-
schrinkten Varianz, so konvergiert die Verteilung (X1 + ... + Xny,, — Niottt)/ (0 Niot) fiir

groke Nior gegen die Normalverteilung, wobei gilt:

h=M
o?= > T(h) fir Nyt > M. (35)
h=—M

Der Beweis ist der Quelle [Stil5] zu entnehmen.Wie im Falle der unabhéngigen Zufallsva-
riablen liefert das Gesetz der groken Zahlen fiir abhingige Zufallsvariablen den Beweis fiir
die Korrektheit des Schitzwertes und der zentrale Grenzwertsatz eine Abschitzung des sta-
tistischen Fehlers. Im Folgenden wird ein D-dimensionales Volumen V betrachtet und Nyt
Punkte Z1,...,Zn,,, aus diesem Volumen mit der stationdiren Wahrscheinlichkeitsverteilung
p(Z) ausgewdhlt. Insgesamt folgt somit fiir die Monte Carlo Integration unter Benutzung

eines stationdren stochastischen Prozesses:

[p@@aPe~ 7 i, (36)

— 1 Neot R _ 1 Niot—h B B ) B
f= Nmt;ﬂm i) = 53— Z; (F(@) — F) (f(@oan) — F),

Zudem wurde eine Schitzfunktion T fiir den Fehler eingefiihrt. Hierbei wurde angenommen,
dass die Kovarianz endlich ist, Y 7 [T's(h)| < cc.

3.3. Markow-Ketten

In diesem Kapitel soll eine Art eines stochastischen Prozesses, die sogenannte Markow-Kette,
beschrieben werden. Hierbei ist die Erzeugung einer stationdren Verteilung P4, wie sie bei-
spielsweise in Gleichung verwendet wurde, Ziel dieses Unterkapitels. Die Ausfithrungen
beziehen sich auf Quelle [CF8I].

Eine Markow-Kette wird durch eine R x R Matrix W(R < oo) mit den Elementen Wj; be-
schrieben wird. Die Elemente W;; geben die Wahrscheinlichkeit fiir den Ubergang des System
aus einem Zustand s; in einen anderen diskreten Zustand s; in einem Markow-Schritt an.
Da, die Wahrscheinlichkeit eines Ubergangs s; zu irgendeinem Zustand gleich eins sein muss,
gilt die Bedingung Zle W;; = 1. Mit der Definition der Ubergangswahrscheinlichkeitsdichte,

W(x,x'), fiir x — x’ lisst sich das Prinzip auf kontinuierliche Zustéinde erweitern:

W(x,x') >0 und /dx'W(x,x’) =1, (fiir alle x). (37)
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Fiir einen n-Schritt Markow-Prozess ergibt sich die Wahrscheinlichkeit eines Ubergangs von

x nach x’ zu

w ) (x,x') = /dxl. .. /dxn_1W(x,x1)W(x1,x2). .. W(xn_l,x') (38)

= /dan”_l(x,xa)W(xa,X'), (39)

wobei Gleichung eine verkiirzte Schreibweise der Gleichung ist. Im diskreten Fall
entspricht obige Gleichung einer einfachen Matrixmultiplikation. Unter Zuhilfenahme der
Eigenschaften liefert Gleichung fiir das Langzeitverhalten des Systems

lim W"(x,x") = P*9(x)). (40)
n—oo
Demnach ist im Grenzfall fiir groke n die Ubergangswahrscheinlichkeitsfunktion unabhingig
von der Anfangskonfiguration und durch P®4(x’) gegeben. Des Weiteren lisst sich zeigen,
dass die Verteilung P®I(x) stationér und der einzige Fixpunkt ist. Zudem erfiillt P*4(x) die

Eigenschaften einer Wahrscheinlichkeitsverteilung
P*(x) >0 und /dX/Peq(X/) =1, (fiir alle x). (41)

Zur Vermeidung von Grenzzyklen wird zusitzlich die sogenannte Detailed-Balance-Bedingung

formuliert:

W(x,x) P(x))

Wxx)  Pox) (42)

3.4. Metropolis-Hastings-Algorithmus

In diesem Unterkapitel wird die bendtigte stationére Verteilung P®? zur Berechnung der Er-
wartungswerte in Gleichung aufgestellt und ein Algorithmus zur Erzeugung der Gleich-
gewichtsverteilung vorgestellt. Die Ausfithrungen beziehen sich hierbei auf die Quelle [CE&I].

Unter Verwendung des diskreten Zeitgitters wird eine Gitterkonfiguration x;, durch die Gitter-
(k) (k) (k)

koordinaten x7"”, x5 ,. .. ’stite7T = Ngitea beschrieben. Mit dieser Notation wird Gleichung
m
DxA(x)e5e0 o0 Ve
A) = J , it / Dx = / dz;. 43
A4) fDXe*SE(x) i x s z]]1: i (43)

Da der Exponent exp(—S(x)) tiber mehrere Grofenordnungen variiert, ist die zufallige Aus-
wahl von x wie in der einfachen Monte-Carlo-Integration nicht zweckmifig. Stattdessen wer-
den Konfiguration x mit der Importance-Sampling-Methode unter Ausnutzung von Markow-

Ketten nach folgender Verteilung gewé&hlt:

Pe9(x, ) Dx = exp[—Sp(xk)]Dx

= T Dxoxp[Sp()] “
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Der Schétzwert der Grofe (A) ergibt sich somit zu

. 1 Niot
A= > Alxp), (45)
tot k=1

wobei Niot die Anzahl der erzeugten Systemzustéinde bezeichnet.
In dieser Arbeit werden die Gitterpunkte sukzessiv bearbeitet, die Ubergangswahrscheinlich-
keit bei einer Anderung eines einzigen Gitterpunktes xj nach {L‘; wird als W, bezeichnet. Fiir
die Detailed-Balance-Bedingung folgt

We(x,x) e~ 58 (@)

Wox'x) e Sp@)’ (46)

wobei S(z;) nur von der Koordinate ; und deren néchsten Nachbarn abhéngt. Die Multipli-
kation aller Ubergangswahrscheinlichkeiten fiir jeden Gitterpunkt stellt einen Markow-Prozess

fiir eine Monte-Carlo-Tteration daif?l
W(Nsite) — WS ('r/]vsite 7stite>Ws (x{Nsite_l 7:[;Nsite_1 ) e Ws (xé ,-:UQ)WS (xll , L1 ) . (47)

Die konkrete Form der Ubergangswahrscheinlichkeit T, ist noch nicht eindeutig festgelegt. In
dieser Arbeit wird der Metropolis-Hastings-Algorithmus verwendet. Dieser kann leicht nach

dem folgenden Schema implementiert werden:

1. Wihle einen neuen zufilligen Wert 1‘; aus einer Vorschlagswahrscheinlichkeit aus.

2. Akzeptiere den neuen Wert a:; mit der Wahrscheinlichkeit:
Pace = min (1,550} | mit - AS(aha)) = Sp(a)) — Sp(ey).  (48)

3. Wenn der neue Wert x3 nicht akzeptiert wurde, behalte den alten Wert x;.

Eine Monte-Carlo-Iteration beruht somit auf der Wiederholung der drei Schritte fiir alle
xj,j = 1,2... Ngite, wobei Ngjre die Anzahl der Gitterpunkte bezeichnet. Zusétzlich werden

noch die Parameter A und 7 eingefiihrt. Fiir eine stark gepeakte Wirkung S(x) ist es sinnvoll
/
J
zusétzlich die Vorschlagswahrscheinlichkeit in diesem Intervall gleich gewdhlt wird. Der Para-

die Wahl eines neuen Wertes 2. auf die Umgebung [z; — A, 2+ A] zu beschrianken, wobei hier
meter 7 steht fiir die Anzahl, wie oft ein Gitterpunkt innerhalb einer Monte-Carlo- Iteration
ausgewihlt wird. Die Ubergangswahrscheinlichkeit W kann auch als ,Zeitentwicklungsopera-
tor“ im Phasenraum aufgefasst werden.

Zur Berechnung der Erwartungswerte der Gleichung werden Systemzustinde gemifls der
Gleichung verwendet. Ausgehend von einer beliebigen Anfangskonfiguration x; miissen
erst eine gewisse Anzahl an Iterationen Niperm verworfen werden, bis die Systemzustinde
gemék der Gleichgewichtsverteilung Pey ausgewahlt werden und erst dann kénnen die Konfi-
gurationen verwendet werden. Dieser Vorgang wird als Thermalisierung bezeichnet und kann

durch die Erhéhung von n beschleunigt werden.

2Statt des Zustandes wird hier der verinderte Gitterpunkt in der Ubergangswahrscheinlichkeit dargestellt,
da alle anderen Gitterpunkte fest sind.
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3.5. Numerische Fehler

In diesem Kapitel soll die Bestimmung der statistischen Fehler der Gleichung auf das
gegebene Modell angepasst und auf eine handliche Form gebracht werden. Es wird ausschliek-
lich der Fall einer einzigen Observablen unter Zuhilfenahme der Quelle [Wol04| betrachtet. Die
Behandlung abgeleiteter Funktionen mehrerer primérer Observablen ist der Quelle [Wol04] zu
entnehmen.

Die Autokorrelationsfunktion einer Observablen A wird definiert als:

I'(t) = (A(x) = (A)(A(x11) = (A))) - (49)

Die Varianz ergibt sich analog zu Gleichung Zu:

C o0
0% = , C= L'(t). 50
o =3 (50)
Unter Annahme der Symmetrie:
I'(—t) =T(¢t), (51)

kann die Varianz in eine giinstige Form iiberfiihrt werdenP}

1 T\ T
02=2-(2+;(<0)))A§t02, (52)

2
Tint Onaive

wobei Niot die Gesamtanzahl der Iterationen im Gleichgewicht bezeichnet. Fiir die gegebe-
ne Form der Varianz lassen sich zwei Grenzfélle betrachten: Im Fall von I'(t) o o liefert
27t = 1 und obige Gleichung stellt den unkorrelierten Fall dar: 0 = opaive. Nach Quelle
INB99| kann ein asymptotisches expomnentielles Abfallen von I'yg fiir grofe t angenommen
werden, welches durch eine Grofe 7 charakterisiert wird, I oc exp(—|t|/7). Fiir ein vollstandig
exponentielles Verhalten gilt 7, = 7+ O(771). Im Allgemeinen ist die Anzahl der unabhiin-

gigen Datenpunkte gegeben durch
Ntot

Nipg = .
" 2Tint

(53)

Die integrierte Autokorrelationszeit trégt somit makgeblich zum Fehler bei, wobei sich zwei
Methoden zur Bestimmung der integrierten Autokorrelationszeit 7t und somit des statisti-
schen Fehlers eignen: Die I'-Methode verwendet eine direkte Berechnung der Korrelations-
funktion I', wihrend die Binning-Methode iiber das Verhéltnis der ,naiven“ Varianz zur tat-
séchlichen Varianz vorgeht. Eine kurze Beschreibung dieser Methoden ist dem Anhang
und zu entnehmen.

®Die erneute Verwendung des griechischen Buchstabens 7 steht hier in keinem Zusammenhang mit der
euklidischen Zeit.
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4. Numerische Ergebnisse

Dieses Kapitel stellt den Kern dieser Arbeit dar. Die Monte-Carlo-Simulation wird zur Unter-
suchung des harmonischen und anharmonischen Oszillators verwendet. Die Bestimmung von
Erwartungswerten, Aufenthaltswahrscheinlichkeitsdichten und Quantentrajektorien ist hier-
bei Ziel dieser Untersuchung.

Zur numerischen Berechnung wird die Zeit T diskretisiert, sodass sich mit T = aNgje €in
Zeitgitter mit Ngie Gitterplitzen und Gitterabstand a ergibt.

Fiir die Implementierung der Monte-Carlo-Simulation wurde C++11 verwendet. Eine kurze

Programmbeschreibung ist dem Anhang zu entnehmen.

4.1. Harmonischer Oszillator

Aufgrund der exakten Losbarkeit des harmonischen Oszillators fiir endliche Gitterabstande
a, ist dieses System besonders gut zur Untersuchung geeignet. Der Hamiltonoperator eines

Teilchens der Masse m im harmonischen Oszillatorpotential ist wie folgt gegeben:

2
p 1 9o

H=—+- . 4
o T o (54)

Die diskretisierte euklidische Wirkung ergibt sich zu:
1 (i —x)® 1
Sp=a Z im# + §u21§. (55)

Die analytischen Losungen fiir den harmonischen Oszillator sind der Quelle [CEF81] zu ent-
nehmen. Es werden aufgrund der Gleichung periodische Randbedingungen verwendet.
Es gilt daher:

To=2IN (56)

site

4.1.1. Thermalisierung und Korrelationseffekte

Am Ende des Kapitels wurde bereits auf die Notwendigkeit eines Thermalisierungspro-
zesses hingewiesen. Ein recht einfacher Ansatz, um sicherzustellen, dass das System sich im
Gleichgewicht befindet, soll im Folgenden kurz dargelegt werden.

Als Anfangskonfiguration werden alle Koordinaten z;,j = 1,2... Ngite zu null gesetzt. Dies
wird als Cold Start bezeichnet, im Gegensatz dazu stellt die Anfangskonfiguration x; # 0,Vj
einen Hot Start dar. Anschliefend wird eine Simulation durchgefiihrt und fiir jede Trajekto-
rie die primére Observable des Interesses als Funktion der Monte-Carlo-Zeit ¢ berechnet und
graphisch analysiert.

Zunichst wird die Zeit T auf 100 und der Gitterabstand auf a = 0,1 gesetzt. Beispielhaft wird
nun der Thermalisierungsprozess der Observablen x? untersucht. Die folgende Abbildung

zeigt dessen graphische Darstellung.
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Abbildung 2: Die Observable 22 einer Konfiguration x; als Funktion der Monte-Carlo-Zeit t. Als
Startkonfiguration wird der Cold Start genutzt. Gleichgewicht ist bei etwa ¢t = 200
erreicht. Die gestrichelte Linie gibt den analytisch berechneten Erwartungswert (x2)
wieder. Die Simulationsparameter sind Ngjie = 1000, a = 0,1 und Nyot = 1000.

Die Grofe 22 steigt anfangs zuniichst mit jeder weiteren Iteration von null an, dann bildet
sich ein Plateau. Die Werte fluktuieren ab teq = 200 um den analytischen Wert und das Sys-
tem befindet sich somit ndherungsweise im Gleichgewicht. Die visuelle Inspektion ermdglicht
demnach Einblick, wie lange das System fiir den Thermalisierungsprozess bendtigt. Zusétzlich
sollte die Bedingung

teq > Tint (57)

a posteriori verifiziert werden, da die Einfliisse der Nicht-Gleichgewichtsverteilung zwar mit
7 /Niot abnehmen [Sok89] und somit der statistische Fehler o« \/m iiberwiegt, jedoch kann
der Vorfaktor der Nicht-Gleichgewichtsverteilung grofe Werte annehmen. Da der Rechenauf-
wand fiir neue Trajektorien gering ist, wird fiir die Erfiillung der Gleichung teq = 1007in;
festgelegt und die Anzahl der Gleichgewichtsiterationen im Weiteren nicht explizit angegeben.
Zuletzt kann angemerkt werden, dass fiir komplexere Systeme metastabile Zustidnde existie-
ren koénnen, welche durch visuelle Inspektion des Thermalisierungsprozesses fiir verschiede-
ne Startkonfigurationen festgestellt werden kénnen. Im Folgenden werden die Parameter zu
m = p = 1 festgelegt.

Eine typische Trajektorie des quantenmechanischen Teilchens im Oszillatorpotential ist in fol-
gender Abbildung [3| dargestellt. Hierbei wurde der Gitterabstand zu a = 0,1 und die Zeit zu
T = 100 gewahlt.
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Abbildung 3: Die Ortskoordinaten x; in Abhéngigkeit von der imaginéren Zeit ¢; fiir die Trajektorie
X500 im Gleichgewicht. Die Simulationsparameter sind a = 0,1 und Ngjte = 1000.

Wie erwartet fluktuieren die Ortskoordinaten um Null, da (z) = 0 gilt. Die Trajektorie ist sehr
irregulér und besitzt augenscheinlich kaum Ubereinstimmung mit der Bewegung eines klassi-
schen Teilchens. Diese Beobachtung ist in Einklang mit Gleichung . Die Abbildungen
und [ weisen die Gemeinsamkeit von Korrelationseffekten auf. Jedoch sind diese grundsitzlich
anderer Ursache. Wihrend die Abbildung [2| die Korrelation des Wertes 22 fiir unterschied-
liche Monte-Carlo-Zeiten t zeigt, sind in der Abbildung [3| die Orte x; fiir unterschiedliche
euklidische Zeiten korreliert. Der erste Effekt wirkt sich nach Gleichung auf den Fehler
eines Schitzwertes aus, wihrend der zweite zur Ermittlung héherer Energieniveaus genutzt
werden kann. Zunéchst werden die Auswirkungen von Korrelationseffekten auf den Fehler
naher betrachtet. Die Korrelationsfunktion in Abhéngigkeit der Monte-Carlo-Zeit ¢ ist nach
Gleichung gegeben und fiir die Observable 22 in folgender Abbildung 4| dargestellt. Es
wurden insgesamt Ny = 100000 Konfiguration fiir ¢ = 0,1 und 7" = 100 erzeugt.
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Abbildung 4: Die normierte Autokorrelationsfunktion der Observablen v = z? als Funktion der
Monte-Carlo-Zeit ¢ auf logarithmierter Ordinatenachse. Die Simulationsparameter
sind Niot = 100000, a = 0,1, Ngite = 1000.

Die Autokorrelationsfunktion I' zeigt den zu erwartenden exponentiellen Verlauf. Fiir grofe
Monte-Carlo-Zeiten ¢ nimmt das Signal stark ab, wohingegen ein konstanter Anteil an Rau-
schen hinzukommt. Letztendlich ergeben sich somit statistische Fluktuationen.

Es ist somit nicht sinnvoll die gesamte Autokorrelationfunktionen I' aufzusummieren, sondern
stattdessen eine Fensterfunktion einzufiihren. Diese Methodik liegt der ['-Methode zu Grunde
und wird, wenn nicht anders vermerkt, zur Bestimmung der statistischen Fehler verwendet.
Im Gegensatz zu der Jackknife-Binning-Methode ist der Fehler des Fehlers kleiner, was sich
positiv auf die Ergebnisse der Simulation auswirkt (vgl. [Wol04]).

Da die Korrelationseffekte direkt den Fehler beeinflussen, ist es ndtig diese moglichst klein zu
halten. Dazu werden zwischen zwei Pfaden die in die Berechnung einflieken, eine gewisse
Anzahl Ngy, an Trajektorien nicht in die Berechnung einbezogen.

Da die integrierte Autokorrelationszeit 7y, fiir ein festes T = 100 mit kleiner werdendem

Gitterabstand zunimmt, wird folgende Ndherung fiir den harmonischen Oszillator verwendet:
Ting ~ 20,61 174, (58)

Diese Gleichung entstammt einer einfachen Analyse der integrierten Autokorrelationszeit von
22 als Funktion des Gitterabstandes a und stellt eine grobe Abschiitzung dieser Beziehung
dar. Dieser Effekt wird auch als ,critical slowing down“ bezeichnet [Sok89]. Insgesamt ist zu
beachten, dass hier nur die Korrelationseffekte der Observable z? betrachtet wurden, prinzi-
piell ergeben sich fiir andere Observablen auch andere integrierte Autokorrelationszeiten.

Da der Datenanalyseaufwand mit Ny steigt, ist die Einfiihrung des Parameters Ngyj, zweck-
mékig. Des Weiteren erweist sich die Wahl A ~ 2,/a, wie im Anhang gezeigt wurde, als
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sinnvoll und die Wahl von A wird nicht explizit aufgefiihrt, um die Parameterliste iibersicht-

lich zu halten.

4.1.2. Energie und Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes

Die Isolation der Grundzustandserwartungswerte kann iiber die Gleichung fir T — o
durchgefiihrt werden. In der Simulation ist der Grenzfall nicht zu realisieren, sodass sich per se
Abweichungen von den Grundzustandswerten ergeben. Dennoch lassen sich auch fiir endliche
T gute Ergebnisse erzielen, wenn die charakteristische Zeitskala des Systems beriicksichtigt
wird:

Ty = 27/ Ey. (59)

Hieraus folgt fiir die Wahl des Simulationsparameters
T>1Tg, (60)

wobei in dem gegebenen Fall die Grundzustandsenergie bekannt ist. Im Allgemein kann obige
Ungleichung durch systematische Erh6hung des Parameters T und anschliefsender Analyse der
Anderung der Grundzustandswerte iiberpriift werden. Im Weiteren wird der Parameter T auf
100 festgelegt. Dass diese Approximation wenigstens fiir die Energiebestimmung ausreichend
ist, kann {iber die direkte Berechnung der Energie nach Gleichung fiir ein festes T gezeigt

werden, wobei sich folgende Darstellung ergibt:
(H) = 0,5 coth(pT'/2). (61)

Unter Gebrauch von ¢ = 1 und T' = 100 ergibt sich ein systematischer Fehler der deutlich

unter dem statistischen Fehler liegt.

Zusitzlich miissen statistische Fluktuationen des ,Kristalls berticksichtigt werden. Fiir einen

Operator A = Zf\[:s‘fe A; ergeben sich die relativen statistischen Schwankungen um den Mit-

telwert A zu /2

A= AL
A

o 1/v/Nste, (62)

wobei AA = A — A gilt (vgl. [CF81]). Somit fiihrt eine gréfere Anzahl an Gitterpunkten auf
geringere statistische Schwankungen.
Zuletzt ist es notwendig den Gitterabstand a entsprechend klein zu wéahlen, sodass das Kon-
tinuumslimit gut approximiert wird. Mit der charakteristischen Zeit TE ergibt sich die Bedin-
gung

a < TEg. (63)

Die systematischen Fehler sind in diesem Fall nicht zu vernachlissigen und fithren zu Abwei-
chungen von den Kontinuumswerten. Durch eine Extrapolation auf a = 0 kann jedoch der
Kontinuumsfall gewonnen werden. Unter Beriicksichtigung dieser Randbedingungen kénnen
nun die Grundzustandsenergie und Aufenthaltswahrscheinlichkeitsdichte bestimmt werden.

Im Pfadintegralformalismus ist die Wahrscheinlichkeit fiir das Antreffen eines Teilchen zwi-
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schen x — Az und x 4+ A ein einfacher zeitlicher Mittelwert {iber die Ubergangswahrschein-

lichkeiten: N
x T2 K (2t ,2,,0
/ dt/ xb? » Ly ) (I’, Las ) (64:)
K(xb,T,xa,O)

Fiir grofe T kann iiber Gleichung die Aufenthaltswahscheinlichkeitsdichte | (x)|* des
Grundzustands ermittelt werden[CF8&1]:

P(z,T) 1
Ar [Yo(z)* + O ((El—EO)T> - (65)

Wenn T' > 1/(E1 — Ey) gilt, ist eine Isolation der Aufenthaltswahscheinlichkeitsdichte des
Grundzustandes moglich. In der Simulation wird hierzu die Ortsachse in Segmente Ny, der
Breite Az geteilt:

Niot Nsite Niot Nsite
[wo(@)” = - LYY e jalf —x\/ZZl (66)
k j=1

wobei Az klein ist und © die Heavysidefunktion bezeichnet. Damit die statistischen Fluktua-
tionen in den Segmenten klein sind, werden ungefdhr 100000 unabhéngige Konfigurationen
fiir Az = 0,2 verwendet. Die Abbildung [5| zeigt die Aufenthaltswahrscheinlichkeitsdichte des
Grundzustandes fiir die Werte ¢ = 0,5 und a = 0,1.

0,6 T T T T 0,6

= + Simulation ‘ ‘ ‘ ~  Simulation
a =0, / _ Diskret a=0,1 _ Diskret
0,5 Kontinuum |- 0,5 + Kontinuum |-
=04 > 04}
= =
= 03 = 03}
= =
A 02 A 02}
0,1 0,1 +
0 0
-3 -2 -1 0 1 2 3 -3 —2 -1 0 1 2 3
Ort z Ort z
(a) (b)

Abbildung 5: Die Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes fiir den harmonischen
Ostzillator. Die Punkte bezeichnen die Monte Carlo Simulation, die durchgezogene grii-
ne Linie présentiert die diskrete Theorie und die schwarze gibt die Kontinuumstheorie
wieder. Es wurden unter Verwendung von Gleichung ungefdhr 100000 unabhén-
gige Konfigurationen verwendet. Fiir die linke Abbildung (a) wurde a = 0,5 und fiir
die rechte Abbildung (b) a = 0,1 gewéhlt.

Die diskrete Theorie ist in sehr guter Ubereinstimmung mit der Simulation. Die Kontinu-
umstheorie weicht aufgrund der Verletzung der Gleichung in der linken Abbildung
etwas davon ab. Die Wahl eines kleineren Gitterabstands fithrt in Abbildung [5b| zur visuellen
Ubereinstimmung der drei Theorien.

Die Bestimmung der Grundzustandsenergie des harmonischen Oszillators kann mittels des

Virialtheorems durchgefiihrt werden. Die Masse m und die Frequenz p werden im Fol-
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genden zu eins skaliert. Abbildung [6] zeigt den Schétzwert der Energie und dessen Fehler in
Abhéngigkeit von Nig.

0,53 T T 0,045
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Abbildung 6: Schitzwert der Energie (a) und dessen Fehler (b) in Abhangigkeit von Nyt fiir den
harmonischen Oszillator. In der linken Abbildung (a) stellt die durchgezogene Linie
den analytischen Wert der Energie dar. Die Simulationsparameter sind 7" = 100 und
a=0,1

Alle Schétzwerte stimmen in der Zwei-Sigma-Umgebung mit dem analytischen Wert {iberein.
Der Fehler zeigt die zu erwartende 1/+/Ngot-Abhéngigkeit.

Die Fehler kénnen unter Anwendung der Gleichung reduziert werden. Nachfolgende Ta-
belle zeigt die Schitzwerte und analytische Werte der Energie fiir verschiedene finite Gitter-

absténde a, wobei Gleichung verwendet wurde.

Tabelle 1: Schitzwerte und analytische Werte der Grundzustandsenergie des harmonischen Oszilla-
tors fiir verschiedene Gitterabstinde a. Unter Verwendung der Gleichung wurden in
etwa Nipg ~ 70000 unabhingige Werte erzeugt.

Gitterabstand a Simulation FEj Theorie Ey

1 0,44749(28) 0,44721
0,9 0,45619(27) 0,45596
0,8 0,46399(27) 0,46423
0.7 0,47199(26) 0,47192
0.6 0,47899(25) 0,47891
0.5 0,48500(25) 0,48507
0.4 0,49027(26) 0,49029
0.3 0,49473(27) 0,49449
0.2 0,49761(30) 0,49752
0,1 0,49911(42) 0,49938
0,05 0,49943(45) 0,49985

Obige Tabelle zeigt die sehr gute Ubereinstimmung der Simulation mit den analytischen
Werten.

Der Kontinuumsfall a — 0 kann durch Extrapolation bestimmt werden. Der exakte Verlauf
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der Energieliicke als Funktion des Gitterabstandes ist bekannt, unter Ignoranz dieser Tatsache

kann ein einfaches Polynom von Grad drei als Fitfunktion angesetzt werden:

E(a) = Z cia', (67)

wobei die Fitparameter mit ¢; bezeichnet werden. Abbildung [7] zeigt den Schitzwert der
Grundzustandsenergie Ey als Funktion des Gitterabstandes a, wobei ein asymptotisches Ver-
halten der Energie als Funktion des Gitterabstandes optisch sichtbar ist, sodass in Gleichung
die Wahl ¢; = 0 gerechtfertigt erscheint. Um die Statistik zu erhéhen wurden zusétzli-
che Energiewerte aufgenommen, welche nicht in Tabelle [] aufgefiihrt sind. Die Fitparameter

wurden mittels Gnuplot ermittelt, wobei deren Fehler nach Quelle [Youl2| korrigiert wurden.

0,51 . .
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cp = —0,0677(13)| |
c3 = 0.0150(14)
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Abbildung 7: Der Schétzwert der Energie Ey als Funktion des Gitterabstandes a. Die Punkte ver-
deutlichen die Simulationsdaten und die durchgezogene Linie reprasentiert die Anpas-
sung der Gleichung an die Simulationsdaten. Die Fitparameter sind der Abbildung
zu entnehmen. Um die Statistik zu erhohen sind zuséitzliche Energiewerte aufgenom-
men worden, welche nicht in Tabelle [T] aufgefiihrt sind.

Der Schitzwert der Energie Fy im Kontinuum von 0,50004(11) ist in guter Ubereinstimmung

mit dem analytischen Wert von 0,5.

4.1.3. Energie des ersten angeregten Zustandes

Die Bestimmung der Energie des ersten angeregten Zustandes kann unter Verwendung von
Korrelationsfunktionen {iber Gleichung durchgefiihrt werden. Da fiir den harmonischen
Oszillator der Erwartungswert (xr) = 0 ist, kann die normale Zweipunktfunktion genutzt

werden. Aufgrund der periodischen Randbedingungen sind die Korrelationsfunktionen sym-
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metrisch um die Gittermitte. Diese Tatsache kann zur Verdopplung der Statistik genutzt

werden, andererseits fithrt dies zu einer Abdnderung der Korrelationsfunktion:

C(t) = %Tr (e HTA[)A(0) =D Hnldm)"| <”|;1|Zm>2 [ BT (BB T/2) s Kf - g) (Em — En)] :

(68)
wobei A hier einen Operator der Form z!,1 € N bezeichnet.
Es wird ein Gitterabstand von a = 0,1 verwendet und unter Verwendung der Gleichung
Ning > 50000 unabhéngige Konfigurationen erzeugt. Abbildung [§] zeigt die Korrelationsfunk-
tion (z(0)z(7)) gegeben durch die Simulation und Theorie.
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Abbildung 8: Korrelationfunktion (x(0)z(7)) als Funktion des Zeitabstand 7 fiir den harmonischen
Oszillator. Die Punkte veranschaulichen die Ergebnisse der Simulation und die durch-
gezogene Linie stellt die analytische Vorhersage dar. Unter Verwendung der Gleichung
wurden Nijhq > 50000 fiir einen Gitterabstand von a = 0,1 erzeugt.

Die Simulation ist in sehr guter Ubereinstimmung mit der Theorie. Zudem deutet die gerade

Linie an, dass (0| z |n) der Gleichung nur fiir n = 1 ungleich null ist. Da  ~ a + a gilt,
werden keine Anteile hoher liegender Energieniveaus aufgenommen. Abweichungen ergeben
sich fiir grofe 7 durch statistische Fluktuationen.
Erneute Betrachtung der Gleichung zeigt, dass aufgrund des Nicht-Kommutierens des
Ortsoperators mit dem Parititsoperators, sowohl der Operator A = z als auch A = 23, den
Grundzustand mit gerader Paritdt mit dem ersten angeregten Zustand ungerader Paritdt
koppeln. Demnach gilt

len;o meg = Tlingo meg = a(E1 — Ey). (69)

Im Folgenden wird die Beziehung

Meff = a_lmeff (70)
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genutzt, die beiden Definitionen unterscheiden sich somit nur um den Faktor a~!.

Die Abbildung E] zeigt die effektive Masse fiir die Operatoren x und 3. Fiir die Simulation
wurde ein Gitterabstand von a = 0,1 verwendet und Nj,q > 50000 unabhingige Konfigura-

tionen erzeugt.
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Abbildung 9: Die effektive Masse meg als Funktion des Zeitabstands 7 fiir die Operatoren A = z
und A = 3. Der Ausschnitt zeigt die m% auf einer vergroRerten Ordinatenachse.
Es wurde eine Gitterkonstante von a = 0,1 verwendet und N;,q > 50000 Datensétze
erzeugt.

Die effektive Masse mZg zeigt wie erwartet ein sofortiges Eintreten eines Plateaus, im ande-
ren Fall konvergiert die effektive Masse deutlich langsamer gegen die Energieliicke, da zusétz-
liche Beitrige von hoheren Energiezustinden enthalten sind. In dem vergroferten Ausschnitt
ergeben sich fiir grofser werdendes 7 Fluktuationen, da die Amplitude der Korrelationsfunktion
exponentiell abnimmt. Demnach sollte der Bereich zur Bestimmung der Energieliicke Fq — Ey
einen Kompromiss zwischen statistischem und systematischem Fehler darstellen.

Die Bestimmung der Energieliicke wird im Folgenden mit Hilfe von mgs ausgefiihrt, wobei
auf die einfache Bezeichnung meg zuriickgegriffen wird. Da die Daten in Abbildung [ kor-

reliert sind, wird eine Jackknife-Binning-Analyse durchgefiihrt, welche kurz in den Kapiteln

[A.3.3] und [A.3.2] beschrieben wird. Es wird ein Plateauwert der integrierten Autokorrelati-

onszeit fiir den Operator x bestimmt und die Daten entsprechend der ermittelten Binlénge
in Jackknife-Bins unterteilt. Der eigentliche Fit wird mit Gnuplot (Marquardt-Levenberg) in
jedem dieser Jackknife-Bins durchgefiihrt. Die Fitparameter und Fehler lassen sich anschlie-
$end nach Kapitel bestimmen. Als Fitfunktion dienen zwei Exponentialfunktionen der
Form M(7) = oy (e7 ' + e_o‘o(T_t)).

Die folgende Abbildung [10] zeigt die effektive Masse meg sowie die Anpassung der Funktion
M (7) an die Daten. Es wird eine feste Binldnge von 50 verwendet fiir eine Gesamtzahl von

Ning > 50000 Konfigurationen und ein Gitterabstand von a = 0,05 gewéhlt.
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(a) Die Korrelationsfunktion (x(0)z(7)) fiir einen (b) Die effektive Masse meg als Funktion des

Gitterabstand von a = 0,05. Die durchgezo-
gene Linie symbolisiert die Anpassung an die
Simulation. Die vertikale Linie verdeutlicht das
fiir den Fit gewéhlte Zeitfenster [0,72].

Zeitabstandes 7 fiir ¢ = 0,05. Die Punk-
te stellen die Ergebnisse der Simulation dar.
Die vertikale Linie verdeutlicht das fiir den
Fit gewdhlte Zeitfenster [0,72], wihrend die
doppelt horizontale Linie das Fehlerband, be-
stimmt durch eine Jackknife-Binning-Analyse,
darstellt.

Abbildung 10: Bestimmung der effektiven Masse des ersten angeregten Zustandes des harmonischen
Oszillators. Es wird ¢ = 0,05 und Nj,q > 50000 gesetzt, wobei Gleichung ver-

wendet wird.

Die ersten neun Datenpunkte in Abbildung werden als Plateauwerte angenommen,
danach ergeben sich aufgrund des kleiner werdenden Signals Fluktuationen. Der Parameter

oy entspricht dem Schitzwert der Energieliicke F; — Ey und wird zu
a1 = 1,00010(78) (71)

bestimmt. Dieser ist in sehr guter Ubereinstimmung mit dem theoretischen Wert von 0,99990.
Die Wiederholung dieser Vorgehensweise fiir verschiedene Gitterabstdnde a liefert die in Ta-

belle 2] dargestellten Energieliicken. Zusétzlich sind die analytischen Werte aufgefiihrt.

Tabelle 2: Schitzwerte und analytische Werte der Energieliicke E; — Ey fiir verschiedene Gitterab-
stinde a. Unter Verwendung der Gleichung wurden Nj,q > 50000 unabhiingige Werte

erzeugt.
Gitterabstand a Simulation E1 — Ey Theorie E1 — Ey
0,2 0,99875(72) 0,99834
0,1 1,00034(96) 0,99958
0,05 1,00010(78) 0,99990

Alle Werte stimmen mit den analytischen Vorhersagen iiberein. Die Energiewerte fiir a =

0,05 und a = 0,1 sind im Bereich ihrer Fehler konsistent mit dem Kontinuumswert von 1.
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4.1.4. Energie des zweiten angeregten Zustandes

Zur Bestimmung des zweiten angeregten Energiezustandes kann erneut die effektive Mas-
se verwendet werden. Der Operator 22 koppelt hierbei den Grundzustand mit dem zweiten

angeregten Zustand. Hierbei ist zu beachten, dass gilt

[ =1{012%0) |+ > e En T 0]z (0)|n) 2. (72)

n=1

T—o0

lim C(r) =Y e Fn=F07(0]2(0)|n)
n=0

Der erste Summand der obigen Gleichung stellt einen Konstantanteil dar, welcher zur Ex-
traktion der Energie des zweiten angeregten Energiezustandes eliminiert werden muss. Aus
diesem Grund wird die verbundene Zwei-Punkt-Funktion verwendet.

Die Abbildung [I1] zeigt die effektive Masse meg als Funktion von 7 fiir einen Gitterabstand
von a = 0,1. Zusétzlich ist die Anpassung an das Plateau dargestellt. Es wurden Nj,q > 40000

Konfigurationen und eine Binldnge von 50 verwendet.
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(a) Die Korrelationsfunktion C2(7) fiir einen Git- (b) Die effektive Masse als Funktion der Zeit

terabstand von a = 0,05. Die durchgezogene
Linie symbolisiert die Anpassung an die Simu-
lation. Die vertikale Linie verdeutlicht das fiir
den Fit gewéhlte Zeitfenster [0,72].

fiir a = 0,05. Die Punkte stellen die Ergeb-
nisse der Simulation dar. Die vertikale Linie
verdeutlicht das fiir den Fit gewéhlte Zeit-
fenster [0,75], wihrend die doppelt horizonta-
le Linie das Fehlerband, bestimmt durch eine

Jackknife-Binning-Analyse, darstellt.

Abbildung 11: Bestimmung der effektiven Masse des zweiten angeregten Zustandes. Es wird a =
0,05 und Njpq > 40000 gesetzt, wobei Gleichung verwendet wird.

Abbildung zeigt fur die effektive Masse zwar ein Plateauverhalten, jedoch sind die
statistischen Fehler aufgrund der Subtraktion des konstanten Anteils | (0]z%(0) | gréfer. Die
untenstehende Tabelle [3| zeigt die Energieliicke Es — Ey fiir verschiedene Gitterabstédnde a.

Tabelle 3: Schitzwerte und analytische Werte der Energieliicke Fy — Ej fiir verschiedene Gitterab-
stdnde a. Unter Verwendung der Gleichung wurden Nipg > 40000 unabhéngige Werte

erzeugt.
Gitterabstand a Simulation Fy — Ejy Theorie F1 — Ey
0,2 1,9963(19) 1,9967
0,1 1,9997(21) 1,9992
0,05 2,0003(21) 1,9998
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Alle Werte stimmen mit den analytischen Vorhersagen iiberein. Die Energiewerte fiir a =

0,05 und a = 0,1 sind im Bereich ihrer Fehler konsistent mit dem Kontinuumswert von 2.

4.2. Anharmonischer Oszillator

In diesem Kapitel steht die Untersuchung eines anharmonischen Oszillators im Vordergrund.

Dieses Modell ist analytisch nicht exakt berechenbar. Der Hamiltonoperator des Teilchens ist
wie folgt gegeben:

H = » + AMz? — f2)% (73)
2m

Das Doppelmuldenpotential ist in Abbildung dargestellt.

Potential V(z)

Ort z

Abbildung 12: Das Potential V(z) = A(z? — f?)? des anharmonischen Oszillators. Die Minima
befinden sich an den Stellen +f.

Klassisch betrachtet, wiirde ein niederenergetisches Teilchen sich in einer der Mulden des
Potentials V (x) befinden. Es existieren somit zwei entartete Grundzustanden. Quantenmecha-
nisch wird diese Entartung auf Grund des Tunneleffekts aufgehoben, sodass der Grundzustand

gerade Paritdt und der erste angeregte Zustand ungerade Paritdt aufweist. Fiir die Simulation
wird die euklidische Wirkung wie folgt diskretisiert:

Nsite 2
1 (ZCZ 1 — xz)
m+T + Mai — f2)2 (74)
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4.2.1. Aufenthaltswahrscheinlichkeit des Grundzustandes und Quantentrajektorien

Zuerst sollen periodische Randbedingungen xn_,, = xo und A = 1 betrachtet werden. Die

ite

folgenden Abbildungen zeigen typische Quantentrajektorien fiir unterschiedliche Parameter

f2
1 Mﬂ
-Te I ~ \‘ w I
M( " |

Wﬂh WMV L

(a) f2=05 (b) f2=1

Ort x
Ort z

Te

Ort z

i K
iy F

Abbildung 13: Quantentrajektorien des anharmonischen Oszillators fiir verschiedene Parameter f?2
und m = A = 1. Es wurde 7' = 100, @ = 0,05 und n = 15 gewéihlt.

-Te

Wie Abbildung deutlich zeigt, weisen die Quantentrajektorien fiir diese Parameterwahl
zwei charakteristische Zeitskalen auf. Zum Einen ergeben sich quantenmechanische Fluktua-
tion mit einer Oszillationszeit 7,5 um die Minima +x. = +f des Potentials, zum Anderen
wird die Bewegung auf groferen Zeitskalen 7 durch die Tunnelzeit 7, bestimmt.

Die Oszillationszeit 7,5, kann iiber die semiklassische Nidherungsmethode der euklidischen
Ubergangsamplitude zu w™! = <W>_l bestimmt werde. Die Tunnelzeit 7y, ist
proportional zu w™! exp(m?w?3/12)). Eine verlissliche Simulation muss somit beide Zeitska-

len beriicksichtigen, woraus folgende Ungleichungen folgen:
a K Tose und  Tun < Niitel. (75)

Es wird angenommen, dass die obigen starken Ungleichungen fiir 7' = 100 und a = 0,05 erfiillt

sind, da keine signifikante Anderung der Ergebnisse bei Erhéhung von T' und Erniedrigung

“Diese stellen die reskalierten Gleichungen der Quelle [Mac99)] dar.
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von a eintreten. Zur Berechnung der Aufenthaltswahrscheinlickeitsdichte des Grundzustan-
des wird analog zu dem harmonischen Oszillator vorgegangen. Es wurden insgesamt Ny
Konfigurationen erzeugt, wobei Ngkip, = 61 verwendet wird. Abbildung [14] zeigt die Aufent-
haltswahrscheinlichkeitsdichte des Grundzustandes fiir f2 =2, m = 0,5 und \ = 1.

0,4 T T T T T

P
0,35 | L[Z=2 v -

0,25 + E -

0,15 + e * i

Dichte |o(z)|?
o
[\)

0,05 | -

Ort x

Abbildung 14: Die Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes als Funktion des Ortes
fir 2 =2, m = 0,5 und A\ = 1. Die Simulationsparameter sind N;,; = 50100,
Nskip = 61, T'= 100 und a = 0,05.

Die geringe Anzahl von Tunnelprozessen in Abbildung fiihrt zu einer geringen Aufent-
haltswahrscheinlichkeitsdichte um den Ursprung. Die Aufenthaltswahrscheinlichkeitsdichte ist
leicht asymmetrisch um den Ursprung, dies ist auf die Numerik zuriickzufiihren. Eine Vergro-
Berung von Ny fiihrt zu einer symmetrischen Verteilung, welche aufgrund der Symmetrie des

Potentials zu erwarten ist.

4.2.2. Energieniveaus des Grundzustandes und des ersten angeregten Zustandes

Die Anwendung des Virialtheorems liefert die Energie des Grundzustandes und {iber die effek-
tive Masse kann die Energie des ersten angeregten Zustandes bestimmt werden. Hierbei wird
aufgrund von Korrelationseffekten der Parameter m zu 20 gewdhlt. Die folgende Abbildung
zeigt exemplarisch die Bestimmung der Energieliicke F; — Fy iber die effektive Masse
fir f?2 = 2. Hierbei wird analog zum harmonischen Oszillator vorgegangen: Es wird ein Pla-
teau der effektiven Masse bestimmt und in diesem Bereich eine abfallende und ansteigende

Exponentialfunktion M (7) angepasst.
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(b) Die effektive Masse Mg als Funktion der Zeit 7
fiir a = 0,05. Die Punkte stellen die Ergebnis-
se der Simulation dar. Die vertikale Linie ver-
deutlicht das fiir den Fit gewéhlte Zeitfenster
[T1,72], wahrend die doppelt horizontale Linie
das Fehlerband bestimmt durch eine Jackknife-

Binning-Analyse mit B = 500 darstellt.

Abbildung 15: Bestimmung der effektiven Masse des ersten angeregten Zustandes. Es wurde eine
Gesamtanzahl von Ny, = 5000 bei Ny, = 30 und 7 = 20 gewdahlt.

Im Gegensatz zum harmonischen Oszillator koppelt & sowohl den Grundzustand mit dem

ersten angeregten Zustand als auch andere hohere gelegene Energiezusténde. Fiir grofse 7 er-
gibt sich jedoch ebenfalls ein Plateauverhalten der effektiven Masse. Hierbei ist zu beachten,
dass aus Laufzeitgriinden eine sehr geringe Anzahl von Samples Nyo: = 5000 gewéhlt wurde.
Die Resultate sind in diesem Fall eher qualitativer Natur und fithren besonders fiir grofe f?
nicht immer zu einem deutlichen Plateauverhalten wie in Abbildung Grund hierfiir ist
die Zunahme an Korrelationseffekten.
Abbildung zeigt die Energie des Grundzustandes und des ersten angeregten Zustandes
fiir einen festen Gitterabstand von a = 0,05 als Funktion des Parameters f2. Zudem ist
die Kontinuumsldsung eines anderen numerischen Verfahrens, der Moment-Methode [BDS80)],
dargestellt. Eine kurze Beschreibung dieser Methode ist dem Anhang zu entnehmen. Da
unterschiedliche Simulationen fiir die Grundzustandsenergie und die effektive Masse durchge-
fiihrt wurden, kénnen die Fehler einfach kombiniert werden. Fiir die Grundzustandsenergie
wurde Nyoy = 10000 und Ny, — 30 verwendet. Fiir die Moment-Methode wurde der gleiche
Versuchszustand wie in [BDS80| gewéhlt und M = 200 verwendet (vgl. [BDS80]).
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Abbildung 16: Die Energie des Grundzustandes und ersten angeregten Zustandes als Funkti-
on des Parameters f2. Die durchgezogene Linie repriisentiert die Ergebnisse der
Moment-Methode [BDS80] im Kontinuumsfall und die Punkte stellen die Ergebnis-
se der Simulation dar. Die Simulationsparameter sind fiir die Grundzustandsenergie
Niot = 10000 und Ngpip = 30 und fiir die Energie des ersten angeregten Niveaus
Ntot = 50007 Nskip = 307 und 7 = 20.

Die Simulation stimmt qualitativ gut mit der anderen numerischen Methode iiberein. Fiir
groke f? sind die Energien nahezu identisch, welches intuitiv richtig erscheint: Fiir grofer
werdendes f2 bewegen sich die Potentialmulden immer weiter auseinander, die Tunnelwahr-

scheinlichkeit nimmt ab.

4.2.3. Instantonen

Nach Quelle [Mac99] kann das Potential V' (z) um ein Minimum entwickelt werden und die st6-
rungstheoretischen Korrekturen fiir die Wellenfunktion und Energie angebracht werden. Fiir
das andere Minimum kann entsprechend vorgegangen werden. Aus Symmetriegriinden wiir-
den somit die Grundzustandsenergien, egal fiir welche storungstheoretische Ordnung, iiber-
einstimmen, sodass ein entarteter Grundzustand auftreten wiirde. Tatséchlich ist dieser je-
doch nicht entartet. Dies kann iiber eine semiklassische N&herungsmethode gezeigt werden
[Mac99, VZNSS82].

Das Pfadintegral soll nun in dem semiklassischen Grenzfall A — 0 betrachtet werden. In der
Simulation kann der semiklassische Grenzfall durch einen groken Storfaktor f2 approximiert
werden.

In diesem Fall kann das Pfadintegral mit Hilfe der Sattelpunktmethode angenshert werden.
Anders ausgedriickt dominieren die Regionen um lokale Extrema (Minima) der euklidischen
Wirkung das Pfadintegral. Fiir das Doppelmuldenpotential werden nun die Ubergangsampli-

tuden

(—fle "1 f)y und (fle T |—f) (76)
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betrachtet, wobei der Anfangszeitpunkt sich bei ¢ = —T'/2 und der Endzeitpunkt bei t = T'/2
befinden soll. Fiir die Pfade X (¢) mit extremaler Wirkung gilt die Bedingung

T/2
0Sg = Se[X (1) + dz(1)] — Sp[X(7)] = /

droa(r) [ S V’(X)] -0, (77
—7/2 T

wobei V' = dV/dx. Woraus nach dem Variationsprinzip die klassische Bewegungsgleichung

fiir ein Teilchen in einem Potential —V () folgt:

2
i% —V(X). (78)

In euklidischer Zeit entspricht dies einem Teilchen was sich im invertierten Potential —V (z)
bewegt (vgl. Abbildung [17).
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Abbildung 17: Das Potential —V in Abhéngigkeit des Ortes z. Die Minima befinden sich an den
Stellen + f. Zusétzlich ist eine mogliche klassische Bewegung des Teilchens in diesem
Potential eingezeichnet: Das Teilchen bewegt sich auf dem mechanischen Profil von
einem Maximum bei —f zum anderen Maximum bei f.

Die wichtigen Pfade in diesem Problem sind Lésungen der Gleichung mit beschrankter
Wirkung fiir T — oo, da diese die Hauptdistributionen zum Integral liefern. Die offensichtliche
Losung ist die Bewegung des Teilchens vom Maximum —V (£f) hin zum anderen Maximum
—V(Ff) im Grenzfall T' — oo. Eine dieser Bewegung auf dem mechanischen Profil —V'(z) ist
in Abbildung [17| dargestellt. Mathematisch ergibt sich folgende Losung der Gleichung :

X(7) = ftanh (g(T - 7'0)) , (79)

wobei 19 die Zeit fiir den Nulldurchgang bezeichnet. Diese Losung wird als Instanton oder auch
Pseudoteilchen bezeichnet. Die Losung ist zeitlich lokalisiert mit einer Breite von w™!. Fiir
T — +00 geht x zwar an unterschiedliche Orte +f, diese sind jedoch physikalisch betrachtet
dquivalente Grundzusténde. Als instant* wird diese Konfiguration aus dem Grund bezeichnet,
dass sie fiir einen kurzen Zeitpunkt von einem zum anderen Grundzustand wechselt.

Abbildung [18| zeigt die Wirkungsdichte s = % + V(z) des Instantons, diese Darstellung
unterstreicht nochmals den Pseudoteilchencharakter.
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Abbildung 18: Wirkungsdichte s = @2 + V(x) eines Instantons, wobei 79 = 0,w = 0,5 und f = 1
gewahlt wurde.

Bisher wurde nur eine Lésung der Gleichung untersuchtﬂ Da das Zeitintervall T" sehr
grofs ist, konnen auch Abfolgen von Instantonen und Antiinstantonen auftreten. In dem gege-
benen Fall kénnen allerdings nur ungerade Anzahlen von Instantonen auftreten, da der An-
fangs/Endpunkt durch +f gegeben sind. Die Ubergangsamplitude ist nach Quelle [VZNS82]
wie folgt gegeben:

(—fle HT|f) = %e—wm sinh(wT'd), (80)

wobei d die Instantonendichte %\/506*50 beschreibt und die Wirkung Sy eines Instantons

m2w?

gleich "55- ist. Obige Gleichung gilt fiir

ITi — ] > w™l, (81)
wobei die Indizes ¢ und j zwei benachbarte Zentren zweier Instantonen bezeichnen. Anders
formuliert muss die Entfernung benachbarter Instantonen viel grofier sein als deren Weite.
Dies kann durch sehr kleine A erreicht werden. Obiges Modell wird als Dilute Instanton Gas
bezeichnet [VZNS82|. In diesem Fall verhalten sich die Pseudoteilchen wie ein ideales Gas, es
treten keine Wechselwirkungen auf. Um in der Simulation ein einziges Instanton zu finden,

miissen antiperiodische Randbedingungen verwendet werden:
x(Ngite + 1) = —x(7). (82)

Zusitzlich wird eine geringe Instatonendichte gewihlt. Die folgenden Abbildungen [19] zeigen

die Instantonlésung sowie eine Quantentrajektorie der Simulation.

5Streng genommen sind aufgrund der Zeitinvarianz der Hamiltonoperators, beliebige Nulldurchginge zu
betrachten. Es ergibt sich somit eine unendliche Anzahl der Lésungen gleicher Art.
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(a) Eine Quantentrajektorie des anharmonischen (b) Die klassische Tunnellésung in euklidi-
Oszillators mit antiperiodischen Randbedin- scher Zeit. Die klassischen Minima des Poten-
gungen. Die klassischen Umkehrpunkte sind tials sind mit +z. bezeichnet.

mit +x, und £z bezeichnet. Zusétzlich sind
die klassischen Minima +x. des Potential mar-
kiert. Es wurde f2 = 4, A\ = m = 1 gewihlt
und 7= 100 a = 0,05.

Abbildung 19: Instantonen im Doppelmuldenpotential.

Die Simulation und Theorie sind in guter Ubereinstimmung. In der Simulation ergeben sich
erwartungsgeméft quantenmechanische Fluktuationen in den Potentialmulden. Deren Am-
plituden werden begrenzt von den klassischen Umkehrpunkten des Teilchens. Jetzt werden
symmetrische Randbedingungen verwendet und als Hot Start eine Instanton-Antiinstanton-
Konfiguration gewéhlt. Diese kann theoretisch iiber einen Summen-Ansatz ausgedriickt wer-
den:

x(7) = f(—=1 + tanh(w(7 — 71)/2) — tanh(w (T — 7a)/2)) (83)

wobei 77 und 74 die Mittelpunkte der Pseudoteilchen bezeichnen. Die Wirkung dieses Paars

ist nach [Sch04] fiir den Abstand 774 = |77 — 74| flir grofse 7o gegeben durch:

S1A(Try) = 250(1 — 6exp(—fra) + ... (84)

Fir 774 — 0, folgt nach Gleichung eine Wirkung von Sg = 0: Das Instanton annihiliert
mit dem Antiinstanton. Das verwendete Zeitgitter besitzt T'= 15, a = 0,5 und die Parameter

werden so gewahlt, dass die Instantonendichte im Gleichgewicht folgende Gleichung erfiillt:
Peq - T < 1. (85)

Die folgende Abbildung zeigt die Quantentrajektorien in Abhéngigkeit von der Monte-
Carlo-Zeit t.
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Abbildung 20: Die Annihilation eines Instanton-Anti-Instanton-Paars in der Monte-Carlo-
Simulation. Es wurde f2 = 3,5 und A = 0,4 verwendet. Fiir das Zeitgitter gilt
T =15und a = 0,5.

Die beiden Pseudoteilchen bewegen sich zunéchst aufeinander zu und annihilieren dann bei
einer Monte-Carlo-Zeit von etwa t = 20. Die Dauer dieses Vorgangs ist abhéngig von der
Grofse der Fluktuationen im Gegensatz zum Instanton-Antiinstaton-Abstand 74 .

Ein alternativer Zugang ist die Betrachtung der Wirkung als eine Art Profil: Ahnlich wie bei
einer Bergwanderung wird ein beliebiger Startpunkt gewihlt und anschliefend der Kraft bis
ins Tal gefolgt[Shu88]. Die Verinderung des Pfades kann iterativ berechnet werden durch:

Tnt1(T) = xp (1) — €fn(7), (86)

wobel € ein numerischer Faktor und f,(7) die klassische Kraft ist, welche durch 65/0x ge-
geben ist. Die folgende Abbildung [21] zeigt das numerische Resultat fiir € = 0,01, wobei die

unterschiedlichen Linien einem Iterationsabstand von 1000 entsprechen.
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Abbildung 21: Die Annihilation eines Instanton-Anti-Instanton-Paars unter Verwendung von

Dieses Ergebnis ist qualitativ konsistent mit dem aus der Monte-Carlo-Simulation gefunde-

nen Ergebnis.
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5. Zusammenfassung und Ausblick

In dieser Arbeit wurden der harmonische und eine Form des anharmonischen Oszillators mit
der Monte-Carlo-Methode unter der Verwendung des Metropolis-Hastings-Algorithmus be-
trachtet. Die Ergebnisse der Simulation fiir den harmonischen Oszillator sind in guter Uberein-
stimmung mit den analytischen Werten. Obschon auf die Fehlerbestimmung der numerischen
Ergebnisse viel Wert gelegt wurde, ist im Hinblick auf die Exaktheit der numerischen Ergeb-
nisse die Verwendung der Monte-Carlo-Methode fiir den einfachen harmonischen Oszillator
natiirlich im Vergleich zu anderen Methoden nicht notwendig, dennoch bietet es interessante
Einblicke in die Funktionsweise der Monte-Carlo-Methode und ebnet so den Weg fiir komple-
xere Modelle. Sokal formuliert diesen Zusammenhang folgendermafen: ,Die Monte-Carlo ist
eine extrem schlechte Methode und sollte nur genutzt werden, wenn die Alternativen noch
schlechter sind“[Sok89]. Fiir hoherdimensionale Integrale ist dies der Fall und die Monte-Carlo-
Simulation kann problemlos durch Einfiihrung weiterer Variablen auf mehr Freiheitsgrade er-
weitert werden.

Zusétzlich lassen sich leicht Grundzustandserwartungswerte eines Teilchens in einem beliebi-
gen Potential erhalten. Fiir den harmonischen Oszillator wurde zudem die Energie des ersten
angeregten und des zweiten angeregten Zustandes bestimmt. Hierbei zeigt sich ein Nach-
teil dieser Methodik: Hoher gelegene Zusténde erfahren eine exponentielle Unterdriickung im
imaginédren Zeitformalismus, sodass die Extraktion hoher gelegener Niveaus erschwert wird.
In der Simulation fiihrt dies zu gréferen Fehlern, welche sich aufgrund des 1/+/Niot-Gesetzes
nur langsam minimieren lassen.

Zusitzlich wurde das System des anharmonischen Oszillators untersucht, wobei sich der nicht
pertubative Zugang der Monte-Carlo-Methode als giinstig erweist. Die Erwartungswerte der
Energie fiir den ersten angeregten und den Grundzustand stimmen qualitativ gut mit den Er-
gebnissen der Moment-Methode iiberein und es konnte somit die klassische Vermutung eines
entarteten Grundzustands widerlegt werden. Der Grund fiir die Authebung der Entartung in
der Quantenmechanik sind Tunnelphdnomene. In imaginérer Zeit sind diese Tunnellsungen
klassische Losungen eines Teilchens in dem Potential —V'(z). Diese, als Instantonen bezeich-
neten Losungen, konnten in guter Ubereinstimmung in der Monte-Carlo-Simulation wieder-
gefunden werden. Zuletzt wurde die Instanton-Antiinstanton-Wechselwirkung betrachtet.
Als Ausblick wére eine ndhere Untersuchung des Dilute-Instanton-Modells von Interesse. Bei-
spielsweise konnten ein Vergleich der Energie des Grundzustandes und ersten angeregten Zu-
standes mit [VZNS82] erfolgen. Zudem konnte die Monte-Carlo-Simulation auch auf andere

Theorien, wie zum Beispiel die Quantenchromodynamik, angewandt werden.
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A. Anhang

A.1. Programmstruktur

Zunichst werden die Simulationsparameter initialisiert und eine Startgitterkonfiguration fest-
gelegt. Unter Gebrauch des Metropolis-Hastings-Algorithmus werden anschliefend neue Git-
terkonfigurationen erstellt, dabei wird aufgrund seiner guten Eigenschaften der Mersenne
Twister genutzt|[Mor(7|. Ist der Thermalisierungsprozess abgeschlossen, werden die Nicht-
Gleichgewichts-Daten verworfen und verwertbare Konfigurationen produziert. Danach werden
die Daten analysiert und primére Observablen oder komplexere Funktionen berechnet. Unter-
programme fiihren hierbei die Jackknife-Binning-Analyse oder die I'-Methode aus. Sofern das
Ergebnis ausreichend ist, wird der Vorgang abgeschlossen, im anderen Fall kénnen zuséatzliche

Konfigurationen erstellt werden.
Initialisation,
7777777777777 flag=false

Metropolis-Algorithmus

Dataanalysis
yes g
no

Reached
equilbri-
um?

Flag—=true
Discard
Data

More
Data / no

Abbildung 22: Die Programmstruktur der Monte-Carlo-Simulation. Eine Beschreibung ist dem oben
stehenden Text zu entnehmen.

Accurate

yes

enough?

A.2. Anpassung des Parameters A

In diesem Kapitel wird die Abhéngigkeit der integrierten Autokorrelationszeit 7;,; der Ope-
rators 22 in Abhiingigkeit von dem Parameter A fiir eine feste Zeit T ermittelt. Zusitzlich
wird die Akzeptanzrate von x; — a:; berechnet. Abbildung [23| zeigt das Ergebnis dieser Un-

tersuchung.
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Abbildung 23: Die integrierte Autokorrelationszeit der Observablen 22 auf einer logarithmischen
Skala in Abhéngigkeit des Parameters A wird durch die lila Punkte verdeutlicht. Die
Akzeptanzrate ist auf der rechten Ordinatenachse dargestellt. Die Simulationspara-
meter sind a = 0,1, T'= 100 und N, = 1000.

Wie erwartet nimmt die Akzeptanzrate mit steigendem A ab. Fiir die integrierte Autokor-
relationszeit ergibt sich jedoch ein Minimum im Bereich 2v/a — 4+/a, welches in etwa einer
Akzeptanzrate von 50% entspricht. Eine hohe Akzeptanzrate deutet darauf hin, dass das In-
tegrationsvolumen langsam durchlaufen wird, wihrend fiir eine zu kleine Akzeptanzrate sehr
viel Zeit auf die Ablehnung neuer Konfigurationen verwendet wird [Mor07]. In den Simulatio-
nen wird tiberpriift, dass die Akzeptanzrate ungefihr bei 50% liegt, woraus auch aus diesem
Gesichtspunkt die Wahl

A~ 2va (87)

plausibel erscheint.

A.3. Fehleranalyse
A.3.1. I'-Methode

Die I'-Methode dient zur Berechnung von Mittelwerten beliebiger Funktionen und deren sta-
tistischen Fehler in Monte-Carlo-Simulationen. Hierbei werden die relevanten Autokorrelati-
onsfunktionen summiert und die integrierte Korrelationszeit berechnet. Zur kurzen Erkléarung
dieser Methode wird die Notation der Quelle [Wol04] verwendet: Primére Observablen A,
werden durch einen griechischen Index charakterisiert. Davon abgeleitete Funktionen erhal-

ten folgende Darstellung:
F = f(A1,A2...) = f(Aa). (88)
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Die Schétzwerte von N Monte-Carlo-Iterationen der Observable A, erhalten die Bezeichnung
al,, i=1...N. (89)

Fiir den Fehler o ergibt sich das Analogon zu Gleichung zu:

Cr  2TintF

2 p— pu—
Op = N N vr, (90)
mit der ,naiven“ Varianz fiir F'
vp =Y fafsTap(0), mit Tap = ((a}, — Aa)(a} — Ag)) (91)
ap

und der integrierten Autokorrelationszeit;:

t=00
ot = 3= 3 3 fafaTas(t). (92)

t=—0c0 aff

Tr(t)

Da der Fehler o selbst ein Schitzwert ist und somit auch mit einem statistischen Fehler
versehen ist, ist es notwendig den Fehler des Fehlers moglichst klein zuhalten. Aus diesem

Grund wird der Schétzer von Cp wie folgt gewdhlt

w
Cr(W) = [FF(O) +2 ZFF(t)] (93)
=1

Fiir ein grokes W ist der Schitzwert kaum verzerrt, jedoch nimmt das Signal proportional
zu exp(—W/T) ab, wobei das Rauschen konstant bleibt. Es ist somit ein Kompromiss zwi-
schen statistischem und systematischem Fehler, wobei der optimale Wert fiir W den gesamten

relativen Fehler minimiert:

2tl0E) 3 i (cap(-W/) + 2T "

OoF

Unter dieser Bedingung kann eine automatische Fensterfunktion-Prozedur entwickelt werden,

fiir dessen genaue Gestalt auf Quelle [Wol04| verwiesen wird.

A.3.2. Binning

In diesem Kapitel wird ebenfalls die Notation von Quelle [Wol04] verwendet. Die Binning-
Methode dient zur Bestimmung der statistischen Fehler von korrelierten Daten a’,i = 1... N.
Hierbei wird die Datenmenge in Np Abschnitte der Lange B unterteilt. Diese Untermengen

werden als Bins bezeichnet, wobei fiir den Mittelwert des kten Bins gilt:

B
B %Za(k—lwﬂ', k=1,... Ng. (95)
i=1
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Wird die Binldnge B grofs genug gew#hlt, ergeben sich quasi unkorrelierte Bins. Als Schétzer
des Fehlers wird folgende Darstellung gewé&hlt:

Np
=2 _ 1 kY _ 1\2

wobei f die Funktion f angewandt auf den Mittelwert der gesamten Datenmenge ist. In
dieser Arbeit wird die hier beschriebene Binning-Methode mit der Jackknife-Methode (vgl.
kombiniert. Diese sogenannten Jackknife-Bins werden fast auf die gesamte Statistik an-
gewandt, welches beispielsweise zu einer verbesserten Stabilitdt von Fits fiihrt. Eine genauere

Beschreibung ist der Quelle [Wol04] zu entnehmen.

A.3.3. Jackknife

Jackknife lésst sich den Resampling-Methoden zuordnen und dient zur Berechnung der Va-
rianz und der Verzerrung. Diese Methode soll kurz in Anlehnung an Quelle [Ber04] erlautert
werden. Bei dieser Technik wird systematisch ein Wert x; aus einer Stichprobenmenge {xj}
entfernt, der Mittelwert :ﬁ;] dieser Untermenge gebildet und die Schitzwerte fiJ (xf ) einer
Funktion f berechnet. Abschliekend ergibt sich der Jackknife-Schitzwert f7 der Groke (f)
iiber eine erneute Mittelung iiber alle f;.

Mathematisch erschliefst sich somit folgende Formulierung:

N

1 1
f = sz’ij mit fZ»J:f(x;]) und x;-]: ﬁzxk (97)

i=1 ki
Der Schitzwert der Varianz o2 ergibt sich zu

g, N-1g —J
() == 2 =T (98)
i=1
Im Gegensatz zu den auf linearer Approximation basierenden Fehlerfortpflanzungsmethoden,
ist die Jackknife-Methode fiir nichtlineare Funktionen unter statistischen Fluktuationen sta-
biler. Zudem sind keine Berechnungen partieller Ableitungen notwendig.
Eine Reduktion der Verzerrung des Schitzwertes ist nach den Quellen [Wol04] Ber04] moglich,

in dieser Arbeit wird jedoch davon abgesehen.

A.4. Moment-Methode fiir Eigenwerte und Erwartungswerte

Die Moment-Methode ist einen numerische Methode zur Bestimmung von Eigenwerten eines
quantenmechanischen Systems, dessen Potential ein Polynom in den Ortskoordinaten 7 =

(x1,...,xn) einnimmt[BDS80|. Es wird eine Schrédingergleichung der Form

N
Hy=Ey) ,H=Y p}+V (99)
=1
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betrachtet und zusitzlich die Momente definiert:

Snlng. L.ny — <¢‘$?1 s x?\[N |¢> ’ (100)

wobei |1) der exakte Eigenzustand der Gleichung und |¢) ein Versuchszustand ist. Der

Versuchszustand erfiillt folgende Gleichungen:

o(x) = (]6) = exp [— /0 Caz W)] (101)

Vo(z) = — §(z)¢(z) (102)
Vi(z) =(G-G— V- 9)d(x). (103)

Das Matrixelement (|}, .. 2 \N H|¢) fiihrt {iber eine Kommutatorrelation auf folgende Be-

ziehung:

N

=1
(104)

Sind sowohl g als auch V Polynome im Ort, kann obige Rekursionsbeziehung zur Bestimmung
der Eigenwerte benutzt werden. Eine detaillierte Beschreibung insbesondere die Anwendung
auf den anharmonischen Oszillator ist der Quelle [BDS80| zu entnehmen. Hierbei ist zu beach-
ten, dass [BDS80, Gleichung (20)] und darauf folgende Gleichungen kleine Fehler aufweisen.

Die genau Fehlerbeschreibung ist dem Programmcode der Moment-Methode zu entnehmen.
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