
Gitter-Monte-Carlo-Simulation des

harmonischen und anharmonischen

Oszillators im Pfadintegralformalismus in

euklidischer Zeit

Bachelorarbeit
zur Erlangung des akademischen Grades

Bachelor of Science

vorgelegt am: 10. August 2015

am Fachbereich Physik der Westfälischen Wilhelms-Universität Münster

Name: Magnus Molitor
Matrikelnummer: 393757

Erstgutachter: Priv.-Doz. Dr. Heitger
Zweitgutachter: Prof. Dr. Linz



Inhaltsverzeichnis

1. Einleitung 1

2. Pfadintegralformalismus 2

2.1. Euklidisches Pfadintegral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Beziehung zur statistischen Physik . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Monte-Carlo-Methode 6

3.1. Einfache Monte-Carlo-Integration . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Monte-Carlo-Integration mit stationären stochastischen Prozessen . . . . . . . 7
3.3. Markow-Ketten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4. Metropolis-Hastings-Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5. Numerische Fehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Numerische Ergebnisse 12

4.1. Harmonischer Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1. Thermalisierung und Korrelationse�ekte . . . . . . . . . . . . . . . . . 12
4.1.2. Energie und Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes 16
4.1.3. Energie des ersten angeregten Zustandes . . . . . . . . . . . . . . . . . 19
4.1.4. Energie des zweiten angeregten Zustandes . . . . . . . . . . . . . . . . 23

4.2. Anharmonischer Oszillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1. Aufenthaltswahrscheinlichkeit des Grundzustandes und Quantentrajek-

torien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2. Energieniveaus des Grundzustandes und des ersten angeregten Zustandes 26
4.2.3. Instantonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. Zusammenfassung und Ausblick 34

A. Anhang 35

A.1. Programmstruktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2. Anpassung des Parameters ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3. Fehleranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.3.1. Γ-Methode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.3.2. Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3.3. Jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.4. Moment-Methode für Eigenwerte und Erwartungswerte . . . . . . . . . . . . . 38

B. Literatur 40

C. Danksagung 41

D. Plagiatserklärung 42



1 Einleitung 1

1. Einleitung

Feynmans quantenmechanischer Pfadintegralformalismus stellt eine alternative Formulierung

der Quantenmechanik dar. Er bietet neben einer sehr anschaulichen Beschreibung der Quan-

tenmechanik zahlreiche Anwendungen in der statistischen Physik, Festkörperphysik und der

Quantenfeldtheorie[Mac99].

Die direkte Berechnung des Pfadintegrals ist oft mühsam, sodass nach MacKenzie die meiste

Arbeit mit Pfadintegralen darin besteht, sie letztendlich gar nicht auswerten zu müssen[Mac99].

Des Weiteren sind nicht immer analytische Lösungen vorhanden, sodass die Verwendung nu-

merischer Methoden erforderlich ist. Die Pfadintegraldarstellung liefert hierbei eine hilfreiche

Relation zwischen statistischer Mechanik und Quantenmechanik, welche den Gebrauch der aus

der statistischen Physik stammenden Monte-Carlo-Methode motiviert. Unter Verwendung des

Metropolis-Hastings-Algorithmus werden in dieser Arbeit eindimensionale nichtrelativistische

quantenmechanische Modelle, wie der harmonische Oszillator und eine Form des anharmo-

nischen Oszillators untersucht. Es wird hierbei die euklidische Darstellung des Pfadintegrals

gewählt. Die einzelnen Pfade werden auf einem diskreten imaginären Zeitgitter dargestellt

und so niederenergetische Energieeigenwerte und Aufenthaltswahrscheinlichkeitsdichten des

Grundzustandes ermittelt. Zudem werden für ein tiefes Doppelmuldenpotential Instantonen-

kon�gurationen behandelt.

Diese Arbeit ist wie folgt gegliedert: In dem Kapitel 2 wird der Pfadintegralformalismus vor-

gestellt und die Analogie zur statistischen Physik erläutert. In dem danach folgenden Kapitel

3 werden die Grundlagen der numerischen Evaluation von Integralen mit Hilfe der Monte-

Carlo-Methode dargelegt und die Anwendung des Metropolis-Hastings-Algorithmus auf das

gegebene physikalische Modell beschrieben. Das Kapitel 4 präsentiert die numerischen Er-

gebnisse des harmonischen und anharmonischen Oszillators. In dem Kapitel 5 werden die

Ergebnisse diskutiert und ein kurzer Ausblick gegeben. Zuletzt werden im Anhang A einige

technische Details näher erläutert.
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2. Pfadintegralformalismus

In diesem Kapitel wird der Pfadintegralformalismus vorgestellt und die Grundidee der Zeitdis-

kretisierung erläutert. Die Ausführungen beziehen sich hierbei hauptsächlich auf die Quellen

[CF81, Mor07].

Ein nicht relativistisches Teilchen der Masse m vollführt eine eindimensionale Bewegung in ei-

nem zeitunabhängigen Potential V (x), wobei der Hamiltonoperator folgende Form einnimmt:

H =
p2

2m
+ V (x). (1)

Die Wahrscheinlickeitsamplitude, dass sich das Teilchen zunächst zur Zeit t = ta am Ort xa
und danach zu dem Zeitpunkt t = tb am Ort xb be�ndet, ist durch den Propagator K gegeben:

K(xb,tb;xa,ta) = 〈xb(tb)|xa(ta)〉 = 〈xb|eiH(ta−tb)/~|xa〉 , (2)

wobei der Operator eiHt/~ als Zeitentwicklungsoperator bezeichnet wird.

In der quantenmechanischen Formulierung des Pfadintegrals ergibt sich diese Übergangswahr-

scheinlichkeit als Summation über alle möglichen Wege, welche den Anfangspunkt xa(ta) mit

dem Endpunkt xb(tb) veknüpfen. Hierbei wird jeder Pfad mit einem Phasenfaktor e−iS ge-

wichtet, wobei S für die jeweilige klassische Wirkung des Pfades steht. In dieser Schreibweise

ergibt sich die Übergangsamplitude zu

K(xb,tb;xa,ta) =
∑

Alle Pfade von a nach b

eiS[Pfad]/~. (3)

Um von obiger Gleichung Gebrauch zu machen, wird ein Zeitgitter eingeführt: Das Zeitinter-

vall [ta,tb] wird hierzu in Segmente der Breite ε und Anzahl N unterteilt, wobei dem Beginn

eines jeden Segments eine Zeitkoordinate tj , j = 0,1...N und eine kontinuierliche Ortskoor-

dinate x(tj) = xj zugeordnet wird. Die Punkte werden untereinander mit geraden Linien

verbunden und es gilt x0 = xa und xN = xb.

Abbildung 1 visualisiert die Darstellung eines Pfades auf dem beschriebenen Zeitgitter.
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Abbildung 1: Diskretisierung der Zeit zur Darstellung eines Pfades.
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Unter Verwendung der Gleichung (3) kann so folgende Form der Übergangsamplitude gewon-

nen werden:

K(xN ,tN ;x0,t0) =

∫ N−1∏
j=1

dxj
( m

2πi~ε

)N/2
exp

( i
~
S[xj ]

)
(N →∞), (4)

wobei die Wirkung des diskreten Zeitgitters gegeben ist durch

S =
N∑
j=1

ε

[
m

2

(
xj+1 − xj

ε

)2

− V (xj)

]
. (5)

Das Kontinuumslimit beschreibt für ein konstantes Zeitintervall [ta,tb] den Grenzfall N →∞
und dementsprechend ε→ 0. In diesem Fall wird auch folgende Schreibweise verwendet:

K(xN ,tN ;x0,t0) =

∫
[dx] exp

( i
~
S[x]

)
, (6)

wobei der Klammerausdruck [dx] ein Ausdruck für das Kontinuumslimit ist und somit
∫

[dx]

die Integration über alle Funktionen x(t) mit den entsprechenden Randbedingungen be-

schreibt. Das Wirkungsfunktional S[x] kann wie folgt geschrieben werden:

S[x] =

∫ tN

t0

dt
[m

2
ẋ2 − V (x)

]
. (7)

2.1. Euklidisches Pfadintegral

Der oszillierende Integrand exp(iS[x]/~) des quantenmechanischen Pfadintegrals ist mathe-

matisch schwer zu handhaben. Um dieses Problem zu umgehen, wird die euklidische Zeit τ

eingeführt:

τ = it, τ > 0. (8)

Diese Transformation wird als Wickrotation bezeichnet und führt auf die euklidische Wirkung

SE

S =

∫ tN

t0

dt
[m

2
ẋ2 − V (x)

]
= i

∫ τN

τ0

dτ
[m

2
ẋ2 + V (x)

]
=: iSE . (9)

In dieser Formulierung wird jeder Pfad mit einem exponentiellen Dämpfungsfaktor gewichtet

und für die euklidische Übergangsamplitude KE folgt

KE(xN ,τN ;x0,τ0) ∼
∫ ∞
−∞

N−1∏
j=1

dxj exp

(
−1

~
SE [xj ]

)
(N →∞). (10)

Die diskretisierte euklidische Wirkung ist gegeben durch:

SE =

N∑
j=1

a

[
m

2

(
xi+1 − xi

a

)2

+ V (xi)

]
, (11)

mit a = iε.
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2.2. Beziehung zur statistischen Physik

Das euklidische Pfadintegral führt auf eine formale Beziehung zur kanonischen Zustandssum-

me der statistischen Mechanik. Die thermodynamische Temperatur β erfüllt in diesem Fall

die Wahl:

τa = 0 und τb = β~. (12)

Hieraus folgt mit der De�nition der Zustandssumme Z(β) für die inverse Temperatur β der

Zusammenhang[Mac99]

Z = Tr(e−βH) =
∑
n

e−βEn =

∫
dxbdxaδ(xa − xb)KE(xb,β~;xa,0). (13)

Im Folgenden wird ~ = kb = 1 verwendet. Die Zustandssumme ist somit selbst ein Pfadinte-

gral. Die Integration erfolgt zunächst, bedingt durch die Delta-Distribution, im Propagator

über Wege mit gleichem Anfangs- und Endpunkt. Die anschlieÿende Integration über xb sum-

miert über alle periodischen Wege.

Aufgrund dieses Zusammenhangs bietet sich die Benutzung statistischer Methoden an, um

Erwartungswerte des quantenmechanischen Systems zu erhalten. Der Erwartungswert eines

Operators A im kanonischen Ensemble in der Quantenstatistik wird de�niert als

〈A〉 = Tr(e−βHA)/Tr(e−βH) = Tr(e−βHA)/Z. (14)

In der Pfadintegraldarstellung ergibt sich folgende äquivalente Darstellung:∫∞
∞
∏N
i=1 dxiA(x1, x2,. . . ,xn)e−SE [x]∫∞
∞
∏N
i=1 dxie

−SE [x]
, (15)

wobei A(x1,x2,. . . ,xN ) eine Funktion der Koordinaten xi ist.

Die Betrachtung eines quantenmechanischen Systems mit der vollständigen orthonormierten

Basis |n〉 und den diskreten Energieniveaus En, n = 0,1,. . . liefert für den Grenzfall β → ∞
der Gleichung (14)

〈A〉 =

∑
n e
−βEn 〈n|A|n〉∑
n e
−βEn

= 〈0|A |0〉 . (16)

Dies ist in guter Übereinstimmung mit der Analogie zur statistischen Physik: Nähert sich die

Temperatur 1/β dem Nullpunkt, frieren die statistischen Fluktuationen aus und es ergeben

sich Grundzustandserwartungswerte.

Im Weiteren wird die Zeit T statt der inversen Temperatur β verwendet. Aus obiger Gleichung

(16) können auch Grundzustandsenergien bestimmt werden. Da jedoch zu keinem Zeitpunkt

der Mittelwert der quadratischen Geschwindigkeit existiert[KR14, CF81],

lim
a→0

〈(xi+1 − xi)2〉
a2

=
1

m
· 1

a
, (17)

ist der Gebrauch des Virial-Theorems

1

2
m 〈v2

i 〉 =
1

2
〈x · V ′(x)〉 (18)
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zur Berechnung der kinetischen Energie zweckmäÿig. Für die Grundzustandsenergie E0 folgt:

E0 = lim
T→∞

(∫
[dx]e−SE [x]

[
1

2
xV ′(x) + V (x)

]/∫
[dx]e−SE [x]

)
. (19)

Höhere Energieniveaus sind über die De�nition von Korrelationsfunktionen zugänglich. In der

statistischen Physik sind diese wie folgt de�niert:

Cn = Tr e−HTx(τ1)x(τ2). . . x(τn)/Z. (20)

In der Quantentheorie werden diese als n-Punkt Propagator Funktionen bezeichnet. Um eine

kompakte Form zu erhalten, wird zunächst das erzeugenden Funktional de�niert

Z(J) = Tr e−T [H+
∑n

i Jixi], (21)

wobei Ji eine komplexe Zahl ist. Obige Form enthält alle Informationen über das System,

sodass sich mit δJi/δJk = δik zunächst folgende Form ableiten lässt:

C(m) =
δ

δJ1
. . .

δ

δJm
Z(J)|J=0. (22)

Die verbundene n-Punkt Propagator Funktion ergibt sich über den Logarithmus von Z zu1:

C(n)
c =

δ

δJ1
. . .

δ

δJn
lnZ(J)|J=0. (23)

Als Beispiel kann die verbundene Zweipunktfunktion betrachtet werden:

C(2)
c = 〈x(τ1)x(τ2)〉 − 〈x(τ1)〉 〈x(τ2)〉 . (24)

Unter Berücksichtigung der Gleichung (24) und (16) folgt im Grenzfall T →∞

lim
T→∞

C(2)
c (τ) =

∑
n=1

e−(En−E0)τ | 〈0|x(0)|n〉 |2. (25)

Die e�ektive Masse ist für eine Korrelationsfunktion wie folgt de�niert[Mor07]:

meff (τ) = lim
T→∞

ln

(
Cc(τ)

Cc(τ + ∆τ)

)
. (26)

Für das betrachtete Beispiel bildet sich so für τ →∞ ein Plateau, welches mit der Energielücke

zwischen Grundzustand und dem ersten angeregten Zustand korrespondiert:

meff (τ) = lim
T→∞

(
ln
[
C(2)
c (τ)/C(2)

c (τ + ∆τ)
])

τ→∞−−−→ ∆τ(E1 − E0). (27)

1Im Gegensatz zu Gleichung (20) ist diese Form um einen Konstantanteil bereinigt.
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Die Aufenthaltswahscheinlichkeitsdichte |ψ0(x)| kann nach folgender Gleichung bestimmt wer-

den:

〈x|e−HT |x〉 =

∞∑
n=0

e−EnT 〈x|n〉 〈n|x〉 T→∞−−−−→ e−E0T |ψ0(x)|2. (28)

Die Analogie zur statistischen Physik motiviert den Gebrauch der Monte-Carlo-Methode zur

Bestimmung von Erwartungswerten des quantenmechanischen Systems. Diese Methode wird

im folgenden Kapitel beschrieben.

3. Monte-Carlo-Methode

In diesem Kapitel werden die Grundlagen der Monte-Carlo-Methode dargelegt und die An-

wendung auf das gegebene physikalische Modell beschrieben. Hierzu wird zunächst von einem

Beispiel ausgegangen, um die Schwächen der einfachen Monte-Carlo-Integration hervorzuhe-

ben. Als Alternative zu der einfachen Integration wird das Importance Sampling eingeführt.

Schlieÿlich werden Markow-Ketten behandelt und der Metropolis-Hastings-Algorithmus er-

läutert.

Die numerische Behandlung von Erwartungswerten wie in Gleichung (15) ist Ziel dieses Ka-

pitels. Diese basiert auf der Berechnung eines N -dimensionalen Integrals. Zusätzlich wird das

Integral im Kontinuumsfall N →∞ unendlich groÿ. Herkömmliche numerische Verfahren wie

Trapezverfahren oder Simpson's Regel erfordern einen groÿen Rechenaufwand zur Berechnung

dieser Integrale. Die im Folgendem beschriebene Monte-Carlo-Methode bietet eine Alternative

motiviert durch die statistische Mechanik.

3.1. Einfache Monte-Carlo-Integration

In diesem Unterkapitel wird exemplarisch die einfache Monte-Carlo-Integration behandelt und

deren Schwächen aufgezeigt. Die Ausführungen beziehen sich hierbei auf Quelle [Mor07].

Für eine kontinuierliche Funktion f(X) einer kontinuierlichen Zufallsvariablen X mit einer

Wahrscheinlichkeitsverteilung pX(s) ergibt sich für den Erwartungswert der Funktion

〈f(X)〉 =

∫ ∞
−∞

f(s)pX(s)ds. (29)

Als Beispiel kann eine Wahrscheinlichkeitsverteilung der Form

pX(x) =

1/(b− a), a ≤ x ≤ b

0, sonst
(30)

verwendet werden. Aus dieser wird eine Stichprobe von Ntot Zufallsvariablen X1,X2,. . . ,XNtot

ausgewählt. Dann gilt aufgrund des Gesetzes der groÿen Zahlen (Beweis siehe [Mor07])

f =
1

Ntot

Ntot∑
i=1

f(Xi), lim
N→∞

f =

∫ b

a
ds pX(s)f(s). (31)
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Der Wert f wird hierbei als Monte-Carlo-Schätzwert bezeichnet und stellt für groÿe N eine

gute Approximation des Integrals für �ache Funktionen f(s) dar. Im Grenzfall Ntot → ∞
decken die Zufallsvariablen das komplette Intervall [a,b] ab. Für stark oszillierende oder gepe-

akte Funktionen ist eine gleichverteilte Auswahl der Zufallszahlen eher ungünstig. Um einen

guten Schätzwert zu erhalten, werden die Zufallszahlen so gewählt, dass besonders viele im Be-

reich der Oszillationen beziehungsweise der Peaks liegen. Diese Methode wird als Importance

Sampling bezeichnet. Die Zufallszahlen sollten demnach aus einer Wahrscheinlichkeitsvertei-

lung g(X) gezogen werden, sodass die Funktion h(X) = f(X)/g(X) möglichst konstant ist.

Die Integration liefert

∫ b

a
f(s)ds =

∫ b

a
h(s)g(s)ds ≈ 1

Ntot

Ntot∑
i=1

h(Xi), (32)

wobei die Xi aus der Wahrscheinlichkeitsverteilung g(X) entnommen werden. Die Funktion

h(x) ist nahezu �ach und die Zufallszahlen treten nun besonders häu�g an den gepeakten

Stellen auf. Diese Methode ist e�ektiver, jedoch muss die Wahrscheinlichkeitsverteilung g(x)

ermittelt werden. Für eindimensionale Fälle sind hierzu Transformations- oder Rejektions-

Methoden verwendbar, für höherdimensionale Fälle sind diese jedoch nicht praktikabel. Zur

Berechnung höherdimensionaler Integrale werden stattdessen stationäre stochastische Prozes-

se benutzt.

3.2. Monte-Carlo-Integration mit stationären stochastischen Prozessen

Im vorherigen Unterkapitel wurde bereits auf die Notwendigkeit von stationären Prozessen

hingewiesen. An dieser Stellen wird die Integration mit stationären stochastischen Prozessen

explizit behandelt, wobei die Ausführungen sich auf Quelle [Mor07] beziehen.

Ein stochastischer Prozess beschreibt eine Sequenz von Zufallszahlen Xt, t ∈ T , welche einer

bestimmten Häu�gkeitsverteilung entnommen werden. Im Folgenden wird T = N gewählt und

der Parameter t als Monte-Carlo-Zeit bezeichnet. Ein stochastischer Prozess wird als stationär

bezeichnet, sofern die kumulative Wahrscheinlichkeit einer Zeitabfolge aus n Zuständen sich

unter Veränderung eines Parameters h ∈ N nicht ändert:

P (Xt0 ≤ x1,..., Xtn ≤ xn) = P (Xt0+h ≤ x1,..., Xtn+h ≤ xn). (33)

Dies bedeutet, dass unabhängig von h die Sequenzen (Xt0 ,..., Xtn) und (Xt0+h,..., Xtn+h) der

gleichen Wahrscheinlichkeitsverteilung unterliegen. Im Kapitel 3.1 wurde bereits die Monte-

Carlo-Methode für statistisch unabhängige Zufallsgröÿen beschrieben. Zur Anwendung der

Monte-Carlo-Methode auf stationäre Prozesse ist eine Erweiterung des Gesetzes der groÿen

Zahlen und des zentralen Grenzwertsatzes, der zur Abschätzung des Fehler dient, erforderlich.

Nach dem Gesetz der groÿen Zahlen für stationäre stochastische Prozessen ergibt sich für einen

stationären Prozess X1, X2,... mit 〈Xk〉 = µ, Autokovarianz Γ(s) = 〈(Xk − µ)(Xk+s − µ)〉,
für die

∑∞
s=0 |Γ(s)| <∞ gilt, mit der De�nition XNtot

= (X1 +X2 + ...+XNtot
)/Ntot

lim
Ntot→∞

P (|XNtot
− µ| ≤ ε) = 0, für alle ε > 0. (34)
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Der Beweis ist der Quelle [Mor07] zu entnehmen. Der zentrale Grenzwertsatz fürM -abhängige

Zufallsvariablen besagt: Sei X1, X2,...,XNtot
eine stationäre Sequenz von M -abhängigen Zu-

fallsvariablen (Xt und Xt+s sind unabhängig für s > M) mit Mittelwert µ und einer be-

schränkten Varianz, so konvergiert die Verteilung (X1 + ... + XNtot
− Ntotµ)/(σ

√
Ntot) für

groÿe Ntot gegen die Normalverteilung, wobei gilt:

σ2 =
h=M∑
h=−M

Γ(h) für Ntot �M. (35)

Der Beweis ist der Quelle [Sti15] zu entnehmen.Wie im Falle der unabhängigen Zufallsva-

riablen liefert das Gesetz der groÿen Zahlen für abhängige Zufallsvariablen den Beweis für

die Korrektheit des Schätzwertes und der zentrale Grenzwertsatz eine Abschätzung des sta-

tistischen Fehlers. Im Folgenden wird ein D-dimensionales Volumen V betrachtet und Ntot

Punkte ~x1,...,~xNtot
aus diesem Volumen mit der stationären Wahrscheinlichkeitsverteilung

p(~x) ausgewählt. Insgesamt folgt somit für die Monte Carlo Integration unter Benutzung

eines stationären stochastischen Prozesses:

∫
ν
p(~x)f(~x)dDx ≈ f ±

√∑∞
h=−∞ Γf (h)

Ntot

, (36)

f =
1

Ntot

Ntot∑
i=1

f(~xi), Γf (h) =
1

Ntot − h

Ntot−h∑
i=1

(
f(~xi)− f

)(
f(~xi+h)− f

)
,

Zudem wurde eine Schätzfunktion Γ für den Fehler eingeführt. Hierbei wurde angenommen,

dass die Kovarianz endlich ist,
∑∞

h=0 |Γf (h)| <∞.

3.3. Markow-Ketten

In diesem Kapitel soll eine Art eines stochastischen Prozesses, die sogenannte Markow-Kette,

beschrieben werden. Hierbei ist die Erzeugung einer stationären Verteilung P eq, wie sie bei-

spielsweise in Gleichung (36) verwendet wurde, Ziel dieses Unterkapitels. Die Ausführungen

beziehen sich auf Quelle [CF81].

Eine Markow-Kette wird durch eine R × R Matrix W (R ≤ ∞) mit den Elementen Wij be-

schrieben wird. Die Elemente Wij geben die Wahrscheinlichkeit für den Übergang des System

aus einem Zustand si in einen anderen diskreten Zustand sj in einem Markow-Schritt an.

Da die Wahrscheinlichkeit eines Übergangs si zu irgendeinem Zustand gleich eins sein muss,

gilt die Bedingung
∑R

j=1Wij = 1. Mit der De�nition der Übergangswahrscheinlichkeitsdichte,

W (x,x′), für x→ x′ lässt sich das Prinzip auf kontinuierliche Zustände erweitern:

W (x,x′) ≥ 0 und
∫

dx′W (x,x′) = 1, (für alle x). (37)
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Für einen n-Schritt Markow-Prozess ergibt sich die Wahrscheinlichkeit eines Übergangs von

x nach x′ zu

W (n)(x,x′) =

∫
dx1. . .

∫
dxn−1W (x,x1)W (x1,x2). . .W (xn−1,x

′) (38)

=

∫
dxαW

n−1(x,xα)W (xα,x
′), (39)

wobei Gleichung (39) eine verkürzte Schreibweise der Gleichung (38) ist. Im diskreten Fall

entspricht obige Gleichung (39) einer einfachen Matrixmultiplikation. Unter Zuhilfenahme der

Eigenschaften (37) liefert Gleichung (39) für das Langzeitverhalten des Systems

lim
n→∞

Wn(x,x′) = P eq(x′). (40)

Demnach ist im Grenzfall für groÿe n die Übergangswahrscheinlichkeitsfunktion unabhängig

von der Anfangskon�guration und durch P eq(x′) gegeben. Des Weiteren lässt sich zeigen,

dass die Verteilung P eq(x) stationär und der einzige Fixpunkt ist. Zudem erfüllt P eq(x) die

Eigenschaften einer Wahrscheinlichkeitsverteilung

P eq(x) ≥ 0 und
∫

dx′P eq(x′) = 1, (für alle x). (41)

Zur Vermeidung von Grenzzyklen wird zusätzlich die sogenannte Detailed-Balance-Bedingung

formuliert:
W (x,x′)

W (x′,x)
=
P eq(x′)

P eq(x)
. (42)

3.4. Metropolis-Hastings-Algorithmus

In diesem Unterkapitel wird die benötigte stationäre Verteilung P eq zur Berechnung der Er-

wartungswerte in Gleichung (15) aufgestellt und ein Algorithmus zur Erzeugung der Gleich-

gewichtsverteilung vorgestellt. Die Ausführungen beziehen sich hierbei auf die Quelle [CF81].

Unter Verwendung des diskreten Zeitgitters wird eine Gitterkon�guration xk durch die Gitter-

koordinaten x(k)
1 , x

(k)
2 ,. . . , x

(k)
Nsite

, T = Nsitea beschrieben. Mit dieser Notation wird Gleichung

(15) zu

〈A〉 =

∫
DxA(x)e−SE(x)∫
Dxe−SE(x)

, mit
∫
Dx =

∫ ∞
−∞

Nsite∏
i=1

dxi. (43)

Da der Exponent exp(−S(x)) über mehrere Gröÿenordnungen variiert, ist die zufällige Aus-

wahl von x wie in der einfachen Monte-Carlo-Integration nicht zweckmäÿig. Stattdessen wer-

den Kon�guration x mit der Importance-Sampling-Methode unter Ausnutzung von Markow-

Ketten nach folgender Verteilung gewählt:

P eq(xk)Dx =
exp[−SE(xk)]Dx∫
Dx exp[−SE(x)]

. (44)
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Der Schätzwert der Gröÿe 〈A〉 ergibt sich somit zu

A =
1

Ntot

Ntot∑
k=1

A(xk), (45)

wobei Ntot die Anzahl der erzeugten Systemzustände bezeichnet.

In dieser Arbeit werden die Gitterpunkte sukzessiv bearbeitet, die Übergangswahrscheinlich-

keit bei einer Änderung eines einzigen Gitterpunktes xj nach x′j wird als Ws bezeichnet. Für

die Detailed-Balance-Bedingung (42) folgt

Ws(x,x
′)

Ws(x′,x)
=
e−SE(x′j)

e−SE(xj)
, (46)

wobei S(xj) nur von der Koordinate xj und deren nächsten Nachbarn abhängt. Die Multipli-

kation aller Übergangswahrscheinlichkeiten für jeden Gitterpunkt stellt einen Markow-Prozess

für eine Monte-Carlo-Iteration dar2

W (Nsite) = Ws(x
′
Nsite

,xNsite
)Ws(x

′
Nsite−1,xNsite−1). . .Ws(x

′
2,x2)Ws(x

′
1,x1). (47)

Die konkrete Form der ÜbergangswahrscheinlichkeitWs ist noch nicht eindeutig festgelegt. In

dieser Arbeit wird der Metropolis-Hastings-Algorithmus verwendet. Dieser kann leicht nach

dem folgenden Schema implementiert werden:

1. Wähle einen neuen zufälligen Wert x′j aus einer Vorschlagswahrscheinlichkeit aus.

2. Akzeptiere den neuen Wert x′j mit der Wahrscheinlichkeit:

Pacc = min
(

1, e−∆S(x′j ,xj)
)
, mit ∆S(x′j ,xj) = SE(x′j)− SE(xj). (48)

3. Wenn der neue Wert x′j nicht akzeptiert wurde, behalte den alten Wert xj .

Eine Monte-Carlo-Iteration beruht somit auf der Wiederholung der drei Schritte für alle

xj , j = 1,2. . . Nsite, wobei Nsite die Anzahl der Gitterpunkte bezeichnet. Zusätzlich werden

noch die Parameter ∆ und n eingeführt. Für eine stark gepeakte Wirkung S(x) ist es sinnvoll

die Wahl eines neuen Wertes x′j auf die Umgebung [xj−∆, xj+∆] zu beschränken, wobei hier

zusätzlich die Vorschlagswahrscheinlichkeit in diesem Intervall gleich gewählt wird. Der Para-

meter n steht für die Anzahl, wie oft ein Gitterpunkt innerhalb einer Monte-Carlo- Iteration

ausgewählt wird. Die Übergangswahrscheinlichkeit W kann auch als �Zeitentwicklungsopera-

tor� im Phasenraum aufgefasst werden.

Zur Berechnung der Erwartungswerte der Gleichung (43) werden Systemzustände gemäÿ der

Gleichung (44) verwendet. Ausgehend von einer beliebigen Anfangskon�guration x1 müssen

erst eine gewisse Anzahl an Iterationen Ntherm verworfen werden, bis die Systemzustände

gemäÿ der Gleichgewichtsverteilung Peq ausgewählt werden und erst dann können die Kon�-

gurationen verwendet werden. Dieser Vorgang wird als Thermalisierung bezeichnet und kann

durch die Erhöhung von n beschleunigt werden.
2Statt des Zustandes wird hier der veränderte Gitterpunkt in der Übergangswahrscheinlichkeit dargestellt,
da alle anderen Gitterpunkte fest sind.
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3.5. Numerische Fehler

In diesem Kapitel soll die Bestimmung der statistischen Fehler der Gleichung (36) auf das

gegebene Modell angepasst und auf eine handliche Form gebracht werden. Es wird ausschlieÿ-

lich der Fall einer einzigen Observablen unter Zuhilfenahme der Quelle [Wol04] betrachtet. Die

Behandlung abgeleiteter Funktionen mehrerer primärer Observablen ist der Quelle [Wol04] zu

entnehmen.

Die Autokorrelationsfunktion einer Observablen A wird de�niert als:

Γ(t) = 〈(A(xν)− 〈A〉)(A(xν+t)− 〈A〉)〉 . (49)

Die Varianz ergibt sich analog zu Gleichung (36) zu:

σ2 =
C

Ntot

, C =
∞∑

t=−∞
Γ(t). (50)

Unter Annahme der Symmetrie:

Γ(−t) = Γ(t), (51)

kann die Varianz in eine günstige Form überführt werden3:

σ2 = 2 ·
( 1

2
+

∞∑
t=1

Γ(t)

Γ(0)︸ ︷︷ ︸
τint

) Γ(0)

Ntot︸ ︷︷ ︸
σ2
naive

, (52)

wobei Ntot die Gesamtanzahl der Iterationen im Gleichgewicht bezeichnet. Für die gegebe-

ne Form der Varianz lassen sich zwei Grenzfälle betrachten: Im Fall von Γ(t) ∝ δ0,t liefert

2τint = 1 und obige Gleichung (52) stellt den unkorrelierten Fall dar: σ = σnaive. Nach Quelle

[NB99] kann ein asymptotisches exponentielles Abfallen von Γαβ für groÿe t angenommen

werden, welches durch eine Gröÿe τ charakterisiert wird, Γ ∝ exp(−|t|/τ). Für ein vollständig

exponentielles Verhalten gilt τint = τ +O(τ−1). Im Allgemeinen ist die Anzahl der unabhän-

gigen Datenpunkte gegeben durch

Nind =
Ntot

2τint
. (53)

Die integrierte Autokorrelationszeit trägt somit maÿgeblich zum Fehler bei, wobei sich zwei

Methoden zur Bestimmung der integrierten Autokorrelationszeit τint und somit des statisti-

schen Fehlers eignen: Die Γ-Methode verwendet eine direkte Berechnung der Korrelations-

funktion Γ, während die Binning-Methode über das Verhältnis der �naiven� Varianz zur tat-

sächlichen Varianz vorgeht. Eine kurze Beschreibung dieser Methoden ist dem Anhang A.3.1

und A.3.2 zu entnehmen.

3Die erneute Verwendung des griechischen Buchstabens τ steht hier in keinem Zusammenhang mit der
euklidischen Zeit.
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4. Numerische Ergebnisse

Dieses Kapitel stellt den Kern dieser Arbeit dar. Die Monte-Carlo-Simulation wird zur Unter-

suchung des harmonischen und anharmonischen Oszillators verwendet. Die Bestimmung von

Erwartungswerten, Aufenthaltswahrscheinlichkeitsdichten und Quantentrajektorien ist hier-

bei Ziel dieser Untersuchung.

Zur numerischen Berechnung wird die Zeit T diskretisiert, sodass sich mit T = aNsite ein

Zeitgitter mit Nsite Gitterplätzen und Gitterabstand a ergibt.

Für die Implementierung der Monte-Carlo-Simulation wurde C++11 verwendet. Eine kurze

Programmbeschreibung ist dem Anhang A.1 zu entnehmen.

4.1. Harmonischer Oszillator

Aufgrund der exakten Lösbarkeit des harmonischen Oszillators für endliche Gitterabstände

a, ist dieses System besonders gut zur Untersuchung geeignet. Der Hamiltonoperator eines

Teilchens der Masse m im harmonischen Oszillatorpotential ist wie folgt gegeben:

H =
p2

2m
+

1

2
µ2x2. (54)

Die diskretisierte euklidische Wirkung ergibt sich zu:

SE = a

Nsite∑
i=1

1

2
m

(xi+1 − xi)2

a2
+

1

2
µ2x2

i . (55)

Die analytischen Lösungen für den harmonischen Oszillator sind der Quelle [CF81] zu ent-

nehmen. Es werden aufgrund der Gleichung (13) periodische Randbedingungen verwendet.

Es gilt daher:

x0 = xNsite
. (56)

4.1.1. Thermalisierung und Korrelationse�ekte

Am Ende des Kapitels 3.4 wurde bereits auf die Notwendigkeit eines Thermalisierungspro-

zesses hingewiesen. Ein recht einfacher Ansatz, um sicherzustellen, dass das System sich im

Gleichgewicht be�ndet, soll im Folgenden kurz dargelegt werden.

Als Anfangskon�guration werden alle Koordinaten xj , j = 1,2. . . Nsite zu null gesetzt. Dies

wird als Cold Start bezeichnet, im Gegensatz dazu stellt die Anfangskon�guration xj 6= 0, ∀j
einen Hot Start dar. Anschlieÿend wird eine Simulation durchgeführt und für jede Trajekto-

rie die primäre Observable des Interesses als Funktion der Monte-Carlo-Zeit t berechnet und

graphisch analysiert.

Zunächst wird die Zeit T auf 100 und der Gitterabstand auf a = 0,1 gesetzt. Beispielhaft wird

nun der Thermalisierungsprozess der Observablen x2 untersucht. Die folgende Abbildung 2

zeigt dessen graphische Darstellung.
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Abbildung 2: Die Observable x2 einer Kon�guration xt als Funktion der Monte-Carlo-Zeit t. Als
Startkon�guration wird der Cold Start genutzt. Gleichgewicht ist bei etwa t = 200
erreicht. Die gestrichelte Linie gibt den analytisch berechneten Erwartungswert 〈x2〉
wieder. Die Simulationsparameter sind Nsite = 1000, a = 0,1 und Ntot = 1000.

Die Gröÿe x2 steigt anfangs zunächst mit jeder weiteren Iteration von null an, dann bildet

sich ein Plateau. Die Werte �uktuieren ab teq = 200 um den analytischen Wert und das Sys-

tem be�ndet sich somit näherungsweise im Gleichgewicht. Die visuelle Inspektion ermöglicht

demnach Einblick, wie lange das System für den Thermalisierungsprozess benötigt. Zusätzlich

sollte die Bedingung

teq � τint (57)

a posteriori veri�ziert werden, da die Ein�üsse der Nicht-Gleichgewichtsverteilung zwar mit

τ/Ntot abnehmen [Sok89] und somit der statistische Fehler ∝
√

1/Ntot überwiegt, jedoch kann

der Vorfaktor der Nicht-Gleichgewichtsverteilung groÿe Werte annehmen. Da der Rechenauf-

wand für neue Trajektorien gering ist, wird für die Erfüllung der Gleichung (57) teq ≥ 100τint

festgelegt und die Anzahl der Gleichgewichtsiterationen im Weiteren nicht explizit angegeben.

Zuletzt kann angemerkt werden, dass für komplexere Systeme metastabile Zustände existie-

ren können, welche durch visuelle Inspektion des Thermalisierungsprozesses für verschiede-

ne Startkon�gurationen festgestellt werden können. Im Folgenden werden die Parameter zu

m = µ = 1 festgelegt.

Eine typische Trajektorie des quantenmechanischen Teilchens im Oszillatorpotential ist in fol-

gender Abbildung 3 dargestellt. Hierbei wurde der Gitterabstand zu a = 0,1 und die Zeit zu

T = 100 gewählt.
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Abbildung 3: Die Ortskoordinaten xj in Abhängigkeit von der imaginären Zeit tj für die Trajektorie
x500 im Gleichgewicht. Die Simulationsparameter sind a = 0,1 und Nsite = 1000.

Wie erwartet �uktuieren die Ortskoordinaten um Null, da 〈x〉 = 0 gilt. Die Trajektorie ist sehr

irregulär und besitzt augenscheinlich kaum Übereinstimmung mit der Bewegung eines klassi-

schen Teilchens. Diese Beobachtung ist in Einklang mit Gleichung (17). Die Abbildungen 2

und 3 weisen die Gemeinsamkeit von Korrelationse�ekten auf. Jedoch sind diese grundsätzlich

anderer Ursache. Während die Abbildung 2 die Korrelation des Wertes x2 für unterschied-

liche Monte-Carlo-Zeiten t zeigt, sind in der Abbildung 3 die Orte xj für unterschiedliche

euklidische Zeiten korreliert. Der erste E�ekt wirkt sich nach Gleichung (52) auf den Fehler

eines Schätzwertes aus, während der zweite zur Ermittlung höherer Energieniveaus genutzt

werden kann. Zunächst werden die Auswirkungen von Korrelationse�ekten auf den Fehler

näher betrachtet. Die Korrelationsfunktion in Abhängigkeit der Monte-Carlo-Zeit t ist nach

Gleichung (36) gegeben und für die Observable x2 in folgender Abbildung 4 dargestellt. Es

wurden insgesamt Ntot = 100000 Kon�guration für a = 0,1 und T = 100 erzeugt.
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Abbildung 4: Die normierte Autokorrelationsfunktion der Observablen u = x2 als Funktion der
Monte-Carlo-Zeit t auf logarithmierter Ordinatenachse. Die Simulationsparameter
sind Ntot = 100000, a = 0,1, Nsite = 1000.

Die Autokorrelationsfunktion Γ zeigt den zu erwartenden exponentiellen Verlauf. Für groÿe

Monte-Carlo-Zeiten t nimmt das Signal stark ab, wohingegen ein konstanter Anteil an Rau-

schen hinzukommt. Letztendlich ergeben sich somit statistische Fluktuationen.

Es ist somit nicht sinnvoll die gesamte Autokorrelationfunktionen Γ aufzusummieren, sondern

stattdessen eine Fensterfunktion einzuführen. Diese Methodik liegt der Γ-Methode zu Grunde

und wird, wenn nicht anders vermerkt, zur Bestimmung der statistischen Fehler verwendet.

Im Gegensatz zu der Jackknife-Binning-Methode ist der Fehler des Fehlers kleiner, was sich

positiv auf die Ergebnisse der Simulation auswirkt (vgl. [Wol04]).

Da die Korrelationse�ekte direkt den Fehler beein�ussen, ist es nötig diese möglichst klein zu

halten. Dazu werden zwischen zwei Pfaden die in die Berechnung (45) ein�ieÿen, eine gewisse

Anzahl Nskip an Trajektorien nicht in die Berechnung einbezogen.

Da die integrierte Autokorrelationszeit τint für ein festes T = 100 mit kleiner werdendem

Gitterabstand zunimmt, wird folgende Näherung für den harmonischen Oszillator verwendet:

τint ≈ 2 · 0,61a−1.74. (58)

Diese Gleichung entstammt einer einfachen Analyse der integrierten Autokorrelationszeit von

x2 als Funktion des Gitterabstandes a und stellt eine grobe Abschätzung dieser Beziehung

dar. Dieser E�ekt wird auch als �critical slowing down� bezeichnet [Sok89]. Insgesamt ist zu

beachten, dass hier nur die Korrelationse�ekte der Observable x2 betrachtet wurden, prinzi-

piell ergeben sich für andere Observablen auch andere integrierte Autokorrelationszeiten.

Da der Datenanalyseaufwand mit Ntot steigt, ist die Einführung des Parameters Nskip zweck-

mäÿig. Des Weiteren erweist sich die Wahl ∆ ≈ 2
√
a, wie im Anhang A.2 gezeigt wurde, als
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sinnvoll und die Wahl von ∆ wird nicht explizit aufgeführt, um die Parameterliste übersicht-

lich zu halten.

4.1.2. Energie und Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes

Die Isolation der Grundzustandserwartungswerte kann über die Gleichung (16) für T → ∞
durchgeführt werden. In der Simulation ist der Grenzfall nicht zu realisieren, sodass sich per se

Abweichungen von den Grundzustandswerten ergeben. Dennoch lassen sich auch für endliche

T gute Ergebnisse erzielen, wenn die charakteristische Zeitskala des Systems berücksichtigt

wird:

TE = 2π/E0. (59)

Hieraus folgt für die Wahl des Simulationsparameters

T � TE , (60)

wobei in dem gegebenen Fall die Grundzustandsenergie bekannt ist. Im Allgemein kann obige

Ungleichung durch systematische Erhöhung des Parameters T und anschlieÿender Analyse der

Änderung der Grundzustandswerte überprüft werden. Im Weiteren wird der Parameter T auf

100 festgelegt. Dass diese Approximation wenigstens für die Energiebestimmung ausreichend

ist, kann über die direkte Berechnung der Energie nach Gleichung (16) für ein festes T gezeigt

werden, wobei sich folgende Darstellung ergibt:

〈H〉 = 0,5µ coth(µT/2). (61)

Unter Gebrauch von µ = 1 und T = 100 ergibt sich ein systematischer Fehler der deutlich

unter dem statistischen Fehler liegt.

Zusätzlich müssen statistische Fluktuationen des �Kristalls� berücksichtigt werden. Für einen

Operator A =
∑Nsite

i=1 Ai ergeben sich die relativen statistischen Schwankungen um den Mit-

telwert A zu

∆A =
∆A2

1/2

|A|
∝ 1/

√
Nsite, (62)

wobei ∆A = A−A gilt (vgl. [CF81]). Somit führt eine gröÿere Anzahl an Gitterpunkten auf

geringere statistische Schwankungen.

Zuletzt ist es notwendig den Gitterabstand a entsprechend klein zu wählen, sodass das Kon-

tinuumslimit gut approximiert wird. Mit der charakteristischen Zeit TE ergibt sich die Bedin-

gung

a� TE . (63)

Die systematischen Fehler sind in diesem Fall nicht zu vernachlässigen und führen zu Abwei-

chungen von den Kontinuumswerten. Durch eine Extrapolation auf a = 0 kann jedoch der

Kontinuumsfall gewonnen werden. Unter Berücksichtigung dieser Randbedingungen können

nun die Grundzustandsenergie und Aufenthaltswahrscheinlichkeitsdichte bestimmt werden.

Im Pfadintegralformalismus ist die Wahrscheinlichkeit für das Antre�en eines Teilchen zwi-
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schen x−∆x und x+ ∆x ein einfacher zeitlicher Mittelwert über die Übergangswahrschein-

lichkeiten:

P (x;T ) =
1

T

∫ T

0
dt′
∫ x+∆x

x−∆x
dx
K(xb,T,x

′,t′)K(x′,t′,xa,0)

K(xb,T,xa,0)
. (64)

Für groÿe T kann über Gleichung (28) die Aufenthaltswahscheinlichkeitsdichte |ψ0(x)|2 des

Grundzustands ermittelt werden[CF81]:

P (x,T )

∆x
= |ψ0(x)|2 +O

(
1

(E1 − E0)T

)
. (65)

Wenn T � 1/(E1 − E0) gilt, ist eine Isolation der Aufenthaltswahscheinlichkeitsdichte des

Grundzustandes möglich. In der Simulation wird hierzu die Ortsachse in Segmente Nbin der

Breite ∆x geteilt:

|ψ0(x)|2 =
1

∆x

Ntot∑
k

Nsite∑
j=1

Θ(∆x− |x(k)
j − x|)/

Ntot∑
k

Nsite∑
j=1

1, (66)

wobei ∆x klein ist und Θ die Heavysidefunktion bezeichnet. Damit die statistischen Fluktua-

tionen in den Segmenten klein sind, werden ungefähr 100000 unabhängige Kon�gurationen

für ∆x = 0,2 verwendet. Die Abbildung 5 zeigt die Aufenthaltswahrscheinlichkeitsdichte des

Grundzustandes für die Werte a = 0,5 und a = 0,1.
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Abbildung 5: Die Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes für den harmonischen
Oszillator. Die Punkte bezeichnen die Monte Carlo Simulation, die durchgezogene grü-
ne Linie präsentiert die diskrete Theorie und die schwarze gibt die Kontinuumstheorie
wieder. Es wurden unter Verwendung von Gleichung (58) ungefähr 100000 unabhän-
gige Kon�gurationen verwendet. Für die linke Abbildung (a) wurde a = 0,5 und für
die rechte Abbildung (b) a = 0,1 gewählt.

Die diskrete Theorie ist in sehr guter Übereinstimmung mit der Simulation. Die Kontinu-

umstheorie weicht aufgrund der Verletzung der Gleichung (63) in der linken Abbildung 5a

etwas davon ab. Die Wahl eines kleineren Gitterabstands führt in Abbildung 5b zur visuellen

Übereinstimmung der drei Theorien.

Die Bestimmung der Grundzustandsenergie des harmonischen Oszillators kann mittels des

Virialtheorems (18) durchgeführt werden. Die Masse m und die Frequenz µ werden im Fol-
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genden zu eins skaliert. Abbildung 6 zeigt den Schätzwert der Energie und dessen Fehler in

Abhängigkeit von Ntot.

0,42

0,43

0,44

0,45

0,46

0,47

0,48

0,49

0,5

0,51

0,52

0,53

1000 10000 100000

E
ne
rg
ie
E

0

Anzahl Kon�gurationen Ntot

(a)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

20000 40000 60000 80000 100000

F
eh
le
r
de
s
Sc
hä
tz
w
er
te
s

Anzahl Kon�gurationen Ntot

(b)

Abbildung 6: Schätzwert der Energie (a) und dessen Fehler (b) in Abhängigkeit von Ntot für den
harmonischen Oszillator. In der linken Abbildung (a) stellt die durchgezogene Linie
den analytischen Wert der Energie dar. Die Simulationsparameter sind T = 100 und
a = 0,1

Alle Schätzwerte stimmen in der Zwei-Sigma-Umgebung mit dem analytischen Wert überein.

Der Fehler zeigt die zu erwartende 1/
√
Ntot-Abhängigkeit.

Die Fehler können unter Anwendung der Gleichung (58) reduziert werden. Nachfolgende Ta-

belle zeigt die Schätzwerte und analytische Werte der Energie für verschiedene �nite Gitter-

abstände a, wobei Gleichung (58) verwendet wurde.

Tabelle 1: Schätzwerte und analytische Werte der Grundzustandsenergie des harmonischen Oszilla-
tors für verschiedene Gitterabstände a. Unter Verwendung der Gleichung (58) wurden in
etwa Nind ≈ 70000 unabhängige Werte erzeugt.

Gitterabstand a Simulation E0 Theorie E0

1 0,44749(28) 0,44721
0,9 0,45619(27) 0,45596
0,8 0,46399(27) 0,46423
0.7 0,47199(26) 0,47192
0.6 0,47899(25) 0,47891
0.5 0,48500(25) 0,48507
0.4 0,49027(26) 0,49029
0.3 0,49473(27) 0,49449
0.2 0,49761(30) 0,49752
0,1 0,49911(42) 0,49938
0,05 0,49943(45) 0,49985

Obige Tabelle zeigt die sehr gute Übereinstimmung der Simulation mit den analytischen

Werten.

Der Kontinuumsfall a → 0 kann durch Extrapolation bestimmt werden. Der exakte Verlauf
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der Energielücke als Funktion des Gitterabstandes ist bekannt, unter Ignoranz dieser Tatsache

kann ein einfaches Polynom von Grad drei als Fitfunktion angesetzt werden:

E(a) =
3∑
i=0

cia
i, (67)

wobei die Fitparameter mit ci bezeichnet werden. Abbildung 7 zeigt den Schätzwert der

Grundzustandsenergie E0 als Funktion des Gitterabstandes a, wobei ein asymptotisches Ver-

halten der Energie als Funktion des Gitterabstandes optisch sichtbar ist, sodass in Gleichung

(67) die Wahl c1 = 0 gerechtfertigt erscheint. Um die Statistik zu erhöhen wurden zusätzli-

che Energiewerte aufgenommen, welche nicht in Tabelle 1 aufgeführt sind. Die Fitparameter

wurden mittels Gnuplot ermittelt, wobei deren Fehler nach Quelle [You12] korrigiert wurden.
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Abbildung 7: Der Schätzwert der Energie E0 als Funktion des Gitterabstandes a. Die Punkte ver-
deutlichen die Simulationsdaten und die durchgezogene Linie repräsentiert die Anpas-
sung der Gleichung (67) an die Simulationsdaten. Die Fitparameter sind der Abbildung
zu entnehmen. Um die Statistik zu erhöhen sind zusätzliche Energiewerte aufgenom-
men worden, welche nicht in Tabelle 1 aufgeführt sind.

Der Schätzwert der Energie E0 im Kontinuum von 0,50004(11) ist in guter Übereinstimmung

mit dem analytischen Wert von 0,5.

4.1.3. Energie des ersten angeregten Zustandes

Die Bestimmung der Energie des ersten angeregten Zustandes kann unter Verwendung von

Korrelationsfunktionen über Gleichung (25) durchgeführt werden. Da für den harmonischen

Oszillator der Erwartungswert 〈x〉 = 0 ist, kann die normale Zweipunktfunktion genutzt

werden. Aufgrund der periodischen Randbedingungen sind die Korrelationsfunktionen sym-
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metrisch um die Gittermitte. Diese Tatsache kann zur Verdopplung der Statistik genutzt

werden, andererseits führt dies zu einer Abänderung der Korrelationsfunktion:

C(t) =
1

Z
Tr
(
e−HTA(t)A(0)

)
=
∑
m,n

| 〈n|A|m〉2 |
2Z

e−EnT e(−(Em−En)T/2) cosh

[(
τ − T

2

)
(Em − En)

]
,

(68)

wobei A hier einen Operator der Form xl, l ∈ N bezeichnet.

Es wird ein Gitterabstand von a = 0,1 verwendet und unter Verwendung der Gleichung (58)

Nind > 50000 unabhängige Kon�gurationen erzeugt. Abbildung 8 zeigt die Korrelationsfunk-

tion 〈x(0)x(τ)〉 gegeben durch die Simulation und Theorie.
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Abbildung 8: Korrelationfunktion 〈x(0)x(τ)〉 als Funktion des Zeitabstand τ für den harmonischen
Oszillator. Die Punkte veranschaulichen die Ergebnisse der Simulation und die durch-
gezogene Linie stellt die analytische Vorhersage dar. Unter Verwendung der Gleichung
(58) wurden Nind > 50000 für einen Gitterabstand von a = 0,1 erzeugt.

Die Simulation ist in sehr guter Übereinstimmung mit der Theorie. Zudem deutet die gerade

Linie an, dass 〈0|x |n〉 der Gleichung (25) nur für n = 1 ungleich null ist. Da x ∼ a+ a† gilt,

werden keine Anteile höher liegender Energieniveaus aufgenommen. Abweichungen ergeben

sich für groÿe τ durch statistische Fluktuationen.

Erneute Betrachtung der Gleichung (68) zeigt, dass aufgrund des Nicht-Kommutierens des

Ortsoperators mit dem Paritätsoperators, sowohl der Operator A = x als auch A = x3, den

Grundzustand mit gerader Parität mit dem ersten angeregten Zustand ungerader Parität

koppeln. Demnach gilt

lim
τ→∞

mx
e� = lim

τ→∞
mx3

e� = a(E1 − E0). (69)

Im Folgenden wird die Beziehung

m̃e� = a−1me� (70)
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genutzt, die beiden De�nitionen unterscheiden sich somit nur um den Faktor a−1.

Die Abbildung 9 zeigt die e�ektive Masse für die Operatoren x und x3. Für die Simulation

wurde ein Gitterabstand von a = 0,1 verwendet und Nind > 50000 unabhängige Kon�gura-

tionen erzeugt.

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

0 0,5 1 1,5 2 2,5 3

0,975

0,98

0,985

0,99

0,995

1

1,005

1,01

0 0,5 1 1,5 2 2,5 3

E
�
ek
ti
ve

M
as
se
m̃

e
�

Zeitabstand τ

A = x
A = x3

Abbildung 9: Die e�ektive Masse m̃e� als Funktion des Zeitabstands τ für die Operatoren A = x
und A = x3. Der Ausschnitt zeigt die m̃x

e� auf einer vergröÿerten Ordinatenachse.
Es wurde eine Gitterkonstante von a = 0,1 verwendet und Nind > 50000 Datensätze
erzeugt.

Die e�ektive Masse m̃x
e� zeigt wie erwartet ein sofortiges Eintreten eines Plateaus, im ande-

ren Fall konvergiert die e�ektive Masse deutlich langsamer gegen die Energielücke, da zusätz-

liche Beiträge von höheren Energiezuständen enthalten sind. In dem vergröÿerten Ausschnitt

ergeben sich für gröÿer werdendes τ Fluktuationen, da die Amplitude der Korrelationsfunktion

exponentiell abnimmt. Demnach sollte der Bereich zur Bestimmung der Energielücke E1−E0

einen Kompromiss zwischen statistischem und systematischem Fehler darstellen.

Die Bestimmung der Energielücke wird im Folgenden mit Hilfe von m̃x
e� ausgeführt, wobei

auf die einfache Bezeichnung m̃e� zurückgegri�en wird. Da die Daten in Abbildung 9 kor-

reliert sind, wird eine Jackknife-Binning-Analyse durchgeführt, welche kurz in den Kapiteln

A.3.3 und A.3.2 beschrieben wird. Es wird ein Plateauwert der integrierten Autokorrelati-

onszeit für den Operator x bestimmt und die Daten entsprechend der ermittelten Binlänge

in Jackknife-Bins unterteilt. Der eigentliche Fit wird mit Gnuplot (Marquardt-Levenberg) in

jedem dieser Jackknife-Bins durchgeführt. Die Fitparameter und Fehler lassen sich anschlie-

ÿend nach Kapitel A.3.3 bestimmen. Als Fitfunktion dienen zwei Exponentialfunktionen der

Form M(τ) = α1

(
e−α0t + e−α0(T−t)).

Die folgende Abbildung 10 zeigt die e�ektive Masse m̃e� sowie die Anpassung der Funktion

M(τ) an die Daten. Es wird eine feste Binlänge von 50 verwendet für eine Gesamtzahl von

Nind > 50000 Kon�gurationen und ein Gitterabstand von a = 0,05 gewählt.
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(a) Die Korrelationsfunktion 〈x(0)x(τ)〉 für einen
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für den Fit gewählte Zeitfenster [0,τ2].
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(b) Die e�ektive Masse m̃e� als Funktion des
Zeitabstandes τ für a = 0,05. Die Punk-
te stellen die Ergebnisse der Simulation dar.
Die vertikale Linie verdeutlicht das für den
Fit gewählte Zeitfenster [0,τ2], während die
doppelt horizontale Linie das Fehlerband, be-
stimmt durch eine Jackknife-Binning-Analyse,
darstellt.

Abbildung 10: Bestimmung der e�ektiven Masse des ersten angeregten Zustandes des harmonischen
Oszillators. Es wird a = 0,05 und Nind > 50000 gesetzt, wobei Gleichung (58) ver-
wendet wird.

Die ersten neun Datenpunkte in Abbildung 10b werden als Plateauwerte angenommen,

danach ergeben sich aufgrund des kleiner werdenden Signals Fluktuationen. Der Parameter

α1 entspricht dem Schätzwert der Energielücke E1 − E0 und wird zu

α1 = 1,00010(78) (71)

bestimmt. Dieser ist in sehr guter Übereinstimmung mit dem theoretischen Wert von 0,99990.

Die Wiederholung dieser Vorgehensweise für verschiedene Gitterabstände a liefert die in Ta-

belle 2 dargestellten Energielücken. Zusätzlich sind die analytischen Werte aufgeführt.

Tabelle 2: Schätzwerte und analytische Werte der Energielücke E1 − E0 für verschiedene Gitterab-
stände a. Unter Verwendung der Gleichung (58) wurden Nind > 50000 unabhängige Werte
erzeugt.

Gitterabstand a Simulation E1 − E0 Theorie E1 − E0

0,2 0,99875(72) 0,99834
0,1 1,00034(96) 0,99958
0,05 1,00010(78) 0,99990

Alle Werte stimmen mit den analytischen Vorhersagen überein. Die Energiewerte für a =

0,05 und a = 0,1 sind im Bereich ihrer Fehler konsistent mit dem Kontinuumswert von 1.
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4.1.4. Energie des zweiten angeregten Zustandes

Zur Bestimmung des zweiten angeregten Energiezustandes kann erneut die e�ektive Mas-

se verwendet werden. Der Operator x2 koppelt hierbei den Grundzustand mit dem zweiten

angeregten Zustand. Hierbei ist zu beachten, dass gilt

lim
T→∞

C(τ) =
∑
n=0

e−(En−E0)τ | 〈0|x(0)|n〉 |2 = | 〈0|x2|0〉 |+
∑
n=1

e−(En−E0)τ | 〈0|x(0)|n〉 |2. (72)

Der erste Summand der obigen Gleichung stellt einen Konstantanteil dar, welcher zur Ex-

traktion der Energie des zweiten angeregten Energiezustandes eliminiert werden muss. Aus

diesem Grund wird die verbundene Zwei-Punkt-Funktion verwendet.

Die Abbildung 11 zeigt die e�ektive Masse m̃e� als Funktion von τ für einen Gitterabstand

von a = 0,1. Zusätzlich ist die Anpassung an das Plateau dargestellt. Es wurden Nind > 40000

Kon�gurationen und eine Binlänge von 50 verwendet.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0 0,2 0,4 0,6 0,8 1 1,2

K
or
re
la
ti
on
sf
un

kt
io
n
〈x

(0
)x

(τ
)〉
c

Zeitabstand τ

Simulation
Fitfunktion M(τ)

α0 = 0,49967(72)

α1 = 2,0003(21)

(a) Die Korrelationsfunktion C2
c (τ) für einen Git-

terabstand von a = 0,05. Die durchgezogene
Linie symbolisiert die Anpassung an die Simu-
lation. Die vertikale Linie verdeutlicht das für
den Fit gewählte Zeitfenster [0,τ2].

1,975

1,98

1,985

1,99

1,995

2

2,005

0 0,2 0,4 0,6 0,8 1 1,2

E
�
ek
ti
ve

M
as
se
m̃

e
�

Zeitabstand τ

(b) Die e�ektive Masse als Funktion der Zeit τ
für a = 0,05. Die Punkte stellen die Ergeb-
nisse der Simulation dar. Die vertikale Linie
verdeutlicht das für den Fit gewählte Zeit-
fenster [0,τ2], während die doppelt horizonta-
le Linie das Fehlerband, bestimmt durch eine
Jackknife-Binning-Analyse, darstellt.

Abbildung 11: Bestimmung der e�ektiven Masse des zweiten angeregten Zustandes. Es wird a =
0,05 und Nind > 40000 gesetzt, wobei Gleichung (58) verwendet wird.

Abbildung 11b zeigt für die e�ektive Masse zwar ein Plateauverhalten, jedoch sind die

statistischen Fehler aufgrund der Subtraktion des konstanten Anteils | 〈0|x2|0〉 | gröÿer. Die
untenstehende Tabelle 3 zeigt die Energielücke E2 − E0 für verschiedene Gitterabstände a.

Tabelle 3: Schätzwerte und analytische Werte der Energielücke E2 − E0 für verschiedene Gitterab-
stände a. Unter Verwendung der Gleichung (58) wurden Nind > 40000 unabhängige Werte
erzeugt.

Gitterabstand a Simulation E1 − E0 Theorie E1 − E0

0,2 1,9963(19) 1,9967
0,1 1,9997(21) 1,9992
0,05 2,0003(21) 1,9998
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Alle Werte stimmen mit den analytischen Vorhersagen überein. Die Energiewerte für a =

0,05 und a = 0,1 sind im Bereich ihrer Fehler konsistent mit dem Kontinuumswert von 2.

4.2. Anharmonischer Oszillator

In diesem Kapitel steht die Untersuchung eines anharmonischen Oszillators im Vordergrund.

Dieses Modell ist analytisch nicht exakt berechenbar. Der Hamiltonoperator des Teilchens ist

wie folgt gegeben:

H =
p2

2m
+ λ(x2 − f2)2. (73)

Das Doppelmuldenpotential ist in Abbildung dargestellt.
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Abbildung 12: Das Potential V (x) = λ(x2 − f2)2 des anharmonischen Oszillators. Die Minima
be�nden sich an den Stellen ±f .

Klassisch betrachtet, würde ein niederenergetisches Teilchen sich in einer der Mulden des

Potentials V (x) be�nden. Es existieren somit zwei entartete Grundzuständen. Quantenmecha-

nisch wird diese Entartung auf Grund des Tunnele�ekts aufgehoben, sodass der Grundzustand

gerade Parität und der erste angeregte Zustand ungerade Parität aufweist. Für die Simulation

wird die euklidische Wirkung wie folgt diskretisiert:

SE = a

Nsite∑
i=1

1

2
m

(xi+1 − xi)2

a2
+ λ(xi − f2)2. (74)
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4.2.1. Aufenthaltswahrscheinlichkeit des Grundzustandes und Quantentrajektorien

Zuerst sollen periodische Randbedingungen xNsite
= x0 und λ = 1 betrachtet werden. Die

folgenden Abbildungen zeigen typische Quantentrajektorien für unterschiedliche Parameter

f2.
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Abbildung 13: Quantentrajektorien des anharmonischen Oszillators für verschiedene Parameter f2

und m = λ = 1. Es wurde T = 100, a = 0,05 und n = 15 gewählt.

Wie Abbildung 13c deutlich zeigt, weisen die Quantentrajektorien für diese Parameterwahl

zwei charakteristische Zeitskalen auf. Zum Einen ergeben sich quantenmechanische Fluktua-

tion mit einer Oszillationszeit τosc um die Minima ±xc = ±f des Potentials, zum Anderen

wird die Bewegung auf gröÿeren Zeitskalen τ durch die Tunnelzeit τtun bestimmt.

Die Oszillationszeit τosc kann über die semiklassische Näherungsmethode der euklidischen

Übergangsamplitude zu ω−1 =
(√

8λf2/m
)−1

bestimmt werden4. Die Tunnelzeit τtun ist

proportional zu ω−1 exp(m2ω3/12λ). Eine verlässliche Simulation muss somit beide Zeitska-

len berücksichtigen, woraus folgende Ungleichungen folgen:

a� τosc und τtun � Nsitea. (75)

Es wird angenommen, dass die obigen starken Ungleichungen für T = 100 und a = 0,05 erfüllt

sind, da keine signi�kante Änderung der Ergebnisse bei Erhöhung von T und Erniedrigung

4Diese stellen die reskalierten Gleichungen der Quelle [Mac99] dar.
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von a eintreten. Zur Berechnung der Aufenthaltswahrscheinlickeitsdichte des Grundzustan-

des wird analog zu dem harmonischen Oszillator vorgegangen. Es wurden insgesamt Ntot

Kon�gurationen erzeugt, wobei Nskip = 61 verwendet wird. Abbildung 14 zeigt die Aufent-

haltswahrscheinlichkeitsdichte des Grundzustandes für f2 = 2, m = 0,5 und λ = 1.
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Abbildung 14: Die Aufenthaltswahrscheinlichkeitsdichte des Grundzustandes als Funktion des Ortes
für f2 = 2, m = 0,5 und λ = 1. Die Simulationsparameter sind Ntot = 50100,
Nskip = 61, T = 100 und a = 0,05.

Die geringe Anzahl von Tunnelprozessen in Abbildung 13c führt zu einer geringen Aufent-

haltswahrscheinlichkeitsdichte um den Ursprung. Die Aufenthaltswahrscheinlichkeitsdichte ist

leicht asymmetrisch um den Ursprung, dies ist auf die Numerik zurückzuführen. Eine Vergrö-

ÿerung von Ntot führt zu einer symmetrischen Verteilung, welche aufgrund der Symmetrie des

Potentials zu erwarten ist.

4.2.2. Energieniveaus des Grundzustandes und des ersten angeregten Zustandes

Die Anwendung des Virialtheorems liefert die Energie des Grundzustandes und über die e�ek-

tive Masse kann die Energie des ersten angeregten Zustandes bestimmt werden. Hierbei wird

aufgrund von Korrelationse�ekten der Parameter n zu 20 gewählt. Die folgende Abbildung

15 zeigt exemplarisch die Bestimmung der Energielücke E1 − E0 über die e�ektive Masse

für f2 = 2. Hierbei wird analog zum harmonischen Oszillator vorgegangen: Es wird ein Pla-

teau der e�ektiven Masse bestimmt und in diesem Bereich eine abfallende und ansteigende

Exponentialfunktion M(τ) angepasst.
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(b) Die e�ektive Masse m̃e� als Funktion der Zeit τ
für a = 0,05. Die Punkte stellen die Ergebnis-
se der Simulation dar. Die vertikale Linie ver-
deutlicht das für den Fit gewählte Zeitfenster
[τ1,τ2], während die doppelt horizontale Linie
das Fehlerband bestimmt durch eine Jackknife-
Binning-Analyse mit B = 500 darstellt.

Abbildung 15: Bestimmung der e�ektiven Masse des ersten angeregten Zustandes. Es wurde eine
Gesamtanzahl von Ntot = 5000 bei Nskip = 30 und n = 20 gewählt.

Im Gegensatz zum harmonischen Oszillator koppelt x sowohl den Grundzustand mit dem

ersten angeregten Zustand als auch andere höhere gelegene Energiezustände. Für groÿe τ er-

gibt sich jedoch ebenfalls ein Plateauverhalten der e�ektiven Masse. Hierbei ist zu beachten,

dass aus Laufzeitgründen eine sehr geringe Anzahl von Samples Ntot = 5000 gewählt wurde.

Die Resultate sind in diesem Fall eher qualitativer Natur und führen besonders für groÿe f2

nicht immer zu einem deutlichen Plateauverhalten wie in Abbildung 15b. Grund hierfür ist

die Zunahme an Korrelationse�ekten.

Abbildung 16 zeigt die Energie des Grundzustandes und des ersten angeregten Zustandes

für einen festen Gitterabstand von a = 0,05 als Funktion des Parameters f2. Zudem ist

die Kontinuumslösung eines anderen numerischen Verfahrens, der Moment-Methode [BDS80],

dargestellt. Eine kurze Beschreibung dieser Methode ist dem Anhang A.4 zu entnehmen. Da

unterschiedliche Simulationen für die Grundzustandsenergie und die e�ektive Masse durchge-

führt wurden, können die Fehler einfach kombiniert werden. Für die Grundzustandsenergie

wurde Ntot = 10000 und Nskip = 30 verwendet. Für die Moment-Methode wurde der gleiche

Versuchszustand wie in [BDS80] gewählt und M = 200 verwendet (vgl. [BDS80]).
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Abbildung 16: Die Energie des Grundzustandes und ersten angeregten Zustandes als Funkti-
on des Parameters f2. Die durchgezogene Linie repräsentiert die Ergebnisse der
Moment-Methode [BDS80] im Kontinuumsfall und die Punkte stellen die Ergebnis-
se der Simulation dar. Die Simulationsparameter sind für die Grundzustandsenergie
Ntot = 10000 und Nskip = 30 und für die Energie des ersten angeregten Niveaus
Ntot = 5000, Nskip = 30, und n = 20.

Die Simulation stimmt qualitativ gut mit der anderen numerischen Methode überein. Für

groÿe f2 sind die Energien nahezu identisch, welches intuitiv richtig erscheint: Für gröÿer

werdendes f2 bewegen sich die Potentialmulden immer weiter auseinander, die Tunnelwahr-

scheinlichkeit nimmt ab.

4.2.3. Instantonen

Nach Quelle [Mac99] kann das Potential V (x) um ein Minimum entwickelt werden und die stö-

rungstheoretischen Korrekturen für die Wellenfunktion und Energie angebracht werden. Für

das andere Minimum kann entsprechend vorgegangen werden. Aus Symmetriegründen wür-

den somit die Grundzustandsenergien, egal für welche störungstheoretische Ordnung, über-

einstimmen, sodass ein entarteter Grundzustand auftreten würde. Tatsächlich ist dieser je-

doch nicht entartet. Dies kann über eine semiklassische Näherungsmethode gezeigt werden

[Mac99, VZNS82].

Das Pfadintegral soll nun in dem semiklassischen Grenzfall ~ → 0 betrachtet werden. In der

Simulation kann der semiklassische Grenzfall durch einen groÿen Störfaktor f2 approximiert

werden.

In diesem Fall kann das Pfadintegral mit Hilfe der Sattelpunktmethode angenähert werden.

Anders ausgedrückt dominieren die Regionen um lokale Extrema (Minima) der euklidischen

Wirkung das Pfadintegral. Für das Doppelmuldenpotential werden nun die Übergangsampli-

tuden

〈−f | e−HT |f〉 und 〈f | e−HT |−f〉 (76)
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betrachtet, wobei der Anfangszeitpunkt sich bei t = −T/2 und der Endzeitpunkt bei t = T/2

be�nden soll. Für die Pfade X(t) mit extremaler Wirkung gilt die Bedingung

δSE = SE [X(τ) + δx(τ)]− SE [X(τ)] =

∫ T/2

−T/2
dτδx(τ)

[
− d2X

dτ2
+ V ′(X)

]
= 0, (77)

wobei V ′ = dV/dx. Woraus nach dem Variationsprinzip die klassische Bewegungsgleichung

für ein Teilchen in einem Potential −V (x) folgt:

d2X

dτ2
= V ′(X). (78)

In euklidischer Zeit entspricht dies einem Teilchen was sich im invertierten Potential −V (x)

bewegt (vgl. Abbildung 17).
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Abbildung 17: Das Potential −V in Abhängigkeit des Ortes x. Die Minima be�nden sich an den
Stellen ±f . Zusätzlich ist eine mögliche klassische Bewegung des Teilchens in diesem
Potential eingezeichnet: Das Teilchen bewegt sich auf dem mechanischen Pro�l von
einem Maximum bei −f zum anderen Maximum bei f .

Die wichtigen Pfade in diesem Problem sind Lösungen der Gleichung (78) mit beschränkter

Wirkung für T →∞, da diese die Hauptdistributionen zum Integral liefern. Die o�ensichtliche

Lösung ist die Bewegung des Teilchens vom Maximum −V (±f) hin zum anderen Maximum

−V (∓f) im Grenzfall T →∞. Eine dieser Bewegung auf dem mechanischen Pro�l −V (x) ist

in Abbildung 17 dargestellt. Mathematisch ergibt sich folgende Lösung der Gleichung (78):

X(τ) = f tanh
(ω

2
(τ − τ0)

)
, (79)

wobei τ0 die Zeit für den Nulldurchgang bezeichnet. Diese Lösung wird als Instanton oder auch

Pseudoteilchen bezeichnet. Die Lösung (79) ist zeitlich lokalisiert mit einer Breite von ω−1. Für

τ → ±∞ geht x zwar an unterschiedliche Orte ±f , diese sind jedoch physikalisch betrachtet

äquivalente Grundzustände. Als �instant� wird diese Kon�guration aus dem Grund bezeichnet,

dass sie für einen kurzen Zeitpunkt von einem zum anderen Grundzustand wechselt.

Abbildung 18 zeigt die Wirkungsdichte s = ẋ2 + V (x) des Instantons, diese Darstellung

unterstreicht nochmals den Pseudoteilchencharakter.
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Abbildung 18: Wirkungsdichte s = ẋ2 + V (x) eines Instantons, wobei τ0 = 0, ω = 0,5 und f = 1
gewählt wurde.

Bisher wurde nur eine Lösung der Gleichung (78) untersucht5. Da das Zeitintervall T sehr

groÿ ist, können auch Abfolgen von Instantonen und Antiinstantonen auftreten. In dem gege-

benen Fall können allerdings nur ungerade Anzahlen von Instantonen auftreten, da der An-

fangs/Endpunkt durch ±f gegeben sind. Die Übergangsamplitude ist nach Quelle [VZNS82]

wie folgt gegeben:

〈−f |e−HT |f〉 =
ω

π
e−ωT/2 sinh(ωTd), (80)

wobei d die Instantonendichte 6
π

√
S0e
−S0 beschreibt und die Wirkung S0 eines Instantons

gleich m2ω3

12λ ist. Obige Gleichung gilt für

|τi − τj | � ω−1, (81)

wobei die Indizes i und j zwei benachbarte Zentren zweier Instantonen bezeichnen. Anders

formuliert muss die Entfernung benachbarter Instantonen viel gröÿer sein als deren Weite.

Dies kann durch sehr kleine λ erreicht werden. Obiges Modell wird als Dilute Instanton Gas

bezeichnet [VZNS82]. In diesem Fall verhalten sich die Pseudoteilchen wie ein ideales Gas, es

treten keine Wechselwirkungen auf. Um in der Simulation ein einziges Instanton zu �nden,

müssen antiperiodische Randbedingungen verwendet werden:

x(Nsite + i) = −x(i). (82)

Zusätzlich wird eine geringe Instatonendichte gewählt. Die folgenden Abbildungen 19 zeigen

die Instantonlösung (79) sowie eine Quantentrajektorie der Simulation.

5Streng genommen sind aufgrund der Zeitinvarianz der Hamiltonoperators, beliebige Nulldurchgänge zu
betrachten. Es ergibt sich somit eine unendliche Anzahl der Lösungen gleicher Art.
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(a) Eine Quantentrajektorie des anharmonischen
Oszillators mit antiperiodischen Randbedin-
gungen. Die klassischen Umkehrpunkte sind
mit ±x1 und ±x2 bezeichnet. Zusätzlich sind
die klassischen Minima ±xc des Potential mar-
kiert. Es wurde f2 = 4, λ = m = 1 gewählt
und T = 100 a = 0,05.
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(b) Die klassische Tunnellösung (79) in euklidi-
scher Zeit. Die klassischen Minima des Poten-
tials sind mit ±xc bezeichnet.

Abbildung 19: Instantonen im Doppelmuldenpotential.

Die Simulation und Theorie sind in guter Übereinstimmung. In der Simulation ergeben sich

erwartungsgemäÿ quantenmechanische Fluktuationen in den Potentialmulden. Deren Am-

plituden werden begrenzt von den klassischen Umkehrpunkten des Teilchens. Jetzt werden

symmetrische Randbedingungen verwendet und als Hot Start eine Instanton-Antiinstanton-

Kon�guration gewählt. Diese kann theoretisch über einen Summen-Ansatz ausgedrückt wer-

den:

x(τ) = f(−1 + tanh(ω(τ − τI)/2)− tanh(ω(τ − τA)/2)) (83)

wobei τI und τA die Mittelpunkte der Pseudoteilchen bezeichnen. Die Wirkung dieses Paars

ist nach [Sch04] für den Abstand τIA = |τI − τA| für groÿe τIA gegeben durch:

SIA(ττIA) = 2S0(1− 6 exp(−fτIA) + . . . . (84)

Für τIA → 0, folgt nach Gleichung (83) eine Wirkung von SE = 0: Das Instanton annihiliert

mit dem Antiinstanton. Das verwendete Zeitgitter besitzt T = 15, a = 0,5 und die Parameter

werden so gewählt, dass die Instantonendichte im Gleichgewicht folgende Gleichung erfüllt:

ρeq · T � 1. (85)

Die folgende Abbildung 20 zeigt die Quantentrajektorien in Abhängigkeit von der Monte-

Carlo-Zeit t.
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Abbildung 20: Die Annihilation eines Instanton-Anti-Instanton-Paars in der Monte-Carlo-
Simulation. Es wurde f2 = 3,5 und λ = 0,4 verwendet. Für das Zeitgitter gilt
T = 15 und a = 0,5.

Die beiden Pseudoteilchen bewegen sich zunächst aufeinander zu und annihilieren dann bei

einer Monte-Carlo-Zeit von etwa t = 20. Die Dauer dieses Vorgangs ist abhängig von der

Gröÿe der Fluktuationen im Gegensatz zum Instanton-Antiinstaton-Abstand τIA.

Ein alternativer Zugang ist die Betrachtung der Wirkung als eine Art Pro�l: Ähnlich wie bei

einer Bergwanderung wird ein beliebiger Startpunkt gewählt und anschlieÿend der Kraft bis

ins Tal gefolgt[Shu88]. Die Veränderung des Pfades kann iterativ berechnet werden durch:

xn+1(τ) = xn(τ)− εfn(τ), (86)

wobei ε ein numerischer Faktor und fn(τ) die klassische Kraft ist, welche durch δS/δx ge-

geben ist. Die folgende Abbildung 21 zeigt das numerische Resultat für ε = 0,01, wobei die

unterschiedlichen Linien einem Iterationsabstand von 1000 entsprechen.
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Abbildung 21: Die Annihilation eines Instanton-Anti-Instanton-Paars unter Verwendung von 86.

Dieses Ergebnis ist qualitativ konsistent mit dem aus der Monte-Carlo-Simulation gefunde-

nen Ergebnis.
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5. Zusammenfassung und Ausblick

In dieser Arbeit wurden der harmonische und eine Form des anharmonischen Oszillators mit

der Monte-Carlo-Methode unter der Verwendung des Metropolis-Hastings-Algorithmus be-

trachtet. Die Ergebnisse der Simulation für den harmonischen Oszillator sind in guter Überein-

stimmung mit den analytischen Werten. Obschon auf die Fehlerbestimmung der numerischen

Ergebnisse viel Wert gelegt wurde, ist im Hinblick auf die Exaktheit der numerischen Ergeb-

nisse die Verwendung der Monte-Carlo-Methode für den einfachen harmonischen Oszillator

natürlich im Vergleich zu anderen Methoden nicht notwendig, dennoch bietet es interessante

Einblicke in die Funktionsweise der Monte-Carlo-Methode und ebnet so den Weg für komple-

xere Modelle. Sokal formuliert diesen Zusammenhang folgendermaÿen: �Die Monte-Carlo ist

eine extrem schlechte Methode und sollte nur genutzt werden, wenn die Alternativen noch

schlechter sind�[Sok89]. Für höherdimensionale Integrale ist dies der Fall und die Monte-Carlo-

Simulation kann problemlos durch Einführung weiterer Variablen auf mehr Freiheitsgrade er-

weitert werden.

Zusätzlich lassen sich leicht Grundzustandserwartungswerte eines Teilchens in einem beliebi-

gen Potential erhalten. Für den harmonischen Oszillator wurde zudem die Energie des ersten

angeregten und des zweiten angeregten Zustandes bestimmt. Hierbei zeigt sich ein Nach-

teil dieser Methodik: Höher gelegene Zustände erfahren eine exponentielle Unterdrückung im

imaginären Zeitformalismus, sodass die Extraktion höher gelegener Niveaus erschwert wird.

In der Simulation führt dies zu gröÿeren Fehlern, welche sich aufgrund des 1/
√
Ntot-Gesetzes

nur langsam minimieren lassen.

Zusätzlich wurde das System des anharmonischen Oszillators untersucht, wobei sich der nicht

pertubative Zugang der Monte-Carlo-Methode als günstig erweist. Die Erwartungswerte der

Energie für den ersten angeregten und den Grundzustand stimmen qualitativ gut mit den Er-

gebnissen der Moment-Methode überein und es konnte somit die klassische Vermutung eines

entarteten Grundzustands widerlegt werden. Der Grund für die Aufhebung der Entartung in

der Quantenmechanik sind Tunnelphänomene. In imaginärer Zeit sind diese Tunnellösungen

klassische Lösungen eines Teilchens in dem Potential −V (x). Diese, als Instantonen bezeich-

neten Lösungen, konnten in guter Übereinstimmung in der Monte-Carlo-Simulation wieder-

gefunden werden. Zuletzt wurde die Instanton-Antiinstanton-Wechselwirkung betrachtet.

Als Ausblick wäre eine nähere Untersuchung des Dilute-Instanton-Modells von Interesse. Bei-

spielsweise könnten ein Vergleich der Energie des Grundzustandes und ersten angeregten Zu-

standes mit [VZNS82] erfolgen. Zudem könnte die Monte-Carlo-Simulation auch auf andere

Theorien, wie zum Beispiel die Quantenchromodynamik, angewandt werden.
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A. Anhang

A.1. Programmstruktur

Zunächst werden die Simulationsparameter initialisiert und eine Startgitterkon�guration fest-

gelegt. Unter Gebrauch des Metropolis-Hastings-Algorithmus werden anschlieÿend neue Git-

terkon�gurationen erstellt, dabei wird aufgrund seiner guten Eigenschaften der Mersenne

Twister genutzt[Mor07]. Ist der Thermalisierungsprozess abgeschlossen, werden die Nicht-

Gleichgewichts-Daten verworfen und verwertbare Kon�gurationen produziert. Danach werden

die Daten analysiert und primäre Observablen oder komplexere Funktionen berechnet. Unter-

programme führen hierbei die Jackknife-Binning-Analyse oder die Γ-Methode aus. Sofern das

Ergebnis ausreichend ist, wird der Vorgang abgeschlossen, im anderen Fall können zusätzliche

Kon�gurationen erstellt werden.

Initialisation,
�ag=false

start

Metropolis-Algorithmus

Flag =
true?

Reached
equilbri-
um?

More
Data

Dataanalysis

Accurate
enough?

Flag=true
Discard
Data

end

yes

no

no yes

no

yes

Abbildung 22: Die Programmstruktur der Monte-Carlo-Simulation. Eine Beschreibung ist dem oben
stehenden Text zu entnehmen.

A.2. Anpassung des Parameters ∆

In diesem Kapitel wird die Abhängigkeit der integrierten Autokorrelationszeit τint der Ope-

rators x2 in Abhängigkeit von dem Parameter ∆ für eine feste Zeit T ermittelt. Zusätzlich

wird die Akzeptanzrate von xj → x′j berechnet. Abbildung 23 zeigt das Ergebnis dieser Un-

tersuchung.
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Abbildung 23: Die integrierte Autokorrelationszeit der Observablen x2 auf einer logarithmischen
Skala in Abhängigkeit des Parameters ∆ wird durch die lila Punkte verdeutlicht. Die
Akzeptanzrate ist auf der rechten Ordinatenachse dargestellt. Die Simulationspara-
meter sind a = 0,1, T = 100 und Ntot = 1000.

Wie erwartet nimmt die Akzeptanzrate mit steigendem ∆ ab. Für die integrierte Autokor-

relationszeit ergibt sich jedoch ein Minimum im Bereich 2
√
a − 4

√
a, welches in etwa einer

Akzeptanzrate von 50% entspricht. Eine hohe Akzeptanzrate deutet darauf hin, dass das In-

tegrationsvolumen langsam durchlaufen wird, während für eine zu kleine Akzeptanzrate sehr

viel Zeit auf die Ablehnung neuer Kon�gurationen verwendet wird [Mor07]. In den Simulatio-

nen wird überprüft, dass die Akzeptanzrate ungefähr bei 50% liegt, woraus auch aus diesem

Gesichtspunkt die Wahl

∆ ≈ 2
√
a (87)

plausibel erscheint.

A.3. Fehleranalyse

A.3.1. Γ-Methode

Die Γ-Methode dient zur Berechnung von Mittelwerten beliebiger Funktionen und deren sta-

tistischen Fehler in Monte-Carlo-Simulationen. Hierbei werden die relevanten Autokorrelati-

onsfunktionen summiert und die integrierte Korrelationszeit berechnet. Zur kurzen Erklärung

dieser Methode wird die Notation der Quelle [Wol04] verwendet: Primäre Observablen Aα

werden durch einen griechischen Index charakterisiert. Davon abgeleitete Funktionen erhal-

ten folgende Darstellung:

F ≡ f(A1,A2. . . ) ≡ f(Aα). (88)
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Die Schätzwerte von N Monte-Carlo-Iterationen der Observable Aα erhalten die Bezeichnung

aiα, i = 1. . . N. (89)

Für den Fehler σF ergibt sich das Analogon zu Gleichung (52) zu:

σ2
F =

CF
N

=
2τint,F
N

vF , (90)

mit der �naiven� Varianz für F

vF =
∑
αβ

fαfβΓαβ(0), mit Γαβ = 〈(aiα −Aα)(ajβ −Aβ)〉 (91)

und der integrierten Autokorrelationszeit:

τint,F =
1

2vF

t=∞∑
t=−∞

∑
αβ

fαfβΓαβ(t)︸ ︷︷ ︸
ΓF (t)

. (92)

Da der Fehler σF selbst ein Schätzwert ist und somit auch mit einem statistischen Fehler

versehen ist, ist es notwendig den Fehler des Fehlers möglichst klein zuhalten. Aus diesem

Grund wird der Schätzer von CF wie folgt gewählt

CF (W ) =

[
ΓF (0) + 2

W∑
t=1

ΓF (t)

]
(93)

Für ein groÿes W ist der Schätzwert kaum verzerrt, jedoch nimmt das Signal proportional

zu exp(−W/τ) ab, wobei das Rauschen konstant bleibt. Es ist somit ein Kompromiss zwi-

schen statistischem und systematischem Fehler, wobei der optimale Wert fürW den gesamten

relativen Fehler minimiert:

δtot(σF )

σF
≈ 1

2
min
W

(
exp(−W/τ) + 2

√
(W/N)

)
. (94)

Unter dieser Bedingung kann eine automatische Fensterfunktion-Prozedur entwickelt werden,

für dessen genaue Gestalt auf Quelle [Wol04] verwiesen wird.

A.3.2. Binning

In diesem Kapitel wird ebenfalls die Notation von Quelle [Wol04] verwendet. Die Binning-

Methode dient zur Bestimmung der statistischen Fehler von korrelierten Daten ai, i = 1. . . N .

Hierbei wird die Datenmenge in NB Abschnitte der Länge B unterteilt. Diese Untermengen

werden als Bins bezeichnet, wobei für den Mittelwert des kten Bins gilt:

bk =
1

B

B∑
i=1

a(k−1)B+i, k = 1,. . . ,NB. (95)
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Wird die Binlänge B groÿ genug gewählt, ergeben sich quasi unkorrelierte Bins. Als Schätzer

des Fehlers wird folgende Darstellung gewählt:

σ2 =
1

NB(NB − 1)

NB∑
k=1

(f(bk)− F )2, (96)

wobei f die Funktion f angewandt auf den Mittelwert der gesamten Datenmenge ist. In

dieser Arbeit wird die hier beschriebene Binning-Methode mit der Jackknife-Methode (vgl.

A.3.3 kombiniert. Diese sogenannten Jackknife-Bins werden fast auf die gesamte Statistik an-

gewandt, welches beispielsweise zu einer verbesserten Stabilität von Fits führt. Eine genauere

Beschreibung ist der Quelle [Wol04] zu entnehmen.

A.3.3. Jackknife

Jackknife lässt sich den Resampling-Methoden zuordnen und dient zur Berechnung der Va-

rianz und der Verzerrung. Diese Methode soll kurz in Anlehnung an Quelle [Ber04] erläutert

werden. Bei dieser Technik wird systematisch ein Wert xi aus einer Stichprobenmenge {xk}
entfernt, der Mittelwert xJi dieser Untermenge gebildet und die Schätzwerte fJi (xJi ) einer

Funktion f berechnet. Abschlieÿend ergibt sich der Jackknife-Schätzwert fJ der Gröÿe 〈f〉
über eine erneute Mittelung über alle fJi .

Mathematisch erschlieÿt sich somit folgende Formulierung:

f
J

=
1

N

N∑
i=1

fJi mit fJi = f(xJi ) und xJi =
1

N − 1

∑
k 6=i

xk. (97)

Der Schätzwert der Varianz σ2 ergibt sich zu

σ2
J(f

J
) =

N − 1

N

N∑
i=1

(fJi − f
J
)2. (98)

Im Gegensatz zu den auf linearer Approximation basierenden Fehlerfortp�anzungsmethoden,

ist die Jackknife-Methode für nichtlineare Funktionen unter statistischen Fluktuationen sta-

biler. Zudem sind keine Berechnungen partieller Ableitungen notwendig.

Eine Reduktion der Verzerrung des Schätzwertes ist nach den Quellen [Wol04, Ber04] möglich,

in dieser Arbeit wird jedoch davon abgesehen.

A.4. Moment-Methode für Eigenwerte und Erwartungswerte

Die Moment-Methode ist einen numerische Methode zur Bestimmung von Eigenwerten eines

quantenmechanischen Systems, dessen Potential ein Polynom in den Ortskoordinaten ~x =

(x1,. . . ,xN ) einnimmt[BDS80]. Es wird eine Schrödingergleichung der Form

Hψ = Eψ ,H =
N∑
i=1

p2
i + V (99)
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betrachtet und zusätzlich die Momente de�niert:

Sn1n2. . . nN = 〈φ|xn1
1 . . . xnN

N |ψ〉 , (100)

wobei |ψ〉 der exakte Eigenzustand der Gleichung (99) und |φ〉 ein Versuchszustand ist. Der

Versuchszustand erfüllt folgende Gleichungen:

φ(x) = 〈~x|φ〉 = exp

[
−
∫ ~x

0
d~x′ · ~g(~x′)

]
(101)

~∇φ(x) =− ~g(x)φ(x) (102)

∇2φ(x) =(~g · ~g −∇ · g)φ(x). (103)

Das Matrixelement 〈φ|xn1
1 . . . xnN

N H|ψ〉 führt über eine Kommutatorrelation auf folgende Be-

ziehung:

ESn1n2. . . nN = 〈φ|

(
−~g · ~g + (∇ · g) + V +

N∑
i=1

[2gi(x)nix
−1
i − ni(ni − 1)x−2

i ]

)
xn1

1 . . . xnN
N |ψ〉 .

(104)

Sind sowohl g als auch V Polynome im Ort, kann obige Rekursionsbeziehung zur Bestimmung

der Eigenwerte benutzt werden. Eine detaillierte Beschreibung insbesondere die Anwendung

auf den anharmonischen Oszillator ist der Quelle [BDS80] zu entnehmen. Hierbei ist zu beach-

ten, dass [BDS80, Gleichung (20)] und darauf folgende Gleichungen kleine Fehler aufweisen.

Die genau Fehlerbeschreibung ist dem Programmcode der Moment-Methode zu entnehmen.
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