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Problem 1: e−-µ-scattering. [12 Points]

e(k)

µ(p′)

e(k′)

γ(q)

µ(p)

k = (E,~k)

k′ = (E′, ~k′)

p = (M,~0)

p′ = (p0, ~p′)

q = (ν, ~q )

θ

(a) (1 Point) Give the corresponding matrix element M.

(b) (3 Points) The squared spin-average matrix element can be written as

|M|2 =
e4

q4
Lµν(e)L

(muon)
µν ,

where the lepton tensors Lµν contain the spin sums and the average factors. Calculate the
lepton tensors Lµν for the electron and muon. In the end you should receive

|M|2 =
8e4

q4

[
(k.p)(k′.p′) + (k′.p)(k.p′)−M2(k.k′)

]
,

(c) (2 Points) In the following we neglect the electron mass m. Use the relation q2 = (k− k′)2 to
show that the squared and spin averaged matrix element is equal to

|M|2 =
8e4

q4

[
− 1

2
q2(k.p− k′.p) + 2(k′.p)(k.p) +

1

2
M2q2

]
.

(d) (3 Points) By using energies and scattering angles of the laboratory frame rewrite the result
from (c) to

|M|2 =
8e4

q4

[
− 1

2
q2M(E − E ′) + 2M2EE ′ +

1

2
M2q2

]
.

Now using the fact that the scattered particle stays in tact (p′ = p + q and p′2 = p2 = M2)
derive

|M|2 =
8e4

q4
2M2EE ′

[
cos2

θ

2
+

(E − E ′)
M

sin2 θ

2

]
.



(e) (2 Points) The cross-section formula in the laboratory system is given by

dσ =
1

4ME
|M|2 1

(2π)2
E ′

4M
dE ′dΩ δ(ν +

q2

2M
) .

Replace |M|2 with the result from (d) and perform the integration over E ′ to receive:( dσ
dΩ

)
=

α2

4E2 sin4 θ
2

1

1 + 2E
M

sin2 θ
2

[
cos2

θ

2
+

2E2

M2 sin2 θ
2

1 + 2E
M

sin2 θ
2

sin2 θ

2

]
.

with α = e2

4π
.

(f) (1 Point) Use E ′ = E
1+ 2E

M
sin2 θ

2

and q2 = −2M(E − E ′) and compare the result with the Mott

scattering formula for protons (Z=1)( dσ
dΩ

)
Mott

=
α2

4E2 sin4 θ
2

E ′

E
cos2

θ

2
.

Problem 2: Inelastic scattering. [10 Points]

Up to now we have treated the case where the target particle stayed in tact after the collision.
This is of course natural in a case of a muon as it is a point-like fundamental particle but in case of
a proton one can imagine different outcomes of the scattering. When large energies are transferred
from the electron to the proton, the proton can either transform into a different hadron (e.g. an
excited state of the proton such as a ∆-resonance) or break up completely giving rise to a lot of
different hadrons (see Fig. ??).

We will analyze the deep inelastic scattering which can be characterized by the energy trans-
ferred to the proton Q2 �M2 and by the fact that the invariant mass of the resulting hadrons is
much bigger than the mass of the proton W 2 � M2 which guarantees that the proton breaks up
into many hadrons. The invariant squared mass W 2 can be written as

W 2 = (p+ q)2 = M2 +Q2 (1− x)

x
, (1)

where

Q2 = −q2 , x =
Q2

2p.q
. (2)

In the case of the inelastic scattering, the final state is not a single spin-1/2 particle but a collection
of many different particles. Therefore we have to parameterize photon-proton-X interaction, where
X is anything the proton can break up into. We begin at the level of a cross-section which we
write as

dσ =
1

4ME

(
e4

q4
Lµν(e)H

X
µν

)
d3k′

(2π)3
1

2E ′

N∏
n=1

d3p′n
(2π)3

1

2(p′n)0
(2π)4δ(4)(p+ k − k′ −

∑
p′n) , (3)

where HX
µν stands for the photon-proton-X interaction and there is an added phase-space integra-

tion for all N particles in the X final state. We are interested in all processes where the proton
breaks up irrespective of N and so we rewrite the cross-section in the following form

dσ =
4πM

4ME

(
e4

q4
Lµν(e)Wµν

)
d3k′

(2π)3
1

2E ′
, (4)

where Lµν(e) is the known leptonic tensor

Lµν(e) = 2
(
kµk′ν + k′µkν − (k′.k −m2)gµν

)
, (5)



e(k) e(k′)

X

γ(q)

P (p)

W 2 = (p′1 + p′2 + . . .+ p′n)2 �M2

⇓
‘Inelastic’

Q2 = −q2 �M2 ⇒ ‘Deep’

Figure 1: Inelastic scattering of electrons on protons with some useful kinematic variables.

and we have simply re-defined the hadronic tensor to include all the dependence on N as well

Wµν =
1

4πM

N∏
n=1

d3p′n
(2π)3

1

2(p′n)0
HX
µν (2π)4δ(4)(p+ k − k′ −

∑
p′n) . (6)

The cross-section can be now written in terms of lab frame variables as

dσ

dE ′dΩ
=
α2

q4
E ′

E
Lµν(e)Wµν , (7)

where unlike in the elastic scattering the energy E ′ of the outgoing electron is a free variable and
not related to E and θ. This is a consequence of the fact that we study a case where the proton
breaks up and so we have a multi-particle phase-space to integrate over. This time we cannot
calculate the tensor as was the case with muons in the elastic scattering.

(a) (2 Points) Explain why the hadronic tensor W µν can be parametrized by the Lorentz structure

W µν = −gµνW1 +
pµpν

M2
W2 +

i

2M2
εµνρλpρqλW3 +

qµqν

M2
W4 +

pµqν + qµpν

M2
W5 .

(b) (2 Points) We can now make use of the fact that the hadronic tensor couples to the photon
an so due to the conservation of the charge current, we have

qµWµν = 0 .

Express the factors W4 and W5 in terms of W1 and W2.

(c) (2 Points) Moreover because we assume for simplicity that the scattering is mediated only by
an exchange of a photon, the interaction conserves parity as an electromagnetic interaction
should. What does it means for the term ∼ εµνρλ in the hadronic tensor? Rewrite the hadronic
tensor only in terms of W1 and W2

W µν = W1

(
−gµν +

qµqν

q2

)
+W2

1

M2

(
pµ − p.q

q2
qµ
)(
pν − p.q

q2
qν
)
.

(d) (4 Points) Derive the differential cross-section

dσ

dE ′dΩ
=

α2

4E2 sin4 θ
2

(
2F1

M
sin2 θ

2
+

F2

E − E ′
cos2

θ

2

)
(8)

with the structure functions F1 = MW1 and F2 = p·q
M
W2.


