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Problem 1:Decay of the Muon in the Fermi theory [20 Points]

Before the rise of the Standard Model and before the discovery of the intermediate W± and Z0

bosons, the weak phenomena were described (rather successfully) by Enrico Fermi using an effective
theory where the interactions included 4 fermions. Due to the 4-fermion vertex the theory was not
renormalizable but yielded surprisingly consistent results at tree level. The lagrangian relevant
for the muon decay1 includes only an interaction between left-handed components of the fermions
which reflects the known violation of parity by the weak interactions.
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νµ, νe, µ and e indicates the corresponding spinors of the particles. The first line is the so-called
charge exchange form of the lagrangian and the following line is the charge retention form which
is obtained by the Fierz identity. The process we are going to calculate is a 3-body decay of muon
into electron, muon neutrino and electron anti-neutrino, see figure above.

(a) (1 Points) Write down the matrix element M for the muon decay.

(b) (2 Points) Square the amplitudes summing over the polarizations∑
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1We will not give the part of the Fermi lagrangian for quarks nor attempt a full treatment of the Fermi theory but we refer for a
nice introduction to the book ”Quark and Leptons” by F. Halzen and A.D. Martin.



(c) (2 Points) Evaluate the traces:
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(d) (2 Points) Multiply the traces using the following relation for the ε tensors
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and verify that the final expression for the squared matrix element is∑
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(e) (2 Points) Before coming to the phase-space integral, express everything in the reference frame
of the decaying muon where the scalar products are
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where ω and ω′ are the energies of the muon neutrino and electron anti-neutrino respectively.

(f) (3 Points) This squared matrix element should be inserted into the decay width formula
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Use the hint to derive
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HINT: The phase-space element is(∏
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where k1, k2 and k3 are the final state 4-momenta and the angles η, θ and φ are all defined in
the figure below. The difference between the 1→ 3 decay and 2→ 3 process is that the decay
matrix element in the rest frame of the decaying particle does not depend on any of the angles
η, θ and φ but only on the energies k01, k03 and the relative angle between the 3-momenta ξ
which is fixed by 4-momentum conservation to
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On top of that the 4-momentum conservation determines the integration limits on the energies
(which in this case are the only non-trivial integration parameters).
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with
σ =
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s− k03 , τ = σ2 − |~k3|2 , m± = m1 ±m2 .

For the decay we use s = m2
µ and the 4-momenta and the masses are set as follows

k1 = k′, m1 = 0,

k2 = k, m2 = 0,

k3 = p′, m3 = me.

(g) (3 Points) Perform the integration over ω′, define r = me/mµ
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to perform the integration over the energy of the electron anti-neutrino. Set t = r2 to derive:

1

τµ
= Γ =

G2
Fm

5
µ

192π3

(
1− 8t− 12t2 log t+ 8t3 − t4

)
.



(i) (2 Points) Using this formula, convert the lifetime of the muon

τµ = 2.197019± 0.000021µs,

into a value for the Fermi coupling constant GF . The error above is only the experimental
one. There is a theoretical error coming from not including higher-order corrections into the
conversion formula. This error turns out to be significantly bigger than the experimental one.
This is the motivation for calculating loop corrections to the muon decay.


