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Problem 1: Mandelstam variables

The center-of-mass system (CMS) is defined as the system where the sum of the incoming (and
also the outgoing) 3-momenta vanishes. The great advantage of this reference frame is that the
amount of energy delivered to the collision by the incoming particles in the CMS is exactly the
amount that can directly be used to create new particles as the 3-momentum conservation doesn’t
require the final state particles to have any 3-momentum.
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The Mandelstam variables are a way to describe the kinematics of a scattering process in an
explicitly Lorentz invariant way. The Mandelstam variables for a 2 → 2 scattering process are
defined in terms of the 4-momenta of the incoming and outgoing particles as

s = (pa + pb)
2 = (k1 + k2)

2

t = (pa − k1)2 = (pb − k2)2

u = (pa − k2)2 = (pb − k1)2.

(a) Show that the Mandelstam variables are connected through

s+ t+ u = m2
a +m2

b +m2
1 +m2

2.

which means that in the case of a 2 → 2 scattering process, there are only two independent
Mandelstam variables.

(b) Consider now the process e−e+ → e−e+ and verify that:

s = 4(k2 +m2),

t = −2k2(1− cos θ),

u = −2k2(1 + cos θ),

where θ is the center-of-mass scattering angle and k = |pa| = |pb| = |k1| = |k2| is the common
3-momentum of incident and scattered electrons/positrons in the center-of-mass frame.



Problem 2: Kinematics in the Center-of-Mass System

All calculations in collider physics result in predictions for particle decay widths dΓ or cross-sections
dσ. The cross-section is calculated using the relation

dσ =
1

F
|M|2 dPSn ,

where F is the flux factor, dPSn stands for the phase-space integrals and |M|2 is the probability
matrix element. The flux factor for incident particle beams along the z-axis is given by

F = 4EaEb|vza − vzb | = 4|Ebp
z
a − Eap

z
b | = 4

√
(pa · pb)2 −m2

am
2
b ,

where Ea, Eb, pa and pb are the energies and momenta of the two incoming particles.

(a) Show that the flux can be rewritten using only Lorentz invariants as

F = 2
√
λ(s,m2

a,m
2
b) .

where λ(x, y, z) is the Källeén function defined as

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz = (x− (
√
y −
√
z)2)(x− (

√
y −
√
z)2) .

(b) Show that a general 2→ 2 collision process can only take place if

s ≥ (m1 +m2)
2 ,

where m1 and m2 are the masses of the final-state particles.

(c) Consider now the process e−e+ → e−e+. Show that the process is physically allowed when
s ≥ 4m2, t ≤ 0 and u ≤ 0. Moreover, determine the value of t and u for foreward and
backward scattering.

(d) Show that in CMS, the energies and the 3-momenta of all particles in the 2→ 2 process can
be expressed using just the masses and the Mandelstam variable s as
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,
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√
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Problem 3: Phase-space integration

The crucial part of the calculation of a cross-section σ is the integration over the phase-space of
the final-state particles. The Lorentz invariant phase-space integration element for two particles
in the final state is given as

dPS2 =
d3k1

(2π)32E1

d3k2
(2π)32E2

(2π)4δ(4)(k1 + k2 − pa − pb) .

(a) Use the δ-function and the previous results to rewrite the expression as

dPS2 =
1

16π2

λ
1
2 (s,m2

1,m
2
2)

2s
d cos θ dφ.



Hint: In order to apply the δ-function, transform the integration over the 3-momentum in the
formula for dPS2 to an integration over 4-momenta

d3k2
2E2

= d4k2 δ
(
k22 −m2

2

)
.

and perform the integration over one 4-momentum. This should lead to

dPS2 =
1

2E1

d3k1
(2π)3

(2π) δ
(
(pa + pb − k1)2 −m2

2

)
.

Choose |~k1|, θ and φ as the integration variables when integrating over the three components

of the 3-momentum ~k1. The z-axis is conventionally chosen to be the direction of the 3-
momentum pa. Change integration variables and use energy E1 instead of the momentum

|~k1| ∫
dPS2 =

∫
|~k1|
2

dE1 d cos θ dφ

(2π)2
δ((pa + pb − k1)2 −m2

2).

(b) Rewrite the expression from (a) using Lorentz invariant variables by substituting the integra-
tion over the Mandelstam variable t for the integration over cos θ∫

dPS2 =

∫ t+

t−

1

16π2

dt dφ

λ
1
2 (s,m2

a,m
2
b)
.

Verify that the integration boundaries are

t± = m2
a +m2

1 −
(s+m2

a −m2
b)(s+m2

1 −m2
2)

2s
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