A.1 Dimensional analysis

In relativistic quantum field theory, it is standard to set

e = 2.998 x 10%meters/second = 1, (A.D)
which turns meters into seconds and
/
b= 2—1 = 1.054 572 x 10~ ** joules - seconds = 1, (A2)
m

which turns joules into inverse seconds. This gives all quantities dimensions of energy
(or mass, using £ = mc?) to some power. Quantities with positive mass dimension (e.g.
momentum p) can be thought of as energies, and quantities with negative mass dimension
(e.g. position ) can be thought of as lengths.

Sometimes we write the mass dimension of a quantity with brackets, as in
[p] = [] = 1, meaning these quantities have mass dimension 1. Other examples are

[dz] = |z] = [t] = =1, (A3)
[8u] = [pu] =1, (A4)
[velocity| = E] = [z] - [t] = 0. (A.5)
Thus,
[d*z] = —4. (A.6)

The action should be a dimensionless quantity:

(8] = { f d’lwﬁ} =0 (A7)
So Lagrangians (really, Lagrangian densities) have dimension 4:
[£] =4 (A.8)
For example, a free scalar field has Lagrangian £ = 1(8,¢6)(8"¢) so
4] =1, (A9)

and so on. In general, bosons (whose kinetic terms have two derivatives) have mass dimen-
sion 1 and fermions (whose kinetic terms have one derivative) have mass dimension %
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You can always put the /i and ¢ factors back by dimensional analysis. For example, a
cross section has units of area, which might be measured in picobarns (pb):!

1 picobarn = 10~*" meters®. (A.10)

A quantum field theory calculation might produce o = m%} ~ Govz» Where

1 gigaelectronvolt = 1.602 x 10719 joules. (A.11)

So we need a combination of  and ¢ that converts GeV ™ into area. The unique answer is
h2c? = 9.996 x 10752 joules® - meters®. Thus,

A2c? = 3.804 x 107%* meters? = 3.894 x 10® picobarns, (A.12)

GeV?

which is a useful conversion factor.

A.1.1 Factors of 2=

Keeping the factors of 2 straight is important. The origin of all the 27’s is the relation

o0

§(z) = f dpet 2P, (A.13)
— 00

This identity holds with either sign; our sign convention for quantum fields is discussed

below. To remove the 27 from the exponent, we can rescale either  or p. We rescale p.

Then

f dper* = 27 §(x). (A.14)

Our convention for the Fourier transform is

flz) = f %f(p)e_’m o flp) = / d*z f(z)e™™. (A.15)

In general, momentum space integrals will have % factors while position space integrals
4 . .

have no 27 factors. Thus, you should get used to writing (;IT% in momentum space inte-

grals. Although physical quantities do not care about our 27 convention, the factors of 2w

have important physical effects. Our Fourier transform convention is consistent with
By, 4+ 10y, (A.16)
which has spatial components § < —iV, as in quantum mechanics.

! The origin of the term barn comes from the fact that inducing nuclear fission by hitting 2351J with neutrons 18
as easy as hitting the broad side of a barn. The inelastic neutron—222U scattering cross section is around 1 barn
=10"%m? at E ~ 1 MeV,

A.2 Signs

A.2 Signs

Although the meat of most calculations is independent of the signs, physical results are
very dependent on getting the sign right. Here we tabulate some of the signs in important
equations.
First, we will never use curved-space backgrounds, so the metric g,,,, and the Minkowski
metric p*¥ are interchangeable. The metric we use has sign convention
1
L s =i
g =t = o ; (A.17)
—1

This convention makes p? = p¢ — p? = m? > 0. The alternative, g = diag(—1,1,1,1),

makes p? < 0.

The signs of kinetic terms in Lagrangians are set so that the total energy is positive
(see Sections 8.2 and 12.5). It is easiest to remember the signs by writing the Lagrangian
as L = Lo — V, where V is the potential energy, which should be positive in a stable
system. For example, for a scalar field, the mass term $m?¢? should give positive energy,
soV = %mz(]&z and £ = —%mzqﬁz. The kinetic term sign can then be recalled from
pf == —O‘E in Fourier space and p® = m? on-shell, so that the equations of motion
should be [D + mz)qb = 0. Therefore, we have

L= —38(0+m?)p = 2(0,8)(349) — ym’” (A18)

The factor of % makes the kinetic term contribute (D + mz) ¢ to the equations of motion
(instead of 2(EI 4 mz) ¢). For a complex scalar, the Lagrangian is

L =—¢"([0+m?)¢ =(8"¢")(0ud) — m*¢*¢ (A.19)

without the %, since now variation with respect to ¢ will give (D +- mz) Q.
For gauge bosons, the Lagrangian is

1 il 1 1
L= —Fp, = 50,400, A, + 50,48, Ay = SADA, — S4,(9,8,) Au, (A20)

1
el
where I, = d,A, — 8,A,. In this equation and many others we employ the modern
summation convention under which contracted indices can be raised or lowered with-
out ambiguity: = - p = x¥p, = z,p" = x,p,. All of these contractions are equal to
g"zup, = guex*p”. The sign and normalization of the —% factor in Eq. (A.20) can be
understood as follows. In Lorenz gauge d,, 4, = 0 the Lagrangian is just £ = %A,,DA,, =
%—AODAO — %ﬂl:lfl' This gives the three spatial components A, which actually contain the
propagating transverse degrees of freedom, the same kinetic terms as for scalars. (That the
scalar component Ay with the wrong sign is not problematic is explained in Section 8.2.)
Dirac fermions are normalized so that

L=9(id — ek —m), (A.21)
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where @ = "0, and A = 7#A,. As in the scalar case, the —map is fixed so that the
corresponding energy density is positive.
The covariant derivative in a non-Abelian gauge theory is

D, =8, —igTEA, (A22)

with T'% the generators in the appropriate representation. Normalization conventions for
these generators are discussed in Section 25.1. We write tr for a sum over group genera-
tors or a sum over states, while Tr is used exclusively to denote a Dirac trace. For QED,

u = 0, —ieQA,, where e is the strength of the electromagnetic force (e = 0.303 in
dimensionless units) and () is a particle’s electric charge (its U(1) quantum number). The
electron is defined to have @@ = —1, which leads to

,u,'l,bc = ( Tian EEAH)wP (A.23)

We use this simple form of the covariant derivative throughout Parts IT and 1IL
The Feynman propagators in our conventions are

" te 1
OT (BN = [ e (A24)

for a real scalar and

,uv

P =i~ L

P2+ e

i T
(0]T{A,(z)Au(y)}|0) = / ek (A.25)
J (em)
for a massless spin-1 field in covariant gauges. The —i in the photon propagator versus the
+i in the scalar propagator is the same sign difference as in £ = —f¢D¢ + lA OA,.
The Dirac fermion propagator is

‘lp —ipa—y) T oie—u) P
OIT ()9 ) }10) = 2m)* e J)P*m—l—za (2m)* : p? —m? +ie
(A.26)

It is conventional to write 1(x)h(y) = ¥(z)at(¥)s instead of (z)2b(y) so one is not
tempted to mistake the spinors as being contracted. 1(z)i(y) is a matrix in spinor space,
just as 707 is a matrix.

When we expand fields in terms of creation and annihilation operators, we write for a
single real scalar field

d*p 1
(2m)3 /2w,
where w;, = \/m . Including the free-field time dependence and generalizing to the
complex case, this becomes

olx) = [(zp(t)eiﬁ + (Lg(t)e—iﬁf] | (A.27)

d3p 1 —ipw t T
qﬁ(w):/ 2 o (age ™ L ble?], (A.28)
P

-8

(BL6"* L-hye ™). (A29)

So s a
@ (7)*/ (277)3\/2_@

A.4 Dirac algebra

Similarly, we take

d3p 1 8,8 ,—ipL q'p 5 'rp:a,
w(z) = Z @?T( plipe ¢ + by P (A.30)
Z / @ o\ fage™ + bpope ™). (A.31)

The sign of the phases follows from a(t) = e~*!a(0) for annihilation operators by
Heisenberg’s equations of motion in any simple harmonic oscillator.

A.3 Feynman rules

The conventions for the Feynman rules follow from the sign conventions above. How the
rules are derived is described in Chapter 7. The Feynman rules for various theories covered
in the text are given in the appropriate chapter.

For scalar QED, the Feynman rules can be found in Section 9.2, for QED in Section 13.1,
for QCD in Section 26.1, for the electroweak theory in Section 29.1, for background fields
in Section 34.3.2 and for heavy-quark effective theory in Section 35.2. The notation for
various symbols appearing in diagrams throughout the book is shown in Table A.1.

Meaning Symbol ~ Meaning
generic particle e 'f'ermion_
e - scalar _ = charged scalar
'vvvwvw : photon or Z boson s00000Pooaons ghost
Q0000000  gluon A W boson
W\, - ~ graviton —_—— heavy quark
t”— ‘background field * . counterterm
® _ operator or current : geﬁeric amplitude
all one-particle irreducible / alternative generic amplitude
i : contributions “ :

]
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A.4 Dirac algebra

The Dirac matrices satsity {7, "} = 2¢"". We define

Tl 0 0 G (A.32)

which leads to {75, 'y“} = (0. We also define

o = S, 7]- (A33)
Some useful identities are
9" g = 4, (A.34)
Vg =4, (A35)
o= =207, (A.36)
Ty vy = 49*7, (A.37)
YA APy = =297 yPH". (A.38)
Some useful trace identities are
Tr[vs] = Tr[y*] = Tr[y*y*4*] = Trodd # of y-matrices] = 0, (A.39)
and
Do =udght, (A.40)
Te[yy P o] = 4(g* g% — g™ g™ + ¢**¢*7), (A41)
Tr [yt ?| = —digh P, (A42)

The projectors are
I—7s L+7s
= = P p— 3
s L 9 3 R 9
so that left-handed fields satisfy vz, = —1), and right-handed fields satisfy v51'r = ¥r-
A Dirac spinor in the (,0) @ (0, §) representation is written with the left-handed spinor

(A.43)

on top:
o :( VL ) . (A4d)
¥R
Spinor sums are, for particles,
2
Z us(p)ls(p) = p+m (A.45)
g=1

and for antiparticles,
2
Z Vs (p)0s(p) = p — m. (A.46)

s5=1

Problems

Also,
o (D)7 Uor (D) = 205510* (A.A4T)

is occasionally useful. Left- and right-handed photon polarizations (circularly polarized
light) are

1 1
ef = —(0,1,—4,0), € =—(0,1,4,0). A48
L \/E( ’ ) R \/E( 1 ) ( )
These polarization vectors are consistent with Eq. (A.43) and the representations of the

Lorentz group discussed in Chapter 17.
Some other useful identities are

=D 4 SFWUW (A.49)
and
(0w F*™)? = 2F2, + 2insF B, (A.50)
where
T — % vl o (A.51)
Problems

A.1 Dimensional analysis.
(a) A photon coupled to a complex scalar field in d dimensions has action

1
§= / 4 {431, — ¢*0¢ + gA, P Oud+ AP + - |, (A.52)

where F,, = (0, 4,—0,A,) and O = 8#8,, as always, butnow y = 0,1,--- ,d—1.

What are the mass dimensions of A,,, ¢, g and X (as functions of d)?

(b) An interaction is said to be renormalizable if its coupling constant is dimension-
less. In what dimension d is the electromagnetic interaction renormalizable? How
about the ¢? interaction?




