Chapter 3
Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equationis the partial differential equation, derived
by Korteweg and de Vries [14] to describe wedly norlinea shallow water waves.
The nondmensionalized version o the equationreads
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whereu=u(x, t). Thefador of 6isconvenient for reasons of completeintegrability,
but can easily be scded ou if desired. Equation (3.1) was foundto have solitary
wave solutions, vindicating the observations of a solitary channel wave made by
Rusll [20].

3.1 Traveling wave solution

We aelookingfor aright traveling wave solution o the form [24]
U(€) == u(x—ct),

suchasu— 0, us — Oanduggs — 0 as& — F-oo. Subdtitutioninto Eq. (3.1) leadsto
the ODE
Usgs +6UUs —Cug = 0.

Anintegrationwith resped to & yields
Uge = —3U%+cu+cy,

where ¢; isa congtant of integration. Sinceu — 0, ug — Oandugs — 0asé — +oo,
c1 = 0. A seoondintegration yields
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where c, = const = 0. That is, the last equation can be written as
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which can be integrated, yielding

c 1
u(E) = oot ( 5 Vel &) ).
where &y is an arbitrary constant. In (x,t) coordinates the traveling wave solution
reads 1

u(x, t) = gsechz(é \/E(x—xo—ct)). (3.2)
Equation (3.2) describes the locdized traveling wave solution with a negative am-
plitude (seeFig. 3.1 (a)), which is cdled a soliton. The term soliton was first intro-
duced by Zabusky and Kruskal [28], who studied Eq. (3.1) with periodic boundiry
condtions numericdly. They found[28, 24, 15] that initial condtion dof the form
u(x, 0) = cos(2mx/L), x € [0, L] brokeupinto atrain of solitary waves with succes-
sively large amplitude. Moreover the solitons ssemsto be dmost unaff eded in shape
by passng throughead cther (thoughthis could cause a dange in their position).
An example of two-soliton solutionis shown onFig. 3.1 (b).
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Fig. 3.1 Solitary solutions of KdV eguation (3.1). (a)A single-soliton solution (3.2) for ¢ = 5,
cdculated for t = 0 and xp = —2. (b) Two-soliton solution.



3.2 Numerical treatment

Consider the KdV Eg. (3.1) ontheinterval x € [—r, 1] with the initial condtionin
form of the superpasition o two solitonswith velocitiesc; andc;
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and periodic boundiry condtions [25]. Notice that Eq. (3.1) is giff. The stiffness
results from the term uxy and appeas as rapid linea oscill ation o the heigh-
wavenumber modes. Our god is to constrad the numericd solution of Eq. (3.1)
using the method d integratig fadors (seeAppendix D). To this aim we rewrite the
KdV equation (3.1) as
U + 3(UP), + oo = 0,
with Fourier transform
0 +3ikZ[u? —ik3G=0.
Now we multi ply by the integrating factor et and ottain
e 1Kt + 3ike Lz —ikPe Kt a=0.
Defining
U =e¥tg

thelast relationis equivalent to
Ui +1k30 + 3ike ¥t 212 — k30 =0,

i.e,
G + 3ike L2 [u3 = 0.

That is, in Fourier spacewe can rewrite the KdV equation (3.1) as
Ui+ 3ike ¥t .7 [(yl(é“”to))z} —0. (33)

Now, thetime-intergation of the resulting equation can be dore by, e.g., the standart
RK4 method The result of the cdculationis shown onFig. The ssimulation uses 256
grid pantsandis de-aiased usingthe usua 2/3 rule. One can see the solitons pass
throughead other as expeded with orly a change in phase.



Fig. 3.2 Numericd solution
of the KdV equation (3.1)
ontheinterva x € [, 1]
within IFM scheme, com-
bined with the standart RK
method The initial condtion
isasuperposition d two soli-
tons with velocities ¢z = 25
and ¢3 = 16. The solitons
passthrougheat other as
expeded with only a change
in phase




