
Chapter 3
Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation is the partial differential equation, derived
by Korteweg and de Vries [14] to describe weakly nonlinear shallow water waves.
Thenondimensionalized version of the equationreads

∂u
∂ t

+6u
∂u
∂x

+
∂ 3u
∂x3 = 0, (3.1)

whereu = u(x, t). Thefactor of 6 isconvenient for reasonsof completeintegrabilit y,
but can easily be scaled out if desired. Equation (3.1) was foundto have solitary
wave solutions, vindicating the observations of a solitary channel wave made by
Russell [20].

3.1 Traveling wave solution

We are lookingfor a right travelingwavesolution of the form [24]

u(ξ ) := u(x− ct) ,

such asu → 0, uξ → 0 anduξ ξ → 0 asξ →±∞. Substitution into Eq. (3.1) leadsto
theODE

uξ ξ ξ +6uuξ − cuξ = 0.

An integrationwith respect to ξ yields

uξ ξ = −3u2 + cu + c1,

wherec1 isa constant of integration. Sinceu → 0, uξ → 0 anduξ ξ → 0 asξ →±∞,
c1 = 0. A secondintegration yields
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wherec2 = const = 0. That is, the last equationcan bewritten as

d ξ =
d u

u
√

c−2u
,

which can be integrated, yielding

u(ξ ) =
c
2

sech2
(

1
2

√
c(ξ − ξ0)

)

,

where ξ0 is an arbitrary constant. In (x, t) coordinates the traveling wave solution
reads

u(x, t) =
c
2

sech2
(

1
2

√
c(x− x0− ct)

)

. (3.2)

Equation (3.2) describes the localized traveling wave solution with a negative am-
plitude (seeFig. 3.1 (a)), which is called a soliton. The term soliton was first intro-
duced by Zabusky and Kruskal [28], who studied Eq. (3.1) with periodic boundary
conditions numerically. They found[28, 24, 15] that initial condition of the form
u(x, 0) = cos(2π x/L), x ∈ [0, L] brokeupinto atrain of solitary waveswith succes-
sively large amplitude. Moreover thesolitons seemsto be almost unaffected in shape
by passing througheach other (thoughthis could cause a change in their position).
An exampleof two-solitonsolution is shown onFig. 3.1 (b).
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Fig. 3.1 Solitary solutions of KdV equation (3.1). (a)A single-soliton solution (3.2) for c = 5,
calculated for t = 0 and x0 = −2. (b) Two-soliton solution.



3.2 Numerical treatment

Consider the KdV Eq. (3.1) on the interval x ∈ [−π , π ] with the initial condition in
form of thesuperposition of two solitonswith velocitiesc1 andc2

u(x,0) =
c2
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c1 (x +2)

2

)

+
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2

)

,

and periodic boundary conditions [25]. Notice that Eq. (3.1) is stiff . The stiffness
results from the term uxxx and appears as rapid linear oscill ation of the heigh-
wavenumber modes. Our goal is to constract the numerical solution of Eq. (3.1)
using themethod of integratig factors (seeAppendix D). To thisaim we rewrite the
KdV equation(3.1) as

ut +3
(

u2)

x + uxxx = 0,

with Fourier transform
ût +3ikF [u2]− ik3 û = 0.

Now we multiply by the integrating factor e−i k3 t and obtain

e−i k3 t ût +3ik e−i k3 t
F [u2]− ik3e−i k3 t û = 0.

Defining

Û = e−i k3 t û

the last relation isequivalent to

Ût + ik3Û +3ik e−i k3 t
F [u2]− ik3Û = 0,

i.e.,
Ût +3ik e−i k3 t

F [u2] = 0.

That is, in Fourier spacewe can rewrite theKdV equation(3.1) as

Ût +3ik e−i k3t
F

[

(

F
−1(ei k3 t Û)

)2
]

= 0. (3.3)

Now, thetime-intergation of theresultingequationcan bedoneby, e.g., thestandart
RK4 method. Theresult of the calculationis shown onFig. Thesimulation uses256
grid pointsand isde-aliased using theusual 2/3 rule. One can see, thesolitonspass
througheach other asexpected with only a change in phase.



Fig. 3.2 Numerical solution
of the KdV equation (3.1)
on the interval x ∈ [−π , π ]
within IFM scheme, com-
bined with the standart RK
method. The initial condition
is asuperposition of two soli -
tons with velocities c2

1 = 25
and c2

2 = 16. The solitons
pass through each other as
expected with only a change
in phase
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