
Chapter 5
The Ginzburg-Landau Equation

Ginzburg-Landauequationshavebeen used to model awidevariety of physical sys-
tems (see, e.g., [1]). In the context of pattern formation the real Ginzburg-Landau
equation (RGLE) was first derived as long-wave amplitude equation in the con-
nection with convection in binary mixtures near the onset of instabilit y [44], [50].
The complex Ginzburg-Landau equation (CGLE) was first derived in the studies of
Poiseuill eflow [53] andreaction-diffusionsystems [26].
Let usconsider the conditionsunder which the real and complex Ginzburg-Landau
equationsarise. For simplicity we restrict attention to one spatial dimension. How-
ever, the results can be easily generalised to two- and three-dimensional cases.

5.1 The Real Ginzburg-Landau Equation

Let usconsider a system

∂tu = N (σ)u, u = u(x,t) (5.1)

with a nonlinear operator N , depending on some control parameter σ . Suppose
that the system (5.1) admits a homogeneous solution u = u0 and (5.1) undergoes
a finite-wavelength instabilit y as σ is varied, e.g., becomes positive. That is, if we
consider evolution of theFourier mode exp(ikx+λ t) thegrowthrateRe(λ ) behaves
as follows: for σ < 0 all modes are decaying (Re(λ ) < 0) and the homogeneous
solutionu0 is stable. For σ = 0, a critical wavenumber kc gainsneutral stabilit y and
for σ > 0 there is a narrow band of wavenumbers aroundkc where the growthrate
Re(λ ) is positive. Let us also assume that the instabilit y we are interested in is
supercritical, i.e., the nonlinearities saturate so that the resulting patternsabovethe
threshold (for σ ≪ 1) havesmall amplitude andawavelength close to 2π/kc.

If I m(λ ) = 0 theunstablemodesaregrowingin timefor positivevaluesof σ but
each modeis stationary in space. Thus, closeto threshold, thedynamicsof (5.1) can
bewritten as
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u = u0 + A(x,t)eikcx + A∗(x,t)e−ikcx + h.o.t. ,

where A(x,t) denotes the complex amplitude. Then, to lowest order in σ , and after
rescaling, the amplitudeA obeys the real Ginzburg-Landau equation (RGLE):

∂A
∂ t

=
∂ 2A
∂x2 + σA−|A|2A . (5.2)

With an additional rescaling

x 7→ σ−1/2x, t 7→ σ−1x, A 7→ σ1/2A,

the control parameter σ can bescaled out from Eq. (5.2), i.e.,

∂A
∂ t

=
∂ 2A
∂x2 + A−|A|2A . (5.3)

Noticethat Eq. (5.3) arises naturally near any stationary supercritical bifurcation if
the system (5.1) features translational invariance and is reflection symmetric (x 7→
−x). Translational invariance, e.g., implies that (5.3) has to be invariant under A 7→
Aeiφ . Notice also that Eq. (5.3) can berewritten in the form

∂A
∂ t

= −
δV
δA∗

, V =

∫
dx

(∣∣∣∣
∂A
∂x

∣∣∣∣
2

−|A|2+
1
2
|A|4

)
,

and thus, V plays role of a Lyapunovfunctional (dV/dt < 0). The next point to
emphasizeis that Eq. (5.3) possessesa stationary phase winding solution

A = a0eiqx , q2 = 1−a2
0,

describingsteady state periodic patternswith wave number slightly smaller (q < 0)
or sligtly bigger (q > 0) than the critical wavenumber kc.

5.2 The Complex Ginzburg-Landau Equation

Now let us consider the case Im(λ ) := ωc 6= 0, so each mode corresponds to a
travelli ngwave. In this casewe can write thesolution of (5.1) as

u = u0 + A(x,t)eikcx+iωct + A∗(x,t)e−ikcx−iωct + h.o.t. ,

and, after rescaling, the equationfor the complex amplitudeA reads

∂A
∂ t

= (1+ iα)
∂ 2A
∂x2 + A− (1+ iβ )|A|2A , (5.4)



whereα andβ areparameters. Thisequationisreferred to as the complex Ginzburg-
Landau Equation (CGLE). Noticethat theRGLE (5.3) is simply aspecial caseof the
CGLE (5.4) with α = β = 0. Notice also, that in the limit case α, β → ∞ Eq. (5.4)
reduces to the Nonlinear Schrödinger Equation, which possess, for instance, well -
known solitonsolutions[1].

5.2.1 Plane waves and their stability

Thesimplest solutionsof CGLE areplanewavesolutions, which take the form

A = a0 eiqx+iωt , (5.5)

where
a2

0 = 1−q2, ω = −α q2−β a2
0 .

The expression for ω ill ustrates that the coefficient α and β mesure linear (the
dependenceof the wave’s frequency on thewavenumber) and nonlinear dispersion,
respectively. In order to investigate the stabilit y of (5.5) we seek the solution in the
form

A =

(
a0 + ã+eikx+λ t + ã−e−ikx+λ ∗t

)
eiqx+iωt ,

where ã± denote the amplitudesof thesmall peturbations. After substitution of this
expression into (5.4) one can find an equation for the growth rate λ . By expanding
thisequationfor small k (the long-wavelength limit) oneobtains [1]

λ = −2iq(α −β )k−

[
1+ αβ −

2q2(1+ β 2)

a2
0

]
k2 +O(k3) . (5.6)

Thus, travelli ngwaves solutionsare long-wavestable as longas the condition

1+ αβ −
2q2(1+ β 2)

a2
0

> 0

holds. That is to say that onehasastable rangeof wavevectorswith

q2 <
1+ αβ

2β 2+ αβ +3
,

includingthebandcentre(q = 0) state aslongastheso-calledBenjamin-Feir-Newell
criterion

1+ αβ > 0 (5.7)

holds. Notice that the Benjamin-Feir instabilit y criterion is a generalisation of the
Eckhaus instability seeSec. 4.6.2.2 of the Chapter 4. For example, for α = β , the
stabilit y conditionreducesto thewell -known Eckhausconditionq2 < 1/3. Thenext



point to emphasizeis that for α 6= β andq 6= 0 thedestabili zingmodeshave agroup
velocity vg = 2q(α −β ), i.e., the instabilit y isof a convectivenature.

5.2.1.1 Plane waves: Numerical Treatment

Our goal is to solve Eq. (5.4) by meansof pseudospectral methodand ETD2 expo-
nential time-stepping (D.6) (seeAppendix D.1). According to the notations, intro-
duced in Appendix D.1, Eq. (5.4) in theFourier spacebecomes

dÂ
dt

= (1− k2(1+ iα))︸ ︷︷ ︸
q

Â−F [(1+ iβ )|A|2A]︸ ︷︷ ︸
N

, (5.8)

i.e., scheme(D.6) can be applied:

Ân+1 = Âneqh +Nn
(1+ hq)eqh−1−2hq

hq2 +Nn−1
−eqh +1+ hq

hq2 . (5.9)

We start from thesimulation of theplanewaves. Let uschooseparametersα and β
such that there exists a stable range of wavenumbers and then simulate the CGLE
with an initial condition of small noiseof order 0.01about A = 0. Other parameters
are

Constants (α, β ) = (1,2)
Domain size L=100
Timestep h = 0.05
Number of grid points N = 512

Selection of a plane wave can be seen on Fig. 5.1. One can see that |A| quickly

(a) (b) (c)

Fig. 5.1 Space-time plotsof (a) Re(A), (b) Im(A) and (c) |A| for the case (α , β ) = (1, 2).

convergesto anon-zero constant value.
In order to simulatetheBenjamin-Feir instabilit y let usconsider thesameparameter
spacebut usinga linearly unstableplanewave asan initial condition:



Constants (α, β ) = (1,2)
Domain size L=100
Timestep h = 0.05
Number of grid points N = 512

Initial condition A(x,0) =

√
1−

(20π
L

)2
exp(i 20π

L x)+noise

The result is presented onFig. 5.2 In can be seen that a new plane wave is selected

(a) (b) (c)

Fig. 5.2 Space-time plots of (a) Re(A), (b) Im(A) and (c) |A| in the case of the Benjamin-Feir
instabilit y.

with wavenumber lyinginsidetheband of stabilit y. Theprocessof selectingthenew
planewavegives rise to ’defects’ or phase singularities (pointswhereA = 0).

5.2.2 Spatiotemporal chaos

Now let us discussbehaviour of the solutions of the one-dimensional CGLE (5.4)
when the Benjamin-Feir-Newell criterion (5.7) is violated. In this region of the pa-
rameter space(α, β ) several different forms of spatio-temporal chaotic or disor-
dered states have been found[2, 19]. In particular beyond the BF instabilit y line
Eq. (5.4) exhibits so-called phase turbulence regime (seeFig. 5.3), which can be
described bya phase equation of the Kuramoto-Sivashinsky type [1, 19]. Ascan be
seen on Fig. 5.3 (b), in this spato-temporally chaotic state |A| never reaches zero
and remains saturated, so the global phase differencebecomes the constant of the
motionand isconserved. Moreover, Eq. (5.4) exhibits spatio-temporally disordered
regime called amplitude or defect turbulence. Thebehaviour in thisregionischarac-
terised by defects, where |A| = 0 (seeFig. 5.4) Apart from spatio-temporal chaotic
behaviour discribed above aso-called bichaos region can be found[19]. In this re-
gion, depending ontheinitial conditions, either defect-mediated turbulenceor phase
turbulence can be indicated.
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Fig. 5.3 Phase turbulenceregime observed for (α , β ) = (2, −1). (a) Space-time plot |A|. (b) The
final configuration of |A|. Other parameters: seetheTable below.

Constants (α , β ) = (2,−1)
Domain size L=200
Timestep h = 0.05
Number of grid points N = 512
Initial condition A(x,0) = 1.0+noise
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Fig. 5.4 Defect turbulenceregimeobserved for (α , β ) = (2, −2). (a) Space-time plot |A|. (b) The
final configuration of |A|. Other parameters: seetheTable below.

Constants (α , β ) = (2,−2)
Domain size L = 200
Timestep h = 0.05
Number of grid points N = 512
Initial condition A(x,0) = 1.0+noise



5.2.3 The intermittency regime

The linear stabilit y of the plane wave solution (5.7) does not exclude the existence
or coexistenceof theother non-trivial solutionsof (5.4). For example, theregimeof
spatio-temporal intermittency, where defect chaos coexists with stable plane wave
wasdiscussed in details in [19]. There, in order to avoid thestableplanewavesolu-
tion, initial conditionwascomposed of oneor several localised pulsesof amplitude.
After arather short transient, thetypical solutionconsist of localized structures, sep-
arating lager regionsof almost constant amplitudewhich arepatchesof stableplane
wave solutions (seeFig. 5.5). Figure 5.6 shows a more complicated intermittency
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Fig. 5.5 The intermittency regime observed for (α , β ) = (0.5, −1.5). (a) Space-time plot Re(A);
(b) Space-time plot |A|; (c) Thefinal configuration of |A|. Other parameters: seetheTable below.

Constants (α , β ) = (0.5,−1.5)
Domain size L = 200
Timestep h = 0.05
Number of grid points N = 512
Initial condition A(x,0) = sech((x+10)2)+0.8∗sech((x−30)2)+noise

scenario observed for (α, β ) = (0, −4). In thiscasethespatial extension of thesys-
tem is broken by irregular arrangementsof stationary hole- andshock-likeobjectes
separated by turbulent dynamics.

5.2.4 Coherent structures

Apart from plane waves, Eq. (5.4) provides a lager variety of so-called coherent
structures. Thesesolutionsare either localized or consist of domainsof regular pat-
ternsconnected by localized defectsor interfaces. One-dimensional coherent struc-
ture can bewritten in the form [56]

A(x,t) = a(x− vt) exp(iφ(x− vt)− iωt) . (5.10)
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Fig. 5.6 The intermittency regime observed for (α , β ) = (0, −4). (a) Space-time plot Re(A); (b)
Space-time plot |A|; (c) Thefinal configuration of |A|. Other parameters: seetheTable below.

Constants (α , β ) = (0, −4)
Domain size L = 200
Timestep h = 0.05
Number of grid points N = 512
Initial condition A(x,0) = sech((x+L/4)2)+0.8∗sech((x−L/4)2)+noise

After substitution of this equation into (5.4) lead to the system of threeordinary
differential equationswith respect to variables ( see[56]for moredetails)

q(ξ ) = ∂ξ φ , κ(ξ ) = ∂ξ a/a, ∂ξ a = ∂a/∂ξ ,

where ξ = x− vt. The resulting system of ODE’s can be discussed in terms of dy-
namical system in pseudo-time ξ with threedegrees of freedom. Accordingly to
the assymptotic states the localized coherent structues can be classified as fronts,
pulses, source (holes) and sinks (shoks). The best known exampleof sink solutions
are Bekki-Nozaki holes [3], ill ustrated on Fig. (5.7). These structures asymptoti-
cally connect planewavesof different amplitude andwavenumber andmake aone-
parameter family of solutionsof CGLE [37]. As can be seen onFig. 5.7 in the case
of several holes they areseparated byshoks [1].

5.2.5 The CGLE in 2D

The two-dimensional version of theCGLE reads

∂A
∂ t

= (1+ iα)△A + A− (1+ iβ)|A|2A , (5.11)

whereA isa complex field. Apart of two-dimensional analoguesof defect and phase
turbulence Eq. (5.11) has a variety of coherent structures [1, 20]. Among others
Eq. (5.11) possessestwo-dimensional cellular structuresknown as frosen states (see
Fig. (5.8)). They appear in the form of quasi-frosen arrangments of spiral defects
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Fig. 5.7 The moving hole-shock pair observed for (α , β ) = (0, 1.5). (a) Space-time plot Re(A);
(b) Space-time plot |A|; (c) Thefinal configuration of |A|. Other parameters: seetheTable below.

Constants (α , β ) = (0, 1.5)
Domain size L = 200
Timestep h = 0.05
Number of grid points N = 512
Initial condition A(x,0) = noise of the amplitude0.01

surrounded by shock lines. Note that |A| in this regime is stationary in time. For a
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Fig. 5.8 Two-dimensional cellular structures observed for (α , β ) = (0, 1.5). (a) Space-time plot
Re(A); (b) Space-time plot |A|. Other parameters: seetheTable below.

Constants (α , β ) = (0, 1.5)
Domain size L = [−100, 100]× [−100, 100]
Timestep h = 0.05
Number of grid points N = 256
Initial condition A(x,0) = noise of the amplitude0.01

completereview of thephasediagram for the two-dimensional CGLE see[20].


