Chapter 5
The Ginzburg-L andau Equation

Ginzburg-L andau equations have been used to model awide variety of physicd sys-
tems (seg e.g., [1]). In the context of pattern formation the real Ginzburg-Landau
equation (RGLE) was first derived as long-wave amplitude equation in the con-
nedion with convedionin binary mixtures nea the onset of instability [44], [50].
The complex Ginzburg-Landau equation (CGLE) was first derived in the studies of
Poiseuill e flow [53] and readion-diffusion systems[26].

Let us consider the condti ons under which the red and complex Ginzburg-Landau
equations arise. For simplicity we restrict attentionto one spatial dimension. How-
ever, the results can be eaily generali sed to two- and three-dimensional cases.

5.1 The Real Ginzburg-Landau Equation

Let us consider a system
gu= .4 (o)u, u=u(xt) (5.1)

with a norlinea operator .4, depending onsome antrol parameter 0. Suppcse
that the system (5.1) admits a homogeneous lution u = ug and (5.1) undergoes
a finite-wavelength instability as o is varied, e.g., becmes positive. That is, if we
consider evolution o the Fourier mode exp(ikx+ At) the growthrate Re(A ) behaves
as follows: for o < 0 al modes are decging (Re(A) < 0) and the homogeneous
solutionug is gable. For o = 0, a aiticd wavenumber k; gains neutral stability and
for o > 0 thereis a narrow band o wavenumbers aroundk; where the growthrate
Re(A) is positive. Let us also asaume that the instability we ae interested in is
supercritical, i.e., the norlineaiti es sturate so that the resulting petterns above the
threshald (for o <« 1) have small amplitude and awavelength close to 2m/ke.

If Im(A) = 0 the unstable modes are growingin timefor positive values of o but
eat modeis dationary in space Thus, closeto threshold, the dynamicsof (5.1) can
be written as
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u=Up+A(x,t) ek + A*(x,t)e ** +hot.,

where A(x,t) denotes the complex amplitude. Then, to lowest order in o, and after
rescding, the amplitude A obeysthe real Ginzburg-Landau equation (RGLE):
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With an additional rescding
X— 0 V2% teox, A ol?A

the control parameter o can be scded ou from Eq. (5.2), i.e.,

oA 09°A
St =g TA- |AIPA. (5.3)

Noticethat Eq. (5.3) arises naturally nea any stationary supercriticd bifurcaionif
the system (5.1) feaures trandational invariance and is refledion symmetric (x —
—X). Trandational invariance, e.g., impliesthat (5.3) hasto be invariant under A —
Ae®. Notice dso that Eq. (5.3) can be rewritten in the form

BBy fa(|2

2 ) 1
oa__ v AP+ S |A
o~ oA X ||+2||)’

and thus, V plays role of a Lyapunovfunctional (dV/dt < 0). The next paint to
emphasizeisthat Eq. (5.3) posesss a stationary phase winding solution

A:aoein, qzzl_a(%a

describing stealy state periodic patterns with wave number slightly smaller (q < 0)
or digtly bigger (g > 0) than the aiticd wave number k.

5.2 The Complex Ginzburg-Landau Equation

Now let us consider the cae Im(A) ;= w; # 0, so ead mode wrresponds to a
travellingwave. In this case we can write the solution o (5.1) as

U= Up+ A(x,t) kit L ax(x t)g kXt L hot

and, after rescding, the equationfor the complex amplitude A reads

oA L . )
i (1+IG)W +A—(1+iB)|AI“A|, (5.4)




where a and 3 are parameters. Thisequationisreferred to asthe complex Ginzburg-
Landau Equation (CGLE). Noticethat the RGLE (5.3) is Smply aspedal case of the
CGLE (5.4) with a = 3 = 0. Notice dso, that in the limit case a, B — o Eq. (5.4)
reduces to the Nonlinea Schrodinger Equation, which possess for instance, well -
known soliton solutions[1].

5.2.1 Plane waves and their stability

The simplest solutions of CGLE are plane wave solutions, which take the form
A= agge®Ht (5.5)
where
B=1-0*, w=-ag’-pa.

The expresson for w ill ustrates that the mefficient a and 3 mesure linea (the
dependenceof the wave's frequency on the wavenumber) and norlinea dispersion,
respedively. In order to investigate the stability of (5.5) we seek the solutionin the
form

A— (ao + 5+8ikx+/\t T ieikx+)\*t) ot
where &, denote the amplitudes of the small peturbations. After substitution o this

expressoninto (5.4) one can find an equation for the growth rate A. By expanding
this equationfor small k (the long-wavelength limit) one obtains[1]

2 2
2 = —2iqa — B)k— [1+ aﬁ%} KR+ 0(8). (5.6)
Thus, travelling waves lutions are long-wave stable @ longasthe condtion
1+ 8%

2
1+a[372q (ag

holds. That isto say that one has a stable range of wave vedorswith

>0

> 1+ap

=27 ap+ 3

includingthe band centre (g = 0) state aslongasthe so-cdl ed Benjamin-Feir-Newell
criterion

1+aB>0 (5.7)

holds. Notice that the Benjamin-Feir instability criterion is a generaisation o the
Eckhaus instability see Sec 4.6.2.2 of the Chapter 4. For example, for a = (3, the
stability condtionreducesto the well-known Eckhaus condtiong? < 1/3. The next



point to emphasizeisthat for a # B andq # 0 the destabili zing modes have agroup
velocity vg = 2q(a — B), i.e., theinstability is of a cnvedive nature.

5.2.1.1 Planewaves. Numerical Treatment

Our goal isto solve Eq. (5.4) by means of pseudospedral methodand ETD2 expo-
nentia time-stepping (D.6) (see Appendix D.1). According to the notations, intro-
duced in Appendix D.1, Eq. (5.4) in the Fourier spacebeames

?T? = (L-K(1+ia) A~ Z[(1+iB)APA], (5.8)

q N

i.e., scheme (D.6) can be gpplied:
1+hg)ed—1—2h —eM+1+h
( il g +%,172(1. (5.9)

~ _ N

We start from the simulation o the plane waves. Let us choose parameters a and 3
such that there exists a stable range of wavenumbers and then simulate the CGLE
with aninitial condtion o small noise of order 0.01 about A = 0. Other parameters
are

Const ant s (a,B)=(1,2)
Domai n si ze L=100
Ti mest ep h=0.05

Nurmber of grid points|N=512
Seledion o a plane wave can be seen on Fig. 5.1. One ca seethat |A| quickly
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Fig. 5.1 Spacetime plots of (a) Re(A), (b) Im(A) and (c) |A| for the cae (a, ) = (1, 2).

convergesto anon-zero constant value.
In order to simulate the Benjamin-Feir instabilit y let us consider the same parameter
spacebut using alinealy unstable plane wave as aninitial condtion:



Const ant s (a,B)=(1,2)

Domai n si ze L=100

Ti mestep h=0.05

Nurmber of grid points|N=512

Initial condition A(X,0) = 1/1— (227) exp(i227x) + noise

Theresult is presented onFig. 5.2 In can be seen that a new plane wave is &leded
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Fig. 5.2 Spacetime plots of (8) Re(A), (b) Im(A) and (c) |A| in the case of the Benjamin-Feir
instability.

with wavenumber lyinginsidethe band o stability. The processof seledingthe new
plane wave givesrise to 'defects’ or phase singularities (pointswhere A = 0).

5.2.2 Spatiotemporal chaos

Now let us discussbehaviour of the solutions of the one-dimensional CGLE (5.4)
when the Benjamin-Feir-Newell criterion (5.7) is violated. In thisregion o the pa
rameter space(a, 3) severa different forms of spatio-temporal chaotic or disor-
dered states have been found[2, 19]. In particular beyond the BF instability line
Eqg. (5.4) exhibits o-cdled phase turbulence regime (seeFig. 5.3), which can be
described by a phase equation o the Kuramoto-Sivashinsky type[1, 19]. Ascan be
see onFig. 5.3 (b), in this gato-temporally chactic state |A| never reades zero
and remains sturated, so the global phase diff erence beaomes the mnstant of the
motionandis conserved. Moreover, Eg. (5.4) exhibits gatio-temporally disordered
regime cdl ed amplitude or defect turbulence. The behaviour in thisregionis charac
terised by defeds, where |A| = O (seeFig. 5.4) Apart from spatio-temporal chaotic
behaviour discribed above aso-cdled bichaos region can be found[19]. In this re-
gion, depending ontheinitial condtions, either defed-mediated turbulenceor phase
turbulence can be indicaed.
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Fig. 5.3 Phase turbulence regime observed for (a, B) = (2, —1). (8) Spacetime plot |A|. (b) The
final configuration o |A|. Other parameters: seethe Table below.

Const ant s (a,B)=(2,-1)

Domai n si ze L=200

Ti nest ep h=0.05

Number of grid points||N=512

Initial condition A(x,0) = 1.0+ noise
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Fig. 5.4 Defed turbulenceregime observed for (a, ) = (2, —2). () Spacetime plot |A|. (b) The
final configuration o |A|. Other parameters: seethe Table below.

Const ant s (a,B)=(2,-2)
Donmi n si ze L =200
Ti nest ep h=0.05

Nunmber of grid points||N=512
Initial condition A(x,0) = 1.0+ noise



5.2.3 Theintermittency regime

The linea stability of the plane wave solution (5.7) does not exclude the existence
or coexistenceof the other nonttrivia solutions of (5.4). For example, the regime of
spatio-temporal i ntermittency, where defed chaos coexists with stable plane wave
was discussed in detail sin[19]. There, in order to avoid the stable plane wave solu-
tion, initial condtionwas composed of one or several |ocdised puses of amplitude.
After arather short transient, thetypicd solutionconsist of locdized structures, sep-
arating lager regions of almost constant amplit ude which are patches of stable plane
wave solutions (seeFig. 5.5). Figure 5.6 shows a more complicated intermittency
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Fig. 5.5 The intermittency regime observed for (a, B) = (0.5, —1.5). (a) Spacetime plot Re(A);
(b) Spacetime plot |A|; (c) Thefinal configuration of |A|. Other parameters: seethe Table below.

Const ant s (a,B)=(0.5,-15)

Domai n si ze L =200

Ti mest ep h=0.05

Nunber of grid points||N=512

Initial condition A(x,0) = secdh((x+ 10)?) 4- 0.8+ sech((x— 30)?) + naise

scenario observed for (a, B) = (0, —4). Inthis case the spatial extension o the sys-
tem is broken by irregular arrangements of stationary hole- and shock-like objedes
separated by turbulent dynamics.

5.2.4 Coherent structures

Apart from plane waves, Eq. (5.4) provides a lager variety of so-cdled coherent
structures. These solutions are ather locdized or consist of domains of regular pat-
terns conneded by locdized defeds or interfaces. One-dimensional coherent struc-
ture can be written in the form [56]

A(x,t) =a(x—wt) exp(ip(x—wvt) —iwt). (5.10
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Fig. 5.6 The intermittency regime observed for (a, 3) = (0, —4). (a) Spacetime plot Re(A); (b)
Spacetime plot |A|; (c) Thefinal configuration o |A|. Other parameters: seethe Table below.

Const ant s (a,B)=(0,—-4)

Domai n si ze L =200

Ti nest ep h=0.05

Nunber of grid points||N=512

Initial condition A(x,0) = sedh((x+L/4)?) + 0.8+ sech((x— L/4)?) + noise

After subgtitution d this equation into (5.4) lea to the system of three ordinary
differential equations with resped to variables ( see[56]f or more detail s)

a(&) =@, k(&) =0sa/a, dga=da/d,

where & = x — vt. The resulting system of ODE’s can be discussed in terms of dy-
namicd system in pseudotime & with three degrees of freedom. Accordingly to
the asgymptotic states the locdized coherent structues can be dasdfied as fronts,
pulses, source (holes) and sinks (shoks). The best known example of sink solutions
are Bekki-Nozaki holes [3], illustrated on Fig. (5.7). These structures asymptoti-
cdly conned plane waves of diff erent amplitude and wavenumber and make aone-
parameter family of solutions of CGLE [37]. As can be seen onFig. 5.7 in the cae
of several holes they are separated by shoks[1].

525 TheCGLE in 2D

The two-dimensional version of the CGLE reals

oA
ot

where Aisa complex field. Apart of two-dimensional analogues of defed and phase
turbulence Eq. (5.11) has a variety of coherent structures [1, 20]. Among ahers
Eqg. (5.11) possesses two-dimensional cdlular structures known as frosen states (see
Fig. (5.8)). They appea in the form of quasi-frosen arrangments of spiral defeds

= (1+ia)AA+A— (1+iB)|APA, (5.11)
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Fig. 5.7 The moving hde-shock pair observed for (a, ) = (0, 1.5). (8) Spacetime plot Re(A);
(b) Spacetime plot |A[; (c) Thefinal configuration o |A|. Other parameters: seethe Table below.

Const ant s (a,B)=1(0,1.5)

Domai n si ze L =200

Ti nest ep h=0.05

Nunber of grid points||N=512

Initial condition A(x,0) = noise of the amplitude 0.01

surrounded by shock lines. Note that |A| in this regime is gationary in time. For a

Fig. 5.8 Two-dimensional celular structures observed for (a, 8) = (0, 1.5). (a) Spacetime plot
Re(A); (b) Spacetime plot |A|. Other parameters: seethe Table below.

Const ant s (a,B)=1(0,1.5)

Domai n si ze L =[-100,100 x [-100, 100

Ti nest ep h=0.05

Nunber of grid points||N=256

Initial condition A(x,0) = noise of the amplitude 0.01

complete review of the phase diagram for the two-dimensional CGLE see[2(Q].



