Appendix D
Exponential Time Differencing und I ntegrating
Factor Methods

We ae interested in the solution d norlinea evolution equation o the form
U = Zu+ .4 (u), (.1
u=uxt),xe Q CR",n=1,2,3andt € [0, T]. We dso supgy theinitial condtions
u(x,0) =up(x) inQ

and boundry condtions, i.e., periodic. The operators . and .4 denate linea and nori nea parts,
respedively.

Here we aoncentrate on time-discretization schemes with exact treament of the linear part for
solving the system of ODE's in question. That is, if the norlinea term of the equation is zero,
then the scheme reduces to the evalution o the exporentia function o the operator representing
the linea term. This approad is profitable if the arrespondng system of ODE's for the mode
amplitudes is tiff. Notice that in general, in spedra and pseudo-spedral smulations, the linear
terms are resporsible for the stiffnessof the set of ODE’s for the mode’s amplitudes. Indeed, if n
isthe order of the highest spatial derivative, the time scade, correspondng to the k'th mode, scdes
as 0(k—") for largek, that is, the highest modes evolve on short time scdes [6].

D.1 Exponential Time Differencing Methods (ETD)

In order to simplify the notation we replacethe linea operator . by ascdar g, i.e.,
U =qu+.4(u,t). (D.2)

First we multiply (D.2) by the integrating factor e~% and integrate the equation ower asingle time
step fromt =t, tot =ty + h and oltain the exact relation
th+h
(U(thr1)e™ ™ —u(ty) ) e ® = e %y (u,t)dt (D.3)
th

or, equivalently,

h
U(ths1) = U(ty)e™ 4 e / e T (Ut + T),ta + T)dT. (D.4)
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The diff erence between different ETD methods consist in diff erence gproximations to theintegral
in the eguation abowe.

The simplest approximation to the integral in (D.4) isthat ./ is constant betweent = t, and
t=th1:=th+h,ie,

N =M+ 0O(h),
where up = u(t,) and A5 = A (un, ty). Then Eq. (D.4) beaomes the scheme ET D1, given by
h _
Uns1 = Une™ + %%. (D.5)

Now let us consider the higher-order approximation o the form

N =%+r% +0(hP).
Then ore obtains the so-cdled scheme ETD2
1+hg)e — 1—2h —eM+1+h
Un+1 = Un€™ + .44 ( ) he? & +</Vn—1h7qzq~ (D.6)

Noticethat ETD schemes of arbitary order can also be derived [6]. Other passhility isto use ETD
schemes, combined with Runge-K utta methods [6] or so-cdled Integrating Fador Methods, briefly
discussed below.

D.2 Integrating Factor Methods (IFM)

The method d I ntegrating Fadors (IFM) is aso based ontheideathat the problem in question can
be transformed so that the linea part of the system is lved exadly. Integrating fador methods
are usualy obtained by rewriting (D.2) as [3, 6]

%(ue’q‘) =e % ¥ (u). (D.7)

and then applying atime-stepping scheme to this equetion.
For example, the forward Euler approximation reduces to

Unyp =€ <un + hJV(un)> (D.8)

In the same manner IFM can be embedded into diff erent Runge-Kutta schemata. We mention orly
RK2 (Heun-Method):

h
Uns1 = Upe® + 5 (%e“h+/((un+h%)eqh,t+h)) (D.9)

Other IFM schemata ae discussd in, e.g., [3, 6] in more detail s.



