Chapter 1
I ntroduction to Spectral Methods

1.1 Basic Concepts

Our starting pant is abasic question. Suppase we have an equationfor some veaor
functionu(x), x€ Q CR"
Lu=f, (1.1

with boundry condtions
PABu =0, X€0Q, (1.2

where . and % are some linea operator. How can we find the best approximation
of the unknawn function u? One of possble methods is based onthe wide dassof
discretization schemes known as method d weighted residuds (MWR). The ideaof
the methodis to approximate the unknavn function u(x) by a sum of so-cdled trial
or basisfunctions gh(x)

N
U(x) = Zoan%(x), (1.3

where a, are unknawn coefficients to be determined and the tilde denates an ap-
proximate solution of (1.1). If one substitute the gpproximation (1.3) into Eq. (1.1),
theresidud R can be cdculated as

R=_2U— f (1.4)

Due to the fad that U is diff erent from the exad solution u, the residual R does not
vanish for all x € Q. The next step is to determine unknowvn coefficients a, so that
the chosen functionapproximatesthe exad solutionin the best way. To thisend, test
or weighting functions xn(x), n=0,..., N are scleded so that the residual function
Risminimized, e.g., theweighted average of theresidual over the domain of interest
is ¢t to zero,

/Q)(n(x)Rdx:O, n=0,... N. (L5)



The various methods differ mainly in the choise of trial and test functions and their
minimization strategies[2, 1].

1.1.0.1 Variousnumerical methods

The chaice of the trial functions ¢n(x) is one of the key diff erence between finite-
element and finite-diff erencemethods on the one hand and spedra methods onthe
other hand. In the case of finite-element methodsthe domain Q isdivided into small
finite intervals and @y (x) aretypicdly choasen to be alocal polynomial of fixed de-
gree defined onthese sub-intervals only. The finite-diff erencemethods have alocd
charachter as well. Generally, the unknowvn function u(x) is approximated by a se-
quenceof overlapping pdynomiasof low order, interpolatingthe solutionat agiven
set of discretization pdntsandtherersult i srepresented in the form of weighted sum
of values of u(x) at theinterpolation pants. In contrast, the trial functionsfor spec
tral methods are globd smoath functions, e.g., Fourier or Chebyshev series. The
particular choice of the trial functionsis usualy conneded to the geometry of the
problem in question. For instance, on periodic intervals, the sines and cosines of a
Fourier series, which automaticdly satisfy boundiry condtions are used. For non
periodic problem, Chebyshev or L egendere polynomialsare morenatural choise[1].

1.1.0.2 Various minimization strategies

The dhoiceof thetest functions x,, distinguishes between the threemost commonly
used spedral schemes, namely

1. Galerkin method
Thetest functions xn(x) arethe same asthetria functionsand ead ¢h(x) satisfy
the boundry condtion 8@, = 0. Since @, = xn, forn=0,..., N, Eq. (1.5) is
equivalent to

N ,
/%RO@/%(XGHO@/%;&(@/ mf <
o o oL Ja

N .
L =/ |
kZo nkak .Q%

whereLp = [ ¢h-Z @. Solvingthe obtained linea system one can get all N+ 1
unknawvn coefficients ay.

2. Tau method The test functions x;, are the same &s the trial functions, but @, do
not nedd to satisfy (1.2). The boundxry condtions are enforced by an additional
set of equations. In order to find this s, let us consider an orthonamal basis
{4}, 1=0,...,M,whereM < N onthe d Q and expand @, uponit:



M
B = B .
2,5

Equation (1.2) then becomes

N M N
Pu=0< aBky =0« Bkax=0, 1=0,...,M.
2o 2

Theresultinglinea system of N + 1 equations consists of N — M first rows of the
Galerkin system, presented above, and M + 1 additional equations for boundary
condtions:

N
ankak:/th, n=0.. . N-M-1,
K=0 Q

N
ZB”(ak:O, |:O,...,M.
k=0

3. Collocation (pseudospedral) method The test functions are represented by a
delta functions at speda poaints x, cdled collocation pdnts, i.e., xn = 0(X—
Xn). In other words this approach reguires Eq. (1.1) to be satisfied exadly at the
collacdion pdnts x,. Then the condtion (1.5) reals:

/ XnR=0<« / O(X—X)R=0 < LX) = f(xn) &
Q Q

N

Zak,iﬂ@(xn):f(xn), n=0,...,N.

K=0
The boundary condtions can be impaosed as in the tau method

To sum up: Galerkin and tau methods are implemented in terms of the expansion
coefficients, whereasthe ooll ocationmethodisimplementedin termsof the physicd
spacevalues of the unknavn function.

1.2 Fourier and Chebyshev series

1.2.1 The Fourier System

A Fourier series is an expansion o a periodic functionin terms of an infinite sum
of sines and cosines. Consider a periodic integrable function f(x), x € [—m, r1]. The
numbers



T

an = 1/ f(t)cos(nt)dt, n>0,
nm/)-n
1 s

bnz—/ ft)sn(ntydt, n>1
m/-n

are cdled the Fourier coefficients of f. The Fourier series of the function f(x) is
given by

f(x) = %ao+ il(ancos(nx) +bnsin(nx)) .

If the function f(x) is periodic on some interval [—L, L], a simple change of vari-
ables
"
rr
can be used to transform the interval of integration. In this case the Fourier series
reed 1 ad nriX nriX
f(x) = an+nzl(ancos( 3 ) +bnsin( 3 ))

with

nrix’
L

L
b = %./{f()d)sm(@)d)(, n>1.

1/t
an:[./iLf(x’)cos( )dx’, n>0,

One of the main gquestionsisto dedde when Fourier series converge, and when the
sumis equal to the original function. If afunctionis square-integrable onthe inter-
val [, 11, then the Fourier series convergesto the function at almost evey point.
In particular, the Fourier series converges absolutely and uniformly to f(x) when-
ever its derivativeis quare-integrable. A piecevise regular functionthat has afinite
number of finite discontinuiti es and a finite number of extrema can be expanded in
a Fourier series which convergesto the function at continuous points and the mean
of the paositive and negative limits at points of discontinuity (a Dirichlet condtion,
see eg., [17]). As aresult, nea poaints of discontinuity the n'th partial sum of the
Fourier series haslarge oscill ations and a so-cdl ed Gibbs phenomenonor “rinding”
occurs[13, 6, 12].

1.2.1.1 Exponential Fourier series

Thenation o aFourier seriescan also be extended to complex coefficients. Consider
ared-vaued function f (x). Then using Euler’s formulawe can write

f(X): i Cneinx7

n=—oo



where Fourier coefficients are given by

Cnh= i/n f(x)e™dx
"Tom) n '
The Fourier coefficients a, and b, can be foundas

ap = Cph+C_np, n=0,1,2,...,
br]:i((:n*cfn)7 n:1,2,....

For afunction periodicin [—5, 5] one obtains

f(x) = Che' T
2.
with

in27x

= - Lf , d
p— L
Cn ZL/,L (x)e X.

These gjuations are the basis for the Fourier transform, which is obtained by trans-
forming ¢, from adiscrete variable to a cntinuows one asthelength L — o.

1.2.1.2 Fourier Transformation

The Fourier transform can be considered as a generali zaion o the complex Fourier
seriesin the limit L — co. Repladng the discrete wefficient ¢, with the continuows
F (k)dk, n/L — k and changing the sum to an integral one obtains for an integrable
function f (x)

F(x) = [ * F (i (16)
F(k) = / "t (e 2y, (L7)

Here,
F(K) = Z[F(x)](K) = / " f (e 2 (18)

is cdled the forward Fourier transform, and

t(x) = Z 1 F(K)](x) = [ Z F (K)e2™*dk (1.9)

iscdledtheinverse Fourier transform. However, other notation can al'so befoundin
the literature. Espedally physicists prefer to write the Fourier transform, presented
abowvein terms of the anguar frequency w:



)= \/%T[ZF(w)ei“"dw (1.11)

Basic properties of the Fourier transform: Let us consider two integrable func-
tions f(x) andg(x). Then

e Linearity: For any complex numbers o and 3
Flaf(t)+Bgt)] = aF[f(t)] +BF[g(t)];

Convolution:

e Trandation: For anyred ty

Ff(t—to)] = e ' Po.Z[f(1)];

Scaling: For all non-zerored numbersa

Derivative

Examples

1. Fourier Transform-Gaussan.
Let usconsider afunction f(t) = e Re(a) > 0. Then

1 © 2 1 © 2 1
Ff(t :—/ e " (cos(wt) —isin(ct dt:—/ e 3% cos(oot) dt = ——e /43
[f(0)=— [ & (costet) —isin(e))dt = — | () dt = 5~
That is, the Gaussan functionis its own Fourier transform for some choiceof a.
2. Fourier Transform-Cosine.
Consider f(t) = cos(at). Then ore gets:

Ff)] = \/iz_n/:oefiax (W)dt _ \/Z-[<5(wa)42r5(w+a))'




1.2.1.3 Discrete Fourier Transformation

Now let us consider a generali zationto the case of adiscrete function. The sequence
of N complex numbers X, ...,Xn_1 IS transformed into the sequence of N complex
numbers Xo, ..., Xn—1 by the discrete Fourier transformation (DFT) acordingto the
formula:

N-1 2ni
X = zoxne*Wk”, k=0,...,N—1. (1.12)
n=
The inverse discrete Fourier transform (IDFT) is defined as
= LS xe® 0 n—o.N_1 (L13)
"= N kZO , =0,..., . )

The DTF (1.12) is alinea transformation, so one can condser it as a transfor-
mation o the vedor x = (Xo, X1, ..., Xn_1)" tothevedor X = (Xo, X1, ..., Xn_1)"
of the same lenght viathe relation

X =AX,
where 1 1
~ .(Mm=1)(n—
fom o 2 =Y
N
Thatis,
1 1 1 1 1
1 R e ¥ e ¥ e TN
|1 e ® e e ' e FaAN-Y
A=l1 % e e e N3N-Y (1.14)
1 e~ FN-1) oF2N-1) o~F3N-1) o F(N-1?

Notetaht thevedorse® " forman orthogoral basis over the set of N-dimensional

complex vedors:
N—-1

ZO (eZW"ikn) (eJW"ik’n) — N &y,

where & isthe Kroneder delta. In addition, if the DFT (1.12) is evaluated for all
integers k then the resulting infinite sequenceis a periodic extension o the DFT,
periodic with periodN, i.e.

N-1 27 N-1 27 ; N-1 2mi
XN = %Xne*‘m'(kJrN)n _ %Xne——m—kne—Zmn _ Z)Xne——ﬂ—kn — X,
— \/_/ — |
n= n= 1 n=



If Xo,...,Xn—1 @rered numbersthen the DFT (1.12) obeysthe symmetry:
XNk = Xk,

where the overline denotes complex conjugation. The subscripts are interpreted
moduo N. Infad,

N—-1
XNka ;X e*W (N=K)n _ ZOX eN 2mn_ ZOX e*Wkn
n=

Asaresult of the ebovereation, aperiodic functionwill contain transformed peaks
in na one, but two places. This happens because the periods of the inpu data be-
come split into " pasitive” and " negative” frequency complex comporents. There-
fore, the DFT output for red inpusis half redundant, and ore obtains the complete
information by orly looking at rougHy half of the outputs Xp, ..., Xy_1. The next
point is that the componrent Xg is always red for red data. The DFT can be com-
puted efficiently using a Fast Fourier transform (FFT) agorithm.With the FFT, the
resulting scheme takes ¢(NlogN) arithmetic operations instead of ¢(N?) for the
computinga DFT of N pointsdiredly.

1.2.1.4 Fast Fourier Transform

Themost common FFTs are based onthe m-cdled CooleyTukeyalgorithm, named
after J. W. Codley and J. Tukey [3]. However, later it was discovered [7] that the
authors had re-invented the dgorithm, known to C. F. Gaussaround 1805who used
it to interpolate the trajedories of asteroids [5].

The simplest and most common form of the Cooley-Tukey algorithm is based
on the idea of Danielson and Lanczos [4] to divide aDFT (1.12) of size N into
two interleaved DFTs of sizeN/2, one of those is formed from the even-numbered
points of original N, whereas another one from the odd-numbered pants, i.e.

N/2-1 N/2—1

Xy = ZOX e*Wkn Zo Xon € N (2n)k + ; Xoni 1€~ N 2n+l)k

N/2-1  Nj2-1

2 2 i nk K
2 Xon€ N2 4 e N 2 Xon 1€ 7 = XS +WKX?. (1.15)
n= n=

Here, X¢ and X? denotethe DFT’s of the even- and oddindexed inputs, respedively

andthe complex constant W = e standsfor a twiddle factor. Noticethat although
kinthelast equation variesfrom 0 to N — 1, both transforms X¢ and X? are periodic
ink with length N /2,

Xl?+N/2 = Xkev Xl?+N/2 =X



In addition, for the twiddle fador W
WHHN/2 — o =R (N/2) _ o=tk — ko
That is, the whole DFT can be written as

X, — XE-+WKXO, k<N/2,
- xffN/z—Wk*N/legN/z, k>N/2.

Asaimingthat N isaninteger power of 2, e.g., N = 2P, one can reped the reduction
procedure, described above reaursively, i.e,

szxke—l—WkXEZXfe+Wkaw+WkX£e+W2kXi?0=

psteps

N

Note that on the last step of reaursion we have subdvided the data to transforms of
length ore, i.e, for every even- and odd pattern there is a one-point transform that
isjust equalsto the one of the input numbers x, [9],

XP% 0 = x, for somen.

The relation between n and the correspondng even- and odd ttern can be found
be use of the so-cdled bit revesal algorithm[9], namely one reverse the pattern of
even's and odds and suppase e:= 0, 0 := 1 and get the value of n in binary form.
That is, the whole scheme can be formulated as follows[9]:

Consider the inpu vedor x, andrearangeit into bit-reversed order;

Combine ajacent elementsto get two-point transform;

Combine ajacent pairsto get four-point transform, etc.;

Repea till both halvesof thewhole dataset are combinedinto thefinal transform.

Noticethat eat combinationtakes ¢/(N) operations and ore has &'(logN) combi-
nations, so the whole dgorithmis of order &(N logN).

1.2.2 The Advection Equation

Let us consider a one-dimensional advedion equation



Jau ou

5 Hom =0 (1.16)

Hereu = u(x,t), x € R, cisanorzero constant velocity. Equation (1.16) describes
the motion of a scdar u as it is adveded by a known velocity field. The unique
solution o (1.16) is determined by agiven initial condtionu(x,0) = up(x) as

u(x,t) = up(x—ct). (1.17)

The solution (1.17) is just an initial function up(x) shifted by ct to the right (for
¢ > 0) or to the left (for ¢ < 0). Our goal is to solve Eq. (1.16) on the domain
x € [0, 2m1] with periodic boundry condtions, i.e., u(0,t) = u(2m,t) by means of
the Galerkin method (see Sedion 1.1.0.2). First of all we rewrite Eq. (1.16) in the
weak form, i.e., for any test function x (x, t)

(Gulx) +c(aulx) =0,

where (f,g) := [Zf(x)g(x) dx following inner product notation. Chocsing the
trigonametric polynomial, presented in Sedion 12 as the tria functions, ¢(x) =
exp(ikx), the gopproximated solution U of (1.16) is represented as

N/2 _
Uxt) =y Gt)e"
k=—N/2

Accordingto the Galerkn method(seesedion (1.1.0.2)) thetrial functions ¢ (x) and
thetest functions x (x) are essentialy the same. Thisreducesthe problemin question
to

(60€®) +c(oae™) =0,  Vt>0vk=-N/2 ...,N/2.

Usingthe orthogorality relation (€| €<X) = 271§, where § isthe Kronedker delta,
we simplify therelation abovefor ead k to

N/2 ) ) N/2 ) )

@ Y amee)+ca S ane e =oe
I==N/2 I==N/2

dai(t)

TJrikcﬁk(t) =0, vt>0 Vvk=-N/2 ...,N/2.

With Fourier transformed initial condtionsGi(0) = 5= (uo(x)|€) this coupled sys-
tem of ordinary differential equations involves a standart initial value problem and
can beintegrated in time (using, e.g., a Runge—Kutta technique (see Appendix A))

to find a solution.



