
Chapter 1
Introduction to Spectral Methods

1.1 Basic Concepts

Our starting point isabasic question. Supposewehave an equationfor somevector
functionu(x), x∈ Ω ⊆ R

n

L u = f , (1.1)

with boundary conditions

Bu = 0, x∈ ∂Ω , (1.2)

whereL andB are some linear operator. How can we find the best approximation
of the unknown function u? One of possible methods is based onthe wide classof
discretizationschemesknown asmethod of weighted residuals (MWR). The ideaof
themethodis to approximatetheunknown functionu(x) by asum of so-called trial
or basis functionsφn(x)

ũ(x) =
N

∑
n=0

anφn(x), (1.3)

where an are unknown coefficients to be determined and the tilde denotes an ap-
proximatesolution of (1.1). If onesubstitute the approximation(1.3) into Eq. (1.1),
the residual R can be calculated as

R= L ũ− f (1.4)

Due to the fact that ũ is different from the exact solution u, the residual R does not
vanish for all x∈ Ω . The next step is to determine unknown coefficients an so that
the chosen functionapproximatesthe exact solutionin thebest way. To thisend, test
or weighting functionsχn(x), n = 0, . . . , N are selected so that the residual function
R isminimized, e.g., theweightedaverageof theresidual over thedomain of interest
is set to zero, ∫

Ω
χn(x)Rdx = 0, n = 0, . . . , N . (1.5)
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The variousmethodsdiffer mainly in the choise of trial and test functionsand their
minimizationstrategies [2, 1].

1.1.0.1 Various numerical methods

The choiceof the trial functions φn(x) is one of the key differencebetween finite-
element and finite-differencemethodson the onehandandspectral methodson the
other hand. In the caseof finite-element methodsthedomain Ω isdivided into small
finite intervalsandφn(x) are typically choosen to be alocal polynomial of fixed de-
gree, defined onthesesub-intervalsonly. Thefinite-differencemethodshave alocal
charachter as well . Generally, the unknown function u(x) is approximated by a se-
quenceof overlapping polynomialsof low order, interpolatingthesolutionat agiven
set of discretization pointsandtherersult isrepresented in theformof weightedsum
of valuesof u(x) at the interpolation points. In contrast, the trial functionsfor spec-
tral methods are global smooth functions, e.g., Fourier or Chebyshev series. The
particular choiceof the trial functions is usually connected to the geometry of the
problem in question. For instance, on periodic intervals, the sines and cosines of a
Fourier series, which automatically satisfy boundary conditions are used. For non-
periodicproblem, Chebyshev or Legenderepolynomialsaremorenatural choise[1].

1.1.0.2 Various minimization strategies

The choiceof the test functions χn distinguishesbetween the threemost commonly
used spectral schemes, namely

1. Galerkin method.
Thetest functionsχn(x) arethesame as thetrial functionsandeach φn(x) satisfy
the boundary condition Bφn = 0. Since φn = χn for n = 0, . . . , N, Eq. (1.5) is
equivalent to

∫

Ω
φnR = 0 ⇔

∫

Ω
φn

(
L ũ− f

)
= 0 ⇔

∫

Ω
φn

N

∑
k=0

akφk =
∫

Ω
φn f ⇔

N

∑
k=0

Lnkak =

∫

Ω
φn f ,

whereLnk =
∫

Ω φnL φk. Solvingtheobtained linear system one can get all N+1
unknown coefficientsak.

2. Tau method. The test functions χn are the same as the trial functions, but φn do
not need to satisfy (1.2). The boundary conditionsare enforced by an additional
set of equations. In order to find this set, let us consider an orthonormal basis
{ψl}, l = 0, . . . , M, whereM < N on the∂Ω andexpandBφn uponit:



Bφn =
M

∑
l=0

Blnψl .

Equation(1.2) then becomes

Bu = 0 ⇔
N

∑
k=0

M

∑
l=0

akBlkψl = 0 ⇔
N

∑
k=0

Blkak = 0, l = 0, . . . , M .

Theresultinglinear system of N+1 equationsconsistsof N−M first rowsof the
Galerkin system, presented above, and M +1 additional equations for boundary
conditions:

N

∑
k=0

Lnkak =

∫

Ω
φn f , n = 0, . . . , N−M−1,

N

∑
k=0

Blkak = 0, l = 0, . . . , M .

3. Collocation (pseudospectral) method. The test functions are represented by a
delta functions at special points xn, called collocation points, i.e., χn = δ (x−
xn). In other words this approach requiresEq. (1.1) to be satisfied exactly at the
collacation pointsxn. Then the condition(1.5) reads:

∫

Ω
χnR = 0 ⇔

∫

Ω
δ (x−xn)R= 0 ⇔ L ũ(xn) = f (xn) ⇔

N

∑
k=0

akL φk(xn) = f (xn) , n = 0, . . . , N .

Theboundary conditionscan be imposed as in the tau method.

To sum up: Galerkin and tau methods are implemented in terms of the expansion
coefficients, whereasthe collocationmethodis implemented in termsof thephysical
spacevaluesof theunknown function.

1.2 Fourier and Chebyshev series

1.2.1 The Fourier System

A Fourier series is an expansion of a periodic function in terms of an infinite sum
of sinesandcosines. Consider aperiodic integrablefunction f (x), x∈ [−π , π ]. The
numbers



an =
1
π

∫ π

−π
f (t)cos(nt)dt , n≥ 0,

bn =
1
π

∫ π

−π
f (t)sin(nt)dt , n≥ 1

are called the Fourier coefficients of f . The Fourier series of the function f (x) is
given by

f (x) =
1
2

a0 +
∞

∑
n=1

(
ancos(nx)+bnsin(nx)

)
.

If the function f (x) is periodic on some interval [−L, L], a simple change of vari-
ables

x′ =
xL
π

can be used to transform the interval of integration. In this case the Fourier series
read

f (x) =
1
2

a0 +
∞

∑
n=1

(
ancos

(nπx′

L

)
+bnsin

(nπx′

L

))

with

an =
1
L

∫ L

−L
f (x′)cos

(nπx′

L

)
dx′ , n≥ 0,

bn =
1
L

∫ L

−L
f (x′)sin

(nπx′

L

)
dx′ , n≥ 1.

One of the main questions is to decidewhen Fourier series converge, and when the
sum is equal to the original function. If a function is square-integrableon the inter-
val [−π , π ], then the Fourier series convergesto the functionat almost every point.
In particular, the Fourier series converges absolutely and uniformly to f (x) when-
ever itsderivativeis square-integrable. A piecewiseregular functionthat hasafinite
number of finite discontinuitiesand a finite number of extrema can be expanded in
a Fourier series which convergesto the functionat continuouspointsand the mean
of the positive and negative limits at points of discontinuity (a Dirichlet condition,
see, e.g., [12]). As a result, near points of discontinuity the n’ th partial sum of the
Fourier serieshas largeoscill ationsandaso-called Gibbsphenomenonor “ rinding”
occurs [13, 6, 12].

1.2.1.1 Exponential Fourier series

Thenotion of aFourier seriescanalso be extendedto complex coefficients. Consider
a real-valued function f (x). Then usingEuler’s formulawe can write

f (x) =
∞

∑
n=−∞

cneinx ,



whereFourier coefficientsaregiven by

cn =
1

2π

∫ π

−π
f (x)e−inx dx.

TheFourier coefficientsan andbn can be foundas

an = cn +c−n, n = 0, 1, 2, . . . ,

bn = i(cn−c−n), n = 1, 2, . . . .

For a function periodic in [− L
2 , L

2 ] oneobtains

f (x) =
∞

∑
n=−∞

cne
in2πx

L

with

cn =
1

2L

∫ L

−L
f (x)e−

in2πx
L dx.

These equationsare thebasis for theFourier transform, which isobtained by trans-
formingcn from a discretevariable to a continuousone as the length L → ∞.

1.2.1.2 Fourier Transformation

TheFourier transform can be considered asageneralization of the complex Fourier
series in the limit L → ∞. Replacing the discrete coefficient cn with the continuous
F(k)dk, n/L 7→ k and changing the sum to an integral oneobtains for an integrable
function f (x)

f (x) =

∫ ∞

−∞
F(k)e2π ikxdk, (1.6)

F(k) =

∫ ∞

−∞
f (x)e−2π ikxdx. (1.7)

Here,

F(k) = F [ f (x)](k) =

∫ ∞

−∞
f (x)e−2π ikxdx (1.8)

is called the forward Fourier transform, and

f (x) = F
−1[F(k)](x) =

∫ ∞

−∞
F(k)e2π ikxdk (1.9)

iscalled the inverseFourier transform. However, other notationcan also befoundin
the literature. Especially physicists prefer to write the Fourier transform, presented
above in termsof the angular frequency ω :



F(ω) = F [ f (t)](ω) :=
1√
2π

∫ ∞

−∞
f (t)e−iωtdt, (1.10)

f (t) = F
−1[F(ω)](t) :=

1√
2π

∫ ∞

−∞
F(ω)eiωtdω (1.11)

Basic properties of the Fourier transform: Let us consider two integrable func-
tions f (x) andg(x). Then

• Linearity: For any complex numbersα and β

F [α f (t)+ βg(t)] = αF [ f (t)]+ βF [g(t)];

• Convolution:

F [ f (t) ·g(t)] = F [ f (t)]∗F [g(t)],

F [ f (t)∗g(t)] = F [ f (t)] ·F [g(t)];

• Translation: For any real t0

F [ f (t − t0)] = e−iωt0F [ f (t)];

• Scaling: For all non-zero real numbersa

F [ f (at)] =
1
|a|F

(
ω
a

)
;

• Derivative:

F

[
dn

dtn f (t)

]
= (iω)n

F [ f (t)].

Examples

1. Fourier Transform–Gaussian.
Let usconsider a function f (t) = e−at2, Re(a) > 0. Then

F [ f (t)] =
1√
2π

∫ ∞

−∞
e−at2(cos(ωt)− i sin(ωt))dt =

1√
2π

∫ ∞

−∞
e−at2 cos(ωt)dt =

1
2
√

a
e−ω2/4a .

That is, the Gaussian function is its own Fourier transform for some choiceof a.
2. Fourier Transform–Cosine.

Consider f (t) = cos(at). Then onegets:

F [ f (t)] =
1√
2π

∫ ∞

−∞
e−iωt

(
eiat +e−iat

2

)
dt =

√
2π

(
δ (ω −a)+ δ (ω +a)

2

)
.



1.2.1.3 Discrete Fourier Transformation

Now let usconsider ageneralizationto the caseof adiscretefunction. Thesequence
of N complex numbers x0, ...,xN−1 is transformed into the sequenceof N complex
numbersX0, ...,XN−1 by thediscreteFourier transformation(DFT) accordingto the
formula:

Xk =
N−1

∑
n=0

xne−
2π i
N kn, k = 0, . . . ,N−1. (1.12)

The inverse discreteFourier transform(IDFT) is defined as

xn =
1
N

N−1

∑
k=0

Xke
2π i
N kn, n = 0, . . . ,N−1. (1.13)

The DTF (1.12) is a linear transformation, so one can condiser it as a transfor-
mation of thevector x = (x0, x1, . . . , xN−1)

T to the vector X = (X0, X1, . . . , XN−1)
T

of thesame lenght via the relation

X = Âx,

where

Âmn = exp

(
−2π i

(m−1)(n−1)

N

)
.

That is,

Â =




1 1 1 1 . . . 1

1 e−
2π i
N e−

4π i
N e−

6π i
N . . . e−

2π i
N (N−1)

1 e−
4π i
N e−

8π i
N e−

12π i
N . . . e−

2π i
N 2(N−1)

1 e−
6π i
N e−

12π i
N e−

18π i
N . . . e−

2π i
N 3(N−1)

...
...

...
...

. . .
...

1 e−
2π i
N (N−1) e−

2π i
N 2(N−1) e−

2π i
N 3(N−1) . . . e−

2π i
N (N−1)2




(1.14)

Notetaht thevectorse
2π i
N kn forman orthogonal basisover theset of N-dimensional

complex vectors:
N−1

∑
n=0

(
e

2π i
N kn

)(
e−

2π i
N k′n

)
= N δkk′ ,

where δkk′ is the Kronecker delta. In addition, if the DFT (1.12) is evaluated for all
integers k then the resulting infinite sequence is a periodic extension of the DFT,
periodic with periodN, i.e.

Xk+N =
N−1

∑
n=0

xne−
2π i
N (k+N)n =

N−1

∑
n=0

xne−
2π i
N kne−2π i n

︸ ︷︷ ︸
1

=
N−1

∑
n=0

xne−
2π i
N kn = Xk .



If x0, . . . ,xN−1 are real numbers then theDFT (1.12) obeysthesymmetry:

XN−k = Xk ,

where the overline denotes complex conjugation. The subscripts are interpreted
modulo N. In fact,

XN−k =
N−1

∑
n=0

xne−
2π i
N (N−k)n =

N−1

∑
n=0

xne
2π i
N kn e−2π i n

︸ ︷︷ ︸
1

=
N−1

∑
n=0

xne−
2π i
N kn = Xk .

Asaresult of the aboverelation, aperiodic functionwill contain transformed peaks
in not one, but two places. This happens because the periods of the input data be-
come split i nto ”positive” and ”negative” frequency complex components. There-
fore, the DFT output for real inputs ishalf redundant, and oneobtains the complete
information by only looking at roughly half of the outputs X0, . . . ,XN−1. The next
point is that the component X0 is always real for real data. The DFT can be com-
puted efficiently usinga Fast Fourier transform(FFT) algorithm.With theFFT, the
resulting scheme takes O(NlogN) arithmetic operations instead of O(N2) for the
computinga DFT of N pointsdirectly.

1.2.1.4 Fast Fourier Transform

Themost commonFFTsarebased onthe co-called Cooley-Tukeyalgorithm, named
after J. W. Cooley and J. Tukey [3]. However, later it was discovered [7] that the
authorshad re-invented the algorithm, known to C. F. Gaussaround 1805, who used
it to interpolate the trajectoriesof asteroids [5].

The simplest and most common form of the Cooley-Tukey algorithm is based
on the ideaof Danielson and Lanczos [4] to divide a DFT (1.12) of size N into
two interleaved DFTs of sizeN/2, one of those is formed from the even-numbered
pointsof original N, whereasanother one from theodd-numbered points, i.e.

Xk =
N−1

∑
n=0

xne−
2π i
N kn =

N/2−1

∑
n=0

x2ne−
2π i
N (2n)k +

N/2−1

∑
n=0

x2n+1e−
2π i
N (2n+1)k =

N/2−1

∑
n=0

x2ne
− 2π i

N/2 nk
+e−

2π i
N k

N/2−1

∑
n=0

x2n+1e
− 2π i

N/2nk
= Xe

k +Wk Xo
k . (1.15)

Here, Xe
k andXo

k denotetheDFT’sof the even- and odd-indexed inputs, respectively

andthe complex constant W = e
2π i
N standsfor a twiddlefactor. Noticethat although

k in the last equation variesfrom 0 to N−1, both transformsXe
k andXo

k areperiodic
in k with length N/2,

Xe
k+N/2 = Xe

k , Xo
k+N/2 = Xo

k .



In addition, for the twiddle factor W

Wk+N/2 = e
−2π i

N (k+N/2) = e−π i Wk = −Wk .

That is, thewholeDFT can bewritten as

Xk =

{
Xe

k +Wk Xo
k , k < N/2,

Xe
k−N/2−Wk−N/2 Xo

k−N/2 , k > N/2.

Assumingthat N isan integer power of 2, e.g., N = 2p, one can repeat thereduction
procedure, described aboverecursively, i.e,

Xk = Xe
k +Wk Xo

k = Xee
k +Wk Xeo

k +Wk Xoe
k +W2k Xoo

k =

...

psteps
...

= Xee···e
k + · · ·+W(···) Xeooe···o

k + · · ·+Wpk Xoo···o
k︸ ︷︷ ︸

N

.

Note that on the last step of recursionwe have subdivided the data to transformsof
length one, i.e, for every even- and odd- pattern there is a one-point transform that
is just equals to theoneof the input numbersxn [9],

Xeooe···o
k = xn for somen.

The relation between n and the corresponding even- and odd pattern can be found
be use of the so-called bit reversal algorithm [9], namely onereverse the pattern of
even’s and odd’s and suppose e := 0, o := 1 and get the value of n in binary form.
That is, thewholescheme can be formulated as follows[9]:

• Consider the input vector xn and rearrangeit into bit-reversed order;
• Combine adjacent elements to get two-point transform;
• Combine adjacent pairs to get four-point transform, etc.;
• Repeat till both halvesof thewholedataset are combined into thefinal transform.

Noticethat each combination takesO(N) operationsand onehasO(logN) combi-
nations, so thewhole algorithm is of order O(N logN).

1.2.2 The Advection Equation

Let usconsider a one-dimensional advectionequation



∂u
∂ t

+c
∂u
∂x

= 0 (1.16)

Here u = u(x, t), x∈ R, c is a nonzero constant velocity. Equation (1.16) describes
the motion of a scalar u as it is advected by a known velocity field. The unique
solution of (1.16) isdetermined byagiven initial conditionu(x,0) = u0(x) as

u(x, t) = u0(x−ct). (1.17)

The solution (1.17) is just an initial function u0(x) shifted by ct to the right (for
c > 0) or to the left (for c < 0). Our goal is to solve Eq. (1.16) on the domain
x ∈ [0, 2π ] with periodic boundary conditions, i.e., u(0, t) = u(2π , t) by means of
the Galerkin method(seeSection 1.1.0.2). First of all we rewrite Eq. (1.16) in the
weak form, i.e., for any test function χ(x, t)

〈∂tu|χ〉+c〈∂xu|χ〉= 0,

where 〈 f ,g〉 :=
∫ 2π

0 f (x)g(x)dx following inner product notation. Choosing the
trigonometric polynomial, presented in Section 1.2 as the trial functions, φk(x) =
exp(ikx), the approximated solution ũ of (1.16) is represented as

ũ(x, t) =
N/2

∑
k=−N/2

ûk(t)eikx.

Accordingto theGalerkn method(seesection(1.1.0.2)) thetrial functionsφk(x) and
thetest functionsχ(x) are essentialy thesame. Thisreducestheproblem in question
to

〈∂t ũ|eikx〉+c〈∂xũ|eikx〉 = 0, ∀t > 0, ∀k = −N/2, . . . , N/2.

Usingtheorthogonality relation〈eil x|eikx〉= 2πδlk, whereδlk istheKronecker delta,
we simpli fy the relationabovefor each k to

〈∂t

N/2

∑
l=−N/2

ûl(t)e
il x|eikx〉+c〈∂x

N/2

∑
l=−N/2

ûl (t)e
il x|eikx〉 = 0⇔

dûk(t)
dt

+ i k cûk(t) = 0, ∀t > 0, ∀k = −N/2, . . . , N/2.

With Fourier transformed initial conditions ûk(0) = 1
2π 〈u0(x)|eikx〉 thiscoupled sys-

tem of ordinary differential equations involvesa standart initial value problem and
can be integrated in time (using, e.g., a Runge–Kutta technique (seeAppendix A))
to finda solution.


