Radioaktivität und Strahlenschutz

Martin Volkmer

© Januar 2004 Alle Rechte vorbehalten. Darf für Unterrichtszwecke vervielfältigt werden. Vollständig überarbeitete Neuauflage 2003 Auflage: 100.000 (Gesamtauflage bisher 480.000) ISBN 3-926956-45-3

Redaktion: Winfried Koelzer (Fachberatung) Volker Wasgindt (Verantwortlich) Satz und Layout: Waltraud Zimmer Druck: UbiaDruckKöln

Herausgeber:

Robert-Koch-Platz 4, 10115 Berlin

Tel.: 030 498555-30 www.kernenergie.de

Inhalt

1	Chemische Elemente und ihre kleinsten Teilchen	
1.1 1.2 1.3	Chemische Elemente	1 3 4
2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.3 2.4	Kernumwandlungen und Radioaktivität Alpha-, Beta- und Gammastrahlen Alphastrahlen Betastrahlen Gammastrahlen Protonen- und Neutronenstrahlen Elektroneneinfang Halbwertszeit	6 6 7 8 9
3 3.1 3.2.1 3.2.2 3.2.3 3.3 3.3 3.4 3.5	Energie von Strahlungsteilchen und Gammaquanter Energieeinheit Elektronvolt Energie der Teilchenstrahlen Energie von Alphateilchen Energie von Betateilchen Energie von Neutronen Energiebilanz bei der Kernspaltung Energie und Wellenlänge der Gammastrahlen Energie und Wellenlänge bei Röntgenstrahlen	n 10 10 11 11 12 13 14
4	Wechselwirkungen von Strahlung mit Materie	. –
4.1 4.2 4.3 4.4	Wechselwirkungen von Alphateilchen mit Materie . Wechselwirkungen von Betateilchen mit Materie . Wechselwirkungen von Neutronen mit Materie . Wechselwirkungen von Gammastrahlen mit Materie .	15 16 16 19
4.4.1 4.4.2 4.4.3	Photoeffekt Comptoneffekt Paarbildung	19 19 20
5	Strahlenmessung und Maßeinheiten	
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Ionisationskammer Energiedosis . Organdosis . Effektive Dosis . Folgedosis . Bestimmung der Impulsrate mit einem Zählrohr Aktivität und spezifische Aktivität . Aktivitätsbestimmung . Bestimmung von Radionukliden mit der Gammaspektroskopie . Stabdosimeter . Filmdosimeter .	21 21 22 23 23 23 24 25 26 27 28
5.12	Neutronenmessgerate	28
6 6.1 6.2 6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.6.3 6.6.4 6.6.5 6.6.6 6.7	Strahlenwirkungen auf lebende Zellen Aufbau einer Zelle Erbträger DNS Zellteilungen Die strahlenbiologische Reaktionskette Somatische und genetische Schäden Faktorenabhängigkeit der Strahlenwirkungen Strahlenart Dosis Zeitliche Dosisverteilung Räumliche Dosisverteilung Relative Strahlenempfindlichkeit Milieufaktoren Strahlenempfindlichkeit von Lebewesen	29 30 31 32 34 34 35 35 35 35 35
7	Radionuklide im menschlichen Körper	
7.1 7.2 7.3	Standardmensch Nahrungsketten und Expositionspfade Anreicherung von Radionukliden in Nahrungsketten	37 38 38
7.4	Natürliche Radionuklide in Nahrungsmitteln	38

7.5 7.6 7.7 7.8	Aufnahmewege und Speicherorgane Verweilzeit der Radionuklide im Körper Natürliche Aktivität des Standardmenschen Bestimmung der Dosis aus der inkorporierten	41 43 44
	Aktivität	45
8	Natürliche Strahlenquellen – natürliche Strahlenexposition	
8.1 8.2 8.3 8.4	Kosmische Strahlung und die Erzeugung neuer Radionuklide Natürliche Radionuklide ohne und mit Zerfallsreihen . Natürliche Radionuklide in Boden, Wasser und Luft . Natürliche Radionuklide in Baustoffen	47 48 49 50
8.5 8.5.1 8.5.2 8.6 8.7	Natürliche externe Strahlenexposition des Menschen Kosmische Strahlung Terrestrische Strahlung Natürliche interne Strahlenexposition Zusammenfassung der natürlichen Strahlenexposition	50 50 52 53 53
9	Künstliche Strahlenquellen – zivilisatorische	
0.1	Strahlenexpositionen	
9.1 9.2 9.3	Anwendungen von Radionukliden in der Medizin Strahlenexposition durch den Reaktorunfall	54 55
9.4 9.5 9.6 9.7	von Tschernobyl Strahlenexposition durch Kernwaffentests Strahlenexposition durch Flugverkehr Strahlenexposition durch Bildschirmgeräte Strahlenquellen in einem Kernkraftwerk,	56 57 58 58
9.8	Vergleich von natürlicher und künstlicher	59
9.9	Strahleneinwirkung Zusammenfassung der Strahlenexposition	62 62
10	Strahlenschutzmaßnahmen gegen äußere Strahleneinwirkung	
10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5	Verringerung der Quellstärke	63 64 65 66 66 67 69 69
11	Strahlenschutzmaßnahmen gegen innere Strahleneinwirkung	
11.1 11.2 11.3 11.3.1 11.3.2 11.3.3 11.4 11.5	Mehrfacheinschluss radioaktiver Stoffe Druckdifferenz als Sicherheitsbarriere Verringerung der Aktivität bei Abluft und Abwasser Behandlung gasförmiger Reaktorbetriebsabfälle Behandlung flüssiger Reaktorbetriebsabfälle Behandlung fester Reaktorbetriebsabfälle Kontrollierte Ableitung radioaktiver Stoffe Umgebungsüberwachung	72 73 74 75 75 75 75 77
12	Strahlenschutz für Personen in einem Kernkraftwerk	
12.1 12.2 12.3 12.4 12.5	Dosisgrenzwerte	78 78 78 79 79

Sachwortverzeichnis 82

1 Chemische Elemente und ihre kleinsten Teilchen

1.1 Chemische Elemente

Der Planet Erde besteht aus 91 natürlich vorkommenden chemischen Elementen. Man kennt zurzeit 114 chemische

Elemente (Tab. 1-1), 23 davon sind ausschließlich künstlich erzeugt worden.

Element	Symbol	Ordnungs- zahl	Element	Symbol	Ordnungs- zahl	Element	Symbol	Ordnungs- zahl
Wasserstoff	Н	1	Zirkonium	Zr	40	Gold	Au	79
Helium	He	2	Niob	Nb	41	Quecksilber	Hg	80
Lithium	Li	3	Molybdän	Мо	42	Thallium	TI	81
Beryllium	Be	4	Technetium	Тс	43*	Blei	Pb	82
Bor	В	5	Ruthenium	Ru	44	Wismut	Bi	83
Kohlenstoff	С	6	Rhodium	Rh	45	Polonium	Ро	84
Stickstoff	N	7	Palladium	Pd	46	Astat	At	85
Sauerstoff	0	8	Silber	Ag	47	Radon	Rn	86
Fluor	F	9	Cadmium	Cd	48	Francium	Fr	87
Neon	Ne	10	Indium	In	49	Radium	Ra	88
Natrium	Na	11	Zinn	Sn	50	Actinium	Ac	89
Magnesium	Mg	12	Antimon	Sb	51	Thorium	Th	90
Aluminium	AI	13	Tellur	Те	52	Protactinium	Ра	91
Silizium	Si	14	lod	I	53	Uran	U	92
Phosphor	Р	15	Xenon	Xe	54	Neptunium	Np	93*
Schwefel	S	16	Cäsium	Cs	55	Plutonium	Pu	94
Chlor	CI	17	Barium	Ba	56	Americium	Am	95*
Argon	Ar	18	Lanthan	La	57	Curium	Cm	96*
Kalium	К	19	Cer	Ce	58	Berkelium	Bk	97*
Calcium	Са	20	Praseodym	Pr	59	Californium	Cf	98*
Scandium	Sc	21	Neodym	Nd	60	Einsteinium	Es	99*
Titan	Ti	22	Promethium	Pm	61*	Fermium	Fm	100*
Vanadium	V	23	Samarium	Sm	62	Mendelevium	Md	101*
Chrom	Cr	24	Europium	Eu	63	Nobelium	No	102*
Mangan	Mn	25	Gadolinium	Gd	64	Lawrencium	Lw	103*
Eisen	Fe	26	Terbium	Tb	65	Rutherfordium	Rf	104*
Kobalt	Со	27	Dysprosium	Dy	66	Dubnium	Db	105*
Nickel	Ni	28	Holmium	Но	67	Seaborgium	Sb	106*
Kupfer	Cu	29	Erbium	Er	68	Bohrium	Bh	107*
Zink	Zn	30	Thulium	Tm	69	Hassium	Hs	108*
Gallium	Ga	31	Ytterbium	Yb	70	Meitnerium	Mt	109*
Germanium	Ge	32	Lutetium	Lu	71	noch ohne Nan	nen	110*
Arsen	As	33	Hafnium	Hf	72	noch ohne Nan	nen	111*
Selen	Se	34	Tantal	Та	73	noch ohne Nan	nen	112*
Brom	Br	35	Wolfram	W	74	noch ohne Nan	nen	114*
Krypton	Kr	36	Rhenium	Re	75	noch ohne Nan	nen	115*
Rubidium	Rb	37	Osmium	Os	76			
Strontium	Sr	38	Iridium	lr	77	* ausschließlie	h künstlie	h erzeuate
Yttrium	Y	39	Platin	Pt	78	Elemente		in orzeugie

Tab. 1-1: Tabelle der chemischen Elemente

In der Tab. 1-2 und der Abb. 1.1 sind die in der Erdrinde, Wasser und Luft am häufigsten auftretenden Elemente aufgeführt. Auf die restlichen weniger als 0,2 % entfallen alle übrigen Elemente. Man nimmt an, dass sich unter der Erdkruste eine Schicht befindet, die vorwiegend aus Metallsulfiden besteht. Der Kern der Erde setzt sich wahrscheinlich im Wesentlichen aus Eisen und Nickel zusammen.

Die chemische Zusammensetzung des Menschen ist von seinen Erbanlagen, den Verzehr- und Lebensgewohnheiten, den örtlichen Gegebenheiten sowie seinem Alter abhängig. Für wissenschaftliche Berechnungen benötigt man aber eine einheitliche biologische Grundlage. Deshalb ist der Standardmensch definiert worden. Bei ihm legt man ein Alter von 20 bis 30 Jahren, eine Gesamtle-

Element	Häufigkeit in %	Element	Häufigkeit in %
Sauerstoff	49,2	Titan	0,58
Silizium	25,7	Chlor	0,19
Aluminium	7,5	Phosphor	0,11
Eisen	4,71	Kohlenstoff	0,08
Calcium	3,39	Mangan	0,08
Natrium	2,63	Schwefel	0,06
Kalium	2,4	Barium	0,04
Magnesium	1,93	Stickstoff	0,03
Wasserstoff 0,87		Fluor	0,03

Tab. 1-2:Häufigkeit der Elemente in der Erdkruste, Luft und
Wasser (Angaben in Gewichtsprozent)

Abb. 1.1: Häufigkeit der Elemente in der Erdkruste (einschließlich Luft und Wasser)

bensdauer von 70 Jahren, ein Körpergewicht von 70 kg, eine Körperoberfläche von 1,8 m² sowie eine Körpergröße von 170 cm zugrunde. In der Tab. 1-3 sowie in Abb. 1.2 sind einige Daten des Standardmenschen angegeben.

Element	Masse in g	Anteil des Körpergewicht in %		
Sauerstoff	45 500	65		
Kohlenstoff	12 600	18		
Wasserstoff	7 000	10		
Stickstoff	2 100	3		
Calcium	1 050	1,5		
Phosphor	700	1		
Schwefel	175	0,25		
Kalium	140	0,2		
Natrium	105	0,15		
Chlor	105	0,15		
Magnesium	35	0,05		
Eisen	4	0,0057		
Kupfer	0,1	1,4 · 10 ⁻⁴		
lod	0,03	4,3 · 10 ⁻⁴		
weitere Spurenelemente				

Abb. 1.2: Zusammensetzung des menschlichen Körpers (Standardmensch)

1.2 Aufbau des Atoms

Die kleinsten Teilchen der chemischen Elemente werden Atome genannt. Sie sind so klein, dass Menschen sie nicht sehen können. 10 Millionen Atome aneinandergereiht ergeben nur etwa 1 mm. Im Modell werden Atome mit einem Kern und einer Hülle dargestellt.

Der Kern besteht aus positiv geladenen Protonen und elektrisch neutralen Neutronen. Sie werden durch sehr starke Kernkräfte zusammengehalten. Die Kernkräfte stehen in einem gewissen Abstand im Gleichgewicht mit den abstoßenden Kräften zwischen den positiv geladenen Protonen.

Abb. 1.3: Atome in vereinfachter Modelldarstellung

In der Atomhülle bewegen sich in der Regel ebenso viel negativ geladene Elektronen wie sich Protonen im Kern befinden. Das Atom ist dann nach außen elektrisch neutral (Abb. 1.3).

Verliert ein Atom ein Elektron aus seiner Hülle, überwiegen die positiven Ladungen im Kern (positives Ion). Nimmt ein Atom ein weiteres Elektron in die Hülle auf, überwiegen die negativen Ladungen in der Hülle (negatives Ion).

Berechnungen haben ergeben, dass die Hülle des Wasserstoffatoms einen Durchmesser von etwa 0,000 000 1 mm (zehnmillionstel Millimeter) hat. Der Kern (Proton) dagegen hat einen Durchmesser von etwa 0,000 000 000 001 Millimeter. Er ist fast 100 000 mal kleiner als der Durchmesser der Hülle (Abb. 1.4). Die Tab. 1-4 enthält Daten über die Massen und elektrischen Ladungen von Proton, Neutron und Elektron, den drei wichtigsten Elementarteilchen.

Um ein Elektron aus der Hülle abzutrennen, benötigt man Energie. Dabei zeigt sich, dass für die einzelnen Elektronen einer Atomhülle unterschiedlich viel Energie zum Abtrennen aufgewendet werden muss. Auf der Grundlage

Abb. 1.4: Größenverhältnisse im Wasserstoff-Atom

	Masse (Ru	ıhemasse)	Ladung		
Elementarteilchen	in kg	in Elektronen- massen	in Coulomb	in Elementar- ladungen	
Elektron	9,10938 · 10 ⁻³¹	1	- 1,6022 · 10 ⁻¹⁹	-1	
Proton	1,67262 · 10 ⁻²⁷	1 836,15	1,6022 · 10 ⁻¹⁹	+1	
Neutron	1,67493 · 10 ⁻²⁷	1 838,68	0	0	

Tab. 1-4: Masse und elektrische Ladung der drei wichtigsten Elementarteilchen

Abb. 1.5: 1 g Eisen wird in Gedanken auf die Fläche der Stadt Hamburg verteilt

dieser Erkenntnis hat man ein Atommodell entwickelt, bei dem sich die Hülle aus einzelnen Schalen bzw. Bahnen aufbaut (K-, L-, M-, N-, O-, P- und Q-Schale, am Kern beginnend). Je weiter ein Elektron vom Kern entfernt ist, desto weniger fest wird es von ihm gehalten und desto leichter ist es abzutrennen. Die Elektronen, die sich am weitesten außen befinden, sind an der chemischen Bindung beteiligt. Sie ermöglicht den Aufbau von Molekülen aus einzelnen Atomen.

In der Chemie rechnet man häufig mit Stoffmengen. Als Einheit benutzt man das Mol (mol). Die Anzahl der kleinsten Teilchen (Moleküle, Atome, Ionen) in 1 mol eines Stoffes wird durch die Avogadro-Konstante angegeben. Danach enthält 1 mol eines Stoffes 6,022 \cdot 10²³ Teilchen. Das entspricht einer Masse in Gramm, die sich aus der jeweiligen Atom- bzw. Molekularmasse errechnet.

Beispiel 1: Wie viel Atome enthält 1 g Eisen?

Die relative Atommasse von Eisen beträgt 56. Daher sind in 56 g Eisen 6,022 \cdot 10^{23} Eisenatome enthalten.

1 g Eisen enthält:

$$\frac{6,022 \cdot 10^{23}}{56} = \frac{60,22 \cdot 10^{22}}{56} \approx 10^{22} \text{ Atome.}$$

In Gedanken soll dieses 1 g Eisen über die Fläche der Stadt Hamburg verteilt werden (Abb. 1.5). Die Fläche beträgt: $A = 747,68 \text{ km}^2 \approx 750\ 000\ 000\ \text{m}^2 = 7,5 \cdot 10^8\ \text{m}^2$. Auf 1 m² befänden sich dann:

$$\frac{10^{22}}{7,5 \cdot 10^8} = \frac{10 \cdot 10^{21}}{7,5 \cdot 10^8} \approx 1,3 \cdot 10^{13}$$
 Eisenatome.

Abb. 1.6: 1 g Eisen wird in Gedanken im Wasser der Weltmeere verteilt

Könnte man dieses 1 g Eisen gleichmäßig im Wasser der Weltmeere (1 370 Mio. $km^3 = 1,37 \cdot 10^{18} m^3 =$ $1,37 \cdot 10^{21}$ Liter) verteilen, würden sich noch in jedem Liter Meerwasser etwa 7 Atome befinden (Abb. 1.6):

$$N = \frac{10^{22}}{1,37 \cdot 10^{21}} = \frac{10 \cdot 10^{21}}{1,37 \cdot 10^{21}} \approx 7 \text{ Atome / I}$$

Beispiel 2: Wie viel Wassermoleküle befinden sich in 1 g Wasser?

Die relativen Molekularmassen betragen (gerundet): Wasserstoff: 2; Sauerstoff: 16; Wasser: 18. Also enthalten 18 g Wasser 6,022 \cdot 10²³ Wassermoleküle. 1 g Wasser enthält dann:

$$\frac{N}{18} = \frac{6,022 \cdot 10^{23}}{18} = \frac{60,22 \cdot 10^{22}}{18}$$

$$\approx 3,4 \cdot 10^{22} \text{ Wassermoleküle.}$$

1.3 Aufbau der Atomkerne

Proton und Neutron haben fast die gleiche Masse (Tab. 1-4). Die Masse des Elektrons beträgt aber nur 1/1836 der Masse des Protons. Das ist ein so geringer Betrag, dass man ihn bei der Betrachtung der Atommassen vernachlässigen kann. Praktisch ist die gesamte Masse eines Atoms in seinem Kern vereinigt. Eine wichtige Eigenschaft des Atomkerns ist seine Ladung.

Abb. 1.7: Atomkerne im Modell

Kern eines	Kern eines	Kern eines	
Heliumatoms	Kohlenstoffatoms	Uranatoms	
⁴ ₂ He	¹² ₆ C	²³⁵ ₉₂ U	
Massenzahl: 4	Massenzahl: 12	Massenzahl: 235	
Kernladungszahl: 2	Kernladungszahl: 6	Kernladungszahl: 92	

Tab. 1-5: Kennzeichnung des Kernaufbaus

Die Anzahl der positiven Elementarladungen im Kern ist gleich der Anzahl der Hüllelektronen eines neutralen Atoms. Die Masse eines Atomkerns setzt sich aus der Masse der Protonen und der ein wenig größeren Masse der Neutronen zusammen (Abb. 1.7).

Zur Kennzeichnung des Kernaufbaus wird die Massenzahl (Anzahl der Protonen und Neutronen) oben links, die Kernladungszahl (Anzahl der Protonen) unten links neben das chemische Symbol gesetzt (Tab. 1-5). Eine Atomart, die durch Protonenzahl und Neutronenzahl charakterisiert ist, wird als Nuklid bezeichnet.

Für die Elementarteilchen gilt:

¹ ₁ p	¹ ₀ n	-1 e
Proton	Neutron	Elektro

roton	Neutron	Elektron

Die Atome eines Elements können bei gleicher Protonenzahl eine unterschiedliche Neutronenzahl besitzen. Atome mit gleicher Kernladungszahl (Ordnungszahl), aber mit unterschiedlicher Massenzahl, bezeichnet man als Isotope. Sie unterscheiden sich nicht in ihren chemischen, wohl aber in ihren kernphysikalischen Eigenschaften. Im natürlichen Wasserstoff treten drei Isotope auf (Abb. 1.8):

99,985 % ¹₁**H**

Wasserstoff, leichter Wasserstoff. Der Kern besteht aus einem Proton $(\frac{1}{1}p)$.

Abb. 1.8: Die Kerne der Wasserstoffisotope (Modelldarstellung)

0,015% $^{2}_{1}H = D$ Schwerer Wasserstoff oder Deuterium (D).

> Der Kern besteht aus einem Proton und einem Neutron; er wird auch Deuteron genannt.

kleinste ${}^{3}_{1}H = T$ Überschwerer Wasserstoff oder Mengen Tritium (T).

> Der Kern besteht aus einem Proton und zwei Neutronen und heißt Triton. Tritium wird in den oberen Schichten der Atmosphäre durch die kosmische Strahlung ständig neu gebildet und entsteht auch in Kernkraftwerken. Tritium ist radioaktiv.

Ein Wassermolekül, das z. B. die Wasserstoffisotope H-1 und H-3 (T) enthält, wird deshalb HTO abgekürzt. Enthält das Molekül nur das Isotop H-2, kürzt man es D₂O ab.

Da die Kernladungszahl für jedes Element festliegt, die Massenzahl aber verschieden sein kann, wird bei einer abgekürzten Schreibweise lediglich die Massenzahl rechts neben den Namen oder das Symbol des betreffenden Elements geschrieben, z. B.: H-3, He-4, C-12, U-235, U-238.

2 Kernumwandlungen und Radioaktivität

2.1 Alpha-, Beta- und Gammastrahlen

Bestimmte Nuklide (Atomkernarten) haben die Eigenschaft, sich von selbst, ohne äußere Einwirkung, umzuwandeln. Dabei wird Strahlung ausgesandt. Diese Eigenschaft bezeichnet man als Radioaktivität. Die Kerne radioaktiver Atome heißen Radionuklide. Von den bisher bekannten etwa 2 800 verschiedenen Nukliden, die Isotope der 114 chemischen Elemente sind, sind nur 264 stabil, alle anderen zerfallen spontan. Bei den in der Natur vorkommenden Radionukliden spricht man von natürlicher Radioaktivität, bei den durch künstliche Kernumwandlung erzeugten Radionukliden von künstlicher Radioaktivität.

2.1.1 Alphastrahlen

Die beim radioaktiven Zerfall von Atomkernen ausgesandten Heliumkerne (zwei Protonen, zwei Neutronen) werden Alphastrahlen genannt (Abb. 2.1). Die Geschwindigkeit der austretenden Alphateilchen liegt zwischen etwa 15 000 km/s und 20 000 km/s.

Beispiel: Der Kern des Radium-226 hat 88 Protonen und 138 Neutronen. Seine Kernladungszahl beträgt demnach 88, seine Massenzahl 226. Der Kern ist nicht stabil, da die Kernkräfte die abstoßenden Kräfte der Protonen untereinander nicht vollständig aufheben können. Der Kern hat deshalb das Bestreben, in einen stabileren Zustand überzugehen.

Dies geschieht in mehreren Stufen, von denen hier nur eine dargestellt ist. Der Kern schleudert einen Heliumkern heraus, wodurch die Kernladungszahl um 2, die Massezahl um 4 sinkt. Es entsteht das neue Element Radon (Rn). Dieser Vorgang kann durch eine Kernreaktionsgleichung beschrieben werden:

 $^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He

Abb. 2.1: Alphazerfall in Modelldarstellung

In der Gleichung wird links vom Reaktionspfeil der Kernaufbau des Ausgangsatoms, rechts davon das Ergebnis des Zerfalls geschrieben. Dabei müssen auf beiden Seiten die Summe der Kernladungszahlen (86 + 2 = 88) und die Summe der Massenzahl (222 + 4 = 226) übereinstimmen. Das beim Zerfall entstandene Radon-222 ist ebenfalls radioaktiv und zerfällt weiter. Das entstandene Radon gibt zwei Hüllelektronen an die Umgebung ab. Die ausgesandten Alphateilchen nehmen aus der Umgebung zwei Elektronen auf, wodurch Heliumatome entstehen.

Bei alphastrahlenden Substanzen, die sich in geschlossenen Behältern befinden, kann deshalb nach einiger Zeit Heliumgas nachgewiesen werden: 1 g Radium und seine Folgeprodukte erzeugen in einem Jahr insgesamt 0,156 cm³ Heliumgas (Angaben auf 0 °C und Atmosphärendruck bezogen). Das entspricht etwa 4,29 · 10¹⁸ Heliumatomen.

2.1.2 Betastrahlen

Beim Betazerfall wird aus dem Kern eines Radionuklids ein Elektron abgegeben. Seine Geschwindigkeit kann zwischen Null und nahezu Lichtgeschwindigkeit liegen. Diese Elektronen bilden dann Betastrahlen (Abb. 2.2).

Das Elektron entsteht, wenn sich im Kern ein Neutron in ein Proton und ein Elektron umwandelt.

Reaktionsgleichung:	${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e$
Beispiel eines Beta ⁻ -Zerfalls:	$^{137}_{55}$ Cs $\rightarrow ^{137}_{56}$ Ba + $^{0}_{-1}$ e

Cäsium-137 wandelt sich unter Aussenden eines Elektrons in Barium-137 um. Da jedes Elektron eine negative Elementarladung trägt, werden die Strahlen auch als Beta⁻-Strahlen bezeichnet. Beta⁻-Strahlen bilden einen Elektronenstrom, der die gleichen Eigenschaften zeigt wie der elektrische Strom in metallischen Leitern. So erzeugen z. B. beide ein Magnetfeld, das in konzentrischen Kreisen zur Ausbreitungsrichtung liegt. Da nach dem

Abb. 2.2: Modell zur Entstehung der Beta -Strahlen

6

Aussenden eines Betateilchens der Kern ein Proton mehr besitzt, muss auch die Kernladungszahl des neu entstandenen Elements um eins höher liegen. Die Zahl der Kernteilchen hat sich jedoch insgesamt nicht verändert, wodurch die ursprüngliche Massenzahl erhalten bleibt.

Bei natürlichen und künstlich hergestellten Radionukliden tritt eine Strahlung auf, bei der Teilchen von der Masse eines Elektrons aber mit einer positiven Ladung ausgeschleudert werden. Es sind Positronen. Die Strahlung wird deshalb Positronenstrahlung genannt (Abb. 2.3).

Abb. 2.3: Modell zur Entstehung der Beta⁺-Strahlen

Das Positron entsteht, wenn sich im Kern ein Proton in ein Neutron und eine Positron umwandelt.

Reaktionsgleichung:	¹ ₁ p	\rightarrow	${}_{0}^{1}$ n	+	⁰ +1 e
Beispiel eines Beta ⁺ -Zerfalls:	²² 11 Na	\rightarrow	²² Ne	+	⁰ +1 e

Natrium-22 wandelt sich unter Aussenden eines Positrons in Neon-22 um. Beim Beta⁺-Zerfall nimmt die Kernladungszahl um eine Einheit ab, während sich die Massenzahl nicht verändert.

Beim Betazerfall wird außerdem ein weiteres Teilchen ausgesandt, das keine Ruhemasse und keine elektrische Ladung besitzt. Bei der Umwandlung eines Neutrons entsteht ein Antineutrino, bei der Umwandlung eines Protons ein Neutrino. Neutrinos und Antineutrinos besitzen ein großes Durchdringungsvermögen und sind deshalb schwer nachzuweisen. (Bei den Kernreaktionsgleichungen werden hier aus Gründen der Vereinfachung Neutrino oder Antineutrino nicht mit angegeben.)

2.1.3 Gammastrahlen

Bei den Kernumwandlungen kann eine energiereiche Wellenstrahlung vorkommen. Sie hat die gleiche Natur wie das sichtbare Licht, sie ist nur energiereicher als dieses (kürzere Wellenlänge) und heißt Gammastrahlung. Abgesehen von der Art des Entstehens ist sie praktisch iden-

Abb. 2.4: Abgabe eines Gammaquants aus einem Atomkern (Modelldarstellung)

tisch mit der Röntgenstrahlung. Die Gammastrahlung wird – wie auch das sichtbare Licht – in einzelnen "Portionen" (Quanten, Photonen) abgegeben (Abb. 2.4).

Die Gammaquanten bewegen sich mit Lichtgeschwindigkeit. Gammastrahlen treten häufig begleitend bei einem Alpha- oder Betazerfall auf. Der Atomkern gibt noch vorhandene überschüssige Energie in Form eines oder mehrerer Gammaquanten ab und geht dabei von einem höheren (angeregten) zu einem niedrigeren Energieniveau über. Durch den Gammazerfall ändert sich also der Energieinhalt des Kerns, nicht jedoch dessen Kernladungsund Massenzahl.

Beispiel:

$$^{137m}_{56}$$
Ba $\rightarrow ^{137}_{56}$ Ba +

γ

Ein angeregter (m: metastabiler) Bariumkern gibt ein Gammaquant ab und geht dadurch in einen niedrigeren und gleichzeitig stabilen Energiezustand über. Gammaquanten stellen eine "Portion" elektromagnetischer Energie dar. Da Energie und Masse einander äquivalent (gleichwertig) sind, lässt sich jedem Energiebetrag eine Masse zuordnen. Dies geschieht nach der von Einstein formulierten Gleichung:

$$E = m \cdot c_0^2 \rightarrow m = E / c_0^2$$

(E: Energie; m: Masse; c₀: Vakuumlichtgeschwindigkeit).

Bei Gammaquanten, die von radioaktiven Atomkernen ausgesandt werden, ergeben sich Massen, die etwa der Elektronenmasse entsprechen.

Die als Teilchen aufgefassten Gammaquanten besitzen aber keine Ruhemasse und keine elektrische Ladung. Gammaquanten treten außer bei Kernumwandlungen auch noch bei anderen Reaktionen zwischen Elementarteilchen auf.

2.2 Protonen- und Neutronenstrahlen

Die erste künstliche Kernumwandlung wurde in einer mit Stickstoff gefüllten Nebelkammer beobachtet. Aus den Untersuchungen ergab sich folgende Erklärung: Ein Alphateilchen (Heliumkern) dringt in den Kern eines Stickstoffatoms ein und verschmilzt mit ihm für kurze Zeit zu einem hochangeregten Zwischenkern des Elements Fluor. Der Fluorkern zerfällt in einen Sauerstoffkern und ein Proton (Abb. 2.5).

Abb. 2.5: Nachweis freier Protonen durch Rutherford 1919 (Modelldarstellung)

Kernreaktionsgleichung:

$${}^{4}_{2}\text{He} + {}^{14}_{7}\text{N} \rightarrow {}^{18}_{9}\text{F} \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}\text{p}$$

Als abgekürzte Schreibweise für Kernreaktionen wird folgende Zusammenstellung benutzt:

Bei dieser Schreibweise wird der Zwischenkern nicht mit angegeben. Nach der Kernreaktion erfolgt ein Elektronenausgleich, d. h. es werden aus der Umgebung so viele Elektronen aufgenommen (oder in anderen Fällen an sie abgegeben), dass die beteiligten Atome wieder elektrisch neutral sind.

Werden Neutronen aus einem Atomkern herausgeschlagen oder herausgeschleudert, entsteht dadurch eine Neutronenstrahlung. Das kann z. B. in den oberen Schichten der Atmosphäre durch Zusammenprall der kosmischen Primärteilchen mit den Luftmolekülen geschehen oder bei Kernspaltungen in einem Kernkraftwerk.

Bei der Kernspaltung nimmt der Kern des Uran-235 ein Neutron auf, wodurch er in starke Schwingungen gerät und sich spaltet. Dabei fliegen zwei mittelschwere Trümmerkerne (Spaltprodukte) und zwei bis drei Neutronen auseinander. Außerdem werden einige Gammaquanten abgegeben. Bei Kernspaltungen entsteht also Neutronenstrahlung (Abb. 2.6).

Ein freies Neutron ist radioaktiv. Es zerfällt in ein Proton und ein Elektron sowie ein Antineutrino (in der Reaktionsgleichung weggelassen).

ò

Reaktionsgleichung:

$$n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e$$

2.3 Elektroneneinfang

Bei natürlichen und künstlich erzeugten Radionukliden kann noch eine weitere Umwandlungsart auftreten, der so genannte Elektroneneinfang. Der Kern eines neutronenarmen Atoms fängt meist aus der innersten Schale der Elektronenhülle (der K-Schale, daher auch der Name K-Einfang) ein Elektron ein, wodurch sich ein Proton in ein Neutron umwandelt (Abb 2.7).

Der in der Atomhülle frei gewordene Platz wird von einem äußeren Elektron wieder aufgefüllt. Dabei entsteht eine charakteristische Röntgenstrahlung.

Reaktionsgleichung: Beispiel:

$$^{40}_{19}$$
K + $^{0}_{-1}$ e $\rightarrow ^{40}_{18}$ Ar

 $^{1}_{1}p + ^{0}_{-1}e \rightarrow ^{1}_{0}n$

Das in der Natur vorkommende Isotop Kalium-40 wandelt sich zum Teil unter Elektroneneinfang in das Isotop Argon-40 um. Auch beim Elektroneneinfang nimmt die Kernladungszahl um eine Einheit ab, während die Massenzahl unverändert bleibt. Der Elektroneneinfang führt also zu dem gleichen Ergebnis wie die Abgabe eines Positrons.

Abb. 2.7: K-Einfang im Modell

2.4 Halbwertszeit

Bei einem einzelnen radioaktiven Atomkern kann man nicht vorhersagen, zu welchem Zeitpunkt er zerfallen wird. Er kann in der nächsten Sekunde oder aber erst in Tausenden von Jahren zerfallen. Bei einer großen Anzahl von Atomen lässt sich aber eine Wahrscheinlichkeitsaussage über den Ablauf des Zerfalls machen.

Es zerfällt zum Beispiel von einer Menge Wasserstoff-3 (Tritium) in ca. 12,3 Jahren die Hälfte der Atome, nach

Abb. 2.8: Zerfall des Wasserstoff-3 (Tritium)

weiteren 12,3 Jahren ist von dem Rest wiederum die Hälfte zerfallen usw. (Abb 2.8). Die Zeit, nach der die Hälfte einer bestimmten Anzahl von Atomkernen zerfallen ist, wird Halbwertszeit ($T_{1/2}$) genannt. Sie ist für jedes Radionuklid eine charakteristische Größe. Die Halbwertszeiten liegen zwischen Milliarden Jahren und Sekundenbruchteilen (Tab. 2-1).

Element	Halbwertszeit	Zerfallsart
Uran-238	4,468 · 10 ⁹ a	Alpha
Kalium-40	1,281 · 10 ⁹ а	Beta-Minus, K-Einfang
Plutonium-239	2,411 · 10 ⁴ a	Alpha
Cäsium-137	30,17 a	Beta-Minus
lod-131	8,02 d	Beta-Minus
Thorium-231	25,5 h	Beta-Minus
Radon-220	55,6 s	Alpha
Polonium-214	1,64 · 10 ⁻⁴ s	Alpha

Tab. 2-1: Halbwertszeiten einiger Radionuklide (a = Jahr, d = Tag, h = Stunde, s = Sekunde)

3 Energie von Strahlungsteilchen und Gammaquanten

3.1 Energieeinheit Elektronvolt

Zum Messen von Energien werden die Einheiten Newtonmeter (Nm), Joule (J) und Wattsekunde (Ws) verwendet. Dabei gilt:

Bei Kernumwandlungen treten sehr viel kleinere Energiewerte auf. Deshalb ist zusätzlich die Einheit Elektronvolt (eV) festgelegt worden. Definition: 1 eV ist die Energie, die ein Elektron aufnimmt, wenn es beim freien Durchlaufen einer Spannung von 1 V beschleunigt wird (Abb. 3.1). Je höher also die Spannung ist, desto größer wird die Bewegungsenergie der Teilchen.

Vielfache von 1 eV:

1 Kiloelektronvolt (keV)	$= 10^{3} \text{ eV}$
1 Megaelektronvolt (MeV)	$= 10^{6} \text{ eV}$
1 Gigaelektronvolt (GeV)	$= 10^{9} \text{ eV}$

Für Umrechnungen gilt:

$$1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}$$

 $1 \text{ J} = 6,242 \cdot 10^{18} \text{ eV}$

Beispiele:

Die Bewegungsenergie von Gasatomen und Gasmolekülen ist von der Temperatur des Gases abhängig. Bei Zimmertemperatur beträgt sie etwa 0,04 eV (Bewegungsenergie). Energiebeiträge dieser Größenordnung (einige 0,01 eV) werden als thermische Energie bezeichnet. Thermische Neutronen, die bei der Spaltung der Kerne von Uran-235 eine Rolle spielen, haben eine Energie von etwa 0,0253 eV. Das entspricht einer mittleren Geschwindigkeit des einzelnen Neutrons von etwa 2 200 m/s = 7 920 km/h. Freie Elektronen in einem Metalldraht führen Schwirrbewegungen aus. Ihre mittlere Geschwindigkeit liegt bei rund 10⁵ m/s.

3.2 Energie der Teilchenstrahlen

Der Zerfall eines radioaktiven Atomkerns kann durch eine Kernreaktionsgleichung oder mit einem Umwandlungsschema beschrieben werden. Beim Umwandlungsschema geben die waagerechten Linien die Energieniveaus an. Senkrechte Linien bedeuten Energieänderungen, Verschiebungen nach links eine Verringerung an positiver Kernladung, Verschiebungen nach rechts eine Zunahme an positiver Kernladung. Der Buchstabe m ist die Abkürzung für das Wort metastabil (bedingt stabil, unvollkommen stabil).

3.2.1 Energie von Alphateilchen

Die von einem Atomkern ausgesandten Alphateilchen besitzen alle dieselbe Energie oder beim Zerfall in mehrere Gruppen unterschiedliche Energien. Die Alphateilchen einer Gruppe haben aber immer dieselbe Energie. Beispiele für einen Gruppenzerfall (Abb. 3.2):

Hat das Alphateilchen die Maximalenergie erhalten, ist der Kern in den Grundzustand übergegangen. Ist die Energie des Alphateilchens kleiner, befindet sich der Kern noch in einem angeregten Zustand. Die restliche Energie des angeregten Kerns wird in Form eines Gammaquants

Abb. 3.2: Umwandlungsschema für Ra-226

10

Radionuklid	Energie der Alphateilchen in MeV
Rn-222	5,48948;
Ra-226	4,7843; 4,601;
U-238	4,198;
Pu-239	5,157; 5,144;

Tab. 3-1: Energien von Alphateilchen

(Die Punkte hinter den Energiewerten weisen auf weitere Alphateilchen hin, die mit geringerer Häufigkeit auftreten.)

abgegeben. Beispiele für die Energie von Alphateilchen einiger Radionuklide sind in Tab. 3-1 angegeben.

3.2.2 Energie von Betateilchen

Die beim Betazerfall auftretenden Elektronen oder Positronen besitzen alle unterschiedliche Energien. Sie können zwischen Null und einem Maximalwert liegen, wobei die größte Häufigkeit für jedes Radionuklid bei einem bestimmten Energiewert liegt (Abb. 3.3). Die mittlere Energie \overline{E} der Betateilchen ergibt sich zu:

$$\overline{E} \approx \frac{1}{3} \cdot \overline{E}_{\max}$$

Die kontinuierliche Energieverteilung rührt daher, dass beim Betazerfall außer dem Elektron ein Antineutrino bzw. außer dem Positron ein Neutrino entsteht. Die frei werdende Zerfallsenergie verteilt sich dann nach Zufall in beliebigen Bruchteilen der Maximalenergie auf die beiden Elementarteilchen.

Nach heutiger Erkenntnis besitzen Neutrinos und Antineutrinos keine Ruhemasse und keine Ladung. Sie stellen also eine Portion besonderer Energie dar. Da sie ein außerordentlich hohes Durchdringungsvermögen haben, lassen sie sich nur schwer nachweisen.

In Kernreaktionsgleichungen, Umwandlungsschemata und Tabellen wird nur die Maximalenergie angegeben (Tab. 3-2).

Radionuklid	Maximalenergie von Beta [–] -Teilchen in MeV
H-3	0,02
Co-60	0,3; 1,5
Pb-210	0,02; 0,06
Bi-214	1,5; 3,3;

Tab 3-2: Maximale Beta⁻-Energie einiger Radionuklide

Beispiel für einen Beta--Zerfall:

$$^{32}_{15} \mathsf{P} \rightarrow ^{0}_{-1} \mathsf{e} + ^{32}_{16} \mathsf{S}$$

Wird durch Elektron und Antineutrino bzw. Positron und Neutrino nicht die gesamte Zerfallsenergie verbraucht, entstehen zusätzlich noch ein Gammaquant oder mehrere Gammaquanten (Abb. 3.4).

Abb. 3.4: Umwandlungsschema für Co-60

3.2.3 Energie von Neutronen

Abhängig von der Entstehungsart haben die bei Kernprozessen erzeugten Neutronen eine einheitliche Energie oder ihre Energie liegt zwischen Null und einem Höchstwert (kontinuierliche Energieverteilung). Bei der Freisetzung von Neutronen mit Hilfe von Gammaquanten (Kernphotoeffekt) entstehen Neutronen, die alle eine einheitliche Geschwindigkeit und damit auch gleich viel Bewegungsenergie besitzen. Beispiel (Abb. 3.5):

$$^{2}_{1}H + \gamma \rightarrow ^{1}_{0}n + ^{1}_{1}H$$

Neutronen, die durch eine (α , n)-Reaktion erzeugt werden, besitzen unterschiedliche Geschwindigkeiten, d. h. unterschiedlich viel Bewegungsenergie. Beispiel für eine solche Neutronenquelle ist die so genannte Pu-Be-Quelle. In

Abb. 3.5: Strahlungseinfang bei schwerem Wasserstoff (Modelldarstellung)

dieser Quelle liefert der Zerfall des Plutoniums das Alphateilchen für die Kernreaktion.

Kurzschreibweise der Reaktion:

$${}^{9}_{4}$$
Be (α , n) ${}^{12}_{6}$ C

Vollständige Reaktion:

$${}^{4}_{2}\text{He} + {}^{9}_{4}\text{Be} \rightarrow {}^{13}_{6}\text{C} \rightarrow {}^{1}_{0}\text{n} + {}^{12}_{6}\text{C}$$
ca. 10 MeV

Die stärksten kommerziellen Neutronenquellen stellen heute die Kernreaktoren dar. In ihnen verwendet man in der Regel U-235 als spaltbares Material. Bei der Spaltung eines jeden Kerns entstehen zwei mittelschwere Trümmerkerne sowie zwei bis drei Neutronen. Diese Spaltneutronen haben unterschiedliche Geschwindigkeiten (Energien), wobei der Wert von etwa 0,7 MeV am häufigsten auftritt (Abb. 3.6).

Zur Charakterisierung der Neutronen nach ihrer Geschwindigkeit und damit ihrer Energie wird die Einteilung nach Tab. 3-3 verwendet. Die angegebenen Energiebeträge stellen Richtwerte dar, die Übergänge sind fließend.

Bezeichnung	Energie
langsame (thermische) Neutronen	< 10 eV
mittelschnelle (epithermische oder intermediäre) Neutronen	10 eV bis 0,1 MeV
schnelle Neutronen	> 0,1 MeV

Tab. 3-3: Einteilung der Neutronen nach ihrer kinetischen Energie

3.3 Energiebilanz bei der Kernspaltung

Bei der Spaltung eines Kerns U-235 (Abb. 3.7) werden ca. 210 MeV Energie frei. Sie setzen sich aus folgenden Teilbeträgen zusammen (Tab. 3-4):

Art der Energie	Energie
Bewegungsenergie der Spaltproduktkerne	175 MeV
Bewegungsenergie der prompten Neutronen	5 MeV
Energie der bei der Kernspaltung unmit- telbar entstehenden Gammastrahlung	7 MeV
Energie der Betateilchen (Betazerfall der Spaltprodukte)	7 MeV
Energie der Gammaquanten beim Zerfall der Spaltprodukte	6 MeV
Energie der Neutrinos	10 MeV
Summe	210 MeV

Tab. 3-4: Energiefreisetzung bei der Kernspaltung

Werden die Teilchen an der umgebenden Materie abgebremst, erhöhen sie die kinetische Energie der Materieteilchen und damit die Temperatur. Von dem Energiebetrag $\Delta E = 210$ MeV können in einem Kernreaktor nur etwa 190 MeV = 1,9 \cdot 10⁸ eV genutzt werden, das sind rund 90 %. Die Energie der prompten Gammastrahlen wird nur z. T. im Innern des Reaktors absorbiert. Die Zerfallsenergie

der Spaltprodukte wird z. T. erst im radioaktiven Abfall außerhalb des Reaktors frei. Die Energie der Neutrinos kann praktisch gar nicht genutzt werden, da sie mit Materie kaum in Wechselwirkung treten. Die pro Kernspaltung nutzbare Energie von 1,9 \cdot 10⁸ eV ist ein sehr kleiner Betrag. Da 1 J = 6,242 \cdot 10¹⁸ eV entspricht, müssen zur Erzeugung von 1 J Wärme rund 33 Milliarden Urankerne gespalten werden.

$$N = \frac{6,242 \cdot 10^{18} \text{ eV}}{1,9 \cdot 10^8 \text{ eV}} \approx 3,3 \cdot 10^{10} = 33 \text{ Mrd.}$$

3.4 Energie und Wellenlänge der Gammastrahlen

Alphateilchen, Betateilchen, Protonen und Neutronen, die bei Kernumwandlungen ausgeschleudert werden, ergeben eine Teilchenstrahlung. Gammaquanten bilden eine elektromagnetische Wellenstrahlung, die dieselbe Natur hat wie z. B. Rundfunkwellen, das sichtbare Licht oder Röntgenstrahlen. Die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen beträgt im Vakuum $c_0 =$ 299 792,458 km/s \approx 300 000 km/s. Sie ist unabhängig von der Energie der einzelnen Gammaquanten (Photonen). Die Energie der Gammaquanten kann bis zu 10⁷ mal so groß sein wie die Energie der Lichtquanten (Abb. 3.8). Die Energie eines einzelnen Quants ist nur von seiner Wellenlänge bzw. seiner Frequenz abhängig. Je kleiner die Wellenlänge (bzw. je größer die Frequenz) eines Quants, desto größer ist auch seine Energie (Abb. 3.9).

Gammaquanten werden u. a. nach einem Alpha- oder Betazerfall aus einem Kern emittiert, wenn dieser noch überschüssige Energie besitzt (Tab. 3-5). Das kann in einer oder in mehreren Stufen geschehen. Die Quanten jeder einzelnen Stufe haben alle dieselbe Energie. Die Anzahl der ausgesandten Quanten kann also größer sein als die Anzahl der umgewandelten Atomkerne.

Strahlenart	Frequenz in s ⁻¹	Wellenlänge	En	ergie
		in m	in eV	in J
Image: Strahler Image: Strahler Image: Strahler Image: Strahler	$\begin{array}{c} 3 \cdot 10^{0} \\ 3 \cdot 10^{1} \\ 3 \cdot 10^{2} \\ 3 \cdot 10^{3} \\ 3 \cdot 10^{4} \\ 3 \cdot 10^{5} \\ 3 \cdot 10^{6} \\ 3 \cdot 10^{7} \\ 3 \cdot 10^{8} \\ 3 \cdot 10^{9} \\ 3 \cdot 10^{10} \\ 3 \cdot 10^{10} \\ 3 \cdot 10^{11} \\ 3 \cdot 10^{12} \\ 3 \cdot 10^{12} \\ 3 \cdot 10^{13} \\ 3 \cdot 10^{14} \\ 3 \cdot 10^{15} \\ 3 \cdot 10^{16} \\ 3 \cdot 10^{17} \\ 3 \cdot 10^{18} \\ 3 \cdot 10^{19} \\ 3 \cdot 10^{20} \\ 3 \cdot 10^{21} \\ 3 \cdot 10^{22} \\ 3 \cdot 10^{23} \\ 2 \cdot 10^{24} \end{array}$	$\begin{array}{c} 10^{8} \\ 10^{7} \\ 10^{6} \\ 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{2} \\ 10 \\ 1 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-5} \\ 10^{-5} \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \end{array}$	$1,24 \cdot 10^{-14}$ $1,24 \cdot 10^{-13}$ $1,24 \cdot 10^{-12}$ $1,24 \cdot 10^{-11}$ $1,24 \cdot 10^{-9}$ $1,24 \cdot 10^{-9}$ $1,24 \cdot 10^{-8}$ $1,24 \cdot 10^{-6}$ $1,24 \cdot 10^{-6}$ $1,24 \cdot 10^{-6}$ $1,24 \cdot 10^{-3}$ $1,24 \cdot 10^{-3}$ $1,24 \cdot 10^{-1}$	$1,99 \cdot 10^{-33}$ $1,99 \cdot 10^{-32}$ $1,99 \cdot 10^{-32}$ $1,99 \cdot 10^{-31}$ $1,99 \cdot 10^{-29}$ $1,99 \cdot 10^{-29}$ $1,99 \cdot 10^{-28}$ $1,99 \cdot 10^{-26}$ $1,99 \cdot 10^{-26}$ $1,99 \cdot 10^{-25}$ $1,99 \cdot 10^{-23}$ $1,99 \cdot 10^{-21}$ $1,99 \cdot 10^{-21}$ $1,99 \cdot 10^{-20}$ $1,99 \cdot 10^{-19}$ $1,99 \cdot 10^{-18}$ $1,99 \cdot 10^{-17}$ $1,99 \cdot 10^{-16}$ $1,99 \cdot 10^{-15}$ $1,99 \cdot 10^{-13}$ $1,99 \cdot 10^{-12}$ $1,99 \cdot 10^{-13}$ $1,99 \cdot 10^{-12}$ $1,99 \cdot 10^{-11}$ $1,99 \cdot 10^{-11}$ $1,99 \cdot 10^{-10}$ $1,99 \cdot 10^{-10}$ $1,99 \cdot 10^{-10}$

13

Abb. 3.9: Wellenlänge bzw. Frequenz eines Quants bestimmen seine Energie (Modelldarstellung)

Radionuklid	Umwand- lungsart	Energie der häufigsten Gammaquanten in MeV
Be-7	K-Einfang	0,478
N-16	Beta-Minus	6,129; 7,115;
Na-22	Beta-Plus	1,275
Ba-137m	Gamma	0,662
U-235	Alpha	0,186;

Tab. 3-5: Gammaenergie einiger Radionuklide

3.5 Energie und Wellenlänge bei Röntgenstrahlen

Röntgenstrahlen werden mit Hilfe von Röntgenröhren erzeugt (Abb 3.10). In einer luftleeren Glasröhre stehen sich Katode und Anode gegenüber. Aus der glühenden Katode treten Elektronen aus (Glühemission), die durch eine hohe Spannung (bis 400 kV) zwischen Katode und Anode beschleunigt werden. Treffen sie auf die Wolframanode, entsteht Röntgenstrahlung. Dabei wird nur 1 % der Bewegungsenergie in Röntgenstrahlung, aber 99 % in Wärme umgewandelt. Die Anode muss deshalb fortlaufend gekühlt werden.

In einer Röntgenröhre entsteht überwiegend Röntgenbremsstrahlung. Ihre Entstehung kann man sich im Modell folgendermaßen vorstellen: Ein beschleunigtes Elektron dringt in ein Atom des Anodenmaterials ein und wird

Abb. 3.10:

Vereinfachte Schnittzeichnung einer Röntgenröhre (*U_H*: Heizspannung, K: Katode, A: Anode, R: Röhrenabschirmung, F: Strahlenaustrittsfenster)

Abb. 3.11: Erzeugung von Bremsstrahlung durch Abbremsung eines Elektrons im elektrischen Feld eines Atoms (Modelldarstellung)

dabei ganz oder teilweise abgebremst. Die verloren gegangene Bewegungsenergie wird in Form eines Röntgenquants abgegeben (Abb. 3.11).

Diese Quanten bilden die Röntgenbremsstrahlung mit kontinuierlicher Energieverteilung (Abb. 3.12). Je höher die Beschleunigungsspannung ist, desto mehr Röntgenquanten werden erzeugt und desto energiereichere bzw. härtere Quanten (Quanten mit kürzerer Wellenlänge) entstehen. (Beim Betrieb einer Röntgenröhre wird die Intensität der Strahlung durch die Höhe des Katodenstromes reguliert.) Außer der Bremsstrahlung wird noch eine vom Anodenmaterial abhängige charakteristische Röntgenstrahlung erzeugt. Sie besitzt ein Linienspektrum, das das kontinuierliche Bremsstrahlungsspektrum überlagert.

Röntgenstrahlen treten auch bei anderen technischen Einrichtungen auf, sobald beschleunigte Elektronen abgebremst werden (z. B. beim Fernsehgerät, Oszilloskop, Elektronenbeschleuniger).

Abb. 3.12: Röntgenbremsspektren bei verschiedenen Beschleunigungsspannungen

4 Wechselwirkungen von Strahlung mit Materie

Beim Auftreffen auf Materie wirken Strahlungsteilchen und Gammaquanten auf Hüllen oder Kerne der Atome ein und rufen an ihnen Veränderungen hervor. Dabei finden stets auch Rückwirkungen auf die Teilchen oder Quanten statt (z. B. Verringerung ihrer Energie, Änderung der Bewegungsrichtung). Man spricht deshalb allgemein von Wechselwirkungen der Strahlung mit Materie. Welche Wechselwirkungen stattfinden, ist von der Art der Strahlung, der Energie der Strahlungsteilchen bzw. Quanten und der Art des Wechselwirkungsmaterials abhängig. Häufig treten verschiedene Wechselwirkungen gleichzeitig auf, wobei meist eine überwiegt.

4.1 Wechselwirkungen von Alphateilchen mit Materie

Alphateilchen verlieren ihre Energie im Wesentlichen dadurch, dass sie Atome oder Moleküle der durchstrahlten Materie ionisieren oder anregen. Bei der Ionisierung eines Atoms wird ein Elektron aus seiner Hülle abgetrennt. Für diese Abtrennarbeit ist ein bestimmter Energiebetrag erforderlich. Wird dem Elektron mehr Energie zugeführt, als für die Abtrennung erforderlich ist, erhält das abgelöste Elektron die überschüssige Energie in Form von Bewegungsenergie. Sie kann so groß sein, dass das Elektron nun seinerseits ein weiteres Atom ionisiert (Sekundärionisation).

Durch die Abtrennung eines Elektrons aus der Atomhülle entsteht ein positives Ion. Das abgelöste Elektron kann sich an ein neutrales Atom anlagern, so dass sich ein negatives Ion bildet. Beide Ionen ergeben dann ein Ionenpaar (Abb. 4.1).

Gasart	H₂	He	N ₂	0,2	Luft	Ar
lonisierungs- energie in eV	36,3	41,1	34,7	31,1	34	26,1

Tab. 4-1: Energie zum Abtrennen des ersten Elektrons (lonisierungsenergie) bei verschiedenen Gasen

Wie viel Energie zur Bildung eines Ionenpaares erforderlich ist, zeigt Tab. 4-1.

Die Alphateilchen geben ihre Energie längs der Flugbahn nicht gleichmäßig ab, so dass die Anzahl der erzeugten lonenpaare pro Weglänge auch nicht gleich ist. Die in Abb. 4.2 dargestellte Kurve steigt mit wachsender Weglänge erst langsam, dann schnell an, um am Ende steil abzufallen. Es bedeutet, dass die größte Anzahl der lonenpaare pro Weglänge erst dann erzeugt wird, wenn das Alphateilchen bereits einen großen Teil seiner Bewegungsenergie verloren hat. Dieser Sachverhalt lässt sich vereinfacht dadurch erklären, dass sich langsame Teilchen längere Zeit in der Nähe der Atomhüllen aufhalten und verstärkt lonisationen hervorrufen können.

Bei der Anregung eines Atoms wird ein Hüllelektron vom Kern weiter entfernt und damit auf ein höheres Energieniveau gehoben. Beim Zurückspringen auf das Ausgangsniveau wird die zugeführte Energie in Form eines Strahlungsquants (Photons) oder mehrerer Strahlungsquanten abgegeben (Abb. 4.3).

Abb. 4.1: Ladungsverhältnisse bei der Bildung eines lonenpaares

Abb. 4.2: Ionenbildung längs der Bahn eines Alphateilchens in Luft

Abb. 4.3: Anregung eines Atoms durch ein Alphateilchen

Bei einer Ionisation oder Anregung gibt ein Alphateilchen Energie ab und wird dadurch langsamer. In Luft unter Normalbedingungen ist es nach 4 bis 7 cm auf thermische Geschwindigkeiten abgebremst. Es kann dann an Atomhüllen keine Veränderungen mehr herbeiführen und ist deshalb für Organismen ungefährlich. Ein abgebremstes Alphateilchen nimmt zwei freie Elektronen auf und wandelt sich dadurch in ein Heliumatom um:

$$He^{++} + 2e^{-} \rightarrow He$$

4.2 Wechselwirkungen von Betateilchen mit Materie

Treffen Betateilchen auf Materie, treten Ionisation, Anregung, Streuung und Erzeugung von Bremsstrahlung auf. Ionisation und Erzeugung von Bremsstrahlung sind die wichtigsten Prozesse. Bei einer Ionisierung ist die Anzahl der pro Weglänge erzeugten Ionenpaare 100 bis 1 000-mal kleiner als bei Alphateilchen (Tab. 4-2). Betastrahlung gehört deshalb zu einer Iocker ionisierenden Strahlung im Gegensatz zu Alphastrahlung, die dicht ionisiert.

Energie der	lonenpaare / cm	
in MeV	bei Alphateilchen	bei Betateilchen
1	60 000	50
10	16 000	45

Tab. 4-2: Erzeugung von lonenpaaren pro Weglänge

Ein Betateilchen muss also eine längere Strecke zurücklegen, um seine Energie durch lonisationen abzugeben. Die Reichweite von Betastrahlen ist deshalb größer als die von Alphastrahlen. Da Betateilchen aber eine kontinuierliche Energieverteilung besitzen, kann keine einheitliche Reichweite angegeben werden. Sie liegt in Luft zwischen einigen Zentimetern bis zu einigen Metern.

Auch bei Betateilchen steigt die Anzahl der gebildeten lonenpaare, wenn sie sich verlangsamen. Es wird ein Maximum erreicht, wenn die Teilchen zur Ruhe kommen. Reicht die Energie eines Betateilchens nicht aus, um ein Atom zu ionisieren, kommt es zu einer Anregung.

Betateilchen können auch dadurch an Bewegungsenergie verlieren, dass sie im elektrischen Feld eines Atoms abgebremst werden. Die dabei verlorene Energie wird in Form eines Energiequants (Photons) abgegeben (Röntgenbremsstrahlung).

Da Betateilchen eine sehr geringe Masse haben, werden sie bei Wechselwirkungen mit den Atomhüllen (Ionisation, Anregung) oder den Atomkernen (Strahlungsbremsung) aus ihrer ursprünglichen Bewegungsrichtung stark abgelenkt. Sie werden gestreut. Eine solche Ablenkung wird desto wahrscheinlicher, je geringer die Energie eines Elektrons ist. Sind die Betateilchen auf thermische Geschwindigkeiten abgebremst, werden sie entweder von positiven Ionen eingefangen oder sie lagern sich an neutralen Atomen an und bilden dadurch negative Ionen.

4.3 Wechselwirkungen von Neutronen mit Materie

Neutronen besitzen keine elektrische Ladung. Sie sind elektrisch neutral und können deshalb auf die Atomhüllen des Wechselwirkungsmaterials nicht einwirken. Aus diesem Grund finden direkte lonisationen und Anregungen nicht statt. Die Wechselwirkungen der Neutronen mit Materie beruhen auf Zusammenstößen mit den Atomkernen. Die dabei auftretenden Vorgänge sind von der Energie der Neutronen abhängig. Da viele Neutronenquellen Neutronen mit einer kontinuierlichen Energieverteilung emittieren, werden meist mehrere Wechselwirkungsprozesse gleichzeitig auftreten.

Elastische Zusammenstöße finden im Energiebereich 10 keV bis 1 MeV statt. Die Summe der Bewegungsenergien der Stoßpartner vor und nach dem Stoß ist dann gleich: $E_1 = E_2 + E_3$ (Abb. 4.4).

Abb. 4.4: Elastischer Stoß in Modelldarstellung $(E_1, E_2, E_3:$ Bewegungsenergien)

Zu unelastischen Zusammenstößen kommt es vorwiegend im Energiebereich zwischen 1 MeV und 10 MeV. Dabei ist die Summe der Bewegungsenergien vor und nach dem Stoß nicht gleich. Das Neutron hat den Atomkern angeregt, der die Anregungsenergie in Form eines Gammaquants wieder abgibt (Abb. 4.5).

Abb. 4.5: Unelastischer Stoß in Modelldarstellung (E_1, E_2, E_3) : Bewegungsenergien)

Ein Neutron kann seine Bewegungsenergie am besten auf einen Kern übertragen, wenn Kern und Neutron dieselbe Masse haben. Beim Kern eines Wasserstoffatoms (Proton) ist eine Energieübertragung zu fast 100 % möglich. Der von einem Neutron angestoßene Kern, der nun selbst Bewegungsenergie besitzt, wird Rückstoßkern genannt. Seine Bewegungsenergie kann so groß sein, dass er sich aus dem Atom- oder Molekülverband löst und andere Atome in seiner Umgebung ionisiert oder anregt. Wegen seiner großen Masse legt er dabei nur einen relativ kleinen Weg zurück, so dass eine sehr hohe Anzahl von Ionenpaaren pro Wegstrecke erzeugt wird.

Neutronen können von Atomkernen des Wechselwirkungsmaterials eingefangen werden, wodurch meist instabile Kerne entstehen. Sie wandeln sich wieder in stabile Kerne um, indem sie geladene Teilchen und oft gleichzeitig Gammaquanten aussenden.

Die Wahrscheinlichkeit für einen Neutroneneinfang ist von der Bewegungsenergie der Neutronen abhängig. Der Wirkungsquerschnitt ist ein Maß für die Wahrscheinlichkeit, dass eine bestimmte Kernreaktion eintritt. Seine Einheit ist 1 barn = 10^{-28} m². Das ist etwa die Querschnittsfläche eines Atomkerns. Sie ist meist desto größer, je langsamer die Neutronen sind. Das Neutron kann dann längere Zeit in Kernnähe verweilen, wodurch die Wahrscheinlichkeit für eine Einfangreaktion größer wird. Daneben gibt es noch den Resonanzeinfang, bei dem Neutronen ganz bestimmter Energie bevorzugt eingefangen werden (Abb. 4.6).

Abb. 4.6: Wahrscheinlichkeit für den Neutroneneinfang in Abhängigkeit von der Energie

Eine für die Reaktorregelung und den Strahlenschutz wichtige Kernreaktion ist der Neutroneneinfang durch Bor (Abb. 4.7). Die dabei entstehenden Alphateilchen wandeln sich durch Aufnahme von freien Elektronen in Helium um:

$${}^{1}_{0}n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He + \gamma$$

Abb. 4.7: Kernreaktion beim Neutroneneinfang mittels Bor in den Regelstäben eines Reaktors (Modelldarstellung)

Abb. 4.8: Aktivierung von Sauerstoff durch Neutronen und anschließender radioaktiver Zerfall (Modelldarstellung)

Der Sauerstoff-16, der im Kühlmittel eines Siedewasserreaktors enthalten ist, wandelt sich z. T. durch Neutroneneinfang in Stickstoff-16 um (Abb. 4.8). Er ist radioaktiv (Halbwertszeit 7,13 s), so dass besondere Strahlenschutzmaßnahmen getroffen werden müssen.

Stickstoff-16 zerfällt unter Aussendung eines Betateilchens zu Sauerstoff-16. Gleichzeitig werden sehr energiereiche Gammaquanten abgegeben.

$${}^{16}_{8}O + {}^{1}_{0}n \rightarrow {}^{16}_{7}N + {}^{1}_{1}p$$
$${}^{16}_{7}N \rightarrow {}^{16}_{8}O + {}^{0}_{-1}e + \gamma$$

Metallteile und Beton, die zum Aufbau eines Kernkraftwerkes verwendet werden, können durch Neutronenbestrahlung ebenfalls radioaktiv werden und dann über eine mehr oder weniger lange Zeit Strahlung aussenden.

γ

Beispiel 1:

5 2

$${}^{58}_{26}$$
 Fe + ${}^{1}_{0}$ n $\rightarrow {}^{59}_{26}$ Fe

(Aktivierung)

⁵⁹Co ⁵⁹₂₆Fe Mr y rad. Zerfall

Abb. 4.9: Aktivierung von Eisen durch Neutronen und anschließender radioaktiver Zerfall (Modelldarstellung)

Beispiel 2:

Die Absorption thermischer Neutronen im Körpergewebe geschieht hauptsächlich durch die folgenden Reaktionen. Die erste Reaktion führt zu einem stabilen Endkern, bei der zweiten Reaktion entsteht ein radioaktives Zwischenprodukt.

$${}^{1}_{1}H + {}^{1}_{0}n \rightarrow {}^{2}_{1}H + \gamma \quad (Abb. \ 4.10)$$

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + {}^{1}_{1}p \quad (Abb. \ 4.11)$$

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

Abb. 4.10: Neutroneneinfang durch H-1 (Modelldarstellung)

Aktivierung von Stickstoff durch Neutronen und an-Abb. 4.11: schließender radioaktiver Zerfall (Modelldarstellung)

4.4 Wechselwirkungen von Gammastrahlen mit Materie

Durchdringt Gammastrahlung Materie, finden eine Reihe von Wechselwirkungsprozessen mit den Hüllelektronen und den Atomkernen statt. Die Energien der Gammaquanten, die von natürlichen und künstlichen Radionukliden bzw. bei Wechselwirkungsprozessen emittiert werden, liegen im Bereich von 0,003 MeV und etwa 17 MeV. Abhängig von der Quantenenergie treten im Wesentlichen drei Wechselwirkungsprozesse auf: der Photoeffekt, der Comptoneffekt und der Paarbildungseffekt. Diese drei Effekte überlagern sich im Wechselwirkungsmaterial, wobei in einzelnen Energiebereichen einer der Prozesse überwiegt.

4.4.1 Photoeffekt

Beim Photoeffekt, der vorherrschend bei kleinen Quantenenergien und großen Kernladungszahlen des Absorbermaterials auftritt, kommt es zu einer Wechselwirkung zwischen den Quanten und den Elektronen der Atomhüllen. Die Energie eines von der Hülle aufgenommenen Quants dient zur Abspaltung eines Elektrons (oder mehrerer Elektronen). Überschüssige Energie erhält das abgetrennte Elektron als Bewegungsenergie. Der Photoeffekt führt also zu einer Ionisation (Abb. 4.12). Beim Photoeffekt verschwindet das Gamma-

Abb. 4.12: Photoeffekt (Modelldarstellung)

quant. Das frei werdende Elektron wird Photoelektron genannt. Es gibt seine Energie durch Anregung oder lonisation an die Atome der Umgebung ab (Sekundärstrahlung).

Der Photoeffekt findet bevorzugt an Elektronen der kernnahen Schalen (überwiegend der K-Schale) statt. Das Atom besitzt dann an dieser Stelle eine Lücke, in die ein Elektron aus einer weiter außen liegenden Schale springt. Die dabei frei werdende Energie wird als Röntgenquant emittiert. Diese Strahlung wird Röntgen-Fluoreszenzstrahlung genannt (Abb. 4.13). Sie kann entweder das Wechsel-

Abb. 4.13: Entstehung der Röntgenfluoreszenzstrahlung (Modelldarstellung)

wirkungsmaterial verlassen oder weitere Photoeffekte hervorrufen.

4.4.2 Comptoneffekt

Gammaquanten mittlerer Energie rufen im Wechselwirkungsmaterial vorwiegend den Comptoneffekt hervor. Dabei überträgt das Quant einen Teil seiner Energie auf ein in der äußeren Schale der Atomhülle sitzendes Elektron, das dadurch vom Atom abgetrennt wird (Comptonelektron). Das Quant besitzt nach der Einwirkung auf das Elektron eine verringerte Energie (größere Wellenlänge) und bewegt sich mit veränderter Flugrichtung weiter (Abb. 4.14).

Abb. 4.14: Comptoneffekt (Modelldarstellung)

Das Atom, an dem die Comptonstreuung stattgefunden hat, verliert ein Elektron seiner Hülle und wird dadurch ionisiert. Das gestreute Gammaquant kann weitere Effekte hervorrufen, bis seine Energie so niedrig geworden ist, dass es durch einen Photoeffekt ganz aufgezehrt wird. Das Comptonelektron kann im Wechselwirkungsmaterial zu Ionisationen und Anregungen führen.

Photoeffekt	Comptoneffekt
Ein Gammaquant wirkt auf ein kernnahes Elektron ein.	Ein Gammaquant wirkt auf ein äußeres Elektron ein.
Das Gammaquant überträgt seine gesamte Energie auf das Elektron und verschwindet dabei. (Abtrennarbeit, Beschleunigung des Elektrons)	Das Gammaquant überträgt einen Teil seiner Energie auf das Elektron (Abtrennarbeit praktisch Null, Beschleunigung des Elektrons) und wird als Quant mit niedrigerer Frequenz (größerer Wellenlänge) gestreut.
Das Elektron wird vom Atom losgelöst (lonisation).	Das Elektron wird vom Atom losgelöst (lonisation).
Das Photoelektron kann weitere Wechselwirkungen verursachen.	Das Comptonelektron kann weitere Wechselwirkungen verursachen.

Tab. 4-3: Vergleich von Photoeffekt und Comptoneffekt bei Gammaquanten

Beim Photoeffekt und beim Comptoneffekt reagieren Gammaquanten mit Hüllelektronen. Der Unterschied zwischen beiden Effekten ist in Tab. 4-3 zusammengestellt.

4.4.3 Paarbildung

Bei höherer Quantenenergie überwiegt im Wechselwirkungsmaterial der Paarbildungseffekt. Dabei wird das Quant im elektrischen Feld eines Atomkerns vernichtet und in ein Elektron und ein Positron umgewandelt (Abb. 4.15). Ein Quant muss mindestens eine Energie von 1,022 MeV besitzen, um die beiden Teilchen erzeu-

Abb. 4.15: Paarbildung (Modelldarstellung)

gen zu können. Überschüssige Quantenenergie übernehmen Elektron und Positron als Bewegungsenergie. Bei einer Energie E > 2,044 MeV können auch zwei Teilchenpaare erzeugt werden. Der Paarbildungseffekt spielt vor allem bei Elementen mit hoher Ordnungszahl eine Rolle.

Das beim Paarbildungseffekt entstandene Positron hat eine relativ geringe Lebensdauer. Nach der Übertragung der Bewegungsenergie auf das Wechselwirkungsmaterial vereinigt es sich mit einem Elektron und zerstrahlt dabei in zwei Gammaquanten von je 0,511 MeV. Dieser Vorgang stellt die Umwandlung von Materie in Energie dar (Abb. 4.16).

Abb. 4.16: Elektron und Positron vereinigen sich und zerstrahlen. Es entstehen zwei Gammaquanten. (Modelldarstellung)

Besitzen die bei Photoeffekt, Comptoneffekt oder Paarbildung erzeugten Elektronen genügend Energie und finden die Wechselwirkungen in einem Material mit höherer Ordnungszahl statt, kann dabei Bremsstrahlung erzeugt werden. Der primären Umwandlung von hoher Quantenenergie in kinetische Teilchenenergie folgt dann eine teilweise Rückumwandlung in Quanten niedriger Energie (Abb. 4.17).

Abb. 4.17: Umwandlung eines Gammaquants höherer Energie in kinetische Teilchenenergie und teilweise Rückumwandlung in ein Quant niedrigerer Energie (Modelldarstellung)

5 Strahlenmessung und Maßeinheiten

Der Mensch besitzt kein Sinnesorgan für ionisierende Strahlen. Sie lassen sich nur mit Hilfe von Messinstrumenten nachweisen. Strahlenmessungen sind nur möglich, wenn Wechselwirkungen der Strahlung mit Materie stattfinden. Erst wenn die Strahlung eine nachweisbare Veränderung hervorruft, kann diese erfasst werden. Der Grad der Veränderung ist dann ein Maß für die Intensität der verursachenden Strahlung. Einige besonders wichtige Messverfahren werden hier in vereinfachter Form vorgestellt.

5.1 Ionisationskammer

Eine lonisationskammer besteht im einfachsten Fall aus einem luftgefüllten Behälter, in dem sich zwei Elektroden befinden. Sie sind über einen Strommesser mit einer Gleichspannungsquelle verbunden. Gelangt Strahlung in das Innere, werden lonen erzeugt, und die Luft zwischen den Elektroden wird elektrisch leitend. Daraufhin kommt es zu einem Stromfluss, der durch ein Messgerät angezeigt wird (Abb. 5.1).

Abb. 5.1: Prinzipieller Aufbau einer Ionisationskammer

In der lonisationskammer werden positives lon und herausgelöstes Elektron zur jeweils entgegengesetzt geladenen Elektrode hin beschleunigt. Die Spannung wird so gewählt, dass einerseits lon und Elektron nicht mehr rekombinieren (sich wieder vereinigen) können, andererseits aber die Beschleunigung zu den Elektroden nicht so stark ist, dass durch Zusammenstöße mit Luftmolekülen weitere lonisationen ausgelöst werden. Die Stromstärke ist dann allein der Anzahl der primär erzeugten lonen bzw. Elektronen proportional. Die Stromstärken werden an einem Messgerät angezeigt. Zum Nachweis von Alpha- und Betateilchen werden die Wände der Ionisationskammer aus sehr dünnem Material hergestellt, damit die Teilchen möglichst ungehindert in das Innere gelangen können. Bei Gammaquanten wählt man dagegen dickere Wände, damit die Gammaquanten aus den Atomen der Kammerwand Elektronen herauslösen, die dann in der Luft in der Kammer weitere Ionisationen hervorrufen. Soll die Kammer näherungsweise den Verhältnissen in einem organischen Gewebe angepasst werden, verwendet man für den Aufbau spezielle Kunststoffe.

Die durch Strahlung erzeugten Elektronen stellen eine Ladungsmenge dar. Daraus wurde die früher benutzte Größe der Ionendosis hergeleitet. Die Ionendosis gibt die erzeugte Ladung pro Masse der durchstrahlten Luft an $(t = 0 \,^{\circ}\text{C}; p = 1013 \,\text{hPa})$. Wenn in 1 kg Luft durch ionisierende Strahlen so viele Ionen bzw. freie Elektronen erzeugt werden, dass im angeschlossenen Leiterkreis 1 Sekunde lang ein Strom von 1 A fließt, beträgt die Ionendosis $I = 1 \,\text{C/kg}$. Das entspricht $6,25 \cdot 10^{18}$ Elektronen bzw. Ionen pro 1 kg Luft oder $8,07 \cdot 10^{12}$ Ladungsträgerpaare pro 1 cm³ Luft. Für die Ionendosis wurde die Einheit Röntgen *R* verwendet. Für Umrechnungen gilt: 1 R = $2,58 \cdot 10^{-4} \,\text{C/kg}$.

5.2 Energiedosis

In Luft wird zur Bildung eines Ladungsträgerpaares die Energie von 34 eV benötigt. Da der Quotient 1 C/1 kg Auskunft darüber gibt, wie viel Paare erzeugt worden sind, lässt sich auch die Energie berechnen, die dafür notwendig war. Statt die erzeugte Ladung oder die erzeugten Ladungsträgerpaare anzugeben, kann man also auch die Energie betrachten, die bei der Ionisation auf die Luftmoleküle übertragen worden ist. Die von einem Stoff aufgenommene Energie kann ebenfalls als Maß für die physikalische Strahlenwirkung verwendet werden. Dafür ist die Energiedosis definiert worden. Die Energiedosis einer ionisierenden Strahlung gibt die pro Masse eines durchstrahlten Stoffes absorbierte Energie an:

Energiedosis = <u>absorbierte Strahlungsenergie</u>; Masse

$$D = \frac{E}{m}$$

Der Quotient 1 J/1 kg wird als Einheit für die Energiedosis verwendet. Der besondere Einheitenname für die Energiedosis ist das Gray (Gy):

$$I \text{ Gy} = \frac{1 \text{ J}}{1 \text{ kg}}$$

Die Energiedosis wurde früher in der Einheit Rad (rd oder rad) angegeben. Das Wort Rad ergibt sich aus der englischen Bezeichnung "radiation **a**bsorbed **d**ose". Für Umrechnungen gilt: 1 Gy = 100 Rad.

5.3 Organdosis

Mit der Energiedosis allein kann die biologische Strahlenwirkung nicht beurteilt werden. Es zeigt sich nämlich, dass bei gleichen Energiedosen, aber unterschiedlichen Strahlenarten, die hervorgerufenen Effekte unterschiedlich sein können. Wird z. B. von zwei gleichen biologischen Objekten das eine mit Alphastrahlen, das andere mit Betastrahlen bestrahlt und nehmen beide Objekte gleich viel Energie auf, so sind die durch die Alphastrahlen hervorgerufenen biologischen Strahlenwirkungen etwa 20-mal größer (Abb. 5.2). Die größere biologische Wirkung von Alphastrahlen kann durch die größere Anzahl erzeugter Ionen oder Anregungen pro Weglänge erklärt werden. Eine dichtere Ionisierung in einem kleinen Bereich ist viel schädlicher als eine gleich große Anzahl von Ionisationen, die auf einen größeren Bereich verteilt sind.

Abb. 5.2: Bei gleicher Energiedosis rufen Alphastrahlen eine größere biologische Wirkung hervor als Betastrahlen

Zur Berücksichtigung der unterschiedlichen biologischen Wirkung der verschiedenen Strahlenarten galten bisher so genannte effektive Qualitätsfaktoren. Die Internationale Strahlenschutzkommission (ICRP) hat 1991 statt dieser Qualitätsfaktoren den Strahlungs-Wichtungsfaktor w_R eingeführt (Tab. 5-1). Das Produkt aus der über das Gewebe oder Organ T gemittelten Energiedosis $D_{T,R'}$ die durch die Strahlung R erzeugt wird, und dem Strahlungs-Wichtungsfaktor w_R ist die Organdosis $H_{T,R}$. Besteht die Strahlung aus Arten und Energien mit unterschiedlichen Werten von w_R , so werden die einzelnen Beiträge addiert. Für die Organdosis H_T für das Gewebe oder Organ T gilt dann:

$$H_T = \sum_{\rm R} w_{\rm R} \cdot D_{T,R}$$

Da die Strahlungs-Wichtungsfaktoren Zahlenwerte ohne Einheit sind, ergibt sich als Einheit der Organdosis der Quotient J / kg (dieselbe Einheit wie für die Energiedosis). Als besonderer Einheitenname für die Organdosis Ist das Sievert (Sv) festgelegt worden. Die bisher übliche Bezeichnung für diese Dosisart war "Äquivalentdosis",

Strahlenart und Energiebereich	Strahlungs- Wichtungsfaktor w _r
Photonen, alle Energien	1
Elektronen, Myonen, alle Energien	1
Neutronen < 10 keV 10 keV bis 100 keV > 100 keV bis 2 MeV > 2 MeV bis 20 MeV > 20 MeV	5 10 20 10 5
Protonen, außer Rückstoß- protonen, Energie > 2 MeV	5
Alphateilchen, Spaltfragmente, schwere Kerne	20

Tab. 5-1: Strahlungs-Wichtungsfaktoren

ebenfalls angegeben in Sievert. Statt der Einheit Sievert wurde früher die Einheit Rem (rem = \mathbf{r} öntgen \mathbf{e} quivalent \mathbf{m} an) benutzt. Für Umrechnungen gilt: 1 Sv = 100 rem.

Die so definierte Organdosis und deren Angabe in der Einheit Sievert darf aufgrund der Herleitung der Strahlungs-Wichtungsfaktoren streng genommen nur für Personen und nur für Strahlendosen bis in den Bereich von etwa 0,5 bis 1 Sv verwendet werden. Die Energiedosis mit ihrer Einheit Gray kann dagegen für jede Dosis, jedes Lebewesen und jeden Stoff genutzt werden. Bei medizinisch-therapeutischen Strahlenanwendungen erfolgt daher wegen der normalerweise sehr hohen Dosiswerte die Dosisangabe in Gray.

5.4 Effektive Dosis

Da die Strahlenempfindlichkeit einzelner Organe bzw. Gewebe z. T. erhebliche Unterschiede aufweist, liefern die jeweiligen Organdosen unterschiedliche Beiträge zum strahlenbedingten Gesamtrisiko, also der Wahrscheinlichkeit für das Eintreten von Krebs oder Leukämie. Zur Berechnung der effektiven Dosis *E*, die ein Maß für das gesamte Strahlenrisiko darstellt, wurden deshalb von der Internationalen Strahlenschutzkommission im Jahr 1991 für verschiedene Organe und Gewebe Wichtungsfaktoren w_{T} (Tab. 5-2) eingeführt.

Die effektive Dosis *E* ist die Summe der mit dem zugehörigen Gewebe-Wichtungsfaktor w_{τ} multiplizierten Organdosen H_{τ} Dabei ist über alle in Tab. 5-2 aufgeführte Organe und Gewebe zu summieren. Die Einheit der effektiven Dosis ist ebenfalls das Sievert (Einheitenzeichen: Sv):

$$E = \sum_{\mathrm{T}} w_{\mathrm{T}} H_{\mathrm{T}}$$

Gewebe oder Organe	Gewebe-Wichtungs-faktoren w_{τ}
Gonaden	0,20
Dickdarm	0,12
Knochenmark (rot)	0,12
Lunge	0,12
Magen	0,12
Blase	0,05
Brust	0,05
Leber	0,05
Schilddrüse	0,05
Speiseröhre	0,05
Haut	0,01
Knochenoberfläche	0,01
andere Organe oder Gewebe *	0,05

* Für Berechnungszwecke setzen sich "andere Organe oder Gewebe" wie folgt zusammen: Bauchspeicheldrüse, Dünndarm, Gebärmutter, Gehirn, Milz, Muskel, Nebennieren, Niere und Thymusdrüse. In den außergewöhnlichen Fällen, in denen ein einziges der "anderen Organe oder Gewebe" eine Äquivalentdosis erhält, die über der höchsten Dosis in einem der 12 Organe liegt, für die ein Wichtungsfaktor angegeben ist, sollte ein Wichtungsfaktor von 0,025 für dieses Organ oder Gewebe und ein Wichtungsfaktor von 0,025 für die mittlere Organdosis der restlichen "anderen Organe oder Gewebe" gesetzt werden.

Tab. 5-2: Gewebe-Wichtungsfaktoren

5.5 Folgedosis

Die Bestrahlung des Gewebes oder von Organen durch inkorporierte radioaktive Stoffe ist von der Verweilzeit der Radionuklide im jeweiligen Gewebe oder Organ abhängig. Diese Verweilzeit ergibt sich aus dem Zusammenwirken des radioaktiven Zerfalls einerseits und dem Ausscheiden des Stoffes aus dem Körper aufgrund der Stoffwechselvorgänge andererseits. Die Organ-Folgedosis $H_{T}(\tau)$ bei einer Inkorporation zum Zeitpunkt t_0 ist das Zeitintegral der Dosisleistung $H_{T}(t)$ im Gewebe oder Organ T. Wird kein Integrationszeitraum t angegeben, ist für Erwachsene ein Zeitraum von 50 Jahren und für Kinder ein Zeitraum vom jeweiligen Alter bis zum Alter von 70 Jahren zu Grunde zu legen.

$$H_{T}(\tau) = \int_{t_{0}}^{t_{0}+\tau} \dot{H}_{T}(t) dt$$

5.6 Bestimmung der Impulsrate mit einem Zählrohr

Detektoren, die das Ionisationsprinzip nutzen, können auch als Zählrohre gebaut werden (z. B. Geiger-Mül-Ier-Zählrohr) (Abb. 5.3). Ein verschlossenes Metallrohr oder ein Glasrohr mit innen aufgedampftem Metallbelag bildet die Katode, ein dünner, im Innern axial angebrach-

Abb. 5.3: Schnitt durch ein gasgefülltes Endfensterzählrohr

ter Draht die Anode. Als Gasfüllung verwendet man Gemische aus Edelgasen mit Zusätzen von Halogenen bei Unterdruck. Die Spannung beträgt 500 bis 600 V. Damit Strahlungsteilchen in das Innere gelangen können, ist entweder die Rohrwand sehr dünn oder es gibt ein besonders dünnes Strahleneintrittsfenster. Gammaquanten können dagegen auch ein Metallrohr durchdringen und dabei Elektronen aus den Atomhüllen abtrennen. Das Ionisationsvermögen von Quanten ist energieabhängig und etwa 100-mal kleiner als das von Alpha- oder Betateilchen.

lonen, die im Innern des Rohres durch Strahlung entstanden sind, werden durch die Spannung so stark beschleunigt, dass lawinenartig weitere Ionisationen entstehen. Ein Ionenpaar kann dabei bis zu 10⁸ Elektronen bzw. Ionen erzeugen. Es entsteht also ein Stromstoß, der am Widerstand einen Spannungsabfall verursacht. Er wird elektronisch weiter verarbeitet und durch ein Zählgerät registriert. Dadurch ist es möglich, die Teilchenzahl zu zählen.

Solange im Zählrohr eine Entladung stattfindet, kann kein weiteres Teilchen registriert werden. Die Zeit, die vergeht, bis das Zählrohr nach der Registrierung eines Teilchens wieder arbeitsbereit ist, wird Totzeit genannt (positive lonen müssen zur Katode wandern, Spannung zwischen Katode und Anode muss sich wieder aufbauen). Bei hochwertigen Zählrohren ist die Totzeit < 10⁻⁴ s. Eine Bestimmung der Art und Energie der Teilchen, die den Impuls auslösen, ist mit einem Geiger-Müller-Zähler nicht möglich.

Der Proportionalzähler ist ein weiterer Detektor, der den lonisationsprozess in einem Gas zum Strahlungsnachweis nutzt. Aufgrund seiner besonderen Betriebsweise gestattet er eine Unterscheidung zwischen Alpha- und Betastrahlung. Er wird häufig als Detektor mit großen Strahleneintrittsfenstern gebaut. Er dient zur Überwachung großer Flächen (Hände, Schuhsohlen, Kleidung, Tischflächen usw.). Der Zählraum besteht aus einem flachen Körper von etwa 15 mm Höhe. Er ist auf der einen Seite mit

Abb. 5.4: Ganzkörper-Monitor mit großflächigen Proportionalzählern an einem Kontrollbereichsausgang

einem Strahleneintrittsfenster aus metallbedampfter, sehr dünner Kunststofffolie abgeschlossen. Durch den Detektor strömt als Zählgas Methan oder ein Argon-Methan-Gemisch. Daher auch der Name "Durchflusszähler". Die Anzahl der pro Zeiteinheit registrierten Teilchen oder Gammaquanten hängt neben der Aktivität der Quelle auch von der Größe des Strahleneintrittfensters ab. Durchflusszähler lassen sich auch zu größeren Einheiten zusammenschalten (Abb. 5.4).

5.7 Aktivität und spezifische Aktivität

Strahlungsteilchen und Strahlungsquanten, die bei Kernumwandlungen entstehen, werden von einer radioaktiven Substanz willkürlich nach allen Seiten ausgesandt. Ein Zählrohr kann also immer nur einen Teil der Strahlung registrieren. Um neben der Impulsrate auch angeben zu können, wie strahlungsaktiv eine untersuchte radioaktive Strahlenquelle insgesamt ist, hat man die Aktivität definiert. Die Aktivität gibt die Anzahl der Kernumwandlungen pro Zeit an.

Aktivität =
$$\frac{\text{Anzahl der Kernumwandlungen}}{\text{Zeit}}$$
; $A = \frac{\Delta N}{\Delta t}$

Die Anzahl der Kernumwandlungen wird als Zahlenwert ohne Einheit angegeben. Für die Zeit wird als Einheit die Sekunde gewählt. Die Einheit der Aktivität ist also $1/s = s^{-1}$ (reziproke Sekunde). Als besonderer Einheitenname für die Aktivität wurde das Becquerel (Bq) eingeführt.

Bei sehr kurzer Halbwertszeit eines Radionuklids nimmt seine Aktivität relativ schnell ab. So hat z. B. 1 pg (1 billionstel Gramm) I-131 eine Aktivität von rund 4 600 Bq. Da die Halbwertszeit von I-131 8,02 d beträgt, ist die I-131-Aktivität nach dieser Zeit auf 2 300 Bq gesunken, nach weiteren 8,02 d auf 1 150 Bq usw.

Viele Radionuklide bilden nach ihrer Umwandlung Tochterkerne, die wiederum radioaktiv sind. So wandelt sich z. B. Ra-226 in das radioaktive Edelgas Rn-222 um. Aktivitätsangaben für ein Radionuklid – in diesem Fall Ra-226 – beziehen sich aber immer auf die Ausgangssubstanz, nicht auf die angesammelten Folgeprodukte. Eine Angabe über die Aktivität kann sich allerdings auch auf die Gesamtheit der vorhandenen Radionuklide (Gesamtaktivität) oder auf ein einzelnes Radionuklid beziehen. Dieses muss immer mit angegeben werden.

Früher war die Einheit der Aktivität "Curie" (Ci). Für die Umrechnung gilt:

1	Curie	(Ci)	=	10 ⁰	Ci	=	3,7 · 10 ¹⁰	Bq
1	Millicurie	(mCi)	=	10 ⁻³	Ci	=	3,7 · 10 ⁷	Bq
1	Mikrocurie	(μ C i)	=	10-6	Ci	=	3,7 · 10 ⁴	Bq
1	Nanocurie	(nCi)	=	10 ⁻⁹	Ci	=	3,7 · 10 ¹	Bq
1	Picocurie	(pCi)	=	10 ⁻¹²	Ci	=	$3.7 \cdot 10^{-2}$	Bα

Abgeleitete Aktivitätseinheiten:

- Spezifische Aktivität (Bq/kg, Bq/g usw.), siehe Tab. 5-3;
- Aktivitätskonzentration (Bq/m³, Bq/l usw.);
- Flächenaktivität (Bq/m², Bq/cm² usw.);
- Aktivitätsrate: Bildung, Zufuhr oder Abgabe von Aktivität pro Zeitintervall (Bq/a, Bq/h, Bq/s usw.).

Radionuklid	spezifische Aktivität in Bq/g
H-3	3,6 · 10 ¹⁴
C-14	1,7 • 10 ¹¹
Fe-59	1,8 • 10 ¹⁵
Co-60	4,1 · 10 ¹³
Kr-85	1,4 · 10 ¹³
Sr-90	5,3 · 10 ¹²
I-131	4,6 • 10 ¹⁵
Xe-133	6,8 • 10 ¹⁵
Cs-134	4,8 • 10 ¹³
Cs-137	3,2 · 10 ¹²
U-nat	2,5 · 10 ⁴
Pu-239	2,3 · 10 ⁹
K-nat	3,1 • 10 ¹

Tab. 5-3: Spezifische Aktivität einiger Radionuklide (gerundet)

5.8 Aktivitätsbestimmung

Die spezifische Aktivität eines Stoffes (z. B. von Nahrungsmitteln) kann mit Hilfe eines Zählrohres bestimmt werden. Dazu muss ein besonderes Messverfahren angewandt werden. Es ist in Abb. 5.5 in vereinfachter Form dargestellt.

Zunächst wird die Messapparatur kalibriert. Dazu benutzt man eine Lösung, deren spezifische Aktivität genau bekannt ist (z. B. Lösung mit Cs-134, $A_{sp} = 540$ Bq/g). Von dieser Lösung entnimmt man z. B. genau 1 g, das man mit Wasser auf 1 l (1 kg) auffüllt. Das Wasser hat jetzt eine spezifische Aktivität von 540 Bq/kg (natürliche Aktivität nicht mitgerechnet). Anschließend wird ein dünnwandiges Zählrohr in die Flüssigkeit getaucht und die Impulsrate ermittelt. Es wird angenommen, dass sie 217 / s beträgt. Da im gesamten Wasser 540 Kernumwandlungen pro Sekunde stattfinden, ist demnach nur ein Teil der Strahlung vom Zählrohr registriert worden. Die Impulsrate muss also jeweils mit dem Korrekturfaktor

$$K = \frac{540}{217} = 2,488$$

multipliziert werden, um die tatsächliche Aktivität der Flüssigkeit zu erhalten.

In einem zweiten Schritt wird der Probenbehälter entleert, gesäubert und mit 1 I (1 kg) Milch gefüllt. Man taucht das Zählrohr erneut ein und bestimmt die Impulsrate. Sie soll hier 108,5 / s betragen. Da der Korrekturfaktor 2,488 beträgt, finden in der Milch 108,5 / s \cdot 2,488 = 270 Umwandlungen / s statt. Es ergibt sich also eine spezifische Aktivität von A_{sp} = 270 Bq / kg. Diese Angabe sagt jedoch nichts darüber aus, welche Radionuklide in der Milch vorhanden sind. Durch die Glaswand des Zählrohres gelangen nur die Gammaquanten und die energiereichen Betateilchen. Bei reinen Alphastrahlern oder reinen Betastrahlern muss ein anderes Messverfahren gewählt werden.

Abb. 5.5: Bestimmung der spezifischen Aktivität (vereinfachte Darstellung)

5.9 Bestimmung von Radionukliden mit der Gammaspektroskopie

Bei der Bestimmung der Gesamtaktivität kann man nicht angeben, welche Radionuklide die Strahlung verursacht haben. Da die einzelnen Radionuklide aber für den Menschen unterschiedlich gefährlich sind, muss man sie aus Gründen des Strahlenschutzes einzeln bestimmen.

Fast alle Radionuklide senden Gammaquanten einer charakteristischen Energie aus (Tab. 5-4). Durch Bestimmung der Gammaenergien lassen sich die Radionuklide identifizieren.

Dafür verwendet man heute bevorzugt Halbleiterdetektoren. Der Halbleiterdetektor besteht im Prinzip aus einer Halbleiterdiode, die in Sperrrichtung betrieben wird. Dringt ein Gammaquant in die Sperrschicht ein, wird in ihr ein Elektron-Loch-Paar erzeugt. Die Ladungstrennung führt zum Aufbau einer elektrischen Spannung. Im Idealfall wird das Gammaquant dabei "aufgezehrt" und die gesamte Energie auf das Elektron übertragen (Photoeffekt, siehe Kapitel 4.4.1). Die Amplitude des Spannungsimpulses ist dann der übertragenen Energie proportional. Die nachgeschaltete Elektronik braucht also nur die Spannungsimpulse nach ihrer Amplitude zu sortieren und zu zählen. Über einen Bildschirm oder einen Drucker erhält man dann eine Darstellung, wie sie Abb. 5.6 und

Radionuklid	Energie der Gammaquanten in keV
N-16	6 129; 7 115
Na-22	1 275
K-40	1 461
Co-60	1 332; 1 173
I-131	364; 637; 284
Cs-134	605; 796
Cs-137 / Ba-137 m	662
Ra-226	186
U-238	(50)

Tab. 5-4: Energie der Gammaquanten einiger Radionuklide (Reihenfolge gibt die Häufigkeit an, Intensitäten unter 1 % in Klammern)

Abb. 5.6: Vereinfachte Darstellung eines Versuchsaufbaus zur Gammaspektroskopie

Abb. 5.7: Beispiel eines Gammaenergie-Spektrums

Abb. 5.7 zeigen. Auf der Abszissenachse sind die Gammaenergien in Form schmaler Kanäle angegeben, auf der Ordinatenachse die Anzahl der Impulse, die von Gammaquanten bestimmter Energie erzeugt worden sind.

Bei der Wechselwirkung von Gammaquanten mit Materien treten außer dem Photoeffekt auch andere Effekte auf (Compton-Effekt, Paarbildungseffekt, siehe Kapitel 4.4.2 und 4.4.3). Diese "Störeffekte" führen zu einer Beeinträchtigung des Messergebnisses. Man versucht sie durch besondere Maßnahmen möglichst klein zu halten.

Damit in Halbleiterdetektoren durch die Umgebungswärme nicht unkontrolliert Elektronen-Loch-Paare entstehen, muss der Detektor mit flüssigem Stickstoff gekühlt werden.

Zur Herabsetzung der natürlichen Umgebungsstrahlung wird außerdem eine 5 cm dicke Bleiabschirmung eingesetzt. Halbleiterdetektoren, mit denen Alpha- und Betateilchen nachgewiesen werden sollen, müssen eine Sperrschicht dicht unter der Oberfläche besitzen.

5.10 Stabdosimeter

Nach dem Prinzip der Ionisationskammer arbeitet auch das Stabdosimeter (Taschendosimeter). Es handelt sich um ein füllhalterähnliches Messgerät, in dem sich ein Elektrometer (Elektroskop) befindet. Man lädt das Stabdosimeter an einer Spannungsquelle auf, so dass sich das bewegliche Fädchen spreizt. Auf einer durchsichtigen Skala wird dann der Wert Null angezeigt. Treffen Gammastrahlen das Dosimeter, entlädt sich das Elektrometer, und die Spannung an ihm sinkt. Das ist am Rückgang des gespreizten Fädchens zu erkennen. Je mehr sich das Elektrometer entlädt, desto stärker geht das Fädchen zurück. Die Skala ist in µSv kalibriert, so dass sofort die Körperdo-

Abb. 5.8: Prinzipaufbau eines Stabdosimeters

sis abgelesen werden kann (Abb. 5.8). Solange keine Bestrahlung erfolgt, beträgt der Spannungsrückgang durch Selbstentladung und die natürliche Umgebungsstrahlung nur wenige Prozent. Für Messungen von Gammastrahlen niedriger Energie werden Stabdosimeter mit speziellen Kunststoffbehältern verwendet.

5.11 Filmdosimeter

Filmdosimeter bestehen aus einer dünnen, lichtdichten Kunststoffkassette, in der sich zwei Filmabschnitte befinden. In der Kassette sind außerdem einige Metallfilter untergebracht (Abb. 5.9). Gammastrahlen, die in das Innere gelangen, rufen eine Schwärzung des Films hervor. Aus ihr lässt sich nachträglich ermitteln, wie groß die erhaltene Strahlendosis gewesen ist.

Abb. 5.9: Filmdosimeter im Original und als vereinfachte Schnittzeichnung in Seitenansicht

Die Gammaquanten lösen in der Kunststoffwand, in den Filtern und im Film Elektronen aus, die dann in der Silberbromid-Schicht Ionisationen bewirken. Dadurch kommt es zu Molekülveränderungen. Bei der Entwicklung des Films entstehen an diesen Stellen Silberkörnchen. Sie sind für Licht undurchlässig und rufen eine Trübung ("Schwärzung") des Films hervor. Die Trübung ist von der Energie und der Menge der einfallenden Quanten abhängig. Die Auswertung der Trübungsunterschiede wird mit speziellen Geräten vorgenommen und die Dosis mit Hilfe eines Computers berechnet.

Um die Energie der einfallenden Quanten bestimmen zu können, sind Teile des Films mit verschiedenen Metallfiltern abgedeckt. Dadurch entstehen einzelne Felder. Je größer die Energie der Quanten ist, desto mehr Felder des Films werden getrübt. Bei sehr großen Energien spielen praktisch nur noch die erzeugten Comptonelektronen eine Rolle. Es kommt dann nur noch zur Trübung des Feldes, das durch den dicksten Metallfilter abgeschirmt ist.

Die an der Vorder- und Rückseite versetzt angeordneten Bleifilter ermöglichen es festzustellen, aus welcher Richtung die Strahlung gekommen ist. Kam sie von hinten, muss zusätzlich bedacht werden, dass sie dann den menschlichen Körper vollständig durchdrungen hat.

5.12 Neutronenmessgeräte

Neutronen sind nicht in der Lage, Atome direkt zu ionisieren. Um Neutronen nachzuweisen, lässt man sie Kernreaktionen oder Kernspaltungen ausführen. Die dabei erzeugten geladenen Teilchen (Alphateilchen, Spaltproduktkerne) bewirken dann Ionisationen. Zählrohre zum Nachweis von thermischen Neutronen bestehen aus einem gasgefüllten, verschlossenen Aluminium- oder Messingrohr. Seine Innenseite ist mit Bor, Lithium oder Uran-235 belegt. Es ist auch möglich, das Rohr mit dem Gas BF₃ zu füllen.

Es kommt dann zu folgenden Primärreaktionen:

Rohrauskleidung mit Bor oder Gasfüllung BF₃:

$${}^{10}_{5}\text{B} + {}^{1}_{0}\text{n} \rightarrow {}^{7}_{3}\text{Li} + {}^{4}_{2}\text{He}$$

Rohrauskleidung mit Lithium:

$${}_{3}^{6}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{1}^{3}\text{H} + {}_{2}^{4}\text{He}$$

Rohrauskleidung mit Uran-235, z. B.:

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{236}_{92}$ U $\rightarrow ^{144}_{56}$ Ba + $^{89}_{36}$ Kr + 3^{1}_{0} n

Schnelle Neutronen können z. B. durch einen Paraffinmantel abgebremst werden, der um das Zählrohr gelegt wird. Durch wachsende Dicken von Kunststoffumhüllungen, die Neutronen abbremsen, lässt sich auch ihre Energie ermitteln.

6 Strahlenwirkungen auf lebende Zellen

6.1 Aufbau einer Zelle

Grundbausteine aller Lebewesen sind Zellen. Es sind in der Regel sehr kleine Gebilde, die man mit bloßem Auge nicht erkennen kann. Die Körperzellen des Menschen haben Durchmesser zwischen 0,01 mm und 0,1 mm. Sie sind also mindestens 100 000-mal größer als ein Atom. Insgesamt enthält ein menschlicher Körper rund 30 Billionen Zellen, davon sind 25 Billionen rote Blutkörperchen (Erythrozyten). Trotz vielfältiger Unterschiede in Aufbau und Funktion der Zellen lassen sie sich mit demselben Schema beschreiben. Es ist in Abb. 6.1 dargestellt.

Abb. 6.1: Aufbau einer Zelle (vereinfachtes Schema)

Die Zellmembran grenzt die Zelle nach außen hin ab. Sie ist aber für bestimmte Stoffe durchlässig. Dadurch können Stoffe zur Aufrechterhaltung der Lebensfunktionen aufgenommen und so genannte Verbrennungsprodukte aus dem Innern ausgeschieden werden. Das Zellplasma besitzt eine komplizierte Struktur. In ihm laufen vielfältige Vorgänge ab, die zur Aufrechterhaltung des Zelllebens notwendig sind (Erneuerung bestimmter Zellbestandteile, Erzeugung von Energie, Wachstum, Vermehrung). Die Regelung der chemischen Prozesse wird von bestimmten Enzymen (Biokatalysatoren) übernommen.

Der Zellkern enthält die Chromosomen, in denen die Informationen über Aufbau und Funktionen der Zellen gespeichert sind. Die Chromosomenzahl ist bei jedem Lebewesen konstant (Tab. 6-1).

Die Lebensdauer einer Zelle ist begrenzt. Damit es in einem Organismus nicht zur Abnahme des Zellbestandes kommt, müssen fortlaufend Zellen nachgebildet werden. Es werden jedoch nicht alle Zellen des menschlichen Körpers erneuert, so z. B. nicht die Nervenzellen und einige Arten von Muskelzellen. Bei Organen mit erhöhter Abnutzung (z. B. Haut, Darmtrakt, Blutkörperchen) sind die Erneuerungsraten aber erstaunlich hoch. Tab. 6-2 gibt dazu einige Beispiele.

6.2 Erbträger DNS

Die Zellen eines Organismus sind sehr stark spezialisiert. Die Chromosomen einer Zelle enthalten aber nicht nur die

Lebewesen	Anzahl der Chromosomen
Spulwurm	2
Erbse	14
Walderdbeere	14
Kaninchen	44
Mensch	46
Menschenaffe	48
Kartoffel	48
Hund	78
Neunauge	174

Tab. 6-1: Chromosomenzahl einiger Lebewesen

Informationen für diese speziellen Funktionen, sondern alle Informationen, die zur Aufrechterhaltung der Lebensfunktionen eines Organismus erforderlich sind. Wie erreicht wird, dass jede Zelle nur das für sie passende aus dem Informationsspeicher abliest, ist noch nicht genau erforscht.

Die Chromosomen sind Träger der Gene (beim Menschen geschätzt 60 000/Zelle), diese wiederum bestehen aus Molekülen, die man unter dem Namen Desoxyribonukleinsäure (deutsch abgekürzt DNS, englisch abgekürzt DNA) zusammenfasst. Sie enthalten letztlich die verschlüsselten Informationen. Die DNS enthält drei verschiedene Grundbausteine: den Zucker Desoxyribonukleinsäure, vier unterschiedliche organische Basen und Phosphorsäure. Sie sind zu einem langen Kettenmolekül verknüpft, das einer Strickleiter ähnelt. In Wirklichkeit ist diese Strickleiter noch zusätzlich schraubenförmig verdreht (Abb. 6.2).

Immer zwei bestimmte Basen bilden eine Sprosse dieser Strickleiter: Adenin-Thymin oder Guanin-Cytosin. Die Information wird durch die Aufeinanderfolge der Basenpaare festgelegt, so wie bei der Schrift erst eine sinnvolle Reihenfolge von Buchstaben eine Wortinformation ergibt. Drei Basenpaare bilden die kleinste Verschlüsselungseinheit (Codon). 100 bis 300 hintereinander liegende Codons ergeben ein Gen.

Gesunde Zellen sind in der Lage, im richtigen Augenblick den richtigen Abschnitt der DNS zu lesen und dadurch die erforderlichen biochemischen Reaktionen auszulösen. Wenn ein Gen aktiviert wird, wird der Aufbau einer Aminosäurekette gesteuert, indem das dafür zuständige Codon abgelesen wird. Außerhalb des Zellkerns wird sie mit

System	Produktionsrate in 10 ⁹ Zellen / d	
Haut	0,7	
Magen - Darm	56	
Erythrozyten (rote Blutkörperchen)	200	
Lymphozyten (Art weißer Blutkörperchen)	20	

Tab. 6-2: Erneuerungsraten menschlicher Zellen

Abb. 6.2: DNS-Aufbau in vereinfachter Darstellung

anderen Aminosäuren zu einem Enzym zusammengesetzt. Es kann dann in der Zelle selbst wirken oder in ein anderes Organ transportiert werden. Das Enzym wirkt wie ein Katalysator. Die beiden miteinander verbundenen Basen verhalten sich wie Positiv und Negativ zueinander. Durch die Basenfolge des einen Strangs ist also immer die Basenfolge des anderen Strangs festgelegt.

6.3 Zellteilungen

Bei der Befruchtung verschmelzen Ei- und Samenzelle miteinander. Die Chromosomen gelangen in einen gemeinsamen Zellkern. Damit es von Generation zu Generation nicht zu einer Verdoppelung der Chromosomenzahl kommt, besitzen die Keimzellen nur den einfachen, die Körperzellen aber den doppelten Chromosomensatz. Bei der Entstehung der Fortpflanzungszellen muss also der Chromosomensatz der Körperzellen halbiert werden (Abb. 6.3).

Bei der Vermehrung von Körperzellen durch Zellteilung vollzieht sich auch eine Teilung der Chromosomen im Kern. Dabei spalten sich in den Chromosomen die Doppelstränge der DNS der Länge nach, indem die Basenpaare aufgetrennt werden. Kurz hinter der Trennstelle bildet jede halbe DNS wieder das komplementäre Gegenstück, indem die erforderlichen Bausteine im Zellplasma gebildet wer-

Abb. 6.3: Entstehung von Fortpflanzungszellen aus Körperzellen in vereinfachter Darstellung

den. Zum Schluss sind zwei identische DNS- Stränge vorhanden (Chromatiden). Sie wandern in die beiden neuen Zellen (Abb. 6.4).

Bei der Selbstverdoppelung einer DNS sowie durch eine Reihe äußerer Einflüsse (z. B. chemische Substanzen, energiereiche Strahlung, Temperaturschock, Viren) können Schäden auftreten, die zu einer Veränderung der Erbinformationen führen. Sie wird Mutation genannt. Vollzieht sie sich in einer Körperzelle, spricht man von somatischer Mutation (Soma = Körper). Bei den Keimzellen ergibt sich eine Keimzellenmutation. Man unterscheidet drei Mutationsarten: Gen- oder Punktmutation, Chromosomenmutation und Genommutation.

 Bei einer Punktmutation ergeben sich Veränderungen in einem kleinen Bereich des DNS-Doppelstrangs. Wird z. B. die Folge der Basenpaare von G G A auf G A G umgestellt, ist der Code für die Entstehung einer anderen

Abb. 6.4: Befruchtung und nachfolgende Zellteilung in vereinfachter Darstellung

Aminosäure entstanden. Ein Enzym, in das diese veränderte Aminosäure eingebaut wird, hat dann unter Umständen veränderte biochemische Eigenschaften.

- Bei einer Chromosomenmutation bricht ein Chromosom in zwei oder mehrere Teile auseinander. Dabei können Teile verloren gehen, getrennt bleiben, fehlerhaft zusammenwachsen oder sich an andere Chromosomen anlagern.
- Von einer Genommutation spricht man, wenn sich die Chromosomenzahl ändert. So ist z. B. beim Down-Syn-

drom (Mongolismus) das Chromosom Nr. 21 nicht zweifach, sondern dreifach vorhanden.

6.4 Die strahlenbiologische Reaktionskette

Treffen ionisierende Strahlen auf einen Organismus (z. B. den Menschen), treten in den einzelnen Zellen physikalische und u. U. in der Folge chemische und biologische Effekte auf (Abb. 6.5).

Abb. 6.5: Die physikalischen, chemischen und biologischen Vorgänge in einer Zelle nach Strahleneinwirkung

Abb. 6.6: Beispiel für eine direkte Strahlenwirkung (zur Vereinfachung an einer kurzen Kohlenwasserstoffkette aufgezeigt)

Von den vielen Wechselwirkungen ionisierender Strahlen mit Materie sind letztlich nur die Ionisation und die Anregung von Bedeutung. Sie führen zu Veränderungen in den Atomhüllen, die allein die Bindung zwischen den Atomen eines Moleküls gewährleisten. Bei der Ionisation wird ein Elektron aus der Atomhülle abgetrennt, bei der Anregung in der Hülle verschoben (auf ein höheres Energieniveau gehoben). Beide Effekte sind jedoch nicht endgültig. So kann die Ionisation durch Aufnahme eines freien Elektrons wieder rückgängig gemacht werden (Rekombination), das "verschobene" Elektron wieder seinen ursprünglichen Platz einnehmen. Findet keine Rückbildung des physikalischen Primäreffektes statt, befindet sich die Elektronenhülle in einem veränderten bzw. instabilen Zustand.

Hat ein Strahlungsteilchen oder Energiequant ein die chemische Bindung vermittelndes Elektron entfernt oder "verschoben", zerbricht das Molekül (Abb 6.6). Die entstandenen Bruchstücke reagieren nun chemisch anders als die Ursprungsmoleküle.

Das gleiche gilt für neue Verbindungen, die aus den Bruchstücken entstehen können. Sind diese Verbindungen toxisch, wird der Schaden noch verstärkt. So kann z. B. Wasser, aus dem eine Zelle zu etwa 80 % besteht, durch ionisierende Strahlen in Wasserstoffperoxid (H_2O_2) umgewandelt werden. Es ist bereits in schwacher Konzentration ein Zellgift. Die veränderten oder neu entstandenen Moleküle bzw. Molekülstrukturen, deren biochemische Funktionsfähigkeit gestört oder gänzlich verloren gegangen ist, können repariert oder über den Stoffwechsel aus der Zelle entfernt werden. So werden z. B. Einzelstrangbrüche bei der DNS sehr erfolgreich behoben.

Die physikalischen Primäreffekte und die daraus folgenden chemischen Sekundäreffekte können schließlich zu einem biologischen Bestrahlungseffekt führen: die Zelle zeigt ein verändertes biologisches Verhalten oder ist nicht mehr funktionsfähig. Das führt jedoch nicht in jedem Fall dazu, dass der Schaden nach außen erkennbar wird.

Der menschliche Körper besitzt – wie alle anderen Lebewesen auch – die Fähigkeit, geschädigte oder nicht mehr funktionsfähige Zellen zu erkennen und mit Hilfe des Immunsystems zu bekämpfen und abzubauen. Der biologische Bestrahlungseffekt bleibt dann ohne gesundheitliche Konsequenz für den betreffenden Menschen. Versagt das Abwehr- bzw. Reparatursystem oder wird es überfordert, kommt es zu einem Strahlenschaden. Er kann sofort oder nach einer längeren Zeit offenbar werden.

Grundsätzlich gilt, dass der Zellkern empfindlicher auf ionisierende Strahlen reagiert als das Zellplasma. Das ist auch verständlich, denn der Kern enthält die makromolekularen Informationsspeicher (DNS), die die vielfältigen Zellfunktionen steuern und regeln.

Einen biologischen Bestrahlungseffekt stellt man deshalb auch bevorzugt an Zellen fest, die sich zum Zeitpunkt der Bestrahlung zu teilen beginnen oder in der Teilung befinden. Die Reparaturmechanismen sind dann nur noch ungenügend wirksam. Eine hohe Zellteilungsrate findet sich z. B. im Embryo, bei der Produktion roter Blutkörperchen oder bei den Schleimhautzellen im Magen-Darm-Trakt.

6.5 Somatische und genetische Schäden

Bei den Schäden, die ionisierende Strahlen an Organismen hervorrufen, unterscheidet man zwischen somatischen und genetischen (vererbbaren) Schäden. Somatische Schäden (Körperschäden) treten nur beim bestrahlten Individuum, vererbbare Schäden (Erbschäden) bei den Nachkommen auf. Davon sind aber nicht nur die direkten Nachkommen, sondern auch spätere Generationen betroffen. Die somatischen Schäden unterteilt man in Früh- und Spätschäden, letztere noch einmal in maligne (bösartig wuchernde) und nichtmaligne (nicht bösartig wuchernde) Spätschäden (Abb. 6.7).

Für das Auftreten von Frühschäden muss der Organismus von einer Mindestmenge an Strahlung getroffen werden. Diese Schwellendosis für den Menschen liegt bei einmaliger Ganzkörperbestrahlung zwischen 200 und 300 mSv. Es zeigen sich z. B. kurzzeitige Veränderungen des Blutbildes. Je größer die Strahlungsmenge wird, desto gravierender sind auch diese Strahlenschäden. Frühschäden beim Menschen sind z. B. außer Veränderungen des Blutbildes, Unwohlsein, Erbrechen, Entzündungen der Schleimhäute und Fieber. Eine einmalige Ganzkörperbestrahlung mit einer Dosis von 7 000 mSv gilt als tödlich,

Abb. 6.7: Einteilung der Strahlenschäden

wenn keine Therapiemaßnahmen durchgeführt werden (Abb. 6.8).

Somatische Spätschäden treten erst nach Jahren oder Jahrzehnten auf. Dabei hat sich der Schaden in den Zellen unmittelbar nach der Bestrahlung ergeben. Die am Gesamtorganismus beobachtbaren Krankheitssymptome treten aber sehr viel später in Erscheinung.

Bei nicht bösartigen (keine Metastasen bildenden) Schäden (z. B. Sterilität, Trübung der Augenlinse) kann davon ausgegangen werden, dass eine Mindestmenge an Strahlung auf den Organismus einwirken muss (Schwellendosis, Kurve C in Abb. 6.9). Dabei ist es jedoch möglich, dass wiederholte Einzelbestrahlungen mit Dosen unterhalb des Schwellenwertes zu Spätschäden führen können.

Bei bösartigen Spätschäden (z. B. Leukämie, Krebs) ist diese Mindestmenge an Strahlung sehr klein oder es gibt überhaupt keine Schwelle (Kurve A oder B in Abb. 6.9). Es würde dann bedeuten, dass auch einzelne Strahlungsteilchen oder Gammaquanten Krebs auslösen können, wenn z. B. die von der Strahlung getroffene Zelle bereits vorgeschädigt ist bzw. der Reparaturmechanismus und das Immunsystem des Körpers geschwächt sind. Mit steigender Strahlungsmenge nimmt aber nicht die Schwere der Erkrankung zu, sondern die Wahrscheinlichkeit für eine Erkrankung. Das ist aber bei kleinen Strahlenexpositionen

Abb. 6.8:

Beispiele für Körperdosis-Leistungen und Körperdosen

(Die Angaben zu den Werten von 250 bis 7000 mSv beschreiben somatische Strahlenfrühschäden. Aus Gründen der besseren Lesbarkeit sind vereinfachend auch diese Dosen in der Einheit Sievert statt Gray angegeben.)

im Bereich von einigen zehn Millisievert weder experimentell nachweisbar noch durch statistische Erhebungen zu ermitteln. Diese Annahme ergibt sich lediglich durch rückwärtige Verlängerungen der Dosis-Wirkungs-Kurve für Strahlendosen oberhalb von einigen hundert Millisievert (Kurve A in Abb. 6.9).

Bei genetischen Schäden treten Veränderungen an den Chromosomen der Keimzellen auf. Sie wirken sich erst bei den Nachkommen aus. Auch bei genetischen Schäden ist eine Reparatur möglich oder es kann die nach einem falschen genetischen Code aufgebaute Zelle, das daraus entstandene Gewebe bzw. der nicht lebensfähige Embryo abgestoßen werden. Ein genetischer Schaden würde dann nicht an die nächste Generation weitergegeben.

Grundsätzlich sind Mutationen natürliche Ereignisse, die bei Menschen, Tieren und Pflanzen immer wieder vorkommen. Sie können spontan auftreten oder gezielt durch chemische bzw. physikalische Einflüsse herbeigeführt werden. Dass auch ionisierende Strahlen Mutationen auslösen, ist erstmals 1927 nachgewiesen worden.

Die durch die natürliche Strahleneinwirkung hervorgerufenen Mutationen sind zahlenmäßig so gering, dass sie aus den zeitlichen Schwankungen der natürlichen Mutationsraten nicht hervortreten. Erst eine Keimdrüsendosis von etwa 10 mSv einer locker ionisierenden Strahlung (Beta- oder Gammastrahlung) führt unter 1 Million Neugeborenen zu der Spontanrate 0,006 % genetischer Schadensfälle.

Abb. 6.10: Die biologische Strahlenwirkung ist von mehreren Faktoren abhängig

6.6 Faktorenabhängigkeit der Strahlenwirkungen

Somatische und in geringerem Umfang auch genetische Strahlenwirkungen sind von verschiedenen Bedingungen abhängig. Sie sind durch die Anwendung ionisierender Strahlen in der Medizin seit langem bekannt (Abb. 6.10).

Im Folgenden werden diese Faktoren im Wesentlichen für die somatischen Schäden beschrieben.

6.6.1 Strahlenart

Wie bereits im Kapitel 5.3 erwähnt, haben die einzelnen Strahlenarten unterschiedliche biologische Wirkungen bei gleichen Energiedosen. Dabei ist von entscheidender Bedeutung, dass sie eine unterschiedliche lonisationsdichte hervorrufen. Je größer sie ist, desto größer sind auch die biologischen Wirkungen. Das wird durch den Strahlungswichtungsfaktor berücksichtigt.

6.6.2 Dosis

Grundsätzlich gilt, dass die Strahlenwirkungen bzw. die Wahrscheinlichkeit für das Eintreten einer Strahlenwirkung mit der Dosis zunehmen. Bei somatischen Frühschäden gibt es dafür einen Schwellenwert. Bei bösartigen Spätschäden sowie bei genetischen Schäden wird kein Schwellenwert angenommen. Im ungünstigsten Fall können schon kleine Dosen zu Effekten führen.
6.6.3 Zeitliche Dosisverteilung

Die Wirkung einer Dosis ist um so geringer, je größer die zeitlichen Abstände zwischen den Teildosen sind. Bei einer Aufteilung der Dosen entstehen pro Zeit weniger Molekülbruchstücke. Da sie dann in der Zelle in geringerer Dichte vorliegen, sind auch die Reaktionsmöglichkeiten zwischen ihnen kleiner. Durch Aufteilung einer Gesamtdosis können Schädigungen zwischenzeitlich ganz oder teilweise beseitigt werden. Hinsichtlich des Auftretens von Strahlenspätschäden können sich u. U. auch mehrere über längere Zeiträume verteilte Einzeldosen aufsummieren.

6.6.4 Räumliche Dosisverteilung

Aus der medizinischen Strahlentherapie ist bekannt, dass Dosen von 30 bis 50 Gy, die lokal zur Bestrahlung eines Tumors eingesetzt werden, im Allgemeinen den Gesamtorganismus nicht in Gefahr bringen. Als Ganzkörperdosen würden diese Werte aber immer zum Tode führen. Man muss also immer zwischen Ganzkörper- und Teilkörperdosen bzw. Organdosen unterscheiden.

6.6.5 Relative Strahlenempfindlichkeit

Einzelne Organe oder Gewebe des Menschen sind gegenüber ionisierenden Strahlen unterschiedlich empfindlich (Abb. 6.11). Die Organe und Gewebe mit der generell höheren Strahlenempfindlichkeit haben eines gemeinsam: In ihnen findet eine große Anzahl von Zellteilungen statt. Die Strahlung wirkt dann im Augenblick der Zellteilung ein und kann den Teilungsvorgang verzögern bzw. mehr oder weniger lange blockieren. Zusätzlich können die Zellen ihre Teilungsfähigkeit verlieren. Insgesamt wird also das Gleichgewicht zwischen Zellverlust und Zellerneuerung gestört. Wegen der hohen Zellteilungstätigkeit ist auch der Embryo im Mutterleib besonders strahlenempfindlich. Dabei stellen die ersten vier Wochen das gefährlichste Stadium dar.

6.6.6 Milieufaktoren

Einzelne Organe des Menschen oder der gesamte Organismus können z. B. durch die Art der Ernährung, den Missbrauch von Genussmitteln, die Anwendung bestimmter Arzneimittel sowie andere Faktoren für Strahlen besonders sensibilisiert werden. So sind z. B. mit Sauerstoff gut versorgte Zellen besonders strahlenempfindlich.

6.7 Strahlenempfindlichkeit von Lebewesen

Lebewesen zeigen gegenüber ionisierenden Strahlen eine unterschiedliche Empfindlichkeit (Abb. 6.12). Diese Unterschiede können mit Hilfe der mittleren Letaldosis (letal = tödlich) beschrieben werden. Sie gibt die Energiedosis an, die – ohne medizinische Gegenmaßnahmen – bei einer Ganzkörperbestrahlung für 50 % der Individuen einer großen Zahl bestrahlter Lebewesen innerhalb von 30 Tagen durch somatische Frühschäden zum Tode führt.

Die mittlere Letaldosis LD_{50/30} liegt für Menschen bei einer Energiedosis von 4,5 Gray. Einige Lebewesen zeigen eine größere, andere aber eine deutlich geringere Strahlenempfindlichkeit. Es fällt auf, dass der Wert für die Fledermaus als Säugetier mehr als 30fach höher ist als beim Menschen. Überraschend ist auch die große Widerstandsfähigkeit von Wespen, die in der Nähe der von Amöben und des Tabak-Mosaik-Virus liegt.

Bei Pflanzen (hier nicht aufgeführt) hat man in Experimenten festgestellt, dass die Empfindlichkeit gegenüber ionisierenden Strahlen vom Gehalt der Zellkerne an DNS abhängt. Es wird vermutet, dass die unterschiedliche Strahlenempfindlichkeit bei Tieren auch damit zusammenhängt.

Abb. 6.11: Rangfolge der Strahlenempfindlichkeit verschiedener Organe / Gewebe / Stoffe im Menschen

Abb. 6.12: Strahlenempfindlichkeit verschiedener Lebewesen für akute Strahlenschäden

7 Radionuklide im menschlichen Körper

7.1 Standardmensch

Die Stoffwechselvorgänge der Menschen sind von ihren Erbanlagen, den Verzehr- und Lebensgewohnheiten, den örtlichen Gegebenheiten sowie ihrem Geschlecht und Alter abhängig. Soll die Strahlendosis abgeschätzt werden, die durch aufgenommene Radionuklide entsteht, benötigt man eine einheitliche biologische Grundlage.

Es ist deshalb der Standardmensch definiert worden. Bei ihm legt man ein Alter von 20 bis 30 Jahren, eine Gesamtlebensdauer von 70 Jahren, ein Körpergewicht von 70 kg, eine Körperoberfläche von 1,8 m², eine Körpergröße von 170 cm sowie bestimmte Organgewichte, Verzehrgewohnheiten und Stoffwechselvorgänge zugrunde (Tab. 7-1 bis 7-3).

In Tab. 7-2 ist angegeben, wie viel Nahrungsmittel in Abhängigkeit vom Alter der Person im Mittel pro Jahr verzehrt werden. Bei den Verzehrgewohnheiten können sich für das einzelne Individuum u. U. deutliche Abweichungen von den angegeben Durchschnittswerten ergeben. Deshalb werden bei Modellberechnungen Konservativitätsfaktoren von 2 bis 5 angewandt.

Der Verzehr von Nahrungsmitteln stellt im Prinzip eine Aufnahme verschiedener Elemente dar. Dabei kann der Organismus nicht zwischen radioaktiven und nicht radioaktiven Isotopen eines Elements unterscheiden. Wie viel von einzelnen Elementen von einem Erwachsenen pro Tag aufgenommen wird, zeigt Tab. 7-3.

	Organgewichte		
Organ	Masse in g	in % des Kör- pergewichts	
Gesamtkörper	70 000	100	
Muskeln	28 000	40	
Skelett ohne Knochenmark	8 500	11,9	
subkutanes Gewebe	7 500	11	
sonstiges Fettgewebe	5 000	7,1	
Blut	5 500	7,8	
Haut	2 600	3,7	
Magen-Darm-Trakt	2 200	3,1	
Leber	1 800	2,6	
rotes Knochenmark	1 500	2,1	
Lungen (2)	1 000	1,4	
Herz	330	0,47	
Nieren (2)	310	0,44	
Schilddrüse	20	0,029	

mittlere Verzehrraten der Referenzperson in kg/a						
Altersgruppe Lebensmittel	≤ 1 Jahr	> 1 – ≤ 2 Jahre	> 2 – ≤ 7 Jahre	> 7 – ≤ 12 Jahre	> 12 – ≤ 17 Jahre	> 17 Jahre
Trinkwasser	55	100	100	150	200	350
Muttermilch, Milchfertigprodukte mit Trinkwasser	145	-	-	-	-	-
Milch, Milchprodukte	45	160	160	170	170	130
Fisch	0,5	3	3	4,5	5	7,5
Fleisch, Wurst, Eier	5	13	50	65	80	90
Getreide, Getreideprodukte	12	30	80	95	110	110
einheimisches Frischobst, Obstprodukte, Obstsäfte	25	45	65	65	60	35
Kartoffeln, Wurzelgemüse	30	40	45	55	55	55
Blattgemüse	3	6	7	9	11	13
Gemüse, Gemüseprodukte	5	17	30	35	35	40

Tab. 7-2: Jahresverbrauch an Nahrungsmitteln

Element	Aufnahme mit der Nahrung in g/d	Organ	natürliche Konzen- tration g Element g Organ	Element	Aufnahme mit der Nahrung in g/d	Organ	natürliche Konzen- tration g Element g Organ
Kohlenstoff	400	Gesamtkörper Fett	0,18 0,75	Eisen	0,027	Gesamtkörper Blut	5,7 · 10 ⁻⁵ 5 · 10 ⁻⁴
Wasserstoff	350	Gesamtkörper	0,01	Strontium	10 ⁻³	Gesamtkörper Knochen	2 · 10 ⁻⁶ 1,5 · 10 ⁻⁵
Natrium	4	Gesamtkörper	1,5 · 10 ⁻³	lod	2 · 10 ⁻⁴	Gesamtkörper Schilddrüse	5,7 · 10 ⁻⁷ 4 · 10 ⁻⁴
Phosphor	1,4	Gesamtkörper Knochen	0,01 0,05	Cäsium		Gesamtkörper Muskulatur	1,4 · 10 ⁻¹⁰ 3 · 10 ⁻⁷
Kalium	3	Gesamtkörper Muskulatur	2 · 10 ⁻³ 2,9 · 10 ⁻³	Radium	5,5 · 10 ⁻¹²	Gesamtkörper Knochen	1,4 · 10 ⁻¹⁵ 1,4 · 10 ⁻¹⁴
Calcium	1	Gesamtkörper Knochen	0,015 0,145	Thorium		Gesamtkörper Knochen	4,6 · 10 ⁻¹⁰ 2,3 · 10 ⁻⁹

Tab. 7-3: Tägliche Aufnahme einiger Elemente mit der Nahrung und ihre natürliche Konzentration in einzelnen Organen

7.2 Nahrungsketten und Expositionspfade

Radioaktive Stoffe aus der Luft, dem Wasser und dem Boden gelangen direkt mit der Atemluft oder dem Trinkwasser in den menschlichen Körper oder indirekt über eine der Nahrungsketten (Abb. 7.1).

Bei den Nahrungsketten lassen sich folgende Glieder unterscheiden:

- Ablagerung radioaktiver Stoffe aus der Luft auf den Pflanzen oder dem Boden,
- Aufnahme radioaktiver Stoffe über die Blätter oder die Wurzeln in die Pflanzen,
- Verzehr der Pflanzen durch Tier oder Mensch,
- Verarbeitung der Tiere oder tierischer Produkte zu Nahrungsmitteln.

Die Herkunft der Nahrungs- und Genussmittel, des Wassers und der Luft sowie die Lebens- und Ernährungsgewohnheiten des Menschen bestimmen u. a. die Menge der vom Körper aufgenommenen radioaktiven Stoffe.

So kann die Verwendung von Brunnen- oder Quellwasser mit erhöhtem Radiumgehalt, der bevorzugte Aufenthalt in schlecht belüfteten Räumen eines Natursteinhauses mit dadurch stark erhöhtem Radongehalt oder der verstärkte Verzehr von Nahrungsmitteln mit einem erhöhten Gehalt an Radionukliden den Radionuklidgehalt des menschlichen Körpers erhöhen.

Es ist nicht zu verhindern, dass natürliche Radionuklide in den menschlichen Körper gelangen, da die gesamte Erdmaterie (einschließlich Pflanzen und Tiere) von Natur aus radioaktiv ist.

7.3 Anreicherung von Radionukliden in Nahrungsketten

In den Gliedern der Nahrungsketten können sich Radionuklide anreichern. Dies ist darauf zurückzuführen, dass ein Organismus nicht für alle Elemente einen Regelmechanismus besitzt, um bestimmte Konzentrationen einzuhalten.

Beim Menschen gehören z. B. die Elemente Kalium und Calcium zu den so genannten geregelten Elementen. Es bedeutet, dass ein gesunder Organismus bei ausreichendem Nahrungsangebot seine Konzentration im Körper auf einem bestimmten Wert hält.

Im Standardmenschen sind es für Calcium 1 100 g und für Kalium 140 g. Bei erhöhter Zufuhr dieser Elemente wird der nicht benötigte Anteil mit den Ausscheidungsprodukten vermehrt wieder abgegeben.

Die Elemente Strontium und Cäsium zählen beim Menschen zu den nicht geregelten Elementen. Je größer das Angebot dieser Elemente in der Nahrung ist, desto mehr wird auch resorbiert und verbleibt eine mehr oder minder lange Zeit im Körper. Von einem bestimmten Sättigungswert an bildet sich ein Gleichgewichtszustand zwischen Aufnahme und Ausscheidung.

Einen Anreicherungsvorgang im Nahrungssystem eines Süßwassersees zeigt Abb. 7.2. Die Anreicherungsfaktoren geben das Verhältnis der Strontium-90-Konzentration im Organismus zu der im Wasser an. Die Anreicherungsfaktoren sind auf das Frischgewicht bezogen und in relativen Einheiten angegeben.

7.4 Natürliche Radionuklide in Nahrungsmitteln

Im Boden, im Wasser und in der Luft unserer Biosphäre sind natürliche Radionuklide vorhanden. Durch Stoff-

Abb. 7.1: Expositionspfade für radioaktive Stoffe

Abb. 7.2: Typische Anreicherungswerte von Sr-90 im Nahrungssystem eines Süßwassersees

wechselvorgänge gelangen sie in pflanzliche und tierische Organismen und somit in die Nahrungsmittel des Menschen.

Der größte Anteil der natürlichen Aktivität in Nahrungsmitteln rührt vom Kalium-40 her. Radium-226, Thorium-228, Blei-210 und Polonium-210 sowie Kohlenstoff-14 und Wasserstoff-3 ergeben demgegenüber – von Ausnahmen abgesehen – eine relativ geringe spezifische Aktivität. Kalium (und damit auch Kalium-40) ist praktisch auf der gesamten Erdoberfläche und in den Gewässern (Seen, Flüsse, Meere) vorhanden. Die Pflanzen nehmen Kalium mit den Wurzeln aus dem Boden oder dem Wasser auf und speichern es in den Stängeln, Ästen, Blättern, Blüten, Früchten usw. Mit der pflanzlichen Nahrung gelangt das Kalium-40 dann auch in die Tiere und die Menschen.

Die Konzentration von Kalium-40 und anderen natürlichen Radionukliden in den einzelnen Nahrungsmitteln ist unterschiedlich (Abb. 7.3, Tab. 7-4 und 7-5).

Für die Konzentrationsschwankungen lassen sich im Wesentlichen drei Gründe anführen:

Abb. 7.3: Kaliumgehalt von Nahrungsmitteln (mg/100 g essbarer Teil)

Nahrungsmittel	Spezifische Aktivität in Bq/kg Frischgewicht		
	Pb-210	Po-210	
Schweinefleisch	0,4	0,4	
Schweineniere	4	4	
Rindfleisch	0,7	0,7	
Rinderniere	1,5	7	
Rinderleber	2,6	2	
Fisch	1,5	1,5	
Eier	20	20	
Rentierfleisch	0,1	12	
Rentierleber	45	150	
Elchfleisch	0,1	7	
Elchleber	3	50	
Bärenfleisch	0,1	0,7	
Bärenleber	10	27	

Tab. 7-4: Typische Pb-210- und Po-210-Aktivitäten von Nahrungsmitteln

- Die pflanzlichen und tierischen Organismen, aus denen die Nahrungsmittel gewonnen werden, verfügen über unterschiedliche physiologische Mechanismen und speichern deshalb unterschiedlich viele Radionuklide in ihren Zellen.
- Die Konzentration an natürlichen Radionukliden ist an den Orten der Nahrungsmittelgewinnung unterschiedlich. So haben Kartoffeln normalerweise eine mittlere Konzentration an Radium-226 von etwa 0,03 Bq/kg. Kartoffeln aus Gebieten mit erhöhter natürlicher Radioaktivität (z. B. Monazitgebiet in Kerala/Indien) haben dagegen einen Gehalt von Ra-226 von etwa 0,8 Bq/kg.

Nahrungsmittel	Spezifische Aktivität des Ra-226 in Bq/kg Frischgewicht
Margarine	0,004
Milch	0,01
Kartoffeln	0,03
Äpfel	0,03
Schweinefleisch	0,04
Mehl	0,1
Eier	0,12
Karotten	0,14
Fisch	0,2
Erdnüsse	0,7
Paranüsse	8 - 130

Tab. 7-5: Typische Ra-226-Aktivität in Nahrungsmitteln

• Manche Radionuklide verhalten sich biochemisch ähnlich wie jene Elemente, die für den betreffenden Organismus physiologisch wichtig sind. So zeigt Rubidium eine ähnliche (nicht gleiche) chemische Reaktionsfähigkeit wie Natrium und Kalium (Alkalimetalle); Radium verhält sich ähnlich wie die beiden verwandten Elemente Barium und Calcium (Erdalkalimetalle). Diese Ähnlichkeit im Verhalten kann dazu führen, dass bei verstärkter Aufnahme von Calcium (z. B. intensiverer Knochenbaustoffwechsel in der Wachstumsphase von Tieren) auch vermehrt Radium eingebaut wird.

Die Aufnahme von Radium durch Pflanzen ist in der Regel gering. Eine Ausnahme bildet der Paranussbaum. Er reichert verstärkt Barium an, womit gleichzeitig eine extrem hohe Aufnahme von Radium verbunden ist.

Uran, Radium und Thorium werden von den Pflanzen ausschließlich aus dem Boden aufgenommen. Blei-210 und

Abb. 7.4: Teil einer Nahrungskette in den Tundren (Zerfallsstufen unvollständig dargestellt)

Polonium-210 entstehen z. T. in der Atmosphäre als Folgeprodukte des Radons. Diese Radionuklide können dann nicht nur aus dem Boden aufgenommen, sondern zu einem erheblichen Teil auch durch die Blätter der Pflanzen aus der Luft "herausgefiltert" werden.

Bei langsam wachsenden Pflanzen (z. B. Flechten in den Tundren) geht eine solche Filterung über lange Zeit vor sich. Pb-210 und Po-210 können in ihnen angereichert auftreten und Ausgangspunkt für eine Nahrungskette mit erhöhtem Gehalt an Pb-210 und Po-210 sein. Sie reicht vom Primärproduzenten Pflanze über den Primärkonsumenten Rentier bis zu den Sekundärkonsumenten Bär oder Mensch (Abb. 7.4).

In den Zähnen von Lappen, die Rentiere züchten, ist eine doppelt so hohe Aktivität an Pb-210 und Po-210 nachgewiesen worden wie bei einer Population, die nicht in arktischen Gebieten lebt.

7.5 Aufnahmewege und Speicherorgane

Stoffe – auch radioaktive – können auf verschiedenen Wegen in den Körper gelangen (Abb. 7.5):

- über die Luftwege und Lungenräume (Inhalation),
- über den Verdauungskanal (Ingestion),
- durch die intakte Haut (perkutane Resorption),

Abb. 7.5: Die wesentlichen Transportwege für radioaktive Stoffe im menschlichen Körper

 durch Wunden oder über andere natürliche oder künstliche Körperöffnungen.

In der Regel ist nur die Aufnahme über die Lunge und den Verdauungskanal von Bedeutung, weil auf diesen Wegen die größten Substanzmengen in das Körperinnere gelangen.

Ein Teil der inkorporierten Radionuklide wird vom Körper resorbiert, d. h. durch die Zellschichten hindurch in den Blutkreislauf bzw. das Lymphsystem aufgenommen. Dadurch können sie in alle Teile des Körpers gelangen. Der nicht resorbierte Teil der radioaktiven Stoffe wird über Nieren und Darm sowie z. T. auch über die Lunge wieder ausgeschieden.

Für jedes Radionuklid gibt es eine Hauptablagerungsstätte, an der ein besonders großer Prozentsatz des resorbierten Materials gespeichert wird (Speicherorgan, Tab. 7-6). Die unterschiedliche Verteilung der resorbierten radioaktiven Stoffe im menschlichen Körper führt zu unterschiedlichen Strahlenexpositionen der einzelnen Organe.

Radionuklid	Speicherorgan
H-3	Körpergewebe / Körperwasser
C-14	Fett
K-40	Muskulatur / Ganzkörper
Sr-90	Knochen
I-131	Schilddrüse
Cs-137	Muskulatur / Ganzkörper
Ra-226	Knochen
U-238	Nieren / Knochen

Die Abb. 7.6 bis Abb. 7.9 zeigen für die natürlichen Nuklide der Elemente Kalium, Iod, Cäsium und Strontium die tägliche Aufnahme mit der Nahrung, die Resorption durch den Körper, die Speicherung in einem bestimmten Organ und die Ausscheidung über Darm bzw. Nieren. Treten in Nahrungsmitteln und Trinkwasser zusätzlich künstlich erzeugte Radionuklide auf, verändern sich die genannten Aufnahmewerte. Die angegebenen biologischen Halbwertszeiten sind (für Kalium als geregeltes Element ist das Konzept der biologischen Halbwertszeit nicht anwendbar) ein Maß für die Ausscheidungsgeschwindigkeit eines resorbierten Radionuklids.

Abb. 7.8: Strontium im menschlichen Körper

7.6 Verweilzeit der Radionuklide im Körper

Die vom Körper resorbierten und in bestimmten Organen gespeicherten Nuklide werden im Wesentlichen mit dem Urin sowie dem Kot wieder ausgeschieden. Eine Ausscheidung über die Lunge und die Haut spielt praktisch nur bei radioaktiven Edelgasen bzw. tritiumhaltigem Wasser eine Rolle. Bei stillenden Müttern werden bestimmte Radionuklide auch über die Muttermilch abgegeben.

Die Verweilzeit von Radionukliden im Skelett und in der Leber ist im Allgemeinen hoch, während sie aus der Niere und aus weichem Gewebe meist rasch ausgeschieden werden. Bei einigen Radionukliden ist es möglich, die Verweilzeit im Körper durch therapeutische Maßnahmen zu verkürzen.

Bei der Ausscheidung sowohl der radioaktiven als auch der stabilen Nuklide werden etwa in gleichen Zeitabschnitten gleiche Bruchteile ausgeschieden. Aufgrund dieser Erfahrung kann man eine biologische Halbwertszeit definieren. Sie gibt an, nach welcher Zeit die Hälfte eines vom Körper resorbierten radioaktiven oder stabilen Nuklids wieder ausgeschieden ist. Für viele Radionuklide wird die Ausscheidung durch mehrere partielle biologische Halbwertszeiten beschrieben. Den Ausscheidungsvorgang für Cäsium-137 zeigt Abb. 7.10.

Abb. 7.10: Die biologische Halbwertszeit

Radionuklid	biologische Halbwertszeit
H-3	10 d
I-131	80 d (Schilddrüse)
Cs-137	110 d (Männer) / 65 d (Frauen)
Th -232	2 a (Leber) / 20 a (Knochenoberfläche)
U-238	14 a (Knochenoberfläche)
Pu-239	20 a (Leber) / 50 a (Knochenoberfläche)

Tab. 7-7: Biologische Halbwertszeit einiger Radionuklide für Erwachsene

Die biologische Halbwertszeit eines Radionuklids kann für ein bestimmtes Organ und den gesamten Organismus unterschiedlich sein. Sie ist kein konstanter Wert, sondern u. a. abhängig vom Lebensalter und von den Ernährungsgewohnheiten. Beispiele für biologische Halbwertszeiten sind in Tab. 7-7 angegeben.

Neben der Ausscheidung eines Radionuklids nimmt die Aktivität im Innern des menschlichen Körpers zusätzlich durch radioaktiven Zerfall ab. Das wird im Folgenden an den nicht wirklich existierenden Radionukliden X_1 und Y_1 deutlich gemacht.

Beispiel 1:

Radionuklid X₁ wandelt sich in das stabile Nuklid X₂ um. Physikalische Halbwertszeit 5 d, biologische Halbwertszeit 60 d. Noch ehe eine biologische Halbwertszeit von 60 Tagen abgelaufen ist, sind bereits zehn physikalische Halbwertszeiten vergangen. Dabei hat sich das Radionuklid zu mehr als 99,9 % in das stabile Nuklid X₂ umgewandelt. Zur Beurteilung der internen Strahlenexposition des Menschen wäre in diesem Fall also nur die physikalische Halbwertszeit von Bedeutung.

Beispiel 2:

Radionuklid Y_1 wandelt sich in das stabile Nuklid Y_2 um. Physikalische Halbwertszeit 50 a, biologische Halbwertszeit 10 d. Noch ehe ein Bruchteil der physikalischen Halbwertszeit abgelaufen ist, sind bereits mehr als zehn biologische Halbwertszeiten vergangen und das Radionuklid praktisch vollständig aus dem Körper ausgeschieden. Von Bedeutung wäre also in diesem Fall nur die biologische Halbwertszeit.

Das Zusammenwirken der physikalischen Halbwertszeit T_p und der biologischen Halbwertszeit T_b ergibt die effektive Halbwertszeit T_{eff} Sie gibt an, in welchem Maße die Aktivität eines Radionuklids durch radioaktiven Zerfall und biologische Ausscheidungsvorgänge im Körper abnimmt.

Die effektive Halbwertszeit lässt sich nach folgenden Gleichungen berechnen:

$$T_{eff} = \frac{T_p \cdot T_b}{T_p + T_b}$$

Die effektive Halbwertszeit ist von entscheidender Bedeutung für die Strahleneinwirkung der in den Organismus aufgenommenen Radionuklide. Zwischen T_p und T_b können große Unterschiede auftreten. In solchen Fällen entspricht T_{eff} nahezu dem kleineren von beiden Werten.

Beispiel 1: H-3		
<i>T_p</i> = 12,323 a = 4 498 d	$T_b = 10 \text{ d}$	<i>T_{eff}</i> = 9,98 d
Beispiel 2: I-131, Schilddrüse T _p = 8,02 d	<i>T_b</i> = 80 d	<i>T_{eff}</i> = 7,3 d
Beispiel 3: I-129, Schilddrüse		
$T_p = 1,57 \cdot 10^7 \text{ a} = 5,73 \cdot 10^9 \text{ d}$	$T_{b} = 80 \text{ d}$	$T_{eff} = 80 \text{ d}$

Beispiel 4: Pu-239, Knochenoberfläche

$$T_p = 2,411 \cdot 10^4 \text{ a}$$
 $T_b = 50 \text{ a}$ $T_{eff} = 49,9 \text{ a}$

Radiotoxizität	Radionuklide
sehr hoch	Ac-227, Th*, U*
hoch	Co-60, Cs-137, Ra-226
mittel	Na-22, Tc-99m, I-131
gering	H-3, S-35, Ni-63
sehr gering	C-14 (Dioxid), Kr-83m

Tab. 7-8: Relative Radiotoxizität für einige Radionuklide (* Thorium und Uran einschließlich aller Folgeprodukte der jeweiligen Zerfallsreihe)

Aufgrund der physikalischen und biologischen Faktoren und der Strahlungseigenschaften lässt sich die relative Gefährlichkeit von Radionukliden klassifizieren (Tab. 7-8). Dafür wird der Begriff Radiotoxizität verwendet. Darunter versteht man die Toxizität, die auf den ionisierenden Strahlen des inkorporierten Radionuklids und seiner Folgeprodukte beruht.

7.7 Natürliche Aktivität des Standardmenschen

Natürliche Radionuklide, die mit der Atemluft, dem Trinkwasser und der Nahrung in den menschlichen Körper gelangen, werden von ihm z. T. resorbiert und über Stoffwechselprozesse wieder ausgeschieden. Als Ergebnis von Zufuhr und Ausscheidung stellt sich ein Gleichgewichtszustand der im Körper vorhandenen Aktivität natürlich radioaktiver Stoffe ein. Bei den natürlichen Radionukliden im menschlichen Körper handelt es sich im Wesentlichen um K-40, C-14 sowie einige Folgeprodukte aus der Uran-Radium- und der Thorium-Zerfallsreihe. Die Tab. 7-9 gibt die im Standardmenschen vorhandenen natürlichen Radionuklide und ihre Aktivität an. Die Gesamtaktivität des menschlichen Körpers (Standardmensch) beträgt etwa 9 000 Bq. Dies bedeutet, dass in 1 Sekunde etwa 9 000 Kernumwandlungen stattfinden und dabei 9 000 Strahlungsteilchen ausgesandt werden, an einem Tag sind es über 750 Millionen.

Da sich die resorbierten Radionuklide an unterschiedlichen Stellen im Körper ablagern, ist die Aktivität nicht gleichmäßig im Körper verteilt. Für einen Vergleich der Aktivität des Menschen mit der von Nahrungsmitteln wird in Abb. 7.11 jedoch eine gleichmäßige Verteilung angenommen.

7.8 Bestimmung der Dosis aus der inkorporierten Aktivität

lonisierende Strahlen können auf zweierlei Weise auf den Menschen einwirken. Es ist eine Bestrahlung von au-

Radionuklid	Aktivität in Bq
K-40	4 200
C-14	3 800
Rb-87	650
Pb-210, Bi-210, Po-210	60
kurzlebige Radon-Zerfallsprodukte	45
Н-3	25
Be-7	25
sonstige	10
Summe	8 815

Tab. 7-9: Die wichtigsten natürlichen Radionuklide im Menschen

Abb. 7.11: Natürliche Radioaktivität im Menschen und in Nahrungsmitteln

ßen möglich (externe Strahlenexposition) und der Körper kann von innen bestrahlt werden (interne Strahlenexposition), wenn Radionuklide mit der Nahrung und der Atemluft in den Körper gelangen.

Um berechnen zu können, welche Strahlendosis ein Mensch erhält, wenn eine bestimmte Menge radioaktiver Stoffe in seinen Körper gelangt, hat man so genannte Dosisfaktoren ermittelt. Sie erlauben es, z. B. aus der spezifischen Aktivität von Nahrungsmitteln die durch die Aufnahme dieser Aktivität in dem Körper zu erwartende Strahlenexposition zu berechnen.

In Tab. 7-10 sind die Dosisfaktoren für einige Radionuklide zusammengestellt. Die Abb. 7.12 veranschaulicht dies für die Aufnahme von Cs-137.

Die Dosisfaktoren sind von dem jeweiligen Radionuklid, der chemischen Verbindung des Radionuklids, dem Aufnahmeweg, dem Speicherorgan und dem Alter der Person abhängig. Die in Tab. 7-10 angegebenen Werte sind die unter ungünstigen Annahmen ermittelten Werte.

Die Folgedosis D₄, die sich bei einer Aufnahme radioaktiver Stoffe ergibt, ist das Produkt aus dem Dosisfakor DF und der aufgenommenen Aktivität A.

Beispiel 1:

Ein einjähriges Kind trinkt 1 | Milch, dessen I-131-Aktivität 50 Bq/l beträgt. Wie hoch ist die zusätzliche Strahlenexposition der Schilddrüse und wie hoch ist die effektive Dosis?

Schilddrüsendosis:

 $D_{e} = 3.7 \cdot 10^{6} \text{ Sv/Bq} \times 0.5 \text{ Bq} = 1.8 \cdot 10^{-6} \text{ Sv} = 0.00185 \text{ mSv}$

effektive Dosis:

 $D_{i} = 1.8 \cdot 10^{-7} \text{ Sv/Bg x } 0.5 \text{ Bg} = 9 \cdot 10^{-8} \text{ Sv} = 0.00009 \text{ mSv}$

Dadia		Dosisfaktor in Sv/Bq		
nuklid Organ		Kind, 1 Jahr	Erwach- sene	
K-40	effektive Dosis	6,2 • 10 ⁻⁸	6,2 • 10 ⁻⁹	
Sr-90	Knochenoberfläche effektive Dosis	2,3 • 10 ⁻⁶ 2,3 • 10 ⁻⁷	4,1 ⋅ 10 ⁻⁷ 2,8 ⋅ 10 ⁻⁸	
I-131	Schilddrüse effektive Dosis	3,7 • 10 ⁻⁶ 1,8 • 10 ⁻⁷	4,3 • 10 ⁻⁷ 2,2 • 10 ⁻⁸	
Cs-134	effektive Dosis	2,6 · 10 ⁻⁸	1,9 ⋅ 10 ⁻⁸	
Cs-137	effektive Dosis	2,1 · 10 ⁻⁸	1,3 ⋅ 10 ⁻⁸	
Po-210	Nieren effektive Dosis	1,8 • 10 ⁻⁴ 2,6 • 10 ⁻⁵	1,3 ⋅ 10 ⁻⁵ 1,2 ⋅ 10 ⁻⁶	
Ra-226	Knochenoberfläche effektive Dosis	1,6 • 10 ⁻⁴ 4,7 • 10 ⁻⁶	1,2 • 10 ⁻⁵ 2,8 • 10 ⁻⁷	

Tab. 7-10: Dosisfaktoren zur Berechnung der Folgedosis bei einer Aufnahme radioaktiver Stoffe mit der Nahrung

Beispiel 2:

Ein Erwachsener isst 100 g Paranüsse mit einer spezifischen Aktivität an Ra-226 von 100 Bg/kg. Wie hoch ist die Strahlenexposition der Knochenoberfläche und die effektive Dosis?

Knochenoberflächendosis:

 $D_{f} = 1.2 \cdot 10^{-5} \text{ Sv/Bq} \times 10 \text{ Bq} = 1.2 \cdot 10^{-4} \text{ Sv} = 0.12 \text{ mSv}$

effektive Dosis:

$$D_{c} = 2.8 \cdot 10^{-7} \text{ Sv/Bq x 10 Bq} = 2.8 \cdot 10^{-6} \text{ Sv} = 0.0028 \text{ mSv}.$$

Veranschaulichung des Dosisfaktors für Cs-137; angegeben ist die aus der Inkorporation resultierende effektive 50-Jahre-Folgedosis für einen Erwachsenen

8 Natürliche Strahlenquellen – natürliche Strahlenexposition

Die natürliche ionisierende Strahlung lässt sich auf vier verschiedene Quellen zurückführen:

- Aus dem Weltall trifft eine Teilchenstrahlung und energiereiche Photonenstrahlung auf die Erde (kosmische Strahlung).
- In der Erdatmosphäre werden durch die kosmische Strahlung ständig Radionuklide neu gebildet (kosmogene Radionuklide).
- In der Erdmaterie wandeln sich natürliche Radionuklide mit langer Halbwertszeit in nur einem Zerfallsschritt in inaktive Nuklide um.
- In der Erdmaterie wandeln sich die natürlichen Radionuklide Thorium und Uran mit langer Halbwertszeit in mehreren Stufen zu inaktiven Nukliden um.

8.1 Kosmische Strahlung und die Erzeugung neuer Radionuklide

Von der Sonne und anderen Sternen trifft eine energiereiche Teilchenstrahlung auf die Lufthülle unserer Erde. Diese Strahlung besteht im Wesentlichen aus Protonen, also aus Wasserstoffkernen (Tab. 8-1). Sie wird primäre kosmische Strahlung genannt.

Teilchenart	Anteil
Protonen	93 %
Heliumkerne	6 %
schwere Kerne	1 %

 Tab. 8-1:
 Zusammensetzung der Teilchen in der primären kosmischen Strahlung

Die Energie kosmischer Protonen kann mehr als 10¹⁴ MeV betragen. Beim Zusammenprall mit den Molekülen der Lufthülle werden Atomkerne zertrümmert. Dabei entstehen neue Kerne und Teilchen, die weiterfliegen und z. T. weitere Kerne zertrümmern, bis ihre ursprüngliche Energie aufgebraucht ist. Am Erdboden ist fast nur die Strahlung zu beobachten, die durch vielfältige Sekundärprozesse entsteht (Abb. 8.1). Sie wird sekundäre kosmische Strahlung genannt.

Die wichtigsten Radionuklide, die durch die kosmische Strahlung erzeugt werden, sind H-3, Be-7, C-14 und Na-22. Entstehung und Zerfall von C-14:

$${}^{14}_{7}\mathbf{N} + {}^{1}_{0}\mathbf{n} \rightarrow {}^{14}_{6}\mathbf{C} + {}^{1}_{1}\mathbf{p} \qquad \text{(Entstehung)}$$

$${}^{14}_{6}\mathbf{C} \rightarrow {}^{14}_{7}\mathbf{N} + {}^{0}_{-1}\mathbf{e} \qquad \text{(radioaktiver Zerfall)}$$

$${}^{T_{1/2}}_{5730 a}$$

Die gesamte natürliche C-14-Aktivität beträgt 8,5 · 10¹⁸ Bq. Die spezifische natürliche Aktivität von C-14 des Kohlenstoffs, der aus Bäumen gewonnen wurde, beträgt 227 Bq/kg.

Abb. 8.1: Komponenten der kosmischen Sekundärstrahlung

Entstehung und Zerfall von H-3:

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{12}_{6}C$$
 (Entstehung)

und

$${}^{16}_{8}O + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{14}_{7}N \qquad \text{(Entstehung)}$$

$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + {}^{0}_{-1}e \qquad \text{(radioaktiver Zerfall)}$$

Die gesamte Aktivität des auf natürlichem Wege erzeugten Tritium liegt bei $1,3 \cdot 10^{18}$ Bq. Es ist zu etwa 99 % im Wasser gebunden. Die natürliche Tritiumaktivität des Meereswassers beträgt etwa 100 Bq/m³, in kontinentalen Oberflächengewässern zwischen 200 und 900 Bq/m³.

Elektronen und Gammaquanten der sekundären kosmischen Strahlung besitzen nur ein geringes Durchdringungsvermögen. Sie werden bereits durch die Luft teilweise absorbiert. Die praktisch völlige Abschirmung kann durch 15 cm Blei erreicht werden.

Der Neutronenanteil der sekundären kosmischen Strahlung ist in Meereshöhe gering, er nimmt aber mit der Höhe stark zu und bewirkt in einer Höhe von 15 km bereits rund 50 % der gesamten kosmischen Strahlenexposition in dieser Höhe. Mesonen sind Elementarteilchen, deren Masse zwischen der des Elektrons und des Protons liegt. In Meereshöhe besteht die kosmische Strahlung zu etwa 90 % aus Mesonen. Sie haben eine außerordentlich kurze Lebensdauer in der Größenordnung von Sekundenbruchteilen und zerfallen – je nach ihrer Ladung – in ein Elektron oder Positron sowie zwei Neutrinos. Die Intensität der Mesonenstrahlung wird durch eine 1 m dicke Bleiplatte erst auf die Hälfte herabgesetzt. Mesonen sind deshalb noch in Bergwerken und auf dem Grund tiefer Seen nachgewiesen worden. Die Wechselwirkungen zwischen Neutrinos und Materie sind außerordentlich schwach. So wird z. B. von 1 Million Neutrinos, die durch die Erdkugel fliegen, nur eines absorbiert. Sie tragen deshalb auch nicht zur Strahlenexposition bei.

8.2 Natürliche Radionuklide ohne und mit Zerfallsreihen

In der Natur existieren viele Radionuklide mit extrem langer Halbwertszeit, die sich nur durch einen einzigen Zerfallsschritt in inaktive Nuklide umwandeln (Tab. 8-2). Man kann annehmen, dass es sich dabei um Radionuklide aus der Entstehungszeit der irdischen Materie handelt. Durch die sehr lange Halbwertszeit ist ihre Aktivität seit ihrer Entstehung – bis auf K-40 – kaum abgeklungen. Die langen Halbwertszeiten und der z. T. geringe Anteil dieser Nuklide an der Isotopenzusammensetzung des jeweiligen Elements bedingt nur eine geringe spezifische Aktivität und damit eine vernachlässigbare Strahlenexposition.

Eine Ausnahme in dieser Hinsicht stellt das Kalium-40 dar. Das in der Natur vorkommende Kalium besteht zu 93,2581 % aus K-39, zu 6,7302 % aus K-41 und zu 0,0117 % aus dem radioaktiven K-40. K-40 zerfällt unter

Nuklid	Halbwertszeit in Jahren	Nuklid	Halbwertszeit in Jahren
K-40	1,28 · 10 ⁹	La-138	1,05 · 10 ¹¹
V-50	1,4 · 10 ¹⁷	Nd-144	2,29 · 10 ¹⁵
Ge-76	1,53 · 10 ²¹	Nd-150	1,7 .10 ¹⁹
Se-82	1,08 · 10 ²⁰	Sm-147	1,06 · 10 ¹¹
Rb-87	4,8 · 10 ¹⁰	Sm-148	7 • 10 ¹⁵
Zr-96	3,9 · 10 ¹⁹	Gd-152	1,1 · 10 ¹⁴
Mo-100	1,15 · 10 ¹⁹	Lu-176	3,8 · 10 ¹⁰
Cd-113	9 · 10 ¹⁵	Hf-174	2,0 · 10 ¹⁵
Cd-116	2,6 · 10 ¹⁹	Ta-180	1,2 · 10 ¹⁵
In-115	4,4 · 10 ¹⁴	Re-187	5 • 10 ¹⁰
Te-123	1,24 · 10 ¹³	Os-186	2 · 10 ¹⁵
Te-128	7,2 . 10 ²⁴	Pt-190	6,5 . 10 ¹¹
Te-130	2,7 · 10 ²¹		

Abb. 8.2: Zerfallsschema für K-40

Aussenden eines Betateilchens zu Ca-40 oder durch K-Einfang zu Ar-40 (Abb. 8.2). Da das K-40 mit dem angegebenen Anteil in jeder Kaliumverbindung vertreten ist, sind auch alle Kaliumverbindungen radioaktiv. Auch der menschliche Körper enthält Kalium. Beim erwachsenen Menschen beträgt der Kaliumanteil etwa 2 g pro Kilogramm Körpergewicht; das entspricht beim Standardmenschen einer Kalium-40-Aktivität im Gesamtkörper von 4 200 Bq.

Es gibt außerdem natürliche Radionuklide mit sehr langen Halbwertszeiten, die sich in mehreren Stufen in inaktive Nuklide umwandeln. Dabei werden ständig Radionuklide mit z. T. sehr kurzen Halbwertszeiten neu gebildet. In der Natur kommen noch drei Zerfallsreihen vor (Tab. 8-3, Abb. 8.3 und 8.4). In den frühen Zeiten der Erdgeschichte existierte eine weitere Zerfallsreihe, die Plutonium-Neptunium-Reihe. Das Ausgangsglied war Pu-241, das Endglied Bi-209. Diese Zerfallsreihe ist "ausgestorben", weil Np-237 als das langlebigste Glied dieser Reihe eine – verglichen mit dem Alter der Erde – geringe Halbwertszeit von 2,144 \cdot 10⁶ Jahren hat. Nachdem aber die Transurane und damit auch Pu-241 künstlich hergestellt worden sind, existiert damit diese Zerfallsreihe im Prinzip wieder.

Geringste Mengen von Pu-239 entstehen in der Natur ständig neu durch Neutronenbestrahlung von U-238. Diese Neutronen stammen überwiegend aus der Spontanspaltung des U-238 (ca. 60 Neutronen/h·g Uran).

Zerfallsreihe	Beginn	Ende
Thorium - Reihe	²³² ₉₀ Th	²⁰⁸ 82 Pb
Uran - Actinium - Reihe	²³⁵ 92 U	²⁰⁷ 82 Pb
Uran - Radium - Reihe	²³⁸ 92 U	²⁰⁶ 82 Pb

Tab. 8-2: Radioaktive Urnuklide ohne Zerfallsreihen

Tab. 8-3: Natürliche Radioaktivitätszerfallsreihen

Abb. 8.3: Th- und U–Ac-Zerfallsreihe

8.3 Natürliche Radionuklide in Boden, Wasser und Luft

Die natürlichen Radionuklide kommen im Erdboden, im Wasser und in der Luft in unterschiedlichen Konzentrationen vor. Durch Verwitterungsprozesse oder meteorologische Faktoren kann sich die Konzentration kurzzeitig oder über längere Zeiträume hinweg ändern. Der Gehalt der oberen Schichten des Erdbodens an natürlichen Radionukliden wird auch durch den Mineraldünger verändert, den man in der Landwirtschaft einsetzt. Tab. 8-4 gibt typische Werte für die spezifische Aktivität einiger Bodenarten an. Die Variationsbreite dieser Werte kann groß sein, was sich aus Tab. 8-4 am Beispiel Basalt zeigt.

In den drei Zerfallsreihen durchlaufen die Radionuklide die Kernladungszahl 86, die des Radons. Dieses Edelgas kann durch Erdspalten und Bodenkapillaren in die Atmosphäre gelangen. Dieser Vorgang ist von geologischen und meteorologischen Bedingungen abhängig. So wird z. B. durch Schnee oder Wasser das Austreten des Radon aus dem Erdboden größtenteils verhindert. Die

Abb. 8.4: U–Ra- und Pu–Np-Zerfallsreihe

Dedenart	Herkunft	Spezifische Aktivität in Bq/kg			
Bodenan		Ra-226	Th-232	K-40	
Fränkischer Schiefer	Hof	30	60	1 000	
Kalkstein	Pfalz	< 8	10	< 40	
Granit	Italien	40	60	900	
Basalt	Hessen	30	20	400	
Basalt	Pfalz	40	50	200	
Basalt	Prag	50	30	400	
Rohphosphat	Marokko	1 800	20	700	
Rheinsand	Speyer	20	10	400	
Bimsstein	Neuwieder Becken	70	70	1 000	

lsotop	Halbwertszeit
Rn-219	3,96 s
Rn-220	55 s
Rn-222	3,825 d

Tab. 8-5: Radonisotope der natürlichen Radioaktivitätszerfallsreihen

drei Radonisotope haben sehr unterschiedliche Halbwertszeiten (siehe Tab. 8-5).

Bei Rn-222 reicht die Halbwertszeit von 3,8 d aus, dass es nach dem Ausströmen aus der Erde oder dem Mauerwerk der Häuser in den unteren Luftschichten verteilt wird. Man schätzt, dass von dem entstandenen Rn-222 im Mittel 15 % in den Luftraum gelangen. Dort zerfällt das Radionuklid weiter (Abb. 8.5). Die Rn-222-Konzentration beträgt in der bodennahen Luft im Mittel 14 Bq/m³. Über meeresnahen Luftschichten ist die Radonkonzentration geringer, da der Radiumgehalt des Meeres geringer ist als der des Erdbodens.

Die in der Atmosphäre entstehenden Folgeprodukte des Radon sowie die durch die kosmische Strahlung erzeugten Radionuklide gelangen durch Sedimentation, Konvektion, Diffusion oder mit dem Niederschlag zur Erde bzw. in die Gewässer. Grund- und Quellwasser enthalten als wichtigste Radionuklide Radon und seine Folgeprodukte. Im Meerwasser wird die Aktivität im Wesentlichen durch das K-40 verursacht. Die Tab. 8-6 enthält typische Wertebereiche der natürlichen radioaktiven Stoffe im Wasser.

Manche Mineralwässer besitzen einen besonders hohen Gehalt an natürlichen Radionukliden. Die spezifische Radon-222-Aktivität kann dann bis 1 500 Bq/l betragen. Dieser Wert tritt aber nur kurzfristig auf, weil das Radon sehr schnell aus dem Wasser entweicht.

Abb. 8.5:

Entstehung des Rn-222 und seiner Folgeprodukte in bodennaher Luft

8.4 Natürliche Radionuklide in Baustoffen

Die von den Menschen verwendeten Baumaterialien enthalten ebenfalls radioaktive Stoffe. Ihre Konzentration schwankt in Abhängigkeit von der Baustoffgruppe und der Herkunft. Verallgemeinernd lassen sich über die wichtigsten Baumaterialien die in der Tab. 8-7 enthaltenen relativen Angaben machen.

Baustoff	Radionuklidgehalt	
Holz, Kunststoff	sehr niedrig	
Kalkstein, Sandstein	niedrig	
Ziegel, Beton	mittel	
natürliches Gestein	hoch	
Schlackenstein, Bimsstein	sehr hoch	

Tab. 8-7: Klassifizierung von Baustoffen nach dem Radionuklidgehalt

Die Wohnungen stellen eine Anhäufung von Erdmaterie dar. Je größer die Masse ist, die die Bewohner umgibt, desto mehr natürliche Radionuklide sind auch vorhanden und senden Strahlen aus. Bei Gebäuden muss zusätzlich bedacht werden, dass beim radioaktiven Zerfall von Uran-238, Uran-235 und Thorium-232 in den Zerfallsreihen auch Isotope des Elements Radon auftreten. Radon ist ein radioaktives Edelgas, das aus dem Erdboden und Gebäudewänden z. T. ausströmt und dann in der Luft weiter zerfällt (Abb. 8.6). In Gebäuden mit gegenüber dem Erdreich undichten Kellerräumen (z. B. mit Naturstein- oder Naturbodenkeller) oder mit geringer Lüftung kann sich dadurch in den Wohnräumen eine deutlich höhere Radonkonzentration ergeben als in der Freiluft. Das verwendete Baumaterial, die Bauweise und die in den Gebäuden stattfindende Ventilation sind dabei von Bedeutung. Die Rn-222-Aktivitätskonzentration der Luft in Wohnungen beträgt im Mittel 50 Bq/m³ gegenüber 14 Bq/m³ im Freien.

8.5 Natürliche externe Strahlenexposition des Menschen

8.5.1 Kosmische Strahlung

Die kosmische Strahlung wurde bereits 1913 unabhängig voneinander von Hess und Kolhörster entdeckt, die eine mit der Höhe zunehmende Ionisation in der Atmosphäre feststellten.

Mit einem Zahlenwert von eins für den Strahlungswichtungsfaktor der ionisierenden Komponente der kosmische Strahlung, einem Aufenthaltsanteil von 80 % in Häusern und 20 % im Freien und einem mittleren Abschirmfaktor der Häuser von 0,8 ergibt sich ein Beitrag der ionisierenden Komponente zur effektiven Dosis von 0,24 mSv pro Jahr in Meereshöhe. Der Beitrag der Neutronenkomponente zur effektiven Dosis beträgt unter Berücksichtigung der Strahlungswichtungsfaktoren für das Neutronenenergiespek-

	Konzentration an natürlichen Radionukliden in Bq/l						
Wasser- vorkommen	H-3	Ra-226	Rn-222 und kurzlebige Folgeprodukte	K-40	U-238	Pb-210	Po-210
Meer	0,02 bis 0,06	0,001 bis 0,006	0,001 bis 0,03	12	0,04	0,002	-
Flüsse, Seen	0,04 bis 0,4	< 0,0004 bis 0,1	0,4 bis 2	0,04 bis 2	0,0006 bis 0,04	0,004 bis 0,2	-
Grundwasser	0,04 bis 0,4	< 0,004 bis 0,4	4 bis 400	0,004 bis 0,4	0,001 bis 0,2	0,002	0,0004 bis 0,002
Regen	0,4 bis 1	-	40 bis 4000	0,004 bis 0,1	_	0,01 0,2	0,004 bis 0,04
Trinkwasser	0,2	0,004	0,4 bis 4	0,2	0,002	0,001	0,0004

Abb. 8.6: Eindringen des radioaktiven Edelgases Radon in Wohnräume

Abb. 8.7: Dosisleistung durch kosmische Strahlung, mittlere Breiten

trum 0,03 mSv pro Jahr in Meereshöhe. Die gesamte effektive Dosis durch die kosmische Strahlung in Meereshöhe liegt daher bei knapp 0,3 mSv pro Jahr.

Mit zunehmender Höhe über dem Meer steigt die Exposition durch kosmische Strahlung an (siehe Abb. 8.7). Der Anteil der ionisierenden Komponente an der gesamten effektiven Dosis steigt dabei langsamer an als der Anteil durch die Neutronenkomponente. Ständiger Aufenthalt auf der Zugspitze führt mit 1,1 mSv/a – davon 0,65 mSv/a durch die ionisierende Komponente und 0,45 mSv/a durch die Neutronenkomponente – zu einer etwa viermal höheren Exposition als auf Helgoland. Die Tab. 8-8 enthält Daten der kosmischen Strahlenexposition für einige hochgelegene Großstädte.

8.5.2 Terrestrische Strahlung

Die Erdkruste enthält in unterschiedlicher Konzentration und in regional großer Variation eine Vielzahl natürlich radioaktiver Stoffe (siehe Tab. 8-4). Die beim Zerfall emittierte ionisierende Strahlung wird terrestrische Strahlung genannt. Die Strahlenexposition im Freien ist von der jeweiligen spezifischen Aktivität all dieser Radionuklide im Boden abhängig. Generell ist der Radioaktivitätsgehalt im

Ort	Einwoh- ner- zahl in Millionen	Höhe in m	effektive Jahres- dosis in mSv
La Paz	1,5	3 900	2,0
Lhasa	0,4	3 600	1,7
Quito	1,7	2 840	1,1
Mexiko Stadt	19,5	2 240	0,82
Nairobi	2,4	1 660	0,58
Denver	2,7	1 610	0,57
Teheran	10,7	1 180	0,44

Tab. 8-8:	Kosmische Strahlenexposition in hochgelegenen
	Städten

Bundesland	Ortsdosisleistung in mSv/a
Baden-Württemberg	0,38
Bayern	0,42
Berlin	0,19
Brandenburg	0,18
Bremen	0,26
Hamburg	0,35
Hessen	0,37
Mecklenburg-Vorpommern	0,22
Niedersachsen	0,29
Nordrhein-Westfalen	0,36
Rheinland-Pfalz	0,42
Saarland	0,49
Sachsen	0,35
Sachsen-Anhalt	0,27
Schleswig-Holstein	0,32
Thüringen	0,39

Tab. 8-9: Ländermittelwerte der Ortsdosisleistung im Freien

Urgestein höher als in Sedimentgestein. Infolge des unterschiedlichen Gehalts der verschiedenen Gesteinsarten an natürlich radioaktiven Stoffen sind die Werte der terrestrischen Strahlung durch den geologischen Untergrund und insbesondere durch die obersten Bodenschichten bedingt von Ort zu Ort sehr unterschiedlich.

Die umfangreichen Messungen der terrestrischen Strahlung in Deutschland sind für die einzelnen Bundesländer in der Tab. 8-9 zusammengefasst. Als Mittelwert für Deutschland erhält man für die terrestrische Strahlenexposition im Freien einen Wert der effektiven Dosis von 0,35 mSv/a.

Das zum Hausbau verwandte Baumaterial hat einen nicht unerheblichen Einfluss auf die durch natürliche radioaktive Stoffe hervorgerufene externe Strahlenexposition. Der gewichtete Mittelwert für die Exposition in Häusern liegt um rund 20 % höher als im Freien. Die Tab. 8-10 gibt den zusätzlichen Betrag der effektiven Jahresdosis in Häusern für einige wichtige Baustoffe an.

Berücksichtigt man einen Aufenthalt von 20 % im Freien und 80 % in Häusern, so errechnet sich die mittlere effekti-

Baustoff	zusätzliche effektive Jahresdosis in mSv	
Holz	0	
Kalkstein, Beton	0,12	
Ziegel, Klinker	0,15	
Schlackenstein, Bims	0,25	

Tab. 8-10: Einfluss der Baumaterialien auf die Exposition in Wohngebäuden, Deutschland (West)

Gebiet		Mittlere effektive Jahresdosis in mSv	Maximale Jahresorts- dosis im Freien in mSv
Deut	schland	0,4	5
Indien:	Teilbereiche von Kerala und Tamil Nadu	4	55
Brasilien:	Teilbereiche von Espirito Santo	6	175
Iran:	Ramsar	6	860

Tab. 8-11: Terrestrische Strahlung in verschiedenen Gebieten

ve Dosis der Bevölkerung in Deutschland durch die terrestrische Strahlung zu 0,41 mSv pro Jahr.

In einigen Gebieten der Erde sind infolge höherer Konzentrationen natürlich radioaktiver Stoffe die Strahlendosen wesentlich größer (siehe Tab. 8-11). Ebenfalls hohe Werte der durch die terrestrische Strahlung bedingten Exposition wurden im Nil- und im Gangesdelta mit 3,5 mSv/a gemessen.

8.6 Natürliche interne Strahlenexposition

Die im Durchschnitt im menschlichen Körper vorhandenen Aktivitäten natürlicher Radionuklide betragen – bezogen auf den Standardmenschen – etwa 9 000 Bg (siehe Tab. 7-9).

Von den natürlich radioaktiven Stoffen bewirkt Kalium-40 eine nicht unbeträchtliche Strahlendosis. Neben einer äußeren Strahlenexposition führt Kalium-40 zu einer inneren Strahlendosis, da Kalium und mit ihm Kalium-40 als lebenswichtiges Element im Körper vorhanden sein muss. Beim erwachsenen Menschen beträgt der Kaliumanteil etwa 2 g pro Kilogramm Körpergewicht; das entspricht einer Kalium-40-Aktivität im Gesamtkörper von 4 200 Bq. Auch die mit der Nahrung aufgenommenen Radionuklide der Zerfallsreihen von Uran und Thorium bewirken in den verschiedenen Organen und Geweben des menschlichen Körpers unterschiedliche Organdosen.

Radon-222 und Radon-220 sind natürliche radioaktive, gasförmige Stoffe. Von diesen beiden Radon-Isotopen verursacht insbesondere das Radon-222 durch die kurzlebigen Folgeprodukte Po-218, Pb-214, Bi-214 und Po-214 den bei weitem größten Beitrag zur natürlichen Strahlenexposition des Menschen. Die Jahresmittelwerte der Radonkonzentration der bodennahen Luft in Deutschland überdecken den Bereich von 8 bis 30 Bq/m³. Der Mittelwert der Häufigkeitsverteilung der Radonkonzentrationswerte in den Wohnungen beträgt 50 Bq pro m³. Die Untersuchungen deuten darauf hin, dass in 10 % der Wohnungen die Radonkonzentration über 80 Bq/m³ und in 1 % der Wohnungen über 200 Bq/m³ liegt. Aus den Mittelwerten der Radonkonzentration im Freien in Deutschland von 14 Bq pro m³ und in Häusern von 50 Bq/m³ lässt sich un-

ter Berücksichtigung der jeweiligen Aufenthaltsdauer die mittlere effektive Dosis durch Radon und seine Zerfallsprodukte zu 1,1 mSv/a berechnen.

Von den durch die Wechselwirkung der kosmischen Strahlung mit den Atomen der hohen Atmosphärenschichten ständig neu entstehenden Radionukliden hat nur Kohlenstoff-14 für die Strahlenexposition des Menschen eine – allerdings geringe – Bedeutung. Aus dem durchschnittlichen Kohlenstoffgehalt in den verschiedenen Körpergeweben errechnet sich eine effektive Jahresdosis von 12 μ Sv. Die Beiträge durch andere kosmogene Radionuklide sind gering (Na-22: 0,15 μ Sv/a, Be-7: 0,03 μ Sv/a, H-3: 0,01 μ Sv/a).

8.7 Zusammenfassung der natürlichen Strahlenexposition

Die effektive Dosis aus allen natürlichen Strahlenquellen ergibt sich zu einem Drittel aus externer und zwei Drittel aus interner Strahlenexposition (Tab. 8.12). Individuelle, lokale und regionale Abweichungen von diesen mittleren Werten können erheblich sein. In Deutschland wird für die meisten Einwohner die effektive Dosis im Bereich von 1,5 bis 6 mSv/a liegen mit einem mittleren Wert von 2,1 mSv/a.

	jährliche effektive Dosis in mSv			
Exposition durch	Bestrah- lung von außen	Bestrah- lung von innen	gesamt	
kosmische Strahlung				
in Meereshöhe: ionisierende Komponente Neutronen	0,24 0,03		} 0,27	
in 1 000 m Höhe: ionisierende Komponente Neutronen	0,32 0,08		} 0,4	
kosmogene Radionuklide		0,02	0,02	
primordiale Radionuklide				
K-40 Rb-87	0,18	0,17 0,006	0,35	
U-238-Reihe:				
U-238 \rightarrow Ra-226 Rn-222 \rightarrow Po-214 Pb-210 \rightarrow Po-210	} 0,12	0,02 1,1 0,05	} 1,3	
Th-232-Reihe:				
Th-232 → Ra-224 Rn-220 → TI-208	} 0,14	0,01 0,07	} 0,2	
Summe	0,7	1,4	2,1	

Tab. 8-12: Mittlere natürliche Strahlenexposition in Deutschland

Künstliche Strahlenquellen – zivilisatorische 9 Strahlenexpositionen

Außer der natürlichen Strahleneinwirkung sind die Menschen einer zivilisatorisch bedingten Strahleneinwirkung ausgesetzt. Sie kommt im Wesentlichen durch folgende Anwendungen zustande:

- Strahleneinsatz in der Medizin,
- Reaktorunfall von Tschernobyl,
- Kernwaffenversuche,
- Anwendungen ionisierender Strahlen in Wissenschaft, Technik und Haushalt,
- Flugverkehr,
- Betrieb von Kernkraftwerken und anderen kerntechnischen Einrichtungen.

9.1 Medizinische Anwendung von Röntgenstrahlen

Röntgenstrahlen werden in der Medizin zur Diagnose und Therapie eingesetzt.

Bei der Diagnostik wird der zu untersuchende Körperteil eines Menschen durchstrahlt (Abb. 9.1). Nach dem Austritt der Strahlen aus dem Körper lässt man sie auf einen Fluoreszenzschirm treffen (z. B. Zinksulfid), der dann aufleuchtet. Die Röntgenstrahlen selbst sind für Menschen nicht

Abb. 9.2: Röntgenaufnahme eines Brustkorbs

sichtbar. Da Röntgenstrahlen von verschiedenen Stoffen verschieden stark absorbiert werden, entstehen auf dem Schirm, einem Monitor oder einem Film Bilder vom Innern des Körpers. Organe mit größerer Strahlenabsorption (z. B. Knochen, Herz) führen zu hellen Stellen, solche mit geringerer Strahlenabsorption (z. B. Lungengewebe) zu dunkleren Stellen (Abb. 9.2).

Die Anwendung der Röntgenstrahlen in der medizinischen Diagnostik führt zu einer Strahlenexposition des Menschen. Sie ist von der Art und dem Umfang der durchgeführten Untersuchung abhängig. Die Tab. 9-1 gibt dafür einige Orientierungswerte, im individuellen Fall können erhebliche Abweichungen auftreten. Das beruht auf der sehr

Untersuchungsart	effektive Dosis, mSv
CT Bauchraum	30
CT Brustkorb	20
CT Wirbelsäule	9
CT Kopf	2,5
Dickdarm	20
Schlagaderdarstellung	20
Dünndarm	16
Magen	9
Harntrakt	5
Lendenwirbelsäule	2
Becken	1
Brustkorb	0,3
Zahn	0,01

Tab. 9-1:

Gerundete Mittelwerte der effektiven Dosis für einige Röntgenuntersuchungen (CT = Computer-Tomographie)

Abb. 9.3: Prinzip der Pendelbestrahlung

großen Variabilität der Einzeldosis bei jeder Untersuchung, die vom untersuchenden Arzt, der speziellen medizinischen Situation, der genutzten Technik, der Bestrahlungsfeldgröße und der Zahl der Aufnahmen je Untersuchung und noch weiteren Faktoren abhängt.

Die mittlere effektive Jahresdosis pro Einwohner in Deutschland durch die Röntgendiagnostik beträgt 2,0 mSv. Die durch die Röntgendiagnostik bewirkte effektive Jahresdosis ist in anderen Industrieländern zum Teil wesentlich geringer; sie beträgt in Großbritannien 0,33, in den USA 0,5 und in der Schweiz 1 mSv.

In der Therapie werden Röntgenstrahlen eingesetzt, um z. B. die Zellen bösartiger Tumore zu bestrahlen und dadurch abzutöten. Die Dosis wird dabei so hoch gewählt, dass die kranken Zellen abgetötet werden. Die Energiedosis im Zielgewebe ist sehr viel höher als bei der Diagnostik und beträgt bis zu 60 Gy. Damit bei einem tieferliegenden Tumor nur der Krankheitsherd und nicht das umgebende Gewebe geschädigt wird, werden mehrere aufeinanderfolgende Bestrahlungen aus unterschiedlichen Richtungen vorgenommen. Dadurch wird der Krankheitsherd mehrfach, das übrige Gewebe aber nur einmalig bestrahlt. Im Krankheitsherd addiert sich die Strahlenwirkung. Denselben Effekt kann man auch dadurch erreichen, dass die Strahlenquelle um den Patienten pendelt, wodurch die Strahlung auf den Krankheitsherd dauernd, auf das andere Gewebe aber nur eine sehr viel kürzere Zeit einwirkt (Abb. 9.3).

9.2 Anwendungen von Radionukliden in der Medizin

Bei nuklearmedizinischen Untersuchungen wird dem Patienten eine radioaktive Substanz verabreicht, die vom Körper resorbiert und in bestimmte Organe transportiert wird. In welches Organ ein bestimmtes Radionuklid transportiert wird, ist auch davon abhängig, in welche chemische Verbindung es eingebaut worden ist. Da die verabreichte Substanz Strahlen aussendet, ist ihr Weg im Körper und sind die Stellen erhöhter Konzentration von außen gut zu verfolgen. Aus der Aufnahmegeschwindigkeit und der Konzentration im Organ oder Teilen davon lassen sich Rückschlüsse auf die Organfunktion ziehen oder auch Tumore erkennen. Die verabreichten Substanzen enthalten radioaktive Isotope, die eine möglichst kurze Halbwertszeit besitzen, nicht zu lange im Körper gespeichert werden und deren Strahlung nicht zu energiereich ist.

Ein besonders bekanntes Beispiel aus der Nuklearmedizin ist die Schilddrüsen-Funktionsprüfung. Wird dem Patienten eine bestimmte Menge I-131 oder Tc-99m injiziert, wird es in einigen Stunden bis zu 90 % in die Schilddrüse aufgenommen. Der zeitliche Verlauf der Aufnahme durch die Schilddrüse und die insgesamt gespeicherte Menge geben Auskunft über den Funktionszustand der Schilddrüse. Die Abb. 9.4 zeigt ein so genanntes Schilddrüsen-Szintigramm. Das von der Schilddrüse aufgenommene Radionuklid sendet Strahlen aus, die ein Detektor von außen registriert. Ein angeschlossener Drucker zeichnet je nach Anzahl der Impulse verschiedenfarbige Striche. Das Szintigramm zeigt die Lage und Größe der beiden Schilddrüsenlappen. Der erweiterte rechte Lappen weist auf eine Funktionsstörung hin.

Die Tab. 9.2 enthält Angaben über die effektive Strahlendosis für verschiedene nuklearmedizinische Untersuchungen. Der gewichtete Mittelwert der effektiven Dosis beträgt 2,75 mSv pro Untersuchung. Aus den rund 2,8 Mio. Untersuchungen im Jahr – die häufigsten Untersuchungen betreffen mit 61 % die Schilddrüse und mit 22 % das Skelett – ergibt sich eine Gesamtdosis von rund 7 700 Sv für alle untersuchten Personen. Pro Einwohner Deutschlands errechnet sich damit ein Wert von rund 0,1 mSv/a. Im Vergleich zur Röntgendiagnostik ist der Beitrag der nuklearmedizinischen Untersuchungen zur gesamten Strahlenexposition durch die Medizin gering.

unter- suchtes Organ	Radio- pharmakon	applizierte Aktivität in MBq	effektive Dosis in mSv
Gehirn	Tc-99m HMPAO	700	6,5
Lunge	Tc-99m-MAA	100	1,1
Herz	TI-201-Chlorid	75	17
Gefäße	Tc-99m-Ery	700	0,6
Niere	Tc-99m-DMSA	75	0,65
Skelett	Tc-99m- Phosphonat	600	3,5
Schild- drüse	Tc-99m- Pertechnetat	50	0,6
Leber/ Galle	Tc-99m-HIDA	150	2,3

Tab. 9-2: Effektive Dosis bei nuklearmedizinischen Untersuchungen

Abb. 9.4: I-131-Szintigramm einer Schilddrüse

Nach dem gleichen Verfahren lassen sich auch Therapiemaßnahmen durchführen. Da lod praktisch ausschließlich in der Schilddrüse gespeichert wird, kann durch verabfolgtes radioaktives lod (I-131, I-123) z. B. ein Schilddrüsentumor zerstört werden. Die von radioaktivem lod ausgesandten Betateilchen haben in organischem Gewebe nur eine geringe Reichweite, so dass sie praktisch nur auf die Schilddrüse selbst einwirken.

9.3 Strahlenexposition durch den Reaktorunfall von Tschernobyl

Der Reaktorunfall von Tschernobyl am 26. April 1986 wurde durch Fehlbedienungen der Reaktorregelung ausgelöst. Dabei kam es zu einem so großen Temperaturanstieg in den Brennelementen, dass diese schmolzen. Der dadurch entstehende sehr hohe Wasserdampfdruck im Kühlkreislauf ließ die Druckrohre, in denen sich auch die Brennelemente befanden, platzen. Der Moderator Graphit geriet in Brand. Aus dem zerstörten Reaktor gelangten große Mengen radioaktiver Stoffe ins Freie. Ein Großteil der Radionuklide hat zu einer hohen Kontamination der Umwelt in einer 30-km-Zone um den Reaktor geführt.

Durch die Brände wurden radioaktive Stoffe in Höhen von 1 bis 2 km transportiert und z. T. über weite Gebiete verteilt. Aufgrund der abgelagerten Aktivitäten ist es zu einer zusätzlichen Strahlenexposition gekommen, die auch in Zukunft noch wirksam sein wird. Die Tab. 9-3 enthält Daten über die Strahlenexposition in den durch den Unfall höher kontaminierten Gebieten. Die Strahlenexposition in Deutschland betrug 1986 je nach Wohnort zwischen 0,05 mSv und 1,1 mSv bei Erwachsenen und zwischen 0,1 mSv und 1,5 mSv bei Kleinkindern. Während der gesamten Lebenszeit werden Erwachsene eine Dosis zwischen 0,5 mSv im Norden Deutschlands und 6 mSv in Südbayern erhalten. Bei Kleinkindern in Bayern kann der Maximalwert bis zu 10 mSv betragen.

Gebiete	Einwohner- zahl im be-	durchschnittliche effektive Dosis in mSv				
in	troffenen Gebiet	äußere Exposition	innere Exposition	gesamt		
Weiß- russland	1 880 000	5,1	2,9	8,0		
Russ- land	1 980 000	4,3	2,5	6,8		
Ukraine	1 300 000	4,7	6,1	10,8		
gesamt	5 160 000	4,7	3,5	8,2		

Tab. 9-3: Effektive Dosis der Bevölkerung im Zeitraum 1986 bis 1995 in den durch den Tschernobyl-Unfall kontaminierten Gebieten

9.4 Strahlenexposition durch Kernwaffentests

Kernwaffen beruhen auf dem Prinzip der Kernspaltung und gegebenenfalls zusätzlich der Kernfusion (Wasserstoffbombe). Bei der Kernspaltungsbombe laufen in U-235 oder Pu-239 unkontrollierte Kettenreaktionen ab. Bei der Kernfusion verschmelzen Deuterium (H-2) oder Tritium (H-3) zu Helium. Die Sprengkraft beruht dabei auf der durch die Freisetzung der Kernbindungsenergie auftreten-

Radionuklid	Halbwertszeit	Freigesetzte Aktivität in 10 ¹⁸ Bq
H-3	12,32 a	240
C-14	5730 a	0,22
Sr-90	28,5 a	0,6
Zr-95	64,0 d	150
Ru-106	368 d	12
l-131	8,02 d	700
Cs-137	30,17 a	1
Ce-144	284,8 d	30
Pu-239	2,41·10 ⁴ a	0,01
Pu-240	6550 a	0,01

den Hitze- und Druckwelle. Außerdem entsteht eine sehr intensive Neutronen- und Gammastrahlung.

Kernwaffenexplosionen erzeugen sehr große Aktivitätsmengen insbesondere an Spaltprodukten. Daneben haben für die Strahlenexposition auch noch die bei der Explosion aus dem Uran-238 entstehenden Plutoniumisotope Pu-239, Pu-240 und Pu-241 sowie der Teil des ungespalten gebliebenen Bombenmaterials Pu-239 eine Bedeutung (Tab. 9-4). Bis Mitte 2002 wurden nach Angaben der Internationalen Atomenergie-Organisation 541 Kernwaffen oberirdisch und 1 867 Kernwaffen unterirdisch gezündet. Die Stärke der oberirdischen Explosionen

Abb. 9.5:

Abb. 9.6: Cs-137-Körperaktivität der Karlsruher Referenzgruppe

entsprach einem Äquivalent von 440 Megatonnen TNT (Trinitrotoluol, konventioneller Sprengstoff), die der unterirdischen Explosionen 90 Megatonnen TNT. Die nach Zahl und Sprengkraft größten Versuchsserien wurden in den Jahren 1961/62 durch die USA und die Sowjetunion mit 128 Explosionen durchgeführt.

Die bei den oberirdischen Explosionen erzeugten größeren radioaktiven Schwebstoffpartikel sinken meist innerhalb von 100 km wieder zu Boden. Dieser lokale Fallout kann bis zu 50 % der gesamten Aktivität betragen. Kleinere radioaktive Schwebstoffpartikel werden bis in Höhen von 50 km gehoben und mit Luftströmungen über große Entfernungen transportiert. In höheren Luftschichten verweilen die radioaktiven Schwebstoffe bis zu einigen Jahren. In dieser Zeit können sie global verteilt werden. Durch Luftaustausch gelangen sie in untere Luftschichten, von wo aus sie durch Sedimentation und Niederschlag den Erdboden erreichen.

Die Strahlenexposition der Bevölkerung durch den radioaktiven Fallout folgt aus einer externen Bestrahlung durch die auf dem Boden abgelagerte Aktivität und durch die interne Strahlendosis infolge Inhalation oder den Verzehr von kontaminierten Nahrungsmitteln. Den zeitlichen Verlauf der Exposition in Mitteleuropa gibt Abb. 9.5 wieder. Für Personen in Mitteleuropa ergibt sich für den Zeitraum von 1960 bis 2050 im Mittel eine effektive Dosis von rund 2 mSv; rund 80 % dieser Dosis sind in den Jahren von 1960 bis 1970 angefallen.

Abb. 9.6 zeigt die Ergebnisse von Messungen des Cs-137-Gehalts im Körper, die an einer Referenzpersonengruppe im Ganzkörperzähler des Forschungszentrums Karlsruhe durchgeführt wurden.

9.5 Strahlenexposition durch Flugverkehr

Die Strahlenexposition durch die kosmische Strahlung steigt mit der Höhe über dem Meeresspiegel. In 1 000 m Höhe liegt sie bei 0,4 mSv/a, in 3 000 m Höhe bei 1,1 mSv/a (Abb. 8.7). Die Exposition bei Flügen in großen Höhen muss gesondert betrachtet werden. Zurzeit findet der Massenlufttransport in Höhen von 7 bis 12 km statt. Dadurch erhöht sich die durch kosmische Strahlung hervorgerufene Exposition der westeuropäischen Bevölkerung im Mittel um 5 iSv/a. Für einzelne Flugstrecken können folgende Werte als Anhaltspunkt dienen:

Frankfurt – New York – Frankfurt	100 μSv
Frankfurt – Singapur – Frankfurt	60 μSv
Frankfurt – Palma de Mallorca – Frankfurt	6 μSv

Die Strahlenexposition der Besatzung von Düsenflugzeugen durch kosmische Strahlung für die verschiedenen Flugrouten wurde intensiv untersucht. Bei Flugrouten in geomagnetischen Breiten von 50° N und mehr, Flugzeiten des Personals von 600 h/a und durchschnittlichen Flughöhen von 10 km wird eine effektive Dosis von unter 3 mSv/a abgeschätzt.

Bei Raumflügen treten noch höhere Dosen auf. In diesen Höhen fehlt die abschirmende Wirkung der Atmosphäre. Die Astronauten sind je nach Flugbahn insbesondere der intensiven Strahlung in den beiden Strahlungsgürteln ausgesetzt, die die Erde äquatorial in Höhen von etwa

Flug		Flugdauer in h	Dosis in mSv
Erdumkreisung	Apollo VII	260	3,6
Erdumkreisung	Saljut 6/IV	4 200	55
Mondumkreisung	Apollo VIII	147	5,7
Mondlandung	Apollo XI	195	6
Mondlandung	Apollo XIV	209	15

Tab. 9-5: Strahlendosis bei Raumflügen

15 000 km und 40 000 km umgeben und als Van-Allen-Gürtel bezeichnet werden. So ist ein großer Anteil der gesamten Strahlendosis bei den in Tab. 9-5 aufgelisteten Mondflügen auf den Dosisbeitrag aus diesen Strahlungsgürteln zurückzuführen. Die höhere Dosis beim Flug von Apollo XIV – verglichen mit dem Flug von Apollo XI – ist überwiegend durch den anderen Verlauf der Flugbahn durch die Strahlungsgürtel bedingt.

9.6 Strahlenexposition durch Bildschirmgeräte

Beim Betrieb von Bildschirm- und Fernsehgeräten entsteht betriebsbedingt in der Bildröhre Röntgenstrahlung. Der größte Teil dieser Strahlung wird vom Glas der Bildröhre absorbiert. Der außerhalb des Geräts noch vorhandene Anteil dieser Strahlung ist sehr gering. Messungen des Forschungszentrums Karlsruhe ergaben, dass die betriebsbedingte Röntgenstrahlung viel geringer ist als die Strahlung der Geräte aufgrund der natürlichen radioaktiven Stoffe im Bildschirm selbst. Die Ergebnisse sind zusammen mit Messwerten über die Strahlenexposition durch Zeitschriften infolge der natürlich radioaktiven Stoffe im Papier in Tab. 9-6 zusammengefasst.

Natürliche Umgebungsstrahlung	
(im Mittel)	100 000 pSv/h
Bildschirmgerät (Arbeitsabstand 0,5 m) – betriebsbedingte Röntgenstrahlung	6 pSv/h
 Gammastrahlung natürlicher radio- aktiver Stoffe in Bildröhre und 	
Leuchtstoffen	1 200 pSv/h
 Farbfernseher (Betrachtungsabstand 3 m) betriebsbedingte Röntgenstrahlung Gammastrahlung natürlicher radio- 	2 pSv/h
aktiver Stoffe in Bildröhre und Leuchtstoffen	100 pSv/h
Zeitschriften (Leseabstand 0,35 m)	
 Gammastrahlung von Ra- und Th-Folgeprodukten 	30 pSv/h

 $(pSv = Piko-Sievert, 1 pSv = 10^{-12} Sv)$

Tab. 9-6: Strahlenexposition durch Bildschirmgeräte, Fernsehgeräte und Zeitschriften, die Exposition durch die natürliche Umgebungsstrahlung ist zum Vergleich angegeben

9.7 Strahlenquellen in einem Kernkraftwerk, Strahlenexposition durch Kernkraftwerke

Die von einem Kernreaktor ausgehende Strahlung hat verschiedene Ursachen:

• Bei der Spaltung der Kerne des U-235 durch Neutronen tritt eine Neutronen- und Gammastrahlung auf. Beispiel:

$${}^{235}_{92} \text{U} + {}^{1}_{0} \text{n} \rightarrow {}^{236}_{92} \text{U} \rightarrow {}^{131}_{53} \text{I} + {}^{102}_{39} \text{Y} + 3{}^{1}_{0} \text{n} + \gamma$$

Trifft ein langsames (thermisches) Neutron auf einen Atomkern des Uran-235, wird es in den Kern aufgenommen. Es entsteht ein hochangeregter Zwischenkern des Isotops Uran-236. Seine Lebensdauer beträgt nur etwa 10⁻¹⁴ s.

Der neue Kern versucht, seine Anregungsenergie abzugeben. In etwa sechs von sieben Fällen tritt Spaltung ein, in einem Fall geht der Atomkern durch Aussenden eines Gammaquants in das langlebige Isotop Uran-236 über (Alphastrahler, Halbwertszeit $2,342 \cdot 10^7$ a).

Die Spaltung kann man sich im Modell so vorstellen, dass nach dem Einfang des Neutrons der Urankern zu schwingen beginnt, sich ellipsenförmig verformt, hantelförmig einschnürt und letztlich in zwei mittelschwere Trümmerkerne sowie in zwei bis drei Neutronen zerfällt (Abb. 9.7). Zusätzlich tritt Gammastrahlung auf.

 Neutronen mittlerer sowie höherer Geschwindigkeit können vom U-238 aufgenommen werden. Dabei tritt keine Kernspaltung, sondern eine Umwandlung in das Uranisotop U-239 ein. Es ist ein Betastrahler, der sich in zwei Schritten zu Pu-239 umwandelt (Abb. 9.8):

$${}^{238}_{92} U + {}^{1}_{0} n \rightarrow {}^{239}_{92} U$$

$${}^{239}_{92} U \rightarrow {}^{239}_{93} Np + {}^{0}_{-1} e$$

$${}^{7_{1/2}} =$$

$${}^{239}_{23,5 \text{ min}} Np \rightarrow {}^{239}_{-239} Pu + {}^{0}_{-0} o$$

$${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + {}^{0}_{-1}e$$

$${}^{T_{1/2}}_{2,355 \text{ d}}$$

Abb. 9.8: Entstehung von Pu-239 aus U-238

Eine Umwandlung von U-238 zu Pu-239 findet in bestimmtem Umfang in jedem Leichtwasserreaktor statt und trägt infolge der Spaltung der Pu-239-Kerne während des Reaktorbetriebs zu über 40 % zur Erzeugung elektrischer Energie bei. In so genannten Brutreaktoren wird es gezielt erzeugt. Für einen Siedewasserreaktor ergeben sich in der Praxis die in der Abb. 9.9 angegebenen Werte für die Verteilung der radioaktiven Isotope.

Abb. 9.9: Beispiel für die Radionuklidverteilung im Kernbrennstoff

 Die bei der Kernspaltung entstehenden Spaltprodukte sind aufgrund ihres Neutronenüberschusses meist radioaktiv. Man kennt heute etwa 200 verschiedene Spalt-Radionuklide, die sich auf 35 verschiedene Elemente beziehen (von Zink mit der Kernladungszahl 30 bis zum Terbium mit der Kernladungszahl 65). Hier einige Beispiele:

235 92	U	+	1 0	n	→	²³⁶ 92	J →	147 57	La	+	87 35	Br	+	2 ¹ ₀ n
235 92	U	+	1 0	n	→	236 92	J →	89 36	Kr	+	144 56	Ba	+	3 ₀ ¹ n
235 92	U	+	1 0	n	→	²³⁶ 92	J →	137 53	I	+	96 39	Y	+	3 ₀ ¹ n
235 92	U	+	1 0	n	→	236 92	J →	143 54	Xe	+	90 38	Sr	+	3 ₀ ¹ n
235 92	U	+	1 0	n	→	236 92	J →	137 55	Cs	+	96 37	Rb	+	3 ¹ ₀ n
235 92	U	+	1 0	n	→	236 92	J →	90 36	Kr	+	144 56	Ba	+	2 ₀ ¹ n
235 92	U	+	1 0	n	→	236 92	J →	135 52	Те	+	98 40	Zr	+	3^1_0 n

Die Massenzahlen der Spaltproduktkerne liegen etwa zwischen 70 und 160. Ein Maximum liegt bei der Massenzahl 95. ein zweites Maximum bei der Massenzahl 140. Die Massenzahlen liegen am häufigsten im Verhältnis 2 zu 3 zueinander.

Die Spaltprodukte wandeln sich unter Aussenden von Betastrahlen in stabile Kerne um. Dabei werden zum Teil Zerfallsreihen durchlaufen (Abb. 9.10 und Abb. 9.11). Es ist aber auch Neutronenemission möglich. Radioaktive Isotope eines bestimmten Elements (z. B. radioaktives Iod) können direkt bei der Kernspaltung oder beim nachträglichen Zerfall eines Spaltproduktes entstehen.

• Eine weitere Quelle bilden die Aktivierungsprodukte. Inaktive Nuklide können sich durch Aufnahme eines Neutrons in Radionuklide umwandeln. Zwei Beispiele:

$_{26}^{58}$ Fe + $_{0}^{1}$ n \rightarrow $_{26}^{59}$ Fe	(Aktivierung)
$^{59}_{26}$ Fe \rightarrow $^{59}_{27}$ Co + $^{0}_{-1}$ e + γ	(Zerfall)
$^{59}_{27}$ Co + $^{1}_{0}$ n $\rightarrow ^{60}_{27}$ Co	(Aktivierung)
$^{60}_{27}$ Co $\rightarrow ^{60}_{28}$ Ni + $^{0}_{-1}$ e + γ	(Zerfall)

Materialien im Bereich der Neutronenstrahlung, wie z. B. Beton, Stahl und seine Legierungsbestandteile, Korrosionsprodukte oder die Luft, können auf diese Weise radioaktiv werden.

 Ein geringer und gegenüber den genannten Aktivitätsquellen vernachlässigbarer Beitrag rührt von der Tatsache her, dass als Kernbrennstoff eingesetztes Uran selbst radioaktiv ist. Allerdings ist seine spezifische Aktivität gering.

Abb. 9.10: Radioaktiver Zerfall des Sn-131

Abb. 9.11: Radioaktiver Zerfall des I-137

Durch die Ableitungen radioaktiver Stoffe mit Luft oder Wasser beim Betrieb von Kernkraftwerken und anderen kerntechnischen Anlagen und Einrichtungen dürfen auch unter Berücksichtigung sehr restriktiver Berechnungsannahmen für jeden dieser Ableitungspfade an der ungünstigsten Stelle in der Umgebung die Grenzwerte für die effektive Dosis von 0,3 mSv im Kalenderjahr nicht überschritten werden. Die aufgrund der Ableitung berechneten Dosiswerte sind deutlich niedriger. Abb. 9.12 zeigt die Dosisbeiträge durch die Ableitung radioaktiver Stoffe mit der Luft. Die Dosis durch die Ableitungen mit dem Abwasser beträgt weniger als ein Zehntel dieser Werte.

Abb. 9.12: Effektive Folgedosis an der ungünstigsten Einwirkungsstelle außerhalb von Kernkraftwerken durch die Ableitung radioaktiver Stoffe mit der Abluft im Jahr 2002

9.8 Vergleich von natürlicher und künstlicher Strahleneinwirkung

Natürliche und künstlich erzeugte Radionuklide senden gleichermaßen Alpha-, Beta- oder Gammastrahlen aus. Die Energie der ausgesandten Teilchen und Quanten ist vergleichbar.

Die biologischen Wirkungen ionisierender Strahlen beruhen auf Wechselwirkungen der Strahlungsteilchen oder Energiequanten mit den Molekülen der lebenden Zellen. Dabei ist allein entscheidend, welche physikalischen Primäreffekte hervorgerufen werden – gleichgültig, ob das ionisierende Teilchen von einem natürlichen oder künstlich erzeugten Radionuklid ausgeschleudert wurde.

Die unterschiedliche biologische Wirksamkeit der verschiedenen Strahlenarten ist bekannt. Für den Strahlenschutz wurde deshalb das Sievert (Sv) als Maßeinheit für die Strahlendosis entwickelt, die diese Faktoren berücksichtigt. Die deutsche Strahlenschutzkommission hat dazu festgestellt: Diese Dosiseinheit ist für den Strahlenschutz ein zuverlässiges, hinreichend genaues Vergleichsmaß für unterschiedliche – natürliche oder künstliche – Strahlenexpositionen.

9.9 Zusammenfassung der Strahlenexposition

Die gesamte mittlere effektive Dosis durch die natürliche Strahlenexposition beträgt in Deutschland 2,1 mSv/a. Die zivilisatorische Strahlenexposition von rund 2 mSv wird fast ausschließlich durch die Anwendung ionisierender Strahlen und radioaktiver Stoffe in der Medizin bewirkt. Die effektive Dosis aus allen natürlichen und künstlichen Strahlenquellen beträgt für einen Einwohner in Deutschland Im Mittel rund 4,1 mSv/a (siehe Abb. 9.13 und Tab. 9-7). Diese Dosis stammt etwa jeweils zur Hälfte aus der natürlichen Exposition. Gegenüber den Beiträgen durch Natur und Medizin und insbesondere unter Berücksichtigung der nicht unerheblichen Streuung dieser Dosiswerte sind alle anderen Dosisbeiträge faktisch zu vernachlässigen.

	effektive Dosis in mSv/a			
Ursache der Strahlendosis	Mittelwert für Bevölkerung	typ. bere expo Einzel	Wer eich f oniei perse	te- ür rte onen
Natur: kosmische Strahlung	0,3	0,3	bis	0,5
terrestrische Strahlung innere Bestrahlung	0,4 1,4	0,2 0,5	bis bis	3 8
Natur gesamt	2,1	1	bis	10
Zivilisation: Medizin Erhöhung der natürlichen Dosis durch industrielle	2,0	0,01	bis	30
Tätigkeit Tschernobyl-Unfall Kernwaffentests Flugreisen Beruf fossile Energieträger Kernkraftwerke Industrieprodukte	0,01 0,005 0,005 0,002 0,002 0,001 0,001	0,1 0,005 0,002 0,01 0,5 0,001 0,001 0,1	bis bis bis bis bis bis bis	2 0,04 0,01 5 5 0,01 0,01 2
Zivilisation gesamt	2,0	0,1	bis	20
gesamt	4,1			

Abb. 9.13: Mittlere natürliche und zivilisatorische Strahlenexposition in Deutschland

10 Strahlenschutzmaßnahmen gegen äußere Strahleneinwirkung

Wenn sich eine Strahlenquelle außerhalb des menschlichen Körpers befindet, kann eine Strahleneinwirkung nur von außen stattfinden. Es stehen dann vier Schutzmaßnahmen zur Verfügung:

- Verringerung der Stärke der Strahlenquelle,
- zeitliche Begrenzung der Strahleneinwirkung,
- Einhalten eines Sicherheitsabstandes,
- Abschirmung der Strahlung.

In der Strahlenschutzpraxis werden meist mehrere Schutzmaßnahmen gleichzeitig angewandt und dadurch die Schutzwirkung erhöht.

10.1 Verringerung der Quellstärke

Die ionisierende Strahlung kann biologische Effekte hervorrufen und zu Strahlenschäden führen. Eine erste Strahlenschutzmaßnahme besteht deshalb darin, die Anzahl der Strahlungsteilchen oder Energiequanten zu reduzieren, die pro Zeit auf eine bestimmte Fläche trifft oder ein bestimmtes Körpervolumen durchsetzt. Es wird deshalb eine möglichst geringe Quellstärke gewählt.

Abb. 10.1: Die Dosisleistung ist von der Aktivität der Strahlenquelle abhängig

Beispiel 1:

In Forschung, und Technik werden Radionuklide als Strahlenquellen eingesetzt. Dabei gilt: je höher die Aktivität der Quelle ist, desto größer ist auch unter sonst gleichen Bedingungen die Dosisleistung für eine damit arbeitende Person (Abb. 10.1). Zur Verringerung der Dosisleistung werden deshalb möglichst geringe Aktivitäten eingesetzt. Das kann aber dazu führen, dass man die Messzeit entsprechend verlängern muss. Für den Experimentator kann sich dadurch letztlich doch wieder eine erhöhte Strahlendosis ergeben. Es ist deshalb in jedem Einzelfall zu entscheiden, welche Aktivität der Strahlenquelle und welche Messzeit am günstigsten sind.

Beispiel 2:

Bei der Anwendung von Röntgenstrahlen in der medizinischen Diagnostik werden heute weitgehend elektronische Bildverstärker eingesetzt (Abb. 10.2). Zur Erzeugung eines optimalen Bildes kommt man dann mit einer geringeren Strahlungsintensität aus. Sie wird dadurch herbeigeführt, dass man in der Röntgenröhre eine geringere Heizstromstärke einstellt. Die Verringerung der Quellstärke führt dann dazu, dass der Patient eine geringere Strahlendosis erhält.

Abb. 10.2: Röntgengerät mit Bildverstärker

Beispiel 3:

In manchen älteren Kernkraftwerken wurden für verschleißbeanspruchte Bauteile (Pumpen, Schieber, Ventile) Metalllegierungen mit einem hohen Anteil an Kobalt verwendet. Durch Korrosion und Verschleiß abgetragenes Kobalt gelangt dann mit dem Kühlmittel des Primärkreislaufs in den Reaktor, wo es einer intensiven Neutronenstrahlung ausgesetzt ist. Das in der Natur vorkommende Kobalt besteht zu 100 % aus Co-59. Durch Aufnahme eines Neutrons entsteht Co-60:

$$_{27}^{59}$$
Co + $_{0}^{1}$ n \rightarrow $_{27}^{60}$ Co

Co-60 ist radioaktiv und wandelt sich mit einer Halbwertszeit von $T_{1/2}$ = 5,272 a unter Aussenden eines Beta⁻-Teilchens in Nickel-60 um, das nicht mehr radioaktiv ist:

$${}^{60}_{27} \operatorname{Co} \longrightarrow {}^{60}_{28} \operatorname{Ni} + {}^{0}_{-1} \operatorname{e} + \gamma_1 + \gamma_2$$
1,173 MeV 1,332 MeV

Die beim Zerfall auftretenden Gammaquanten besitzen eine relativ hohe Energie und bilden deshalb eine sehr durchdringende Gammastrahlung. Da sich die Korrosions- und Verschleißprodukte in der gesamten Primärkreis-Anlage verteilen und z. T. ablagern, ergibt sich in diesen Bereichen ein hoher Gammastrahlenpegel, der Wartungs- und Reparaturarbeiten erschwert. Durch besondere Reinigungsverfahren ist es gelungen, diese Ablagerungen weitgehend zu entfernen und damit den Strahlenpegel deutlich zu verringern. Ergänzend werden die Kobalt enthaltenen Komponenten gegen solche ohne Kobalt ausgetauscht.

10.2 Verringerung der Bestrahlungszeit

Die von einer Person empfangene Strahlendosis ist proportional zur Bestrahlungszeit. Eine Verdoppelung oder Verzehnfachung der Bestrahlungszeit führt auch zur zweibzw. zehnfachen Strahlendosis (Abb. 10.3). Eine wichtige Strahlenschutzmaßnahme liegt also in der Verringerung der Bestrahlungszeit. Je stärker eine Strahlenquelle ist, desto größer wird die Bedeutung dieser Schutzmaßnahme.

Beispiel 1:

Vor Arbeiten in der Nähe starker Strahlenquellen trainiert man das Personal an einem Modell in der Werkstatt. Am Arbeitsplatz selbst kann die Arbeit dann in kurzer Zeit erledigt werden. Außerdem werden Hilfsgeräte für schnelles Arbeiten oder sogar automatisch arbeitende Geräte eingesetzt. Ist eine Kontrolle der ausgeführten Arbeit durch eine zweite Person notwendig, wartet der Kontrolleur während der Arbeit in größerer Entfernung oder hinter einer Abschirmung und sucht den Arbeitsplatz erst nach Durchführung der Arbeit auf.

Abb. 10.3: Die Strahlendosis ist von der Bestrahlungszeit abhängig

Beispiel 2:

Bei der Röntgendiagnostik führt der Arzt die Beobachtungen möglichst nicht während der "Durchleuchtungen" durch, sondern betrachtet die aufgezeichneten Bilder anschließend (Abb. 10.4). Es kann sich dabei um Filme oder elektronisch aufgezeichnete Bilder handeln. Durch diese Maßnahmen konnten die Dosiswerte für Patienten und Ärzte um fast 70 % herabgesetzt werden.

Abb. 10.4: Darstellung eines Röntgenbildes auf einem Monitor

Beispiel 3:

Bei nuklearmedizinischen Untersuchungen wählt man Radionuklide mit nicht zu langer physikalischer und biologischer Halbwertszeit. Früher wurde z. B. bei der Funktionsprüfung der Nieren u. a. I-131 eingesetzt. Heute verwendet man praktisch nur noch I-123. Es hat eine deutlich geringere Halbwertszeit, sendet keine Betateilchen aus und emittiert Gammaquanten niedrigerer Energie (Tab. 10-1).

Radio- nuklid	Halb- wert- szeit	Zerfallsart	Energie der Gammaquanten in keV
I-131	8,02 d	Beta-Minus	364; 637; 284
I-123	13,2 h	Elektronen- einfang	159

Tab. 10-1: Angaben zu den Radionukliden I-131 und I-123

10.3 Einhaltung eines Sicherheitsabstandes

Ein weiterer Schutz gegen ionisierende Strahlung besteht darin, einen genügend großen Abstand zur Strahlenquelle einzuhalten. Wenn die Strahlenquelle punktartig ist, sich im leeren Raum befindet und die Strahlen gleichmäßig nach allen Seiten aussendet (isotrope Strahlenquelle), gilt das

Abb. 10.5: Die Intensität ist umgekehrt proportional zum Quadrat des Abstands

quadratische Abstandsgesetz. Die Intensität der Strahlung nimmt mit dem Quadrat der Entfernung ab. Es bedeutet:

2fache Entfernung: 1/4 der ursprünglichen Strahlungsintensität

3fache Entfernung: 1/9 der ursprünglichen Strahlungsintensität

4fache Entfernung: 1/16 der ursprünglichen Strahlungsintensität usw.

Dass die Intensität der Strahlung mit der Entfernung von der Strahlenquelle abnimmt, ist darin begründet, dass die Dichte der von einer Quelle divergierend nach allen Seiten ausgesandten Teilchen oder Gammaquanten mit der Entfernung von der Quelle immer mehr abnimmt. Unter den angenommenen Bedingungen gilt dann: $I \sim 1 / r^2$ (siehe Abb. 10.5). In der Praxis kann eine Strahlenquelle als punktartig angesehen werden, wenn der gewählte Abstand 5-mal so groß ist wie die Ausdehnung der Quelle. Bei flächenförmigen Quellen nimmt die Intensität wesentlich geringer, in besonderen Fällen linear mit der Entfernung ab $(I \sim 1 / r)$.

Wird zum Beispiel eine geringe Menge radioaktiver Substanz, die in einer Kugel mit d = 0.5 cm eingeschlossen ist, mit den Fingern angefasst, so ist die Haut des Fingers 0.5 cm vom Mittelpunkt der Kugel entfernt. Packt man die Kugel dagegen mit einer Pinzette, so ist die Hand etwa 10 cm vom Kugelmittelpunkt entfernt. Durch die 20fache

Abb. 10.6: Verringerung der Strahlenexposition durch Vergrößerung des Abstandes zur Strahlenquelle

Entfernung beträgt die Strahlungsintensität $(1/20)^2 = 1/400$ des ursprünglichen Wertes (Abb. 10.6). In kerntechnischen Anlagen und Laboratorien werden deshalb Werkzeuge mit längeren Griffen als sonst üblich verwendet. Bei 1 m langen Griffen lässt sich die Dosisleistung um den Faktor 10⁴ verringern.

In der Praxis ist zusätzlich zu bedenken, dass die Strahlung durch die im Raum vorhandene Luft ganz oder teilweise absorbiert wird. Außerdem können Strahlungsteilchen und Gammaquanten an Körpern gestreut werden. In besonderen Fällen ist es dann möglich, dass die Intensität der Strahlung an bestimmten Stellen höher ist, als es nach dem Abstandsgesetz zu erwarten wäre.

10.4 Abschirmung der Strahlung

Bei der Abschirmung ionisierender Strahlen finden Wechselwirkungen der Strahlungsteilchen und Energiequanten mit dem Abschirmmaterial statt. Dabei können Energie und Bewegungsrichtung der Teilchen und Quanten geändert werden, andere Strahlungsteilchen oder Quanten entstehen oder die Strahlung völlig verschwinden.

10.4.1 Abschirmung von Alphastrahlen

Alphateilchen geben ihre Energie im Wesentlichen dadurch ab, dass sie Atome oder Moleküle der durchstrahlten Materie ionisieren oder anregen. Da die Ionen in sehr großer Dichte erzeugt werden, verlieren Alphateilchen ihre Energie auf sehr kurzer Strecke. In Luft beträgt die Reichweite deshalb nur wenige Zentimeter, im Gewebe weniger als 0,1 mm (Tab. 10-2). Im Prinzip lassen sich Alphastrahlen also bereits durch ein Blatt Papier vollständig abschirmen.

Teilchen-	Reichweite in			
energie in MeV	Luft (1013 hPa)	Muskel- gewebe	Aluminium	
1	0,3 cm	4 μm	2 μm	
3	1,6 cm	16 µm	11 µm	
4	2,5 cm	31 µm	16 µm	
6	4,6 cm	56 μm	30 µm	
8	7,4 cm	91 µm	48 µm	
10	10,6 cm	130 μm	67 μm	

 Tab. 10-2:
 Reichweite von Alphateilchen verschiedener Energie in Luft, Muskelgewebe und Aluminium

Die geringe Reichweite von Alphateilchen in Luft (Abb. 10.7) bewirkt, dass in etwa 10 cm Entfernung von der Strahlenquelle keine Bestrahlung des Menschen durch Alphateilchen auftreten kann. Treffen Alphateilchen auf unbekleidete Körperteile des Menschen, werden sie bereits durch die oberen Hautschichten vollständig abgeschirmt.

In der Messtechnik muss die geringe Reichweite von Alphateilchen in Luft berücksichtigt werden. Außerdem können bei Strahlungsdetektoren, mit denen Alphastrahlen

Abb. 10.7: Abhängigkeit der Reichweite von Alphateilchen in Luft von der Anfangsenergie

registriert werden sollen, nur extrem dünne Strahleneintrittsfenster verwendet werden.

10.4.2 Abschirmung von Betastrahlen

Treffen Betateilchen auf Materie, verlieren sie ihre Energie durch Ionisationen, Anregung, Streuung und Erzeugung von Bremsstrahlung. Ionisation und Erzeugung von Bremsstrahlung sind die wichtigsten Wechselwirkungsprozesse. Die Betateilchen treten im Wesentlichen mit den Hüllelektronen der Atome in Wechselwirkung. Daraus folgt, dass sie ihre Energie auf desto kürzeren Strecken verlieren, je größer Dichte und Ordnungszahl des Abschirmmaterials sind.

In der Praxis werden zur Abschirmung von Betastrahlen jedoch keine Materialien höherer Ordnungszahl verwendet, weil die Energie der auftretenden Bremsstrahlung mit der Ordnungszahl wächst. Die "härtere" Bremsstrahlung müsste dann ihrerseits durch zusätzliche Materialschichten abgeschirmt werden.

Zur optimalen Abschirmung von Betastrahlen wird eine Kombination zweier verschiedener Materialien verwendet (Abb. 10.8). Der Strahlenquelle zugewandt ist ein Absorbermaterial niedriger Ordnungszahl, wobei die Materialdicke

Abb. 10.8: Materialkombination für die optimale Abschirmung von Betastrahlen (ST: Streueffekte)

etwas größer gewählt wird als die Reichweite der Betastrahlen in diesem Material. Dadurch wird die Betastrahlung vollständig absorbiert, und es entsteht nur wenig Bremsstrahlung geringerer Energie. Ein zusätzliches Material hoher Ordnungszahl (z. B. Blei) schwächt dann die Bremsstrahlung. Es kann bei Strahlenquellen geringer Stärke entfallen.

Die maximale Energie von Betateilchen, die die meisten Radionuklide aussenden, ist nicht größer als 1 bis 2 MeV. Zur vollständigen Abschirmung sind also 4 mm Aluminium ausreichend (Tab. 10-3). Neben Aluminium werden auch Kunststoffe zur Abschirmung von Betastrahlen eingesetzt.

Betateilchen, die von außen auf den menschlichen Körper treffen, dringen nur wenige Millimeter ein. Es können also nur die obersten Hautschichten geschädigt werden. Eine Ausnahme bildet das Auge. Durch Betastrahlen kann es zur Trübung der Augenlinse kommen.

Teil-	Reichweite in		
chen- energie MeV	Luft (1013 hPa)	Körper- gewebe	Aluminium
0,01	0,003 m	0,0025 mm	0,009 mm
0,1	0,10 m	0,16 mm	0,050 mm
0,5	1,20 m	1,87 mm	0,60 mm
1,0	3,06 m	4,75 mm	1,52 mm
2	7,10 m	11,1 mm	4,08 mm
5	19,0 m	27,8 mm	9,9 mm
10	39,0 m	60,8 mm	19,2 mm
20	78 m	123 mm	39,0 mm

Tab. 10-3: Reichweite von Betateilchen verschiedener Energie in Luft, Körpergewebe und Aluminium

10.4.3 Abschirmung von Gammastrahlen

Durchdringt Gammastrahlung Materie, wird sie durch eine Reihe von Wechselwirkungsprozessen, die mit den Hüllelektronen oder den Atomkernen stattfinden, geschwächt. Diese Prozesse sind als reine Treffervorgänge aufzufassen, also Zufallsereignisse. Es lässt sich deshalb immer nur ein bestimmter Anteil der Strahlung abschirmen, nicht aber die gesamte Strahlung (Abb. 10.9). Einzelne Gammaquanten können beliebig dicke Materieschichten durchdringen, wobei die Wahrscheinlichkeit dafür mit wachsender Schichtdicke immer geringer wird. Die Abschirmung der Gammastrahlung ist somit schwieriger als die der Alpha- oder Betastrahlung.

Für Gammastrahlung lässt sich keine maximale Reichweite angeben. Durch Absorbermaterialien erreicht man lediglich eine Schwächung der Strahlungsintensität auf einen bestimmten Bruchteil. Dabei hängt die Stärke der Schwächung von der Energie der Strahlung und dem verwendeten Abschirmmaterial ab. Höhere Energie der Gammaquanten bedeutet ein größeres Durchdringungsvermögen, und eine höhere Ordnungszahl des Wechselwirkungsmaterials führt zu einer größeren Abschirmwirkung.

Die Energiebeträge der Gammaquanten, die von natürlichen und künstlichen Radionukliden bzw. bei Wechselwirkungsprozessen emittiert werden, liegen im Bereich von 0,003 MeV bis etwa 17 MeV. Abhängig von der Energie treten bei der Absorption im Wesentlichen drei Wechselwirkungsprozesse auf: Photoeffekt, Comptoneffekt und Paarbildungseffekt. Diese drei Effekte überlagern sich im Wechselwirkungsmaterial, wobei in einzelnen Energiebereichen einer der Prozesse überwiegt (siehe Kapitel 4.4).

Zur Abschätzung der Materialdicken, die für die Strahlenabschirmung benötigt werden, hat man für die Strahlenschutzpraxis die Halbwertschicht und die Zehntelwertschicht definiert. Durch diese Schichten wird die Intensität der Strahlung auf die Hälfte bzw. ein Zehntel reduziert.

Abb. 10.9: Unterschiedliche Absorption von Alpha-, Beta- und Gammastrahlung

Motorial	Materieschichtdicke in cm bei einer Energie der Gammaquanten von					
iviateriai	0,1 MeV	0,5 MeV	1 MeV	5 MeV	10 MeV	100 MeV
Wasser Halbwertschicht Zehntelwertschicht	4,15 13,8	7,18 23,8	9,85 32,7	23,1 76,6	31,6 105	40,2 133
Beton Halbwertschicht Zehntelwertschicht	1,75 5,81	3,41 11,4	4,66 15,5	10,3 34,0	12,9 43,0	12,5 40,6
Eisen Halbwertschicht Zehntelwertschicht	0,257 0,855	1,06 3,54	1,47 4,91	2,82 9,40	3,02 10,0	2,10 6,96
Blei Halbwertschicht Zehntelwertschicht	0,0118 0,0386	0,422 1,41	0,893 2,97	1,43 4,78	1,21 4,05	0,642 2,03

Tab. 10-4: Halbwert- und Zehntelwertschicht für Gammaquanten unterschiedlicher Energie

Die Dicken von Halbwertschicht und Zehntelwertschicht sind von der Energie der Gammaquanten und dem verwendeten Material abhängig. Dabei gilt in einem bestimmten Bereich, dass die Halbwertschicht um so dicker ist, je höher die Quantenenergie liegt. Umgekehrt ist die Dicke der Halbwertschicht ein Maß für die Energie und damit auch für die Durchdringungsfähigkeit der Strahlung.

Durch eine Halbwertschicht wird die Strahlungsintensität auf ($1/_2$)¹ = $1/_2$, durch zwei Schichten auf ($1/_2$)² = $1/_4$ und durch drei Schichten auf ($1/_2$)³ = $1/_8$ herabgesetzt. Bei 10 Halbwertschichten beträgt die Schwächung dann ($1/_2$)¹⁰ = $1/1024 \approx 0,1$ % (Abb. 10.10).

Aus der Tab. 10-4 ist zu erkennen, dass die Dicke der Halbwertschicht bei wachsender Energie zunimmt, bei einer weiteren Energieerhöhung aber wieder abnimmt. Dies rührt daher, dass die Gammastrahlung jetzt nicht nur durch den Photo- und den Comptoneffekt, sondern auch durch den Paarbildungseffekt Energie verliert. Durch Paarbildung werden aber Elektronen und Positronen erzeugt, die ein geringeres Durchdringungsvermögen besitzen und für deren Abschirmung geringere Materialdicken und somit auch geringere Halbwertschichten erforderlich sind.

Für den Schutz vor Gammastrahlung ist Blei ein geeignetes Abschirmmaterial. In besonderen Fällen werden wegen der höheren Dichte Wolfram oder abgereichertes Uran verwendet, da sie bei gleicher Materialdicke zu einer noch stärkeren Schwächung der Strahlung führen. Da aber ihre Bereitstellung hohe Kosten verursacht, spielen sie in der Strahlenschutzpraxis keine bedeutsame Rolle.

Abb. 10.10: Durch jede Halbwertschicht wird die Strahlungsintensität um den Faktor 2 geschwächt (schematische Darstellung, Streuung nicht berücksichtigt)

Steht für den Strahlenschutz genügend Raum zur Verfügung, können auch andere, billigere Materialien verwendet werden, z. B. Eisen, Beton oder auch Wasser. Es ist dann eine dem Blei äquivalente, dickere Materialschicht zu wählen.

10.4.4 Abschirmung von Neutronenstrahlen

Die Absorption von Neutronen und damit die Abschirmung ist optimal bei geringen Neutronenenergien möglich. In einem ersten Schritt muss deshalb ihre Energie (Geschwindigkeit) herabgesetzt werden. Dazu eignen sich am besten wasserstoffhaltige Materialien (z. B. Polyäthylen, Paraffin, Wasser), da die Masse von Neutron und Wasserstoffkern (Proton) praktisch gleich groß ist und bei Stößen besonders hohe Energiebeträge übertragen werden können (Tab. 10-5).

Stoff	Anzahl der Stöße zur Abbremsung von 2 MeV auf 0,025 eV
Wasserstoff	18
Wasser	19
Deuterium	25
Schweres Wasser	35
Helium	43
Beryllium	86
Kohlenstoff	114
Sauerstoff	150
Uran	2 172

Tab. 10-5: Mittlere Stoßzahl bei der Abbremsung schneller Neutronen

In einem zweiten Schritt werden die thermischen Neutronen eingefangen. Dafür eignen sich z. B. Bor oder Cadmium. Eine 6,5 mm dicke Boralschicht (Aluminium + B_4 C-Zusatz) schwächt den Fluss thermischer Neutronen um den Faktor 10¹⁰:

$${}^{10}_{5}\text{B} + {}^{1}_{0}\text{n} \rightarrow {}^{7}_{3}\text{Li} + {}^{4}_{2}\text{He} + \gamma$$

$${}^{113}_{48}\text{Cd} + {}^{1}_{0}\text{n} \rightarrow {}^{114}_{48}\text{Cd} + \gamma$$

Beim Einfang der Neutronen durch Bor oder Cadmium wird eine Sekundärstrahlung ausgesandt. Zur Abschirmung dieser Sekundärstrahlung müssen Materialien großer Ordnungszahl eingesetzt werden, damit die Gammastrahlung sicher absorbiert wird. Ein klassischer Neutronenschild besteht also aus drei Schichten (Abb. 10.11).

Statt eines relativ teuren, mehrschichtigen Neutronenschildes können auch dickere Betonwände eingesetzt werden. Es wird Spezialbeton mit bestimmten Zuschlägen

Abb. 10.11: Grundsätzlicher Aufbau eines Neutronenschildes

verwendet, so dass Neutronenabbremsung, Neutroneneinfang und Gammaabschirmung sicher gewährleistet sind. In einem Kernkraftwerk übernimmt ein 2 m dicker Schild aus Spezialbeton diese Aufgabe.

Die Tab. 10-6 enthält Daten über die Halbwert- und Zehntelwertschichten für Neutronen.

Abschirm- material	Halbwertschicht in cm	Zehntelwert- schicht in cm
Polyäthylen	6,3	21
Wasser	7	23
Normalbeton	7,5	25

Tab. 10-6: Effektive Halbwert- und Zehntelwertschicht für Neutronen, schmales Strahlenbündel (Neutronenerzeugung durch Uranspaltungen)

10.5 Abschirmung der Direktstrahlung in einem Kernkraftwerk

In einem Kernkraftwerk treten Alpha-, Beta-, Gamma- und Neutronenstrahlen auf. Diese Direktstrahlung wird durch eine Reihe von Barrieren praktisch vollständig abgeschirmt (Abb. 10.12).

Alpha- und Betateilchen werden durch die Metallwand der Brennstäbe und das sie umgebende Wasser zu 100 % zurückgehalten. Die Gamma- und Neutronenstrahlen können den Reaktordruckbehälter aus Stahl z. T. durchdringen; dabei werden sie jedoch deutlich geschwächt. Die bis zu 25 cm starke Stahlwand des Druckbehälters verringert die Intensität der direkten Gammastrahlung bereits auf den 100 000sten Teil der Strahlung im Reaktorkern. Eine nahezu vollständige Abschirmung der verbleibenden Gammastrahlen und der Neutronenstrahlen geschieht durch einen 2 m dicken Schild aus Stahlbeton, der den Reaktorbehälter umgibt. Die Direktstrahlung ist dann auf 1 billionstel (10⁻¹²) reduziert. Sicherheitsbehälter und Reaktorgebäude bilden weitere Abschirmungen, so dass außerhalb des Kernkraftwerkes praktisch keine Direktstrahlung mehr auftritt.

Außer dem Reaktor werden auch alle anderen Bereiche eines Kernkraftwerkes abgeschirmt, von denen eine erhöhte Strahlung ausgeht. So gelangen z. B. bei einem Siedewasserreaktor mit dem Dampf auch Radionuklide (z. B. N-16) in die Dampfturbine, so dass von ihr Strahlen aus-

Abb. 10.12: Abschirmung der Direktstrahlung durch mehrere Barrieren

gehen. Zur Abschirmung dieser Direktstrahlung wird die Turbine eines Siedewasserreaktors deshalb mit Betonwänden umgeben.

Zur mobilen Abschirmung werden Bleimatten an Gerüsten verwendet. Dadurch kann jeder Arbeitsplatz den Anforderungen entsprechend abgeschirmt werden (Abb. 10.13).

Abgebrannte Brennelemente werden in einem Becken unter einer mehr als 2 m dicken Wasserschicht gelagert. Das Wasser dient gleichzeitig zur Strahlenabschir-

Abb. 10.13: Bleimatten zur mobilen Abschirmung

mung und zur Ableitung der Nachzerfallswärme der Brennelemente (Abb. 10.14).

Abgebrannte Brennelemente werden bei ihrem Transport vom Kernkraftwerk zur Wiederaufarbeitung oder in ein Zwischenlager in speziellen Behältern transportiert (Abb. 10.15). Diese Transportbehälter sind so konstruiert, dass eine Strahlenabschirmung, eine ausreichende Kühlung sowie eine hohe Stabilität, wie sie für denkbare Unfälle während des Transports gefordert wird, gewährleistet sind.

Abb. 10.14: Brennelementlagerbecken in einem Kernkraftwerk

71

Abb. 10.15: Transportbehälter für abgebrannte Brennelemente

11 Strahlenschutzmaßnahmen gegen innere Strahleneinwirkung

Radioaktive Stoffe können mit der Atemluft, dem Trinkwasser und der Nahrung in den menschlichen Körper gelangen und dann in seinem Innern Strahlen aussenden. Dabei gibt es gegenüber der äußeren Strahleneinwirkung drei Besonderheiten:

- Die äußere Strahleneinwirkung lässt sich in der Regel begrenzen, indem man sich nur kurze Zeit in der Nähe der Strahlenquelle aufhält, einen Sicherheitsabstand einhält und sich gegebenenfalls abschirmt. Befindet sich die Strahlenquelle aber im menschlichen Körper, können diese Schutzmaßnahmen nicht mehr angewandt werden. Man muss dann abwarten, bis das Radionuklid zerfallen oder vom Körper ausgeschieden worden ist. In vielen Fällen lässt sich die Ausscheidung mit Hilfe von Medikamenten beschleunigen.
- Radioaktive Stoffe, die vom menschlichen Körper resorbiert worden sind, werden meist nicht gleichmäßig verteilt, sondern in einem oder in mehreren Organen gespeichert. Dabei kann es zu einer höheren Belastung einzelner Organe kommen.
- Bei einer äußeren Strahleneinwirkung können Alphateilchen die menschliche Haut nicht durchdringen. Betateilchen dringen nur wenige Millimeter in den menschlichen Körper ein. Die inneren Organe des Menschen werden also nicht erreicht. Anders liegen die Verhältnisse, wenn sich radioaktive Stoffe in den Organen des Menschen befinden. Sie senden dann in ihnen selbst Alpha- und Betateilchen aus. Gammastrahlen ausreichender Energie können bei äußerer und innerer Strahleneinwirkung praktisch alle Teile des Körpers erreichen (Abb. 11.1).

Im Folgenden werden am Beispiel des Kernkraftwerkes einige besonders wichtige Einrichtungen vorgestellt, durch

Abb. 11.1: Äußere (A) und innere (B) Einwirkung von Alpha-, Beta- und Gammastrahlen

die Spaltprodukte und Aktivierungsprodukte in der Anlage selbst zurückgehalten werden, damit es nicht zu einer Kontamination bzw. Inkorporation kommt. Ähnliche Einrichtungen werden auch in den anderen kerntechnischen Anlagen eingesetzt.

11.1 Mehrfacheinschluss radioaktiver Stoffe

Damit die in einem Kernreaktor vorhandenen Radionuklide nicht ins Freie gelangen können, werden sie mehrfach eingeschlossen. Selbst wenn ein Einschluss undicht wird, bleiben die anderen wirksam. Die in Abb. 10.12 dargestellten Abschirmungen gegen Direktstrahlung sind z. T. gleichzeitig Barrieren gegen das unkontrollierte Austreten von Radionukliden.

Natururan, die meisten der Spaltprodukte sowie die Transurane bleiben weitgehend im Kristallgitter des Kernbrennstoffs eingeschlossen. Ein Teil der gasförmigen und leichtflüchtigen Spaltprodukte (z. B. Xenon, Krypton, Iod) sammeln sich im Spaltgasraum im oberen Teil des gasdichten Brennstabs (Abb. 11.2).

Abb. 11.2: Schnitt durch einen Brennstab

Abb. 11.3: Reaktordruckgefäß eines Druckwasserreaktors

Den zweiten Einschluss bildet das Reaktordruckgefäß (Abb. 11.3) mit dem angeschlossenen Rohrsystem. Es ist ein dickwandiger Stahlbehälter mit einer Wandstärke von 17 bis 25 cm und einer Höhe von 10 bis 20 m. In seinem Innern befinden sich die Brennstäbe, die Regelstäbe und das Kühlmittel.

Ein Sicherheitsbehälter aus Stahl umschließt das Reaktordruckgefäß und die unmittelbar daran anschließenden Teile des Kühlmittelkreislaufs. Rohrleitungen, die aus dem Sicherheitsbehälter herausführen, können durch mehrfach angeordnete schnell schließende Ventile abgesperrt werden. Der Sicherheitsbehälter ist so ausgelegt, dass auch bei einem Leck in einer Frischdampfleitung keine radioaktiven Stoffe ins Freie gelangen. Zusätzlich ist ein Druckabbausystem vorhanden. Bei einem Störfall austretender Dampf würde dann im Sicherheitsbehälter kondensieren. Sicherheitsbehälter haben Durchmesser zwischen 25 und 30 m (Abb. 11.4). Um ihre Dichtheit zu erhöhen, besitzen einige Kernkraftwerke in einigen Zentimetern Abstand von der Außenwand des Sicherheitsbehälters eine Dichthaut aus Stahl. Der Zwischenraum wird durch Absaugen ständig auf Unterdruck gehalten.

11.2 Druckdifferenz als Sicherheitsbarriere

Bei der großen Anzahl von Brennstäben können vereinzelt Undichtigkeiten auftreten. Man geht heute davon aus, dass jeder 100 000ste Brennstab feinste Haarrisse oder Poren aufweist, durch die vor allem gasförmige und leicht flüchtige Radionuklide in das umgebende Wasser gelangen.

Im Kühlmittel vorhandene Stoffe werden durch die Neutronenstrahlung z. T. aktiviert und dadurch radioaktiv. Auf diese Weise entstehen z. B. Fe-59 und Co-60.

Abb. 11.4: Der Sicherheitsbehälter eines Siedewasserreaktors wird in das Reaktorgebäude gefahren

Durch kleinste Undichtigkeiten an verschiedenen Stellen des Kühlmittelkreises (z. B. bei Dichtungen von Pumpen und Ventilen) treten geringe Mengen radioaktiver Stoffe aus und befinden sich dann im Reaktorgebäude.

Damit die Spalt- und Aktivierungsprodukte das Reaktorgebäude auf keinen Fall unkontrolliert verlassen, werden verschiedene Unterdruckzonen eingerichtet. Da Luft immer von der Stelle mit höherem Druck zur Stelle mit niedrigerem Druck strömt, kann erreicht werden, dass bei normalem Betrieb Luft immer nur von weniger aktiven zu stärker aktiven Räumen strömt (also von außen nach innen). Der Luftdruck im Reaktorgebäude ist etwa 1 hPa (1 mbar) geringer als außerhalb des Gebäudes. Im möglicherweise vorhandenen Ringspalt zwischen Sicherheitsbehälter und Dichthaut herrscht ein um 10 hPa (10 mbar) geringerer Druck. Im Sicherheitsbehälter selbst schwankt der Druck in Abhängigkeit von verschiedenen Betriebsbedingungen (Abb. 11.5).

Radioaktive Stoffe, die sich im Reaktorgebäude befinden, gelangen mit der Luft in die Unterdruckzonen und die Absaugvorrichtungen. Dort können sie kontrolliert weiterbehandelt werden. Bei Störungen in der Reaktoranlage ist es möglich, die Luft aus den Unterdruckzonen in den Sicherheitsbehälter zurückzupumpen. Personen- und Materialschleusen stellen darüber hinaus sicher, dass die Unterdruckzonen auch beim Begehen des Sicherheitsbehälters aufrechterhalten bleiben.

Druckdifferenzen als Sicherheitsbarrieren sind auch noch an anderen Stellen eines Kernkraftwerkes vorhanden. Eine besonders wichtige Stelle bei einem Siedewasserreaktor ist der Turbinenkondensator, bei dem über einen Wärmetauscher Energie an die Umgebung abgegeben wird (Abb. 11.6). Das Kühlwasser, das beispielsweise

Abb. 11.5: Unterdruck im Reaktorgebäude und im Ringspalt

einem Fluss entnommen wird, steht unter einem Druck > 1000 hPa (> 1000 mbar), während im Kondensator ein Druck von nur 40 hPa (40 mbar) herrscht. Bei einem angenommenen Riss im Wärmetauscher kann zwar Flusswasser in den Kondensator, aber kein radioaktiver Dampf in das Flusswasser gelangen.

11.3 Verringerung der Aktivität bei Abluft und Abwasser

Die in einem Kernkraftwerk entstehenden Radionuklide verbleiben zu mehr als 99 % in den Brennstäben. Es fallen aber durch Leckagen und Neutronenaktivierung gasförmige, flüssige und feste Reaktorbetriebsabfälle an, die soweit wie möglich zurückgehalten werden. Um die Aktivität der Abluft und des Abwassers zu verringern, gibt es zwei unterschiedliche Verfahren:

- Verzögerte Abgabe, damit die Aktivität von selbst geringer wird.
- Abtrennen der Radionuklide durch physikalische sowie chemische Verfahren und Lagerung dieser Radionuklide.

11.3.1 Behandlung gasförmiger Reaktorbetriebsabfälle

Einige der wichtigsten gasförmigen und leichtflüchtigen Radionuklide, die sich in der Luft des Kraftwerksgebäudes befinden, sind die durch Leckagen entwichenen Spaltprodukte Xe-133, Kr-85 und I-131.

Xe-133 hat eine Halbwertszeit von 5,25 d. Es wird in einer Verzögerungsstrecke bis zu 60 d zurückgehalten. Da dann mehr als zehn Halbwertszeiten verstrichen sind, ist die

Abb. 11.6: Druckverhältnisse im Kondensator eines Siedewasserreaktors

Abb. 11.7: Abklingen der Aktivität bei Xenon-133

ursprüngliche Aktivität auf weniger als 0,1 % abgeklungen (Abb. 11.7).

 $^{133}_{54}$ Xe \rightarrow $^{133}_{55}$ Cs + $^{0}_{-1}$ e + γ

Verzögerungsstrecken bestehen z. B. aus Aktivkohlefiltern. Das Gas wird zunächst in der ersten Filterschicht adsorbiert (Gasmoleküle lagern sich an der Oberfläche von Kohlenstoffpartikeln an). Im Laufe der Zeit bewegen sie sich durch Austausch langsam durch die Kohlefilterstrecke bis zum Abluftkamin. Das Spaltprodukt Krypton-85 hat eine Halbwertszeit von 10,76 a. Da es als Edelgas keine chemischen Verbindungen eingeht und sich im Organismus nicht anreichert, besitzt es nur eine geringe Radiotoxizität. Es wird deshalb in genehmigten Mengen und unter laufender Kontrolle in die Atmosphäre geleitet.

Der Anteil des I-131 in der Gebäudeluft ist gering. Da dieses Element aber im Gegensatz zu den Edelgasen chemische Verbindungen eingehen kann, wird es durch mehrere hintereinander angeordnete Filter zurückgehalten. Eine Rückhaltung zu mehr als 99,99 % wird dadurch erreicht, dass die Filter zusätzlich mit Silbernitrat getränkt sind. Bei Kontakt mit lod entsteht dann Silberiodid, das in den Filtern verbleibt. In ähnlicher Weise verfährt man mit den Aerosolen, bei denen sich radioaktive Teilchen an Staubpartikel oder Wassertröpfchen angelagert haben.

11.3.2 Behandlung flüssiger Reaktorbetriebsabfälle

Aus Undichtigkeiten des Kühlmittelkreises austretendes Wasser sowie Wasser aus Labors, Dekontaminationsanlagen und Waschräumen sowie von Reinigungsarbeiten bilden die flüssigen Reaktorbetriebsabfälle. Auch bei der Ableitung von radioaktiven Flüssigkeiten an die Umgebung gilt, die Strahlenexposition der Menschen durch innere Strahleneinwirkung auch unterhalb der Grenzwerte der Strahlenschutzverordnung so gering wie möglich zu halten.

Die wichtigste Maßnahme besteht darin, der Flüssigkeit die radioaktiven Stoffe zu entziehen. Das geschieht durch Eindampfen (Abdestillieren der Flüssigkeit), Ionenaustausch, Filtration oder chemische Fällung. Eine Sonderstellung nimmt das Tritium (H-3) ein. Es entsteht bei einem geringen Prozentsatz der Kernspaltungen als drittes Teilchen und durch Neutronenbestrahlung des Kühlmittels sowie anderer Materialien. Beispiele:

$${}^{1}_{1}H + {}^{1}_{0}n \rightarrow {}^{2}_{1}H + \gamma$$

$${}^{2}_{1}H + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + \gamma$$

$${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + 2{}^{4}_{2}He$$

$${}^{6}_{3}Li + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{4}_{2}He$$

Das Tritium liegt im Wesentlichen als HTO vor (Wassermolekül, dessen Wasserstoffatome die Isotope H-1 und H-3 = T sind). Wegen der relativ langen Halbwertszeit von 12,323 a können keine Verzögerungsstrecken eingesetzt werden. Da die maximale Energie der vom Tritium ausgesandten Betateilchen aber nur 0,018 MeV beträgt und keine Gammaquanten auftreten, entsteht durch die Ableitung des Tritium an die Umgebung nur eine geringe zusätzliche Strahlenexposition der Bevölkerung.

11.3.3 Behandlung fester Reaktorbetriebsabfälle

Radioaktive Reaktorbetriebsabfälle fallen z. B. in Form von Filtern, Ionenaustauschern, Putzlappen, kontaminierter Kleidung, Abfällen von Reparaturen an. Sie werden in der Regel verbrannt oder verdichtet, um ihr Volumen zu verkleinern. Anschließend schließt man sie in Behältern sicher ein. Beim Betrieb eines 1300-MWe-Kernkraftwerkes fallen jährlich folgende Mengen radioaktiver Abfälle an (Mengenangabe vor der Verdichtung): 235 m³ Verdampfer- und Filterkonzentrate, 120 m³ Putzwolle, Papier, kontaminierte Kleidung, 8 m³ Filtereinsätze der Abluft- und Abgasreinigung.

11.4 Kontrollierte Ableitung radioaktiver Stoffe

Bei der Ableitung von Radionukliden mit Abluft und Abwasser unterscheidet man zwischen Genehmigungswerten und Abgabewerten. Die Genehmigungswerte legt die Aufsichtsbehörde fest. Sie dürfen auch unter ungünstigen Verhältnissen nicht überschritten werden. Die Genehmigungswerte garantieren, dass die Bevölkerung keiner unzumutbaren Strahlenexposition ausgesetzt ist. Der Genehmigungswert wird aufgrund gesetzlicher Vorschriften, von Betriebserfahrungen bei anderen Kernkraftwerken und von Berechnungen für die neue Anlage festgelegt. Die tatsächlichen Abgabewerte ergeben meist nur wenige Prozent der Genehmigungswerte. Welche Mengen radioaktiver Stoffe letztlich an die Umgebung abgegeben werden, ist vom Reaktortyp, der Reaktorleistung und der Betriebsweise

Abb. 11.8: Aktivitätsflussschema am Beispiel des Kernkraftwerks Brunsbüttel

abhängig. In den Tab. 11-1 und Tab. 11-2 sind die Genehmigungswerte und die Abgabewerte eines Siedewasserreaktors und eines Druckwasserreaktors einander gegenübergestellt.

Die gasförmigen und leichtflüchtigen Radionuklide gelangen kontrolliert über den Abluftkamin ins Freie. Welche Radionuklidkonzentration am Boden auftritt, hängt von mehreren Faktoren ab: freigesetzte Menge, Höhe des Abluftkamins, Entfernung zum Kraftwerk, Wetterbedingungen und Art der Ablagerung (trockene oder nasse Ablagerung). Das Konzentrationsmaximum der Ablagerung auf dem Boden liegt etwa 1 bis 2 km in Hauptwindrichtung vom Kernkraftwerk entfernt.

Abwässer werden in großen Behältern gesammelt und die Gesamtaktivität sowie die Aktivität einzelner Radionuklide bestimmt. Wenn die spezifische Aktivität bestimmte Werte nicht überschreitet, wird der Abfluss freigegeben. Bei Überschreiten der zulässigen Werte schließt sich der Abfluss automatisch. Beim Druckwasserreaktor wird die höhere Tritiumabgabe durch Borsäure verursacht, die dem Kühlmittel des Reaktors zur Langzeitregelung zugesetzt ist. Tritium entsteht dabei über folgende Reaktionen:

$${}^{10}_{5} B (n, 2\alpha) \quad {}^{3}_{1} H \text{ (mit schnellen Neutronen)}$$

$${}^{10}_{5} B (n, \alpha) \quad {}^{7}_{3} \text{Li}$$

$${}^{7}_{3} \text{Li} (n, \alpha+n) \quad {}^{3}_{1} \text{H}$$

(mit thermischen Neutronen)

Die aus den Ableitungen resultierenden Strahlendosiswerte sind selbst an der ungünstigsten Stelle in der Umgebung des Kernkraftwerks sehr gering und liegen im Bereich von wenigen Mikrosievert (siehe Kapitel 9.7).

Radio- nuklidgruppe	Genehmi- gungswert in Bq/a	Abgabewert in Prozent des Genehmi- gungswertes
Abluft:		
Edelgase, H-3, C-14	1,48 · 10 ¹⁵	0,08
Radioaktive Aerosole (ohne I-131)	1,48 · 10 ¹⁰	0,05
lod-131	9,6 · 10 ⁹	2,91
Abwasser:		
Tritium	1,85 · 10 ¹³	3,2
Sonstige Radionuklide	5,0 · 10 ¹⁰	0,02

Tab. 11-1:Genehmigungs- und Abgabewerte eines
Siedewasserreaktors (Krümmel, 2002)

11.5 Umgebungsüberwachung

Jeder Betreiber eines Kernkraftwerkes (oder einer anderen kerntechnischen Einrichtung) ist entsprechend behördlicher Auflagen verpflichtet, in der Umgebung Überwachungsmessungen durchzuführen. Die Messwerte werden von der Überwachungsbehörde nachgeprüft und teilweise

Radio- nuklidgruppe	Genehmigungs- wert in Bq/a	Abgabewert in Prozent des Genehmigungs- wertes
Abluft:		
Edelgase	1 · 10 ¹⁵	0,17
Radioaktive Aerosole (ohne l-131)	1 · 10 ¹⁰	unter Nachweisgrenze
lod-131	6 · 10 ⁹	0,04
Abwasser:		
Tritium	3,5 · 10 ¹³	57
Sonstige Radionuklide	5,55 · 10 ¹⁰	0,01

Tab. 11-2:	Genehmigungs- und Abgabewerte eines
	Druckwasserreaktors (Brokdorf, 2002)

durch eigene Messungen ergänzt. Durch die Umgebungsüberwachung wird die Radionuklidkonzentration in Luft, Wasser, auf dem Boden und in den Nahrungsketten ermittelt. Dabei beginnt man bereits vor Inbetriebnahme des Kernkraftwerkes, um geeignete Vergleichswerte zu besitzen. Die Abb. 11.9 zeigt beispielhaft das Messnetz für eine Umgebungsüberwachung.

Abb. 11.9: Messnetz zur Umgebungsüberwachung des Kernkraftwerks Krümmel bei Hamburg

12 Strahlenschutz für Personen in einem Kernkraftwerk

12.1 Dosisgrenzwerte

Personen, die in einem Kernkraftwerk tätig sind, sind vor einer Gefährdung durch ionisierende Strahlung zu schützen. In der Strahlenschutzverordnung sind daher Dosisgrenzwerte festgelegt, die nicht überschritten werden dürfen. Diese Grenzwerte schließen die natürliche und die medizinische Strahlenexposition nicht ein.

Die Strahlenschutzverordnung unterscheidet zwischen beruflich strahlenexponierten Personen und der übrigen Bevölkerung. Als beruflich strahlenexponiert gelten alle Personen, die bei ihrer Berufsausübung im Kalenderjahr eine höhere effektive Dosis als 1 mSv erhalten können. Der Grenzwert der effektiven Dosis beträgt 20 mSv im Kalenderjahr. Neben dem Grenzwert für die effektive Dosis bestehen zusätzlich noch Grenzwerte für einzelne Organe (Tab. 12-1). Für bestimmte Personengruppen – Jugendliche unter 18 Jahren, gebärfähige Frauen – sind niedrigere oder zusätzliche Grenzwerte festgelegt. Für besondere Notsituationen und für die Durchführung lebensrettender Maßnahmen bei Unfällen bestehen Sonderregelungen.

Bezugsorgan	Grenzwert im Kalenderjahr in mSv
effektive Dosis	20
Gebärmutter, Keimdrüsen, Knochenmark (rot)	50
Augenlinse, Bauchspeicheldrüse, Blase, Brust, Dickdarm, Dünndarm, Gehirn, Leber, Lunge, Magen, Milz, Nebenniere, Niere, Speiseröhre, Thymusdrüse	150
Knochenoberfläche, Schilddrüse	300
Haut, Hände, Füße, Knöchel, Unterarme	500

Tab. 12-1: Grenzwerte der Dosis im Kalenderjahr für beruflich strahlenexponierte Personen

Die Betreiber von Kernkraftwerken haben von sich aus häufig niedrigere Werte als so genannte "Interventionswerte" festgelegt. Werden diese Werte erreicht, werden zusätzliche Strahlenschutzmaßnahmen geplant, um in jedem Fall unter den gesetzlichen Grenzwerten zu bleiben.

12.2 Strahlenschutzbereiche

Je nach der Dosis, die eine Person in einem Bereich durch äußere oder innere Strahlenexposition erhalten kann, sind bestimmte Strahlenschutzbereiche festzulegen: Überwachungsbereich, Kontrollbereich oder Sperrbereich (Abb. 12.1). Bei der Festlegung von Überwachungsbereich und Kontrollbereich ist allgemein von einer Aufenthaltsdauer von Personen von 2 000 Stunden im Jahr auszugehen.

Abb. 12.1: Bereichseinteilung entsprechend den möglichen Werten der effektiven Dosis *E*

• Überwachungsbereich:

Überwachungsbereiche sind die betrieblichen Bereiche, bei denen Personen eine höhere effektive Dosis als 1 mSv im Kalenderjahr erhalten können.

• Kontrollbereich:

Kontrollbereiche sind die betrieblichen Bereiche, in denen Personen eine höhere effektiv Dosis als 6 mSv im Kalenderjahr erhalten können. Er darf nur zur Durchführung oder Aufrechterhaltung der vorgesehenen Betriebsvorgänge betreten werden. Besucher haben nur mit behördlicher Erlaubnis Zutritt zu einem Kontrollbereich. Der Kontrollbereich ist abzugrenzen und deutlich sichtbar zu kennzeichnen. Bei Personen, die sich in Kontrollbereichen aufhalten, sind die Körperdosen – üblicherweise mit einem amtlichen Dosimeter – zu bestimmen. Vor erstmaligem Zutritt und dann mindestens jährlich ist eine Unterweisung insbesondere über die anzuwendenden Strahlenschutzmaßnahmen durchzuführen.

• Sperrbereich:

Sperrbereiche sind Bereiche innerhalb eines Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 mSv/h sein kann. Personen darf der Aufenthalt in einem Sperrbereich nur erlaubt werden, wenn sie unter der Aufsicht einer beauftragten fachkundigen Person zur Durchführung vorgesehener Betriebsvorgänge oder aus zwingendem Grund tätig werden müssen. Sperrbereiche sind abzugrenzen und deutlich sichtbar zu kennzeichnen.

12.3 Bereiche, die keine Strahlenschutzbereiche sind

Nicht zu den "Strahlenschutzbereichen" gehört das außerhalb dieser Bereiche befindliche aber noch zum Betrieb gehörende Betriebsgelände. Für dieses "Betriebsgelände" gilt ebenso wie für das außerhalb des Betriebes liegende "allgemeine Staatsgebiet" ein Grenzwert der effektiven Dosis von 1 mSv im Kalenderjahr. Der Unterschied besteht darin, dass auf dem Betriebsgelände die Aufenthaltszeit administrativ geregelt (begrenzt) werden kann und daher nicht von einem Daueraufenthalt bei der Berechnung der Dosis ausgegangen werden muss.

Für die Planung, die Errichtung und den Betrieb von Kernkraftwerken und anderen kerntechnischen Anlagen und Einrichtungen gelten spezielle Grenzwerte der durch die Ableitungen radioaktiver Stoffe mit Luft oder Wasser aus diesen Anlagen oder Einrichtungen jeweils bedingten Strahlenexpositionen des Menschen. Der Grenzwert für die effektive Dosis beträgt für jeden dieser Ableitungspfade 0,3 mSv im Kalenderjahr. Dabei ist die Strahlenexposition für eine Referenzperson an den ungünstigsten Einwirkungsstellen unter Berücksichtigung von Expositionspfaden, Lebensgewohnheiten und den in Kapitel 7.1 genannten Verzehrgewohnheiten zu ermitteln.

12.4 Kontrolle der Strahlenexposition

In Deutschland sind etwa 330 000 Beschäftigte (Stand: 2001) als beruflich strahlenexponierte Personen eingestuft. Sie arbeiten in der Medizin, der Forschung, der Industrie und in kerntechnischen Anlagen. Etwa zwei Drittel dieser Personengruppe sind in der Medizin und rund 10 % in Kernkraftwerken tätig. Damit für diesen Personenkreis die Dosisgrenzwerte nicht überschritten werden, sind physikalisch-messtechnische und administrative Überwachungsmaßnahmen erforderlich.

Bei einer äußeren Strahleneinwirkung stehen folgende physikalische Kontrollmethoden zur Verfügung:

- Die Personendosis wird mit Hilfe von Dosimetern gemessen. Sie sagen etwas über die individuelle Strahlenexposition einer strahlenexponierten Person aus. Dafür werden in der Regel Filmdosimeter, Stabdosimeter oder Zählrohr-Dosimeter verwendet.
- Mit Dosisleistungsmessgeräten werden, insbesondere an den Arbeitsplätzen, an denen höhere oder wechselnde Strahlenpegel auftreten können, die Dosisleistungen ermittelt, um das Personal bei Überschreitung der zulässigen Ortsdosisleistung zu warnen.
- Aus den Eigenschaften der Strahlenquelle, dem Abstand und der Aufenthaltszeit wird die Körperdosis berechnet.

Um die innere Strahlendosis zu überwachen, werden einzeln oder kombiniert

- die Konzentrationen radioaktiver Stoffe in der Luft oder die Kontamination des Arbeitsplatzes,
- die Aktivität in den Ausscheidungen gemessen.

Für alle beruflich strahlenexponierten Personen sind die aus äußerer und innerer Exposition resultierenden Dosiswerte aufzuzeichnen und mindestens noch 30 Jahre nach Beendigung der Tätigkeit aufzubewahren.

Abb. 12.2: Ganzkörperzähler zur Messung gamma-strahlender Radionuklide im menschlichen Körper

12.5 Schutzmaßnahmen bei Arbeiten im Kontrollbereich

Eine regelmäßig wiederkehrende Arbeit im Kontrollbereich eines Kernkraftwerkes ist z. B. der Austausch von Brennelementen. Dazu wird der Reaktor durch Einfahren der Regelstäbe abgeschaltet und anschließend das Reaktordruckgefäß geöffnet. Zum Schutz vor Direktstrahlung aus dem Reaktor und zur Kühlung flutet man den Raum oberhalb des Reaktordruckgefäßes, so dass die abgebrannten Brennelemente von der Brennelementwechselmaschine unter Wasser entnommen und unter Wasser in ein seitlich angeordnetes und mit Wasser befülltes Lagerbecken transportiert werden können.

Die Schutzmaßnahmen, die bei Tätigkeiten von Personen im Kontrollbereich angewandt werden, lassen sich in zwei Gruppen unterteilen:

- Maßnahmen zum Schutz des Mitarbeiters.
- Maßnahmen, um ein Verschleppen radioaktiver Stoffe nach draußen zu verhindern.

Abb. 12.3: Strahlenschutzmaßnahmen bei einer Arbeit im Kontrollbereich

Jede Schutzmaßnahme wird mehrfach realisiert, um ihre Wirksamkeit zu erhöhen.

Abb. 12.3 beschreibt in vereinfachter Form den Weg in den und aus dem Kontrollbereich und gibt die jeweiligen Strahlenschutzmaßnahmen an.

- Eine ärztliche Untersuchung stellt grundsätzlich fest, ob ein Mitarbeiter f
 ür den Einsatz im Kontrollbereich geeignet ist. Die Untersuchungen werden j
 ährlich wiederholt.
- 2. Die im Kontrollbereich tätigen Personen werden mindestens einmal jährlich in die Grundzüge der Betriebskunde eingeführt sowie im Arbeits-, Strahlenund Brandschutz unterwiesen.
- Im Zuge der Arbeitsvorbereitung werden der Arbeitsablauf geplant, die erforderlichen Strahlenschutzmaßnahmen festgelegt und zum Schluss der Arbeitsauftrag erteilt. Nach Freigabe der Arbeit durch den Schichtleiter kann der Kontrollbereich betreten und mit der Arbeit begonnen werden.
- 4. In einem Umkleideraum außerhalb des Kontrollbereichs wird die Privatkleidung bis auf die Unterwäsche ausgezogen und ein Kittel sowie ein Paar Badesandalen angezogen.
- 5. Vor dem Kontrollbereichseingang erhält der Mitarbeiter zwei Dosimeter: ein amtliches Dosimeter zur monatlichen amtlichen Auswertung und ein Digitaldosimeter zur werksinternen Dosiskontrolle

(geeignet zur Selbstablesung und mit einer akustischen Dosisleistungswarnschwelle versehen). Das zuletzt genannte Dosimeter wird vor dem Betreten des Kontrollbereichs durch einen Rechner auf Null gesetzt und dem jeweiligen Mitarbeiter zugeordnet.

- 6. Durch eine Tür, die den Kontrollbereich lüftungstechnisch vom übrigen Bereich des Kraftwerkes abtrennt, gelangt man in einen zweiten Umkleideraum. Dort werden Kittel und Badesandalen gegen eine komplette Arbeitskleidung ausgetauscht: Overall, Sicherheitsschuhe, Helm, evtl. Handschuhe und Atemschutzmaske (Abb. 12.4). Die beiden Dosimeter werden an der Brusttasche des Overalls positioniert.
- 7. Ist bei den durchzuführenden Arbeiten im Kontrollbereich mit einer Freisetzung radioaktiver Stoffe zu rechnen, befindet sich am Arbeitsplatz eine weitere Garderobe. Dort wird ein zweiter Overall über den ersten gestreift, Überschuhe und Stoffhandschuhe angezogen und bei Bedarf zusätzlich ein Atemschutzgerät ausgegeben.

Das Digitaldosimeter wird in einem solchen Fall vor Arbeitsbeginn erneut vom Rechner ausgelesen, so dass nach Beendigung der Tätigkeit eine arbeitsplatzbezogene Dosis bestimmt werden kann. So kann zwischen der Dosis im Kontrollbereich insgesamt und der Arbeitsplatzdosis unterschieden werden. Bei Arbeiten an Objekten, von denen Betastrahlen oder Neutronenstrahlen hoher Intensität ausgehen, erhält der Mitarbeiter spezielle, zusätzliche Dosimeter.

Abb. 12.4: Mitarbeiter in einem Kernkraftwerk in Arbeitsmontur

- 8. Am Arbeitsplatz dürfen nur die im Auftrag genannten Arbeiten ausgeführt werden. Bei einer Tätigkeit an kontaminierten Bauteilen wird ein weiterer Wechsel von Überschuhen und ein Anlegen von Gummihandschuhen erforderlich.
- Nach Beendigung der Arbeit gelangt der Mitarbeiter auf demselben Weg wieder nach draußen. Es findet der umgekehrte Kleidertausch wie bei 7. statt. Der Rechner liest das Digitaldosimeter aus und ermittelt, welche Strahlendosis am Arbeitsplatz erhalten wurde.
- 10. Am Ganzkörpermonitor (Abb. 12.5) wird überprüft, ob die Arbeitskleidung kontaminiert ist. Anschließend wird die Arbeitskleidung wieder gegen Kittel und Badesandalen getauscht.
- 11. Im Kittel und in Badesandalen verlässt der Mitarbeiter den Kontrollbereich. An einem Endmonitor wird überprüft, ob eine Kontamination des Körpers vorliegt. Bei einer Kontamination der Haut muss diese gründlich mit Wasser und flüssiger Seife gereinigt werden. Das Digitaldosimeter wird vom Rechner ausgewertet. Damit ist die im Kontrollbereich insgesamt erhaltene Dosis ermittelt. Das amtliche Dosimeter wird am Monatsende der amtlichen Auswertestelle zur Auswertung übersandt. Die Dosimeter bleiben während der Nichtbenutzung in der Dosimeterzentrale.
- Im Umkleideraum außerhalb des Kontrollbereichs werden Kittel und Badesandalen wieder gegen die eigene Kleidung getauscht.

Abb. 12.5: Prüfung auf radioaktive Kontamination am Ganzkörpermonitor

Sachwortverzeichnis

Ableitung radioaktiver Stoffe		75	, 77 75
Abschirmung			66
Abschirmung von Alphastrahlen	•••••		00
Abschirmung von Betastranien	•••••	•••••	00
Abschirmung von Gammastranien			6/
Abschirmung von Neutronenstrahlen			69
Abstandsgesetz			65
Abwasser			/6
Aktivierung			, 60
Aktivität			34
Aktivität des Menschen			44
Aktivitätsbestimmung			25
Alphastrahlen			6
Alphateilchen	6,	10, 15	, 16
Alphazerfall	·		. 16
Anregung		15	16
Anreicherung von Badionukliden		10	38
Antineutrino		7 8	11
Antineutinio		7,0	, ເ ່
Atombullo	•••••	•••••	J
Atominule			S
Atomkern			J
Atommasse		• • • • • • • • • • • • •	5
Atommodell			3
Ausgangskern			8
Baustoffe			51
Becquerel			24
beruflich strahlenexponierte Person			79
Bestrahlung, äußere			31
Bestrahlung, innere			31
= = = = =			
Bestrahlungseffekt, biologischer			32
Bestrahlungseffekt, biologischer Betastrahlen	10, 21,	80, 84	32 86
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ Teilchen	10, 21,	80, 84 6	32 , 86 , 11
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen	10, 21,	80, 84 6	32 , 86 , 11 7
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen Betazerfall	10, 21,	80, 84	32 , 86 , 11 7 . 11
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung	10, 21,	80, 84 6 6, 7	32 , 86 , 11 7 , 11 , 66
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Brennstah	10, 21,	80, 84 6 6, 7 16, 20	32 , 86 , 11 7 , 11 , 66 72
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Brennstab	10, 21,	80, 84 6 6, 7 16, 20	32 , 86 , 11 , 11 , 66 72
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Cäsium	10, 21,	80, 84 6 6, 7 16, 20	32 , 86 , 11 , 11 , 66 , 72 , 43
Bestrahlungseffekt, biologischer Betastrahlen Beta -Teilchen Beta -Teilchen Betazerfall Bremsstrahlung Cäsium Chromosomenmutation	10, 21,	80, 84 6, 7 6, 7 6, 20 42 	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31
Bestrahlungseffekt, biologischer Betastrahlen Beta -Teilchen Beta -Teilchen Betazerfall Bremsstrahlung Cäsium Chromosomenmutation Comptoneffekt	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 72 , 43 , 31 68
Bestrahlungseffekt, biologischer Betastrahlen Beta'-Teilchen Beta'-Teilchen Betazerfall Bremsstrahlung Cäsium Casium Chromosomenmutation Comptonelfekt Comptonelektron	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19
Bestrahlungseffekt, biologischer Betastrahlen Beta'-Teilchen Beta'-Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptoneffekt Comptonelektron Comptonestrauung	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19
Bestrahlungseffekt, biologischer Betastrahlen Beta'-Teilchen Beta'-Teilchen Betazerfall Bremsstrahlung Cäsium Chromosomenmutation Comptoneffekt Comptonelektron Comptonstreuung Curie	10, 21,	80, 84 6, 7 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24
Bestrahlungseffekt, biologischer Betastrahlen Beta'-Teilchen Beta'-Teilchen Betazerfall Bremsstrahlung Cäsium Chromosomenmutation Comptoneffekt Comptonelektron Comptonstreuung Curie	10, 21,	80, 84 6 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptoneffekt Comptonelektron Comptonelektron Comptonstreuung Curie	10, 21,	80, 84 6 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium . Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Deuterium Deuterium	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20	32 , 86 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41 , 5
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron Deuteron	10, 21,	80, 84 6 16, 20 42 30 19, 20	32 , 86 , 11 , 77 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41 5 5
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20	32 ,86 ,11 ,66 ,72 ,43 ,31 ,68 ,19 ,24 ,43 ,19 ,24 ,5 ,5 ,29
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20	32 ,86 ,11 ,66 ,72 ,43 ,31 ,68 ,19 ,24 ,43 ,19 ,24 ,25 ,29 ,28
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter Dosis	10, 21,	80, 84, 6, 7 16, 20 42, 30 19, 20 19, 20	32 , 86 , 11 , 66 , 72 , 43 , 11 , 66 , 72 , 43 , 19 , 24 , 43 , 19 , 24 , 41 , 5 , 29 , 28 , 32
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Cromosomenmutation Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter Dosis Dosis Dosis	10, 21,	80, 84 6 7 16, 20 42 30 19, 20 27 21	32 ,86 ,11 ,66 ,72 ,43 ,11 ,66 ,72 ,43 ,19 ,24 ,43 ,19 ,24 ,43 ,5 ,29 ,28 ,34 ,22
Bestrahlungseffekt, biologischer Betastrahlen Beta [*] -Teilchen Beta [*] -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter Dosis Dosis Dosis, effektive Dosisfaktor	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20 27 21	32 , 86 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 24 , 43 , 31 , 68 , 19 , 24 , 41 , 5 , 29 , 28 , 34 , 22 , 46
Bestrahlungseffekt, biologischer Betastrahlen Beta [*] -Teilchen Beta [*] -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter Dosis Dosis Dosis, effektive Dosisfaktor Dosisgrenzwert	10, 21,	80, 84 6 7 16, 20 42 30 19, 20 27 21	32 ,86 ,11 ,66 ,72 ,43 ,31 ,68 ,19 ,24 ,41 ,68 ,19 ,24 ,41 ,5 ,29 ,28 ,34 ,22 ,46 ,78
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Depot Deuterium Deuteron DNS Dosimeter Dosis Dosis , effektive Dosis, effektive Dosis, effektive Dosisgrenzwert Durchflusszählrohr	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20	32 ,86 ,11 ,66 ,72 ,43 ,31 ,68 ,19 ,24 ,41 ,68 ,19 ,24 ,41 ,5 ,29 ,28 ,34 ,22 ,46 ,78 ,24
Bestrahlungseffekt, biologischer Betastrahlen Beta [*] -Teilchen Beta [*] -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Deuterium Deuteron DNS Dosimeter Dosis Dosis Dosis Dosis, effektive Dosis, effektive Dosisgrenzwert Durchflusszählrohr	10, 21,	80, 84 6 16, 20 42 30 19, 20	32 ,86 ,11 ,66 ,72 ,43 ,31 ,68 ,19 ,19 ,24 ,43 ,31 ,68 ,19 ,24 ,43 ,31 ,5 ,29 ,28 ,34 ,22 ,46 ,78 ,24
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Depot Deuterium Deuterium Deuteron DNS Dosimeter Dosis Dosis Dosis, effektive Dosisgrenzwert Durchflusszählrohr	10, 21,	80, 84 6 16, 20 42 30 19, 20	$\begin{array}{c} 32\\ 86\\ 11\\7\\ .11\\ .66\\ 72\\5\\ .24\\5\\ .29\\ .28\\ .34\\ .22\\ .46\\ 78\\ .24\\ .27\\ .27\\ .27\\ .27\\ .27\\ .27\\ .27\\ .27$
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Depot Deuterium Deuterium Deuteron DNS Dosis effektive Dosis, effektive Dosis, effektive Dosis, effektive Dosisgrenzwert Durchflusszählrohr	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20 21 21	32 , 86 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 43 , 19 , 24 , 43 , 31 , 5 , 29 , 28 , 34 , 22 , 46 , 24 , 27 , 46
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Depot Deuterium Deuterium Dosimeter Dosis Dosis , effektive Dosis , effektive Dosis faktor Dosisgrenzwert Durchflusszählrohr Elektrometer Elektronenbahn	10, 21,	80, 84 6 6, 7 16, 20 42 30 19, 20 27 21	$\begin{array}{c} 32\\ ,86\\ ,11\\ ,7\\ ,11\\ ,66\\ 72\\ ,43\\ ,31\\ ,68\\ 19\\ 19\\ 24\\ 41\\5\\ 29\\ 24\\ 41\\5\\ 29\\ 24\\ 46\\ 78\\ 24\\ 27\\ ,46\\4\\ \end{array}$
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Depot Deuterium Deuterium Dosimeter Dosis Dosis Dosis Dosis Dosis Dosis Dosis Dosis Dosis grenzwert Durchflusszählrohr Elektroneter Elektronenbahn Elektroneneinfang	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20 27 21	32 , 86 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41 , 68 , 19 , 24 , 43 , 22 , 28 , 34 , 22 , 28 , 34 , 22 , 24 , 24 , 27 , 46 , 19 , 19 , 24 , 24 , 24 , 24 , 25 , 29 , 28 , 34 , 31 , 29 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁺ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonstreuung Curie Depot Depot Depot Deuterium Deuterium Deuterion Dosis Dosis Dosis Dosis Dosis , effektive Dosis , effektive Dosis grenzwert Durchflusszählrohr Elektroneter Elektroneneinfang Elektronenhülle	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20 27 21	32 , 86 , 11 , 7 , 11 , 66 , 72 , 43 , 31 , 68 , 19 , 19 , 24 , 41 , 5 , 29 , 28 , 34 , 24 , 34 , 22 , 28 , 34 , 22 , 28 , 34 , 31 , 7 , 9 , 9
Bestrahlungseffekt, biologischer Betastrahlen Beta ⁻ -Teilchen Beta ⁻ -Teilchen Beta ⁻ -Teilchen Betazerfall Bremsstrahlung Brennstab Cäsium Chromosomenmutation Comptonelfekt Comptonelektron Comptonelektron Comptonstreuung Curie Depot Depot Depot Deuterium Deuteron DNS Dosis effektive Dosis Dosis , effektive Dosis , effektive Dosis grenzwert Durchflusszählrohr Elektroneter Elektroneneinfang Elektronenhülle	10, 21,	80, 84 6, 7 16, 20 42 30 19, 20 27 21	$\begin{array}{c} 32\\ ,86\\ ,11\\ ,7\\ ,11\\ ,66\\ 72\\ ,43\\ ,31\\ ,68\\ 19\\ 19\\ 24\\ 41\\ ,5\\ 29\\ 24\\ 41\\ ,24\\ 22\\ 46\\ 78\\ 24\\ 24\\ 27\\ ,46\\4\\9\\9\\ 10\end{array}$

Element, chemisches Endkern		1 	l, 3 8
Energie der Teilchenstrahlen Energie dosis	· · · · · · · ·		10 21
Energieniveau Energieverteilung beim Beta-Zerfall	. 7,	10,	10 15 11
Energieverteilung, kontinuierliche Energie von Alphateilchen		11,	12
Energie von Neutronen			11
Faktorenabhängigkeit der Strahlenwirkungen Filmdosimeter		·····	34 28 23
Frühschaden			32
Gammaenergie Gammaenergiespektrum	 	13,	14
Gammaquant Gammaspektroskopie Gammastrahlen	 7	13, 12	15 26 13
Ganzkörpermonitor	· /, 	24,	81 23
Gewebewichtungsfaktor Gray		·····	23 21
Grenzwerte			78
Halbwertschicht		/13	20 67
Halbwertszeit, płotogische Halbwertszeit, effektive Halbwertszeit, physikalische	· · · · · · · · · · · · · · · · · · ·	+3, 	44
Helium		E	5, 6 5, 6
Hüllelektron			15 23
Ingestion	· · · · · · · · · · · · · · · · · · ·	·····	41 41
Inkorporationswege Iod		 42,	41 44
Ion		. 3,	15 21
Ionenpaar		15,	16
Ionisationskammor		 21	.15 27
lonisationskammer Ionisierungsarbeit Isotop		21,	. 15 27 21 5
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln		21,	. 15 27 21 5 37
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium	38,	21, 41,	. 15 27 21 5 37 42 9
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium K-Einfang Kernkräfte Kernkraftwerk	38,	21, 41, 59,	15 27 21 5 37 42 9 3, 6 69
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium K-Einfang Kernkräfte Kernkraftwerk Kernladungszahl Kernphotoeffekt	38,	21, 41, 3 59,	15 27 21 5 37 42 9 3,6 69 5,6 11
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium K-Einfang Kernkräfte Kernkraftwerk Kernladungszahl Kernphotoeffekt Kernreaktor Kernspaltung	38,	21, 41, 559, t	15 27 21 5 37 42 9 3,6 69 5,6 11 69 59
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium K-Einfang Kernkräfte Kernkräfte Kernladungszahl Kernphotoeffekt Kernreaktor Kernspaltung Kernumwandlung Kernumwandlung Kernumvanflung Kernumvandlung	38,	21, 41, 59, 12,	15 27 21 37 42 9 3, 6 69 5, 6 11 69 59 59 57 78
Ionisationskammer Ionisierungsarbeit Isotop Jahresverbrauch an Nahrungsmitteln Kalium Kernfang Kernkräfte Kernkräfte Kernladungszahl Kernphotoeffekt Kernphotoeffekt Kernspaltung Kernumwandlung Kernumwandlung Kernwaffentests Kontrollbereich kosmische Strahlung	38,	21, 41, 59, 12, 50,	15 27 21 37 42 37 69 5, 6 11 69 59 59 59 57 78 57 78

Massenzahl Meson metastabil	5, 6 47,	6, 7 48 7
Milieufaktoren Mutation	30,	35 34
Nachzerfallswärme Nahrungskette		70 38
Neutrino	1, 12, 	47 16
Neutronen, epithermische Neutronen schnelle		12 28
Neutronen, thermische	12,	59
Neutronenemission	 	60
Neutronenmessgerät		28 12
Neutronenschild		69
Neutronenstrahlen	3, 16,	69 55
Nuklid	8	5, 6
Organdosis		22
Paarbildung		20
Photoeffekt Photoelektron	19,	20 19
Photon		. 7
Plutonium	9, 59,	60
Positron Positronenstrahlen	7,	20 7
Proton	3, 5, 6	5, 7
Protonenstranien Protonenzahl		8 5
Punktmutation		30
Quant		. 7
		20
Rad Radioaktivität		21 6
Radionuklid		. 6
Radiotoxizität	· · · · · · · · · · · · · · · · · · ·	26 44
Radium	9, 41, 1 41	51 51
Reaktorbetriebsabfall	24,	75
Reaktionskette, strahlenbiologische		31 22
Reichweite von Alphastrahlen		66
Reichweite von Betastrahlen Resonanzeinfang		67 17
Resorption	41,	42
Röntgenaufnahme		21 54
Röntgenfluoreszenzstrahlung		19
Röntgenbremsstrahlung	· · · · · · · · · · · · · ·	14 14
Röntgenquant		14 17
Röntgenstrahlung	 3, 14,	54
Rückstoßkern		17
Schaden, genetischer	1, 32,	34 २л

Schwellendosis			33
Sekundärionisation			15
Sekundärstrahlung			19
Sicherheitsabstand			65
Sicherheitsbarrieren			73
Sicherheitsbehälter			73
Sievert			22
Snaltneutronen			12
Spaltprodukto		60	61
Sparpfouukte		22	22
Spaisbororgan		3Z,	11
Speicherolyan			41
Sperrbereich	•••••		/8
Stabdosimeter			27
Standardmensch	•••••		37
Stols, elastischer			17
Stols, unelastischer			17
Strahlenempfindlichkeit			35
Strahlenexposition, natürliche		52,	53
Strahlenexposition, zivilisatorische		54,	62
Strahlenexposition, externe			63
Strahlenexposition, interne		45,	72
Strahlenmessung			21
Strahlenquellen, künstliche			54
Strahlenguellen, natürliche			47
Strahlenschaden		32.	32
Strahlenschutzbereiche		· · · · ·	78
Strahlungsguant			15
Strahlungswichtungsfaktor			22
Streuuna			16
Streatium	28	20	12
Szintiaramm	. 00,	55	56
		55,	00
Taschendosimeter			27
terrestrische Strahlung			52
Thorium-Zerfallsreihe		48	49
Totzeit (Zählrohr)		10,	23
Tschernohyl-Beaktorunfall			56
Transportwogo für Badiopuklido			л1
Transportwege für Haufonuklide			41 5
Tritium	Б 0		. J 75
IIIIIIIIII	5, 9,	47,	75
 L'Iberwachungsbereich			78
Umaehunasüberwachuna			70
			10
Urran			50
Uldii	i), O, 10	10
Utan-Actinium-zertalisteine	•••••	48,	49
Uran-Radium-Zertalisreine	•••••	48,	49
Vorzobraowobnhoiton			27
Verzeilgewonnneiten			10
Verweilzeit von Radionukliden im Korper	• • • • • • • •	•••••	43
verzogerungsstrecke	•••••		74
Magazitat			5
Wasserstoff achiverer	•••••		0 E
	•••••		. 5
Wasserstoff, uperschwerer	•••••		. 5
			15
vvellenstrahlung	•••••		-
Zählrahr			. 7
∠di III UI II		 	. 7
		23,	. 7 25
Zehntelwertschicht		23,	. 7 25 67
Zehntelwertschicht Zelle		23,	. 7 25 67 29
Zehntelwertschicht Zelle Zellkern		23,	. 7 25 67 29 29
Zehntelwertschicht Zelle Zellkern Zerfall, radioaktiver		23, 	. 7 25 67 29 29 18
Zehntelwertschicht Zelle Zellkern Zerfall, radioaktiver 		23, 6,	. 7 25 67 29 29 18 48
Zehntelwertschicht Zelle Zellkern Zerfall, radioaktiver Zerfallsreihe Zerstrahlung		23, 6,	. 7 25 67 29 29 18 48 20