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To obtain quantitative information about specimens from experimental methods like elemental mapping or 

electron energy loss spectroscopy (EELS) one needs an accurate knowledge of the appropriate cross-sections. 

Using EELS it is possible to determine the chemical composition of the specimen quantitatively, if the double 

differential cross-section is known.  

Modern transmission electron microscopes (TEM) operate at acceleration voltages of several hundred kV. 

Incident electrons with energies about 200 keV have velocities of 2.08·10
8
 m/s corresponding to 70% of the 

speed of light. It is obvious that retardation, the delay of the interaction due to the finite velocity of light, is not 

negligible for these velocities. Therefore it is indispensable to account for relativistic effects in the calculations 

for such energies. 

Surprisingly standard software packages often use programs like Egertons SigmaK [1] that are based on 

“kinematically corrected” and not on fully relativistic expressions for the cross-section. Here “kinematically 

corrected” means that the relativistic expressions for energy and momentum are inserted in non-relativistic 

equations. Doing this, the influence of retardation and the magnetic interaction between the incident and the 

atomic electron is completely neglected. Knippelmeyer et al. [2] have shown that in fully relativistic 

calculations the differential cross-section differs significantly from the one in SigmaK. Figure (1) shows the 

angular distribution for relativistic and non-relativistic calculations of the cross-sections using the dipole 

approximation [3]. We find that the difference between relativistic and non-relativistic calculations is not only 

quantitative but also qualitative, even for acceleration voltages of 300 kV. 

Therefore we calculate the double differential cross-section in central-field approximation using relativistic 

equations. In our model we assume only single scattering, which restricts us to specimens thinner than the mean 

free path length of the incident electron. We neglect the influence from neighbouring atoms, by using the atomic 

model for the scattering process. Due to the large energy difference between the ionised and the scattered 

electron, exchange effects can be neglected. In our model we use single particle wave functions. The use of 

Feynman’s propagator theory, Coulomb gauge and first order Born approximation leads to the equation 
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Here is ≈1/137 the fine structure constant,     the velocity of the incident particle normalised to the vacuum speed 

of light,    the position of the atomic electron,    the vector of Dirac-matices,     ,      the wave vectors of the 

incident and the scattered electron,    the momentum transfer,    an unit vector perpendicular to    and situated in 

the scattering plane,       the initial and        the final state of the atom and E the energy loss of the incident 

electron. The indices m and n of the sum stand for quantum numbers of the relevant states. The factor 4ki²/i² 

arises from the kinematics of the scattering process. In the non-relativistic case it reduces to    
      . The first 

term contains the Coulomb interaction between the incident and the atomic electron and in the second 

retardation effects are considered. The first term is equal to the “kinematically corrected” calculations. 

Therefore the differences between the relativistic and the nonrelativistic values for the cross-sections are given 

by the second term. For light elements ((Z)²<<1) or loosely bound states it is possible to use Darwin instead of 

Dirac wave functions. The Darwin wave function contains a scale factor, a bispinorial factor and a Schrödinger 

wave function. In this approximation the matrix-elements can be written as integrals of well-known Schrödinger 

wave functions, which are a product of a radial and an angular function. In the hydrogenic model all integrals 

can be solved analytically [2]. These calculations are however limited to K-shell ionisation. Our approach 

describes higher shell ionisation as well and results in an analytically solvable angular part and in radial 

integrals, which must be computed numerically. The resulting expressions can be viewed as an extension of the 

non-relativistic formulae [4]. We calculate the initial radial wave functions as a self-consistent solution of the 

Schrödinger equation, using a slightly modified program written by Hamann [5]. As final state, a continuum 

state is calculated by solving the Schrödinger equation with fixed energy. The continuum radial functions can be 
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normalized to a finite energy interval [6]. The radial integrals have the form of a Hankel-transform, which 

consist of a function with the radius as argument multiplied by a Bessel-function with the radius r and the 

momentum transfer q in the argument. Defined on a logarithmic mesh, these integrals can be recognized as a 

convolution and solved using fast Fourier transforms. We used a program, written to compute such expressions, 

based on Talmans routine [7] and modified by A. Weickenmeier for the calculation of the Bessel-function for 

orders greater than one. 

The resulting program delivers the relativistic cross-sections for arbitrary shell ionization. In these 

calculations relativistic effects which lead to even qualitative difference like figure (1) shows are considered. 

Using these cross-sections one should obtain more accurate results in microanalysis. 
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Figure 1. Comparison of relativistic (solid line) and non-relativistic (dashed line) angular distribution           for 

different acceleration energies at silicon K-loss (1839 eV). The functions are computed due to Fanos equations [3]. 

 



 
Figure 1. Comparison of energy-differential cross-sections calculated fully relativistically by Knippelmeyer’s SigmaKrel [2] 

(solid line) and with Egerton’s SigmaK [1] in the case of carbon at varying acceleration voltages (100, 400, 1200 kV) and an 

aperture of 3 mrad. [2] 

 

 
Equation 1. Double differential cross-section with ≈1/137 fine structure constant,  velocity of the incident particle 

normalised to the vacuum speed of light, r position of the atomic electron,  vector of Dirac-matices, ki wave vector of 

incident electron, q momentum transfer, t unit vector perpendicular to q and is situated in the plan of scattering process,│n > 

initial state,│m > final state and E energy loss of the incident electron. 

 


