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1 Motivation

In der Nanotechnologie ist es von grofem Interesse, Proben auf Nanometerskalen hinsichtlich ih-
rer chemischen Zusammensetzung zu untersuchen. In der Elektronenmikroskopie ist dies mittels
Elektronenenergieverlust-Spektroskopie moglich. Dabei werden inelastisch gestreute Elektronen
(Abb. 1.1) mit Geschwindigkeiten nahe der Lichtgeschwindigkeit untersucht. Zur Auswertung der
erhaltenen Spektren werden so genannte Wirkungsquerschnitte berechnet. Fiir diese Rechnungen
werden iiblicherweise Programme verwendet, die auf nicht-relativistischen Ans#tzen beruhen. In
heutiger Standard-Softwarepaketen ist zum Beispiel das Programm ,SigmaK* von Egerton [8] ent-
halten. Darin werden die fiir grofe Geschwindigkeiten abweichenden Energiebeziehungen durch
sogenannte kinematische Korrekturen beriicksichtigt, aber nicht die Retardierungseffekte und die
magnetische Wechselwirkung zwischen den Elektronen. Mit zunehmender Energie der einfallenden
Elektronen gilt es zu hinterfragen, ob voll-relativistische Ansétze notig sind, um das Verhalten
der schnellen Elektronen geniigend genau beschreiben zu kénnen. Rechnungen auf Basis des Was-
serstoffmodells von Knippelmeyer [3] zeigen, dass solche voll-relativistischen Ansitze bei heute
iiblichen Beschleunigungsspannungen einen deutlichen Einfluss haben. Mit der Diplomarbeit von
Pokroppa [18] konnten diese Ergebnisse auf das Zentralfeldmodell ausgeweitet werden. Diese voll-
relativistischen Ansétze sind dariiber hinaus bis heute nicht weiter verfolgt worden. Das erstellte
Programm beruht ebenfalls auf dem Zentralfeldmodell und der Formalismus ist weitestgehend dem
Pokroppas nachvollzogen. Allerdings werden die Werte fiir das Atompotential und die Wellenfunk-
tionen selbstkonsistent berechnet und nicht wie zuvor ein gendhertes Potential vorausgesetzt.

Die vorliegende Arbeit soll auch eine gut nachvollziehbare Einfiihrung in den nétigen Formalismus
und das erstellte Programm bieten, daher sind einige Rechnungen ausfiihrlicher dargelegt als es
fiir eine Diplomarbeit iiblich ist, um einem Nachfolger den Einstieg in die Materie zu erleichtern.
In einigen Formeln sind sich kiirzende Faktoren zur besseren Nachvollziehbarkeit der Rechnungen

durchgestrichen dargestellt. Aufferdem sind im Anhang diverse Rechnungen ausfiihrlich aufgefiihrt.

1.1 Einfithrung

In dieser Arbeit werden Wirkungsquerschnitte fiir die inelastische Streuung eines einfallenden Elek-
trons an einem gebundenen Atomelektron berechnet. Diese Wirkungsquerschnitte haben die Di-
mension einer Fliche und werden in der Elektronenmikroskopie iiblicherweise in cm? angegeben. Sie
beschreiben ein effektive Trefferfliche, die proportional zur Wahrscheinlichkeit des Streuprozesses

ist und von den Quantenzahlen und Energien der beiden beteiligten Elektronen abhingt.
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1.2 Beispiel fiir die Anwendung von Wirkungsquerschnitten

Wirkungsquerschnitte werden in der Elektronenmikroskopie bendtigt, um die chemische Zusam-
mensetzung einer Probe aus Elektronenenergieverlust-Spektren zu gewinnen. In einem Energieverlust-
Spektrum werden die Elektronen nach der Streuung detektiert und nach ihrem Energieverlust auf-
getragen (Abb. 1.2). Um ein solches Spektrum zu erstellen wird eine Probe mit Elektronen einer
Energie von typischerweise 80-400 keV bestrahlt. Die einfallenden Elektronen wechselwirken mit
den Probenatomen wobei sie je nach Art der Wechselwirkung einen Teil ihrer Energie abgeben,
wie in Abbildung 1.1 schematisch dargestellt ist.

Elastische Streuung Inelastische Streuung

E, E,

E.-AE

Abbildung 1.1: Schematische Darstellung des Streuprozesses. Ein einfallendes Elektron mit der Ener-
gie Eo erfihrt eine Ablenkung durch die Ndhe zum positiv gelademen Atomkern
(links) bzw. einen Energieverlust AE durch Wechselwirkung mit einem Atomelektron

(rechts). [1]

Elektronen konnen elastisch gestreut werden wobei sie eine Richtungsdnderung, aber nahezu kei-
nen Energieverlust erfahren. Diese Elektronen bilden den so genannte Zero-Loss-Peak, wie er in
Abbildung 1.2 dargestellt ist. Stofsen die einfallenden Elektronen unelastisch mit den Atomelektro-
nen, geben sie einen Teil ihrer kinetischen Energie an die gebundenen Elektronen ab. Solange die
Energie kleiner als die Ionisationsenergie des Atoms ist konnen die Atomelektronen nur in freie, ho-
herliegende Energieniveaus angeregt werden (Interbandanregung). Damit konnen die einfallenden
Elektronen keine beliebige Energie abgeben sondern nur diskrete Energiebetrige, die den Diffe-
renzen der Energieniveaus entsprechen. Ubersteigt die iibertragene Energie die Ionisationsenergie
werden Atomelektronen der duferen Schalen herausgeschlagen. Diese Anregung ins Kontinuum ist
fiir beliebige Energieiibertrige moglich.

Die Intensitét im Spektrum (Abb. 1.2) nimmt fiir steigende Energieverluste tendenziell ab. Bei
den Ionisationsenergien sdmtlicher Atomelektronen gibt es deutliche Intensitédtsanstiege, die so ge-
nannten Ionisationskanten. In diesen Bereichen findet ein Ubergang von nur diskret moglichen hin
zu kontinuierlich moglichen Energieiibertrdgen satt. Somit steigt die Anzahl der freien Zustén-
de, in die das Atomelektron angehoben werden kann, um ein Vielfaches. Damit steigt auch die
Wabhrscheinlichkeit fiir einen Streuprozess mit eben diesem Atomelektron und dem entsprechenden
Energieverlust. Die Ionisationsenergien sind fiir jedes Element verschieden. Durch einen Vergleich
der im Energieverlust-Spektrum gewonnenen Werte fiir die Position der Ionisationskanten mit Li-

teraturwerten konnen die in der Probe vorhandenen Elemente bestimmt werden. Die Anzahl an
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Abbildung 1.2: Schematische Darstellung eines Elekironenenergieverlust-Spektrums. [2]
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Intensitat in willktrl. Einheiten

Atomen eines Elements in einem beleuchteten Probenbereich ist proportional zur Anzahl der an
diesem Element gestreuten Elektronen. Diese Anzahl ist in erster Ndherung proportional zum FI4-
cheninhalt unter einer fiir dieses Element charakteristischen Ionisationskante. Durch Abziehen des
Untergrundes werden experimentelle Einfliisse in den Messdaten beriicksichtigt. Der Untergrund
im Spektrum entsteht zum Beispiel durch Streuung der Elektronen an dem Mikroskop. Er wird
nach einem Potenzgesetz aus dem Verlauf des Spektrums vor der Ionisationskante extrapoliert.
Fiir den Zusammenhang von Zihlrate bzw. die Intensitét I und der Anzahl N der Atome im vom

Elektronenstrahl beleuchteten Volumen kann man schreiben
I=JNon,

wobei J der Teilchenstrom im Strahl, o der Wirkungsquerschnitt und 7 die Effizienz des Detek-
tors ist. Um die chemische Zusammensetzung einer Probe bestimmen zu kénnen betrachtet man
das Verhaltnis der Intensitiaten fiir die betreffenden Elemente. Somit kiirzen sich die Apparatur
abhangigen Parameter heraus. Angenommen eine Probe besteht aus den Elementen a und b, so

erhalt man die Relation
Na o Iaab

ﬁb B IbUa '
Hier stehen N,, N, fiir die Anzahl der Atome a und b, I,, I, fiir die Flache unter deren ent-
sprechenden Kanten und o,, oy fiir deren Wirkungsquerschnitte. In Abbildung 1.3 ist dieser Fall

anschaulich dargestellt. Die Wirkungsquerschnitte geben die Wahrscheinlichkeit an, dass ein Elek-
tron mit einem Energieverlust im Bereich des Energiefensters A, bzw. A gestreut wird und den
Detektor erreicht. Das Elektron muss also unter einem bestimmten Raumwinkel gestreut werden,
damit es von der nachfolgenden Blende erfasst und somit detektiert werden kann.

Ep+A 2o

o= ———dwdFE.
Ey Apertur dQdE

Der Wirkungsquerschnitt ¢ ist somit der iiber das betreffende Energieintervall und dem betreffen-

den Raumwinkel integrierte doppelt differentielle Wirkungsquerschnitt d‘g—;@.
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Abbildung 1.3: Schematische Darstellung zur quantitativen Analyse eines Elektronenenergieverlust-
Spektrums. Der extrapolierte Untergrund ist gestrichelt dargestellt und in grau unter-
legt sind die zur Verhdltnisbildung relevanten Flichen. [2]

1.3 Relativistische Rechnungen

In nicht-relativistischen Ansétzen wird die auf Vakuumlichtgeschwindigkeit normierte Geschwin-
digkeit 3 = % vernachldssigt. Moderne Elektronenmikroskope arbeiten mit Beschleunigungsspan-
nungen von einigen hundert kV, wodurch die einfallenden Elektronen sehr hohe Geschwindigkeiten
erreichen. Bei einer Elektronenenergie von 200 keV haben die Elektronen eine Geschwindigkeit von
2,08-108 =, was etwa 70% der Lichtgeschwindigkeit entspricht. Nicht-relativistische Ansétze kon-
nen daher keine vollstdndige Beschreibung des Streuprozesses fiir diese Beschleunigungsspannungen
liefern.

In derzeitigen Standardprogrammen zur Analyse der Messdaten werden , kinematisch korrigier-
te* anstatt voll-relativistische Wirkungsquerschnitte berechnet. , Kinematisch korrigiert bedeutet,
dass relativistische Ausdriicke fiir Energie und Impuls in nicht-relativistische Gleichungen einge-
setzt werden. Damit wird der Einfluss von Retardierungseffekten und die magnetische Wechselwir-
kung zwischen dem Atomelektron und dem einfallenden Elektron aufer Acht gelassen. Retardie-
rungseffekte sind Effekte, die durch zeitliche Verzogerung auf Grund der endlichen Lichtgeschwin-
digkeit entstehen.

In dieser Arbeit wird ein Ansatz mit voll-relativistischen Gleichungen gewihlt um diese Effekte bei
der Berechnung von Wirkungsquerschnitten zu beriicksichtigen. Damit kdnnen genauere Ergebnisse

aus den experimentellen Daten gewonnen werden.
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Wirkungsquerschnitte

Die Basis fiir die Rechnungen ist die Propagatortheorie und die relativistische Dirac Gleichung.
Damit kann die Streumatrix berechnet werden. Sie beschreibt die zeitliche Entwicklung der an dem
Streuprozess beteiligten Teilchen unter Beriicksichtigung ihres Wechselwirkungspotentials. Bildet
man davon das Betragsquadrat und teilt es durch die Zeit, die der Ubergang vom Anfangs- in den
Endzustand dauert, so erhélt man die Ubergangsrate. Daraus lisst sich der Wirkungsquerschnitt
berechnen, indem auf die Stromdichte des einfallenden Elektrons normiert wird. Eine ausfiihrliche
Herleitung ist in der Diplomarbeit von Knippelmeyer [2] zu finden.

Fiir die weiter gehenden Uberlegungen miissen zuniichst noch einige Annahmen diskutiert werden:
- Die Proben sind diinner als die mittlere freie Weglénge der einfallenden Elektronen, sodass in
guter Ndherung Einfachstreuung angenommen werden kann.

- Der Einfluss der Nachbaratome wird vernachléissigt, daher kann ein atomares Modell fiir den
Streuprozess genutzt werden.

- Es wird angenommen, dass das einfallende Elektron nur mit dem angeregten Atomelektron wech-
selwirkt und der Einfluss der {ibrigen Atomelektronen vernachlissigbar ist. Daher kann das Atom-
elektron durch eine Einteilchen-Wellenfunktion beschrieben werden.

- Nimmt man an, dass das Atomelektron nur in Kontinuum-Zusténde, nicht aber in diskrete Zustén-
de angehoben wird, so kann der Endzustand allein durch Kontinuum-Wellenfunktionen beschrieben
werden.

- Die einfallenden Elektronen haben typischerweise Energien grofier als 100 keV und die ionisierten
Elektronen Energien im Bereich 10-100€V. Die Energie des ionisierten Atomelektrons ist also um
wenigstens drei Grofenordnungen kleiner als die Energie des gestreuten Elektrons, sodass Austaus-
cheffekte in guter Nidherung vernachléssigbar sind.

- Das einfallende Elektron ist aufgrund seiner groffen Geschwindigkeit nur kurzzeitig im Potenti-
al des Atomelektrons und die Energie des einfallenden Elektrons ist sehr viel grofer als die des
Wechselwirkungspotentials. Somit geniigt es, die Streumatrix in erster Ndherung beziiglich des
Wechselwirkungspotentials zu betrachten.

Damit erhalten wir einen Ausdruck, der von den ebenen Dirac-Wellenfunktionen des Atomelek-
trons vor und nach dem Streuvorgang, sowie vom Viererpotential des elektromagnetischen Feldes
AF = (%, ff) abhéngt [2]. Hier ist ® das Skalarpotential und A das Vektorpotential.

Unter Coulomb-Eichung ist das skalare Potential gleich dem statischen Coulomb- Potential. Das
Vektorpotential beinhaltet in diesem Fall das magnetische Potential und den Retardierungsanteil
aus dem Coulomb-Potential. Die Streumatrix ldsst sich somit aufteilen, in einen Teil, dem das
statische Coulomb-Potential zugrunde liegt, und einen zweiten Teil, der den Einfluss des Vektor-

potentials beinhaltet. Somit kann der Wirkungsquerschnitt ebenfalls in zwei Teile zerlegt werden,
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wobei das erste Matrixelement < m|e’?|n > den Coulombanteil und das zweite < m|ate'd|n >
den Anteil aus dem Vektorpotential enthélt [2].

do (QAE) 5 4K kg

3

o 0 E
A 2
1 1 o tB; i
- = E — < mle""|n > —% < mlate*?|n > (2.1)
2 q 2 — (M)
SnsSm he

Hier wurde iiber die Spinanfangszusténde (|n >) gemittelt und iiber die Spinendzustéinde (|m >)
summiert. Ublicherweise werden unpolarisierte Elektronen im Experiment verwendet, daher ist
der Spinanfangszustand nicht fest definiert. Auferdem ist der Zustand des Elektrons nach dem
Streuprozess dem Experiment ebenfalls nicht zugéglich. Summation iiber alle méglichen Endzu-
stdnde umfasst auch denjenigen, in den das Elektron iiberfiihrt wurde. AFE ist der Energieverlust,
den das einfallende Elektron wihrend des Streuvorgangs erlitten hat und 7 die Ortskoordinate des
Elektrons. « ist die Feinstukturkonstante, mit o = ﬁihc ~ ﬁ Fiir die auf die Vakuumslichtge-
schwindigkeit ¢ normierte Geschwindigkeit des einfallenden Elektron gilt

g = U _Pie

C= (2.2)

Die Vektoren kz und k} stehen fiir die Wellenzahlvektoren des einfallenden Elektrons vor und nach
dem Streuprozess, wie aus der Abbildung 2.1 deutlich wird. ¢ ist ein Einheitsvektor, der senkrecht
zu { ist, wobei ¢ = k; + k:_} gilt. @ reprasentiert die Dirac-Matrizen, die in Anhang A genauer
definiert sind. Die Indizes s,,, s,, in der Summe stehen hier fiir die Spinzusténde des Anfangs- und
Endzustandes. AFE ist der Energieverlust.

Es wird von einer unelastischen Streuung der Elektronen ausgegangen, wie es in Abbildung 2.1

schematisch dargestellt ist.

J/.

[+ |
o o /

T

Abbildung 2.1: Schematische Darstellung des unelastischen Streuprozesses. [3]
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2.1 Energiedifferentielle Wirkungsquerschnitte

Da die beiden Terme in Gleichung (2.1) wegen der unterschiedlichen Auswahlregeln fiir die Matri-

xelemente nicht interferieren [4], kann die Gleichung umgeschrieben werden zu

do (LAE) _ 5 4K ky 1
o B2 ki 2
o 2
: Z % |< m|€i§F|n >|2 + <2tﬂlAE2> }< m\d’feigf|n >|2 . (23)
smosm | 4 ¢ — (55)

Es ergeben sich zwei Terme, von denen der erste den Anteil aus der statischen Coulomb- Wechsel-
wirkung enth&lt und den kinematisch korrigierten nichtrelativistischen Rechnungen entspricht. Der
zweite Term beinhaltet die Retardierungseffekte und die magnetische Wechselwirkung zwischen den

Elektronen.

2.1 Energiedifferentielle Wirkungsquerschnitte

Mit Hilfe von einfachen geometrischen Uberlegungen kann der energiedifferentielle Wirkungsquer-
schnitt berechnet werden. Aus der Impulserhaltung ¢ = ki — Ef folgt der Zusammenhang zwischen

¢?> und dem Streuwinkel
¢ =k} + k7 — 2kikgcos© (2.4)

wie es in Abbildung 2.1 dargestellt ist. Fiir die Integration iiber den Raumwinkel gilt
dQ) = d¢sin ©dO = 27 sin OdO .

Somit erhdlt man unter Verwendung von k; ~ ky den Zusammenhang

k? d 52
2¢dg = dg® = k?25in0dO = “LdQ baw. dlng= L i
™

1
¢ 2w (29

Die Integration {iber den Raumwinkel ist somit auf eine Integration iiber ein g-Gitter zuriickge-
fiihrt. Dies erweist sich als zweckméfig fiir die numerische Berechnung der Matrixelemente. Die
Integrationsgrenzen werden aus der Energie- und Impulserhaltung bestimmt, wie Egerton [8, S.
208-210] gezeigt hat. Ist Ey die kinetische Energie eines einfallenden Elektrons und p = hlgi sein

Impuls, dann ist die relativistische Gesamtenergie des Elektrons
1 1
W = Ey +moc® = [(moc?)? +p*c?]? = [(moc®)? + B2k} c?]? . (2.6)
Unter Energieerhaltung fiihrt der Energieverlust AE bei einem Streuvorgang zu der Gesamtenergie

Eyot = W — AE = [(moc?)? + h2k2c?] ? . (2.7)

11
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mit dem Impuls l%c nach dem Streuprozess. Einsetzte von Gleichung (2.6) in Gleichung (2.7) gibt

2 2\ % 2
k2 =k? — 2AE <m°+ i ) 4 8F)

‘ R4 h2c? h2c?
AE  (AE)?
=k} = 2ymo— + 55 (2.8)

mit dem relativistischen Korrekturfaktor v = 4/1 — ’;—j Durch Multiplikation mit dem Bohrschen

2

Radius ag und der Relation fiir die Rydbergenergie Er, = QTZW erhilt man daraus (vgl. [8, Gl.
0
3.139])

2 2 AFE AFE
(hgon)® = (o) = 52 (- 25 )

Durch Umformen der Gleichung (2.6) bekommt man den Wert fiir das Quadrate des Wellenzahl-
vektors des einfallenden Elektrons (vgl. [8, Gl. 3.140])

(lciao)Q: Ey <1+ Ey > .

Eg, 2 mpc?

Aus der Impulserhaltung folgt fiir den kleinsten q-Wert gyin, = ki — k¢ bzw.

2 3
(qao)>,,. = ((kiag) — (krag))® = (AE) " (AE)

— 2.
4ER, T " 8y3Ep,T? (2.9)

Aufserdem folgt unter Verwendung der Impulserhaltung mit Gleichung (2.4) fiir den maximalen
Wert des q-Gitters

(900)ay = (Fia0)” + (krag)® — 2 (ksao) (kgao) cos b
((kiao) — (kfao))* + 2 (kiao) (krao) — 2 (kiao) (kgag) cos b
(qao)?,;, + 2 (kiao) (kfag) (1 — cosb)

. o0
=(q ao)?m»n + 4 (k;a0) (kpag) sin? 7 (2.10)

Ausgehend von paralleler Beleuchtung der Probe ist 6 der maximale Streuwinkel, bis zu dem die
Elektronen auf dem Detektor auftreffen. Fiir grofsere Winkel stofen die Elektronen auf Blenden im
Mikroskop. Dieser Winkel wird auch Spektrometer-Akzeptanzwinkel genannt.

Die Wellenfunktion des Kontinuumzustandes wird auf die Energie e in Hartree normiert (Kap.

3.3), daher muss der Wirkungsquerschnitt aus Formel (2.3) noch mit de = blR dAE multipli-

ziert werden. Der energiedifferentielle Wirkungsquerschnitt ldsst sich damit und der Relation (2.5)
schreiben als

do (AE) o 4-m2dlng 1

= P—

dAE B2 2-Ep, 2

. 2
: Z q—12|< m|eiqﬂn >|2+q2 <2t(ﬁZAE)2> |<m|d‘£’eitﬁ‘|n>|2 ) (2.11)
Sn,Sm qc — e

12



2.2 Darwin-Wellenfunktionen

2.2 Darwin-Wellenfunktionen

Die Wellenfunktionen |m >,|n > aus Gleichung (2.11) sind Dirac-Wellenfunktionen. Fiir
E,,E, << mgc? hat Darwin [5] gezeigt, dass sich die voll-relativistischen Dirac Gleichungen

niherungsweise durch den Ansatz sogenannter Darwin-Wellenfunktionen (2.12) 16sen lassen.

(2.12)

Diese Darwin-Wellenfunktionen bestehen aus einem Normierungsfaktor (N,,) und einem vierdimen-
sionalen Vektor-Operator, der auf eine Schrodinger-Wellenfunktion W, () wirkt. Da im Zentral-
feldmodell ein radialsymmetrisches Potential zugrunde liegt, ldsst sich ¥,, (7) in einen Winkelanteil

Yim (¢, 0) und einen Radialanteil R, (r) zerlegen
Yot (7) = Yim (0,0) Rt (1) (2.13)

Mit diesem Ansatz fiir die Wellenfunktionen (|m >, |n >) lassen sich die Matrixelemente aus Glei-

chung (2.11) nach ihren Spinzustinden zerlegen in

Piy = /@Z:ﬁ:% (7) € gy () dr
PEa= [ Ghay (1) QT gy (7 (2.14)

wobei @il der Kontinuumzustand und @ .1 der gebundene Zustand ist. Der Index « kennzeich-
net die Summanden die aus dem relativistischen Term, in dem die Dirac-Matrizen enthalten sind,
hervorgehen. Ohne Beschriankung der Allgemeinheit kann die z-Achse auf den g-Vektor gelegt wer-
den. Damit ist £ ein Vektor, der in der x-y-Ebene liegt und es ergibt sich, wie in Anhang A niher

ausgefiihrt,

ho\? ho\?

* . h ?
P, = P+_ = —iN, N q <2m> Loty

13



2 Berechnung relativistischer Wirkungsquerschnitte

PY, = P2 = —iNyNy Ime [(te — ity) Lutiy + (tz +ity) To—sy]

o o \* h ,
P+_ = (—P_+) = _NnNk q% (tz +'Lty) IO

mit den Matrixelementen

IO - /\I’Zl/m/ (7:») eiqz \I/nlm (f‘)dgr
* iqz 0 . 0
Lotiy = /xpkl,m, () €' (833 j:zay> Ui (F)dPr
I :/w*, , (7) ez 9y im (F)d3r
z kl'!m 62 nlm
Ia = / Uiy (F) €AWy, (F)dr (2.15)

die jeweils die Schrodinger-Wellenfunktionen enthalten. Fiir die Summe {iber die Betragsquadrate

der Matrixelemente ergibt sich

% Z |< m|e'”|n >‘2

Sn,Sm

1 2 2 2 2
5 (1P P+ 1P + [P + [P )

|Prsf” + |Pegl?

% 3 < ml@teit n > | = % (1P [* + [P+ [Po_|* + | Py )
SnySm

= |Pga]” +| P2 (2.16)

Fiir die Betragsquadrate der einzelnen Summanden erhilt man, wie in Anhang A gezeigt wird,
2
ho\? B\* 5
I—|—) 1 — ) 2L
0 (2mc> al <2mc> ¢ ||

el o (27) ]

|Pyy|” =NEN?

2 o\ 2
Parl? =NENE (51 ) 1l
2 Ao\ 9
|Pg.|” =NZN? 2(2mc> | Lty
2
po P=nene () 2 2.17
‘iq:’_kn2mcq|0" (2.17)

2.3 Einige grundlegende Relationen

Zur Auswertung der Matrixelemente werden die Wellenfunktionen und e-Funktionen als Produkte
von Radialanteil und Winkelfunktionen dargestellt. Somit kénnen die Winkelanteile mit den in

diesem Kapitel aufgefithrten Beziehungen analytisch gelost werden.
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2.3 Einige grundlegende Relationen

Die Exponentialfunktion in den Matrixelementen kann nach sphérischen Besselfunktionen j, (¢r)
zerlegt werden [6, Gl. 5.8.3]

oo L R s
- L. . 7
e = 4n Z Z iYir (qr) Y7, (Z) Yim (r) , (2.18)

L=0M=—-L

mit den Kugelflichenfunktionen Y7 ;. Da das Bezugssystem so gelegt wird, dass

G = ¢, und damit M = 0 gilt, kann Gleichung (2.18) vereinfacht werden zu

; L L (T 7
et =dr Z it jr (qr) Yro <Z) Yo ( ) : (2.19)

r
L=0

Das Integral iiber drei Kugelflichenfunktionen ergibt (vgl. [6, Gl. 4.6.3])
7 i
) viar () (5)
r r
(v L I\ (U L I\[@+1)QL+1)(2+1)]2
— (—1)™ [< F+D@L+L)@+ )} . (2.20)
-m’ M m/)\0 0 0 4

Fiir die sogenannten 3j-Symbole gilt nach [7, S. 1056]

l/ L l s l+l’+L
( )—(l)<ll’mm’|LM>,

=<3y

27 ™
< Yo [You [Yin >= (1) / d@/ sin 0d0 Yy _py (
0 0

~—

! V2L 41

m —-M m

wobei die Clebsch-Gordan-Koeffizienten < {1’ mm/|L M > reell und nur dann ungleich Null sind,

wenn die Auswahlregeln

reell, wennm+m'=Mund || -U|<L<I+V

< UU'mm|LM >= (2.21)
0, sonst
erfiillt sind. Ist m = m’ = M = 0, dann gilt nach [6, Gl. 3.7.14]
Lo ,
=0, wenn ! 4 L+ [ ungerade. (2.22)
0 0 0
Zu Gleichung (2.20) sei noch angemerkt, dass nach [6, Gl. 2.5.6]
< }/l/m/| = (}/l/m/)* = (—l)m }/l/_m/
gilt. Die Orthogonalitdtseigenschaft besagt (vgl. [6, Gl. 3.7.8]), dass
LI\ (U L 1 .
=(2L+1 orr 0 . 2.23
by (A A B R
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2 Berechnung relativistischer Wirkungsquerschnitte

Weiter gilt nach [6, Gl. 2.5.30]

Yo <;7> _ <2L4;L 1>; P, (cosb). (2.24)

Fiir §=q- €. ist § = 0 und damit P, (cosf) = P; (1) = 1 vereinfacht sich Gleichung (2.24) zu

Yio (g) - (2L4: 1); . (2.25)

Fiir eine bessere Ubersichtlichkeit wird im Folgenden die Notation geéindert, es gilt:

[Yim, >=1|lm > .

Eine weitere wichtige Relation ist (vgl. [6, S. 98-99])*

U 1 1
’o v -m' pom ’
(O 0 0)
Dabei ist < ' 0|Vo|l0 > nur fiir I’ =141 von Null verschieden mit

l+1 0 l
<14+10|Voll0 >= i ( )

[(20+1)(20+3) \Or T
<1—10|Vo|10 >= : ; <8+”1>, (2.27)
[(20—1)(21+ 1))z \Or 7
wobei 5 ) 5 5
Vo= P und Vg4 = :Fﬁ <8x + 28y> , (2.28)

die sphérischen Komponenten des Nablaoperators sind.

2.4 Analytische Berechnung der Winkelintegrale

In diesem Kapitel wird die Berechnung der einzelnen Betragsquadrate aus Formel (2.17) ausgefiihrt,
wie sie in der Diplomarbeit von Pokroppa [18] beschrieben ist. Dazu werden die in Abschnitt 2.3

aufgefithrten Relationen verwendet. In diesem Kapitel ist zu beachten, dass mit dem Ausdruck
2

nicht nur die Bildung des Betragsquadrates von Iy gemeint ist, sondern auch die Mittelung

1o

und Summation iiber Anfangs- und Endzusténde enthalten ist. Es gilt der Zusammenhang:

2
=220+ 1) 7 SN
l/

m m/

Lo

1Bei Edmonds gibt es einen Druckfehler in der Gleichung. Die Herleitung fiihrt auf den Wert ,,l’ “ anstatt ,,m’¢ fiir
den Exponent des Faktors ,,—1.
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2.4 Analytische Berechnung der Winkelintegrale

Wie Anfangs erwéhnt, sind in den Gleichungen einige sich kiirzende Faktoren durchgestrichen
dargestellt, um die Rechnungen besser nachvollziehen zu konnen. Zur besseren Ubersicht sind

die Berechnungen der Ausdriicke ‘Io — (rgw)QIA , |Il+iy|2 und Re {z (IO — (m) IA> I;‘} im

Anhang B aufgefiihrt.

2.4.1 Berechnung der Ausdrucks |I,|°

Einsetzen von (2.19) in (2.15) ergibt

Ip=47 > Ry i"Yiy < Yo |Yio|Yim > (2.29)
L=0

wobei Ry, = [;° Re (r) ji (qr) Ry (r) r2dr ist. Unter Verwendung von (2.20) bekommt man

’

Io =47 > Ry i"Yi, (=)™

L=0
( o l) (l/ L l) [(2”“)(2L+1>(21+1> " (2.30)
-m' 0 m 0 0 O dm

Ebenso wie in Kapitel 1 iiber die Spinzustinde summiert bzw. gemittelt werden musste, wird hier
zusitzlich zur Bildung des Betragsquadrates iiber die Anfangszustinde gemittelt (ﬁ > ) und
die Endzustand summiert (3°, )

1 2
201 Z Z o]
m m/

422 = LD\ e U+1)@RL+1)2+1]] 1
=427 LZL’RL Ry i (Z ) YYo= { = e

Ty I\ (U L 1 UL oL\ (U L 1
— e\ —m/ m)\0 0 0)\-m" 0 m)\0 0 0
2
(20 +1) L 1
=427 Ry ( Y, [ M , 2.31
Z )" [Yiol® ;/L/+1 0 0 0 (2.31)

wobei im letzten Schritt Gl. (2.23) verwendet wurde. Mit (2.25) erhélt man daraus

MZRQ o *2L+1 {(2l’+1)} (1’ L l>2, (2.32)

4 4 0 0 O

Schlieflich muss noch {iber die Drehimpulse (I’) der Endzustinde summiert und mit der Beset-
zungszahl B,,; = 2 (2] + 1) multipliziert werden.
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2 Berechnung relativistischer Wirkungsquerschnitte

- 12 .12
‘10‘ =22+ |L
ll
AN
=2(20 + 1 RZil (iM) 2L+ 1) (20 +1 . 2.33
( )LZ; 1" (i) ( ) ( ) 0 0 0 (2.33)

Nach Gleichung (2.21) und (2.22) ist das 3j-Symbol nur dann nicht Null, wenn [ — | < L <1+
und !’ + L 4 | gerade ist.

2.4.2 Berechnung des Ausdrucks ||

Aquivalent zur vorherigen Berechnung setzt man (2.19) in (2.15) ein und erhilt

oo
. - 0
I, =4rw LX_‘;JL (qT) ZL}/Lofzel’ < Y/m’|YL0£|lem > Ry - (234)

Durch Multiplizieren einer geeigneten Eins (Y, .., [I” m” >< 1" m”|) kann der Ausdruck

,m’’

< Yim |YL0%|YLm > geschrieben werden als

0
<l m’|YL0&\lm >= Z <U'mYro|l" m" ><U"m" |V, [lm > .

" "
U m

Um die folgenden Rechnungen allgemeingiiltig zu halten, wird statt der Ableitung nach z der
Ausdruck V,, verwendet (vgl. (2.28)). Dabei ist p = £1 oder 0 entsprechend der gewiinschten
Ableitung. Der zweite Faktor in der Summe ist nach (2.26) nur dann ungleich Null, wenn I = +1

ist. Damit kann die gesamte Summe vereinfacht werden zu

Z <U'm'Yro|l"m" ><1"m"|V ,|[lm >

l//,m//
=<U'm/|Yoll+1m+p><l4+1m+p|V,|im >
+ <Um/|Ypoll = 1m+p><l—1m+p/V,])im> . (2.35)

Hier kann der jeweils erste Faktor in den beiden Summanden mittels (2.20) und der zweite mit

Hilfe der Gleichung (2.26) geldst werden. Fiir die ersten Faktoren erhilt man

18



2.4 Analytische Berechnung der Winkelintegrale

<Um/|Ypoll +1m+p >

:(_1)m+u< v z+1>(1/ L l+1> [(21’+1)(2L+1)(21+3)]

[N

-m—pu 0 m+4+u/\O 0 0 4
und
<l’m/|YL0|l—1m+,u>

e U L=\ (UL -1\ [@+1)ERL+I-1)]?
= (—m—u 0 m+,u> (o 0 0 )[ 4 ] - (236)

W=

wobei hier ausgenutzt wurde, dass nach Gleichung (2.21) m' = m + u gelten muss. Fiir die zweiten

Faktoren ergibt sich

<z+1 11 )
—-m — m +
rz s <1+10|Vo|l0 >

I+1 1 1
0 00

<z-1 11 )
—-m — m +
i M) 10|Vl > . (2.37)
-1 1 1
0 00

Speziell fiir ;1 = 0 erhélt man die ersten Faktoren direkt aus Gleichung (2.36). Die zweiten Faktoren

<l41m+pV,llm >= (—1)"

und

<l—1m+pV,[lm >= (—1)"

lassen sich mit den im Anhang C aufgefiihrten 3j-Symbolen und der Gleichung (2.27) 16sen zu

(z+1+m)(z+1m)r(a z>

<l+1m|V0lm>:—(—1)l+m{ (20+1) (20 +3) o r

und

Einsetzen in die Gleichung fiir I, (2.34) gibt
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2 Berechnung relativistischer Wirkungsquerschnitte

L=—(-1) {4712(12?;)1 } Z LY}, (2L +1)%

U L I+1\ (I L 1+1 2 \3[0 1
{(—m 0 m><0 0 0 >{(l+1) m} [57" T}
' L 1-1\(I' L 1-1 1[0 1+1
2 — 22{ ] , 2.38
e [ L s T

mit

[ — } / Rey (r) jr (qr) (aa - Z) Ry (r)r*dr
o P = [ R e o () R %

Bilden des Betragsquadrates, Mitteln iiber die Anfangszustinde und Summieren {iber die Endzu-
stdnde fiihrt zu

Z

21+1Z Z (/HM[M @l +1)]

2l+1

Z ( ) V@RL+1) (2L + 1)

47

1
2

(2L +1)% (2L’ +1)

L,L’
{( l+1> <l’ L z+1><z' L z+1> (z' % z+1)
00 0 J)\-m 0o m/)\o o o

o) [3-2) 3
+<z’ L 1—1>< L z—1><z’ z—1> (l’ L z—1>

—m 0 m 0 m 0 00 0
- 2}{& ZtlHar lrl}
+2<l’ L l+1> <z' L -1 ( L z+1> <1/ L z—1>

—m 0 m 0 00 0
\/{12 m2} (1+1) —m2} [ar_f«] [aﬁrltl} } 2 (2.39)

Nach Gleichung (2.21) und (2.22) sind die drei Summanden fiir unterschiedliche Kombinatio-
nen der Drehimpulswerte gleich Null. Der erste ist zum Beispiel nur dann ungleich Null, wenn
[+1-V|<L<I+140"und! +L+1+1 gerade ist.

2Nach den Ausfiihrungen von Pokroppa [18] wird der dritte Summand subtrahiert, die Herleitung zeigt aber wie
hier dargelegt die Addition des Terms.
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3 Numerische Umsetzung und

verwendeten Unterprogramme

Da nach den analytischen Uberlegungen zur Berechnung des Wirkungsquerschnittes aus Kapitel 2
nur die Winkelanteile nicht aber die Radialanteile gelost werden konnen, miissen letztere numerisch
berechnet werden. Fiir die Berechnung des Wirkungsquerschnittes wurde ein Hauptprogramm in
der Programmiersprache C++ geschrieben, das auf frei verfiigbaren Unterprogrammen beruht.
Die meisten Unterprogramme sind in C++ iibersetzt und als Routinen eingebunden worden. Die
einzige Ausnahme ist das Unterprogramm zur Berechnung der gebundenen Zustidnde, es wurde
in Fortran belassen und muss vor der eigentlichen Rechnung ausgefiihrt werden. Die berechneten
Daten werden anschlieffend vom Hauptprogramm eingelesen.

Fiir die Auswertung der Winkelanteile miissen einige 3j-Symbole berechnet werden, dazu wird
das erste aufgefiihrte Unterprogramm eingebunden. Die Auswertung der Radialanteile benotigt
zum einen die Radialwellenfunktionen fiir die gebundenen und ungebundenen Zusténde, sowie eine
Routine zur Berechnung des Integrals. Letzteres wird mittels einer Hankeltransformation berechnet.
Fiir die Berechnung der ungebundenen Zustdnde muss das Atompotential bekannt sein. Auferdem
sind zur Normierung der ungebundenen Zusténde sphirische Besselfunktionen erforderlich.

In diesem Kapitel werden die verwendeten Unterprogramme niher beschrieben.

3.1 Berechnung der 3j-Symbole

Die zur Berechnung der Winkelanteile wichtigen 3j-Symbole, wie sie im Kapitel 2.3 aufgefiihrt sind,
werden in der Routine threej berechnet. Fiir diese Routine wurde ein Programm von Wei [9] als
Vorlage verwendet. Das Programm berechnet aus den 6 Eingabewerten Werten, m;, mo, ms und

J1,J2, 3 das entsprechende 3j-Symbol nach der Formel

<]1 J2 I3 ) = §—m,3,7n1+mz : (71)j1—j2—m3 A (]1]2]3)
mq mo ms
. . . 1
. [ (jl *QJ?21+j§) (jl +23?2%*j3) (*j}ijj'32+j3) ‘| ’

k(Ji+tJde—Js\(Jj1—Jd2+Js\[—J1+Jj2+33
. -1 3.1
Z( ) ( k )(jlmlk)(j2+m2k> 3.1

k
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3 Numerische Umsetzung und verwendeten Unterprogramme

1
(1 +j2 — 33)! (J1 — Jo + ja)! (—=j1 + Jo + j3)! ] 2
(Jj1+J2+73+1)!

mit A (j1j2j3) = {

w (1) ===

Fiir die Summationsgrenzen gilt

Il S k S IQ,
mit I, = max (0,51 — j2 + ma, jo — jz —mq)

und I = min (j1 + j2 — 3, j1 — ma, j2 + m2) .
Nach den Auswahlregeln fiir 3j-Symbole sind diese gleich Null, wenn (vgl. GL. (2.21))

Ima| > fir i= 1, 2, 3,
my + mg # —ms3,

0y — o] > I3

und 11 + 1 <3

ist. Werden diese Auswahlregeln von den Eingabewerten nicht erfiillt, gibt das Programm ohne
weitere Rechnungen Null aus. Fiir alle iibrigen Kombinationen von Eingabewerten sind eine Reihe
von Binomialkoeffizienten von ganzen Zahlen zu berechnen, wie aus der Formel (3.1) ersichtlich
ist. Fiir grofe j-Werte werden diese Zahlen sehr grof, daher wurde fiir die Zahlen eine numerisch
glinstigere Darstellung zur Rechnung gewihlt, die im Folgenden néher beschrieben wird.

Fir numerische Multiplikation und Division mit grofen Integer-Werten ist es iiblich, die Zahlen
nach Vielfachen von Primzahlen zu zerlegen. Es ist zum Beispiel 30 = 2 -3 -5 oder 6936 =
2.2.2.3-17-17 = 2.3 172. Die Exponenten der Primzahlen werden in einem Array gespeichert
und es wird nur noch mit den Exponenten anstelle der grofen Zahlen gerechnet. So ist zum Beispiel
6936 = 19.23.31.50.70.119.13%.172 = (0, 3, 1, 0,0,0,0,2,0, ..., 0). Diese Darstellungen ist numerisch
sinnvoll, da eine Multiplikation oder Division grofier Zahlen zur Addition bzw. Subtraktion kleiner
Zahlen wird und dadurch viel schneller berechnet werden kann. Es ist zum Beispiel 30 - 6936 =
24.32.51.172 =(0,34+1,14+1,0+1,0,0,0,2,0, ...,0) = (0,4,2,1,0,0,0,2,0, ..., 0).

Zur Addition und Subtraktion grofier Zahlen ist es numerisch sinnvoll, die Zahlen als eine Summe
von Vielfachen einer Basis zu schreiben. Das Binérsystem ist wohl das bekannteste System dieser
Art, hier ist die Zahl 2 die Basis. Eine Zahl wird also wie folgt dargestellt: 6 = 0-2" + ... +0-23 4
1-224+1-214+0-2°=(0,...,0,1,1,0). Ebenso kann die Basis jede beliebige Zahl sein. In diesem
Programm ist die Basis zu 32768 gewéhlt, damit die Arrays moglichst klein bleiben aber trotzdem
moglichst grofe Zahlen darstellt werden konnen. Um alle Zahlen darstellen zu kdnnen, sind in
diesem Fall auch negative Exponenten nétig. Eine Addition oder Subtraktion grofser Zahlen wird
damit zur Addition bzw. Subtraktion von 1 und 0. Fiir den Wert 1+1=2 wird der entsprechende
Eintrag gleich Null gesetzt und zu dem néchst héheren eine Eins addiert. Zum Beispiel ist 6+ 12 =
(0,...,0,0,0,1,1,0) + (0,...,0,0,1,1,0,0) = (0,...0,1,0,0,1,0).

Fiir den Faktor vor der Summe in der Gleichung (3.1) wird mit der Primfaktor-Zerlegung gerechnet
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3.2 Berechnung der gebundenen Atom-Zustéinde (Ry;)

und zur Berechnung der Summe werden die Zahlen iiber Vielfache der Basis 32768 dargestellt.
Das Programm ist stichprobenartig mit den von Wei [9] abgegebenen Werten iiberpriift worden.

Zum Beispiel
(15 30 40

= —0.01908158
2 2 -4

Des Weiteren ist es mit analytisch einfach berechenbaren Werten nach Edmonds [6] Formel (3.7.9)

getestet worden, wie zum Beispiel:

2 2 0 1
= 0.4472136 = —.
(2 -2 0) NG

3.2 Berechnung der gebundenen Atom-Zustande (R,;)

Wie eingangs erwahnt, werden zur Auswertung der Radialanteile die gebundenen radialen Wellen-
funktionen (R,;) des Atoms und zur Berechnung der ungebundenen Zusténde das Atompotential
benétigt. Die Indizes n und [ stehen fiir die Haupt- und Nebenquantenzahl. Das Programm ,wave-
gen.f* gibt eine selbstkonsistente Losung der radialen Schrodinger-Gleichung fiir die R,,; des Atoms
und das Atompotential auf einem exponentiellen Gitter aus.

Die Grundlage des Programms ist von Hamann [11] iibernommen. Es wurde in der Arbeitsgruppe
von Herrn Kriiger (Institut fiir Festkorpertheorie, WWU Miinster) geringfiigig verandert. In die
Eingabedatei ,wavegen.dat werden die Kernladungszahl Z des zu untersuchenden Elementes und
dessen Besetzungszahl eingetragen. Fiir Kohlenstoff sieht die Eingabedatei wie folgt aus:

6.

1 0 1.1
2 0 1.1
2 1 1.1

Die erste Zeile enthilt die Ordnungszahl Z. In der darunter anschliefenden Tabelle sind in der
ersten Spalte die Hauptquantenzahl n und in der zweiten die Drehimpulsquantenzahl [ und in
den folgenden zwei Spalten die Besetzungszahlen aufgeteilt nach Spinrichtung einzutragen. Da fiir
die Berechnung des Wirkungsquerschnittes die Wellenfunktionen nicht spinaufgespalten bendtigt
werden, ist die Anzahl der Elektronen gleichméfig auf die beiden Spinrichtungen zu verteilen. Die

zu Grunde liegende Formel des Programms ist die radiale Schrédinger-Gleichung:

1 d? L(l+1)
“3 gt () ( 202

+(V(r) - Enz)> Upy () =0 (3.2)

Das Potential hat die Form V (r) = —% +Veoutomb (1) +Vae (1), wobei Veouioms (1) = [ %dg’w ist
und das Austausch-Korrelations-Potential (V. (r)) in lokaler Dichteapproximation nach Perdew
[12] berechnet wird. Fiir die Energie und das Potential wird die Einheit Hartree verwendet.

Der Anfangswert fiir das Potential V' (r) ist das sogenannte Thomas-Fermi-Potential

-7 r
Vv (T) = Vrhomas— Fermi (7") = 762(13 (5)
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3 Numerische Umsetzung und verwendeten Unterprogramme

mit @ (0) = 0 und @ (c0) = 0. In der numerischen Umsetzung nach Letter [14] ist

7
V() =2 [1 4 0.027472% + 1.2437 — 0.14862% + 0.230222
T
s ~1
10.007298z 3 + 0.0069443;3}
mit z = ¢ fiir b = 0;%53.

3
Fiir einen vorgegebenen Energie-Eigenwert (A,;) wird, wie in Abbildung 3.1 dargestellt, die Wel-

aus

aus) und Einwértsintegration (u®)") berechnet.

lenfunktion durch Auswirtsintegration (u

0

Anf------ klassischer Umkehrpunkt

aus
unI

-20 } } } : } '

[ 05 15 [max = 05 1.5 [max

Abbildung 3.1: Zur Verdeutlichung der selbstkonsistenten Rechnung. (personliche Mitteilung Kriger)

Die Integration wird nach ,Adam’s Extrapolation / Interpolation Formula“ nach Abramowitz [13,
S. 896] durchgefiihrt. Dann wird u¢" neu skaliert, sodass u®" und u2¥* bei 7, den gleichen Wert

haben. Anschliefend wird die Wellenfunktion normiert. Aus der Unstetigkeit der Ableitung wird

eine Korrektur fiir \,; mit der Formel

uein (7, ) dudus (Tm) duein (rm)
A _ nl m nl _ nl .
Ant 2 ( dr dr

berechnet. Mit dem korrigierten Eigenwert wird die Wellenfunktion erneut berechnet und wieder
eine Korrektur fiir den Eigenwert bestmmt, bis der Korrekturwert geniigend klein ist. Aus den so
ermittelten Eigenwerten und Wellenfunktionen wird das Atom-Potential neu berechnet und dann
die Berechnung der Wellenfunktionen erneut begonnen. Nach hundert Iterationen werden alle Wer-
te ausgegeben.

Die Wellenfunktionen werden auf einem exponentiellen Gitter mit mmaz = 2'3 Punkten berechnet.
Fiir die Gitterpunkte gilt r; = ro - a’,,,;, mit ro = ﬁ und amesp = (45 - 160 - Z)ﬁ gerechnet.
Z ist die Kernladungszahl des Atoms. Das Gitter ist dimensionslos und kann durch Multiplikation
mit dem Bohrschen Radius (ag) in die gewlinschte Langeneinheit umgerechnet werden. Die Grofe
Gmesh 18t so gewdhlt, dass der maximale Wert fiir den Radius 7ma. > 45 au (atomic units) be-
trégt. Dieser Abstand zum Kern ist ausreichend, da die zu berechnenden Wellenfunktionen bis zu
dieser Entfernung auf Null abgeklungen sind. Die Anzahl der Netzpunkte ist so gewahlt, dass der
Abstand der Gitterpunkte geniigend klein ist, um die schnelle Oszillation der spéter benétigten
Kontinuum-Wellenfunktionen berechnen zu kénnen.

Zur Ausgabe der Werte erstellt das Programm drei Dateien. In der Datei

»_v_value.dat* werden mmax, amesh, Z, r; und die Potentialwerte in Hartree ausgegeben. Die
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3.2 Berechnung der gebundenen Atom-Zustéinde (Ry;)

Dateien ,waveup.dat® und ,wavedown.dat* sind ohne Spinaufspaltung dquivalent. In diesen Dateien
werden in der ersten Zeile die Energieeigenwerte in €V ausgegeben und darunter die Wellenfunk-
tionen fiir alle besetzten Zustédnde. Die Abbildungen 3.2 und 3.3 zeigen die numerisch berechneten

radialen Wellenfunktionen fiir Silizium.

—_ 3 T . :
c u10(r)
= 2.5 u20(r)
< u21(r)
£ 2 u30(r)
o 15 | ud1(r)
S
5 1
=
3 05
S oS
= e
5 05}
c
2 1
o
S s . | . |
0 2 4 6 8 10
r (au)

Abbildung 3.2: Radiale Wellenfunktionen (un; (r) =r - Rn (7)) fir Si.
~ 4 T :
c R10(r)
= 3 R20(r)
< R21(r)
5 R30(r)
o R31(r)
S
= 1
ENIAN
V4
c
S 1|
kv
c
2 2|
c
Qo
o 3L
= ‘ . ‘ i

0 2 4 6 8 10
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Abbildung 3.3: Radiale Wellenfunktionen (Ry; (1)) fir Si.

Abbildung 3.4 zeigt das numerisch berechneten Atom-Potential fiir Silizium, dass zur Berechnung

der Kontinuum- Wellenfunktionen verwendet wird.
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Abbildung 3.4: Numerisch berechnetes Atom-Potential fiir Si.

3.3 Berechnung der ungebundenen Atom-Zustdnde (R.;)

Das Unterprogramm ,contwave berechnet die Kontinuumzustdnde R.;, die zur Auswertung der
Radialintegrale nétig sind. Die Indizes e und [ stehen fiir die Energie und den Drehimpuls des

Elektrons. Ausgangspunkt ist wie zuvor in Kapitel 3.2 die radiale Schrédinger-Gleichnung;:

1 d? nicht normiert L(l+1) nicht normiert
g vtz o+ (M s v o) - o) w0 6
Das Programm ,wavegen.f“ (Kap. 3.2) berechnet die Werte fiir das Potential V' (r). Diese Werte
werden vom Hauptprogramm an die Funktion ,contwave* {ibergegeben. Einfache Auswirtsinte-
gration der Schrédinger-Gleichung fiir fest vorgegebene Werte fiir e, I und V (r) liefert die nicht
normierte Kontinuum-Wellenfunktionen R,; ™M normiert ;i Jiesen Quantenzahlen. Die Werte fiir
die Energie und den Drehimpuls werden vom Hauptprogramm durch ein Start-Wert emin, eine
Energiedifferenz einc und die Anzahl der zu berechnenden Energiewerte emax vorgegeben.

Die auf diese Weise berechneten Wellenfunktionen miissen schliefllich noch normiert werden. Da
sie fiir r — oo nicht verschwinden, wird, wie es Cowan [15, Kap. 18] ausfiihrt, auf ein sehr kleines

Energieintervall (A) normiert:

o0 , 0, wenn €’ auRerhalb A,
/ / Uep (1) Uery (r)drde = / d(e—e)de= (3.4)
A Jo A 1, wenn ¢’ innerhalb A,

9

wobei die Funktion u.; mit dem Normierungsfaktor (c.) geschrieben werden kann als
Uer (1) = Co -7+ Rey (1)
Dabei ist 7 - Re; (r) die auf die Amplitude im Unendlichen normierte Wellenfunktion. Es gilt

lim 7 - Re; () o cos (qr + ) mit ¢ = v2e . (e in Hartree)

r—00

Das Verhalten fiir kleine r entspricht dem eines gebundenen Zustandes, es kann also geschrieben
werden

limr- Ry (r) = ert + eor!t 4o
r—0
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3.3 Berechnung der ungebundenen Atom-Zustéinde (R.;)

Multiplikation der radialen Schrédinger-Gleichung (3.3) mit R (r) und Umformen des ersten
Terms nach |2 L d o d
PR — e, 22
2 drz ! (r) r2dr dr Rt (r)

ergibt

_Rﬁy%iﬂiﬁﬂm+(thj+V&0Rd@ﬂ@mﬂ:2oﬁﬂﬂRw@y (3.5

Dabei ist das Potential und die Energie (e), wie in der numerischen Umsetzung, in der Einheit
Hartree einzusetzen. Im Folgenden wurde €’ in Gleichung (3.5) fiir e eingesetzt und von (3.5)

subtrahiert und anschlieffend {iber den Radius integriert:

1 > d d d d
— m /0 {Rel (r) ETQERM (r) — Rer (1) —r2—R, (r)| dr

:/ﬂ@mmmw. (3.6)
0
Durch partielle Integration und anschlieffender Integration iiber e erhélt man mit de = qdgq

/ / Uel (T) Ue'] (T) dr de :/ CeCe - / 7Qzl%el (T) Re’l (T) dr qdq
AJO A 0

. CeCe’(q . ’ /
= lim ————sin{(q—¢)r+d6—9}dq.
S R TP R f

Dieser Ausdruck ist Null, wenn ¢’ nicht in A enthalten ist. Ist ¢’ in A enthalten, folgt

e 2 o
//1mmw®Mwﬁ%m/%ﬁJ£@
A JO A

2 r—oo q—q
2 o0 3
C smxr
= Lq/ dx
2 J_o =
- chq
2

"I“'Rel.

Uel = —1T 1
T2e4

Es bleibt 7 - R, die auf die Amplitude im Unendlichen normierte Wellenfunktion, zu bestim-
men. Nach Nolting [16, Kap. 6] lassen sich im Kontinuum die Wellenfunktionen durch sogenannte
sphérische Besselfunktionen jr, (r) und sphérische Neumannfunktionen ny, (r) der Ordnung L =1

darstellen:

jL<r>=<—r>L(1d)LSW und nL<r>=—<—r>L(1d)Lc°”. (37)

rdr r rdr r

Das numerische Vorgehen zur Berechnung dieser Funktionen wird im Kapitel 3.4 ndher erldutert.

Fiir einen potentialfreien Raum erhilt man

Rei (r) = augji (qr) + By (qr)  mit g =V2e .
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3 Numerische Umsetzung und verwendeten Unterprogramme

Fiir diese Gleichung kann die Amplitude fiir » — oo mit dem Verhalten von j; und n; fir r — oo
nach [16, Gl. 6.125 und 6.126]

2 r—00 2

1 l 1 l
lim j; (gr) = — sin (qr — W) und  lim n; (¢r) = —— cos <qr — 7T>
r—00 qr qr

angegeben werden. Daraus folgt fiir die Wellenfunktion

l

r—00 ~ gcosdy
Die Vorfaktoren a; und f;, werden iiber die Anschlufibedingungen

_d

Rnumerisch (T) - aRanalytisch (T)

lznumerisch (1 (l) -Ranalytisch (,‘ (l) UIld
d T=r T=r
a a

an einem beliebigen Punkt r,, an dem das Atom-Potential zu Null abgeklungen ist, bestimmt.

Damit bekommt man

d R, _ Bagoilar)
1 dr el Ji(gr)
a; ={Re; — Bimu (qr)} = (@) und fr= 4 Lai(er)]
g [Enl (gr) —ny (qr) d;'l(qr) ]

Zusammenfassend ergibt sich die normierte Wellenfunktion fiir ungebundene Zusténde fiir die

Energie e in Hartree aus

1
- Uel 21 q Ccos 0y . .
normiert e nicht normiert
Ry =—= . - Reg .

isch
a numerisc

A=

T 71'% e
In allen anderen Kapiteln dieser Arbeit wird auf den Index ,normiert” verzichtet und lediglich R
fiir die vollsténdig normierte Wellenfunktion geschrieben.

In den Abbildungen 3.5 und 3.6 sind auf die zuvor beschriebene Weise normierte radiale Kontinuum-

Wellenfunktionen fiir einige Energie- und Drehimpulswerte dargestellt.

0.4

o
(]

-0.6 Rel (e=0.1eV) ——
Rel (e=40.1eV) ——
Rel (e=100.1eV) ——
0 5 10 15 20 25
r (au)
Abbildung 3.5: Radiale Wellenfunktionen (Rei) fir ungebundene Zustinde mit der Energie e und
einem Drehimpuls | = 0 des Elektrons fir Si.

Intensitat (willkirliche Einheiten)
S
N
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3.3 Berechnung der ungebundenen Atom-Zustéinde (R.;)

o
~

o
(N}

. NN N

06 | Rel (e=0.1eV) —— |
Rel (e=40.1eV) ——
08 Rel (e=100.1eV) ——

0 5 10 15 20 25
r (au)

Abbildung 3.6: Radiale Wellenfunktionen (Rei) fiir ungebundene Zustinde mit der Energie e und
einem Drehimpuls | = 2 des Elektrons fir Si.

Intensitat (willkirliche Einheiten)
o)
N

In Abbildung 3.7 und 3.8 sind anstatt R.; die Werte fiir u.; aufgetragen. Hier ist sehr gut zu sehen,
dass die Funktionen fiir grofse Argumente gleichméfig und mit konstanter Amplitude schwingen.
Fiir kleine Energien setzt dieses Verhalten erst bei sehr grofen Werten fiir  ein und ist daher fiir

0,1eV bei r=25au noch nicht zu sehen.

uel (e=0.1eV) ——
uel (e=40.1eV) ——
uel (e=100.1eV) ——

-
[&)]

0.5

Intensitat (willkirliche Einheiten)

-1 ; i
0 5 10 15 20 25
r(au)
Abbildung 3.7: Radiale Wellenfunktionen (uei = 7 - Ret) fiir ungebundene Zustinde mit der Energie
e und einem Drehimpuls | = 0 des Elektrons fir Si.
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uel (e=0.1eV) ——
uel (e=40.1eV) ——
15 | uel (e=100.1eV) ——

Intensitat (willkirliche Einheiten)

r(au)
Abbildung 3.8: Radiale Wellenfunktionen (uei = 7 - Rey) fiir ungebundene Zustinde mit der Energie
e und einem Drehimpuls | = 2 des Elektrons fir Si.

3.4 Berechnung der spharischen Bessel- und

Neumannfunktionen

Fiir die Normierung der ungebundenen Atom-Zusténde R.; sind sphérische Besselfunktionen jr, (1)

und sphérische Neumannfunktionen ny, (r) der Ordnung L zu berechnen.

0 =0 (L) g = (RE) Ty

rdr T rdr T

Die Neumannfunktion wird auch Weberfunktion oder Besselfunktion 2. Art genannt. Das Pro-
gramm zur Berechnung dieser Funktionen beruht auf der Routine SPHFUN von Ardill und Mori-
arty [10]. Aus den Eingabewerten fiir r und L werden nach den bei Abramowitz [13] aufgefiihrten
Néaherungsformeln die entsprechenden Bessel- und Neumannfunktionen berechnet. Dabei wird der
Funktionswert der Wert der Besselfunktion und der Wert fiir die Neumannfunktion als Parame-
ter an das Hauptprogramm {ibergeben. Fiir kleine Ordnungen und grofe Argumente werden die
Formeln (10.1.8) und (10.1.9) in [13] als Grundlage benutzt. Sind die Ordnungen grofs und die
Funktionswerte klein, liegen die Formeln (10.1.2) und (10.1.3) den Rechnungen zu Grunde. Fiir
Ordnungen kleiner Null wird die Formel (10.1.15) numerisch ausgewertet.

Es konnen Besselfunktionen bis zur Ordnung 50 im Bereich von -100 bis 100 berechnet werden
[10]. Abbildung 3.9 zeigt die mit dieser Routine berechneten Bessel- und Neumannfunktionen fiir

einige L-Werte.
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3.5 Berechnung der sphérischen Hankeltransformation

Besselfunktion

0 5 10 15 20
r (au)
Abbildung 3.9: Numerisch berechnete sphirische Bessel- (jr,) und Neumannfunktionen (nr).

3.5 Berechnung der spharischen Hankeltransformation

Die Radialintegrale in den Matrixelementen werden {iber die so genannte sphérische Hankeltrans-

formation g (¢) oder auch sphérische Besseltransformation ausgewertet. Diese hat die Form

9(q) = / i ar) £ () e (3.9)

wobei j1, (gr) eine sphérische Besselfunktion ist, wie sie in Kapitel 3.4 beschrieben ist. Die Funktion
f(r) ist in der Anwendung fiir diese Arbeit die Multiplikation der radialen Wellenfunktionen fiir
gebundene und ungebundene Zusténde in Verbindung mit einem weiteren Faktor oder Ableitungs-

operator. Zum Beispiel:

f(r)=Re-Rp oder f(r)=Rg- (aar—i—l—‘;1>Rnl .

Das Programm zur Berechnung der Hankeltransformation beruht auf dem Programm ,LSFBTR*
(Logarithmic Scale Fourier Bessel TRansform) von Talman [17]. Das Integral wird auf einem ex-
ponentiellen ¢-Gitter mit 2V Gitterpunkten ausgewertet. Dazu werden im Hauptprogramm die
Werte fiir f (r), der Wert L, das radiale Gitter und die zur Charakterisierung des q-Gitters wich-
tigen Werte an das Unterprogramm iibergeben. Das g-Gitter berechnet sich analog zum radialen
Gitter nach ¢; = ¢min - aﬁnesh und besteht ebenfalls aus 2'3 Gitterpunkten.

Durch den Wechsel auf ein exponentielles Gitter mit 7 = e und ¢ = ¥, kann g(q) als eine

Kreuzkorrelation aufgefasst werden:

g(e*) = /_O;J'L (e7*F) f(ef) edp . (3.10)
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3 Numerische Umsetzung und verwendeten Unterprogramme

Damit ist das Integral iiber eine Fourier Hin- und Riicktransformation zu berechnen. Es ist nume-

risch sinnvoll (3.10) umzuformen in
g (¢4) = elm= D [ i, (@bro) oo ) dp (3.11)
Hier ist m ein frei wahlbarer Parameter in den Grenzen 0 < m < L. Mit dem Faltungstheorem

/jo Flety)o(y)dy= i/w e F (k) § (—k) di

27 J_ o

wobei f und g die Fouriertransformierten von f und ¢ sind, kann die Gleichung weiter umgeschrie-

ben werden zu

P o0 X
g (ek) — 27T€(m_%)k/ eZktML’m (t) q)m (t) dt (312)
— 00
— dme(m=3)k e / L (8) Do (1) dE (3.13)
0
Hier ist
1 > it (§+m)z T
D, (t) =5 et e\2 f(e®)dz und
1 & )
My (t) :g/ it (3mm)ay (€*) dx
) p ] _1 l 1 _1
=6m ] (2it> I1 (27 —l+m—2+zt>
j=1 j=1
. |:COS (%) e($1=92) 4 gin (p?ﬂ') ei(¢1+¢2)]
mit

¢1 = arg {F <; — zt)] und ¢y = tan™! <t(mh7;t) .

Numerisch wird die Fouriertransformation iiber die sogenannte Fast-Fourier-
Transform (FFT) nach

N—-1
2minm
Ym = § e N Tn
n=0

berechnet.

Die Hankeltransformation wird nach folgendem Schema berechnet:

Fir L < 1 und kleine k-Werte wird Gleichung (3.10) numerisch berechnet. Die Funktion f(r)
wird mit €3 = r3 multipliziert und davon die FFT berechnet. Die erhaltenen Werte werden mit
der FFT der Besselfunktion multipliziert und dieser Wert durch erneute FFT zuriicktransformiert.
Sonst wird Gleichung (3.13) numerisch ausgewertet und dabei m = L fiir kleine k-Werte und m = 0
fiir grofe k-Werte verwendet. Es wird der Punkt der besten Ubereinstimmung der Losung fiir grofte
und kleine k-Werte ermittelt. Die Ausgabe der Routine ist ein entsprechender Zusammenschnitt
aus den Losungen fiir grofe und kleine k-Werte. Vor der zweiten FFT wird die zweite Hélfte der

Funktion gleich Null gesetzt, da so nach empirischen Analysen bessere Ergebnisse erzielt werden
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3.5 Berechnung der sphérischen Hankeltransformation

kénnen [17].

Die Werte fiir die FFT der Besselfunktion sowie fiir My, ,, werden nur beim ersten Aufruf oder
nach Anderung der Gitterparameter berechnet und fiir alle weiteren Rechnungen gespeichert. Diese
Berechnung wird in einer separaten Routine

SHINITTALIZE® durchgefiihrt.

Die Berechnung der Phase ¢ wird nach einer Idee von Weickenmeier (personliche Mitteilung)
iiber die Berechnung einer Gammafunktion, wie sie bei Abramowitz [13, Gl. 6.1.27] zu finden ist,

durchgefiihrt.
1. 1 = 2y 2y
|- =y¥ | = —arct
s |1 (5+n)| =0 (3) + X (3 —oreon (575

n=0

Dabei ist ¥ (3) = —1,9635100260. Die Summe wird bis zum vierfachen des Imaginiirteils, n = 4-y,
oder mindestens bis n = 10 berechnet und die Restsumme nach der Eulerschen Summenformel ([13,
Gl. 3.6.27]) bzw. die Koeffizienten darin nach der Euler-MacLaurin Summenformel ([13, Gl. 3.6.28])
ausgewertet und addiert.

Die Routine wird wie bei Talman [17] beschrieben mittels eines analytisch auswertbaren Ausdrucks

getestet. Fiir eine Funktion

filr) =rlee

ist
g (‘J):/ ji(qr) fi (r) rPdr = 21+ Dla (2k) (a® + k%) 2
0

Abbildung 3.10 zeigt die analytische Losung und numerische Berechnung von f; (r) fir a = 1
und [ = 5. Auferdem ist dort die Abweichung in Prozent ebenfalls mit aufgetragen. Es ist zu
erkennen, dass diese fiir den in dieser Arbeit relevanten Bereich bis etwa q—10 weit unter einem
Prozent liegt. Das in dieser Rechnung verwendete Gitter im Ortsraum r; ist wie fiir die Berechnung
des Wirkungsquerschnittes nach Kapitel 3.2 definiert. Der dazu benotigte Wert Z ist willkiirlich
gleich 14 gesetzt. Fiir die Darstellung in Abbildung 3.10 sind zwei Rechnungen fiir verschieden
grofe Minimalwerte im reziproken Raum g, notig. Mit ¢mni, = 1,6701 - 107° sind hier die
Funktionswerte fiir kleine q-Werte bis ¢ = 2,4708-10~3 berechnet und mit g,,;,, = 2,4787-1073 die
Funktionswerte fiir grofere g-Werte. So kénnen die Funktionen hier iiber den gesamten relevanten

q-Werte Bereich angegeben werden.

n der hier aufgefiihrten Formel fiir g; (q) ist ein Druckfehler aus [17] beriicksichtigt. Es muss, wie auch aus dem
Quelltext von Talman hervor geht, k' durch (2k)’ ersetzt werden.
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1 _
0.01 } i
. 0-0001 g(q) analytisch ——— ]
O ierh e
= g(q) numerisch
< 1e-006 | Abweichung in % - |
1e-008
1e-010
1e-012 : ' ' .
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q

Abbildung 3.10: Analytische Lisung und numerische Berechnung einer Hankeltransformation nach
Gleichung (3.5) fir fs (r) = r®e™" im Vergleich.

Es sei noch darauf hingewiesen, dass bei der Routine fiir die schnelle Hankeltransformation bei
g-Werten grofer als 15 Probleme mit der Numerik auftreten (personliche Mitteilung Weicken-
meier). Dies wird in der vorliegenden Arbeit nicht beriicksichtigt, da nur kleine Akzeptanzwinkel
betrachtet werden und somit die q-Werte geniigend klein sind. In dem ,MATRIX*“-Programm von
Weickenmeier [21] wird in der Routine ,MANLQA“ (MANager for Larg Q Approximation) eine
Losung fiir grofse g-Werte approximativ ermittelt.
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4 Das Hauptprogramm dsigmadE

4.1 Aufbau

Das Hauptprogramm verwendet die zuvor aufgefiihrten Unterprogramme fiir die Berechnung des
energiedifferentiellen Wirkungsquerschnittes.

Die Eingabewerte fiir das Programm sind (Abb. 4.1):

- die Kernladungszahl Z und die Quantenzahlen n und [ der Schale, fiir die der Wirkungsquer-
schnitt berechnet werden soll

- der Akzeptanzwinkel « in mrad

- der Energiebereich, dazu ist der gewiinschte minimale Energieverlust emin abziiglich der Bin-
dungsenergie in eV, die Schrittweite der Energiewerte einc in eV und die maximale Anzahl an
Energiewerten emax anzugeben

- der maximale Drehimpuls llmazx fiir die Kontinuumzustande

- die Energie der einfallenden Elektronen Ey;, in keV

Die Kantenenergie wird gleich der Bindungsenergie der entsprechenden Elektronen gesetzt und in
dem Programm ,wavegen.f (vgl. Kap. 3.2) berechnet und anschlieffend im Hauptprogramm ein-
gelesen.

Die grundlegende Formel, nach der das Programm den Wirkungsquerschnitt berechnet, ist in Glei-
chung (2.11) angegeben. Da fiir die Wellenzahlen k; und k; bzw. die Differenz ¢ und den Radius r
atomare Einheiten verwendet werden, ist ¢ durch @Q = ¢ - ap und r durch 7 = % zu substituieren.
Mit der Relation (2.16) erhdlt man aus Gleichung (2.11)

do(AE) o?-4-ma?-dlnQ

IAE B2 En,

Q2(‘F~’++‘2+‘15+—‘2)+ <Q2 Q(iifao ) <

Hier sei noch einmal auf die Relation

+ ‘Pf_

Al

2(20+1 Zzl+1ZZ|P ?

m m/

wie sie in Kapitel 2.4 eingefiihrt wurde, hingewiesen. Die Betragsquadrate werden nach Gleichung

(2.17) berechnet. Aufgrund der Ableitungen nach r in den Radialintegralen und da & = L 4 jst,

ag dr

ist der Faktor ag in den Gleichungen zu beriicksichtigen. Es ist demnach
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4 Das Hauptprogramm dsigmadE

Fiir die Berechnung der Normierungsfaktoren N, der Darwin-Wellenfunktionen aus Gleichung
(2.12) ist die Gleichung

[ Erens @ iy =1

zu 16sen. Mittels partieller Integration erhélt man zwei numerisch auszuwertende Ausdriicke (An-

hang D). Fiir gebundenen Zusténde ergibt sich
1

1+ (gm";ao)z 2+ (Eng —4m [ 7 (Rya (7)) dIn7 )

N? =

und fiir Kontinuumzustande

1
NE =

g (thcao)QQ' (6—47rff3 (Re,l/(f)fdlnf) |

Dabei sind die Energiewerte und das Potential in Hartree einzusetzen. Der Normierungsfaktor fiir

gebundene Zustinde N,, hingt von der Hauptquantenzahl n und der Drehimpulsquantenzahl [ ab.
Da diese beiden Werte fest vorgegeben werden, kann am Ende der Rechnung mit N,, multipliziert
werden. Der Normierungsfaktor fiir die Kontinuumzusténde ist von der Energie und von dem Dre-
himpuls abhiingig. Uber diese beiden Werte wird in dem Hauptprogramm summiert, daher muss
N, fiir jeden Summanden einzeln berechnet werden.

Der Verlauf der Rechnung ist in Abbildung 4.1 anschaulich dargestellt. Die Datei ,wavegen.dat*
enthilt Informationen iiber die Kernladungszahl Z, iiber die Quantenzahlen n und [ und {iber die
Besetzungszahlen fiir Spin up b, und fiir Spin down bgow» des Elementes, fiir das der Wirkungs-
querschnitt berechnet werden soll. Das Programm ,wavegen.f* liest diese Datei ein und schreibt
die Werte fiir die entsprechenden gebundenen radialen Wellenfunktionen u,; = r - R,;, fiir das
Potential V und fiir das verwendete radiale Gitter 7 in die Dateien ,r v_value.dat* und ,wa-
veup.dat®. Durch die Routine ,jnput” werden die Werte aus den beiden Dateien eingelesen. In der
anschlieffend aufgerufenen Routine ,contwave” werden die radialen Kontinuum-Wellenfunktionen
R berechnet. Dann beginnt eine Schleife, die den gewiinschten Energiebereich durchlauft. In die-
ser Schleife werden die Werte fiir die Q-Integration berechnet und die Matrixelemente nach den
Gleichungen aus Kapitel 2.4 durch Summation iiber I’, m und L ausgewertet. Fiir jeden Summan-
den werden das Quadrat des Normierungsfaktors Ny, die entsprechenden 3j-Symbole in der Routine
,threej und die Hankeltransformationen in der Routine ,,LSFBTR* berechnet und anschliefend
aufsummiert. Daraus ergeben sich die in Kapitel 2.4 aufgefiithrten Betragsquadrate |1 |2 fiir den je-
weiligen Energiewert. Mit diesen Werten kénnen die Betragsquadrate aus Gleichung (2.17) berech-

net werden. Anschliefend wird die Q-Integration iiber die so gewonnenen Ausdriicke ausgefiihrt.
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4.1 Aufbau

Eingabewerte:

wavegen.dat r_v_value.dat waveup.dat
VA mmax Enl eee
:] : amesh 7 Upo (F)  see Uy (7)
rj ! bgp bd:)wn > WaVegen.f 7 V(f) : 1:0 ?I
zZ,n 1, a, Eg, I
llmax, emin, einc, emax
- dsigmadE: ¥

[ingut: Zugriff auf r_v_value.dat und waveup.dat ]:> 7, V(7), Ry, Ey

contwave: Berechnung der Kontinuum-Wellenfunktion

Zur Normierung: | SPHEUN ‘ Jior Nye

i , :
t Z,n, 1, o Eg,, llmax, emin, einc, emax f Ry |7, V(7), Ry, En
| | ]
A\ 2
//‘ » ~~\\
/ ® Berechnung von: Qmin, Qmax A%

=~

U mL | m 0 J\ |

= 2
= > wz- {1735 | gory (Q)

U mL

ellz= Y NE-(L b 1Y [ ReRw i@
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Abbildung 4.1: Anschauliche Darstellung zum Verlauf der Rechnung. Abgerundete Bozen symboli-
siteren Unterprogramme bzw. mit gestricheltem Rand Programmabschnitte. In den
eckigen Bozen stehen Ein- und Ausgabewerte angeordnet, wie in den entsprechenden
Dateien. Gestrichelte eckige Bozen umrahmen Werte, die in Variablen zwischenge-
speichert werden.
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4 Das Hauptprogramm dsigmadE

Die Berechnung fiir jeden einzelnen Energieverlust endet mit der Multiplikation des Quadrates
des Normierungsfaktors N,,. Da der Bohrsche Radius im Programm in Meter angegeben ist muss
der erhaltene Wert mit dem Faktor 10* multipliziert werden, um den Wirkungsquerschnitt in

der Einheit cm? bzw. fiir den energiedifferentiellen Wirkungsquerschnitt in Cg}z anzugeben. In

der Ausgabedatei ,dsigmadE.dat“ sind ab der zweiten Zeile die relativistischen und kinematisch
korrigierten Wirkungsquerschnitte fiir die jeweiligen Energieverluste AF angegeben. In der ersten
Zeile stehen die charakterisierenden Parameter fiir die Rechnung.

Zur Optimierung der Laufzeit des Programms wird das diskrete Q-Gitter fiir alle Hankeltransfor-
mationen gleich belassen. Damit kénnen zwar die nach (2.9) und (2.10) berechneten theoretischen

Q-Grenzen (qag) und (qap),,,, nicht exakt eingehalten werden, aber es miissen auch die zeit-

min
aufwindigen Rechnungen in der Routine ,INITTALIZE“ (Kap. 3.5) nur einmal ausgefiihrt werden.
Die so berechneten Wirkungsquerschnitte weichen nur unwesentlich von den Rechnungen mit ver-
dnderten Q-Gittern ab und die Rechenzeit wird etwa um den Faktor 10 verkiirzt. Fiir die untere
néchst kleinere Wert des diskreten Q-Gitters

ermittelt und fiir die obere Grenze Qunq. der zu (g aop),,,, néchst kleinere Wert.

Grenze der Q-Integration @, wird der zu (qap)

min

4.2 Ergebnisse

In den Abbildungen 4.2 - 4.4 sind die Ergebnisse fiir die energiedifferentiellen Wirkungsquerschnitte
fiir K-Schalen-Ionisation fiir Kohlenstoff, Sauerstoff und Silizium angegeben. Die Auswahl dieser
Elemente soll den am haufigsten benotigten Bereich an Energieverlusten abdecken. Es sind jeweils
voll-relativistische und kinematisch korrigierte Werte, sowie das Verhiltnis beider Werte aufgetra-
gen. Die Differenz zwischen beiden Werten nimmt wie zu erwarten mit zunehmender Beschleuni-
gungsspannung zu, da sich bei gréfseren Geschwindigkeiten die relativistischen Effekte, die durch
den zusétzlichen Term beriicksichtigt werden, stirker auswirken. Bei einer Beschleunigungsspan-
nung von 200kV ist der relative Unterschied zwischen voll-relativistischen und kinematisch korri-
gierten Werten mit 6-9% gut erkennbar und bei 400kV mit 12-30% noch deutlicher. Fiir 100 kV
iiberlagern sich die Graphen dagegen nahezu und zeigen nur einen Unterschied von etwa 2%. Des
Weiteren ist zu bemerken, dass der relative Unterschied auch fiir steigende Energieverluste grofer
wird. Auflerdem ist in Abbildung 4.4 der Wirkungsquerschnitt zum Vergleich fiir zwei verschiedene
Akzeptanzwinkel gezeigt. Demnach liefert der zusétzliche Term fiir kleinere Akzeptanzwinkel einen
groferen Beitrag. Bei 400kV ist der relative Unterschied von voll-relativistischen zu kinematisch
korrigierten Werten fiir 20 mrad um 10-18% kleiner als der Wert fiir 3 mrad. Bei 100 kV und 200 kV
ist der Unterschied zwischen 3 mrad und 20 mrad diesbeziiglich nur marginal.

Die Abbildungen 4.5 und 4.6 zeigen die Ergebnisse fiir die energiedifferentiellen Wirkungsquer-
schnitte fiir Ly 3-Schalen-Ionisation von Magnesium und Silizium. Damit ist die Anregung der
Atomelektronen aus den 2p Orbitalen verbunden. Die entsprechenden Quantenzahlen sind dafiir
n = 2 und [ = 1. Auch hier wirken sich die relativistischen Effekte, die durch den zusétzlichen Term
beriicksichtigt werden, mit zunehmender Beschleunigungsspannung stérker aus. Im Vergleich zur
K-Schalen-ITonisation sind die relativen Unterschiede zwischen voll-relativistischen und kinematisch
korrigierten Wirkungsquerschnitten etwas kleiner. Bei 400kV betridgt der Unterschied 6-15%, fiir
200kV 3-7% und bei 100kV knapp 2%.
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4.2 Ergebnisse
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Abbildung 4.2: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodel fir K-Schalen Ionisation von Kohlenstoff bei 3 mrad Akzeptanzwinkel fiir
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen
ist ebenfalls das Verhdltnis aus beiden Werten aufgetragen.
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4 Das Hauptprogramm dsigmadE
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Abbildung 4.3: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodel fiir K-Schalen Ionisation von Sauerstoff bei 3 mrad Akzeptanzwinkel fir
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnun-
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4.2 Ergebnisse
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Abbildung 4.4:

1e-024

8e-025

6e-025

4e-025

2e-025

1e-024

8e-025

6e-025

4e-025

2e-025

1e-024

8e-025

6e-025

4e-025

2e-025

400 k

\"

T T

reI'. 3 mrad
kin. korr. 3 mrad

rel. / kin. korr. 3 mrad |
rel. 20 mrad ——

kin. korr. 20 mrad

.....rel. /kin. korr. 20 mrad -

1800 2000 2200 2400 2600 2800 3000 3200 3400
Energieverlust (eV)

rel. 3mrad ——

kin. korr. 3 mrad

rel. / kin. korr. 3 mrad -
rel. 20 mrad ——

kin. korr. 20 mrad

rel. / kin. korr. 20 mrad

200 kV

1800 2000 2200 2400 2600 2800 3000 3200 3400
Energieverlust (eV)

100 kV

rel. 3mrad ——
kin. korr. 3 mrad

rel. / kin. korr. 3 mrad -
rel. 20 mrad ——

kin. korr. 20 mrad

rel. / kin. korr. 20 mrad -

1800 2000 2200 2400 2600 2800 3000 3200 3400
Energieverlust (eV)

1.4

1.3

1.4

1.3

1.2

1.1

1.4

1.3

1.2

1.1

rel. / kin. korr.

rel. / kin. korr.

rel. / kin. korr.

Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-

feldmodel fiir K-Schalen Ionisation wvon Silizium bei 8mrad und 20mrad Akzep-
tanzwinkel fir verschiedene Beschleunigungsspannungen. Zum besseren Vergleich ist
ebenfalls das Verhdltnis aus relativistischer und kinematisch korrigierter Rechnung

fiir beide Akzeptanzwinkel aufgetragen.
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4 Das Hauptprogramm dsigmadE

do / dE (cm? / eV) do / dE (cm? / eV)

do / dE (cm?/ eV)
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Abbildung 4.5: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodell fiir L-Schalen Ionisation von Magnesium bei 3mrad Akzeptanzwinkel fiir
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen
ist ebenfalls das Verhdltnis aus beiden Werten aufgetragen.
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4.2 Ergebnisse
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Abbildung 4.6: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodell fir L-Schalen Tonisation von Silizium bei 8 mrad Akzeptanzwinkel fir ver-
schiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen ist

ebenfalls das Verhdltnis aus beiden Werten aufgetragen.

43



5 Diskussion

Die Ergebnisse fiir K-Schalen Ionisation zeigen, dass die durch voll-relativistische Gleichungen be-
riicksichtigten Effekte, magnetische Wechselwirkung und Retardierungseffekte, ab einer Beschleu-
nigungsspannung von 200kV einen deutlichen Einfluss haben.

Ein Vergleich der Ergebnisse mit Rechnungen auf der Grundlage des Wasserstoffmodells ist in
der Abbildung 5.1 dargestellt. Die nicht relativistischen, kinematisch korrigierten Werte sind mit
dem Programm ,SigmaK3“ von Egerton [8, Anhang B.6] berechnet. Fiir die Berechnung der voll-
relativistischen Wirkungsquerschnitte nach dem Wasserstoffmodell ist das Programm ,SigmaKrel“
von Knippelmeyer [2] verwendet worden. In beiden Programmen wird, um das Wasserstoffmodell
an Kernladungszahlen Z grofer eins anzupassen, ein Korrekturfaktor fiir Z eingefiihrt. Damit wird
der Abschirmung der Kernladung durch die Elektronenhiille Rechnung getragen. Dieser Faktor ist
in beiden Programmen gleich 0,5 gewahlt, wie es bei Egerton [8] angegeben ist. Die nach dem
Wasserstoffmodell berechneten Werte sind fiir Verlustenergien um 300V etwa 15% grofer und
bei Verlustenergien um 900 eV etwa 15% kleiner als die Ergebnisse aus den Zentralfeldrechnungen
(Abb. 5.1). Diese Abweichung in den Ergebnissen gilt fiir den Vergleich beider voll-relativistischer
Werte miteinander sowie fiir den Vergleich beider kinematisch korrigierter Werte miteinander. So-
wohl die Grofenordnung als auch der Verlauf fiir beide Modelle stimmen iiberein.

Den beiden verglichenen Rechnungen liegen verschiedene Potentiale zu Grunde. Daher ist eine Ab-
weichung in den Ergebnissen zu erwarten. Das in dieser Arbeit verwendete Potential wird aus ei-
ner selbstkonsistenten Losung der Schrodinger-Gleichung in lokaler Dichteapproximation berechnet
und dem Wasserstoffmodell liegt ein Coulomb-Potential zu Grunde. Um den Einfluss der Potentiale
niher untersuchen zu kénnen, miisste das Potential fiir die Zentralfeldrechnung entsprechend um
einen asymptotischen Anteil erweitert werden. Diese Uberlegungen konnten aus Zeitgriinden im
Rahmen dieser Arbeit nicht betrachtet werden.
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Abbildung 5.1: Vergleich von relativistischen und kinematisch korrigierten Wirkungsquerschnitten
berechnet nach dem Zentralfeldmodell (rot) und dem Wasserstoffmodell (blau) fir
K-Schalen Ionisation von Kohlenstoff bei 3mrad Akzeptanzwinkel fir verschiedene
Beschleunigungsspannungen. Zum besseren Vergleich beider Modelle ist ebenfalls das

Verhdltnis aus beiden Werten aufgetragen.
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5 Diskussion

Im Vergleich zu den Werten nach Pokroppa [18] liegen die Ergebnisse um einen Faktor von et-
wa 1,7 fir Magnesium und 1,2 fiir Silizium hoher. Auch hier liegt wie beim Vergleich mit dem
Wasserstoffmodell ein anderes Potential zu Grunde, ein Green-Sellin-Zachor Potential [19]. Aller-
dings sind die grofen Abweichungen dennoch iiberraschend. Eine Erkldrung fiir den deutlichen
Unterschied beider Rechnungen konnte im Rahmen dieser Arbeit aus Zeitgriinden nicht gefunden
werden. Einsetzen eines Green-Sellin-Zachor Potentials in das in dieser Arbeit erstellte Programm
konnte Aufschluss iiber die Auswirkungen der verschiedenen Potentiale geben. Insgesamt ist bei
dem Vergleich der Wirkungsquerschnitte aber zu erkennen, dass Verlauf und Gréfsenordnung auch
fiir L-Schalen Ionisation im Wesentlichen iibereinstimmen und somit die Ergebnisse diesbeziiglich
bestétigt werden.

Eine weitere Bestétigung fiir die berechneten Werte liefert der Vergleich des kinematisch korrigier-
ten Wirkungsquerschnitts fiir L-Schalen Ionisation mit dem Programm ,Sigmal.3“ von Egerton [8,
Anhang B.7]. Dieses Programm beruht wie ,SigmaK3* auf dem Wasserstoffmodell und berechnet
den Wirkungsquerschnitt fiir L-Schalen Ionisation nach kinematisch korrigierten Ansétzen. Abbil-

dung 5.2 zeigt in Tendenz und Gréfenordnung eine gute Ubereinstimmung beider Rechnungen.

' ' ' " kin. korr. Z.-Modell -

1e-022 1} Sigmal3 —— ]
S 8e-023 :
(0] \
N\
£  6e-023 | ]
S
L
2 4e-023 | -
e}
©

2e-023 | .

600 800 1000 1200 1400 1600 1800

Energieverlust (eV)

Abbildung 5.2: Vergleich von kinematisch korrigierten Wirkungsquerschnitten berechnet nach dem
Zentralfeldmodell, wie es in dieser Arbeit beschreiben ist und dem Wasserstoffmodell
fiir L-Schalen Ionisation von Titan (Z=22) bei 10 mrad Akzeptanzwinkel fir 80kV
Beschleunigungsspannung.
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6 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde ein Programm erstellt, dass den energiedifferentiellen Wirkungs-
querschnitt fiir inelastische Streuung von Elektronen auf der Grundlage des Zentralfeldmodells
berechnet. Der verwendete Formalismus beruht auf voll-relativistischen Gleichungen, sodass voll-
relativistische und kinematisch korrigierte Wirkungsquerschnitte berechnet werden konnen.
Insgesamt zeigen die Ergebnisse, dass die durch voll-relativistische Gleichungen beriicksichtigten
Effekte, magnetische Wechselwirkung und Retardierungseffekte, ab einer Beschleunigungsspannung
von 200kV einen deutlichen Einfluss haben. Des Weiteren konnte gezeigt werden, dass das in dieser
Arbeit erstellte Programm im Vergleich zu bisherigen Rechnungen realistische Werte liefert.

Mit dem erstellten Programm kann der voll-relativistische Wirkungsquerschnitt fiir K-Schalen lo-
nisation, fiir L-Schalen Ionisation und prinzipiell auch fiir h6here Schalen berechnet werden. Damit
sollte es moglich sein, die chemische Zusammensetzung eine Probe mit einem Elektronenmikroskop
bei hohen Beschleunigungsspannungen zuverlissiger zu ermitteln. Aufgrund der Wahl des Zentral-
feldmodells ist dies auch fiir Elemente die typischerweise nicht nach K-Schalen Ionisation bestimmt
werden moglich.

Ein néchster Schritt kdnnte die experimentelle Bestétigung dieser Werte fiir die Wirkungsquer-
schnitte sein. Dazu konnte zum Beispiel ein winkelaufgelostes Spektrum fiir Silizium bei einem
Energieverlust von 1840eV (Silizium K-Schalen-Ionisationsenergie) bei verschiedenen Beschleuni-
gungsspannungen aufgenommen und mit entsprechenden Wirkungsquerschnitten verglichen wer-

den. Dabei sollte sich der Verlauf fiir steigende Beschleunigungsspannungen qualitativ &ndern [20].
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Anhang A: Berechnung zur Aufspaltung

der Matrixelemente

Im Folgenden ist die Aufspaltung der Matrixelemente mit dem Ansatz der Darwin-Wellenfunktionen
naher ausgefithrt. Die Summe iiber die Spinzustinde in Gleichung (2.11) kann mit (2.14) ausge-

schrieben werden.

1 e 1
5 O |<mleln > = 2 (1Pei P + 1P + [Py * + [P ) (A1)
5 S < mlafeTn > [ = 2 (1P + [P P+ Py ) (42)

Die einzelnen Summanden lassen sich durch mehrfache partielle Integration berechnen, wie es am
Beispiel Py und P%, hier gezeigt wird. Zuvor sollte noch gesagt sein, dass die Wellenfunktionen
fiir gebundene Zusténde im Unendlichen gleich null sind, da dort die Aufenthaltswahrscheinlichkeit
fiir ein Elektron gleich Null ist. Deshalb verschwinden sdmtliche Stammfunktionen, die bei den

partiellen Integrationen entstehen und werden daher nur im ersten Rechenschritt mit angefiihrt.
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Fiir P¢, muss zuniichst der Ausdruck @f genauer beschrieben werden. Der Vektor  ist ein Ein-

A 4
Py y? =NZN? + (g ) 1L (4.3

heitsvektor in x-y-Richtung(vgl. 2.2) und die drei Komponenten von « enthalten die Dirac’schen

Matrizen(ay, s, ag). Es gilt

ty Qg
= sin @, 4 cos Y&, = ty und d=|as
0 Q3
mit
0 0 01 0 0 —i 0O 0 1 0
0 010 0 < O 0O 0 0 -1
a1 = , g = , 3 =
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Es folgt daraus
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Anhang A: Berechnung zur Aufspaltung der Matrixelemente
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271nczdz\11* (#) (7t3¢+2t eqz\Ijﬂ(ﬂ)
- 1 A O 1 h
= [ | V5 (F) (ta +ity) €' 5 —— Wy (7 to +ity) €W, (7)| d°
[wo e vier st Do @4 ot Lui @ s i) e, ] e

:1.2;;;(%“.%){/6[3@* - (f‘>+[\lfk() iaz 0. qfn(f’)F

1
_ / Bt (7) ige W, (7) — / P F e, (F)}
h .

Bildet man iiber diesen Ausdruck schlieflich noch das Betragsquadrat, wie es fiir die Berechnung

des Wirkungsquerschnitts erforderlich ist, bekommt man

2
a |2 2 72 h 2 2

P = NN | — Iy|”. A.

| —+| k n(2mc) q |0| ( 5)

Dazu sei noch einmal darauf hingewiesen, dass ¢ ein Einheitsvektor ist und daher |t_] = 1 ist, woraus

sich der Zusammenhang

. . . 2
(te + ity = (te —ity) - (e +it,) =2 + 2 =i] =1

ergibt.
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Anhang B: Erganzung zu Kapitel 2.4

Im Folgenden ist die analytische Berechnung der Betragsquadrate der Matrixelemente erginzend

zum Kapitel 2.4 aufgefiihrt.

2

2
Berechnung des Ausdrucks (I — (272 C) Ia

2
Der Winkelanteil des Ausdrucks ’Io — (4—26)2 I A‘ kann iiber die Relation

hQ
HY = <_ 2 VQ +V (T)> Yoim = EnVnim
Me
—2me
vQ\Ijnlm == 7 (En -V (T)) \I/nlm
auf |Io|* zuriickgefiihrt werden. Es ergibt sich
= —2m, s
In=4r) Ry iYY< Vi |Yio|Yim > (B.1)
L=0

Damit bekommt man

3 A 2 2 oo 1 2
Iy — (2mec> In| =2(20+ 1); {RL T oo REV}
A
ALY L+ 1) @ +1 . B.2
i (i") ( ) ( ) 0 0 0 (B.2)

Hierbei ist Rg_v = [;° (En —V (r)) Rerr (r) jr (qr) Rt (r) 7%dr und es gelten die Summations-

grenzen wie fiir (2.33).

Berechnung des Ausdrucks \Ix+iy|2

Setzt man die Ndherung der e-Funktion (2.19) in die zweite Zeile von (2.15) ein, so erhélt man

e’}
I:C-l—iy = 471' (—\/§> ZJL (qr) iLYEORel’ < )/l/m,’|YLOv+1Ylm > Rnl .
L=0
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Anhang B: Ergédnzung zu Kapitel 2.4

Wie in der Berechnung fiir I, multipliziert man eine geeignete Eins und erhélt zwei Summanden

mit je zwei Faktoren, wie in (2.35). Fiir g = 41 erhdlt man mit Gleichung (2.36)

<Um\Yroll +1m+1
(—1)m+1< L z+1><z' L z+1> {(21’+1)(2L+1)(2l+3)r

m—1 0 m+1 0 0 0 4

und

<U'mYroll—1m+1>

e A T [(zl'+1)(2L+1)(21—1)]5
a —m—1 0 m+1/\0 0 0 4r '

Aus der Gleichung (2.27) und den 3j-Symbolen aus Anhang C ergibt sich

l+m[(1+m+1)(l+m+2)]é (6 l)

<brim A 1Vlim >= 4+ (1) 2(20+1) (20 +3) or v

und

Hm{(zml)(zfn)]%(a 1+1>_

<l—1m+1Va|im >= —(-1) =D @ 1) P

Dies eingesetzt in die Gleichung fiir I, ergibt
47r(2l’—|—1)% ) 1
Ioviy = 2) (1) | =2 Lyt 2L +1)2
o =T (A2) (0 | TR S an e
I L [+1 U L 1+1 1[8 l}
: l+m+1)(+m+2)}7 | —— -
{(—m—l 0 m+1><0 0 0>{( mr ) m ) or r

' L= voLoi-1 1[0 1+1
_<_m—1 0 m-|—]_> (0 0 0 ){(l_m—l)(l—m)} |:871+ . :|} ]
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Analog zu den vorherigen Rechnungen wird das Betragsquadrat gebildet, iiber die Anfangszustinde

gemittelt und iiber die Endzustinde summiert.

2[’+1
BT S (A

_ ; 2L—|—)(2L’+1)
;() "

U [+1 U l+1 U L' [+1 U L' 1+1
-m—-1 0 m+1 -m—-1 0 m+1 0 O 0
{l+m+1)(I+m+2)} g - ——il

or r

n U L [1-1 ! L -1 U L 1-1 ! L' 1-1
-m—-—1 0 m+1 -m—-1 0 m+1 0 O 0

Al-m-1)( - )}{37“ l+1H8+l+1]/

Ix—i—iy

(2L +1)% (2L' +1)*

r or r
9 U L 1+1 U L 1+1 U L 1-1 U L' 1-1
-m—1 0 m+1 0 0 0 -m—-1 0 m+1 0 O 0
ifo 1[0 [ 1+17

Ebenso wie fiir |I.|* kénnen fiir die drei Summanden mit Gleichung (2.21) und (2.22) unter-
schiedliche Kombinationen der Drehimpulswerte ausgeschlossen werden, da fiir diese eines der
3j-Symbole gleich Null ist. Der zweite Summand ist zum Beispiel nur dann nicht Null, wenn
[—1-V|<L <l—1+0und !+ L' +1—1 gerade ist.

Berechnung des Ausdrucks Re {z (Io — (51) IA) I;k}

2me

Aus Gleichung (2.30) und (B.1) folgt

no\? 1
Iy — In =4
0 (2mec> A ﬂ-z {RLJF 2m

L=0 Me

[(21’+1)(2L+1)(21+1)]5. oL oI\ (U L1
47 -m 0 m)\0o 0 0/

Aus Gleichung (2.38) wiederum ergibt sich

2 RE V} Z'LYL*O (71)m

D=

UL i+l (I L l+1 A
{(m 0 m><0 0 o>{(l+1) _m} [87“_7"}
4 L -1 ' L' 1-1 1[0 [+1
+ 127 2 2|:+ :| .

(—m 0 m><0 0 0 >{ m} or T
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Anhang B: Ergédnzung zu Kapitel 2.4

Damit erhdlt man nach Mitteln iiber die Anfangszustdnde und Summieren {iber die Endzustinde

den Ausdruck
2
Re{z‘ (io _ <h> fA> f;}
2me

I *
fle S i (i) (0T 1) 2L+ 1) (21 + 1)

-m 0 m

" m=-l"L,L’
[ I L L\ ([l L 1

L 2mec? E-v -m 0 m/\0 0 O

ULl (I L Ol+1 s ozl 1]
. 1+1)° — - _Z
{(—m 0 m)(O 0 0>{(+) m} ar r

UL ol=1\ (U L 1-1\,, 5,18 1+17

—m2}? | = . B.4

+< )(0 0 0>{l ) [aﬂr r] (B-4)

Dieser Ausdruck ist nach (2.21) und (2.22) nur fiir || — I'| < L <[+’ und '+ L+ gerade ungleich
Null. Fiir die beiden Summanden bekommt man entsprechend der darin auftretenden 3j-Symbolen

weitere Kombinationen von Drehimpulsen, fiir die der jeweilige Summand Null ergibt.
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Anhang C: Spezielle 3)-Symbole

Hier sind die in Kapitel 2 verwendeten speziellen 3j-Symbole angegeben. Sie lassen sich mit der
Formel (3.7.10), der Tabelle 2 auf Seite 149 und den Symmetrieeigenschaften (Formel 3.7.4 bis
3.7.6) aus [6] berechnen.

1 1
<l+ l) -
0 0 0
I+1 1 1 B
-m 0 m/

I+1 1 1 _(_Ulim[(lj:m+1)(lj:m+2)r
-m¥F1l +£1 m) (20+1) (20 +2) (21 + 3)

Nl

2(141)
(20+1) (20 +2) (20 +3)

—~

lm—1 [20=m4+1) (I +m+1) 3
R [(2l+1)(2z+2)(21+3)}

-1 1 1\ . 212 2

( 0 0 0) =(=1) {(2l—1)21(21+1)]
-1 1 1\ m[20=m)(I+m)]?
<—m 0 m>(1)l+ {(21—1)21(21+1)}

=1 1 1\ am[(Fm-1)(Fm)]?
(—mIFl +1 m>( D {(21—1)2l(2l+1)]

Um den Rechenweg genauer zu beschreiben wird im Folgenden die Berechnung eines Ausdrucks

niher ausgefiihrt. Zunéchst fithrt einmal zyklisch und einmal antizyklisch Vertauschen und das

Vorzeichen aller m-Werte &ndern zu
[+1 1 Ly (1 l l+1
-m+1 -1 m) \=1 m —-m—(-1)
N 1 1+1 Iy ol 1 1+1 l
-1 —-m—-(-1) m 1 —1—(-m) —-m)

Damit erhdlt man die Form, wie sie Formel (3.7.10) in [6] hat und danach ergibt sich
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Anhang C: Spezielle 3j-Symbole

1 I+1 L\ _ L\ —14+1-m
(1 —1—(-m) —m) =D

A(—14+1+1+D(L+1+1—m)(l+m)
'[(1+l+1+l+1)!(1(l+1)+l)!(1+l+1l)!(1+l+1+m)!(lm)!
_ Loy [ 20 m+2>!wr
B (20 + 3) WA (1 — m)!

_ Ly [P @ m 1) (= m ) r
| (2BT(20 + 1) (21 + 2) (2 + 3) (L—m)T

'(l—m+1)(l—m+2)r

|20+ 1) (20 +2) (20 + 3)
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Anhang D: Berechnung der

Normierungsfaktoren

Im Folgenden ist die Berechnung der Normierungsfaktoren der Darwin- Wellenfunktionen beispiel-

haft fiir V,, ndher ausgefiihrt. Ausgehen von der Normierungsbedingung

erhalt man

v, (7) U, (7)

/d3 N? 0 0 1
TN, _, =1.
_2717,0 }Z gz \Ij’fl (T) 27177,6%8@ n (m

=t (2 -i2) @)\t (2 +id) v @

Ausfiihren des Skalarproduktes und anschlieffende partielle Integration fiihrt zu

1 2
— /d3r\11n\1/;; +0+ <h> e
2me /

0 0 0 0 0 0 0 0 0 0
. 3 * * * * *
/d {8\11”6\II+8\IJ"8\I/ + gy Uy Ut igy Vg, Un = a\pna\p}

h 2
- _(2mc)
) 0? 92 2 )
/d {”82 n g e T e g Y e e Y T e g O
h 2
1<2> /d%{qf;v?qf"}.
mc

Der Ubergang zu atomaren Einheiten fiir den Radius gibt wegen der zweifachen Ableitung den

Faktor =>. Aus der Schrédinger-Gleichung erhéilt man die Relation,

~V20, =2 (E, - V(r) ¥

57



Anhang D: Berechnung der Normierungsfaktoren

fiir Energie und Potential in Hartree und Radius in au. Damit erhélt man

1 h ? 3 *

2mcag

. (Qm’zaof 2 (En _ /di‘w;\pn V@«))

_ (2mf;ao>22 (E —47r/d1n1“ (R (r)? V(r)) .

In der numerischen Umsetzung wird nach Trapezregel Integriert und das Integral wird zur Summe.

Dabei ist nur bis zum Wert r, zu summieren, da das Potential fiir grofsere Argumente gleich Null
ist.
9 1

) (e
2m cag n,l ™ r=0" ( n, I\ N Gmesh

Die Rechnung fiir Ny ist anlog auszufiihren. Beide Faktoren haben nur einen relativ geringen

Einfluss auf das Endergebnis, da sie mit etwa 0,99 nur um etwa ein Prozent von Eins abweichen.
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