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1 Motivation

In der Nanotechnologie ist es von groÿem Interesse, Proben auf Nanometerskalen hinsichtlich ih-

rer chemischen Zusammensetzung zu untersuchen. In der Elektronenmikroskopie ist dies mittels

Elektronenenergieverlust-Spektroskopie möglich. Dabei werden inelastisch gestreute Elektronen

(Abb. 1.1) mit Geschwindigkeiten nahe der Lichtgeschwindigkeit untersucht. Zur Auswertung der

erhaltenen Spektren werden so genannte Wirkungsquerschnitte berechnet. Für diese Rechnungen

werden üblicherweise Programme verwendet, die auf nicht-relativistischen Ansätzen beruhen. In

heutiger Standard-Softwarepaketen ist zum Beispiel das Programm �SigmaK� von Egerton [8] ent-

halten. Darin werden die für groÿe Geschwindigkeiten abweichenden Energiebeziehungen durch

sogenannte kinematische Korrekturen berücksichtigt, aber nicht die Retardierungse�ekte und die

magnetische Wechselwirkung zwischen den Elektronen. Mit zunehmender Energie der einfallenden

Elektronen gilt es zu hinterfragen, ob voll-relativistische Ansätze nötig sind, um das Verhalten

der schnellen Elektronen genügend genau beschreiben zu können. Rechnungen auf Basis des Was-

sersto�modells von Knippelmeyer [3] zeigen, dass solche voll-relativistischen Ansätze bei heute

üblichen Beschleunigungsspannungen einen deutlichen Ein�uss haben. Mit der Diplomarbeit von

Pokroppa [18] konnten diese Ergebnisse auf das Zentralfeldmodell ausgeweitet werden. Diese voll-

relativistischen Ansätze sind darüber hinaus bis heute nicht weiter verfolgt worden. Das erstellte

Programm beruht ebenfalls auf dem Zentralfeldmodell und der Formalismus ist weitestgehend dem

Pokroppas nachvollzogen. Allerdings werden die Werte für das Atompotential und die Wellenfunk-

tionen selbstkonsistent berechnet und nicht wie zuvor ein genähertes Potential vorausgesetzt.

Die vorliegende Arbeit soll auch eine gut nachvollziehbare Einführung in den nötigen Formalismus

und das erstellte Programm bieten, daher sind einige Rechnungen ausführlicher dargelegt als es

für eine Diplomarbeit üblich ist, um einem Nachfolger den Einstieg in die Materie zu erleichtern.

In einigen Formeln sind sich kürzende Faktoren zur besseren Nachvollziehbarkeit der Rechnungen

durchgestrichen dargestellt. Auÿerdem sind im Anhang diverse Rechnungen ausführlich aufgeführt.

1.1 Einführung

In dieser Arbeit werden Wirkungsquerschnitte für die inelastische Streuung eines einfallenden Elek-

trons an einem gebundenen Atomelektron berechnet. Diese Wirkungsquerschnitte haben die Di-

mension einer Fläche und werden in der Elektronenmikroskopie üblicherweise in cm2 angegeben. Sie

beschreiben ein e�ektive Tre�er�äche, die proportional zur Wahrscheinlichkeit des Streuprozesses

ist und von den Quantenzahlen und Energien der beiden beteiligten Elektronen abhängt.
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1 Motivation

1.2 Beispiel für die Anwendung von Wirkungsquerschnitten

Wirkungsquerschnitte werden in der Elektronenmikroskopie benötigt, um die chemische Zusam-

mensetzung einer Probe aus Elektronenenergieverlust-Spektren zu gewinnen. In einem Energieverlust-

Spektrum werden die Elektronen nach der Streuung detektiert und nach ihrem Energieverlust auf-

getragen (Abb. 1.2). Um ein solches Spektrum zu erstellen wird eine Probe mit Elektronen einer

Energie von typischerweise 80-400 keV bestrahlt. Die einfallenden Elektronen wechselwirken mit

den Probenatomen wobei sie je nach Art der Wechselwirkung einen Teil ihrer Energie abgeben,

wie in Abbildung 1.1 schematisch dargestellt ist.

Abbildung 1.1: Schematische Darstellung des Streuprozesses. Ein einfallendes Elektron mit der Ener-
gie E0 erfährt eine Ablenkung durch die Nähe zum positiv geladenen Atomkern
(links) bzw. einen Energieverlust ∆E durch Wechselwirkung mit einem Atomelektron
(rechts). [1]

Elektronen können elastisch gestreut werden wobei sie eine Richtungsänderung, aber nahezu kei-

nen Energieverlust erfahren. Diese Elektronen bilden den so genannte Zero-Loss-Peak, wie er in

Abbildung 1.2 dargestellt ist. Stoÿen die einfallenden Elektronen unelastisch mit den Atomelektro-

nen, geben sie einen Teil ihrer kinetischen Energie an die gebundenen Elektronen ab. Solange die

Energie kleiner als die Ionisationsenergie des Atoms ist können die Atomelektronen nur in freie, hö-

herliegende Energieniveaus angeregt werden (Interbandanregung). Damit können die einfallenden

Elektronen keine beliebige Energie abgeben sondern nur diskrete Energiebeträge, die den Di�e-

renzen der Energieniveaus entsprechen. Übersteigt die übertragene Energie die Ionisationsenergie

werden Atomelektronen der äuÿeren Schalen herausgeschlagen. Diese Anregung ins Kontinuum ist

für beliebige Energieüberträge möglich.

Die Intensität im Spektrum (Abb. 1.2) nimmt für steigende Energieverluste tendenziell ab. Bei

den Ionisationsenergien sämtlicher Atomelektronen gibt es deutliche Intensitätsanstiege, die so ge-

nannten Ionisationskanten. In diesen Bereichen �ndet ein Übergang von nur diskret möglichen hin

zu kontinuierlich möglichen Energieüberträgen satt. Somit steigt die Anzahl der freien Zustän-

de, in die das Atomelektron angehoben werden kann, um ein Vielfaches. Damit steigt auch die

Wahrscheinlichkeit für einen Streuprozess mit eben diesem Atomelektron und dem entsprechenden

Energieverlust. Die Ionisationsenergien sind für jedes Element verschieden. Durch einen Vergleich

der im Energieverlust-Spektrum gewonnenen Werte für die Position der Ionisationskanten mit Li-

teraturwerten können die in der Probe vorhandenen Elemente bestimmt werden. Die Anzahl an
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1.2 Beispiel für die Anwendung von Wirkungsquerschnitten

Abbildung 1.2: Schematische Darstellung eines Elektronenenergieverlust-Spektrums. [2]

Atomen eines Elements in einem beleuchteten Probenbereich ist proportional zur Anzahl der an

diesem Element gestreuten Elektronen. Diese Anzahl ist in erster Näherung proportional zum Flä-

cheninhalt unter einer für dieses Element charakteristischen Ionisationskante. Durch Abziehen des

Untergrundes werden experimentelle Ein�üsse in den Messdaten berücksichtigt. Der Untergrund

im Spektrum entsteht zum Beispiel durch Streuung der Elektronen an dem Mikroskop. Er wird

nach einem Potenzgesetz aus dem Verlauf des Spektrums vor der Ionisationskante extrapoliert.

Für den Zusammenhang von Zählrate bzw. die Intensität I und der Anzahl N der Atome im vom

Elektronenstrahl beleuchteten Volumen kann man schreiben

I = JNση ,

wobei J der Teilchenstrom im Strahl, σ der Wirkungsquerschnitt und η die E�zienz des Detek-

tors ist. Um die chemische Zusammensetzung einer Probe bestimmen zu können betrachtet man

das Verhältnis der Intensitäten für die betre�enden Elemente. Somit kürzen sich die Apparatur

abhängigen Parameter heraus. Angenommen eine Probe besteht aus den Elementen a und b, so

erhält man die Relation
Na
Nb

=
Iaσb
Ibσa

.

Hier stehen Na, Nb für die Anzahl der Atome a und b, Ia, Ib für die Fläche unter deren ent-

sprechenden Kanten und σa, σb für deren Wirkungsquerschnitte. In Abbildung 1.3 ist dieser Fall

anschaulich dargestellt. Die Wirkungsquerschnitte geben die Wahrscheinlichkeit an, dass ein Elek-

tron mit einem Energieverlust im Bereich des Energiefensters ∆a bzw. ∆b gestreut wird und den

Detektor erreicht. Das Elektron muss also unter einem bestimmten Raumwinkel gestreut werden,

damit es von der nachfolgenden Blende erfasst und somit detektiert werden kann.

σ =

∫ Ek+∆

Ek

∫
Apertur

d2σ

dΩdE
dωdE.

Der Wirkungsquerschnitt σ ist somit der über das betre�ende Energieintervall und dem betre�en-

den Raumwinkel integrierte doppelt di�erentielle Wirkungsquerschnitt d2σ
dΩdE .
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1 Motivation

Abbildung 1.3: Schematische Darstellung zur quantitativen Analyse eines Elektronenenergieverlust-
Spektrums. Der extrapolierte Untergrund ist gestrichelt dargestellt und in grau unter-
legt sind die zur Verhältnisbildung relevanten Flächen. [2]

1.3 Relativistische Rechnungen

In nicht-relativistischen Ansätzen wird die auf Vakuumlichtgeschwindigkeit normierte Geschwin-

digkeit β = v
c vernachlässigt. Moderne Elektronenmikroskope arbeiten mit Beschleunigungsspan-

nungen von einigen hundert kV, wodurch die einfallenden Elektronen sehr hohe Geschwindigkeiten

erreichen. Bei einer Elektronenenergie von 200 keV haben die Elektronen eine Geschwindigkeit von

2, 08 · 108 m
s , was etwa 70% der Lichtgeschwindigkeit entspricht. Nicht-relativistische Ansätze kön-

nen daher keine vollständige Beschreibung des Streuprozesses für diese Beschleunigungsspannungen

liefern.

In derzeitigen Standardprogrammen zur Analyse der Messdaten werden �kinematisch korrigier-

te� anstatt voll-relativistische Wirkungsquerschnitte berechnet. �Kinematisch korrigiert� bedeutet,

dass relativistische Ausdrücke für Energie und Impuls in nicht-relativistische Gleichungen einge-

setzt werden. Damit wird der Ein�uss von Retardierungse�ekten und die magnetische Wechselwir-

kung zwischen dem Atomelektron und dem einfallenden Elektron auÿer Acht gelassen. Retardie-

rungse�ekte sind E�ekte, die durch zeitliche Verzögerung auf Grund der endlichen Lichtgeschwin-

digkeit entstehen.

In dieser Arbeit wird ein Ansatz mit voll-relativistischen Gleichungen gewählt um diese E�ekte bei

der Berechnung von Wirkungsquerschnitten zu berücksichtigen. Damit können genauere Ergebnisse

aus den experimentellen Daten gewonnen werden.
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2 Berechnung relativistischer

Wirkungsquerschnitte

Die Basis für die Rechnungen ist die Propagatortheorie und die relativistische Dirac Gleichung.

Damit kann die Streumatrix berechnet werden. Sie beschreibt die zeitliche Entwicklung der an dem

Streuprozess beteiligten Teilchen unter Berücksichtigung ihres Wechselwirkungspotentials. Bildet

man davon das Betragsquadrat und teilt es durch die Zeit, die der Übergang vom Anfangs- in den

Endzustand dauert, so erhält man die Übergangsrate. Daraus lässt sich der Wirkungsquerschnitt

berechnen, indem auf die Stromdichte des einfallenden Elektrons normiert wird. Eine ausführliche

Herleitung ist in der Diplomarbeit von Knippelmeyer [2] zu �nden.

Für die weiter gehenden Überlegungen müssen zunächst noch einige Annahmen diskutiert werden:

- Die Proben sind dünner als die mittlere freie Weglänge der einfallenden Elektronen, sodass in

guter Näherung Einfachstreuung angenommen werden kann.

- Der Ein�uss der Nachbaratome wird vernachlässigt, daher kann ein atomares Modell für den

Streuprozess genutzt werden.

- Es wird angenommen, dass das einfallende Elektron nur mit dem angeregten Atomelektron wech-

selwirkt und der Ein�uss der übrigen Atomelektronen vernachlässigbar ist. Daher kann das Atom-

elektron durch eine Einteilchen-Wellenfunktion beschrieben werden.

- Nimmt man an, dass das Atomelektron nur in Kontinuum-Zustände, nicht aber in diskrete Zustän-

de angehoben wird, so kann der Endzustand allein durch Kontinuum-Wellenfunktionen beschrieben

werden.

- Die einfallenden Elektronen haben typischerweise Energien gröÿer als 100 keV und die ionisierten

Elektronen Energien im Bereich 10-100 eV. Die Energie des ionisierten Atomelektrons ist also um

wenigstens drei Gröÿenordnungen kleiner als die Energie des gestreuten Elektrons, sodass Austaus-

che�ekte in guter Näherung vernachlässigbar sind.

- Das einfallende Elektron ist aufgrund seiner groÿen Geschwindigkeit nur kurzzeitig im Potenti-

al des Atomelektrons und die Energie des einfallenden Elektrons ist sehr viel gröÿer als die des

Wechselwirkungspotentials. Somit genügt es, die Streumatrix in erster Näherung bezüglich des

Wechselwirkungspotentials zu betrachten.

Damit erhalten wir einen Ausdruck, der von den ebenen Dirac-Wellenfunktionen des Atomelek-

trons vor und nach dem Streuvorgang, sowie vom Viererpotential des elektromagnetischen Feldes

Aµ =
(

Φ
c ,
~A
)
abhängt [2]. Hier ist Φ das Skalarpotential und ~A das Vektorpotential.

Unter Coulomb-Eichung ist das skalare Potential gleich dem statischen Coulomb- Potential. Das

Vektorpotential beinhaltet in diesem Fall das magnetische Potential und den Retardierungsanteil

aus dem Coulomb-Potential. Die Streumatrix lässt sich somit aufteilen, in einen Teil, dem das

statische Coulomb-Potential zugrunde liegt, und einen zweiten Teil, der den Ein�uss des Vektor-

potentials beinhaltet. Somit kann der Wirkungsquerschnitt ebenfalls in zwei Teile zerlegt werden,
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2 Berechnung relativistischer Wirkungsquerschnitte

wobei das erste Matrixelement < m|ei~q~r|n > den Coulombanteil und das zweite < m|~α~tei~q~r|n >
den Anteil aus dem Vektorpotential enthält [2].

dσ (Ω,∆E)

dΩ
=α2 · 4 · k2

i

β2
i

· kf
ki

· 1

2

∑
sn,sm

∣∣∣∣∣ 1

q2
< m|ei~q~r|n > −

~t~βi

q2 −
(

∆E
~c
)2 < m|~α~tei~q~r|n >

∣∣∣∣∣
2

(2.1)

Hier wurde über die Spinanfangszustände (|n >) gemittelt und über die Spinendzustände (|m >)

summiert. Üblicherweise werden unpolarisierte Elektronen im Experiment verwendet, daher ist

der Spinanfangszustand nicht fest de�niert. Auÿerdem ist der Zustand des Elektrons nach dem

Streuprozess dem Experiment ebenfalls nicht zugäglich. Summation über alle möglichen Endzu-

stände umfasst auch denjenigen, in den das Elektron überführt wurde. ∆E ist der Energieverlust,

den das einfallende Elektron während des Streuvorgangs erlitten hat und ~r die Ortskoordinate des

Elektrons. α ist die Feinstukturkonstante, mit α = e2

4πε0~c ≈
1

137 . Für die auf die Vakuumslichtge-

schwindigkeit c normierte Geschwindigkeit des einfallenden Elektron gilt

~βi =
~vi
c

=
~pic

Ei
. (2.2)

Die Vektoren ~ki und ~kf stehen für die Wellenzahlvektoren des einfallenden Elektrons vor und nach

dem Streuprozess, wie aus der Abbildung 2.1 deutlich wird. ~t ist ein Einheitsvektor, der senkrecht

zu ~q ist, wobei ~q = ~ki + ~kf gilt. ~α repräsentiert die Dirac-Matrizen, die in Anhang A genauer

de�niert sind. Die Indizes sn, sm in der Summe stehen hier für die Spinzustände des Anfangs- und

Endzustandes. ∆E ist der Energieverlust.

Es wird von einer unelastischen Streuung der Elektronen ausgegangen, wie es in Abbildung 2.1

schematisch dargestellt ist.

Abbildung 2.1: Schematische Darstellung des unelastischen Streuprozesses. [3]
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2.1 Energiedi�erentielle Wirkungsquerschnitte

Da die beiden Terme in Gleichung (2.1) wegen der unterschiedlichen Auswahlregeln für die Matri-

xelemente nicht interferieren [4], kann die Gleichung umgeschrieben werden zu

dσ (Ω,∆E)

dΩ
= α2 · 4 · k2

i

β2
i

· kf
ki
· 1

2

·
∑
sn,sm

 1

q4

∣∣< m|ei~q~r|n >
∣∣2 +

(
~t~βi

q2 −
(

∆E
~c
)2
)2 ∣∣< m|~α~tei~q~r|n >

∣∣2 . (2.3)

Es ergeben sich zwei Terme, von denen der erste den Anteil aus der statischen Coulomb- Wechsel-

wirkung enthält und den kinematisch korrigierten nichtrelativistischen Rechnungen entspricht. Der

zweite Term beinhaltet die Retardierungse�ekte und die magnetische Wechselwirkung zwischen den

Elektronen.

2.1 Energiedi�erentielle Wirkungsquerschnitte

Mit Hilfe von einfachen geometrischen Überlegungen kann der energiedi�erentielle Wirkungsquer-

schnitt berechnet werden. Aus der Impulserhaltung ~q = ~ki−~kf folgt der Zusammenhang zwischen
q2 und dem Streuwinkel

q2 = k2
i + k2

f − 2kikf cos Θ , (2.4)

wie es in Abbildung 2.1 dargestellt ist. Für die Integration über den Raumwinkel gilt

dΩ = dφ sin ΘdΘ = 2π sin ΘdΘ .

Somit erhält man unter Verwendung von ki ≈ kf den Zusammenhang

2q dq = dq2 = k2
i 2 sin ΘdΘ =

k2
i

π
dΩ bzw. d ln q =

dq

q
=

1

2q2

k2
i

π
dΩ . (2.5)

Die Integration über den Raumwinkel ist somit auf eine Integration über ein q-Gitter zurückge-

führt. Dies erweist sich als zweckmäÿig für die numerische Berechnung der Matrixelemente. Die

Integrationsgrenzen werden aus der Energie- und Impulserhaltung bestimmt, wie Egerton [8, S.

208-210] gezeigt hat. Ist E0 die kinetische Energie eines einfallenden Elektrons und ~p = ~~ki sein
Impuls, dann ist die relativistische Gesamtenergie des Elektrons

W = E0 +m0c
2 =

[
(m0c

2)2 + p2c2
] 1

2 =
[
(m0c

2)2 + ~2k2
i c

2
] 1

2 . (2.6)

Unter Energieerhaltung führt der Energieverlust ∆E bei einem Streuvorgang zu der Gesamtenergie

Etot = W −∆E =
[
(m0c

2)2 + ~2k2
fc

2
] 1

2 . (2.7)
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2 Berechnung relativistischer Wirkungsquerschnitte

mit dem Impuls ~kf nach dem Streuprozess. Einsetzte von Gleichung (2.6) in Gleichung (2.7) gibt

k2
f =k2

i − 2∆E

(
m2

0

~4
+

k2
i

~2c2

) 1
2

+
(∆E)2

~2c2

=k2
i − 2γm0

∆E

~2
+

(∆E)2

~2c2
, (2.8)

mit dem relativistischen Korrekturfaktor γ =
√

1− v2

c2 . Durch Multiplikation mit dem Bohrschen

Radius a0 und der Relation für die Rydbergenergie ERy = ~2

2m0a20
erhält man daraus (vgl. [8, Gl.

3.139])

(kfa0)
2

= (kia0)
2 − ∆E

ERy

(
γ − ∆E

2m0c2

)
.

Durch Umformen der Gleichung (2.6) bekommt man den Wert für das Quadrate des Wellenzahl-

vektors des einfallenden Elektrons (vgl. [8, Gl. 3.140])

(kia0)
2

=
E0

ERy

(
1 +

E0

2m0c2

)
.

Aus der Impulserhaltung folgt für den kleinsten q-Wert qmin = ki − kf bzw.

(q a0)
2
min = ((kia0)− (kfa0))

2
=

(∆E)
2

4ERyT
+

(∆E)
3

8γ3ERyT 2
+ · · · . (2.9)

Auÿerdem folgt unter Verwendung der Impulserhaltung mit Gleichung (2.4) für den maximalen

Wert des q-Gitters

(q a0)
2
max = (kia0)

2
+ (kfa0)

2 − 2 (kia0) (kfa0) cos θ

= ((kia0)− (kfa0))
2

+ 2 (kia0) (kfa0)− 2 (kia0) (kfa0) cos θ

= (q a0)
2
min + 2 (kia0) (kfa0) (1− cos θ)

= (q a0)
2
min + 4 (kia0) (kfa0) sin2 θ

2
. (2.10)

Ausgehend von paralleler Beleuchtung der Probe ist θ der maximale Streuwinkel, bis zu dem die

Elektronen auf dem Detektor auftre�en. Für gröÿere Winkel stoÿen die Elektronen auf Blenden im

Mikroskop. Dieser Winkel wird auch Spektrometer-Akzeptanzwinkel genannt.

Die Wellenfunktion des Kontinuumzustandes wird auf die Energie e in Hartree normiert (Kap.

3.3), daher muss der Wirkungsquerschnitt aus Formel (2.3) noch mit de = 1
2·ERy d∆E multipli-

ziert werden. Der energiedi�erentielle Wirkungsquerschnitt lässt sich damit und der Relation (2.5)

schreiben als

dσ (∆E)

d∆E
= α2 · 4 · π

β2
i

2d ln q

2 · ERy
· 1

2

·
∑
sn,sm

 1

q2

∣∣< m|ei~q~r|n >
∣∣2 + q2

(
~t~βi

q2 −
(

∆E
~c
)2
)2 ∣∣< m|~α~tei~q~r|n >

∣∣2 . (2.11)
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2.2 Darwin-Wellenfunktionen

2.2 Darwin-Wellenfunktionen

Die Wellenfunktionen |m >, |n > aus Gleichung (2.11) sind Dirac-Wellenfunktionen. Für

En, Em << m0c
2 hat Darwin [5] gezeigt, dass sich die voll-relativistischen Dirac Gleichungen

näherungsweise durch den Ansatz sogenannter Darwin-Wellenfunktionen (2.12) lösen lassen.

ϕn+ 1
2

(~r) = Nn


1

0
1

2mc
~
i
∂
∂z

1
2mc

~
i

(
∂
∂x + i ∂∂y

)
Ψn (~r)

ϕn− 1
2

(~r) = Nn


0

1
1

2mc
~
i

(
∂
∂x − i

∂
∂y

)
− 1

2mc
~
i
∂
∂z

Ψn (~r)

(2.12)

Diese Darwin-Wellenfunktionen bestehen aus einem Normierungsfaktor (Nn) und einem vierdimen-

sionalen Vektor-Operator, der auf eine Schrödinger-Wellenfunktion Ψn (~r) wirkt. Da im Zentral-

feldmodell ein radialsymmetrisches Potential zugrunde liegt, lässt sich Ψn (~r) in einen Winkelanteil

Ylm (ϕ, θ) und einen Radialanteil Rnl (r) zerlegen

Ψnlm (~r) = Ylm (ϕ, θ)Rnl (r) . (2.13)

Mit diesem Ansatz für die Wellenfunktionen (|m >, |n >) lassen sich die Matrixelemente aus Glei-

chung (2.11) nach ihren Spinzuständen zerlegen in

P±± =

∫
ϕ∗k± 1

2
(~r) ei~q~r ϕn± 1

2
(~r) d3r

Pα±± =

∫
ϕ∗k± 1

2
(~r) ~α~t ei~q~r ϕn± 1

2
(~r) d3r , (2.14)

wobei ϕ
k± 1

2
der Kontinuumzustand und ϕ

n± 1
2
der gebundene Zustand ist. Der Index α kennzeich-

net die Summanden die aus dem relativistischen Term, in dem die Dirac-Matrizen enthalten sind,

hervorgehen. Ohne Beschränkung der Allgemeinheit kann die z-Achse auf den q-Vektor gelegt wer-

den. Damit ist ~t ein Vektor, der in der x-y-Ebene liegt und es ergibt sich, wie in Anhang A näher

ausgeführt,

P++ = P−− = NnNk

[(
I0 −

(
~

2mc

)2

I∆

)
− iq

(
~

2mc

)2

Iz

]

P−+ = P ∗+− = −iNnNk q
(

~
2mc

)2

Ix+iy

13



2 Berechnung relativistischer Wirkungsquerschnitte

Pα++ = Pα−− = −iNnNk
~

2mc
[(tx − ity) Ix+iy + (tx + ity) Ix−iy]

Pα+− =
(
−Pα−+

)∗
= −NnNk q

~
2mc

(tx + ity) I0

mit den Matrixelementen

I0 =

∫
Ψ∗kl′m′ (~r) eiqz Ψnlm (~r)d3r

Ix±iy =

∫
Ψ∗kl′m′ (~r) eiqz

(
∂

∂x
± i ∂

∂y

)
Ψnlm (~r)d3r

Iz =

∫
Ψ∗kl′m′ (~r) eiqz

∂

∂z
Ψnlm (~r)d3r

I∆ =

∫
Ψ∗kl′m′ (~r) eiqz∆ Ψnlm (~r)d3r , (2.15)

die jeweils die Schrödinger-Wellenfunktionen enthalten. Für die Summe über die Betragsquadrate

der Matrixelemente ergibt sich

1

2

∑
sn,sm

∣∣< m|eiqz|n >
∣∣2 =

1

2

(
|P++|2 + |P−−|2 + |P+−|2 + |P−+|2

)
= |P±±|2 + |P±∓|2

1

2

∑
sn,sm

∣∣< m|~α~teiqz|n >
∣∣2 =

1

2

(∣∣Pα++

∣∣2 +
∣∣Pα−−∣∣2 +

∣∣Pα+−∣∣2 +
∣∣Pα−+

∣∣2)
=
∣∣Pα±±∣∣2 +

∣∣Pα±∓∣∣2 . (2.16)

Für die Betragsquadrate der einzelnen Summanden erhält man, wie in Anhang A gezeigt wird,

|P±±|2 =N2
kN

2
n

∣∣∣∣∣I0 −
(

~
2mc

)2

I∆

∣∣∣∣∣
2

+

(
~

2mc

)4

q2 |Iz|2

−2Re

{
iq

(
~

2mc

)2
(
I0 −

(
~

2mc

)2

I∆

)
I∗z

}]

|P±∓|2 =N2
kN

2
n

(
~

2mc

)4

q2 |Ix+iy|2

∣∣Pα±±∣∣2 =N2
kN

2
n 2

(
~

2mc

)2

|Ix+iy|2

∣∣Pα±∓∣∣2 =N2
kN

2
n

(
~

2mc

)2

q2 |I0|2 . (2.17)

2.3 Einige grundlegende Relationen

Zur Auswertung der Matrixelemente werden die Wellenfunktionen und e-Funktionen als Produkte

von Radialanteil und Winkelfunktionen dargestellt. Somit können die Winkelanteile mit den in

diesem Kapitel aufgeführten Beziehungen analytisch gelöst werden.
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2.3 Einige grundlegende Relationen

Die Exponentialfunktion in den Matrixelementen kann nach sphärischen Besselfunktionen jL (qr)

zerlegt werden [6, Gl. 5.8.3]

ei~q~r = 4π

∞∑
L=0

L∑
M=−L

iLjL (qr)Y ∗LM

(
~q

q

)
YLM

(
~r

r

)
, (2.18)

mit den Kugel�ächenfunktionen YLM . Da das Bezugssystem so gelegt wird, dass

~q = q~ez und damit M = 0 gilt, kann Gleichung (2.18) vereinfacht werden zu

eiqz = 4π

∞∑
L=0

iLjL (qr)Y ∗L0

(
~q

q

)
YL0

(
~r

r

)
. (2.19)

Das Integral über drei Kugel�ächenfunktionen ergibt (vgl. [6, Gl. 4.6.3])

< Yl′m′ |YLM |Ylm >= (−1)
m′
∫ 2π

0

dϕ

∫ π

0

sin θdθ Yl′−m′

(
~r

r

)
YLM

(
~r

r

)
Ylm

(
~r

r

)
= (−1)

m′

(
l′ L l

−m′ M m

)(
l′ L l

0 0 0

)[
(2l′ + 1) (2L+ 1) (2l + 1)

4π

] 1
2

. (2.20)

Für die sogenannten 3j-Symbole gilt nach [7, S. 1056](
l′ L l

m′ −M m

)
=

(−i)l+l
′+L

√
2L+ 1

< l l′mm′|LM > ,

wobei die Clebsch-Gordan-Koe�zienten < l l′mm′|LM > reell und nur dann ungleich Null sind,

wenn die Auswahlregeln

< l l′mm′|LM >=

reell, wenn m+m′ = M und |l − l′| ≤ L ≤ l + l′

0, sonst
(2.21)

erfüllt sind. Ist m = m′ = M = 0, dann gilt nach [6, Gl. 3.7.14](
l′ L l

0 0 0

)
= 0 , wenn l′ + L+ l ungerade. (2.22)

Zu Gleichung (2.20) sei noch angemerkt, dass nach [6, Gl. 2.5.6]

< Yl′m′ | = (Yl′m′)
∗

= (−1)
m′
Yl′−m′

gilt. Die Orthogonalitätseigenschaft besagt (vgl. [6, Gl. 3.7.8]), dass

∑
m,m′

(
l′ L l

m′ M m

)(
l′ L′ l

m′ M ′ m

)
= (2L+ 1)

−1
δLL′ δMM ′ . (2.23)
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2 Berechnung relativistischer Wirkungsquerschnitte

Weiter gilt nach [6, Gl. 2.5.30]

YL0

(
~q

q

)
=

(
2L+ 1

4π

) 1
2

Pl (cos θ) . (2.24)

Für ~q = q · ~ez ist θ = 0 und damit Pl (cos θ) = Pl (1) = 1 vereinfacht sich Gleichung (2.24) zu

YL0

(
~q

q

)
=

(
2L+ 1

4π

) 1
2

. (2.25)

Für eine bessere Übersichtlichkeit wird im Folgenden die Notation geändert, es gilt:

|Ylm >= |l m > .

Eine weitere wichtige Relation ist (vgl. [6, S. 98-99])1

< l′m′|∇µ|l m >= (−1)
l′

(
l′ 1 l

−m′ µ m

)
(
l′ 1 l

0 0 0

) < l′ 0|∇0|l 0 > . (2.26)

Dabei ist < l′ 0|∇0|l 0 > nur für l′ = l ± 1 von Null verschieden mit

< l + 1 0|∇0|l 0 >=
l + 1

[(2l + 1) (2l + 3)]
1
2

(
∂

∂r
− l

r

)
< l − 1 0|∇0|l 0 >=

l

[(2l − 1) (2l + 1)]
1
2

(
∂

∂r
+
l + 1

r

)
, (2.27)

wobei

∇0 =
∂

∂z
und ∇±1 = ∓ 1√

2

(
∂

∂x
± i ∂

∂y

)
, (2.28)

die sphärischen Komponenten des Nablaoperators sind.

2.4 Analytische Berechnung der Winkelintegrale

In diesem Kapitel wird die Berechnung der einzelnen Betragsquadrate aus Formel (2.17) ausgeführt,

wie sie in der Diplomarbeit von Pokroppa [18] beschrieben ist. Dazu werden die in Abschnitt 2.3

aufgeführten Relationen verwendet. In diesem Kapitel ist zu beachten, dass mit dem Ausdruck∣∣∣Ĩα∣∣∣2 nicht nur die Bildung des Betragsquadrates von I0 gemeint ist, sondern auch die Mittelung

und Summation über Anfangs- und Endzustände enthalten ist. Es gilt der Zusammenhang:∣∣∣Ĩα∣∣∣2 = 2 (2l + 1)
∑
l′

1
2l+1

∑
m

∑
m′

|Iα|2

1Bei Edmonds gibt es einen Druckfehler in der Gleichung. Die Herleitung führt auf den Wert �l′ � anstatt �m′� für
den Exponent des Faktors �−1�.
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2.4 Analytische Berechnung der Winkelintegrale

Wie Anfangs erwähnt, sind in den Gleichungen einige sich kürzende Faktoren durchgestrichen

dargestellt, um die Rechnungen besser nachvollziehen zu können. Zur besseren Übersicht sind

die Berechnungen der Ausdrücke
∣∣∣I0 − ( ~

4mc

)2
I∆

∣∣∣2, |Ix+iy|2 und Re
{
i
(
I0 −

( ~
2mc

)2
I∆

)
I∗z

}
im

Anhang B aufgeführt.

2.4.1 Berechnung der Ausdrucks |I0|2

Einsetzen von (2.19) in (2.15) ergibt

I0 = 4π

∞∑
L=0

RL i
LY ∗L0 < Yl′m′ |YL0|Ylm > , (2.29)

wobei RL =
∫∞

0
Rel′ (r) jL (qr)Rnl (r) r

2dr ist. Unter Verwendung von (2.20) bekommt man

I0 =4π

∞∑
L=0

RL i
LY ∗L0 (−1)

m′

·

(
l′ L l

−m′ 0 m

)(
l′ L l

0 0 0

)[
(2l′ + 1) (2L+ 1) (2l + 1)

4π

] 1
2

. (2.30)

Ebenso wie in Kapitel 1 über die Spinzustände summiert bzw. gemittelt werden musste, wird hier

zusätzlich zur Bildung des Betragsquadrates über die Anfangszustände gemittelt ( 1
2l+1

∑
m) und

die Endzustand summiert (
∑
m′)∣∣∣Î0∣∣∣2 = 1

2l+1

∑
m

∑
m′

|I0|2

=42π2
∞∑
L,L′

RL RL′ iL
(
iL

′
)∗
Y ∗L0YL′0��

��(−1)
2m′

[
(2l′ + 1) (2L+ 1)���

�(2l + 1)

4π

]
�
�
�1

2l + 1

·
∑
m

∑
m′

(
l′ L l

−m′ 0 m

)(
l′ L l

0 0 0

)(
l′ L′ l

−m′ 0 m

)(
l′ L′ l

0 0 0

)

=42π2
∞∑
L

R2
Li
L
(
iL
)∗ |YL0|2

[
(2l′ + 1)��

��(2L+ 1)

4π

]
�
�
��1

2L+ 1

(
l′ L l

0 0 0

)2

, (2.31)

wobei im letzten Schritt Gl. (2.23) verwendet wurde. Mit (2.25) erhält man daraus

∣∣∣Î0∣∣∣2 =��
�42π2
∞∑
L

R2
Li
L
(
iL
)∗ 2L+ 1

��4π

[
(2l′ + 1)

��4π

](
l′ L l

0 0 0

)2

. (2.32)

Schlieÿlich muss noch über die Drehimpulse (l′) der Endzustände summiert und mit der Beset-

zungszahl Bnl = 2 (2l + 1) multipliziert werden.
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2 Berechnung relativistischer Wirkungsquerschnitte

∣∣∣Ĩ0∣∣∣2 =2 (2l + 1)
∑
l′

∣∣∣Îα∣∣∣2
=2 (2l + 1)

∑
L,l′

R2
Li
L
(
iL
)∗

(2L+ 1) (2l′ + 1)

(
l′ L l

0 0 0

)2

. (2.33)

Nach Gleichung (2.21) und (2.22) ist das 3j-Symbol nur dann nicht Null, wenn |l − l′| ≤ L ≤ l+ l′

und l′ + L+ l gerade ist.

2.4.2 Berechnung des Ausdrucks |Iz|2

Äquivalent zur vorherigen Berechnung setzt man (2.19) in (2.15) ein und erhält

Iz = 4π

∞∑
L=0

jL (qr) iLY ∗L0Rel′ < Yl′m′ |YL0
∂

∂z
|Ylm > Rnl . (2.34)

Durch Multiplizieren einer geeigneten Eins (
∑
l′′,m′′ |l′′m′′ >< l′′m′′|) kann der Ausdruck

< Yl′m′ |YL0
∂
∂z |Ylm > geschrieben werden als

< l′m′|YL0
∂

∂z
|l m >=

∑
l′′,m′′

< l′m′|YL0|l′′m′′ >< l′′m′′|∇µ|l m > .

Um die folgenden Rechnungen allgemeingültig zu halten, wird statt der Ableitung nach z der

Ausdruck ∇µ verwendet (vgl. (2.28)). Dabei ist µ = ±1 oder 0 entsprechend der gewünschten

Ableitung. Der zweite Faktor in der Summe ist nach (2.26) nur dann ungleich Null, wenn l′′ = l±1

ist. Damit kann die gesamte Summe vereinfacht werden zu

∑
l′′,m′′

< l′m′|YL0|l′′m′′ >< l′′m′′|∇µ|l m >

= < l′m′|YL0|l + 1m+ µ >< l + 1m+ µ|∇µ|l m >

+ < l′m′|YL0|l − 1m+ µ >< l − 1m+ µ|∇µ|l m > . (2.35)

Hier kann der jeweils erste Faktor in den beiden Summanden mittels (2.20) und der zweite mit

Hilfe der Gleichung (2.26) gelöst werden. Für die ersten Faktoren erhält man
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2.4 Analytische Berechnung der Winkelintegrale

< l′m′|YL0|l + 1m+ µ >

= (−1)
m+µ

(
l′ L l + 1

−m− µ 0 m+ µ

)(
l′ L l + 1

0 0 0

)[
(2l′ + 1) (2L+ 1) (2l + 3)

4π

] 1
2

und

< l′m′|YL0|l − 1m+ µ >

= (−1)
m+µ

(
l′ L l − 1

−m− µ 0 m+ µ

)(
l′ L l − 1

0 0 0

)[
(2l′ + 1) (2L+ 1) (2l − 1)

4π

] 1
2

, (2.36)

wobei hier ausgenutzt wurde, dass nach Gleichung (2.21) m′ = m+µ gelten muss. Für die zweiten

Faktoren ergibt sich

< l + 1m+ µ|∇µ|l m >= (−1)
l′

(
l + 1 1 l

−m− µ µ m+ µ

)
(
l + 1 1 l

0 0 0

) < l + 1 0|∇0|l 0 >

und

< l − 1m+ µ|∇µ|l m >= (−1)
l′

(
l − 1 1 l

−m− µ µ m+ µ

)
(
l − 1 1 l

0 0 0

) < l − 1 0|∇0|l 0 > . (2.37)

Speziell für µ = 0 erhält man die ersten Faktoren direkt aus Gleichung (2.36). Die zweiten Faktoren

lassen sich mit den im Anhang C aufgeführten 3j-Symbolen und der Gleichung (2.27) lösen zu

< l + 1m|∇0|l m >= − (−1)
l+m

[
(l + 1 +m) (l + 1−m)

(2l + 1) (2l + 3)

] 1
2
(
∂

∂r
− l

r

)
und

< l − 1m|∇0|l m >= − (−1)
l+m

[
(l +m) (l −m)

(2l − 1) (2l + 1)

] 1
2
(
∂

∂r
+
l + 1

r

)
.

Einsetzen in die Gleichung für Iz (2.34) gibt
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2 Berechnung relativistischer Wirkungsquerschnitte

Iz =− (−1)
l

[
4π (2l′ + 1)

(2l + 1)

] 1
2 ∑

L

iLY ∗L0 (2L+ 1)
1
2

·

{(
l′ L l + 1

−m 0 m

)(
l′ L l + 1

0 0 0

){
(l + 1)

2 −m2
} 1

2

[
∂

∂r
− l

r

]

+

(
l′ L l − 1

−m 0 m

)(
l′ L l − 1

0 0 0

){
l2 −m2

} 1
2

[
∂

∂r
+
l + 1

r

]}
, (2.38)

mit

[
∂

∂r
− l

r

]
=

∫ ∞
0

Rel′ (r) jL (qr)

(
∂

∂r
− l

r

)
Rnl (r) r

2dr[
∂

∂r
+
l + 1

r

]
=

∫ ∞
0

Rel′ (r) jL (qr)

(
∂

∂r
+
l + 1

r

)
Rnl (r) r

2dr .

Bilden des Betragsquadrates, Mitteln über die Anfangszustände und Summieren über die Endzu-

stände führt zu

∣∣∣Ĩz∣∣∣2 =
Bnl

2l + 1

∑
l′

l′∑
m=−l′

���
�

(−1)
2l+2

[
4π (2l′ + 1)

(2l + 1)

]

·
∑
L,L′

iL
(
iL

′
)∗ √(2L+ 1) (2L′ + 1)

4π
(2L+ 1)

1
2 (2L′ + 1)

1
2

·

{(
l′ L l + 1

−m 0 m

)(
l′ L l + 1

0 0 0

)(
l′ L′ l + 1

−m 0 m

)(
l′ L′ l + 1

0 0 0

)

·
{

(l + 1)
2 −m2

}[ ∂
∂r
− l

r

] [
∂

∂r
− l

r

]′
+

(
l′ L l − 1

−m 0 m

)(
l′ L l − 1

0 0 0

)(
l′ L′ l − 1

−m 0 m

)(
l′ L′ l − 1

0 0 0

)

·
{
l2 −m2

} [ ∂
∂r

+
l + 1

r

] [
∂

∂r
+
l + 1

r

]′
+ 2

(
l′ L l + 1

−m 0 m

)(
l′ L′ l − 1

0 0 0

)(
l′ L l + 1

−m 0 m

)(
l′ L′ l − 1

0 0 0

)

·
√
{l2 −m2}

{
(l + 1)

2 −m2
}[ ∂

∂r
− l

r

] [
∂

∂r
+
l + 1

r

]′}
.2 (2.39)

Nach Gleichung (2.21) und (2.22) sind die drei Summanden für unterschiedliche Kombinatio-

nen der Drehimpulswerte gleich Null. Der erste ist zum Beispiel nur dann ungleich Null, wenn

|l + 1− l′| ≤ L ≤ l + 1 + l′ und l′ + L+ l + 1 gerade ist.

2Nach den Ausführungen von Pokroppa [18] wird der dritte Summand subtrahiert, die Herleitung zeigt aber wie
hier dargelegt die Addition des Terms.
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3 Numerische Umsetzung und

verwendeten Unterprogramme

Da nach den analytischen Überlegungen zur Berechnung des Wirkungsquerschnittes aus Kapitel 2

nur die Winkelanteile nicht aber die Radialanteile gelöst werden können, müssen letztere numerisch

berechnet werden. Für die Berechnung des Wirkungsquerschnittes wurde ein Hauptprogramm in

der Programmiersprache C++ geschrieben, das auf frei verfügbaren Unterprogrammen beruht.

Die meisten Unterprogramme sind in C++ übersetzt und als Routinen eingebunden worden. Die

einzige Ausnahme ist das Unterprogramm zur Berechnung der gebundenen Zustände, es wurde

in Fortran belassen und muss vor der eigentlichen Rechnung ausgeführt werden. Die berechneten

Daten werden anschlieÿend vom Hauptprogramm eingelesen.

Für die Auswertung der Winkelanteile müssen einige 3j-Symbole berechnet werden, dazu wird

das erste aufgeführte Unterprogramm eingebunden. Die Auswertung der Radialanteile benötigt

zum einen die Radialwellenfunktionen für die gebundenen und ungebundenen Zustände, sowie eine

Routine zur Berechnung des Integrals. Letzteres wird mittels einer Hankeltransformation berechnet.

Für die Berechnung der ungebundenen Zustände muss das Atompotential bekannt sein. Auÿerdem

sind zur Normierung der ungebundenen Zustände sphärische Besselfunktionen erforderlich.

In diesem Kapitel werden die verwendeten Unterprogramme näher beschrieben.

3.1 Berechnung der 3j-Symbole

Die zur Berechnung der Winkelanteile wichtigen 3j-Symbole, wie sie im Kapitel 2.3 aufgeführt sind,

werden in der Routine threej berechnet. Für diese Routine wurde ein Programm von Wei [9] als

Vorlage verwendet. Das Programm berechnet aus den 6 Eingabewerten Werten, m1,m2,m3 und

j1, j2, j3 das entsprechende 3j-Symbol nach der Formel

(
j1 j2 j3

m1 m2 m3

)
= δ−m3,m1+m2 · (−1)

j1−j2−m3 ·∆ (j1j2j3)

·

[(
2j1

j1−j2+j3

)(
2j2

j1+j2−j3

)(
2j3

−j1+j2+j3

)(
2j1

j1+m1

)(
2j2

j2+m2

)(
2j3

j3+m3

) ] 1
2

·
∑
k

(−1)
k

(
j1 + j2 − j3

k

)(
j1 − j2 + j3
j1 −m1 − k

)(
−j1 + j2 + j3
j2 +m2 − k

)
(3.1)
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3 Numerische Umsetzung und verwendeten Unterprogramme

mit ∆ (j1j2j3) =

[
(j1 + j2 − j3)! (j1 − j2 + j3)! (−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!

] 1
2

und

(
n

k

)
=

n!

k!− (n− k)!
.

Für die Summationsgrenzen gilt

I1 ≤ k ≤ I2,

mit I1 ≡ max (0, j1 − j2 +m2, j2 − j3 −m1)

und I2 ≡ min (j1 + j2 − j3, j1 −m1, j2 +m2) .

Nach den Auswahlregeln für 3j-Symbole sind diese gleich Null, wenn (vgl. Gl. (2.21))

|mi| > ji für i = 1, 2, 3,

m1 +m2 6= −m3,

|l1 − l2| > l3

und l1 + l2 < l3

ist. Werden diese Auswahlregeln von den Eingabewerten nicht erfüllt, gibt das Programm ohne

weitere Rechnungen Null aus. Für alle übrigen Kombinationen von Eingabewerten sind eine Reihe

von Binomialkoe�zienten von ganzen Zahlen zu berechnen, wie aus der Formel (3.1) ersichtlich

ist. Für groÿe j-Werte werden diese Zahlen sehr groÿ, daher wurde für die Zahlen eine numerisch

günstigere Darstellung zur Rechnung gewählt, die im Folgenden näher beschrieben wird.

Für numerische Multiplikation und Division mit groÿen Integer-Werten ist es üblich, die Zahlen

nach Vielfachen von Primzahlen zu zerlegen. Es ist zum Beispiel 30 = 2 · 3 · 5 oder 6936 =

2 · 2 · 2 · 3 · 17 · 17 = 23 · 3 · 172. Die Exponenten der Primzahlen werden in einem Array gespeichert

und es wird nur noch mit den Exponenten anstelle der groÿen Zahlen gerechnet. So ist zum Beispiel

6936 = 10 ·23 ·31 ·50 ·70 ·110 ·130 ·172 = (0, 3, 1, 0, 0, 0, 0, 2, 0, ..., 0). Diese Darstellungen ist numerisch

sinnvoll, da eine Multiplikation oder Division groÿer Zahlen zur Addition bzw. Subtraktion kleiner

Zahlen wird und dadurch viel schneller berechnet werden kann. Es ist zum Beispiel 30 · 6936 =

24 · 32 · 51 · 172 ≡ (0, 3 + 1, 1 + 1, 0 + 1, 0, 0, 0, 2, 0, ..., 0) = (0, 4, 2, 1, 0, 0, 0, 2, 0, ..., 0).

Zur Addition und Subtraktion groÿer Zahlen ist es numerisch sinnvoll, die Zahlen als eine Summe

von Vielfachen einer Basis zu schreiben. Das Binärsystem ist wohl das bekannteste System dieser

Art, hier ist die Zahl 2 die Basis. Eine Zahl wird also wie folgt dargestellt: 6 = 0 · 2n + ...+ 0 · 23 +

1 · 22 + 1 · 21 + 0 · 20 ≡ (0, ..., 0, 1, 1, 0). Ebenso kann die Basis jede beliebige Zahl sein. In diesem

Programm ist die Basis zu 32768 gewählt, damit die Arrays möglichst klein bleiben aber trotzdem

möglichst groÿe Zahlen darstellt werden können. Um alle Zahlen darstellen zu können, sind in

diesem Fall auch negative Exponenten nötig. Eine Addition oder Subtraktion groÿer Zahlen wird

damit zur Addition bzw. Subtraktion von 1 und 0. Für den Wert 1+1=2 wird der entsprechende

Eintrag gleich Null gesetzt und zu dem nächst höheren eine Eins addiert. Zum Beispiel ist 6+12 ≡
(0, ..., 0, 0, 0, 1, 1, 0) + (0, ..., 0, 0, 1, 1, 0, 0) ≡ (0, ...0, 1, 0, 0, 1, 0).

Für den Faktor vor der Summe in der Gleichung (3.1) wird mit der Primfaktor-Zerlegung gerechnet
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3.2 Berechnung der gebundenen Atom-Zustände (Rnl)

und zur Berechnung der Summe werden die Zahlen über Vielfache der Basis 32768 dargestellt.

Das Programm ist stichprobenartig mit den von Wei [9] abgegebenen Werten überprüft worden.

Zum Beispiel (
15 30 40

2 2 −4

)
= −0.01908158

Des Weiteren ist es mit analytisch einfach berechenbaren Werten nach Edmonds [6] Formel (3.7.9)

getestet worden, wie zum Beispiel:(
2 2 0

2 −2 0

)
= 0.4472136 =

1√
5
.

3.2 Berechnung der gebundenen Atom-Zustände (Rnl)

Wie eingangs erwähnt, werden zur Auswertung der Radialanteile die gebundenen radialen Wellen-

funktionen (Rnl) des Atoms und zur Berechnung der ungebundenen Zustände das Atompotential

benötigt. Die Indizes n und l stehen für die Haupt- und Nebenquantenzahl. Das Programm �wave-

gen.f� gibt eine selbstkonsistente Lösung der radialen Schrödinger-Gleichung für die Rnl des Atoms

und das Atompotential auf einem exponentiellen Gitter aus.

Die Grundlage des Programms ist von Hamann [11] übernommen. Es wurde in der Arbeitsgruppe

von Herrn Krüger (Institut für Festkörpertheorie, WWU Münster) geringfügig verändert. In die

Eingabedatei �wavegen.dat� werden die Kernladungszahl Z des zu untersuchenden Elementes und

dessen Besetzungszahl eingetragen. Für Kohlensto� sieht die Eingabedatei wie folgt aus:

6.

1 0 1. 1.

2 0 1. 1.

2 1 1. 1.

Die erste Zeile enthält die Ordnungszahl Z. In der darunter anschlieÿenden Tabelle sind in der

ersten Spalte die Hauptquantenzahl n und in der zweiten die Drehimpulsquantenzahl l und in

den folgenden zwei Spalten die Besetzungszahlen aufgeteilt nach Spinrichtung einzutragen. Da für

die Berechnung des Wirkungsquerschnittes die Wellenfunktionen nicht spinaufgespalten benötigt

werden, ist die Anzahl der Elektronen gleichmäÿig auf die beiden Spinrichtungen zu verteilen. Die

zu Grunde liegende Formel des Programms ist die radiale Schrödinger-Gleichung:

−1

2

d2

dr2
unl (r) +

(
l (l + 1)

2r2
+ (V (r)− Enl)

)
unl (r) = 0 (3.2)

Das Potential hat die Form V (r) = −Z

r +Vcoulomb (r)+Vxc (r), wobei Vcoulomb (r) =
∫ n(r′)
|~r−~r′|d

3r′ ist
und das Austausch-Korrelations-Potential (Vxc (r)) in lokaler Dichteapproximation nach Perdew

[12] berechnet wird. Für die Energie und das Potential wird die Einheit Hartree verwendet.

Der Anfangswert für das Potential V (r) ist das sogenannte Thomas-Fermi-Potential

V (r) = VThomas−Fermi (r) =
−Z
r
e2Φ

(r
b

)
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3 Numerische Umsetzung und verwendeten Unterprogramme

mit Φ (0) = 0 und Φ (∞) = 0. In der numerischen Umsetzung nach Letter [14] ist

V (r) =
-Z
r

[
1 + 0.02747x

1
2 + 1.243x− 0.1486x

3
2 + 0.2302x2

+0.007298x
5
2 + 0.006944x3

]−1

mit x = r
b für b = 0.8853

Z
1
3

.

Für einen vorgegebenen Energie-Eigenwert (λnl) wird, wie in Abbildung 3.1 dargestellt, die Wel-

lenfunktion durch Auswärtsintegration (uausnl ) und Einwärtsintegration (ueinnl ) berechnet.

-20

-10

0

0,5 1,5

λnl klassischer Umkehrpunkt

rm rmax

V(r)

0,5 1,5rm rmax

u     (r)aus
nl

u    (r)ein
nl

Abbildung 3.1: Zur Verdeutlichung der selbstkonsistenten Rechnung. (persönliche Mitteilung Krüger)

Die Integration wird nach �Adam's Extrapolation / Interpolation Formula� nach Abramowitz [13,

S. 896] durchgeführt. Dann wird ueinnl neu skaliert, sodass ueinnl und uausnl bei rm den gleichen Wert

haben. Anschlieÿend wird die Wellenfunktion normiert. Aus der Unstetigkeit der Ableitung wird

eine Korrektur für λnl mit der Formel

∆λnl =
ueinnl (rm)

2

(
duausnl (rm)

dr
− dueinnl (rm)

dr

)
.

berechnet. Mit dem korrigierten Eigenwert wird die Wellenfunktion erneut berechnet und wieder

eine Korrektur für den Eigenwert bestmmt, bis der Korrekturwert genügend klein ist. Aus den so

ermittelten Eigenwerten und Wellenfunktionen wird das Atom-Potential neu berechnet und dann

die Berechnung der Wellenfunktionen erneut begonnen. Nach hundert Iterationen werden alle Wer-

te ausgegeben.

Die Wellenfunktionen werden auf einem exponentiellen Gitter mitmmax = 213 Punkten berechnet.

Für die Gitterpunkte gilt ri = r0 · aimesh mit r0 = 1
160·Z und amesh = (45 · 160 · Z)

1
mmax gerechnet.

Z ist die Kernladungszahl des Atoms. Das Gitter ist dimensionslos und kann durch Multiplikation

mit dem Bohrschen Radius (a0) in die gewünschte Längeneinheit umgerechnet werden. Die Gröÿe

amesh ist so gewählt, dass der maximale Wert für den Radius rmmax ≥ 45 au (atomic units) be-

trägt. Dieser Abstand zum Kern ist ausreichend, da die zu berechnenden Wellenfunktionen bis zu

dieser Entfernung auf Null abgeklungen sind. Die Anzahl der Netzpunkte ist so gewählt, dass der

Abstand der Gitterpunkte genügend klein ist, um die schnelle Oszillation der später benötigten

Kontinuum-Wellenfunktionen berechnen zu können.

Zur Ausgabe der Werte erstellt das Programm drei Dateien. In der Datei

�r_v_value.dat� werden mmax, amesh, Z, ri und die Potentialwerte in Hartree ausgegeben. Die
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3.2 Berechnung der gebundenen Atom-Zustände (Rnl)

Dateien �waveup.dat� und �wavedown.dat� sind ohne Spinaufspaltung äquivalent. In diesen Dateien

werden in der ersten Zeile die Energieeigenwerte in eV ausgegeben und darunter die Wellenfunk-

tionen für alle besetzten Zustände. Die Abbildungen 3.2 und 3.3 zeigen die numerisch berechneten

radialen Wellenfunktionen für Silizium.

Abbildung 3.2: Radiale Wellenfunktionen (unl (r) = r ·Rnl (r)) für Si.

Abbildung 3.3: Radiale Wellenfunktionen (Rnl (r)) für Si.

Abbildung 3.4 zeigt das numerisch berechneten Atom-Potential für Silizium, dass zur Berechnung

der Kontinuum- Wellenfunktionen verwendet wird.
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3 Numerische Umsetzung und verwendeten Unterprogramme

Abbildung 3.4: Numerisch berechnetes Atom-Potential für Si.

3.3 Berechnung der ungebundenen Atom-Zustände (Rel)

Das Unterprogramm �contwave� berechnet die Kontinuumzustände Rel, die zur Auswertung der

Radialintegrale nötig sind. Die Indizes e und l stehen für die Energie und den Drehimpuls des

Elektrons. Ausgangspunkt ist wie zuvor in Kapitel 3.2 die radiale Schrödinger-Gleichnung:

−1

2

d2

dr2
uel

nicht normiert
numerisch (r) +

(
l (l + 1)

2r2
+ (V (r)− e)

)
uel

nicht normiert
numerisch (r) = 0 (3.3)

Das Programm �wavegen.f� (Kap. 3.2) berechnet die Werte für das Potential V (r). Diese Werte

werden vom Hauptprogramm an die Funktion �contwave� übergegeben. Einfache Auswärtsinte-

gration der Schrödinger-Gleichung für fest vorgegebene Werte für e, l und V (r) liefert die nicht

normierte Kontinuum-Wellenfunktionen Rel
nicht normiert
numerisch zu diesen Quantenzahlen. Die Werte für

die Energie und den Drehimpuls werden vom Hauptprogramm durch ein Start-Wert emin, eine

Energiedi�erenz einc und die Anzahl der zu berechnenden Energiewerte emax vorgegeben.

Die auf diese Weise berechneten Wellenfunktionen müssen schlieÿlich noch normiert werden. Da

sie für r →∞ nicht verschwinden, wird, wie es Cowan [15, Kap. 18] ausführt, auf ein sehr kleines

Energieintervall (∆) normiert:

∫
∆

∫ ∞
0

uel (r)ue′l (r)drde =

∫
∆

δ (e− e′)de =

0, wenn e′ auÿerhalb ∆,

1, wenn e′ innerhalb ∆,
(3.4)

wobei die Funktion uel mit dem Normierungsfaktor (ce) geschrieben werden kann als

uel (r) = ce · r ·Rel (r) .

Dabei ist r ·Rel (r) die auf die Amplitude im Unendlichen normierte Wellenfunktion. Es gilt

lim
r→∞

r ·Rel (r) ∝ cos (qr + δ) mit q =
√

2e . (e in Hartree)

Das Verhalten für kleine r entspricht dem eines gebundenen Zustandes, es kann also geschrieben

werden

lim
r→0

r ·Rel (r) = c1r
l + c2r

l+1 + · · · .
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3.3 Berechnung der ungebundenen Atom-Zustände (Rel)

Multiplikation der radialen Schrödinger-Gleichung (3.3) mit Re′l (r) und Umformen des ersten

Terms nach

−1

2

d2

dr2
uel (r) = − 1

r2

d

dr
r2 d

dr
Rel (r)

ergibt

−Re
′l (r)

r2

d

dr
r2 d

dr
Rel (r) +

(
l (l + 1)

r2
+ V (r)

)
Rel (r)Re′l (r) = 2e ·Rel (r)Re′l (r) . (3.5)

Dabei ist das Potential und die Energie (e), wie in der numerischen Umsetzung, in der Einheit

Hartree einzusetzen. Im Folgenden wurde e′ in Gleichung (3.5) für e eingesetzt und von (3.5)

subtrahiert und anschlieÿend über den Radius integriert:

− 1

(e− e′)

∫ ∞
0

[
Rel (r)

d

dr
r2 d

dr
Re′l (r)−Re′l (r)

d

dr
r2 d

dr
Rel (r)

]
dr

=

∫ ∞
0

r2Rel (r)Re′l (r) dr . (3.6)

Durch partielle Integration und anschlieÿender Integration über e erhält man mit de = qdq∫
∆

∫ ∞
0

uel (r)ue′l (r) dr de =

∫
∆

cece′ ·
∫ ∞

0

r2Rel (r)Re′l (r) dr qdq

= lim
r→∞

∫
∆

cece′q

2 (q − q′)
sin {(q − q′) r + δ − δ′} dq .

Dieser Ausdruck ist Null, wenn q′ nicht in ∆ enthalten ist. Ist q′ in ∆ enthalten, folgt∫
∆

∫ ∞
0

uel (r)ue′l (r) drde =
c2eq

2
lim
r→∞

∫
∆

sin (q − q′) r
q − q′

dq

=
c2eq

2

∫ ∞
−∞

sinxr

x
dx

=
πc2eq

2
.

Damit erhält man für die normierte Wellenfunktion (vgl. [15, Gl. 18.27])

uel =
2

1
4

π
1
2 e

1
4

· r · R̂el .

Es bleibt r · R̂el, die auf die Amplitude im Unendlichen normierte Wellenfunktion, zu bestim-

men. Nach Nolting [16, Kap. 6] lassen sich im Kontinuum die Wellenfunktionen durch sogenannte

sphärische Besselfunktionen jL (r) und sphärische Neumannfunktionen nL (r) der Ordnung L = l

darstellen:

jL (r) = (−r)L
(

1

r

d

dr

)L
sin r

r
und nL (r) = − (−r)L

(
1

r

d

dr

)L
cos r

r
. (3.7)

Das numerische Vorgehen zur Berechnung dieser Funktionen wird im Kapitel 3.4 näher erläutert.

Für einen potentialfreien Raum erhält man

Rel (r) = αljl (qr) + βlnl (qr) mit q =
√

2e .
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3 Numerische Umsetzung und verwendeten Unterprogramme

Für diese Gleichung kann die Amplitude für r → ∞ mit dem Verhalten von jl und nl für r → ∞
nach [16, Gl. 6.125 und 6.126]

lim
r→∞

jl (qr) =
1

qr
sin

(
qr − lπ

2

)
und lim

r→∞
nl (qr) = − 1

qr
cos

(
qr − lπ

2

)
angegeben werden. Daraus folgt für die Wellenfunktion

lim
r→∞

Rel (r) =
αl

q cos δl
sin

(
qr − lπ

2
+ δl

)
mit δl = tan−1

(
−βl
αl

)
.

Die Vorfaktoren αl und βl, werden über die Anschluÿbedingungen

Rnumerisch (ra) = Ranalytisch (ra) und
d

dr
Rnumerisch (r)

∣∣∣∣
r=ra

=
d

dr
Ranalytisch (r)

∣∣∣∣
r=ra

an einem beliebigen Punkt ra, an dem das Atom-Potential zu Null abgeklungen ist, bestimmt.

Damit bekommt man

αl = {Rel − βlnl (qr)}
1

jl (qr)
und βl =

[
d
drRel −

Rel
d
dr jl(qr)

jl(qr)

]
[
d
drnl (qr)− nl (qr)

d
dr jl(qr)

jl(qr)

] .
Zusammenfassend ergibt sich die normierte Wellenfunktion für ungebundene Zustände für die

Energie e in Hartree aus

Rel
normiert =

uel
r

=
2

1
4

π
1
2 e

1
4

· q cos δl
αl

· Rel nicht normiertnumerisch .

In allen anderen Kapiteln dieser Arbeit wird auf den Index �normiert� verzichtet und lediglich Rel
für die vollständig normierte Wellenfunktion geschrieben.

In den Abbildungen 3.5 und 3.6 sind auf die zuvor beschriebeneWeise normierte radiale Kontinuum-

Wellenfunktionen für einige Energie- und Drehimpulswerte dargestellt.

Abbildung 3.5: Radiale Wellenfunktionen (Rel) für ungebundene Zustände mit der Energie e und
einem Drehimpuls l = 0 des Elektrons für Si.
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3.3 Berechnung der ungebundenen Atom-Zustände (Rel)

Abbildung 3.6: Radiale Wellenfunktionen (Rel) für ungebundene Zustände mit der Energie e und
einem Drehimpuls l = 2 des Elektrons für Si.

In Abbildung 3.7 und 3.8 sind anstatt Rel die Werte für uel aufgetragen. Hier ist sehr gut zu sehen,

dass die Funktionen für groÿe Argumente gleichmäÿig und mit konstanter Amplitude schwingen.

Für kleine Energien setzt dieses Verhalten erst bei sehr groÿen Werten für r ein und ist daher für

0,1 eV bei r=25 au noch nicht zu sehen.

Abbildung 3.7: Radiale Wellenfunktionen (uel = r · Rel) für ungebundene Zustände mit der Energie
e und einem Drehimpuls l = 0 des Elektrons für Si.
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3 Numerische Umsetzung und verwendeten Unterprogramme

Abbildung 3.8: Radiale Wellenfunktionen (uel = r · Rel) für ungebundene Zustände mit der Energie
e und einem Drehimpuls l = 2 des Elektrons für Si.

3.4 Berechnung der sphärischen Bessel- und

Neumannfunktionen

Für die Normierung der ungebundenen Atom-Zustände Rel sind sphärische Besselfunktionen jL (r)

und sphärische Neumannfunktionen nL (r) der Ordnung L zu berechnen.

jL (r) = (−r)L
(

1

r

d

dr

)L
sin r

r
und nL (r) = − (−r)L

(
1

r

d

dr

)L
cos r

r
(3.8)

Die Neumannfunktion wird auch Weberfunktion oder Besselfunktion 2. Art genannt. Das Pro-

gramm zur Berechnung dieser Funktionen beruht auf der Routine SPHFUN von Ardill und Mori-

arty [10]. Aus den Eingabewerten für r und L werden nach den bei Abramowitz [13] aufgeführten

Näherungsformeln die entsprechenden Bessel- und Neumannfunktionen berechnet. Dabei wird der

Funktionswert der Wert der Besselfunktion und der Wert für die Neumannfunktion als Parame-

ter an das Hauptprogramm übergeben. Für kleine Ordnungen und groÿe Argumente werden die

Formeln (10.1.8) und (10.1.9) in [13] als Grundlage benutzt. Sind die Ordnungen groÿ und die

Funktionswerte klein, liegen die Formeln (10.1.2) und (10.1.3) den Rechnungen zu Grunde. Für

Ordnungen kleiner Null wird die Formel (10.1.15) numerisch ausgewertet.

Es können Besselfunktionen bis zur Ordnung 50 im Bereich von -100 bis 100 berechnet werden

[10]. Abbildung 3.9 zeigt die mit dieser Routine berechneten Bessel- und Neumannfunktionen für

einige L-Werte.
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3.5 Berechnung der sphärischen Hankeltransformation

Abbildung 3.9: Numerisch berechnete sphärische Bessel- (jL) und Neumannfunktionen (nL).

3.5 Berechnung der sphärischen Hankeltransformation

Die Radialintegrale in den Matrixelementen werden über die so genannte sphärische Hankeltrans-

formation g (q) oder auch sphärische Besseltransformation ausgewertet. Diese hat die Form

g (q) =

∫ ∞
0

jL (qr) f (r) r2dr , (3.9)

wobei jL (qr) eine sphärische Besselfunktion ist, wie sie in Kapitel 3.4 beschrieben ist. Die Funktion

f (r) ist in der Anwendung für diese Arbeit die Multiplikation der radialen Wellenfunktionen für

gebundene und ungebundene Zustände in Verbindung mit einem weiteren Faktor oder Ableitungs-

operator. Zum Beispiel:

f (r) = Rel ·Rnl oder f (r) = Rel ·
(
∂

∂r
+
l + 1

r

)
Rnl .

Das Programm zur Berechnung der Hankeltransformation beruht auf dem Programm �LSFBTR�

(Logarithmic Scale Fourier Bessel TRansform) von Talman [17]. Das Integral wird auf einem ex-

ponentiellen q-Gitter mit 2N Gitterpunkten ausgewertet. Dazu werden im Hauptprogramm die

Werte für f (r), der Wert L, das radiale Gitter und die zur Charakterisierung des q-Gitters wich-

tigen Werte an das Unterprogramm übergeben. Das q-Gitter berechnet sich analog zum radialen

Gitter nach qi = qmin · aimesh und besteht ebenfalls aus 213 Gitterpunkten.

Durch den Wechsel auf ein exponentielles Gitter mit r = eρ und q = ek, kann g (q) als eine

Kreuzkorrelation aufgefasst werden:

g
(
ek
)

=

∫ ∞
−∞

jL
(
eρ+k

)
f (eρ) e3ρdρ . (3.10)
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3 Numerische Umsetzung und verwendeten Unterprogramme

Damit ist das Integral über eine Fourier Hin- und Rücktransformation zu berechnen. Es ist nume-

risch sinnvoll (3.10) umzuformen in

g
(
ek
)

= e(m−
3
2 )k
∫ ∞
−∞

e(
3
2−m)(k+ρ)jL

(
ek+ρ

)
e(m+ 3

2 )ρf (eρ) dρ . (3.11)

Hier ist m ein frei wählbarer Parameter in den Grenzen 0 ≤ m ≤ L. Mit dem Faltungstheorem∫ ∞
−∞

f (x+ y) g (y) dy =
1

2π

∫ ∞
−∞

e−ikxf̃ (k) g̃ (−k) dk ,

wobei f̃ und g̃ die Fouriertransformierten von f und g sind, kann die Gleichung weiter umgeschrie-

ben werden zu

g
(
ek
)

= 2πe(m−
3
2 )k
∫ ∞
−∞

eiktML,m (t) Φm (t) dt (3.12)

= 4πe(m−
3
2 )kRe

∫ ∞
0

eiktML,m (t) Φm (t) dt . (3.13)

Hier ist

Φm (t) =
1

2π

∫ ∞
−∞

eixt e(
3
2 +m)xf (ex) dx und

ML,m (t) =
1

2π

∫ ∞
−∞

e−ixt e(
3
2−m)xjL (ex) dx

= (8π)
− 1

2

p∏
j=1

(
j − 1

2− it

) l∏
j=1

(
2j − l +m− 1

2
+ it

)−1

·
[
cos
(pπ

2

)
ei(φ1−φ2) + sin

(pπ
2

)
ei(φ1+φ2)

]
mit

φ1 = arg

[
Γ

(
1

2
− it

)]
und φ2 = tan−1

(
tanh

πt

2

)
.

Numerisch wird die Fouriertransformation über die sogenannte Fast-Fourier-

Transform (FFT) nach

ym =

N−1∑
n=0

e
2πinm
N xn

berechnet.

Die Hankeltransformation wird nach folgendem Schema berechnet:

Für L ≤ 1 und kleine k-Werte wird Gleichung (3.10) numerisch berechnet. Die Funktion f(r)

wird mit e3ρ = r3 multipliziert und davon die FFT berechnet. Die erhaltenen Werte werden mit

der FFT der Besselfunktion multipliziert und dieser Wert durch erneute FFT zurücktransformiert.

Sonst wird Gleichung (3.13) numerisch ausgewertet und dabeim = L für kleine k-Werte undm = 0

für groÿe k-Werte verwendet. Es wird der Punkt der besten Übereinstimmung der Lösung für groÿe

und kleine k-Werte ermittelt. Die Ausgabe der Routine ist ein entsprechender Zusammenschnitt

aus den Lösungen für groÿe und kleine k-Werte. Vor der zweiten FFT wird die zweite Hälfte der

Funktion gleich Null gesetzt, da so nach empirischen Analysen bessere Ergebnisse erzielt werden
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3.5 Berechnung der sphärischen Hankeltransformation

können [17].

Die Werte für die FFT der Besselfunktion sowie für ML,m werden nur beim ersten Aufruf oder

nach Änderung der Gitterparameter berechnet und für alle weiteren Rechnungen gespeichert. Diese

Berechnung wird in einer separaten Routine

�INITIALIZE� durchgeführt.

Die Berechnung der Phase φ1 wird nach einer Idee von Weickenmeier (persönliche Mitteilung)

über die Berechnung einer Gammafunktion, wie sie bei Abramowitz [13, Gl. 6.1.27] zu �nden ist,

durchgeführt.

arg

[
Γ

(
1

2
+ iy

)]
= yΨ

(
1

2

)
+

∞∑
n=0

(
2y

1 + 2n
− arctan

(
2y

1 + 2n

))

Dabei ist Ψ
(

1
2

)
= −1, 9635100260. Die Summe wird bis zum vierfachen des Imaginärteils, n = 4 ·y,

oder mindestens bis n = 10 berechnet und die Restsumme nach der Eulerschen Summenformel ([13,

Gl. 3.6.27]) bzw. die Koe�zienten darin nach der Euler-MacLaurin Summenformel ([13, Gl. 3.6.28])

ausgewertet und addiert.

Die Routine wird wie bei Talman [17] beschrieben mittels eines analytisch auswertbaren Ausdrucks

getestet. Für eine Funktion

fl (r) = rle−ar

ist

gl (q) =

∫ ∞
0

jL (qr) fl (r) r
2dr = 2 (l + 1)!a (2k)

l (
a2 + k2

)−(l+2)
.1

Abbildung 3.10 zeigt die analytische Lösung und numerische Berechnung von fl (r) für a = 1

und l = 5. Auÿerdem ist dort die Abweichung in Prozent ebenfalls mit aufgetragen. Es ist zu

erkennen, dass diese für den in dieser Arbeit relevanten Bereich bis etwa q=10 weit unter einem

Prozent liegt. Das in dieser Rechnung verwendete Gitter im Ortsraum ri ist wie für die Berechnung

des Wirkungsquerschnittes nach Kapitel 3.2 de�niert. Der dazu benötigte Wert Z ist willkürlich

gleich 14 gesetzt. Für die Darstellung in Abbildung 3.10 sind zwei Rechnungen für verschieden

groÿe Minimalwerte im reziproken Raum qmin nötig. Mit qmin = 1, 6701 · 10−5 sind hier die

Funktionswerte für kleine q-Werte bis q = 2, 4708 ·10−3 berechnet und mit qmin = 2, 4787 ·10−3 die

Funktionswerte für gröÿere q-Werte. So können die Funktionen hier über den gesamten relevanten

q-Werte Bereich angegeben werden.

1In der hier aufgeführten Formel für gl (q) ist ein Druckfehler aus [17] berücksichtigt. Es muss, wie auch aus dem

Quelltext von Talman hervor geht, kl durch (2k)l ersetzt werden.
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3 Numerische Umsetzung und verwendeten Unterprogramme

Abbildung 3.10: Analytische Lösung und numerische Berechnung einer Hankeltransformation nach
Gleichung (3.5) für f5 (r) = r5e−r im Vergleich.

Es sei noch darauf hingewiesen, dass bei der Routine für die schnelle Hankeltransformation bei

q-Werten gröÿer als 15 Probleme mit der Numerik auftreten (persönliche Mitteilung Weicken-

meier). Dies wird in der vorliegenden Arbeit nicht berücksichtigt, da nur kleine Akzeptanzwinkel

betrachtet werden und somit die q-Werte genügend klein sind. In dem �MATRIX�-Programm von

Weickenmeier [21] wird in der Routine �MANLQA� (MANager for Larg Q Approximation) eine

Lösung für groÿe q-Werte approximativ ermittelt.
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4 Das Hauptprogramm dsigmadE

4.1 Aufbau

Das Hauptprogramm verwendet die zuvor aufgeführten Unterprogramme für die Berechnung des

energiedi�erentiellen Wirkungsquerschnittes.

Die Eingabewerte für das Programm sind (Abb. 4.1):

- die Kernladungszahl Z und die Quantenzahlen n und l der Schale, für die der Wirkungsquer-

schnitt berechnet werden soll

- der Akzeptanzwinkel α in mrad

- der Energiebereich, dazu ist der gewünschte minimale Energieverlust emin abzüglich der Bin-

dungsenergie in eV, die Schrittweite der Energiewerte einc in eV und die maximale Anzahl an

Energiewerten emax anzugeben

- der maximale Drehimpuls llmax für die Kontinuumzustände

- die Energie der einfallenden Elektronen Ekin in keV

Die Kantenenergie wird gleich der Bindungsenergie der entsprechenden Elektronen gesetzt und in

dem Programm �wavegen.f� (vgl. Kap. 3.2) berechnet und anschlieÿend im Hauptprogramm ein-

gelesen.

Die grundlegende Formel, nach der das Programm den Wirkungsquerschnitt berechnet, ist in Glei-

chung (2.11) angegeben. Da für die Wellenzahlen ki und kf bzw. die Di�erenz q und den Radius r

atomare Einheiten verwendet werden, ist q durch Q = q · a0 und r durch r̃ = r
a0

zu substituieren.

Mit der Relation (2.16) erhält man aus Gleichung (2.11)

dσ (∆E)

d∆E
=
α2 · 4 · π
β2
i

a2
0 · d lnQ

ERy

·

 1

Q2

(∣∣∣P̃++

∣∣∣2 +
∣∣∣P̃+−

∣∣∣2)+

(
Q ~t~βi

Q2 −
(

∆E a0
~c

)2
)2(∣∣∣P̃α++

∣∣∣2 +
∣∣∣P̃α+−∣∣∣2)

 . (4.1)

Hier sei noch einmal auf die Relation∣∣∣P̃α∣∣∣2 = 2 (2l + 1)
∑
l′

1
2l+1

∑
m

∑
m′

|Pα|2 ,

wie sie in Kapitel 2.4 eingeführt wurde, hingewiesen. Die Betragsquadrate werden nach Gleichung

(2.17) berechnet. Aufgrund der Ableitungen nach r in den Radialintegralen und da d
dr = 1

a0
d
dr̃ ist,

ist der Faktor a0 in den Gleichungen zu berücksichtigen. Es ist demnach

35



4 Das Hauptprogramm dsigmadE

Ix±iy (q) =
1

a0
Ix±iy (Q)

Iz (q) =
1

a0
Iz (Q)

I∆ (q) =
1

a2
0

I∆ (Q) .

Für die Berechnung der Normierungsfaktoren Nn der Darwin-Wellenfunktionen aus Gleichung

(2.12) ist die Gleichung ∫
d3rϕn+ 1

2
(~r)
∗
ϕn+ 1

2
(~r) = 1

zu lösen. Mittels partieller Integration erhält man zwei numerisch auszuwertende Ausdrücke (An-

hang D). Für gebundenen Zustände ergibt sich

N2
n =

1

1 +
(

~
2mca0

)2

2 ·
(
En,l − 4π

∫
r̃3 (Rn,l(r̃))

2
d ln r̃

)
und für Kontinuumzustände

N2
k =

1

1 +
(

~
2mca0

)2

2 ·
(
e− 4π

∫
r̃3 (Re,l′(r̃))

2
d ln r̃

) .

Dabei sind die Energiewerte und das Potential in Hartree einzusetzen. Der Normierungsfaktor für

gebundene Zustände Nn hängt von der Hauptquantenzahl n und der Drehimpulsquantenzahl l ab.

Da diese beiden Werte fest vorgegeben werden, kann am Ende der Rechnung mit Nn multipliziert

werden. Der Normierungsfaktor für die Kontinuumzustände ist von der Energie und von dem Dre-

himpuls abhängig. Über diese beiden Werte wird in dem Hauptprogramm summiert, daher muss

Nk für jeden Summanden einzeln berechnet werden.

Der Verlauf der Rechnung ist in Abbildung 4.1 anschaulich dargestellt. Die Datei �wavegen.dat�

enthält Informationen über die Kernladungszahl Z, über die Quantenzahlen n und l und über die

Besetzungszahlen für Spin up bup und für Spin down bdown des Elementes, für das der Wirkungs-

querschnitt berechnet werden soll. Das Programm �wavegen.f� liest diese Datei ein und schreibt

die Werte für die entsprechenden gebundenen radialen Wellenfunktionen unl = r · Rnl, für das
Potential V und für das verwendete radiale Gitter r̃ in die Dateien �r_v_value.dat� und �wa-

veup.dat�. Durch die Routine �input� werden die Werte aus den beiden Dateien eingelesen. In der

anschlieÿend aufgerufenen Routine �contwave� werden die radialen Kontinuum-Wellenfunktionen

Rel′ berechnet. Dann beginnt eine Schleife, die den gewünschten Energiebereich durchläuft. In die-

ser Schleife werden die Werte für die Q-Integration berechnet und die Matrixelemente nach den

Gleichungen aus Kapitel 2.4 durch Summation über l′, m und L ausgewertet. Für jeden Summan-

den werden das Quadrat des Normierungsfaktors Nk, die entsprechenden 3j-Symbole in der Routine

�threej� und die Hankeltransformationen in der Routine �LSFBTR� berechnet und anschlieÿend

aufsummiert. Daraus ergeben sich die in Kapitel 2.4 aufgeführten Betragsquadrate |I|2 für den je-

weiligen Energiewert. Mit diesen Werten können die Betragsquadrate aus Gleichung (2.17) berech-

net werden. Anschlieÿend wird die Q-Integration über die so gewonnenen Ausdrücke ausgeführt.
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4.1 Aufbau

r_v_value.dat 

dsigmadE: 

wavegen.dat 

Z, n, l , a, Ekin,  

llmax, emin, einc, emax 

Z, n, l , a, Ekin , llmax, emin, einc, emax 

mmax 

amesh 
𝑟             V(𝑟 )   
   •                         • 
   •                         • 
   •                         • 

Z 
n       l        bup   bdown 
 •          •               •            • 
 •          •               •            • 
 •          •               •            • 

waveup.dat 

Enl  • • • 

𝑟             u10 (𝑟 )     • • •   unl (𝑟 )  
   •                         •                                         • 
   •                         •                                         • 
   •                         •                                         • 

 

𝑟 , V(𝑟 ),  Rnl, Enl  

Rel‘  

contwave: Berechnung der Kontinuum-Wellenfunktion 

Zur Normierung: jl‘, nl‘  

dsigmadE.dat 

Z           Ekin        n          l           Enl         a 

DE            𝑑𝜎𝑘𝑖𝑛. 𝑘𝑜𝑟𝑟. DE 𝑑DE              𝑑𝜎𝑟𝑒𝑙. DE 𝑑DE   
   •                                                     •                                                                                • 
   •                                                     •                                                                                • 
   •                                                     •                                                                                • 

wavegen.f 

Berechnung von: 𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥  

𝐼 𝑒
2 =  𝑁𝑘

2 ∙
𝑙 𝐿 𝑙′

𝑚 0 𝑚
𝑙′,𝑚,𝐿

∙  𝑅𝑒𝑙′ 𝑟 𝑅𝑛𝑙 𝑟 𝑗𝐿 𝑄𝑟 𝑟 
2𝑑𝑟  

threej LSFBTR 

=  𝑁𝑘
2 ∙       1,735     

𝑙′,𝑚,𝐿

  ∙                  g𝑒,𝐿,𝑙′ 𝑄  

𝒅𝝈 𝚫𝑬

𝒅𝚫𝑬
=
𝑑𝜎 𝑒

𝑑𝑒
= 104 ∙ 𝑁𝑛

2  ∙  𝐼 𝑒
2 𝑄  

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

𝑑ln𝑄 

input: Zugriff auf r_v_value.dat und waveup.dat 

SPHFUN 

𝑟 , V(𝑟 ),  Rnl, Enl  

Eingabewerte: 

S
ch

le
if

e:
 z

äh
le

 e
 v

o
n

 e
m

in
 b

is
 e

m
a

x 
• 

ei
n

c 

Abbildung 4.1: Anschauliche Darstellung zum Verlauf der Rechnung. Abgerundete Boxen symboli-
sieren Unterprogramme bzw. mit gestricheltem Rand Programmabschnitte. In den
eckigen Boxen stehen Ein- und Ausgabewerte angeordnet, wie in den entsprechenden
Dateien. Gestrichelte eckige Boxen umrahmen Werte, die in Variablen zwischenge-
speichert werden.
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4 Das Hauptprogramm dsigmadE

Die Berechnung für jeden einzelnen Energieverlust endet mit der Multiplikation des Quadrates

des Normierungsfaktors Nn. Da der Bohrsche Radius im Programm in Meter angegeben ist muss

der erhaltene Wert mit dem Faktor 104 multipliziert werden, um den Wirkungsquerschnitt in

der Einheit cm2 bzw. für den energiedi�erentiellen Wirkungsquerschnitt in cm2

eV anzugeben. In

der Ausgabedatei �dsigmadE.dat� sind ab der zweiten Zeile die relativistischen und kinematisch

korrigierten Wirkungsquerschnitte für die jeweiligen Energieverluste ∆E angegeben. In der ersten

Zeile stehen die charakterisierenden Parameter für die Rechnung.

Zur Optimierung der Laufzeit des Programms wird das diskrete Q-Gitter für alle Hankeltransfor-

mationen gleich belassen. Damit können zwar die nach (2.9) und (2.10) berechneten theoretischen

Q-Grenzen (q a0)min und (q a0)max nicht exakt eingehalten werden, aber es müssen auch die zeit-

aufwändigen Rechnungen in der Routine �INITIALIZE� (Kap. 3.5) nur einmal ausgeführt werden.

Die so berechneten Wirkungsquerschnitte weichen nur unwesentlich von den Rechnungen mit ver-

änderten Q-Gittern ab und die Rechenzeit wird etwa um den Faktor 10 verkürzt. Für die untere

Grenze der Q-Integration Qmin wird der zu (q a0)min nächst kleinere Wert des diskreten Q-Gitters

ermittelt und für die obere Grenze Qmax der zu (q a0)max nächst kleinere Wert.

4.2 Ergebnisse

In den Abbildungen 4.2 - 4.4 sind die Ergebnisse für die energiedi�erentiellen Wirkungsquerschnitte

für K-Schalen-Ionisation für Kohlensto�, Sauersto� und Silizium angegeben. Die Auswahl dieser

Elemente soll den am häu�gsten benötigten Bereich an Energieverlusten abdecken. Es sind jeweils

voll-relativistische und kinematisch korrigierte Werte, sowie das Verhältnis beider Werte aufgetra-

gen. Die Di�erenz zwischen beiden Werten nimmt wie zu erwarten mit zunehmender Beschleuni-

gungsspannung zu, da sich bei gröÿeren Geschwindigkeiten die relativistischen E�ekte, die durch

den zusätzlichen Term berücksichtigt werden, stärker auswirken. Bei einer Beschleunigungsspan-

nung von 200 kV ist der relative Unterschied zwischen voll-relativistischen und kinematisch korri-

gierten Werten mit 6-9% gut erkennbar und bei 400 kV mit 12-30% noch deutlicher. Für 100 kV

überlagern sich die Graphen dagegen nahezu und zeigen nur einen Unterschied von etwa 2%. Des

Weiteren ist zu bemerken, dass der relative Unterschied auch für steigende Energieverluste gröÿer

wird. Auÿerdem ist in Abbildung 4.4 der Wirkungsquerschnitt zum Vergleich für zwei verschiedene

Akzeptanzwinkel gezeigt. Demnach liefert der zusätzliche Term für kleinere Akzeptanzwinkel einen

gröÿeren Beitrag. Bei 400 kV ist der relative Unterschied von voll-relativistischen zu kinematisch

korrigierten Werten für 20mrad um 10-18% kleiner als der Wert für 3mrad. Bei 100 kV und 200 kV

ist der Unterschied zwischen 3mrad und 20mrad diesbezüglich nur marginal.

Die Abbildungen 4.5 und 4.6 zeigen die Ergebnisse für die energiedi�erentiellen Wirkungsquer-

schnitte für L2,3-Schalen-Ionisation von Magnesium und Silizium. Damit ist die Anregung der

Atomelektronen aus den 2p Orbitalen verbunden. Die entsprechenden Quantenzahlen sind dafür

n = 2 und l = 1. Auch hier wirken sich die relativistischen E�ekte, die durch den zusätzlichen Term

berücksichtigt werden, mit zunehmender Beschleunigungsspannung stärker aus. Im Vergleich zur

K-Schalen-Ionisation sind die relativen Unterschiede zwischen voll-relativistischen und kinematisch

korrigierten Wirkungsquerschnitten etwas kleiner. Bei 400 kV beträgt der Unterschied 6-15%, für

200 kV 3-7% und bei 100 kV knapp 2%.
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4.2 Ergebnisse

Abbildung 4.2: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodel für K-Schalen Ionisation von Kohlensto� bei 3mrad Akzeptanzwinkel für
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen
ist ebenfalls das Verhältnis aus beiden Werten aufgetragen.
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4 Das Hauptprogramm dsigmadE

Abbildung 4.3: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodel für K-Schalen Ionisation von Sauersto� bei 3mrad Akzeptanzwinkel für
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnun-
gen ist ebenfalls das Verhältnis aus beiden Werten aufgetragen.
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4.2 Ergebnisse

Abbildung 4.4: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodel für K-Schalen Ionisation von Silizium bei 3mrad und 20mrad Akzep-
tanzwinkel für verschiedene Beschleunigungsspannungen. Zum besseren Vergleich ist
ebenfalls das Verhältnis aus relativistischer und kinematisch korrigierter Rechnung
für beide Akzeptanzwinkel aufgetragen.
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4 Das Hauptprogramm dsigmadE

Abbildung 4.5: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodell für L-Schalen Ionisation von Magnesium bei 3mrad Akzeptanzwinkel für
verschiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen
ist ebenfalls das Verhältnis aus beiden Werten aufgetragen.
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4.2 Ergebnisse

Abbildung 4.6: Relativistische und kinematisch korrigierte Wirkungsquerschnitte nach dem Zentral-
feldmodell für L-Schalen Ionisation von Silizium bei 3mrad Akzeptanzwinkel für ver-
schiedene Beschleunigungsspannungen. Zum besseren Vergleich beider Rechnungen ist
ebenfalls das Verhältnis aus beiden Werten aufgetragen.
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5 Diskussion

Die Ergebnisse für K-Schalen Ionisation zeigen, dass die durch voll-relativistische Gleichungen be-

rücksichtigten E�ekte, magnetische Wechselwirkung und Retardierungse�ekte, ab einer Beschleu-

nigungsspannung von 200 kV einen deutlichen Ein�uss haben.

Ein Vergleich der Ergebnisse mit Rechnungen auf der Grundlage des Wassersto�modells ist in

der Abbildung 5.1 dargestellt. Die nicht relativistischen, kinematisch korrigierten Werte sind mit

dem Programm �SigmaK3� von Egerton [8, Anhang B.6] berechnet. Für die Berechnung der voll-

relativistischen Wirkungsquerschnitte nach dem Wassersto�modell ist das Programm �SigmaKrel�

von Knippelmeyer [2] verwendet worden. In beiden Programmen wird, um das Wassersto�modell

an Kernladungszahlen Z gröÿer eins anzupassen, ein Korrekturfaktor für Z eingeführt. Damit wird

der Abschirmung der Kernladung durch die Elektronenhülle Rechnung getragen. Dieser Faktor ist

in beiden Programmen gleich 0,5 gewählt, wie es bei Egerton [8] angegeben ist. Die nach dem

Wassersto�modell berechneten Werte sind für Verlustenergien um 300 eV etwa 15% gröÿer und

bei Verlustenergien um 900 eV etwa 15% kleiner als die Ergebnisse aus den Zentralfeldrechnungen

(Abb. 5.1). Diese Abweichung in den Ergebnissen gilt für den Vergleich beider voll-relativistischer

Werte miteinander sowie für den Vergleich beider kinematisch korrigierter Werte miteinander. So-

wohl die Gröÿenordnung als auch der Verlauf für beide Modelle stimmen überein.

Den beiden verglichenen Rechnungen liegen verschiedene Potentiale zu Grunde. Daher ist eine Ab-

weichung in den Ergebnissen zu erwarten. Das in dieser Arbeit verwendete Potential wird aus ei-

ner selbstkonsistenten Lösung der Schrödinger-Gleichung in lokaler Dichteapproximation berechnet

und dem Wassersto�modell liegt ein Coulomb-Potential zu Grunde. Um den Ein�uss der Potentiale

näher untersuchen zu können, müsste das Potential für die Zentralfeldrechnung entsprechend um

einen asymptotischen Anteil erweitert werden. Diese Überlegungen konnten aus Zeitgründen im

Rahmen dieser Arbeit nicht betrachtet werden.
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Abbildung 5.1: Vergleich von relativistischen und kinematisch korrigierten Wirkungsquerschnitten
berechnet nach dem Zentralfeldmodell (rot) und dem Wassersto�modell (blau) für
K-Schalen Ionisation von Kohlensto� bei 3mrad Akzeptanzwinkel für verschiedene
Beschleunigungsspannungen. Zum besseren Vergleich beider Modelle ist ebenfalls das
Verhältnis aus beiden Werten aufgetragen.
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5 Diskussion

Im Vergleich zu den Werten nach Pokroppa [18] liegen die Ergebnisse um einen Faktor von et-

wa 1,7 für Magnesium und 1,2 für Silizium höher. Auch hier liegt wie beim Vergleich mit dem

Wassersto�modell ein anderes Potential zu Grunde, ein Green-Sellin-Zachor Potential [19]. Aller-

dings sind die groÿen Abweichungen dennoch überraschend. Eine Erklärung für den deutlichen

Unterschied beider Rechnungen konnte im Rahmen dieser Arbeit aus Zeitgründen nicht gefunden

werden. Einsetzen eines Green-Sellin-Zachor Potentials in das in dieser Arbeit erstellte Programm

könnte Aufschluss über die Auswirkungen der verschiedenen Potentiale geben. Insgesamt ist bei

dem Vergleich der Wirkungsquerschnitte aber zu erkennen, dass Verlauf und Gröÿenordnung auch

für L-Schalen Ionisation im Wesentlichen übereinstimmen und somit die Ergebnisse diesbezüglich

bestätigt werden.

Eine weitere Bestätigung für die berechneten Werte liefert der Vergleich des kinematisch korrigier-

ten Wirkungsquerschnitts für L-Schalen Ionisation mit dem Programm �SigmaL3� von Egerton [8,

Anhang B.7]. Dieses Programm beruht wie �SigmaK3� auf dem Wassersto�modell und berechnet

den Wirkungsquerschnitt für L-Schalen Ionisation nach kinematisch korrigierten Ansätzen. Abbil-

dung 5.2 zeigt in Tendenz und Gröÿenordnung eine gute Übereinstimmung beider Rechnungen.

Abbildung 5.2: Vergleich von kinematisch korrigierten Wirkungsquerschnitten berechnet nach dem
Zentralfeldmodell, wie es in dieser Arbeit beschreiben ist und dem Wassersto�modell
für L-Schalen Ionisation von Titan (Z=22) bei 10mrad Akzeptanzwinkel für 80 kV
Beschleunigungsspannung.
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6 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde ein Programm erstellt, dass den energiedi�erentiellen Wirkungs-

querschnitt für inelastische Streuung von Elektronen auf der Grundlage des Zentralfeldmodells

berechnet. Der verwendete Formalismus beruht auf voll-relativistischen Gleichungen, sodass voll-

relativistische und kinematisch korrigierte Wirkungsquerschnitte berechnet werden können.

Insgesamt zeigen die Ergebnisse, dass die durch voll-relativistische Gleichungen berücksichtigten

E�ekte, magnetische Wechselwirkung und Retardierungse�ekte, ab einer Beschleunigungsspannung

von 200 kV einen deutlichen Ein�uss haben. Des Weiteren konnte gezeigt werden, dass das in dieser

Arbeit erstellte Programm im Vergleich zu bisherigen Rechnungen realistische Werte liefert.

Mit dem erstellten Programm kann der voll-relativistische Wirkungsquerschnitt für K-Schalen Io-

nisation, für L-Schalen Ionisation und prinzipiell auch für höhere Schalen berechnet werden. Damit

sollte es möglich sein, die chemische Zusammensetzung eine Probe mit einem Elektronenmikroskop

bei hohen Beschleunigungsspannungen zuverlässiger zu ermitteln. Aufgrund der Wahl des Zentral-

feldmodells ist dies auch für Elemente die typischerweise nicht nach K-Schalen Ionisation bestimmt

werden möglich.

Ein nächster Schritt könnte die experimentelle Bestätigung dieser Werte für die Wirkungsquer-

schnitte sein. Dazu könnte zum Beispiel ein winkelaufgelöstes Spektrum für Silizium bei einem

Energieverlust von 1840 eV (Silizium K-Schalen-Ionisationsenergie) bei verschiedenen Beschleuni-

gungsspannungen aufgenommen und mit entsprechenden Wirkungsquerschnitten verglichen wer-

den. Dabei sollte sich der Verlauf für steigende Beschleunigungsspannungen qualitativ ändern [20].
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Anhang A: Berechnung zur Aufspaltung

der Matrixelemente

Im Folgenden ist die Aufspaltung der Matrixelemente mit dem Ansatz der Darwin-Wellenfunktionen

näher ausgeführt. Die Summe über die Spinzustände in Gleichung (2.11) kann mit (2.14) ausge-

schrieben werden.

1

2

∑
sn,sm

∣∣< m|ei~q~r|n >
∣∣2 =

1

2

(
|P++|2 + |P−−|2 + |P+−|2 + |P−+|2

)
(A.1)

1

2

∑
sn,sm

∣∣< m|~α~tei~q~r|n >
∣∣2 =

1

2

(∣∣Pα++

∣∣2 +
∣∣Pα−−∣∣2 +

∣∣Pα+−∣∣2 +
∣∣Pα−+

∣∣2) (A.2)

Die einzelnen Summanden lassen sich durch mehrfache partielle Integration berechnen, wie es am

Beispiel P++ und Pα−+ hier gezeigt wird. Zuvor sollte noch gesagt sein, dass die Wellenfunktionen

für gebundene Zustände im Unendlichen gleich null sind, da dort die Aufenthaltswahrscheinlichkeit

für ein Elektron gleich Null ist. Deshalb verschwinden sämtliche Stammfunktionen, die bei den

partiellen Integrationen entstehen und werden daher nur im ersten Rechenschritt mit angeführt.

1
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∫
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Die Bildung des Betragsquadrates führt zu

|P++|2 =N2
kN

2
n

∣∣∣∣∣I0 −
(

~
2mc

)2

I∆

∣∣∣∣∣
2

+

(
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2mc
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q2 |Iz|2 (A.3)

−2Re

{(
I0 −

(
~

2mc

)2

I∆

)
· iq
(

~
2mc

)2

I∗z

}]
. (A.4)

Für Pα±± muss zunächst der Ausdruck ~α~t genauer beschrieben werden. Der Vektor ~t ist ein Ein-

heitsvektor in x-y-Richtung(vgl. 2.2) und die drei Komponenten von α enthalten die Dirac'schen

Matrizen(α1, α2, α3). Es gilt

~t = sinϕ~ex + cosϕ~ex =

txty
0

 und ~α =

α1

α2

α3


mit

α1 =


0 0 0 1
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0 0 0 −i
0 0 i 0
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Damit erhält man
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
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Es folgt daraus
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Anhang A: Berechnung zur Aufspaltung der Matrixelemente
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Bildet man über diesen Ausdruck schlieÿlich noch das Betragsquadrat, wie es für die Berechnung

des Wirkungsquerschnitts erforderlich ist, bekommt man

∣∣Pα−+

∣∣2 = N2
kN

2
n

(
~

2mc

)2

q2 |I0|2 . (A.5)

Dazu sei noch einmal darauf hingewiesen, dass ~t ein Einheitsvektor ist und daher
∣∣~t∣∣ = 1 ist, woraus

sich der Zusammenhang

|(tx + ity)|2 = (tx − ity) · (tx + ity) = t2x + t2y =
∣∣~t∣∣2 = 1

ergibt.
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Anhang B: Ergänzung zu Kapitel 2.4

Im Folgenden ist die analytische Berechnung der Betragsquadrate der Matrixelemente ergänzend

zum Kapitel 2.4 aufgeführt.

Berechnung des Ausdrucks
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auf |I0|2 zurückgeführt werden. Es ergibt sich
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Hierbei ist RE−V =
∫∞

0
(En − V (r))Rel′ (r) jL (qr)Rnl (r) r

2dr und es gelten die Summations-

grenzen wie für (2.33).

Berechnung des Ausdrucks |Ix+iy|2

Setzt man die Näherung der e-Funktion (2.19) in die zweite Zeile von (2.15) ein, so erhält man
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−
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Anhang B: Ergänzung zu Kapitel 2.4

Wie in der Berechnung für Iz multipliziert man eine geeignete Eins und erhält zwei Summanden

mit je zwei Faktoren, wie in (2.35). Für µ = +1 erhält man mit Gleichung (2.36)
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Aus der Gleichung (2.27) und den 3j-Symbolen aus Anhang C ergibt sich
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Dies eingesetzt in die Gleichung für Ix+iy ergibt
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Analog zu den vorherigen Rechnungen wird das Betragsquadrat gebildet, über die Anfangszustände

gemittelt und über die Endzustände summiert.
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Ebenso wie für |Iz|2 können für die drei Summanden mit Gleichung (2.21) und (2.22) unter-

schiedliche Kombinationen der Drehimpulswerte ausgeschlossen werden, da für diese eines der

3j-Symbole gleich Null ist. Der zweite Summand ist zum Beispiel nur dann nicht Null, wenn

|l − 1− l′| ≤ L′ ≤ l − 1 + l′ und l′ + L′ + l − 1 gerade ist.
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Anhang B: Ergänzung zu Kapitel 2.4

Damit erhält man nach Mitteln über die Anfangszustände und Summieren über die Endzustände

den Ausdruck
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Dieser Ausdruck ist nach (2.21) und (2.22) nur für |l − l′| ≤ L ≤ l+ l′ und l′+L+ l gerade ungleich

Null. Für die beiden Summanden bekommt man entsprechend der darin auftretenden 3j-Symbolen

weitere Kombinationen von Drehimpulsen, für die der jeweilige Summand Null ergibt.
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Anhang C: Spezielle 3j-Symbole

Hier sind die in Kapitel 2 verwendeten speziellen 3j-Symbole angegeben. Sie lassen sich mit der

Formel (3.7.10), der Tabelle 2 auf Seite 149 und den Symmetrieeigenschaften (Formel 3.7.4 bis

3.7.6) aus [6] berechnen.
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2

(
l + 1 1 l

−m 0 m

)
= (−1)

l+m−1

[
2 (l −m+ 1) (l +m+ 1)

(2l + 1) (2l + 2) (2l + 3)

] 1
2

(
l + 1 1 l

−m∓ 1 ±1 m

)
= (−1)

l±m
[

(l ±m+ 1) (l ±m+ 2)

(2l + 1) (2l + 2) (2l + 3)

] 1
2

(
l − 1 1 l

0 0 0

)
= (−1)

l

[
2l2

(2l − 1) 2l (2l + 1)

] 1
2

(
l − 1 1 l

−m 0 m

)
= (−1)

l+m

[
2 (l −m) (l +m)

(2l − 1) 2l (2l + 1)

] 1
2

(
l − 1 1 l

−m∓ 1 ±1 m

)
= (−1)

l±m
[

(l ∓m− 1) (l ∓m)

(2l − 1) 2l (2l + 1)

] 1
2

Um den Rechenweg genauer zu beschreiben wird im Folgenden die Berechnung eines Ausdrucks

näher ausgeführt. Zunächst führt einmal zyklisch und einmal antizyklisch Vertauschen und das

Vorzeichen aller m-Werte ändern zu(
l + 1 1 l

−m+ 1 −1 m

)
=

(
1 l l + 1

−1 m −m− (−1)

)

=��
���

�
(−1)

l+1+1+l

(
1 l + 1 l

−1 −m− (−1) m

)
=��

���
�

(−1)
l+1+1+l

(
1 l + 1 l

1 −1− (−m) −m

)
.

Damit erhält man die Form, wie sie Formel (3.7.10) in [6] hat und danach ergibt sich
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(
1 l + 1 l

1 −1− (−m) −m

)
= (−1)

−1+l+1−m

·
[

2! (−1 + l + 1 + l)! (1 + l + 1−m)! (l +m)!

(1 + l + 1 + l + 1)! (1− (l + 1) + l)! (1 + l + 1− l)! (−1 + l + 1 +m)! (l −m)!

] 1
2

= (−1)
l−m

[
�2! (2l)! (l −m+ 2)!��

��(l +m)!

(2l + 3)!�0!�2!���
�(l +m)! (l −m)!

] 1
2

= (−1)
l−m

[
��
�(2l)!���

�(l −m)! (l −m+ 1) (l −m+ 2)

��
�(2l)! (2l + 1) (2l + 2) (2l + 3)���

�(l −m)!

] 1
2

= (−1)
l−m

[
(l −m+ 1) (l −m+ 2)

(2l + 1) (2l + 2) (2l + 3)

] 1
2

.
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Anhang D: Berechnung der

Normierungsfaktoren

Im Folgenden ist die Berechnung der Normierungsfaktoren der Darwin- Wellenfunktionen beispiel-

haft für Nn näher ausgeführt. Ausgehen von der Normierungsbedingung∫
d3rϕn+ 1

2
(~r)
∗
ϕn+ 1

2
(~r) = 1

erhält man

∫
d3rN2

n


Ψ∗n (~r)

0

− 1
2mc

~
i
∂
∂zΨ∗n (~r)

− 1
2mc

~
i

(
∂
∂x − i

∂
∂y

)
Ψ∗n (~r)




Ψn (~r)

0
1

2mc
~
i
∂
∂zΨn (~r)

1
2mc

~
i

(
∂
∂x + i ∂∂y

)
Ψn (~r)

 = 1 .

Ausführen des Skalarproduktes und anschlieÿende partielle Integration führt zu

1

N2
n

=

∫
d3rΨnΨ∗n + 0 +

(
~

2mc

)2
��−1

�i

·
∫
d3r

{
∂

∂z
Ψ∗n

∂

∂z
Ψn +

∂

∂x
Ψ∗n

∂

∂x
Ψn +

∂

∂y
Ψ∗n

∂

∂y
Ψn + i

∂

∂x
Ψ∗n

∂

∂y
Ψn − i

∂

∂y
Ψ∗n

∂

∂x
Ψn

}
=1−

(
~

2mc

)2

·
∫
d3r

{
Ψ∗n

∂2

∂z2
Ψn + Ψ∗n

∂2

∂x2
Ψn + Ψ∗n

∂2

∂y2
Ψn��

���
��

+iΨ∗n
∂

∂x

∂

∂y
Ψn��

���
��−iΨ∗n

∂

∂y

∂

∂x
Ψn

}
=1−

(
~

2mc

)2 ∫
d3r

{
Ψ∗n∇2Ψn

}
.

Der Übergang zu atomaren Einheiten für den Radius gibt wegen der zweifachen Ableitung den

Faktor 1
a20
. Aus der Schrödinger-Gleichung erhält man die Relation,

−∇2Ψn = 2 (En − V (r)) Ψn
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Anhang D: Berechnung der Normierungsfaktoren

für Energie und Potential in Hartree und Radius in au. Damit erhält man

1

N2
n

=1 +

(
~

2mca0

)2 ∫
d3rΨ∗n2 (En − V (r)) Ψn

=

(
~

2mca0

)2

2

(
En −

∫
d3rΨ∗nΨn V (r)

)
=

(
~

2mca0

)2

2

(
En − 4π

∫
d ln r r3 (Rn,l(r))

2
V (r)

)
.

In der numerischen Umsetzung wird nach Trapezregel Integriert und das Integral wird zur Summe.

Dabei ist nur bis zum Wert ra zu summieren, da das Potential für gröÿere Argumente gleich Null

ist.

N2
n =

1

1 +
(

~
2mca0

)2

2 ·
(
En,l − 4π

∑ra
r=0 r

3 (Rn,l(r))
2

ln amesh

)
Die Rechnung für Nk ist anlog auszuführen. Beide Faktoren haben nur einen relativ geringen

Ein�uss auf das Endergebnis, da sie mit etwa 0,99 nur um etwa ein Prozent von Eins abweichen.
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