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1. Einleitung

Das Elektronenmikroskop hält seit seiner erfolgreichen Etablierung in vielen ver-

schiedenen Anwendungsgebieten Einzug. Neben der Untersuchung von Proben mit

ortsaufgelösten Aufnahmen lassen sich mit einem Elektronenmikroskop auch deren

elektronische Eigenschaften untersuchen. In diesem analytischen Modus werden kei-

ne ortsaufgelösten Bilder aufgenommen, sondern zum Beispiel Energieverlustspek-

tren. Bei dem in dieser Arbeit überwiegend verwendeten Mikroskop handelt es sich

um das Libra 200 FE der Firma Zeiss mit einem Energie�lter. Der Aufbau des Mi-

kroskops und des Filters werden in Kapitel 3.1 erläutert. Auÿer mit dem Libra 200

FE wurden noch weitere Aufnahmen mit dem Elektronenmikroskop Crisp am CAE-

SAR in Bonn durchgeführt. Beim Crisp handelt es sich um ein Elektronenmikroskop,

vergleichbar zum Libra 200 FE, das allerdings zusätzlich einen Monochromator be-

sitzt. Dieser bietet die Möglichkeit, die Energiebreite der einfallenden Elektronen

um einen Faktor 2-3 zu verringern.

Die Energieverlustspektroskopie bietet tiefe Einblicke in die elektronischen Eigen-

schaften verschiedenster Materialien und entsprechend dem im Spektrum betrachte-

ten Energiebereich können verschiedenen Charakteristika untersucht werden. Diese

Arbeit beschäftigt sich mit dem Bereich niedriger Energieverluste (Low-Loss Be-

reich) und den dort auftretenden Anregungen von Volumenplasmonen. Ziel der Ar-

beit ist die Bestimmung der frequenzabhängigen dielektrischen Funktion, die auch

als dielektrische Konstante in der klassischen Physik bekannt ist. Untersucht wird

dabei das Halbleitermaterial Siliciumcarbid, das in vielen verschiedenen Modi�ka-

tionen vorkommt. Interessant ist dieses Material insbesondere dadurch, dass es in

halbleitertechnologischen Anwendungen das bereits viel benutzte Silizium ablösen

könnte. Denn im Gegensatz zu Bauelementen basierend auf Silizium, können Bau-

elemente aus Siliziumcarbid bei Temperaturen bis zu 800 Grad betrieben werden

[4].

Neben einer direkten Auswertung der aufgenommenen Daten helfen simulierte Spek-
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1. Einleitung

tren dabei, die Auswirkungen verschiedener Phänome auf das Spektrum zu erkennen.

Weiterhin kann so die Auswirkung der Probendicke auf das Aussehen des Spektrums

überprüft und mit den experimentellen Aufnahmen verglichen werden.

Zunächst werden in Kapitel 3 die im entsprechenden Energiebereich auftretenden

E�ekte theoretisch erläutert; insbesondere wird dabei auf die Volumenplasmonen

eingegangen. Diese theoretischen Beschreibungen dienen dann als Grundlage, um

geeignete Funktionen für die Simulationen zu wählen. Um die Qualität der aufge-

nommenen Spektren beurteilen zu können, werden diese zudem besonders auf un-

erwünschte E�ekte wie Ober�ächenplasmonen, Cerenkov-Strahlung und Mehrfach-

streuung untersucht. Dazu wird später vor allem ein iteratives Verfahren benutzt,

um den Ein�uss von Ober�ächenplasmonen, die bei der Aufnahme nicht vermie-

den werden konnten, herauszurechnen. Mit Hilfe dieser Zusammenhänge wird eine

Möglichkeit entwickelt, um aus den Spektren die dielektrische Funktion von Silizi-

umcarbid zu bestimmen.
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2. Halbleitermaterial

Siliziumcarbid (SiC)

2.1. Kristallstruktur

Siliziumcarbid (SiC) ist eine Verbindung von Elementen aus der vierten Hauptgrup-

pe. Es besteht aus Silizium- und Kohlensto�atomen im stöchiometrischen Verhältnis

1:1. Durch sp3-Hybridisierung sind die einzelnen Atome tetraedisch angeordnet (Ab-

bildung 2.1). Siliciumcarbid besitzt polytypische Eigenschaften, was zur Folge hat,

dass über 200 verschiedene Modi�kationen möglich sind. Die Modi�kationen unter-

scheiden sich durch die Stapelfolge von SiC Doppelschichten [34] .

Abbildung 2.1.: SiC Tetraeder [4]

Die freien Bindungen einer Doppelschicht sind senkrecht zur Schichtober�äche

orientiert. Bei der Stapelung zweier Doppelschichten gibt es zwei Möglichkeiten: Die
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2. Halbleitermaterial Siliziumcarbid (SiC)

Abbildung 2.2.: Hexagonal angeordnete SiC-Doppelschichten [4].

Bindungen in den folgenden Schichten sind entweder parallel oder um einen Winkel

von 60 Grad versetzt angeordnet. Man spricht dabei von hexagonaler oder kubischer

Stapelfolge. Die Modi�kationen setzen sich aus verschiedenen Kombinationen dieser

beiden Möglichkeiten zusammen und lassen sich dementsprechend beschreiben.

Grenzfälle sind dabei eine rein hexagonale oder eine rein kubische Struktur [24].

Zur Charakterisierung der verschiedenen Modi�kationen wird der Begri� der Hexa-

gonalität eingeführt (2.1), der sich aus der Anzahl der jeweiligen Doppelschichten

zusammensetzt (h=hexagonal, c=cubic)(Abbildung 2.4). Die Hexagonalität einiger

verschiedener Modi�kationen sind in Tabelle 2.1 aufgeführt.

Abbildung 2.3.: Mögliche Stapelfolgen im Kristall. Die Bindungen von jeweils zwei
Doppelschichten können parallel oder um 60 Grad gedreht angeordnet sein [4].
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2.2. Elektronische Struktur

Modi�kation Hexagonalität Bezeichnung

3C-SiC 0% Zinkblendestruktur
6H-SiC 33%
4H-SiC 50%
2H-SiC 100% Wurtzitstruktur

Tabelle 2.1.: Charakterisierung von vier verschiedenen Kristallmodi�kationen
entsprechend ihrer Hexagonalität.

3C-SiC 6H-SiC 4H-SiC 2H-SiC

LDA 1,29 eV 1,94 eV 2,14 eV 2,12 eV
SIC 2,46 eV 3,08 eV 3,30 eV 3,33 eV
QPW 2,59 eV 3,25 eV 3,56 eV 3,68 eV
Exp. 2,42 eV 3,02 eV 3,26 eV 3,33 eV

Tabelle 2.2.: Berechnete und experimentell bestimmte Bandlücken von vier
verschiedenen SiC Modi�kationen [1].

H =
h

h+ c
(2.1)

Aufgrund der möglichen Übergänge zwischen Modi�kationen (z.B. die tempera-

turabhängige Phasentransformation 3C-SiC nach 6H-SiC) spricht man auch von

Phasen. Daher spielt beim Wachstum der Kristalle die Temperatur eine wichtige

Rolle und hat Auswirkungen auf die entstehenden Schichtfolgen. Transformationen

zwischen verschiedenen Phasen sind ebenfalls möglich [24].

2.2. Elektronische Struktur

Die verschiedenen Modi�kationen unterscheiden sich neben der Kristallstruktur auch

in ihren elektronischen Eigenschaften. Charakteristisch ist die groÿe indirekte Band-

lücke, die zwischen 2,4eV und 4eV liegt [34]. Die Gröÿe der Bandlücke ist dabei

proportional zu der oben eingeführten Hexagonalität. In Tabelle 2.2 sind theoreti-

sche und experimentelle Werte für die Bandlücken einiger Modi�kationen dargestellt.

Aus Simulationsrechnungen liegen Informationen über den theoretischen Aufbau der

Bandstrukturen vor, die in Abbildung 2.5 dargestellt sind.
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2. Halbleitermaterial Siliziumcarbid (SiC)

Abbildung 2.4.: Stapelfolgen der SiC-Modi�kationen 3C, 6H, 4H und 2H in der
[1120]-Ebene [4].
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2.2. Elektronische Struktur

(a) 3C-SiC (b) 2H-SiC

(c) 4H-SiC (d) 6H-SiC

Abbildung 2.5.: Elektronische Bandstrukturen von verschiedenen SiC Modi�katio-
nen bestimmt aus LDA Rechnungen [1]. Die Kreise in (a) repräsentieren experi-
mentelle Ergebnisse. Die gestrichelte Linie zeigt jeweils die experimentell bestimmte
Bandlücke.
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3. Grundlagen

Im folgenden Kapitel wird zunächst auf den Aufbau eines Transmissionselektronen-

mikroskops eingegangen. Anschlieÿend werden die auftretenden Prozesse, die für den

Niederverlustbereich interessant sind, hergeleitet. Diese theoretische Beschreibung

ist wichtig für die angestellten Simulationsrechnungen, die eine bessere Zuordnung

einzelner E�ekte im Verlustspektrum ermöglichen (Kapitel 5).

3.1. Aufbau des

Transmissionselektronenmikroskops ZEISS

LIBRA 200FE

Für die in dieser Arbeit verwendeten Aufnahmen wurde das Transmissionselektro-

nenmikroskop LIBRA 200FE benutzt (Abbildung 3.1). Als Elektronenquelle besitzt

es eine Schottky-Kathode, wobei die emittierten Elektronen auf eine Energie von

200kV beschleunigt werden. Das Beleuchtungssystem ist auf die Köhler-Beleuchtung

eingestellt, wodurch die auf die Probe auftre�enden Elektronen an jedem Ort die

gleiche Winkelverteilung besitzen. Der auf der Probe ausgeleuchtete Bereich wird

durch die Kondensorblende bestimmt und lässt sich variieren. Dadurch kann der zu

untersuchende Probenbereich selektiert werden. NachWechselwirkung mit der Probe

werden die Elektronen durch verschiedene Linsen auf die Endbildebene abgebildet.

Die Endbildebene kann wahlweise auf einen Leuchtschirm, eine Plan�lmkamera oder

eine Slow-Scan CCD-Kamera projiziert werden. Über die Objektivblende (auch als

Kontrastblende bezeichnet) lassen sich im Beugungsbild bestimmte Beugungsre�e-

xe ausblenden und somit auch der maximale Streuwinkel der Elektronen begrenzen.

Elektronen mit einem gröÿeren Streuwinkel tragen nicht zum Spektrum bei. Mit der

Filtereintrittsblende kann zusätzlich ein Bereich der bestrahlten Probe ausgewählt
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3. Grundlagen

werden, auf den dann das Spektrometer wirkt. Eine Besonderheit dieses Mikroskops

ist das korrigierte OMEGA Energie�lter (Abbildung 3.2), das sich zwischen Probe

und Endbildebene be�ndet. Bei Mikroskopen anderer Hersteller wird ein Energie�l-

ter in der Regel unterhalb der Endbildebene verwendet. Durch den Filter werden die

Elektronen entsprechend ihrem Energieverlust selektiert. Durch die Projektivsyste-

me 1 und 2 (Abbildung 3.1) lässt sich einstellen, ob in der Endbildebene das Ab-

bild der Probe, das Beugungsdiagramm oder die energiedispersive Ebene mit dem

Elektronen-Energieverlust-Spektrum (EELS) dargestellt werden soll. Im Gegensatz

zu optischen Linsen weisen Linsen im Elektronenmikroskop deutlich stärkere Lin-

senfehler auf, die Grund für eine begrenzte Au�ösung sind. Bei der Aufnahme von

Elektronen-Energieverlust-Spektren spielen diese Linsenfehler eine geringere Rolle

als bei der Aufnahme von Bildern der Probe.

3.2. Elektronen-Energieverlustspektroskopie

Tri�t ein Strahl hochenergetischer Elektronen auf eine Probe, so wechselwirkt ein

Teil dieser Elektronen mit den Atomen der Probe, während ein Groÿteil die Probe

ungehindert passiert. Die Wechselwirkungen führen zu Streuprozessen. Hier gibt es

zum einem die elastischen Streuprozesse, bei denen die Elektronen an den Kernpo-

tentialen des Festkörpers in einen groÿen Raumwinkel gestreut werden, aber keine

Energie verlieren. Zum Anderen �nden inelastische Stöÿe statt, bei denen die Elek-

tronen Energie auf den Festkörper übertragen. Dabei wird die Energie zur Anregung

von kollektiven Schwingungen des Elektronengases oder zur Anhebung von Elektro-

nen der inneren Schalen in höhere Energieniveaus genutzt. Erstere bezeichnet man

als Plasmonenanregungen. Die Selektion der transmittierten Elektronen in Abhän-

gigkeit ihres Energieverlustes liefert das Spektrum. Der erste Peak, der im Spektrum

bei einem Energieverlust von 0eV zu sehen ist, wird als Zero-Loss Peak bezeichnet.

Die Halbwertbreite dieses Peaks gibt Aufschluss über die Energieau�ösung der Mes-

sung, die von der Elektronenquelle des Mikroskops abhängt. Im Zero-Loss Peak sind

nicht nur die Elektronen erfasst, die keine Energie verloren haben, sondern auch

die Elektronen mit einem nicht au�ösbar geringen Energieverlust, wie die Anregung

von Gitterschwingungen. Ein typisches Energieverlustspektrum ist in Abbildung 3.3

dargestellt.
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3.2. Elektronen-Energieverlustspektroskopie

Abbildung 3.1.: Strahlengang im Libra. Der Strahlenverlauf zeigt von oben nach
unten.
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3. Grundlagen

Abbildung 3.2.: Strahlenverlauf im OMEGA Energie�lter. Dargestellt ist der Bild-
modus. Die energiedispersive Ebene be�ndet sich auf Höhe des Energiespalts (Slit).
Im EELS-Modus wird die energiedispersive Ebene auf die Endbildebene abgebildet.
Die Linsen wurden in dieser Gra�k nicht eingezeichnet [9].
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3.3. Streugeometrie

Im Energie�lter des Transmissionselektronenmikroskop (TEM) werden die Elek-

tronen in der energiedispersiven Ebene entsprechend ihrer kinetischen Energie in

eine Richtung aufgefächert. Das Spektrum kann entweder seriell mit einem Szintil-

lator zeilenweise, oder parallel mit einer CCD-Kamera aufgezeichnet werden. In der

Regel wird heute die parallele Methode eingesetzt, nicht zuletzt wegen der deutlich

kürzeren Aufnahmezeit.

Abbildung 3.3.: Typischer Verlauf einen Elektronenenergieverlustspektrums mit
Zero-Loss Peak, Plasmonenstruktur und der anschlieÿenden charakteristischen
Struktur von Innerschalenanregungen in halblogarithmischer Darstellung [25].

3.3. Streugeometrie

Bei einem Streuprozess von schnellen Elektronen an Materie gelten die Impuls-

und die Energieerhaltung. Dabei wird die kinetische Energie der Elektronen zu ei-

nem groÿen Anteil in Plasmonenanregungen und Ionisationen innerer Schalen um-

gewandelt. Die angeregten Atome können durch Emission von Röntgenstrahlung

und Auger-Elektronen wieder in den Grundzustand übergehen. Zusätzlich können

Phononen angeregt werden, die aufgrund ihres Energieverlusts ( ∆E << 1 eV )

allerdings nicht im Energieverlustspektrum sichtbar sind, sondern zur Intensität des

Zero-Loss Peak beitragen.
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3. Grundlagen

In Abbildung 3.4 sind die wichtigen Gröÿen eines inelastischen Streuprozesses in ei-

nem Vektordiagramm dargestellt. Bei Übergang eines Hüllenelektrons vom Grundzu-

stand in einen angeregten Zustand sind Auswahlregeln zu beachten. Die Di�erenzen

der Wellenzahlvektoren lassen sich dabei wie folgt schreiben:

(~q)2 = (~k − ~k0)2 ≈ ~k2
0(Θ2 + Θ2

E). (3.1)

An dieser Stelle wurde der charakteristische Winkel der unelastischen Streuung mit

ΘE = E/2E0 eingeführt. Dieser charakteristische Winkel hängt neben der Energie

der einfallenden Elektronen E0 auch vom Energieverlust E ab. Zusätzlich wurde

vorausgesetzt, dass
∣∣∣~k∣∣∣ 6= ∣∣∣~k0

∣∣∣ gilt.
Der charakeristische Streuwinkel kann auch in relativistischer Form angegeben wer-

den [27]

ΘE =
E

E0

(
E0 +m0c

2

E0 + 2m0c2

)
=

E

γm0v2
, (3.2)

wobei m0 die Ruhemasse und v die Geschwindigkeit der Elektronen sind. Der Wir-

kungsquerschnitt der inelastischen Streuung lässt sich quantenmechanisch berechnen

[27].

3.4. Dielektrische Beschreibung

Im Gegensatz zur Anregung einzelner gebundener Elektronen sind bei kollektiven

Anregungen des Elektronengases viele Elektronen beteiligt. Dieses Vielteilchenpro-

blem exakt zu lösen, ist mathematisch aufwendig und kompliziert. Eine einfachere

Methode besteht darin, das Problem durch eine Antwort-Funktion zu beschreiben

[26]. Die Wechselwirkung der einfallenden Elektronen mit den Elektronen des Elek-

tronengases wird dabei durch die dielektrische Funktion ε(q, ω) beschrieben.

Diese Funktion hängt von dem Impulsübertrag q und der Frequenz ω (dem Ener-

gieverlust E = ~ω) der einfallenden Elektronen ab.

Die dielektrische Funktion beschreibt nicht nur die Wechselwirkung von Elektro-

nen mit einem Festkörper, sondern auch die von Photonen mit dem Festkörper.

Energieverlustspektroskopische Messungen lassen sich so mit optischen Messungen

vergleichen.

Zunächst soll die Aufnahme von Energieverlustspektren mit der Theorie der dielek-
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3.4. Dielektrische Beschreibung

Abbildung 3.4.: Diagramm zur Beschreibung von unelastischen Streuprozessen. h ist
das plancksche Wirkungsquantum.
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3. Grundlagen

trischen Funktion verknüpft werden. Die einfallenden Elektronen betrachtet man

als Punktladungen mit Koordinate ~r und Geschwindigkeit ~v, die sich in z-Richtung

durch das Medium bewegen und als Stromdichte ~j(~r, t) interpretiert werden. Die

z-Richtung entspricht dabei der Achse des Mikroskops. Dadurch entsteht ein elek-

trisches Feld ~E(~r, t), das im Elektronengas eine dielektrische Verschiebung ~D(~r, t)

bewirkt

~D(~r, t) = ε0εr ~E(~r, t). (3.3)

ε = ε0εr ist dabei die makroskopische dielektrische Funktion mit der dielektrischen

Konstanten ε0. Die dielektrische Funktion (im Folgenden nur noch als ε bezeichnet)

ist komplex und besitzt einen Realteil und einen Imaginärteil ε = ε1 + iε2. Durch die

Ohmsche Leistungsdichte L(~r, t) = dP
dV

= ~E(~r, t)·~j(~r, t) (Leistung P pro Volumen V )

lässt sich die von einem Elektron an das Medium abgegebene EnergieW bestimmen.

W =

∫ ∫
L(~r, t)d3~rdt =

∫ ∫
~E · e~vδ(~r − ~vt)d3~rdt =

∫ ∫
~E(~r, t) ·~j(~r, t)d3~rdt

(3.4)

Die pro Weglänge z verbrauchte Energie W ergibt sich zu

w =
dW

dz
=

∫ ∫
L(~ρ, t)d2~ρdt (3.5)

in Zylinderkoordinaten, wobei ~ρ und z senkrecht zueinander stehen. Über die Fou-

riertransformation von L in der zweidimensionalen ~ρ-Ebene

L̃z(~q, ν) =

∫ ∫
L(z, ~ρ, t) exp(−2πi(~q · ~ρ− ν · t))d2~ρdt, (3.6)

und anschlieÿendem Vergleich mit der abgegebenen Energie aus 3.4 ergibt sich der

Zusammenhang

w = L̃z(0, 0), (3.7)

wobei L̃z die Fouriertransformation von L in der ~r Ebene ist. Durch Substituieren

der Ohmschen Leistungsdichte L = ~E · ~j liefert das Faltungstheorem der Fourier-
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3.4. Dielektrische Beschreibung

transformation

L̃z(~q, ν) = Ẽz(~q, ν)⊗ j̃z(~q, ν) =

∫ ∫
Ẽz(~q − ~q′, ν − ν′)j̃z(~q′, ν′)d2~q′dν′. (3.8)

Wird nun die Beziehung aus 3.7 ausgenutzt, so ergibt sich daraus

w =

∫ [∫ +∞

−∞
Ẽz(−~q′,−ν′)j̃z(~q′, ν′)dν′

]
d2~q′. (3.9)

Weiterhin kann nun ausgenutzt werden, dass es sich bei ~E und ~j um reelle Gröÿen

handelt. Somit gilt also

Ẽz(−~q,−ν) = Ẽ∗z (~q, ν) (3.10)

und analog für ~j. Diese Eigenschaft lässt sich in 3.9 ausnutzen

w =

∫ [∫ ∞
0

(Ẽ∗z j̃z + Ẽz j̃∗z )dν

]
d2~q. (3.11)

Andererseits lässt sich die pro Weglänge abgegebene Energie w über den di�erenti-

ellen Streuquerschnitt pro angeregtes Atom beschreiben

w =

∫ ∫
Ena

d2σ

dΩdE
dΩdE =

∫ ∫
d2σ

dΩdE

h

k2
d2~qdν, (3.12)

wobei na die Anzahl der der pro Volumen angeregten Elektronen ist und dν = dE/h

und d2~q = k2dΩ gilt. E beschreibt den Energieverlust (nicht das elektrische Feld,

dass durch ~E beschrieben wird). Beim Vergleich der beiden gerade hergeleiteten

Ausdrücken 3.11 und 3.12 ergibt sich

d2σ

dEdΩ
=

k2

naEh
(Ẽ∗z j̃z + Ẽz j̃∗z ). (3.13)

Die Klammer in 3.13 lässt sich zerlegen in einen Anteil, der longitudinal (gekenn-

zeichnet mit Index l) zu ~q ist und in einen, der transversal zu ~q ist. Der transversale

Anteil führt zu Cerenkov-Strahlung und kann für diese Betrachtung vernachlässigt

werden [28]. Die longitudinale z-Komponente der Stromdichte ergibt sich aus dem

Ansatz und Fouriertransformationen zu

j̃zl = e
vl
v

exp (2πiνz/v). (3.14)
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3. Grundlagen

Die longitudinale z-Komponente des E-Feldes ergibt sich aus der entsprechenden

Maxwell-Gleichung und Fouriertransformationen zu [28]

Ẽzl =
e

2πiqε(q, ν)v
exp (2πiνz/v). (3.15)

Diese beiden Longitudinalkomponenten lassen sich nun wieder einsetzen. Zusätz-

lich wird noch vl/v = qz/q = ΘE/
√

Θ2 + Θ2
E ausgenutzt zu

d2σ

d∆EdΩ
=

k2e2qz
2πhN∆Eq2v

(
1

iε
− 1

iε∗

)
. (3.16)

Durch Umformen [28] und Ausnutzen der Tatsache, dass die letzte Klammer mit

dem Imaginärteil des Kehrwerts der dielektrischen Funktion verknüpft ist, erhält

man

d2σ

d∆EdΩ
=

1

πabmv2Ne

1

Θ2 + Θ2
E

=
(
−1

ε

)
. (3.17)

Über diesen Ausdruck ist nun der Wirkungsquerschnitt, also das Energieverlust-

Spektrum, mit dem Imaginärteil des Kehrwertes der dielektrischen Funktion ver-

knüpft.

3.5. Volumenplasmonen

Der bei kollektiven Anregungen des Elektronengases entstehende Peak im Ener-

gieverlustspektrum wird als Plasmonenpeak bezeichnet. Zu seiner theoretischen Be-

schreibung werden die Elektronen als Oszillatoren betrachtet. Im einfachsten Modell

werden sie als freie Teilchen angesehen (freies Elektronengas). Die Wechselwirkungen

mit dem Kristallpotential werden dabei durch eine e�ektive Masse m ausgedrückt,

die nicht der Ruhemasse des Elektrons entspricht, sowie durch eine Dämpfungskon-

stante γ. Das einfallende Elektron repräsentiert ein elektrisches Feld E und führt bei

der Resonanzfrequenz (Plasmonenfrequenz ωP ) der Oszillatoren zu einer kollektiven

Anregung.

m
d2x

dt2
+mγ

dx

dt
= eE(ω) = eE0 exp (iωt) (3.18)
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3.5. Volumenplasmonen

(a) Real- (grau) und Imaginärteil (schwarz)
der dielektrischen Funktion.

(b) Real- (grau) und Imaginärteil (schwarz) des
Kehrwertes der dielektrischen Funktion.

Abbildung 3.5.: Volumenplasmonenanregung bei 22eV mit einer Halbwertsbreite von
5eV.

Diese Di�erentialgleichung lässt sich direkt lösen und führt zum Ergebnis

x =

(
eE

m

)
1

(ω2 + iγω)
. (3.19)

Diese Auslenkung x führt zu einer Polarisation des Mediums, die über die dielektri-

sche Funktion mit dem elektrischen Feld verknüpft ist.

P = −enx = ε0(ε(ω)− 1)E (3.20)

Die Elektronendichte n steht für Anzahl der Elektronen pro Einheitsvolumen. Dar-

aus lässt sich die komplexe dielektrische Funktion des freien Elektronengases be-

stimmen

ε(ω) = ε1 + iε2 = 1− ω2
P

ω2 + γ2
+

iγω2
P

ω(ω2 + γ2)
. (3.21)

Aus der dielektrischen Funktion kann die Energieverlustfunktion ableitet werden.

=
{
−1

ε(ω)

}
=

ε2
ε21 + ε22

=
ωγω2

P

(ω2 − ω2
P )2 + (ωγ)2

(3.22)

In der Regel werden für Energieverlustspektren keine Angaben in Frequenzen, son-
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3. Grundlagen

dern in Energien verwendet. Über die Relation E = ~ω lassen sich die Frequenzen

durch Energien ausdrücken. Dies impliziert zusätzlich das Pseudoteilchen Plasmon,

das die Energie EP = ~ωP besitzt

=
{
−1

ε(E)

}
=

E(∆EP )E2
P

(E2 − E2
P )2 + (E∆EP )2

. (3.23)

Zusätzlich wurde die Dämpfung γ durch die Halbwertsbreite ∆E des Plasmonen-

peaks ausgedrückt [6]. Mit wachsender Dämpfung sinkt die Lebensdauer des Peaks,

was zu einer gröÿeren Energiebreite führt.

Als Maximum im Energieverlustspektrum würde man die Plasmonenenergie EP er-

warten. Dies ist allerdings nicht der Fall. Das Maximum ist zu kleineren Energien

verschoben, was sich durch Extremwertbetrachtung der Gleichung 3.23 bestimmen

lässt. Die Position des Plasmonenpeaks ist über die dielektrische Funktion bestimm-

bar und liegt bei der Energie, wo der Realteil der dielektrischen Funktion eine Null-

stelle besitzt (ε1(EP ) = 0).

3.6. Interband-Übergänge

Neben der Anregung von Plasmonen können auch Interband-Übergänge statt�nden,

Anregungen einzelner gebundender Elektronen. Theoretisch behandeln lassen sich

diese Elektronen dadurch, dass angenommen wird, sie seien mit einer Eigenfrequenz

ωn an die Atome gebunden. Dadurch ändert sich die zu lösende Bewegungsgleichung

im Vergleich zum vorherigen Fall, wie folgt:

m
d2x

dt2
+mγ

dx

dt
+mω2

nx = eE(ω) = eE0 exp (iωt). (3.24)

Diese Gleichung lässt sich ähnlich wie bei den freien Elektronen lösen. Daraus ergibt

sich für die dielektrische Funktion

ε(ω) = 1 +
ω2
P

ω2
n − ω2 + iγω

= 1 +
ω2
P (ω2

n − ω2)

(ω2
n − ω2)2 + (γω)2

− i ω2
Pγω

(ω2
n − ω2)2 + (γω)2

. (3.25)
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3.6. Interband-Übergänge

(a) Real- (grau) und Imaginärteil (schwarz)
der dielektrischen Funktion.

(b) Real- (grau) und Imaginärteil (schwarz) des
Kehrwertes der dielektrischen Funktion.

Abbildung 3.6.: Interbandanregung bei 15eV mit einer Halbwertsbreite von 5eV.

(a) Real- (grau) und Imaginärteil (schwarz)
der dielektrischen Funktion.

(b) Real- (grau) und Imaginärteil (schwarz) des
Kehrwertes der dielektrischen Funktion.

Abbildung 3.7.: Überlagerung von Volumenplasmon- und Interbandanregung.
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3. Grundlagen

3.7. Ober�ächenplasmonen

Neben kollektiven Anregungen im Festkörpervolumen entstehen durch Anregung

von Ober�ächen-Ladungswellen Ober�ächenplasmonen. Betrachtet wird die ebene

Grenz�äche eines halbunendlichen Mediums, mit den dielektrischen Funktionen εa
(aussen) und εi (innen). Das elektrostatische Potential an der Ober�äche verhält

sich wie cos(qx−ωt) exp(−q |z|). Die Ladungsdichteverteilung an der Ober�äche ist

proportional zu cos(qx − ωt)δ(z), wobei z parallel zur Flächennormalen steht [28].

Aus den elektrostatischen Randbedingungen [26] lässt sich dann die Voraussetzung

für das Auftreten von Ober�ächenplasmonen ableiten

εa(E) + εi(E) = 0. (3.26)

Da sich die Probe im Vakuum be�ndet, lässt sich die dielektrische Funktion des

umgebenen Mediums als konstant betrachten (εa = 1). Dadurch ist die Energie

Es, bei der die Ober�ächenplasmonen existieren können, festgelegt und lässt sich

berechnen zu

Es =
EP√

2
. (3.27)

Wird für die Umgebung kein Vakuum angenommen, sondern z.B. ein dielektrisches

Material, dessen dielektrische Funktion einen groÿen positiven Realteil und einen

kleinen Imaginärteil in der Nähe der Ober�ächenplasmonenenergie hat, dann lässt

sich obige Gleichung verallgemeinern zu

Es =
EP√
1 + ε1

, (3.28)

wobei ε1 den Realteil der dielektrischen Funktion des umgebenen Materials reprä-

sentiert.

Der Wirkungsquerschnitt von Ober�ächenplasmonen lässt sich durch eine Streu-

wahrscheinlichkeit pro Einheitswinkel beschreiben [26]. Im freien Elektronengasmo-

del ergibt sich für diese Streuwahrscheinlichkeit bei senkrechtem Einfall der Elek-

tronen
dPS
dΩ

=
~

πa0m0v

(
2

1 + ε1

)
ΘΘE

(Θ2 + Θ2
E)2

. (3.29)
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3.8. Kramers-Kronig Transformation

Dabei ist Θ der Winkel, unter dem gestreut wird. Wird die Probe unter einem

bestimmten Winkel gekippt und dann bestrahlt, muss diese Verkippung bei der

Betrachtung der Ober�ächenplasmonen zusätzlich berücksichtigt werden [6]. Die In-

tensität der Ober�ächenplasmonen fällt proportional zu 1/Θ3 im Gegensatz zu den

Volumenplasmonen, deren Intensität mit 1/Θ2 fällt. Das heiÿt, dass bei Detektion

der Elektronen, die abseits der optischen Achse gestreut wurden, der Ein�uss der

Ober�ächenplasmonen im Energieverlustspektrum minimiert werden kann.

Die Ober�ächenplasmonen lassen sich auf ein elektrostatisches Potential auf der Ma-

terialober�äche zurückführen. Die untersuchten Proben bestehen in der Regel aus

Schichten des Materials. Somit gibt es insgesamt zwei Grenzschichten, die das Strah-

lelektron passiert. Bei sehr dünnen Schichten überlappen sich die elektrostatischen

Potentiale der beiden Grenzschichten. Dies führt dazu, dass sich zwei mögliche Mo-

den ausbilden, eine symmetrische und eine asymmetrische Schwingungsmode. Die

beiden Moden (ω− und ω+) zeigen eine unterschiedliche Dispersion, was dazu führt,

dass sich die beiden Moden mit abnehmender Schicht dicke aufspalten und als zwei

unterschiedliche Peaks erkennbar werden. Dabei ist die Wahrscheinlichkeit der An-

regungen der beiden Moden unterschiedlich. Die ω− - Mode wird mit einer gröÿeren

Wahrscheinlichkeit angeregt, ist daher auch als gröÿerer Peak im Spektrum erkenn-

bar [28].

3.8. Kramers-Kronig Transformation

Durch die Aufnahme der Energieverlustspektren ist es zunächst nur möglich, Rück-

schlüsse auf den imaginären Anteil des Kehrwertes der dielektrischen Funktion zu

ziehen. Realteil und Imaginärteil lassen sich aber über die Kramers-Kronig Bezie-

hungen ineinander überführen [6]. Die theoretische Herleitung der Kramers-Kronig

Beziehungen ist im Anhang A.1 abgedruckt. Um den Realteil zu bestimmen, werden

im Folgenden einige Überlegungen angestellt. Aufgrund der Kausalität der dielek-

trischen Funktion ε(ω) [10] kann über eine Kramers-Kronig Transformation <
[

1
ε(E)

]
aus =

[
− 1
ε(E)

]
berechnet werden. Die Berechnung lässt sich auf der Basis von Fou-

riertransformationen durchführen [10]. Ausgenutzt wird dabei, dass sich <
[

1
ε(E)

]
−1

und =
[
− 1
ε(E)

]
als Kosinus- und Sinus-Transformationen der geraden αg(t) und un-

geraden Anteile αu(t) einer zeitabhängigen Antwortfunktion 1
α(t)
− δ(t) betrachten
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3. Grundlagen

lassen [6]. Diese Funktion liefert als Ergebnis Null für t < 0, da die Antwort nicht vor

der Ursache statt�nden kann. Damit lassen sich die geraden und ungeraden Anteile

verknüpfen [10]:

αg(t) = sgn(t) [αu(t)] . (3.30)

αu(t) wird als Sinus-Tranformation von =
[
− 1
ε(E)

]
berechnet, über Vorzeichenin-

version wird dann αg(t) bestimmt und über eine Kosinustranformation wird dann

<
[

1
ε(E)

]
− 1 berechnet [10].

1

ε(ω)
− 1 =

∫ +∞

−∞
α(t) · cos(2πωt)dt−

∫ +∞

−∞
α(t) · i sin(2πωt)dt (3.31)

Durch Einsetzen der Zerlegung in gerade und ungerade Anteile erhält man

1

ε(ω)
− 1 =

∫ +∞

−∞
αg(t) cos(2πωt)dt+

∫ +∞

−∞
αu(t) cos(2πωt)dt (3.32)

−i
∫ +∞

−∞
αg(t) sin(2πωt)dt− i

∫ +∞

−∞
αu(t) sin(2πωt)dt

1

ε(ω)
− 1 =

∫ +∞

−∞
αg(t) cos(2πωt)dt︸ ︷︷ ︸
<[ 1

ε(E) ]−1

−i
∫ +∞

−∞
αu(t) sin(2πωt)dt︸ ︷︷ ︸
i=[− 1

ε(E) ]

. (3.33)

3.9. Mehrfachstreuung

Zum Energieverlustspektrum tragen nicht nur die Elektronen bei, die ein Mal an

der Probe gestreut wurden, sondern auch Elektronen, die nach einem Energiever-

lust ein zweites Mal, oder noch öfter, an der Probe gestreut wurden. Dieser E�ekt

führt zur Verfälschung des Spektrums, insbesondere ergeben sich weitere Peaks bei

Energievielfachen der Plasmonenenergie. Betrachtet man die einzelnen Streuprozes-

se als unabhängige Ereignisse, lässt sich ihr Auftreten durch die Poisson-Statistik

beschreiben

Pn = In/It =

(
1

n!

)(
t

λ

)n
exp

(
−t
λ

)
. (3.34)

Diese Gleichung beschreibt die Wahrscheinlichkeit, dass ein Elektron n Streupro-

zessen unterliegt. Ausschlaggebend für diese Wahrscheinlichkeit sind die Dicke der

Probe t, sowie die mittlere freie Weglänge λ der Elektronen im entsprechenden Me-
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3.9. Mehrfachstreuung

dium. Die Wahrscheinlichkeit ist proportional zur Probendicke und antiproportional

zur mittleren freien Weglänge. Auf das Spektrum übertragen, lässt sich die Wahr-

scheinlichkeit für n Streuprozesse dadurch ausdrücken, dass die gesamte Intensität

It durch die Intensität bei n-facher Streuung In dividiert wird. Die Intensitäten sind

dabei über alle Energien integriert. Die Mehrfachstreuung im Spektrum lässt sich

einerseits durch eine sehr dünne Probe eliminieren (z.B. t/λ < 1) und anderseits

kann sie durch Entfaltungsmethoden aus dem Spektrum herausgerechnet werden.

Zur Verfügung stehen dazu verschiedene Möglichkeiten wie die Fourier-Log Entfal-

tung oder die Matrix Entfaltung [17]. Letztere soll kurz erläutert werden, da diese

zur Entfaltung der Spektren benutzt wird. Angenommen wird hierzu, dass sich der

Zero-Loss Peak durch eine Delta-Distribution beschreiben lässt. Das Spektrum lässt

sich dann in die unterschiedlichen Komponenten zerlegen.

J(E) = I0δ(E) + P (E) = I0δ(E) + S(E) +D(E) + T (E) + ... (3.35)

I0 repräsentiert das Integral über den gesamten Zero-Loss Peak, während S(E)

(Single-Scattering Distribution, SSD), D(E) und T (E) die Beiträge von Einfach-

streuung, Zweifachstreuung und Dreifachstreuung darstellen, zusammengefasst in

P (E). Dabei handelt es sich im Prinzip um eine unendliche Reihe, lediglich der

Beitrag sinkt stark mit steigender Streuordnung. Interessant und notwendig für die

Berechnungen ist S(E), also der Beitrag aller einfach gestreuten Elektronen. Glei-

chung 3.35 lässt sich dabei einfach nach S(E) umstellen, so dass von der Summe

aller Streuprozesse die einzelnen Beiträge mit n > 1 abgezogen werden. Aus der

Theorie der Fourier-Log Entfaltung [6] ist bekannt, dass sich die Funktion der Ein-

fachstreuung im Fourierraum berechnen lässt durch

s(ν) = I0 ln(j(ν)/z(ν)). (3.36)

s(ν) und j(ν) beschreiben das transformierte Spektrum mit Einfachstreuung, sowie

das Ausgangsspektrum mit Mehrfachstreuung. Weiterhin beschreibe Z(E) (z(ν) im

Fourier-Raum)den Zero-Loss Peak. Theoretisch lässt sich S(E) über Fouriertransfor-

mationen bestimmen, hierbei können allerdings Probleme auftreten wie z.B. Rausch-
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3. Grundlagen

verstärkung [6]. Die Gleichungen 3.35 und 3.36 werden nun kombiniert:

s(ν) = I0 ln(1 + p(ν)/I0) (3.37)

= p(ν)− [p(ν)]2

2!I0

+
[p(ν)]3

3!I2
0

− ... (3.38)

Von der letzten Gleichung lässt sich nun formal die Fouriertransformation berechnen,

um S(E) zu bekommen. Hierbei muss beachtet werden, dass durch die Fouriertrans-

formation die Produkte zu Faltungen werden.

S(E) = P (E)− P (E)⊗ P (E)

2!I0

+
P (E)⊗ P (E)⊗ P (E)

3!I2
0

− ... (3.39)

Die Distribution für Einfachstreuung lässt sich also aus einer Reihe von Faltungen

des Spektrums mit sich selber bestimmen. Dabei ist vom betrachteten Spektrum

der Zero-Loss Peak bereits abgetrennt und spiegelt sich als Intensität in I0 wieder.

Die Faltungen wurden von Schattschneider [22] durch Riemann Summen ersetzt,

die sich als Matrix berechnen lassen. Der Vorteil dieser Matrix Entfaltung besteht

darin, dass das Spektrum an den Grenzen nicht auf Null abfallen muss und dass die

Probendicke für die Entfaltung im wesentlichen keine Rolle spielt [6].

28



4. Simulationsrechnungen

Um die in den Spektren auftretenden Peaks zuordnen zu können, werden mit Hilfe

der aus den Grundlagen abgeleiteten Formeln entsprechende Simulationsmethoden

implementiert. Insbesondere liegt der Fokus dabei auf zwei E�ekten, zum einen auf

der Mehrfachstreuung, zum anderen auf dem Auftreten von Ober�ächenplasmo-

nen. Die entsprechenden Routinen wurden dabei angelehnt an bereits von Egerton

verö�entlichte Fortran Quellcodes [6]. Als Resultat wurde ein in C++ geschriebe-

nes graphisches Programm entwickelt, das die Möglichkeit bietet, direkt simulierte

Spektren aus vorgegebenen Parametern zu erstellen. Die Parameter lassen sich so

wählen, dass die simulierten Spektren mit aufgenommenen Spektren vergleichbar

sind.

Neben der Simulation von einzelnen Spektren bietet das Programm zusätzlich die

Möglichkeit, Serien von Spektren unter Variation verschiedener Parameter zu erzeu-

gen. Die Ausgabe erfolgt dann wahlweise in Einzelspektren oder zusammengefasst

als 3D Spektrum, so dass sich die Parameterabhängigkeit direkt erkennen lässt.

Zunächst soll kurz die Funktionsweise der einzelnen Programmelemente erläutert

werden. Der entsprechende Quellcode be�ndet sich im Anhang.

4.1. Bestimmung der mittleren freien Weglänge

Um die Wahrscheinlichkeit des Auftretens von Mehrfachstreuung und Ober�ächen-

e�ekten abschätzen zu können, ist die mittlere freie Weglänge eine hilfreiche Gröÿe.

Dabei ist mit der mittleren freier Weglänge diejenige Strecke gemeint, die ein schnel-

les Elektron im Mittel zurücklegen kann, ohne dabei in der Probe gestreut zu werden.

Die mittlere freie Weglänge hängt neben der Energie der Elektronen auch von der

Probe ab. Sie lässt sich mit der Gleichung 4.1 bestimmen [6].
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4. Simulationsrechnungen

λm =
106nm ·R · (E0/Em)

ln(2E0Θ0/Em)
. (4.1)

(Der Wert für die mittlere freie Weglänge wird hier direkt in Nanomentern ausge-

geben.) Der Faktor R ist eine relativistische Korrektur

R =
1 + E0/1022

(1 + E0/511)2
. (4.2)

Die in der Formel auftauchende Energie Em = 7, 6 ·Z0,36 ist materialspezi�sch. Diese

Energie ergibt sich aus der Ordnungszahl Z des jeweiligen Elements. Für Materia-

lien wie SiC lässt sich die Energie über eine e�ektive mittlere Ordnungszahl (Zeff )

bestimmen (Zeff ≈ 10).

Der Winkel Θ0 ist der Akzeptanzwinkel und wird aus dem Radius der Objektiva-

pertur und der Brennweite des Objektivs berechnet (Θ0 = robj/fl). Für das ZEISS

Libra 200 FE beträgt die Brennweite des Objektivs 1,7 mm, gearbeitet wird bei

einer Beschleunigungsspannung von 200kV. Verwendet wurde eine Objektivapertur

mit einem Radius von 10µm. Die mittlere freie Weglänge ergibt sich aus diesen An-

gaben zu λm = 153, 29nm. Dieser Wert ist mit einem Fehler von etwa ±20 Prozent

behaftet.

4.2. Simulation von Mehrfachstreuung

Zunächst werden die benötigten Parameter aus der graphischen Ober�äche oder

einer Datei geladen. Je nach der gewünschten Ordnung der Streuung wird entspre-

chend oft eine Schleife durchlaufen. In jedem Durchlauf steigt die Streuordnung

an. Die Beiträge der einzelnen Streuordnungen werden zum Spektrum aufaddiert

(Abbildung 4.2). Lediglich der Beitrag erster Ordnung wird separat ausgegeben.

Zusätzlich kann dem Spektrum ein Rauschen hinzugefügt werden. In Abbildung 4.1

ist der schematische Programmablauf dargestellt.
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4.2. Simulation von Mehrfachstreuung

Abbildung 4.1.: Schematischer Programmablauf zur Berechnung eines Spektrums
mit Mehrfachstreuung.

Abbildung 4.2.: Simulierte Spektren für Mehrfachstreuung. Als Laufparameter wur-
de die Probendicke verwendet. Bei 22,1eV und Vielfachen davon sind der Plasmo-
nenpeak und dessen Mehrfachstreuungen zu erkennen. Der Zero-Loss Peak wurde
zugunsten der Übersichtlichkeit abgeschnitten.
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4. Simulationsrechnungen

4.3. Simulation von Ober�ächenplasmonen

In diesem Modus werden zunächst anhand der ausgelesenen Parameter der Real-

teil und der Imaginärteil der dielektrischen Funktion bestimmt. Zusätzlich wird die

Energieverlustfunktion berechnet. Mit der dielektrischen Funktion und der Angabe

der Probendicke lässt sich der Anteil und der Verlauf der Ober�ächenplasmonen

berechnen. Anschlieÿend werden die Anteile von Volumenplasmonen und Ober�ä-

chenplasmonen zu einem Spektrum zusammengefügt. Dabei wird neben dem gesam-

ten Spektrum (4.4) auch ein Spektrum ohne Ober�ächenplasmonen ausgegeben. In

Abbildung 4.3 ist schematisch der Programmablauf dargestellt.

Sofern parameterabhängige 3D-Spektren ausgegeben werden sollen, werden die Pro-

grammcodes für Ober�ächenplasmonen oder Mehrfachstreuung in einer Schleife aus-

geführt. Bei jedem Schleifendurchlauf wird dann der entsprechende Parameter um

die gewünschte Schrittweite erhöht oder erniedrigt. In Abbildung 4.2 und 4.4 sind

für beide Fälle simulierte 3D-Spektren dargestellt. Die Skaleneinteilung der Counts

hängt davon ab, welcher Wert für das Zero-Loss Integral benutzt wurde. Dieser Wert

wird später auch aus den aufgenommenen Spektren bestimmt und als Vorlage für

die Simulationen benutzt.

Abbildung 4.3.: Schematischer Programmablauf zur Berechung eines Spektrums mit
zusätzlichen Ober�ächene�ekten.
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4.3. Simulation von Ober�ächenplasmonen

Abbildung 4.4.: Simulierte Spektren für Volumen- und Ober�ächenplasmonen. Als
Parameter wurde die Probendicke verwendet. Der Zero-Loss Peak wurde zugunsten
der Übersichtlichkeit abgeschnitten. Bei 22,1eV be�ndet sich der Volumenplasmo-
nenpeak. Der Ober�ächenplasmonenpeak be�ndet sich im Bereich von 15eV.
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5. Experimentelle Durchführung

5.1. Probenpräparation

Die verwendeten SiC Proben wurden auf verschiedenen Wegen präpariert. Als Aus-

gangssubstanz lag zum einen SiC Pulver vor. Dieses Pulver wurde in mehreren Stufen

fein gemörsert und anschlieÿend mit destilliertem Wasser aufgemischt. Das Gemisch

wurde auf ein Kupfernetz (400 Mesh) aufgebracht. Durch Bestrahlung mit infraro-

tem Licht wurde das Wasser verdampft, so dass das SiC Pulver als Rückstand auf

dem Netz zurückblieb.

Darüber hinaus wurden als Ausgangsmaterial dünne SiC Kristalle verwendet mit

einer Ausgangsdicke zwischen 0,5 und 0,8 mm. Diese Kristalle wurden in ca. 2 mm

mal 2 mm groÿe Flächen geschnitten, bzw. gebrochen. Mit einem Zweikomponen-

tenkleber wurden diese Bruchstücke dann auf einem runden Kupferträger �xiert

(Abbildung 5.1). Der Kupferträger weist in der Mitte ein Loch auf, so dass bei der

Untersuchung die Elektronen nicht zusätzlich durch den Kupferträger beein�usst

werden.

Dieser so präparierte SiC Kristall wurde dann mit einem Dimpler in mehreren Stufen

auf eine Enddicke von 10-40 Mikrometern gedünnt. Anschlieÿend wurde der Kristall

durch Beschuss mit Argon Ionen unter einem Vakuum von 10−3 bar soweit gedünnt,

dass in der Mitte des Kristalls ein Loch entstand. Die Argon Ionen wurden dabei

nicht senkrecht, sondern unter einem Winkel von 30 Grad auf die Probe geschossen,

so dass am Rand des Lochs ein kontinuierlicher Dickenabfall entstand (Abbildung

5.2). Betrachten lässt sich nun ein keilförmiger Ausschnitt am Rand des Lochs. Die-

ser Keil bietet die Möglichkeit, mit einer Probe Aufnahmen bei unterschiedlichen

Probendicken anzufertigen.
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5. Experimentelle Durchführung

Abbildung 5.1.: Schema zur Präparation eines Kristalls. Der Kristall wird mit einem
speziellen Komponentenkleber auf einem Kupferring aufgebracht.

Abbildung 5.2.: Schematischer Probenquerschnitt des gedünnten Kristalls. In der
Mitte be�ndet sich das Loch, die Dicke steigt am Rand des Lochs langsam an.

5.2. Energieau�ösung der verwendeten Mikroskope

Zur Bestimmung der Qualität der Aufnahmen, insbesondere der möglichen Ener-

gieau�ösung, wurden explizit Aufnahmen vom Zero-Loss Peak erstellt. Die Ener-

gieau�ösung der Elektronenoptik und des Spektrometers spiegelt sich dabei in der

Halbwertsbreite des Peaks wieder. Die Aufnahmen für diese Arbeit wurden an zwei

unterschiedlichen Mikroskopen erstellt. Einerseits wurde das bereits oben beschrie-

bene ZEISS Libra 200 FE verwendet (siehe Kapitel 3.1), andererseits Messungen

am Elektronenmikroskop Crisp am CAESAR in Bonn durchgeführt. Das Crisp ver-

fügt im Gegensatz zum Libra über eine Elektronenquelle mit Monochromator. Der

Monochromator ermöglicht eine theoretische Energieau�ösung von 0,1eV. Durch die

Eigenschaften der Elektronenoptik wird diese Energieau�ösung bei der Aufnahme

allerdings nicht erreicht. Anhand der Halbwertsbreite des Zero-Loss Peaks lässt sich

die zur Verfügung stehende Energieau�ösung bestimmen. Ausschnitte der aufgenom-

menen Energieverlustspektren sind in Abbildung 5.3 dargestellt. Die Energieau�ö-

sung am Libra ohne Monochromator beträgt 0,6eV bis 0,7eV, die Energieau�ösung

am Crisp beträgt 0,2eV bis 0,3eV.
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5.2. Energieau�ösung der verwendeten Mikroskope

(a) Aufnahme am Libra (b) Aufnahme am Crisp

Abbildung 5.3.: Aufnahmen vom Zero-Loss Peak zur Bestimmung der Energieau�ö-
sung
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5. Experimentelle Durchführung

5.3. Au�ösungsvermögen der CCD-Kamera

Zusätzlich zur Elektronenoptik im Transmissionselektronenmikroskop spielt für die

Energieau�ösung der Spektren die Qualität der CDD-Kamera eine wichtige Rolle.

Für die Aufnahmen am Libra wurde eine 4k Kamera der Firma Gatan verwendet

(USC 4000). Sie bietet eine Au�ösung von 4000 x 4000 Pixeln. Aufgrund der ho-

hen Intensitäten im Bereich niedriger Energieverluste (insbesondere Zero-Loss Peak)

können Geisterpeaks entstehen. Die Kamera ist in vier Quadranten eingeteilt, die

separat ausgelesen werden. Durch Übersprechen kann ein hohes Signal in einem Qua-

dranten auf einen anderen Quadranten projiziert werden. Aus diesem Grund wird

bei den Aufnahmen der Zero-Loss Peak so zentriert, dass er sich genau in der Mitte

der Kamera, angrenzend an die vier Quadranten, be�ndet.

Dadurch kann der E�ekt des Übersprechens umgangen werden. Nachteilig an diesem

Verfahren ist, dass für das Spektrum nur die Hälfte der horizontalen Au�ösung zur

Verfügung steht. Das Spektrum nutzt nicht die 4000 Messpunkte, die theoretisch zur

Verfügung stünden, sondern lediglich die Hälfte also 2000 Messpunkte. Ein Modell,

wie das Spektrum zur Aufnahme auf der CCD-Kamera justiert wird, ist in Abbil-

dung 5.4 dargestellt.

Die CCD-Kamera, die am Crisp verwendet wurde, ist eine 2k Kamera mit lediglich

einem Quadranten und bietet eine Au�ösung von 2000 x 2000 Pixeln. Der E�ekt

des Übersprechens tritt dort nicht auf, weshalb für die Aufnahme von Spektren der

gesamte Bereich benutzt werden konnte. Für die Aufnahmen der Spektren können

dort ebenfalls 2000 Messpunkte genutzt werden.

5.4. Aufnahme von Energieverlustspektren

Wie in Abbildung 5.4 bereits angedeutet, werden die Spektren mit der CCD Ka-

mera in Form von zweidimensionalen Graustufenbildern aufgenommen (Abbildung

5.5). Dabei entspricht jede Zeile dieses Bildes einem Spektrum, sofern die Energie-

dispersion in horizontaler Richtung statt�ndet. Ist das Spektrum um einen Winkel

gekippt, der nicht einem Vielfachen von 90 Grad entspricht, lassen sich die einzel-

nen Spektren nicht einfach aus den Zeilen oder Spalten des Bildes ablesen. Da das

Spektrum über mehrere Zeilen des Bildes ausgedehnt ist, sollten mehrere Zeilen zu

einem Spektrum aufaddiert werden, um das Signal zu Rausch Verhältnis (SNR) zu
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5.4. Aufnahme von Energieverlustspektren

Abbildung 5.4.: Modell zur Aufnahme von Low-Loss Spektren mit der CCD-Kamera.
Der Zero-Loss Peak ist als schwarzer Strich im Zentrum zu erkennen. Zur rechten
Seite ist das Spektrum mit steigendem Energieverlust dargestellt. Der schwarze Fleck
im Spektrum repräsentiert den Volumenplasmonenpeak.

verbessern. Da die Intensitäten im betrachteten Energiebereich allerdings groÿ sind

(im Bereich von 103 Counts), kann auf eine Betrachtung des Signal zu Rausch Ver-

hältnisses weitestgehend verzichtet werden.

Die Integration der einzelnen Zeilen des Bildes erfolgt in der Regel unmittelbar wäh-

rend der Aufnahme, so dass als Ergebnis ein einziges Spektrum ausgegeben wird. In

der anschlieÿenden Auswertung hat sich die Möglichkeit, nachträglich den Integra-

tionsbereich variieren zu können und sogar über die Extraktion mehrerer Spektren

verfügen zu können, als hilfreich erwiesen. Daher wurde dem Programm zur Aus-

wertung der Spektren zusätzlich die Option hinzugefügt, das von der Kamera als

2-D Bild aufgenommene Spektrum zu ö�nen und nachträglich einen oder mehrere

Integrationsbereiche auszuwählen.

Das aufgenommene Grasstufenbild muss dabei zunächst als zweidimensionales Zah-

lenarray exportiert werden und wird dann programmintern als Matrix verwaltet.

Die einzelnen Zeilen, denen einzelne Spektren zugeordnet werden, lassen sich an-

schlieÿend weiter verarbeiten. Bei einer genauen Betrachtung der einzelnen Spektren

(Abbildung 5.6), ist zu erkennen, dass die Spektren mit einem hohen Rauschanteil

belastet sind. Daher ist es sinnvoll, mehrere Spektren zusammen zu fassen. Ein

sinnvoller Integrationsbereich lässt sich dadurch erreichen, dass anhand der einzel-

nen Spektren analysiert wird, welche Spektren sinnvolle Informationen, wie etwa den

Plasmonenpeak, enthalten. Betrachtet man die Spektren bei Zeilennummer 300 und
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5. Experimentelle Durchführung

Zeilennummer 410, ist zu erkennen, dass neben dem Fehlen eines Plasmonenpeaks

auch der Zero-Loss Peak intensitätsschwach ist. Die Spektren dazwischen weisen

diese Eigenschaften nicht auf und können daher sinnvoll au�ntegriert werden. In

Abbildung 5.7 ist das integrierte Spektrum dargestellt. Deutlich zu erkennen ist

der Plasmonenpeak und der Peak der Mehrfachstreuung 1. Ordnung. Der Zero-Loss

Peak wurde zur Übersichtlichkeit nicht ganz dargestellt. Die x-Skala entspricht den

Detektionskanälen der Kamera und lässt sich problemlos in eine Energieskala über-

setzen, wenn bekannt ist, mit welchem Energieabstand zwei nebeneinanderliegende

Kanäle verknüpft sind. Benötigt wird dazu die Vergöÿerung des Spektrums auf der

Kamera und die Gröÿe der einzelnen Kamerapixel. Der Energienullpunkt kann über

die Position des Zero-Loss Peaks bestimmt werden. Im Spektrum ist nach wie vor

ein hoher Rauschanteil erkennbar, da der Integrationsbereich klein gehalten wurde

und lediglich 50 Zeilen zum Spektrum zusammengefasst wurden.

Abbildung 5.5.: Spektrums einer SiC Probe, das am Crisp aufgenommen wurde. Die
Energiedispersion �ndet in horizontaler Richtung statt, der Energieverlust steigt
nach rechts hin an.

5.5. Untergrundkorrektur

Bedingt durch den Aufbau und die Bescha�enheit der CCD-Kamera kommt es im

aufgenommenen Spektrum zu einem Untergrundrauschen. Dieser Untergrund führt

dazu, dass der Wert der einzelnen Counts entsprechend der detektierten Elektronen

zu hoch ist. Dabei handelt es sich im wesentlichen um Rauschen, das statistisch

über die einzelnen Kanäle verteilt ist. Zudem kann es, abhängig vom verwendeten

Detektionssystem, zu einem kanalabhängigen Rauschen kommen.

Das statistische Rauschen lässt sich herausrechnen, indem von allen Kanälen des

Spektrums einen berechneten Mittelwert für das Rauschen abgezogen wird. Zur Be-

rechnung dieses Mittelwertes sind verschiedene Möglichkeiten vorhanden. Als sinn-

voll erwiesen hat sich die Mittelwertbildung einiger Kanäle, die im Spektrum nega-
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5.5. Untergrundkorrektur

Abbildung 5.6.: Serie von Einzelspektren, erstellt aus dem in Abbildung 5.5 aufge-
nommenem Spektrum. Jedes Spektrum entspricht einer Zeile des Graustufenbildes,
wobei die Zeilennummern entsprechen den Zeilen des Bildes gewählt wurden. Dar-
gestellt sind die ersten 1000 Kanäle. Der Zero-Loss Peak wurde durch die Skalierung
teilweise abgeschnitten, um den Volumenplasmonenpeak besser erkennbar zu ma-
chen.
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5. Experimentelle Durchführung

Abbildung 5.7.: Integriertes Spektrum, erstellt aus dem in Abbildung 5.5 aufgenom-
menem 2-D Spektrum. Der Integrationsbereich wurde so gewählt, dass möglichst alle
Zeilen, die Informationen über die Plasmonen beinhalten, berücksichtigt wurden.
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5.5. Untergrundkorrektur

tiven Energien zugeordnet werden. Da die Spektren aufgrund der bereits erwähnten

Kamerae�ekte (siehe Kapitel 5.3) einen sehr groÿen O�set besitzt (ca. 2000 Kanä-

le), lässt sich dieser Mittelwert sehr genau bestimmen. Die am Crisp aufgenom-

menen Spektren haben einen kleineren O�set, daher lässt sich dort der Mittelwert

aus nur einigen wenigen Kanälen ableiten. In Abbildung 5.8 ist ein Ausschnitt aus

dem negativen Energiebereich eines aufgenommenen Spektrums dargestellt. Nach

der Subtraktion des Mittelwerts gibt es Kanäle, denen negative Counts zugeordnet

werden. Da allerdings die Kanäle, die sich im negativen Energiebereich be�nden,

in der späteren Verarbeitung abgeschnitten werden, können diese negativen Counts

vernachlässigt werden.

Das Auftreten von kanalabhängigem Rauschen ist auf die Bescha�enheit der CCD-

Kamera zurückzuführen. Dieser E�ekt kann allerdings auch vernachlässigt werden,

da bereits eine entsprechende Dunkelstromkorrektur bei der Aufnahme integriert

ist.

Abbildung 5.8.: Rauschen im Spektrum ohne (oben) und mit (unten) abgezogenem
Mittelwert. Der Mittelwert wurde aus dem betrachteten Energiebereich berechnet
zu 470 Counts.
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5.6. Bestimmung des Zero-Loss Integrals

Zur Intensität des Zero-Loss Peak tragen hauptsächlich die Elektronen bei, die die

Probe ohne Streuprozesse passiert haben. Die Summe dieser Elektronen, die sich in

den Counts wiederspiegeln, wird als Zero-Loss Integral bezeichnet. Um statt�ndende

Streuprozesse quantitativ beschreiben zu können, dient das Zero-Loss Integral zur

Normalisierung des Spektrums. Aus diesem Grund ist es wichtig, den Wert dieses

Integrals möglichst genau und fehlerfrei zu bestimmen. Der Zero-Loss Peak ist kein

Delta-Peak, sondern besitzt eine de�nierte Halbwertsbreite. Die Form des Peaks

lässt sich durch eine Überlagerung von mehreren Gauss-Funktionen beschreiben.

Im einfachsten Fall ist das Integral zu berechnen, indem alle Kanäle des Spektrums

aufaddiert werden, die den Zero-Loss Peak enthalten. Das Spektrum sollte bei dieser

Methode auf jeden Fall von Untergrundrauschen bereinigt worden sein, da die ent-

sprechenden Counts sonst ebenfalls zum Zero-Loss Integral beitragen. Da der Zero-

Loss Peak in den weiteren Berechnungen stört, wird er nach Bestimmung des Inte-

grals vom Spektrum separiert. Problematisch ist, dass sich bereits in unmittelbarer

Nähe des Zero-Loss Peaks weitere E�ekte ausprägen, wie zum Beispiel Cerenkov-

Strahlung. Diese zusätzlich auftretenden Peaks können die abfallende Flanke des

Zero-Loss Peaks verändern und zu einem verfälschten Integralwert führen. Zudem

können dann bei der Abseparation durch eine falsche Bestimmung Informationen aus

dem Spektrum verloren gehen. Um das Zero-Loss Integral genauer zu bestimmen,

wurden verschiedene Methoden entwickelt.

5.6.1. Rechtsseitige Betrachtung

An den Zero-Loss Peak hin zu höheren Energien schlieÿt sich der Plasmonenpeak an.

Zwischen den beiden Peaks existiert ein Minimum. An Hand dieses Minimums lässt

sich der Ein�ussbereich des Zero-Loss Peaks und somit das entsprechende Integral

bestimmen. Der Integrationsbereich erstreckt sich über den gesamten Peak bis hin

zum entsprechenden Minimum. Die Position des Minimums ist entscheidend für die

Qualität des Integrals. Liegt dieser Punkt bei einer zu hohen Energie, ist nicht nur

der Wert des Integrals zu hoch, sondern zusätzlich gehen Informationen verloren, da

der Peak bis hin zum Minimum nach der Bestimmung abgeschnitten wird. Die Posi-

tionsbestimmung wird durch das Rauschen im Spektrum ungenauer, da viele lokale
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5.6. Bestimmung des Zero-Loss Integrals

Minima im Verlauf des Spektrums vorhanden sind und die eigentliche Steigung zum

Plasmonenpeak gering ist. Um dennoch den Wert möglichst genau zu bestimmen,

wird statt des Spektrums selbst die Funktion J(E)/E betrachtet, wobei J(E) das

Spektrum selbst ist. Problematisch wird diese Methode allerdings dann, wenn sich

unmittelbar an den Zero-Loss Peak weitere Peaks anschlieÿen, wie der Peak, der aus

Cerenkov-Strahlung resultiert, oder dem Ober�ächenplasmonenpeak, der allerdings

beim betrachteten SiC im Bereich von 15eV liegt und somit weit genug entfernt ist.

In Abbildung 5.9 ist das Spektrum mit Zero-Loss Peak und mit abgeschnittenem

Peak dargestellt. Dort, wo das Spektrum auf Null abfällt, wurde der Zero-Loss Peak

abgetrennt.

Abbildung 5.9.: Energieverlustspektrum vor und nach der Separation des Zero-Loss
Peaks. Der Schittpunkt erfolgte hier bei ca. 5eV. Der Peak wurde nach der rechts-
seitigen Methode separiert.

5.6.2. Linksseitige Betrachtung

Alternativ zur Bestimmung eines Minimums zur Berechnung des Zero-Loss Integral,

kann ausgenutzt werden, dass der Peak angenähert symmetrisch in Bezug auf das
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Maximum ist. Nur die Counts von einer Seite das Peaks werden benötigt, die an-

dere Seite kann als Spiegelung betrachtet werden. Im einfachsten Fall wird von der

linken Hälfte ausgegangen (die Häfte, die sich im negativen Energieverlustbereich

be�ndet), da sich an der rechten abfallenden Flanke des Peaks bereits andere Ef-

fekte bemerkbar machen. Die Counts der linken Flanke werden aufaddiert und der

Wert verdoppelt, um die rechte abfallende Flanke zu berücksichtigen. Im nächsten

Schritt wird der Zero-Loss Peak vom Spektrum abgetrennt. Um die Ausläufer von

sich anschlieÿenden Peaks nicht abzuschneiden, wird die linke Flanke von der rech-

ten Flanke subtrahiert. Voraussetzung ist, dass die beiden Flanken nahezu identisch

sind, da das Spektrum sonst zu stark verfälscht würde. Über einen Vergleich der lin-

ken und rechten Flanke im Bereich groÿer Counts (also in der Nähe vom Maximum)

kann diesem E�ekt entgegen gewirkt werden. In Abbildung 5.10 ist das Spektrum

mit Zero-Loss Peak und mit abgeschnittenem Peak dargestellt.

Abbildung 5.10.: Energieverlustspektrum vor und nach der Separation des Zero-
Loss Peaks. Der Schittpunkt erfolgte hier bei ca. 2eV. Der Peak wurde nach der
linksseitigen Methode separiert.

Bei Verwendung einer Schottky-Kathode sollte der Zero-Loss Peak in der Regel

symmetrisch in Bezug auf das Maximum sein. Bei Verwendung von anderen Katho-

46



5.7. Entfernung von Mehrfachstreuung

den ist dies nicht unbedingt der Fall. Das Maximum kann dann zu höheren oder

niedrigeren Energien verkippt sein, so dass diese Verkippung zusätzlich berücksich-

tigt werden müsste.

5.7. Entfernung von Mehrfachstreuung

Auftretende Mehrfachstreuung stört bei der weiteren Bearbeitung des Spektrums,

insbesondere bei der Berechnung der dielektrischen Funktion. Aus diesem Grund

wird die Mehrfachstreuung mit Hilfe der in Kapitel 3.9 beschriebenen Matrixentfal-

tung herausgerechnet. Dazu ist es notwendig, vor der Entfaltung bereits das Zero-

Loss Integral zu berechnen. Zudem muss der Zero-Loss Peak entfernt sein. In Ab-

bildung 5.11 ist ein aufgenommenes Spektrum mit deutlicher Mehrfachstreuung bis

zur 3. Ordnung dargestellt. Das Rauschen im Spektrum ist groÿ, da aufgrund der

hohen Probendicke die Aufnahmezeit des Spektrums lang ist. Die Probendicke kann

später, falls erwünscht, über die Kramers-Kronig Rechnungen bestimmt [6], oder

über den Vergleich mit simulierten Spektren abgeleitet werden. In Abbildung 5.12

wurde das Spektrum von Mehrfachstreuung bereinigt. Das Zero-Loss-Integral wur-

de berechnet und der Zero-Loss Peak abgeschnitten. Das Integral wurde berechnet

zu 679634 Counts. Zu erkennen ist der Punkt, an dem der Zero-Los Peak abge-

trennt wurde, dort fällt das Spektrum direkt auf Null ab. Die beiden zuvor noch

erkennbaren Peaks der Mehrfachstreuung sind nun nicht mehr sichtbar.

5.8. Aperturkorrektur

Für den Zusammenhang zwischen der SSD und dem Imaginärteil der reziproken

dielektrischen Funktion gilt [6]

S(E) =
2I0t

πa0m0v2
=
{
−1

ε

}∫ β

0

ΘdΘ

Θ2 + ΘE
2 . (5.1)

Dabei ist I0 das Zero-Loss Integral, t die Probendicke, β der Detektionswinkel und

ΘE der bereits in 3.2 angegebene relativistische charakteristische Streuwinkel. a0

und m0 stehen für den Bohrschen Radius und für die Ruhemasse der Elekronen.
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Abbildung 5.11.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-
plasmonenpeak bei ca. 22 eV sind weitere Peaks bei ca. 44eV und bei ca. 66eV zu
erkennen. Dabei handelt es sich um Mehrfachstreuung mit Peaks bei Vielfachen der
Plasmonenenergie.

Abbildung 5.12.: Von Mehrfachstreuung korrigiertes Spektrum. Der Zero-Loss-Peak
wurde abgeschnitten. Die Peaks der Mehrfachstreuung sind nicht mehr zu erkennen.
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Das Integral lässt sich direkt auswerten und es ergibt sich

S(E) =
2I0t

πa0m0v2
=
{
−1

ε

}
ln

[
1−

(
β

ΘE

)2
]
. (5.2)

Um an den reinen Imaginärteil zu gelangen, muss neben dem vorderen Faktor (der

später behandelt wird) auch die Winkelabhängigkeit herausgerechnet werden. Da

ΘE vom Energieverlust abhängt, muss die Winkelkorrektur für jeden Energiekanal

einzeln berechnet werden. Die einzelnen Kanäle des Spektrums werden anschlieÿend

durch den entsprechenden Korrekturfaktor dividiert.

Diese Methode setzt allerdings voraus, dass der Detektionswinkel β gröÿer ist, als

α dem Maximalwinkel unter dem die Elektronen auf die Probe tre�en [6].

5.9. Normalisationsfaktor

Neben der Winkelkorrektur muss die bereits winkelkorrigierte SSD (S(E)) noch

normiert werden [6]. Dazu wird der Normalisierungsfaktor K bestimmt. Jeder Kanal

wird dann durch K dividiert.

S(E) =
2I0t

πa0m0v2︸ ︷︷ ︸
K

·=
{
−1

ε

}
(5.3)

In K sind alle als konstant angenommenen Werte zusammengefasst und lässt sich

über die Kramers-Kronig Summenbeziehung berechnen.

1−<
[

1

ε(0)

]
=

2

π

∫ ∞
0

=
[
− 1

ε(E)

]
dE

E
(5.4)

Nach Einsetzen und Umformen erhält man:

K =

∫∞
0

S(E)
E
dE(

1−<
[

1
ε(0)

])
· π

2

(5.5)

Hierbei ist der Realteil <
[

1
ε(0)

]
= n2 mit n als Brechungsindex. Voraussetzung

dieser Methode zur Bestimmung der Normierungs-Konstanten ist somit die Kenntnis

über die Dielektrizitätskonstante des Materials.
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5. Experimentelle Durchführung

Ist die Normierungs-Konstante bekannt, lässt sich, sofern alle anderen Gröÿen aus

K bekannt sind, die Dicke der Probe bestimmen.

K =
I0t

πa0m0v2
⇔ t =

Kπa0m0v
2

I0

(5.6)

Weiterhin lässt sich damit und mit

t/λ =

∫∞
0
S(E)dE

I0

(5.7)

die mittlere freie Weglänge λ der Elektronen bestimmen.

5.10. Retardierungse�ekte

Ein zusätzlicher im Spektrum auftretender E�ekt ist der Energieverlust durch die

Entstehung von Cerenkov-Strahlung. Diese entsteht, wenn die Geschwindigkeit der

einfallenden Elektronen gröÿer ist als die Lichtgeschwindigkeit im betrachteten Me-

dium. Dabei entstehen Photonen, die hohlkegelförmig emittiert werden [14].

Die Elektronen besitzen eine Energie von 200 keV, was einem Wert von β = 0, 695

entspricht, also ungefähr 70 Prozent der Vakuum-Lichtgeschwindigkeit. Die Bedin-

gung für das Auftreten von Cerenkov-Strahlung lässt sich zurückführen auf den

Realteil der dielektrischen Funktion. Dabei ist im Folgenden mit cm die Lichtge-

schwindigkeit im Medium gemeint.

vel > cm =
c

n
=

c
√
ε1
⇒ 1

β2
> ε1 oder β2 · ε1 > 1 (5.8)

In unserem Fall von Elektronen mit 200keV Elektronen ist die Möglichkeit von

Cerenkov-Strahlung dann gegeben, wenn ε1 > 2. Der Ein�uss dieses E�ekts auf

das Verlustspektrum steigt mit dem Wert von ε1. Da ε1 energieabhängig ist, kann

Cerenkov-Strahlung nicht bei allen Energien im Spektrum auftreten, sondern nur

bei niedrigen Energieverlusten. Deutlich bemerkbar wird dieser E�ekt durch einen

zusätzlichen Peak im Spektrum. Das Spektrum, unter Vernachlässigung von Ober-

�ächene�ekten, aber mit Berücksichtigung von Cerenkov-Strahlung, lässt sich durch

folgende Formel beschreiben [14] [29] :
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dσ2

dΩdE
=

=
(−1
ε

)
π2a2

0m0v2na
·

Θ2 + Θ2
E

[(
ε1
v2

c2
− 1
)2

+ ε22
v4

c4

]
[
Θ2 −Θ2

E

(
ε1
v2

c2
− 1
)]2

+ Θ4
Eε

2
2
v4

c4

(5.9)

Betrachtet man den Nenner des zweiten Bruchs dieser Formel, so ist festzustellen,

dass der Wirkungsquerschnitt für Θ = ΘE

(
ε1
v2

c2
− 1
)
ein Maximum durchläuft. Da

dieses Θ sehr klein ist, liegt das Maximum nahezu auf der optischen Achse, zudem

ist dieses Maximum aufgrund von ΘE energieabhängig.

Durch die Abweichung von einer lorentzartigenWinkelverteilung lässt sich die Cerenkov-

Strahlung im Spektrum von Plasmonen unterscheiden. Zudem kann das Auftreten

von Cerenkov-Strahlung durch Wahl einer geeigneten Apertur minimiert werden [7].

Cerenkov-Strahlug kann ebenfalls an der Grenzschicht zwischen Vakuum und Pro-

be auftreten. Dieser E�ekt kann allerdings vernachlässigt werden, da die Auftritts-

wahrscheinlichkeit in der Gröÿenordnung von 0,1 Prozent liegt und daher nicht zum

Spektrum beiträgt [6].

Abbildung 5.13.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-
plasmonenpeak bei ca. 22 eV ist ein zusätzlicher Peak bei ca. 5eV zu erkennen, der
aufgrund von Cerenkov-Strahlung zustande kommt.
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5. Experimentelle Durchführung

5.11. Berechnung der dielektrischen Funktion

Der Vorgang zur Berechnung der dielektrischen Funktion aus den Energieverlust-

spektren ist in Abbildung 5.15 dargestellt. Auf die Aperturkorrektur und die Nor-

mierung der Spektren wurde bereits eingegangen. Die Berechnung des Realteils, im

Schema als FFT+Korrektur bezeichnet, beinhaltet die in Kapitel 3.8 abgeleitete

Beziehung zwischen Real- und Imaginärteil. Nach der Berechnung des Realteilteils

des Kehrwertes der dielektrischen Funktion, lassen sich daraus der Realteil und

Imaginärteil der dielektrischen Funktion bestimmen. Bisher wurde allerdings bei

den Berechnungen nicht berücksichtigt, dass Ober�ächenplasmonen vorhanden sein

können. Diese werden über ein iteratives Verfahren berechnet. Zunächst wird unter

Ausnutzung der berechneten dielektrischen Funktion mit dem Zusammenhang [6]

Ss(E) =
I0

πa0k0t

(
cot(β/ΘE)

ΘE

− β

β2 + Θ2
E

)
·
(

4ε2
(ε1 + 1)2 + ε22

−=
(
−1

ε

))
(5.10)

das Spektrum der Ober�ächenplasmonen berechnet. Dieses Spektrum wird vom Aus-

gangsspektrum abgezogen. Darau�olgend wird die gesamte Prozedur (Aperturkor-

rektur, Normierung, Kramers-Kronig Transformation, Berechnung von ε1 und ε2

und die Berechnung der Oberfächenplasmonen) mit diesem neuen Spektrum durch-

geführt. Die Schleifenzahl dieser Iteration ist beliebig, hat allerdings Auswirkungen

auf den Rechenaufwand. Für eine praktikable und zufriedenstellende Berechnung

wurden 10 Iterationen durchgeführt. In Abbildung 5.14 ist ein Ausgangsspektrum

mit deutlich erkennbaren Ober�ächenplasmonen dargestellt.
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Abbildung 5.14.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-
plasmonenpeak bei ca. 22 eV ist der Ober�ächenplasmonenpeak zwischen 15eV und
16eV zu erkennen.

Abbildung 5.15.: Programmschema der Routine zur Berechnung von Realteil und
Imaginärteil der dielektrischen Funktion eines gegebenen Spektrums.
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6. Auswertung

Die in Kapitel 5 zur Entwicklung der Auswertungsmethoden verwendeten Messungen

wurden am Libra aufgenommen. Aufgrund des Monochromators und der somit bes-

seren Energieau�ösung wurden die Messungen zur Bestimmung der dielektrischen

Funktion am Crisp durchgeführt. Aufgenommen wurden Spektren bei verschiede-

nen Probendicken im Bereich von 30nm bis 100nm. Diese Eingrenzung des Bereichs

der Probendicke basiert auf eine Betrachtung der Simulationsrechnungen in Kapi-

tel 4. Die dielektrische Funktion wurde nach einem Vergleich der Aufnahmen aus

dem Spektrum berechnet, das weder einen ausgeprägten Ober�ächenplasmonenpeak

noch deutliche Mehrfachstreuung enthielt.

6.1. Berechnete dielektrische Funktion

In den Abbildungen 6.1 und 6.2 ist die nach den in Kapitel 5 entwickelten Methoden

berechnete dielektrische Funktion einer 3C-SiC Modi�kation. In den Abbildungen

6.3 und 6.4 ist die dielektrische Funktion einer 6H-SiC Modi�kation dargestellt. Aus

den Spektren ist erkennbar, dass der Verlauf der dielektrischen für beide Modi�-

kationen sehr ähnlich aussieht. Aus den Nulldurchgängen der beiden Realteile der

dielektrischen Funktionen bei ca. 22eV lässt sich auf den Volumenplasmonenpeak

schlieÿen. Zusätzlich lassen sich in den Feinstrukturen bei kleineren Energien In-

terbandanregungen vermuten. Aufgrund des hohen Rauschanteils und der mäÿigen

Energieau�ösung lassen sich die Spektren den einzelnen Modi�kationen nicht ein-

fach zuordnen. Im Vergleich mit den in Kapitel 6.2 vorgestellten Messungen, erkennt

man die Grenzen der Energieau�ösung. Der Vorteil der Messungen liegt allerdings

gerade im erweiterten Energiebereich. Nach einer Glättung der Funktionen (Bezier

Algorithmus) ist der Verlauf der dielektrischen Funktionen deutlicher zu erkennen.

Der hohe Rauschanteil bei niedrigen Energieverlusten entsteht bei der Berechnung

der Fouriertransformationen. Bei niedrigen Energieverlusten sind die Counts gering,
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so dass das Rauschen im Spektrum dort eine gröÿere Gewichtung trägt. Die geglät-

teten Messungen sind in den Abbildungen 6.5 bis 6.8 dargestellt. Die Minima im

Realteil der dielektrischen Funktionen bei ca. 12 eV resultieren aus Interbandanre-

gungen. Entsprechend lassen sich bei ca. 12 eV im Imaginärteil der dielektrischen

Funktionen Maxima erkennen. Das erste Minimum bei ca. 10 eV in Abbildung 6.5

sollte nicht vorhanden sein und lässt sich auf Berechnungsfehler zurückführen, da

ein entsprechend ausgeprägter Verlauf in Abbildung 6.7 nicht erkennbar ist.

Abbildung 6.1.: Realteil der dielektrischen Funktion von 3C-SiC.

Abbildung 6.2.: Imaginärteil der dielektrischen Funktion von 3C-SiC.

56



6.1. Berechnete dielektrische Funktion

Abbildung 6.3.: Realteil der dielektrischen Funktion von 6H-SiC.

Abbildung 6.4.: Imaginärteil der dielektrischen Funktion von 6H-SiC.
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6. Auswertung

Abbildung 6.5.: Realteil der dielektrischen Funktion (geglättet) von 3C-SiC.

Abbildung 6.6.: Imaginärteil der dielektrischen Funktion (geglättet) von 3C-SiC.
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6.1. Berechnete dielektrische Funktion

Abbildung 6.7.: Realteil der dielektrischen Funktion (geglättet) von 6H-SiC.

Abbildung 6.8.: Imaginärteil der dielektrischen Funktion (geglättet) von 6H-SiC.
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6. Auswertung

6.2. Vergleich mit optischen Messungen

Die dielektrischen Funktion lässt sich neben der Bestimmung aus Verlustspektren

auch über optische Messungen bestimmen. Der Nachteil der optischen Messung liegt

in der Beschränktheit des Energiebereichs auf einen Spektralbereich von ca. 1 eV bis

30 eV [4]. Der Vorteil der ellipsometrischen Messung besteht in der Energieau�ösung,

die je nach betrachteter Photonenenergie im Bereich von 20 meV bis 200 meV liegt.

Bei verlustspektroskopischen Messungen wird mit einer geringeren Energieau�ösung

gearbeitet.

Die Ellipsometrie nutzt die Änderung des Polarisationszustandes von Licht, das an

einer Probe re�ektiert wird. Der Name ergibt sich aus dem Zusammenhang, dass

das zuvor in der Regel linear oder zirkular polarisierte Licht nach Re�ektion an der

Probe elliptisch polarisiert ist. Diese Änderung des Polarisationszustandes erlaubt

eine Berechnung des Realteils und des Imaginärteils der komplexen dielektrischen

Funktion.

Bedingt durch den Aufbau der Apparatur und der praktischen Durchfürhbarkeit,

wird das Spektrum einer ellipsometrischen Messung aus Einzelspektren zusammen-

gesetzt. In Abbildung 6.9 sind die e�ektiven dielektrischen Funktionen von drei

bekannten SiC Modi�kationen dargestellt. Bei den Spektren handelt es sich um

Ausschnitte, die einen Energiebereich von 2eV bis 10eV abdecken. Zu erkennen ist

die bessere Energieau�ösung im Bereich kleiner Energieverluste, im Vergleich zu

den Messungen aus 6.1, daran, dass im Verlauf kleinere Strukturen deutlicher aus-

geprägt sind. Die dielektrischen Funktionen der beiden unterschiedlichen Messme-

thoden unterscheiden sich im überlappenden Energiebereich etwas voneinander, was

(wie bereits in 6.1 erwähnt) an der Glättung der Daten liegt.
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6.2. Vergleich mit optischen Messungen

Abbildung 6.9.: Realteil und Imaginärteil der e�ektiven dielektrischen Funktion von
4H-, 6H- und 3C-SiC. Die Aufnahmen wurde ellisometrisch bei Raumtemperatur
aufgenommen [4]. Bei den Oszillationen im Spektrum der 3C-SiC Modi�kation han-
delt es sich um Fabry-Perot-Oszillationen.
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7. Zusammenfassung

Ziel der Arbeit war die Bestimmung der dielektrischen Funktion von Siliziumcarbid

mit Energieverlustspektren, aufgenommen mit einem Transmissionselektronenmi-

kroskop. Mit der Auswertung der aufgenommenen Spektren wurden die Probleme

behandelt, die zur erfolgreichen Bestimmung der dielektrischen Funktion beachtet

werden müssen. So stellte sich schnell heraus, dass die Simulation von Verlustspek-

tren sehr hilfreich ist, um unmittelbar nach der Aufnahme und Extraktion der Spek-

tren (Integration) über die Qualität der Daten zu entscheiden. Weiterhin konnten

so direkt die Peaks der Ober�ächenplasmonen, der Mehrfachstreuung, sowie die ei-

gentlich interessanten Volumenplasmonen bestimmt werden. Für die Aufnahme der

Spektren wurde auf die Möglichkeit zurückgegri�en, die Integration der Spektren

nachträglich durchzuführen, um ein bestmögliches Ausgangsspektrum zu erreichen.

Als entscheidend für die Qualität der dielektrischen Funktion stellte sich die genaue

Bestimmung des Zero-Loss-Peaks und des entsprechenden Integrals heraus. Gerade

in der Phase, in der der Zero-Loss Peak absepariert wird, kann durch einen unge-

nauen Abschnittpunkt der Verlauf der dielektrischen Funktion beein�usst werden.

Daher wurden für diese Aufgabe verschiedene Routinen entwickelt, um für verschie-

dene Spektren optimale Ergebnisse zu erzielen.

Die iterative Berechnung der dielektrischen Funktion unter Berücksichtigung der

Ober�ächenplasmonen stellte sich als geeignet heraus, da trotz der Wahl einer gut

gewählten Probendicke, um sowohl starke Mehrfachstreuung, als auch ausgeprägte

Ober�ächenplasmonen zu vermeiden, trotzdem beide E�ekte nicht ganz vermieden

werden können.

Störend in den am Libra aufgenommenen Spektren sind ausgeprägte Cerenkov-

Peaks, die aufgrund der groÿen Beschleunigungsspannung und der daraus resultie-

renden hohen Elektronenenergie nicht immer vermieden werden konnten. Dennoch

konnte durch eine geeignete Wahl der Apertur bei der Aufnahme von Spektren am

Crisp der Beitrag von Cerenkov-Strahlung entscheidend minimiert werden.

63



7. Zusammenfassung

Weiterhin wurde die Notwendigkeit eines Monochromators demonstriert, da für Be-

trachtungen im Low-Loss Bereich eine gute Energieau�ösung notwendig ist.

Zusammenfassend konnte festgestellt werden, dass die Bestimmung der dielektri-

schen Funktion von SiC mit einem Transmissionselektronenmikroskop möglich ist.

Abstriche müssen allerdings dann gemacht werden, wenn das Interesse an Fein-

strukturen bei sehr kleinen Energieverlusten liegt. Allerdings konnte trotzdem ein

Unterschied zwischen verschiedenen Siliziumcabid Modi�kationen erkannt werden.
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A.1. Herleitung der Kramers-Kronig Beziehungen

Zur Herleitung der Kramers-Kronig Beziehungen ist eine zunächst beliebige komple-

xe Funktion α(ω) = <{α(ω)}+={α(ω)} gegeben. Sowohl die Funktion, als auch die
abhängige Variable ω sind komplex. Die Funktion soll folgende drei Eigenschaften

besitzen [39]:

1. Die Pole von α(ω) liegen unterhalb der reellen Achse,

2. α(ω)/ω geht für |ω| → ∞ schneller gegen Null als |ω|−1

3. <{α(ω)} ist gerade während ={α(ω)} ungerade im Bezug auf reelle ω ist.

Der erste Punkt folgt aus der Kausalität (α(t) = 0 für t < 0 im Fourierraum). Sind

obige Bedingungen gegeben, so erfüllt die Funktion α(ω) die Kramers-Kronig Rela-

tion [39]. Betrachtet wird nun das Wegintegral über eine komplexe Halbebene, wie

in Abbildung A.1 dargestellt. Der Beitrag des 4. Teilstücks verschwindet aufgrund

der zweiten Forderung an die Funktion. Das Integral über den geschlossenen Weg

ergibt aufgrund der ersten Forderung und nach dem Cauchyschen Integralsatz Null∮
S

α(s)

s− ω
ds =

∫
1

+

∫
2

+

∫
3

= 0. (A.1)

Für den Beitrag des zweiten Wegstücks, dem Halbkreis um den Pol, werden Polar-

koordinaten eingeführt (s = ω + ueiΘ)∫
2

α(s)

s− ω
ds→ α(ω)

∫ 0

π

iueiΘdΘ

ueiΘ
= −πiα(ω). (A.2)

65



A. Anhang

Das Cauchysche Hauptintegtral P lässt sich dadurch nun umformen zu:∫
1

+

∫
3

≡ P

∫ +∞

−∞

α(s)

s− ω
ds = πiα(ω) (A.3)

Durch Au�ösen nach α(ω) und Betrachtung des Realteils lässt sich dieser mit dem

Imaginärteil verknüpfen.

<{α(ω)} =
1

π
P

∫ +∞

−∞

={α(s)}
s− ω

ds =

[∫ +∞

0

={α(s)}
s− ω

ds+

∫ 0

−∞

={α(a)}
a− ω

da

]
.

(A.4)

Durch die Forderung, dass der Imaginärteil der betrachteten Funktion ungerade

ist bezüglich reeller ω, lässt sich das letzte Integral mit negativen Werten für a

umformen zu

<{α(ω)} =
1

π
P

[∫ ∞
0

={α(s)}
s− ω

ds+

∫ ∞
0

={α(s)}
s+ ω

ds

]
. (A.5)

Die beiden Integrale lassen sich nun bequem zusammenfassen. Zusätzlich lässt sich

durch eine analoge Betrachtung des Imaginärteils, eine entsprechende Relation be-

stimmen

<{α(ω)} =
2

π
P

∫ ∞
0

s={α(s)}
s2 − ω2

ds (A.6)

={α(ω)} = −2ω

π
P

∫ ∞
0

<{α(s)}
s2 − ω2

ds. (A.7)

Die Funkiton

α(ω) = 1− 1

ε(ω)
(A.8)

erfüllt die geforderten Voraussetzungen und die Kramers-Kronig Beziehungen lassen

sich nun auf den Kehrwert der dielektrischen Funktion übertragen

1−<
[

1

ε(ω)

]
=

2

π
P

∫ ∞
0

=
[
−1

ε(ω′)

]
· ω′dω′

ω′2 − ω2
. (A.9)

66



A.2. Ausschnitte von Quellcodes der verwendeten Routinen

Abbildung A.1.: Integrationsweg in der komplexen Halbebene

A.2. Ausschnitte von Quellcodes der verwendeten

Routinen

Im Folgenden werden die Programmcodes gezeigt, die zur Simulation der Spektren

für Mefachstreuung und Ober�ächenplasmonen programmiert wurden. Die entwi-

ckelten Programmcodes zur Berechnung der dielektrischen Funktion basieren auf

den in dieser Arbeit hergeleiteten Beziehungen und werden daher nicht aufgeführt.

A.2.1. Routine zur Simulation von Spektren mit

Mehrfachstreuung

1 //Erzeugt Spektren mit Mehrfach und Ein fachs t reuung . Als Parameter

2 //werden der Funktion zwei Referenzen auf l e e r e Spektren übergeben ,

3 // sowie e in Satz Parameter , der d i e E igenscha f t en der Spektren bestimmt .

4 void mul t ip l e_sca t t e r i ng ( spektrum &SSD, spektrum &PSD, parameter param)

5 {

6 // A l l e Datenarrays l e e r en

7 SSD . cnts . c l e a r ( ) ; PSD. cnts . c l e a r ( ) ; SSD .E. c l e a r ( ) ; PSD.E. c l e a r ( ) ;

8

9 // Zu s ä t z l i c h e Parameter werden d e f i n i e r t

10 double SZ = param .EW/1 . 665 ;

11 double SP = param .WP/1 . 665 ;

12 double HZ = param .EPC∗param .A0/SZ/1 . 7 72 ;

13 double RLNUM =1.23456;

14 double BNOISE=0, RNDNUM=0;

15
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16 for ( int i =1; i<=param .NCH; i++)

17 {

18 //Die Energ i e s ka l a wird in d i e Spektren ge s ch r i e b en

19 SSD .E. push_back ( i ∗param .EPC−param .OFFS) ;

20 PSD.E. push_back ( i ∗param .EPC−param .OFFS) ;

21

22 int FAC = 1 ;

23 int ORDER = 0 ;

24

25 int PSDA=0;

26

27 while (ORDER<15){ // Berücks i ch t i gung b i s zur 15. Ordnung

28

29 //Bestimmung von Sigma in Abhäng igke i t von der Streuordnung

30 double sigma = sq r t (SZ∗SZ+ORDER∗SP∗SP ) ;
31

32 //Berechnung des Exponenten fü r d i e Expone t i a l f unk t i on

33 double XPNT = pow( (PSD.E[ i−1]−ORDER∗param .EP) , 2 )/ sigma/sigma ;

34 double EXPO;

35 i f (XPNT > 20 . 0 ) EXPO = 0 . 0 ;

36

37 //Berechnung der Exponen t i a l f unk t i on

38 i f (XPNT <= 20 . 0 ) EXPO = exp(−XPNT) ;
39

40 // Berücks i ch t i gung der Streuordnung

41 int DNE = HZ∗SZ/sigma∗EXPO/FAC∗pow(param .TNM/param .LAM,ORDER) ;

42

43

44 int help1 = RLNUM; double help2=help1 ;

45 RNDNUM = 2 ∗ ( help2−RLNUM) ;

46

47 //Rauschen mit " Zu f a l l s g e n e r a t o r " erzeugen

48 double SNOISE = param .FPOISS∗( s q r t (DNE)∗RNDNUM) ;

49 RLNUM = 9.8765∗RNDNUM;

50

51 //Wenn der Fa l l 1 . Ordnung e i n t r i t t , wird das S ing l e−Sca t t e r i n g
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52 //Spektrum e r s t e l l t

53 i f (ORDER == 1)

54 {

55

56 //Hintergrundrauschen s imu l i e r en

57 BNOISE=param .FBACK∗param .BACK∗RNDNUM;

58

59 //SSD wird b e i Order=1 e r s t e l l t

60 SSD . cnts . push_back (DNE+sqr t (SNOISE∗SNOISE+BNOISE∗BNOISE ) ) ;
61 }

62

63 //Die e in z e ln en Be i t räge werden au f add i e r t

64 PSDA=PSDA+DNE;

65 FAC=FAC∗(ORDER+1);

66 ORDER++; //Erhöhung der Ordnung um e ins

67 DNE=0;

68 }

69

70 //Rauschen wird e r z eug t f ü r s PSD Spektrum

71 double SNOISE=param .FPOISS∗( s q r t (PSDA)∗RNDNUM) ;

72

73 //PSD Spektrum wird e r z eug t

74 PSD. cnts . push_back (PSDA+sqr t (SNOISE∗SNOISE+BNOISE∗BNOISE)+param .BACK) ;

75

76 }

77 SSD . o f f s e t=param .OFFS;

78 PSD. o f f s e t=param .OFFS;

79 SSD . xperchan=param .EPC;

80 PSD. xperchan=param .EPC;

81 SSD . beamkv=param .E0 ;

82 PSD. beamkv=param .E0 ;

83 SSD . po in t s=param .NCH;

84 PSD. po in t s=param .NCH;

85 }
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A.2.2. Routine zur Simulation von Spektren mit

Ober�ächenplasmonen

1 //Erzeugt Spektren mit Oberf lächenplasmonen

2 // (mit Berechnung der d i e l e k t r i s c h e n Funktion ) .

3 //Übergeben werden der Funktion Referenzen auf d i e l e e r en

4 // Spektren und z u s ä t z l i c h e in Paket an Parametern ,

5 // d i e zur E r s t e l l u n g der Spektren notwendig s ind .

6

7 void surface_plasmons ( parameter &param , spektrum &SSD, spektrum &eps1 ,

8 spektrum &eps2 , spektrum &REREPS, spektrum &ELF)

9 {

10 // A l l e Spektren l e e r en

11 SSD . cnts . c l e a r ( ) ; SSD .E. c l e a r ( ) ;

12 eps1 . cnts . c l e a r ( ) ; eps1 .E . c l e a r ( ) ;

13 eps2 . cnts . c l e a r ( ) ; eps2 .E . c l e a r ( ) ;

14 REREPS. cnts . c l e a r ( ) ;REREPS.E. c l e a r ( ) ;

15 ELF. cnts . c l e a r ( ) ;ELF.E. c l e a r ( ) ;

16

17 // Zu s ä t z l i c h e Parameter werden d e f i n i e r t

18 double B=param .BETA/1000;

19 double T=1000∗param .E0∗(1+param .E0/1022 .12)/pow(1+param .E0/511 . 0 6 , 2 ) ;

20 double TGT=1000∗param .E0∗(1022.12+param .E0)/(511.06+param .E0 ) ;

21 double RK0=2590∗(1+param .E0/511 .06)∗ s q r t (2∗T/511060) ;
22 double E;

23

24 for ( int IW=2;IW<=param .NCH+1;IW++){

25

26 E=param .EPC∗(IW−1); //Energ iewerte berechnen

27

28 //Energ iewerte s ch re i b en

29 SSD .E. push_back (E) ;

30 eps1 .E. push_back (E) ;

31 eps2 .E. push_back (E) ;

32 REREPS.E. push_back (E) ;

33 ELF.E. push_back (E) ;
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34

35 //Berechnung von Real− und Imag inä r t e i l der d i e l e k t r i s c h e n

36 //Funktion ohne Oberf lächenplasmonen

37 eps1 . cnts . push_back (1.−(param .EP∗param .EP)/(E∗E+param .WP∗param .WP) ) ;

38 eps2 . cnts . push_back (param .WP∗param .EP∗param .EP/E/

39 (E∗E+param .WP∗param .WP) ) ;

40

41 //Berechnung der komplexen Energy−Loss Funktion

42 //ohne Oberf lächenplasmonen

43 ELF. cnts . push_back (param .EP∗param .EP∗E∗param .WP/

44 (pow(E∗E−param .EP∗param .EP,2)+pow(E∗param .WP, 2 ) ) ) ;

45 REREPS. cnts . push_back ( eps1 . cnts . back ( ) / ( eps1 . cnts . back ( )∗
46 eps1 . cnts . back ()+ eps2 . cnts . back ( )∗ eps2 . cnts . back ( ) ) ) ;
47

48 //Berechung der Oberf lächenplasmonen

49 double THE = E/TGT;

50

51 double SRFELF = 4∗ eps2 . cnts . back ( ) / ( pow(1+eps1 . cnts . back ( ) , 2 )

52 +pow( eps2 . cnts . back () ,2))−ELF. cnts . back ( ) ;
53

54 double ANGDEP = atan (B/THE)/THE−B/(B∗B+THE∗THE) ;
55

56 double SRFINT = param .EPC∗param .A0∗ANGDEP∗SRFELF/
57 (3 .1416∗0 .0529∗RK0∗T) ;
58

59 double ANGLOG = log (1+B∗B/THE/THE) ;
60

61 double VOLINT = param .EPC∗param .A0/3.1416∗
62 param .TNM/0.0529/T/2∗ELF. cnts . back ( )∗ANGLOG;
63

64 //Volumeninfomrationen und Ober f lächenin format ionen zusammenfügen

65 SSD . cnts . push_back (VOLINT+SRFINT) ;

66

67 }

68

69 // Zu s ä t z l i c h e Angaben in d i e Spektren sch re i b en

71



A. Anhang

70 SSD . o f f s e t =0;

71 eps1 . o f f s e t =0;

72 eps2 . o f f s e t =0;

73 REREPS. o f f s e t =0;

74 ELF. o f f s e t =0;

75

76 SSD . xperchan=param .EPC;

77 eps1 . xperchan=param .EPC;

78 eps2 . xperchan=param .EPC;

79 REREPS. xperchan=param .EPC;

80 ELF. xperchan=param .EPC;

81

82 SSD . po in t s=param .NCH;

83 eps1 . po in t s=param .NCH;

84 eps2 . po in t s=param .NCH;

85 REREPS. po in t s=param .NCH;

86 ELF. po in t s=param .NCH;

87

88 SSD . beamkv=param .E0 ;

89 eps1 . beamkv=param .E0 ;

90 eps2 . beamkv=param .E0 ;

91 REREPS. beamkv=param .E0 ;

92 ELF. beamkv=param .E0 ;

93

94 }
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