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1. Einleitung

Das Elektronenmikroskop hélt seit seiner erfolgreichen Etablierung in vielen ver-
schiedenen Anwendungsgebieten Einzug. Neben der Untersuchung von Proben mit
ortsaufgelosten Aufnahmen lassen sich mit einem Elektronenmikroskop auch deren
elektronische Eigenschaften untersuchen. In diesem analytischen Modus werden kei-
ne ortsaufgelosten Bilder aufgenommen, sondern zum Beispiel Energieverlustspek-
tren. Bei dem in dieser Arbeit iiberwiegend verwendeten Mikroskop handelt es sich
um das Libra 200 FE der Firma Zeiss mit einem Energiefilter. Der Aufbau des Mi-
kroskops und des Filters werden in Kapitel erlautert. Aufser mit dem Libra 200
FE wurden noch weitere Aufnahmen mit dem Elektronenmikroskop Crisp am CAE-
SAR in Bonn durchgefiihrt. Beim Crisp handelt es sich um ein Elektronenmikroskop,
vergleichbar zum Libra 200 FE, das allerdings zusédtzlich einen Monochromator be-
sitzt. Dieser bietet die Moglichkeit, die Energiebreite der einfallenden Elektronen
um einen Faktor 2-3 zu verringern.

Die Energieverlustspektroskopie bietet tiefe Einblicke in die elektronischen Eigen-
schaften verschiedenster Materialien und entsprechend dem im Spektrum betrachte-
ten Energiebereich konnen verschiedenen Charakteristika untersucht werden. Diese
Arbeit beschéftigt sich mit dem Bereich niedriger Energieverluste (Low-Loss Be-
reich) und den dort auftretenden Anregungen von Volumenplasmonen. Ziel der Ar-
beit ist die Bestimmung der frequenzabhéngigen dielektrischen Funktion, die auch
als dielektrische Konstante in der klassischen Physik bekannt ist. Untersucht wird
dabei das Halbleitermaterial Siliciumcarbid, das in vielen verschiedenen Modifika-
tionen vorkommt. Interessant ist dieses Material insbesondere dadurch, dass es in
halbleitertechnologischen Anwendungen das bereits viel benutzte Silizium abl6sen
konnte. Denn im Gegensatz zu Bauelementen basierend auf Silizium, konnen Bau-
elemente aus Siliziumcarbid bei Temperaturen bis zu 800 Grad betrieben werden
[4].

Neben einer direkten Auswertung der aufgenommenen Daten helfen simulierte Spek-



1. Einleitung

tren dabei, die Auswirkungen verschiedener Phénome auf das Spektrum zu erkennen.
Weiterhin kann so die Auswirkung der Probendicke auf das Aussehen des Spektrums
iiberpriift und mit den experimentellen Aufnahmen verglichen werden.

Zunachst werden in Kapitel |3 die im entsprechenden Energiebereich auftretenden
Effekte theoretisch erldutert; insbesondere wird dabei auf die Volumenplasmonen
eingegangen. Diese theoretischen Beschreibungen dienen dann als Grundlage, um
geeignete Funktionen fiir die Simulationen zu wihlen. Um die Qualitit der aufge-
nommenen Spektren beurteilen zu kénnen, werden diese zudem besonders auf un-
erwiinschte Effekte wie Oberflichenplasmonen, Cerenkov-Strahlung und Mehrfach-
streuung untersucht. Dazu wird spéter vor allem ein iteratives Verfahren benutzt,
um den Einfluss von Oberflichenplasmonen, die bei der Aufnahme nicht vermie-
den werden konnten, herauszurechnen. Mit Hilfe dieser Zusammenhénge wird eine
Moglichkeit entwickelt, um aus den Spektren die dielektrische Funktion von Silizi-

umcarbid zu bestimmen.



2. Halbleitermaterial
Siliziumcarbid (SiC)

2.1. Kristallstruktur

Siliziumcarbid (SiC) ist eine Verbindung von Elementen aus der vierten Hauptgrup-
pe. Es besteht aus Silizium- und Kohlenstoffatomen im stochiometrischen Verhaltnis
1:1. Durch sp3-Hybridisierung sind die einzelnen Atome tetraedisch angeordnet (Ab-
bildung . Siliciumcarbid besitzt polytypische Eigenschaften, was zur Folge hat,
dass iiber 200 verschiedene Modifikationen moglich sind. Die Modifikationen unter-
scheiden sich durch die Stapelfolge von SiC Doppelschichten [34] .

O s
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Abbildung 2.1.: SiC Tetraeder [4]

Die freien Bindungen einer Doppelschicht sind senkrecht zur Schichtoberfliche

orientiert. Bei der Stapelung zweier Doppelschichten gibt es zwei Moglichkeiten: Die



2. Halbleitermaterial Siliziumcarbid (SiC)
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Abbildung 2.2.: Hexagonal angeordnete SiC-Doppelschichten [4].

Bindungen in den folgenden Schichten sind entweder parallel oder um einen Winkel
von 60 Grad versetzt angeordnet. Man spricht dabei von hexagonaler oder kubischer
Stapelfolge. Die Modifikationen setzen sich aus verschiedenen Kombinationen dieser
beiden Moglichkeiten zusammen und lassen sich dementsprechend beschreiben.
Grenzfille sind dabei eine rein hexagonale oder eine rein kubische Struktur [24].
Zur Charakterisierung der verschiedenen Modifikationen wird der Begriff der Hexa-
gonalitéit eingefiihrt , der sich aus der Anzahl der jeweiligen Doppelschichten
zusammensetzt (h=hexagonal, c=cubic)(Abbildung [2.4). Die Hexagonalitéit einiger
verschiedener Modifikationen sind in Tabelle aufgefiihrt.

e C

Abbildung 2.3.: Mogliche Stapelfolgen im Kristall. Die Bindungen von jeweils zwei
Doppelschichten kénnen parallel oder um 60 Grad gedreht angeordnet sein [4].



2.2, Elektronische Struktur

‘ Modifikation ‘ Hexagonalitét ‘ Bezeichnung ‘
3C-SiC 0% Zinkblendestruktur
6H-SiC 33%
4H-SiC 50%
2H-SiC 100% Wurtzitstruktur

Tabelle 2.1.: Charakterisierung von vier verschiedenen Kristallmodifikationen
entsprechend ihrer Hexagonalitat.

| | 3C-SiC | 6H-SIiC | 4H-SiC | 2H-SiC |
LDA | 1,29eV | 1,94eV | 2,14 eV | 2,12 eV
SIC  [246 eV [3,08eV [330eV[333eV
QPW [ 2,59 eV [ 3,25 eV [ 3,56 eV | 3,68 eV
Exp. |2,42eV [3,02eV [326eV |3,33eV

Tabelle 2.2.: Berechnete und experimentell bestimmte Bandliicken von vier
verschiedenen SiC Modifikationen [IJ.

h

H—
h+c

(2.1)

Aufgrund der méglichen Ubergéinge zwischen Modifikationen (z.B. die tempera-
turabhéngige Phasentransformation 3C-SiC nach 6H-SiC) spricht man auch von
Phasen. Daher spielt beim Wachstum der Kristalle die Temperatur eine wichtige
Rolle und hat Auswirkungen auf die entstehenden Schichtfolgen. Transformationen

zwischen verschiedenen Phasen sind ebenfalls moglich [24].

2.2. Elektronische Struktur

Die verschiedenen Modifikationen unterscheiden sich neben der Kristallstruktur auch
in ihren elektronischen Eigenschaften. Charakteristisch ist die grofse indirekte Band-
liicke, die zwischen 2,4eV und 4eV liegt [34]. Die Grofe der Bandliicke ist dabei
proportional zu der oben eingefiihrten Hexagonalitidt. In Tabelle sind theoreti-
sche und experimentelle Werte fiir die Bandliicken einiger Modifikationen dargestellt.
Aus Simulationsrechnungen liegen Informationen iiber den theoretischen Aufbau der
Bandstrukturen vor, die in Abbildung dargestellt sind.



2. Halbleitermaterial Siliziumcarbid (SiC)
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Abbildung 2.4.: Stapelfolgen der SiC-Modifikationen 3C, 6H, 4H und 2H in der
[1120]-Ebene [4].



2.2, Elektronische Struktur
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Abbildung 2.5.: Elektronische Bandstrukturen von verschiedenen SiC Modifikatio-
nen bestimmt aus LDA Rechnungen [I]. Die Kreise in (a) reprisentieren experi-

mentelle Ergebnisse. Die gestrichelte Linie zeigt jeweils die experimentell bestimmte
Bandliicke.






3. Grundlagen

Im folgenden Kapitel wird zunéchst auf den Aufbau eines Transmissionselektronen-
mikroskops eingegangen. Anschlieffend werden die auftretenden Prozesse, die fiir den
Niederverlustbereich interessant sind, hergeleitet. Diese theoretische Beschreibung
ist wichtig fiir die angestellten Simulationsrechnungen, die eine bessere Zuordnung

einzelner Effekte im Verlustspektrum erméglichen (Kapitel .

3.1. Aufbau des
Transmissionselektronenmikroskops ZEISS
LIBRA 200FE

Fiir die in dieser Arbeit verwendeten Aufnahmen wurde das Transmissionselektro-
nenmikroskop LIBRA 200FE benutzt (Abbildung[3.1)). Als Elektronenquelle besitzt
es eine Schottky-Kathode, wobei die emittierten Elektronen auf eine Energie von
200kV beschleunigt werden. Das Beleuchtungssystem ist auf die Kohler-Beleuchtung
eingestellt, wodurch die auf die Probe auftreffenden Elektronen an jedem Ort die
gleiche Winkelverteilung besitzen. Der auf der Probe ausgeleuchtete Bereich wird
durch die Kondensorblende bestimmt und lisst sich variieren. Dadurch kann der zu
untersuchende Probenbereich selektiert werden. Nach Wechselwirkung mit der Probe
werden die Elektronen durch verschiedene Linsen auf die Endbildebene abgebildet.
Die Endbildebene kann wahlweise auf einen Leuchtschirm, eine Planfilmkamera oder
eine Slow-Scan CCD-Kamera projiziert werden. Uber die Objektivblende (auch als
Kontrastblende bezeichnet) lassen sich im Beugungsbild bestimmte Beugungsrefle-
xe ausblenden und somit auch der maximale Streuwinkel der Elektronen begrenzen.
Elektronen mit einem groferen Streuwinkel tragen nicht zum Spektrum bei. Mit der

Filtereintrittsblende kann zusétzlich ein Bereich der bestrahlten Probe ausgewéhlt

11



3. Grundlagen

werden, auf den dann das Spektrometer wirkt. Eine Besonderheit dieses Mikroskops
ist das korrigierte OMEGA Energiefilter (Abbildung [3.2)), das sich zwischen Probe
und Endbildebene befindet. Bei Mikroskopen anderer Hersteller wird ein Energiefil-
ter in der Regel unterhalb der Endbildebene verwendet. Durch den Filter werden die
Elektronen entsprechend ihrem Energieverlust selektiert. Durch die Projektivsyste-
me 1 und 2 (Abbildung lasst sich einstellen, ob in der Endbildebene das Ab-
bild der Probe, das Beugungsdiagramm oder die energiedispersive Ebene mit dem
Elektronen-Energieverlust-Spektrum (EELS) dargestellt werden soll. Im Gegensatz
zu optischen Linsen weisen Linsen im Elektronenmikroskop deutlich stirkere Lin-
senfehler auf, die Grund fiir eine begrenzte Auflésung sind. Bei der Aufnahme von
Elektronen-Energieverlust-Spektren spielen diese Linsenfehler eine geringere Rolle

als bei der Aufnahme von Bildern der Probe.

3.2. Elektronen-Energieverlustspektroskopie

Trifft ein Strahl hochenergetischer Elektronen auf eine Probe, so wechselwirkt ein
Teil dieser Elektronen mit den Atomen der Probe, wihrend ein Grofsteil die Probe
ungehindert passiert. Die Wechselwirkungen fithren zu Streuprozessen. Hier gibt es
zum einem die elastischen Streuprozesse, bei denen die Elektronen an den Kernpo-
tentialen des Festkorpers in einen grofen Raumwinkel gestreut werden, aber keine
Energie verlieren. Zum Anderen finden inelastische Stofe statt, bei denen die Elek-
tronen Energie auf den Festkorper iibertragen. Dabei wird die Energie zur Anregung
von kollektiven Schwingungen des Elektronengases oder zur Anhebung von Elektro-
nen der inneren Schalen in hohere Energieniveaus genutzt. Erstere bezeichnet man
als Plasmonenanregungen. Die Selektion der transmittierten Elektronen in Abhén-
gigkeit ihres Energieverlustes liefert das Spektrum. Der erste Peak, der im Spektrum
bei einem Energieverlust von 0eV zu sehen ist, wird als Zero-Loss Peak bezeichnet.
Die Halbwertbreite dieses Peaks gibt Aufschluss {iber die Energieauflosung der Mes-
sung, die von der Elektronenquelle des Mikroskops abhingt. Im Zero-Loss Peak sind
nicht nur die Elektronen erfasst, die keine Energie verloren haben, sondern auch
die Elektronen mit einem nicht auflésbar geringen Energieverlust, wie die Anregung
von Gitterschwingungen. Ein typisches Energieverlustspektrum ist in Abbildung[3.3]
dargestellt.

12



3.2. Elektronen-Energieverlustspektroskopie

Elektronenquelle

Kondensorzoom
Kondensorlinse 3
Kondensorblende
Vorfeld Objektivlinse
Probe

Objektivlinse
Objektivblende

Projektiv 1

Eintrittsblende

Energiefilter

energiedispersive
Ebene

Projektiv 2

|
-A Leuchtschirm

CCD - Kamera

Abbildung 3.1.: Strahlengang im Libra. Der Strahlenverlauf zeigt von oben nach
unten.
13



3. Grundlagen

Abbildung 3.2.: Strahlenverlauf im OMEGA Energiefilter. Dargestellt ist der Bild-
modus. Die energiedispersive Ebene befindet sich auf Héhe des Energiespalts (Slit).
Im EELS-Modus wird die energiedispersive Ebene auf die Endbildebene abgebildet.
Die Linsen wurden in dieser Grafik nicht eingezeichnet [9].

14



3.3. Streugeometrie

Im Energiefilter des Transmissionselektronenmikroskop (TEM) werden die Elek-
tronen in der energiedispersiven Ebene entsprechend ihrer kinetischen Energie in
eine Richtung aufgefiachert. Das Spektrum kann entweder seriell mit einem Szintil-
lator zeilenweise, oder parallel mit einer CCD-Kamera aufgezeichnet werden. In der
Regel wird heute die parallele Methode eingesetzt, nicht zuletzt wegen der deutlich

kiirzeren Aufnahmezeit.

107 3 T T T T T T T T T T T T T
10° | -
E charakteristische E
lonisationskanten
___10°F verschiedener -
E E Elemente 3
[= Bk-Kante
i 10* -
=
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) 3 L K -
ﬁ 10 l
‘»
j - -
,g 102k Plasmaverlust- ”\\\ O -Kante -
= E bereich \\/\*\ E
107 -_elastischer l _:
E  Peak 3
10° [ 1 N 1 N 1 N 1 N 1 N 1 . 1
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Energieverlust / eV

Abbildung 3.3.: Typischer Verlauf einen Elektronenenergieverlustspektrums mit
Zero-Loss Peak, Plasmonenstruktur und der anschliefenden charakteristischen
Struktur von Innerschalenanregungen in halblogarithmischer Darstellung [25].

3.3. Streugeometrie

Bei einem Streuprozess von schnellen Elektronen an Materie gelten die Impuls-
und die Energieerhaltung. Dabei wird die kinetische Energie der Elektronen zu ei-
nem grofen Anteil in Plasmonenanregungen und lonisationen innerer Schalen um-
gewandelt. Die angeregten Atome kénnen durch Emission von Rontgenstrahlung
und Auger-Elektronen wieder in den Grundzustand iibergehen. Zusétzlich kénnen
Phononen angeregt werden, die aufgrund ihres Energieverlusts ( AE << 1 eV )
allerdings nicht im Energieverlustspektrum sichtbar sind, sondern zur Intensitit des

Zero-Loss Peak beitragen.

15



3. Grundlagen

In Abbildung [3.4] sind die wichtigen Groken eines inelastischen Streuprozesses in ei-
nem Vektordiagramm dargestellt. Bei Ubergang eines Hiillenelektrons vom Grundzu-
stand in einen angeregten Zustand sind Auswahlregeln zu beachten. Die Differenzen

der Wellenzahlvektoren lassen sich dabei wie folgt schreiben:
(@)% = (k — ko)? = k2(0% + 032). (3.1)

An dieser Stelle wurde der charakteristische Winkel der unelastischen Streuung mit
Or = E/2E, eingefiihrt. Dieser charakteristische Winkel hingt neben der Energie
der einfallenden Elektronen FEj auch vom Energieverlust E ab. Zusétzlich wurde
vorausgesetzt, dass ‘E‘ +# ‘EO‘ gilt.

Der charakeristische Streuwinkel kann auch in relativistischer Form angegeben wer-
den [27]

Op

E ( Ey + moc? ) E (3.2)

" By \Eo+2moc® ) ymgu?’
wobei mg die Ruhemasse und v die GGeschwindigkeit der Elektronen sind. Der Wir-
kungsquerschnitt der inelastischen Streuung lasst sich quantenmechanisch berechnen
[27].

3.4. Dielektrische Beschreibung

Im Gegensatz zur Anregung einzelner gebundener Elektronen sind bei kollektiven
Anregungen des Elektronengases viele Elektronen beteiligt. Dieses Vielteilchenpro-
blem exakt zu l0sen, ist mathematisch aufwendig und kompliziert. Eine einfachere
Methode besteht darin, das Problem durch eine Antwort-Funktion zu beschreiben
[26]. Die Wechselwirkung der einfallenden Elektronen mit den Elektronen des Elek-
tronengases wird dabei durch die dielektrische Funktion €(q,w) beschrieben.

Diese Funktion héngt von dem Impulsiibertrag ¢ und der Frequenz w (dem Ener-
gieverlust E = fw) der einfallenden Elektronen ab.

Die dielektrische Funktion beschreibt nicht nur die Wechselwirkung von Elektro-
nen mit einem Festkorper, sondern auch die von Photonen mit dem Festkorper.
Energieverlustspektroskopische Messungen lassen sich so mit optischen Messungen
vergleichen.

Zunichst soll die Aufnahme von Energieverlustspektren mit der Theorie der dielek-

16



3.4. Dielektrische Beschreibung

hgcosn

Abbildung 3.4.: Diagramm zur Beschreibung von unelastischen Streuprozessen. h ist
das plancksche Wirkungsquantum.
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3. Grundlagen

trischen Funktion verkniipft werden. Die einfallenden Elektronen betrachtet man
als Punktladungen mit Koordinate 7 und Geschwindigkeit ¢, die sich in z-Richtung
durch das Medium bewegen und als Stromdichte ;’(F, t) interpretiert werden. Die
z-Richtung entspricht dabei der Achse des Mikroskops. Dadurch entsteht ein elek-
trisches Feld E(7,t), das im Elektronengas eine dielektrische Verschiebung ﬁ(F, t)
bewirkt

— —

D(7,t) = eoer E(71). (3.3)

€ = €o€, ist dabei die makroskopische dielektrische Funktion mit der dielektrischen
Konstanten €. Die dielektrische Funktion (im Folgenden nur noch als e bezeichnet)
ist komplex und besitzt einen Realteil und einen Imaginérteil € = ¢; +ie5. Durch die
Ohmsche Leistungsdichte L(7,t) = 40 = E(7,t)-7(7,t) (Leistung P pro Volumen V)

lasst sich die von einem Elektron an das Medium abgegebene Energie W bestimmen.

W = / / L(7,t)d*Fdt = / / E - e08(F — vt)d*rdt = / / E(7,t) - (7, t)d*Fdt

(3.4)
Die pro Weglénge 2z verbrauchte Energie W ergibt sich zu

dW
w:Ezz//i@ﬂfmt (3.5)

in Zylinderkoordinaten, wobei 5 und z senkrecht zueinander stehen. Uber die Fou-

riertransformation von L in der zweidimensionalen p~Ebene

L.(qv) = //L(z, pit) exp(—2mi(q- p— v - t))d*pdt, (3.6)

und anschliefendem Vergleich mit der abgegebenen Energie aus [3.4] ergibt sich der
Zusammenhang

w = L.(0,0), (3.7)

wobel EZ die Fouriertransformation von L in der 7 Ebene ist. Durch Substituieren

der Ohmschen Leistungsdichte L = E- j liefert das Faltungstheorem der Fourier-

18



3.4. Dielektrische Beschreibung

transformation

L.(Gv) = E.(q.v) ® j.(q.v // v — ) g v Ppdvr. (3.8)

Wird nun die Beziehung aus ausgenutzt, so ergibt sich daraus

+oo . - .
w:/ {/ E.(—q, —v) . (gl vh)dvr | d*qh. (3.9)

—00

Weiterhin kann nun ausgenutzt werden, dass es sich bei E und ; um reelle Grofsen

handelt. Somit gilt also
E.(=q,—v) = EX(q.v) (3.10)

und analog fiir j Diese Eigenschaft ldsst sich in ausnutzen

w= [|[ @i ] g (3.11)

Andererseits ldsst sich die pro Wegliange abgegebene Energie w iiber den differenti-

ellen Streuquerschnitt pro angeregtes Atom beschreiben

d’c h
= E 9) —d%q 12
v // ”“deEd b //deEk?d (3.12)

wobei n, die Anzahl der der pro Volumen angeregten Elektronen ist und dv = dFE/h
und d*¢ = k*dQ) gilt. E beschreibt den Energieverlust (nicht das elektrische Feld,
dass durch E beschrieben wird). Beim Vergleich der beiden gerade hergeleiteten

Ausdriicken und ergibt sich

d*o B k2
dEdQ  n.Eh
Die Klammer in ldsst sich zerlegen in einen Anteil, der longitudinal (gekenn-

(B, + E.5%). (3.13)

zeichnet mit Index 1) zu ¢'ist und in einen, der transversal zu ¢'ist. Der transversale
Anteil fiithrt zu Cerenkov-Strahlung und kann fiir diese Betrachtung vernachlissigt
werden [28]. Die longitudinale z-Komponente der Stromdichte ergibt sich aus dem

Ansatz und Fouriertransformationen zu

Ja = et exp (2mivz/v). (3.14)
v
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3. Grundlagen

Die longitudinale z-Komponente des E-Feldes ergibt sich aus der entsprechenden
Maxwell-Gleichung und Fouriertransformationen zu [28]|
N e
E)=———"——— 2mi ) 3.15
L= Srigelq )0 exp (2mivz/v) (3.15)

Diese beiden Longitudinalkomponenten lassen sich nun wieder einsetzen. Zuséitz-
lich wird noch v;/v = ¢,/q = Op//©? + ©% ausgenutzt zu

d*c k2e?q, 1 1
dAAEdQ)  2rhNAE@v \ie e

Durch Umformen [28] und Ausnutzen der Tatsache, dass die letzte Klammer mit
dem Tmaginérteil des Kehrwerts der dielektrischen Funktion verkniipft ist, erhélt

man

d*o 1 1 —1
= I — . 1
dAEdQ  maymviN, ©2 + @%\9 ( € ) (3.17)

Uber diesen Ausdruck ist nun der Wirkungsquerschnitt, also das Energieverlust-
Spektrum, mit dem Imaginérteil des Kehrwertes der dielektrischen Funktion ver-
kniipft.

3.5. Volumenplasmonen

Der bei kollektiven Anregungen des Elektronengases entstehende Peak im Ener-
gieverlustspektrum wird als Plasmonenpeak bezeichnet. Zu seiner theoretischen Be-
schreibung werden die Elektronen als Oszillatoren betrachtet. Im einfachsten Modell
werden sie als freie Teilchen angesehen (freies Elektronengas). Die Wechselwirkungen
mit dem Kristallpotential werden dabei durch eine effektive Masse m ausgedriickt,
die nicht der Ruhemasse des Elektrons entspricht, sowie durch eine Dampfungskon-
stante v. Das einfallende Elektron représentiert ein elektrisches Feld E und fiihrt bei
der Resonanzfrequenz (Plasmonenfrequenz wp) der Oszillatoren zu einer kollektiven

Anregung.

m—- 4+ my— = eE(w) = eEy exp (iwt) (3.18)
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3.5. Volumenplasmonen
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(a) Real- (grau) und Imaginérteil (schwarz) (b) Real- (grau) und Imaginérteil (schwarz) des
der dielektrischen Funktion. Kehrwertes der dielektrischen Funktion.

Abbildung 3.5.: Volumenplasmonenanregung bei 22eV mit einer Halbwertsbreite von
deV.

Diese Differentialgleichung lasst sich direkt 16sen und fiihrt zum Ergebnis

x = (%) m (3.19)

Diese Auslenkung x fiihrt zu einer Polarisation des Mediums, die iiber die dielektri-

sche Funktion mit dem elektrischen Feld verkniipft ist.

P = —enx =eye(w) — 1)E (3.20)

Die Elektronendichte n steht fiir Anzahl der Elektronen pro Einheitsvolumen. Dar-
aus lasst sich die komplexe dielektrische Funktion des freien Elektronengases be-

stimmen

2 2
Wp 1YWp

L +92  w(w?++?)

€(w) =€ +ieg =1 (3.21)

Aus der dielektrischen Funktion kann die Energieverlustfunktion ableitet werden.

-1 €2 wyws
83 = = 3.22
{e<w>} e Rl O o (3:22)

In der Regel werden fiir Energieverlustspektren keine Angaben in Frequenzen, son-
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3. Grundlagen

dern in Energien verwendet. Uber die Relation F = hw lassen sich die Frequenzen
durch Energien ausdriicken. Dies impliziert zusétzlich das Pseudoteilchen Plasmon,
das die Energie Ep = hwp besitzt

~f 71 E(AEp)E?
N { E(E)} T (B2 E2)2+ (EAEp)? (3.23)

Zusétzlich wurde die Dampfung v durch die Halbwertsbreite AE des Plasmonen-

peaks ausgedriickt [6]. Mit wachsender Dampfung sinkt die Lebensdauer des Peaks,
was zu einer groferen Energiebreite fiihrt.
Als Maximum im Energieverlustspektrum wiirde man die Plasmonenenergie Ep er-
warten. Dies ist allerdings nicht der Fall. Das Maximum ist zu kleineren Energien
verschoben, was sich durch Extremwertbetrachtung der Gleichung bestimmen
lasst. Die Position des Plasmonenpeaks ist iiber die dielektrische Funktion bestimm-
bar und liegt bei der Energie, wo der Realteil der dielektrischen Funktion eine Null-
stelle besitzt (e1(Ep) = 0).

3.6. Interband-Uberginge

Neben der Anregung von Plasmonen kénnen auch Interband-Ubergéinge stattfinden,
Anregungen einzelner gebundender Elektronen. Theoretisch behandeln lassen sich
diese Elektronen dadurch, dass angenommen wird, sie seien mit einer Figenfrequenz
w,, an die Atome gebunden. Dadurch &ndert sich die zu 16sende Bewegungsgleichung

im Vergleich zum vorherigen Fall, wie folgt:

d? d
md—tf + m’yd—f +mw?z = eE(w) = eEyexp (iwt). (3.24)
Diese Gleichung lasst sich dhnlich wie bei den freien Elektronen 16sen. Daraus ergibt

sich fiir die dielektrische Funktion

w? w(w? — w?) wiyw
=1 P =1 P on - 2 . (3.25
S R . ) R e e R
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(a) Real- (grau) und Imaginirteil (schwarz) (b) Real- (grau) und Imaginérteil (schwarz) des
der dielektrischen Funktion. Kehrwertes der dielektrischen Funktion.

Abbildung 3.6.: Interbandanregung bei 15eV mit einer Halbwertsbreite von 5eV.

T e S Y B E P - P P B D U ST E P P
15—A 2,0—-
10 151
5; 1,0—-
0 0,5
5] 0,0
10 054
S N oy
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
[eV] [eV]
(a) Real- (grau) und Imaginérteil (schwarz) (b) Real- (grau) und Imaginérteil (schwarz) des
der dielektrischen Funktion. Kehrwertes der dielektrischen Funktion.

Abbildung 3.7.: Uberlagerung von Volumenplasmon- und Interbandanregung.
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3. Grundlagen

3.7. Oberflachenplasmonen

Neben kollektiven Anregungen im Festkorpervolumen entstehen durch Anregung
von Oberflichen-Ladungswellen Oberflichenplasmonen. Betrachtet wird die ebene
Grenzflache eines halbunendlichen Mediums, mit den dielektrischen Funktionen ¢,
(aussen) und ¢; (innen). Das elektrostatische Potential an der Oberfliche verhilt
sich wie cos(qz — wt) exp(—q |z|). Die Ladungsdichteverteilung an der Oberfléche ist
proportional zu cos(qr — wt)d(z), wobei z parallel zur Flichennormalen steht [28].
Aus den elektrostatischen Randbedingungen [26] ldsst sich dann die Voraussetzung

fiir das Auftreten von Oberflichenplasmonen ableiten
ca(E) +€(E) = 0. (3.26)

Da sich die Probe im Vakuum befindet, lasst sich die dielektrische Funktion des
umgebenen Mediums als konstant betrachten (¢, = 1). Dadurch ist die Energie
E,, bei der die Oberflichenplasmonen existieren konnen, festgelegt und lésst sich

berechnen zu
Ep

E, =
V2

Wird fiir die Umgebung kein Vakuum angenommen, sondern z.B. ein dielektrisches

(3.27)

Material, dessen dielektrische Funktion einen grofen positiven Realteil und einen
kleinen Imaginérteil in der Ndhe der Oberflichenplasmonenenergie hat, dann lasst

sich obige Gleichung verallgemeinern zu

Ep
E, = , 3.28
Tre (3.28)

wobei €; den Realteil der dielektrischen Funktion des umgebenen Materials repra-

sentiert.
Der Wirkungsquerschnitt von Oberflichenplasmonen ldsst sich durch eine Streu-
wahrscheinlichkeit pro Einheitswinkel beschreiben [26]. Im freien Elektronengasmo-

del ergibt sich fiir diese Streuwahrscheinlichkeit bei senkrechtem Einfall der Elek-

aQ TagMov (1 + 61) (@2 + @%)2' (3.29)

tronen
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3.8. Kramers-Kronig Transformation

Dabei ist © der Winkel, unter dem gestreut wird. Wird die Probe unter einem
bestimmten Winkel gekippt und dann bestrahlt, muss diese Verkippung bei der
Betrachtung der Oberflichenplasmonen zusétzlich beriicksichtigt werden [6]. Die In-
tensitit der Oberflichenplasmonen féllt proportional zu 1/03 im Gegensatz zu den
Volumenplasmonen, deren Intensitit mit 1/0? fillt. Das heifit, dass bei Detektion
der Elektronen, die abseits der optischen Achse gestreut wurden, der Einfluss der
Oberflichenplasmonen im Energieverlustspektrum minimiert werden kann.

Die Oberflichenplasmonen lassen sich auf ein elektrostatisches Potential auf der Ma-
terialoberfliche zuriickfiihren. Die untersuchten Proben bestehen in der Regel aus
Schichten des Materials. Somit gibt es insgesamt zwei Grenzschichten, die das Strah-
lelektron passiert. Bei sehr diinnen Schichten {iberlappen sich die elektrostatischen
Potentiale der beiden Grenzschichten. Dies fiithrt dazu, dass sich zwei mégliche Mo-
den ausbilden, eine symmetrische und eine asymmetrische Schwingungsmode. Die
beiden Moden (w™ und w™) zeigen eine unterschiedliche Dispersion, was dazu fiihrt,
dass sich die beiden Moden mit abnehmender Schicht dicke aufspalten und als zwei
unterschiedliche Peaks erkennbar werden. Dabei ist die Wahrscheinlichkeit der An-
regungen der beiden Moden unterschiedlich. Die w™ - Mode wird mit einer groferen
Wahrscheinlichkeit angeregt, ist daher auch als groferer Peak im Spektrum erkenn-
bar [28].

3.8. Kramers-Kronig Transformation

Durch die Aufnahme der Energieverlustspektren ist es zunéchst nur moglich, Riick-
schliisse auf den imagindren Anteil des Kehrwertes der dielektrischen Funktion zu
ziehen. Realteil und Imaginérteil lassen sich aber iiber die Kramers-Kronig Bezie-
hungen ineinander iiberfiihren [6]. Die theoretische Herleitung der Kramers-Kronig
Beziehungen ist im Anhang abgedruckt. Um den Realteil zu bestimmen, werden
im Folgenden einige Uberlegungen angestellt. Aufgrund der Kausalitiit der dielek-
trischen Funktion e(w) [I0] kann iiber eine Kramers-Kronig Transformation [J—E)}

L

- E)} berechnet werden. Die Berechnung lésst sich auf der Basis von Fou-

aus%[

riertransformationen durchfiihren [10]. Ausgenutzt wird dabei, dass sich R [ﬁ] -1

und & [—ﬁ] als Kosinus- und Sinus-Transformationen der geraden of(t) und un-
geraden Anteile o*(t) einer zeitabhiingigen Antwortfunktion ﬁ — 0(t) betrachten
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3. Grundlagen

lassen [6]. Diese Funktion liefert als Ergebnis Null fiir ¢ < 0, da die Antwort nicht vor
der Ursache stattfinden kann. Damit lassen sich die geraden und ungeraden Anteile
verkniipfen [10]:

a?(t) = sgn(t) [a"(t)]. (3.30)

a*(t) wird als Sinus-Tranformation von [—ﬁ} berechnet, iiber Vorzeichenin-

version wird dann of(t) bestimmt und iiber eine Kosinustranformation wird dann
R [ﬁ} — 1 berechnet [10].

1 oo oo .
e(_w) —1= / a(t) - cos(2mwt)dt — / a(t) - i sin(2nwt)dt (3.31)

Durch Einsetzen der Zerlegung in gerade und ungerade Anteile erhdlt man

o0 —0o0

1 +o0 g +o0 .
- / a9 (t) cos(2mut)dt + /_ (D) cos(zmat)s (3.32)

+o00 +o0
z/ ) sin(27wt)dt — 2/ a'(t) sin(2rwt)dt

o0 — 00

1 o0 e
@ :/ ) cos(2mwt)dt —z/ a'(t) sin(2mwt)dt . (3.33)
[e< -1 i3~ 7]

3.9. Mehrfachstreuung

Zum Energieverlustspektrum tragen nicht nur die Elektronen bei, die ein Mal an
der Probe gestreut wurden, sondern auch Elektronen, die nach einem Energiever-
lust ein zweites Mal, oder noch &fter, an der Probe gestreut wurden. Dieser Effekt
fithrt zur Verfialschung des Spektrums, insbesondere ergeben sich weitere Peaks bei
Energievielfachen der Plasmonenenergie. Betrachtet man die einzelnen Streuprozes-

se als unabhéngige Ereignisse, ldsst sich ihr Auftreten durch die Poisson-Statistik

et () () e () 30

Diese Gleichung beschreibt die Wahrscheinlichkeit, dass ein Elektron n Streupro-

beschreiben

zessen unterliegt. Ausschlaggebend fiir diese Wahrscheinlichkeit sind die Dicke der

Probe t, sowie die mittlere freie Weglédnge A der Elektronen im entsprechenden Me-
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3.9. Mehrfachstreuung

dium. Die Wahrscheinlichkeit ist proportional zur Probendicke und antiproportional
zur mittleren freien Weglénge. Auf das Spektrum {ibertragen, ldsst sich die Wahr-
scheinlichkeit fiir n Streuprozesse dadurch ausdriicken, dass die gesamte Intensitit
I; durch die Intensitét bei n-facher Streuung I, dividiert wird. Die Intensitdten sind
dabei iiber alle Energien integriert. Die Mehrfachstreuung im Spektrum ldsst sich
einerseits durch eine sehr diinne Probe eliminieren (z.B. ¢/A < 1) und anderseits
kann sie durch Entfaltungsmethoden aus dem Spektrum herausgerechnet werden.
Zur Verfiigung stehen dazu verschiedene Moglichkeiten wie die Fourier-Log Entfal-
tung oder die Matrix Entfaltung [I7]. Letztere soll kurz erldutert werden, da diese
zur Entfaltung der Spektren benutzt wird. Angenommen wird hierzu, dass sich der
Zero-Loss Peak durch eine Delta-Distribution beschreiben ldsst. Das Spektrum lasst

sich dann in die unterschiedlichen Komponenten zerlegen.
J(E)=10(FE)+ P(E)=I10(E)+ S(E)+ D(E)+T(F) + ... (3.35)

Iy représentiert das Integral iiber den gesamten Zero-Loss Peak, wihrend S(FE)
(Single-Scattering Distribution, SSD), D(E) und T'(FE) die Beitrige von Einfach-
streuung, Zweifachstreuung und Dreifachstreuung darstellen, zusammengefasst in
P(E). Dabei handelt es sich im Prinzip um eine unendliche Reihe, lediglich der
Beitrag sinkt stark mit steigender Streuordnung. Interessant und notwendig fiir die
Berechnungen ist S(FE), also der Beitrag aller einfach gestreuten Elektronen. Glei-
chung lisst sich dabei einfach nach S(E) umstellen, so dass von der Summe
aller Streuprozesse die einzelnen Beitrdge mit n > 1 abgezogen werden. Aus der
Theorie der Fourier-Log Entfaltung [6] ist bekannt, dass sich die Funktion der Ein-

fachstreuung im Fourierraum berechnen ldsst durch

s(v) = IoIn(j(v)/z(v)). (3.36)

s(v) und j(v) beschreiben das transformierte Spektrum mit Einfachstreuung, sowie
das Ausgangsspektrum mit Mehrfachstreuung. Weiterhin beschreibe Z(E) (z(v) im
Fourier-Raum)den Zero-Loss Peak. Theoretisch lisst sich S(FE) tiber Fouriertransfor-

mationen bestimmen, hierbei konnen allerdings Probleme auftreten wie z.B. Rausch-
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3. Grundlagen

verstarkung [6]. Die Gleichungen und werden nun kombiniert:

s(v) = Iyln(1+p(v)/I) (3.37)
_ @) | [P
= p(y) — 2!10 + 3']8 — ... (338)

Von der letzten Gleichung lasst sich nun formal die Fouriertransformation berechnen,
um S(E) zu bekommen. Hierbei muss beachtet werden, dass durch die Fouriertrans-
formation die Produkte zu Faltungen werden.

P(E)® P(E) P(F)® P(FE)® P(E)

S(E) = P(E) = —=5——+ e — . (3.39)

Die Distribution fiir Einfachstreuung ldsst sich also aus einer Reihe von Faltungen
des Spektrums mit sich selber bestimmen. Dabei ist vom betrachteten Spektrum
der Zero-Loss Peak bereits abgetrennt und spiegelt sich als Intensitét in I, wieder.
Die Faltungen wurden von Schattschneider [22] durch Riemann Summen ersetzt,
die sich als Matrix berechnen lassen. Der Vorteil dieser Matrix Entfaltung besteht
darin, dass das Spektrum an den Grenzen nicht auf Null abfallen muss und dass die

Probendicke fiir die Entfaltung im wesentlichen keine Rolle spielt [6].
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Um die in den Spektren auftretenden Peaks zuordnen zu kénnen, werden mit Hilfe
der aus den Grundlagen abgeleiteten Formeln entsprechende Simulationsmethoden
implementiert. Insbesondere liegt der Fokus dabei auf zwei Effekten, zum einen auf
der Mehrfachstreuung, zum anderen auf dem Auftreten von Oberflichenplasmo-
nen. Die entsprechenden Routinen wurden dabei angelehnt an bereits von Egerton
verdffentlichte Fortran Quellcodes [6]. Als Resultat wurde ein in C++ geschriebe-
nes graphisches Programm entwickelt, das die Moglichkeit bietet, direkt simulierte
Spektren aus vorgegebenen Parametern zu erstellen. Die Parameter lassen sich so
wahlen, dass die simulierten Spektren mit aufgenommenen Spektren vergleichbar
sind.

Neben der Simulation von einzelnen Spektren bietet das Programm zusétzlich die
Moglichkeit, Serien von Spektren unter Variation verschiedener Parameter zu erzeu-
gen. Die Ausgabe erfolgt dann wahlweise in Einzelspektren oder zusammengefasst
als 3D Spektrum, so dass sich die Parameterabhdngigkeit direkt erkennen lasst.
Zunichst soll kurz die Funktionsweise der einzelnen Programmelemente erldutert

werden. Der entsprechende Quellcode befindet sich im Anhang.

4.1. Bestimmung der mittleren freien Weglange

Um die Wahrscheinlichkeit des Auftretens von Mehrfachstreuung und Oberflichen-
effekten abschéitzen zu kdnnen, ist die mittlere freie Weglénge eine hilfreiche Grofe.
Dabei ist mit der mittleren freier Weglinge diejenige Strecke gemeint, die ein schnel-
les Elektron im Mittel zuriicklegen kann, ohne dabei in der Probe gestreut zu werden.

Die mittlere freie Weglinge hidngt neben der Energie der Elektronen auch von der
Probe ab. Sie lisst sich mit der Gleichung [4.1] bestimmen [6].
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4. Simulationsrechnungen

- 106nm - R - (Ey/En)
" In(2Ey6y/E,y)

(4.1)

(Der Wert fiir die mittlere freie Weglidnge wird hier direkt in Nanomentern ausge-
geben.) Der Faktor R ist eine relativistische Korrektur

R Lt H0/1022 (4.2)

(1+ Ey/511)2

Die in der Formel auftauchende Energie E,, = 7,6- Z°30 ist materialspezifisch. Diese
Energie ergibt sich aus der Ordnungszahl Z des jeweiligen Elements. Fiir Materia-
lien wie SiC lésst sich die Energie iiber eine effektive mittlere Ordnungszahl (Z.s)
bestimmen (Z.;; ~ 10).
Der Winkel ©g ist der Akzeptanzwinkel und wird aus dem Radius der Objektiva-
pertur und der Brennweite des Objektivs berechnet (©g = 74,/ f;). Fir das ZEISS
Libra 200 FE betrigt die Brennweite des Objektivs 1,7 mm, gearbeitet wird bei
einer Beschleunigungsspannung von 200kV. Verwendet wurde eine Objektivapertur
mit einem Radius von 10pum. Die mittlere freie Weglidnge ergibt sich aus diesen An-
gaben zu \,, = 153, 29nm. Dieser Wert ist mit einem Fehler von etwa £20 Prozent
behaftet.

4.2. Simulation von Mehrfachstreuung

Zunichst werden die bendtigten Parameter aus der graphischen Oberfliche oder
einer Datei geladen. Je nach der gewiinschten Ordnung der Streuung wird entspre-
chend oft eine Schleife durchlaufen. In jedem Durchlauf steigt die Streuordnung
an. Die Beitrdge der einzelnen Streuordnungen werden zum Spektrum aufaddiert
(Abbildung . Lediglich der Beitrag erster Ordnung wird separat ausgegeben.
Zusétzlich kann dem Spektrum ein Rauschen hinzugefiigt werden. In Abbildung

ist der schematische Programmablauf dargestellt.
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Eingabe der
Parameterwerte

'/_/R‘

Berechnung eines
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\\\«

Addition der einzelnen
Beitrage bis zur
gewlinschten Ordnung

‘ J
Addition von Rauschen Addition von Rauschen

—

Zusammenfigen

beider Anteile

Abbildung 4.1.: Schematischer Programmablauf zur Berechnung eines Spektrums
mit Mehrfachstreuung.
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Abbildung 4.2.: Simulierte Spektren fiir Mehrfachstreuung. Als Laufparameter wur-
de die Probendicke verwendet. Bei 22,1eV und Vielfachen davon sind der Plasmo-
nenpeak und dessen Mehrfachstreuungen zu erkennen. Der Zero-Loss Peak wurde
zugunsten der Ubersichtlichkeit abgeschnitten.
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4.3. Simulation von Oberflachenplasmonen

In diesem Modus werden zundchst anhand der ausgelesenen Parameter der Real-
teil und der Imaginérteil der dielektrischen Funktion bestimmt. Zuséatzlich wird die
Energieverlustfunktion berechnet. Mit der dielektrischen Funktion und der Angabe
der Probendicke lisst sich der Anteil und der Verlauf der Oberflichenplasmonen
berechnen. Anschliefend werden die Anteile von Volumenplasmonen und Oberfla-
chenplasmonen zu einem Spektrum zusammengefiigt. Dabei wird neben dem gesam-
ten Spektrum auch ein Spektrum ohne Oberflichenplasmonen ausgegeben. In
Abbildung ist schematisch der Programmablauf dargestellt.

Sofern parameterabhéngige 3D-Spektren ausgegeben werden sollen, werden die Pro-
grammcodes fiir Oberflichenplasmonen oder Mehrfachstreuung in einer Schleife aus-
gefiihrt. Bei jedem Schleifendurchlauf wird dann der entsprechende Parameter um
die gewiinschte Schrittweite erhoht oder erniedrigt. In Abbildung und sind
fiir beide Fille simulierte 3D-Spektren dargestellt. Die Skaleneinteilung der Counts
hangt davon ab, welcher Wert fiir das Zero-Loss Integral benutzt wurde. Dieser Wert
wird spéiter auch aus den aufgenommenen Spektren bestimmt und als Vorlage fiir

die Simulationen benutzt.

Parameterwerte

]

Berechnung von Real-
und Imaginarteil der
dielektrischen Funktion

Eingabe der

Berechnung der
Energieverlustfunktion
(Einfachstreuung)

Zusammenfligen von
Volumen- und

Berechnung von
Oberflachenplasmonen

Oberflachenplasmonen

Abbildung 4.3.: Schematischer Programmablauf zur Berechung eines Spektrums mit
zusitzlichen Oberflicheneffekten.
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Abbildung 4.4.: Simulierte Spektren fiir Volumen- und Oberflichenplasmonen. Als
Parameter wurde die Probendicke verwendet. Der Zero-Loss Peak wurde zugunsten
der Ubersichtlichkeit abgeschnitten. Bei 22,1eV befindet sich der Volumenplasmo-
nenpeak. Der Oberflichenplasmonenpeak befindet sich im Bereich von 15eV.
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5. Experimentelle Durchfiihrung

5.1. Probenpraparation

Die verwendeten SiC Proben wurden auf verschiedenen Wegen pripariert. Als Aus-
gangssubstanz lag zum einen SiC Pulver vor. Dieses Pulver wurde in mehreren Stufen
fein gemorsert und anschliefend mit destilliertem Wasser aufgemischt. Das Gemisch
wurde auf ein Kupfernetz (400 Mesh) aufgebracht. Durch Bestrahlung mit infraro-
tem Licht wurde das Wasser verdampft, so dass das SiC Pulver als Riickstand auf
dem Netz zuriickblieb.

Dariiber hinaus wurden als Ausgangsmaterial diinne SiC Kristalle verwendet mit
einer Ausgangsdicke zwischen 0,5 und 0,8 mm. Diese Kristalle wurden in ca. 2 mm
mal 2 mm grofe Flichen geschnitten, bzw. gebrochen. Mit einem Zweikomponen-
tenkleber wurden diese Bruchstiicke dann auf einem runden Kupfertrager fixiert
(Abbildung . Der Kupfertriager weist in der Mitte ein Loch auf, so dass bei der
Untersuchung die Elektronen nicht zusitzlich durch den Kupfertriger beeinflusst
werden.

Dieser so priaparierte SiC Kristall wurde dann mit einem Dimpler in mehreren Stufen
auf eine Enddicke von 10-40 Mikrometern gediinnt. Anschlieffend wurde der Kristall
durch Beschuss mit Argon Tonen unter einem Vakuum von 1072 bar soweit, gediinnt,
dass in der Mitte des Kristalls ein Loch entstand. Die Argon Ionen wurden dabei
nicht senkrecht, sondern unter einem Winkel von 30 Grad auf die Probe geschossen,
so dass am Rand des Lochs ein kontinuierlicher Dickenabfall entstand (Abbildung
. Betrachten ldsst sich nun ein keilférmiger Ausschnitt am Rand des Lochs. Die-
ser Keil bietet die Mdoglichkeit, mit einer Probe Aufnahmen bei unterschiedlichen

Probendicken anzufertigen.
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O-.

Abbildung 5.1.: Schema zur Préparation eines Kristalls. Der Kristall wird mit einem
speziellen Komponentenkleber auf einem Kupferring aufgebracht.

I\/I

Abbildung 5.2.: Schematischer Probenquerschnitt des gediinnten Kristalls. In der
Mitte befindet sich das Loch, die Dicke steigt am Rand des Lochs langsam an.

5.2. Energieauflosung der verwendeten Mikroskope

Zur Bestimmung der Qualitit der Aufnahmen, insbesondere der moglichen Ener-
gieauflosung, wurden explizit Aufnahmen vom Zero-Loss Peak erstellt. Die Ener-
gieauflosung der Elektronenoptik und des Spektrometers spiegelt sich dabei in der
Halbwertsbreite des Peaks wieder. Die Aufnahmen fiir diese Arbeit wurden an zwei
unterschiedlichen Mikroskopen erstellt. Einerseits wurde das bereits oben beschrie-
bene ZEISS Libra 200 FE verwendet (siehe Kapitel , andererseits Messungen
am Elektronenmikroskop Crisp am CAESAR in Bonn durchgefiihrt. Das Crisp ver-
fiigt im Gegensatz zum Libra {iber eine Elektronenquelle mit Monochromator. Der
Monochromator erméglicht eine theoretische Energieauflosung von 0,1eV. Durch die
Eigenschaften der Elektronenoptik wird diese Energieauflosung bei der Aufnahme
allerdings nicht erreicht. Anhand der Halbwertsbreite des Zero-Loss Peaks lésst sich
die zur Verfiigung stehende Energieauflésung bestimmen. Ausschnitte der aufgenom-
menen Energieverlustspektren sind in Abbildung dargestellt. Die Energieauflo-
sung am Libra ohne Monochromator betragt 0,6eV bis 0,7eV, die Energieauflésung
am Crisp betriagt 0,2eV bis 0,3eV.
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(a) Aufnahme am Libra (b) Aufnahme am Crisp

Abbildung 5.3.: Aufnahmen vom Zero-Loss Peak zur Bestimmung der Energieauflo-
sung
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5.3. Auflosungsvermogen der CCD-Kamera

Zusétzlich zur Elektronenoptik im Transmissionselektronenmikroskop spielt fiir die
Energieauflosung der Spektren die Qualitit der CDD-Kamera eine wichtige Rolle.
Fiir die Aufnahmen am Libra wurde eine 4k Kamera der Firma Gatan verwendet
(USC 4000). Sie bietet eine Auflosung von 4000 x 4000 Pixeln. Aufgrund der ho-
hen Intensitaten im Bereich niedriger Energieverluste (insbesondere Zero-Loss Peak)
kénnen Geisterpeaks entstehen. Die Kamera ist in vier Quadranten eingeteilt, die
separat ausgelesen werden. Durch Ubersprechen kann ein hohes Signal in einem Qua-
dranten auf einen anderen Quadranten projiziert werden. Aus diesem Grund wird
bei den Aufnahmen der Zero-Loss Peak so zentriert, dass er sich genau in der Mitte
der Kamera, angrenzend an die vier Quadranten, befindet.

Dadurch kann der Effekt des Ubersprechens umgangen werden. Nachteilig an diesem
Verfahren ist, dass fiir das Spektrum nur die Hélfte der horizontalen Auflésung zur
Verfiigung steht. Das Spektrum nutzt nicht die 4000 Messpunkte, die theoretisch zur
Verfiigung stiinden, sondern lediglich die Hélfte also 2000 Messpunkte. Fin Modell,
wie das Spektrum zur Aufnahme auf der CCD-Kamera justiert wird, ist in Abbil-
dung dargestellt.

Die CCD-Kamera, die am Crisp verwendet wurde, ist eine 2k Kamera mit lediglich
einem Quadranten und bietet eine Auflésung von 2000 x 2000 Pixeln. Der Effekt
des Ubersprechens tritt dort nicht auf, weshalb fiir die Aufnahme von Spektren der
gesamte Bereich benutzt werden konnte. Fiir die Aufnahmen der Spektren kénnen

dort ebenfalls 2000 Messpunkte genutzt werden.

5.4. Aufnahme von Energieverlustspektren

Wie in Abbildung bereits angedeutet, werden die Spektren mit der CCD Ka-
mera in Form von zweidimensionalen Graustufenbildern aufgenommen (Abbildung
. Dabei entspricht jede Zeile dieses Bildes einem Spektrum, sofern die Energie-
dispersion in horizontaler Richtung stattfindet. Ist das Spektrum um einen Winkel
gekippt, der nicht einem Vielfachen von 90 Grad entspricht, lassen sich die einzel-
nen Spektren nicht einfach aus den Zeilen oder Spalten des Bildes ablesen. Da das
Spektrum iiber mehrere Zeilen des Bildes ausgedehnt ist, sollten mehrere Zeilen zu

einem Spektrum aufaddiert werden, um das Signal zu Rausch Verhéltnis (SNR) zu
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5.4. Aufnahme von Energieverlustspektren

Abbildung 5.4.: Modell zur Aufnahme von Low-Loss Spektren mit der CCD-Kamera.
Der Zero-Loss Peak ist als schwarzer Strich im Zentrum zu erkennen. Zur rechten
Seite ist das Spektrum mit steigendem Energieverlust dargestellt. Der schwarze Fleck
im Spektrum reprisentiert den Volumenplasmonenpeak.

verbessern. Da die Intensitdten im betrachteten Energiebereich allerdings grof sind
(im Bereich von 10° Counts), kann auf eine Betrachtung des Signal zu Rausch Ver-
héltnisses weitestgehend verzichtet werden.

Die Integration der einzelnen Zeilen des Bildes erfolgt in der Regel unmittelbar wih-
rend der Aufnahme, so dass als Ergebnis ein einziges Spektrum ausgegeben wird. In
der anschlieffenden Auswertung hat sich die Moglichkeit, nachtriglich den Integra-
tionsbereich variieren zu konnen und sogar iiber die Extraktion mehrerer Spektren
verfiigen zu konnen, als hilfreich erwiesen. Daher wurde dem Programm zur Aus-
wertung der Spektren zusétzlich die Option hinzugefiigt, das von der Kamera als
2-D Bild aufgenommene Spektrum zu 6ffnen und nachtrédglich einen oder mehrere
Integrationsbereiche auszuwahlen.

Das aufgenommene Grasstufenbild muss dabei zunéchst als zweidimensionales Zah-
lenarray exportiert werden und wird dann programmintern als Matrix verwaltet.
Die einzelnen Zeilen, denen einzelne Spektren zugeordnet werden, lassen sich an-
schliefend weiter verarbeiten. Bei einer genauen Betrachtung der einzelnen Spektren
(Abbildung , ist zu erkennen, dass die Spektren mit einem hohen Rauschanteil
belastet sind. Daher ist es sinnvoll, mehrere Spektren zusammen zu fassen. Ein
sinnvoller Integrationsbereich lasst sich dadurch erreichen, dass anhand der einzel-
nen Spektren analysiert wird, welche Spektren sinnvolle Informationen, wie etwa den

Plasmonenpeak, enthalten. Betrachtet man die Spektren bei Zeilennummer 300 und
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Zeilennummer 410, ist zu erkennen, dass neben dem Fehlen eines Plasmonenpeaks
auch der Zero-Loss Peak intensititsschwach ist. Die Spektren dazwischen weisen
diese Eigenschaften nicht auf und konnen daher sinnvoll aufintegriert werden. In
Abbildung ist das integrierte Spektrum dargestellt. Deutlich zu erkennen ist
der Plasmonenpeak und der Peak der Mehrfachstreuung 1. Ordnung. Der Zero-Loss
Peak wurde zur Ubersichtlichkeit nicht ganz dargestellt. Die x-Skala entspricht den
Detektionskanilen der Kamera und lésst sich problemlos in eine Energieskala iiber-
setzen, wenn bekannt ist, mit welchem Energieabstand zwei nebeneinanderliegende
Kanile verkniipft sind. Benotigt wird dazu die Vergoferung des Spektrums auf der
Kamera und die Grofe der einzelnen Kamerapixel. Der Energienullpunkt kann iiber
die Position des Zero-Loss Peaks bestimmt werden. Im Spektrum ist nach wie vor

ein hoher Rauschanteil erkennbar, da der Integrationsbereich klein gehalten wurde

und lediglich 50 Zeilen zum Spektrum zusammengefasst wurden.

Abbildung 5.5.: Spektrums einer SiC Probe, das am Crisp aufgenommen wurde. Die
Energiedispersion findet in horizontaler Richtung statt, der Energieverlust steigt
nach rechts hin an.

5.5. Untergrundkorrektur

Bedingt durch den Aufbau und die Beschaffenheit der CCD-Kamera kommt es im
aufgenommenen Spektrum zu einem Untergrundrauschen. Dieser Untergrund fiihrt
dazu, dass der Wert der einzelnen Counts entsprechend der detektierten Elektronen
zu hoch ist. Dabei handelt es sich im wesentlichen um Rauschen, das statistisch
iiber die einzelnen Kanile verteilt ist. Zudem kann es, abhéngig vom verwendeten
Detektionssystem, zu einem kanalabhidngigen Rauschen kommen.

Das statistische Rauschen lasst sich herausrechnen, indem von allen Kanélen des
Spektrums einen berechneten Mittelwert fiir das Rauschen abgezogen wird. Zur Be-
rechnung dieses Mittelwertes sind verschiedene Moglichkeiten vorhanden. Als sinn-

voll erwiesen hat sich die Mittelwertbildung einiger Kanile, die im Spektrum nega-
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Abbildung 5.6.: Serie von Einzelspektren, erstellt aus dem in Abbildung aufge-
nommenem Spektrum. Jedes Spektrum entspricht einer Zeile des Graustufenbildes,
wobei die Zeilennummern entsprechen den Zeilen des Bildes gewihlt wurden. Dar-
gestellt sind die ersten 1000 Kanéle. Der Zero-Loss Peak wurde durch die Skalierung
teilweise abgeschnitten, um den Volumenplasmonenpeak besser erkennbar zu ma-
chen.
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Abbildung 5.7.: Integriertes Spektrum, erstellt aus dem in Abbildung 5.5 aufgenom-
menem 2-D Spektrum. Der Integrationsbereich wurde so gew#hlt, dass moglichst alle
Zeilen, die Informationen iiber die Plasmonen beinhalten, beriicksichtigt wurden.
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tiven Energien zugeordnet werden. Da die Spektren aufgrund der bereits erwdhnten
Kameraeffekte (siehe Kapitel einen sehr grofien Offset besitzt (ca. 2000 Kané-
le), ldsst sich dieser Mittelwert sehr genau bestimmen. Die am Crisp aufgenom-
menen Spektren haben einen kleineren Offset, daher ldsst sich dort der Mittelwert
aus nur einigen wenigen Kanilen ableiten. In Abbildung ist ein Ausschnitt aus
dem negativen Energiebereich eines aufgenommenen Spektrums dargestellt. Nach
der Subtraktion des Mittelwerts gibt es Kanile, denen negative Counts zugeordnet
werden. Da allerdings die Kanile, die sich im negativen Energiebereich befinden,
in der spateren Verarbeitung abgeschnitten werden, konnen diese negativen Counts
vernachléssigt werden.

Das Auftreten von kanalabhingigem Rauschen ist auf die Beschaffenheit der CCD-
Kamera zuriickzufiihren. Dieser Effekt kann allerdings auch vernachlissigt werden,
da bereits eine entsprechende Dunkelstromkorrektur bei der Aufnahme integriert

1st.
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T T
vor Korrektur

700 B
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300 B

nach Korrektur
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Energieverlust [eV]

Abbildung 5.8.: Rauschen im Spektrum ohne (oben) und mit (unten) abgezogenem
Mittelwert. Der Mittelwert wurde aus dem betrachteten Energiebereich berechnet
zu 470 Counts.
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5.6. Bestimmung des Zero-Loss Integrals

Zur Intensitit des Zero-Loss Peak tragen hauptsichlich die Elektronen bei, die die
Probe ohne Streuprozesse passiert haben. Die Summe dieser Elektronen, die sich in
den Counts wiederspiegeln, wird als Zero-Loss Integral bezeichnet. Um stattfindende
Streuprozesse quantitativ beschreiben zu konnen, dient das Zero-Loss Integral zur
Normalisierung des Spektrums. Aus diesem Grund ist es wichtig, den Wert dieses
Integrals moglichst genau und fehlerfrei zu bestimmen. Der Zero-Loss Peak ist kein
Delta-Peak, sondern besitzt eine definierte Halbwertsbreite. Die Form des Peaks
liisst sich durch eine Uberlagerung von mehreren Gauss-Funktionen beschreiben.

Im einfachsten Fall ist das Integral zu berechnen, indem alle Kanile des Spektrums
aufaddiert werden, die den Zero-Loss Peak enthalten. Das Spektrum sollte bei dieser
Methode auf jeden Fall von Untergrundrauschen bereinigt worden sein, da die ent-
sprechenden Counts sonst ebenfalls zum Zero-Loss Integral beitragen. Da der Zero-
Loss Peak in den weiteren Berechnungen stort, wird er nach Bestimmung des Inte-
grals vom Spektrum separiert. Problematisch ist, dass sich bereits in unmittelbarer
Néhe des Zero-Loss Peaks weitere Effekte ausprigen, wie zum Beispiel Cerenkov-
Strahlung. Diese zusétzlich auftretenden Peaks konnen die abfallende Flanke des
Zero-Loss Peaks verdndern und zu einem verfélschten Integralwert fiihren. Zudem
kénnen dann bei der Abseparation durch eine falsche Bestimmung Informationen aus
dem Spektrum verloren gehen. Um das Zero-Loss Integral genauer zu bestimmen,

wurden verschiedene Methoden entwickelt.

5.6.1. Rechtsseitige Betrachtung

An den Zero-Loss Peak hin zu héheren Energien schlieftt sich der Plasmonenpeak an.
Zwischen den beiden Peaks existiert ein Minimum. An Hand dieses Minimums l4sst
sich der Einflussbereich des Zero-Loss Peaks und somit das entsprechende Integral
bestimmen. Der Integrationsbereich erstreckt sich iiber den gesamten Peak bis hin
zum entsprechenden Minimum. Die Position des Minimums ist entscheidend fiir die
Qualitit des Integrals. Liegt dieser Punkt bei einer zu hohen Energie, ist nicht nur
der Wert des Integrals zu hoch, sondern zusétzlich gehen Informationen verloren, da
der Peak bis hin zum Minimum nach der Bestimmung abgeschnitten wird. Die Posi-

tionsbestimmung wird durch das Rauschen im Spektrum ungenauer, da viele lokale
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Minima im Verlauf des Spektrums vorhanden sind und die eigentliche Steigung zum
Plasmonenpeak gering ist. Um dennoch den Wert moglichst genau zu bestimmen,
wird statt des Spektrums selbst die Funktion J(E)/E betrachtet, wobei J(E) das
Spektrum selbst ist. Problematisch wird diese Methode allerdings dann, wenn sich
unmittelbar an den Zero-Loss Peak weitere Peaks anschliefsen, wie der Peak, der aus
Cerenkov-Strahlung resultiert, oder dem Oberflichenplasmonenpeak, der allerdings
beim betrachteten SiC im Bereich von 15eV liegt und somit weit genug entfernt ist.
In Abbildung ist das Spektrum mit Zero-Loss Peak und mit abgeschnittenem
Peak dargestellt. Dort, wo das Spektrum auf Null abfallt, wurde der Zero-Loss Peak

abgetrennt.
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Abbildung 5.9.: Energieverlustspektrum vor und nach der Separation des Zero-Loss
Peaks. Der Schittpunkt erfolgte hier bei ca. 5eV. Der Peak wurde nach der rechts-
seitigen Methode separiert.

5.6.2. Linksseitige Betrachtung

Alternativ zur Bestimmung eines Minimums zur Berechnung des Zero-Loss Integral,

kann ausgenutzt werden, dass der Peak angendhert symmetrisch in Bezug auf das
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Maximum ist. Nur die Counts von einer Seite das Peaks werden bendtigt, die an-
dere Seite kann als Spiegelung betrachtet werden. Im einfachsten Fall wird von der
linken Halfte ausgegangen (die Hifte, die sich im negativen Energieverlustbereich
befindet), da sich an der rechten abfallenden Flanke des Peaks bereits andere Ef-
fekte bemerkbar machen. Die Counts der linken Flanke werden aufaddiert und der
Wert verdoppelt, um die rechte abfallende Flanke zu beriicksichtigen. Im néchsten
Schritt wird der Zero-Loss Peak vom Spektrum abgetrennt. Um die Ausldufer von
sich anschliefsenden Peaks nicht abzuschneiden, wird die linke Flanke von der rech-
ten Flanke subtrahiert. Voraussetzung ist, dass die beiden Flanken nahezu identisch
sind, da das Spektrum sonst zu stark verfilscht wiirde. Uber einen Vergleich der lin-
ken und rechten Flanke im Bereich grofier Counts (also in der Ndhe vom Maximum)
kann diesem Effekt entgegen gewirkt werden. In Abbildung ist das Spektrum

mit Zero-Loss Peak und mit abgeschnittenem Peak dargestellt.
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Abbildung 5.10.: Energieverlustspektrum vor und nach der Separation des Zero-
Loss Peaks. Der Schittpunkt erfolgte hier bei ca. 2eV. Der Peak wurde nach der
linksseitigen Methode separiert.

Bei Verwendung einer Schottky-Kathode sollte der Zero-Loss Peak in der Regel

symmetrisch in Bezug auf das Maximum sein. Bei Verwendung von anderen Katho-
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den ist dies nicht unbedingt der Fall. Das Maximum kann dann zu hoheren oder
niedrigeren Energien verkippt sein, so dass diese Verkippung zusétzlich beriicksich-

tigt werden miisste.

5.7. Entfernung von Mehrfachstreuung

Auftretende Mehrfachstreuung stort bei der weiteren Bearbeitung des Spektrums,
insbesondere bei der Berechnung der dielektrischen Funktion. Aus diesem Grund
wird die Mehrfachstreuung mit Hilfe der in Kapitel beschriebenen Matrixentfal-
tung herausgerechnet. Dazu ist es notwendig, vor der Entfaltung bereits das Zero-
Loss Integral zu berechnen. Zudem muss der Zero-Loss Peak entfernt sein. In Ab-
bildung ist ein aufgenommenes Spektrum mit deutlicher Mehrfachstreuung bis
zur 3. Ordnung dargestellt. Das Rauschen im Spektrum ist groft, da aufgrund der
hohen Probendicke die Aufnahmezeit des Spektrums lang ist. Die Probendicke kann
spéter, falls erwiinscht, iiber die Kramers-Kronig Rechnungen bestimmt [6], oder
iiber den Vergleich mit simulierten Spektren abgeleitet werden. In Abbildung
wurde das Spektrum von Mehrfachstreuung bereinigt. Das Zero-Loss-Integral wur-
de berechnet und der Zero-Loss Peak abgeschnitten. Das Integral wurde berechnet
zu 679634 Counts. Zu erkennen ist der Punkt, an dem der Zero-Los Peak abge-
trennt wurde, dort fallt das Spektrum direkt auf Null ab. Die beiden zuvor noch

erkennbaren Peaks der Mehrfachstreuung sind nun nicht mehr sichtbar.

5.8. Aperturkorrektur

Fiir den Zusammenhang zwischen der SSD und dem Imaginérteil der reziproken
dielektrischen Funktion gilt [6]

_ 20t / ©do
S(B) = 7Ta0mov2 { } 02 +05% (5:1)

Dabei ist I das Zero-Loss Integral, ¢t die Probendicke, § der Detektionswinkel und
©p der bereits in angegebene relativistische charakteristische Streuwinkel. aq

und mg stehen fiir den Bohrschen Radius und fiir die Ruhemasse der Elekronen.
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Abbildung 5.11.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-
plasmonenpeak bei ca. 22 eV sind weitere Peaks bei ca. 44eV und bei ca. 66eV zu
erkennen. Dabei handelt es sich um Mehrfachstreuung mit Peaks bei Vielfachen der
Plasmonenenergie.
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Abbildung 5.12.: Von Mehrfachstreuung korrigiertes Spektrum. Der Zero-Loss-Peak
wurde abgeschnitten. Die Peaks der Mehrfachstreuung sind nicht mehr zu erkennen.
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Das Integral lisst sich direkt auswerten und es ergibt sich

210t

s (- (2)] o

Um an den reinen Imaginérteil zu gelangen, muss neben dem vorderen Faktor (der

S(E) =

spater behandelt wird) auch die Winkelabhéngigkeit herausgerechnet werden. Da
Op vom Energieverlust abhiangt, muss die Winkelkorrektur fiir jeden Energiekanal
einzeln berechnet werden. Die einzelnen Kanéle des Spektrums werden anschliefiend
durch den entsprechenden Korrekturfaktor dividiert.

Diese Methode setzt allerdings voraus, dass der Detektionswinkel 8 grofer ist, als

a dem Maximalwinkel unter dem die Elektronen auf die Probe treffen [6].

5.9. Normalisationsfaktor

Neben der Winkelkorrektur muss die bereits winkelkorrigierte SSD (S(E)) noch
normiert werden [6]. Dazu wird der Normalisierungsfaktor K bestimmt. Jeder Kanal
wird dann durch K dividiert.

S(p) = 2t g {_—1} (5.3)

Taymov2 €
——
K

In K sind alle als konstant angenommenen Werte zusammengefasst und lésst sich

iiber die Kramers-Kronig Summenbeziehung berechnen.

T T

Nach Einsetzen und Umformen erhilt man:

%))

(1% [w]) 3

Hierbei ist der Realteil R [ﬁ] = n? mit n als Brechungsindex. Voraussetzung

K —

dieser Methode zur Bestimmung der Normierungs-Konstanten ist somit die Kenntnis

iiber die Dielektrizitatskonstante des Materials.
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Ist die Normierungs-Konstante bekannt, ldsst sich, sofern alle anderen Groéfen aus
K bekannt sind, die Dicke der Probe bestimmen.

It Kragmgv?
Tagmov? Iy (56)
Weiterhin lasst sich damit und mit
* S(E)dE
t/\ = u (5.7)

Iy

die mittlere freie Weglidnge A der Elektronen bestimmen.

5.10. Retardierungseffekte

Ein zusédtzlicher im Spektrum auftretender Effekt ist der Energieverlust durch die
Entstehung von Cerenkov-Strahlung. Diese entsteht, wenn die Geschwindigkeit der
einfallenden Elektronen grofer ist als die Lichtgeschwindigkeit im betrachteten Me-
dium. Dabei entstehen Photonen, die hohlkegelférmig emittiert werden [14].

Die Elektronen besitzen eine Energie von 200 keV, was einem Wert von g = 0,695
entspricht, also ungefdhr 70 Prozent der Vakuum-Lichtgeschwindigkeit. Die Bedin-
gung fiir das Auftreten von Cerenkov-Strahlung lésst sich zuriickfithren auf den
Realteil der dielektrischen Funktion. Dabei ist im Folgenden mit ¢,, die Lichtge-

schwindigkeit im Medium gemeint.

1
vel>cm:£:L:>—>el oder % ¢ >1 (5.8)

n e o B

In unserem Fall von Elektronen mit 200keV Elektronen ist die Moglichkeit von
Cerenkov-Strahlung dann gegeben, wenn ¢; > 2. Der Einfluss dieses Effekts auf
das Verlustspektrum steigt mit dem Wert von €;. Da €; energieabhéngig ist, kann
Cerenkov-Strahlung nicht bei allen Energien im Spektrum auftreten, sondern nur
bei niedrigen Energieverlusten. Deutlich bemerkbar wird dieser Effekt durch einen
zusatzlichen Peak im Spektrum. Das Spektrum, unter Vernachlissigung von Ober-
flacheneffekten, aber mit Beriicksichtigung von Cerenkov-Strahlung, ldsst sich durch
folgende Formel beschreiben [14] [29] :
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5.10. Retardierungseffekte

U2 2 U4
dQdE — m2a2movn, (02— 02 (6,2 — 1)]2 +oiay '

Betrachtet man den Nenner des zweiten Bruchs dieser Formel, so ist festzustellen,
dass der Wirkungsquerschnitt fiir © = O (612—5 — 1) ein Maximum durchlduft. Da
dieses © sehr klein ist, liegt das Maximum nahezu auf der optischen Achse, zudem
ist dieses Maximum aufgrund von O energieabhéngig.

Durch die Abweichung von einer lorentzartigen Winkelverteilung lésst sich die Cerenkov-
Strahlung im Spektrum von Plasmonen unterscheiden. Zudem kann das Auftreten
von Cerenkov-Strahlung durch Wahl einer geeigneten Apertur minimiert werden [7].
Cerenkov-Strahlug kann ebenfalls an der Grenzschicht zwischen Vakuum und Pro-

be auftreten. Dieser Effekt kann allerdings vernachlissigt werden, da die Auftritts-
wahrscheinlichkeit in der Gréfsenordnung von 0,1 Prozent liegt und daher nicht zum
Spektrum beitrégt [6].

counts x 10A3

Abbildung 5.13.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-
plasmonenpeak bei ca. 22 eV ist ein zusitzlicher Peak bei ca. 5¢V zu erkennen, der
aufgrund von Cerenkov-Strahlung zustande kommt.
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5. Experimentelle Durchtfiihrung

5.11. Berechnung der dielektrischen Funktion

Der Vorgang zur Berechnung der dielektrischen Funktion aus den Energieverlust-
spektren ist in Abbildung dargestellt. Auf die Aperturkorrektur und die Nor-
mierung der Spektren wurde bereits eingegangen. Die Berechnung des Realteils, im
Schema als FFT+Korrektur bezeichnet, beinhaltet die in Kapitel abgeleitete
Beziehung zwischen Real- und Imaginédrteil. Nach der Berechnung des Realteilteils
des Kehrwertes der dielektrischen Funktion, lassen sich daraus der Realteil und
Imaginérteil der dielektrischen Funktion bestimmen. Bisher wurde allerdings bei
den Berechnungen nicht beriicksichtigt, dass Oberflichenplasmonen vorhanden sein
konnen. Diese werden iiber ein iteratives Verfahren berechnet. Zunéchst wird unter

Ausnutzung der berechneten dielektrischen Funktion mit dem Zusammenhang [6]

. ]0 COt(ﬁ/@E) 6 462 o~ -1
5s(B) = Taokot ( 0 [+ @%) ' ((61 r12+e (?)) (5.10)

das Spektrum der Oberflichenplasmonen berechnet. Dieses Spektrum wird vom Aus-

gangsspektrum abgezogen. Darauffolgend wird die gesamte Prozedur (Aperturkor-
rektur, Normierung, Kramers-Kronig Transformation, Berechnung von €; und e
und die Berechnung der Oberfichenplasmonen) mit diesem neuen Spektrum durch-
gefiihrt. Die Schleifenzahl dieser Iteration ist beliebig, hat allerdings Auswirkungen
auf den Rechenaufwand. Fiir eine praktikable und zufriedenstellende Berechnung
wurden 10 Iterationen durchgefiihrt. In Abbildung ist ein Ausgangsspektrum

mit, deutlich erkennbaren Oberflichenplasmonen dargestellt.
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5.11. Berechnung der dielektrischen Funktion

counts x 10A3

Abbildung 5.14.: Aufgenommenes Spektrum einer SiC Probe. Neben dem Volumen-

plasmonenpeak bei ca. 22 eV ist der Oberflichenplasmonenpeak zwischen 15e¢V und
16eV zu erkennen.

[ Ausgangsspektrum

[ Normierung

Iteration [ FFT + Korrektur

Apertu rkorrektur ]

[Berechnung von ¢ e,

Berechnung von Ergebnis
Oberflachenplasmonen €8,

Abbildung 5.15.: Programmschema der Routine zur Berechnung von Realteil und
Imaginédrteil der dielektrischen Funktion eines gegebenen Spektrums.







6. Auswertung

Die in Kapitel[f]zur Entwicklung der Auswertungsmethoden verwendeten Messungen
wurden am Libra aufgenommen. Aufgrund des Monochromators und der somit bes-
seren Energieauflosung wurden die Messungen zur Bestimmung der dielektrischen
Funktion am Crisp durchgefiihrt. Aufgenommen wurden Spektren bei verschiede-
nen Probendicken im Bereich von 30nm bis 100nm. Diese Eingrenzung des Bereichs
der Probendicke basiert auf eine Betrachtung der Simulationsrechnungen in Kapi-
tel [d Die dielektrische Funktion wurde nach einem Vergleich der Aufnahmen aus
dem Spektrum berechnet, das weder einen ausgeprigten Oberflichenplasmonenpeak

noch deutliche Mehrfachstreuung enthielt.

6.1. Berechnete dielektrische Funktion

In den Abbildungen [6.1] und [6.2]ist die nach den in Kapitel f] entwickelten Methoden
berechnete dielektrische Funktion einer 3C-SiC Modifikation. In den Abbildungen
und [6.4]ist die dielektrische Funktion einer 6H-SiC Modifikation dargestellt. Aus
den Spektren ist erkennbar, dass der Verlauf der dielektrischen fiir beide Modifi-
kationen sehr dhnlich aussieht. Aus den Nulldurchgingen der beiden Realteile der
dielektrischen Funktionen bei ca. 22eV lisst sich auf den Volumenplasmonenpeak
schlieffen. Zusétzlich lassen sich in den Feinstrukturen bei kleineren Energien In-
terbandanregungen vermuten. Aufgrund des hohen Rauschanteils und der méfigen
Energieauflosung lassen sich die Spektren den einzelnen Modifikationen nicht ein-
fach zuordnen. Im Vergleich mit den in Kapitel [6.2] vorgestellten Messungen, erkennt
man die Grenzen der Energieauflosung. Der Vorteil der Messungen liegt allerdings
gerade im erweiterten Energiebereich. Nach einer Glattung der Funktionen (Bezier
Algorithmus) ist der Verlauf der dielektrischen Funktionen deutlicher zu erkennen.
Der hohe Rauschanteil bei niedrigen Energieverlusten entsteht bei der Berechnung

der Fouriertransformationen. Bei niedrigen Energieverlusten sind die Counts gering,
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6. Auswertung

so dass das Rauschen im Spektrum dort eine gréfsere Gewichtung tragt. Die geglit-
teten Messungen sind in den Abbildungen bis dargestellt. Die Minima im
Realteil der dielektrischen Funktionen bei ca. 12 €V resultieren aus Interbandanre-
gungen. Entsprechend lassen sich bei ca. 12 eV im Imaginérteil der dielektrischen
Funktionen Maxima erkennen. Das erste Minimum bei ca. 10 eV in Abbildung
sollte nicht vorhanden sein und lasst sich auf Berechnungsfehler zuriickfiihren, da

ein entsprechend ausgeprégter Verlauf in Abbildung nicht erkennbar ist.

3C-SiC Epsilon 1

a.u.

0 I SIS

. . . . . . . L . . . . .
8 12 16 20 24 28 32 36 40 44 48 52 56 60

Energieverlust [eV]

Abbildung 6.1.: Realteil der dielektrischen Funktion von 3C-SiC.

3C-SIiC Epsilon 2

a.u.

. . . . . . L .
28 32 36 40 44 48 52 56 60

Energieverlust [eV]

Abbildung 6.2.: Imaginérteil der dielektrischen Funktion von 3C-SiC.
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6.1. Berechnete dielektrische Funktion

a.u.

a.u.

6H-SiC Epsilon 1 ——

8 12 16 20 24 28 32 36 40 44 48 52 56 60

Energieverlust [eV]

Abbildung 6.3.: Realteil der dielektrischen Funktion von 6H-SiC.

6H-SIiC Epsilon 2 ——

8 12 16 20 24 28 32 36 40 44 48 52 56 60

Energieverlust [eV]

Abbildung 6.4.: Imaginérteil der dielektrischen Funktion von 6H-SiC.
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6. Auswertung

3C-SiC Epsilon 1
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Abbildung 6.5.: Realteil der dielektrischen Funktion (gegldttet) von 3C-SiC.

3C-SIiC Epsilon 2

a.u.

8 12 16 20 24 28 32 36 40 44 48 52 56 60
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Abbildung 6.6.: Imaginérteil der dielektrischen Funktion (gegléttet) von 3C-SiC.
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6.1. Berechnete dielektrische Funktion

6H-SiC Epsilon 1

a.u.
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Abbildung 6.7.: Realteil der dielektrischen Funktion (gegldttet) von 6H-SiC.

6H-SIiC Epsilon 2
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Abbildung 6.8.: Imaginérteil der dielektrischen Funktion (gegléttet) von 6H-SiC.
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6. Auswertung

6.2. Vergleich mit optischen Messungen

Die dielektrischen Funktion lasst sich neben der Bestimmung aus Verlustspektren
auch iiber optische Messungen bestimmen. Der Nachteil der optischen Messung liegt
in der Beschrinktheit des Energiebereichs auf einen Spektralbereich von ca. 1 eV bis
30 eV [4]. Der Vorteil der ellipsometrischen Messung besteht in der Energieauflésung,
die je nach betrachteter Photonenenergie im Bereich von 20 meV bis 200 meV liegt.
Bei verlustspektroskopischen Messungen wird mit einer geringeren Energieauflosung
gearbeitet.

Die Ellipsometrie nutzt die Anderung des Polarisationszustandes von Licht, das an
einer Probe reflektiert wird. Der Name ergibt sich aus dem Zusammenhang, dass
das zuvor in der Regel linear oder zirkular polarisierte Licht nach Reflektion an der
Probe elliptisch polarisiert ist. Diese Anderung des Polarisationszustandes erlaubt
eine Berechnung des Realteils und des Imaginarteils der komplexen dielektrischen
Funktion.

Bedingt durch den Aufbau der Apparatur und der praktischen Durchfiirhbarkeit,
wird das Spektrum einer ellipsometrischen Messung aus Einzelspektren zusammen-
gesetzt. In Abbildung sind die effektiven dielektrischen Funktionen von drei
bekannten SiC Modifikationen dargestellt. Bei den Spektren handelt es sich um
Ausschnitte, die einen Energiebereich von 2eV bis 10eV abdecken. Zu erkennen ist
die bessere Energieauflosung im Bereich kleiner Energieverluste, im Vergleich zu
den Messungen aus daran, dass im Verlauf kleinere Strukturen deutlicher aus-
gepragt sind. Die dielektrischen Funktionen der beiden unterschiedlichen Messme-
thoden unterscheiden sich im {iberlappenden Energiebereich etwas voneinander, was
(wie bereits in [6.1| erwdhnt) an der Glittung der Daten liegt.
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6.2. Vergleich mit optischen Messungen

W
o

Photonenenergie (eV)

Abbildung 6.9.: Realteil und Imaginérteil der effektiven dielektrischen Funktion von
4H-, 6H- und 3C-SiC. Die Aufnahmen wurde ellisometrisch bei Raumtemperatur
aufgenommen [4]. Bei den Oszillationen im Spektrum der 3C-SiC Modifikation han-
delt es sich um Fabry-Perot-Oszillationen.
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7. Zusammenfassung

Ziel der Arbeit war die Bestimmung der dielektrischen Funktion von Siliziumcarbid
mit Energieverlustspektren, aufgenommen mit einem Transmissionselektronenmi-
kroskop. Mit der Auswertung der aufgenommenen Spektren wurden die Probleme
behandelt, die zur erfolgreichen Bestimmung der dielektrischen Funktion beachtet
werden miissen. So stellte sich schnell heraus, dass die Simulation von Verlustspek-
tren sehr hilfreich ist, um unmittelbar nach der Aufnahme und Extraktion der Spek-
tren (Integration) tiber die Qualitit der Daten zu entscheiden. Weiterhin konnten
so direkt die Peaks der Oberflaichenplasmonen, der Mehrfachstreuung, sowie die ei-
gentlich interessanten Volumenplasmonen bestimmt werden. Fiir die Aufnahme der
Spektren wurde auf die Moglichkeit zuriickgegriffen, die Integration der Spektren
nachtraglich durchzufiihren, um ein bestmdogliches Ausgangsspektrum zu erreichen.
Als entscheidend fiir die Qualitat der dielektrischen Funktion stellte sich die genaue
Bestimmung des Zero-Loss-Peaks und des entsprechenden Integrals heraus. Gerade
in der Phase, in der der Zero-Loss Peak absepariert wird, kann durch einen unge-
nauen Abschnittpunkt der Verlauf der dielektrischen Funktion beeinflusst werden.
Daher wurden fiir diese Aufgabe verschiedene Routinen entwickelt, um fiir verschie-
dene Spektren optimale Ergebnisse zu erzielen.

Die iterative Berechnung der dielektrischen Funktion unter Beriicksichtigung der
Oberflichenplasmonen stellte sich als geeignet heraus, da trotz der Wahl einer gut
gewihlten Probendicke, um sowohl starke Mehrfachstreuung, als auch ausgeprigte
Oberflichenplasmonen zu vermeiden, trotzdem beide Effekte nicht ganz vermieden
werden kdnnen.

Storend in den am Libra aufgenommenen Spektren sind ausgepriagte Cerenkov-
Peaks, die aufgrund der grofen Beschleunigungsspannung und der daraus resultie-
renden hohen Elektronenenergie nicht immer vermieden werden konnten. Dennoch
konnte durch eine geeignete Wahl der Apertur bei der Aufnahme von Spektren am

Crisp der Beitrag von Cerenkov-Strahlung entscheidend minimiert werden.
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7. Zusammenfassung

Weiterhin wurde die Notwendigkeit eines Monochromators demonstriert, da fiir Be-
trachtungen im Low-Loss Bereich eine gute Energieauflésung notwendig ist.

Zusammenfassend konnte festgestellt werden, dass die Bestimmung der dielektri-
schen Funktion von SiC mit einem Transmissionselektronenmikroskop moglich ist.
Abstriche miissen allerdings dann gemacht werden, wenn das Interesse an Fein-
strukturen bei sehr kleinen Energieverlusten liegt. Allerdings konnte trotzdem ein

Unterschied zwischen verschiedenen Siliziumcabid Modifikationen erkannt werden.
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A. Anhang

A.1l. Herleitung der Kramers-Kronig Beziehungen

Zur Herleitung der Kramers-Kronig Beziehungen ist eine zundchst beliebige komple-
xe Funktion a(w) = R {a(w)}+3{a(w)} gegeben. Sowohl die Funktion, als auch die
abhéngige Variable w sind komplex. Die Funktion soll folgende drei Eigenschaften
besitzen [39):

1. Die Pole von a(w) liegen unterhalb der reellen Achse,
2. a(w)/w geht fiir |w| — oo schneller gegen Null als |w| ™"
3. R{a(w)} ist gerade wihrend 3 {a(w)} ungerade im Bezug auf reelle w ist.

Der erste Punkt folgt aus der Kausalitit (a(t) = 0 fiir ¢ < 0 im Fourierraum). Sind
obige Bedingungen gegeben, so erfiillt die Funktion a(w) die Kramers-Kronig Rela-
tion [39]. Betrachtet wird nun das Wegintegral {iber eine komplexe Halbebene, wie
in Abbildung dargestellt. Der Beitrag des 4. Teilstiicks verschwindet aufgrund
der zweiten Forderung an die Funktion. Das Integral iiber den geschlossenen Weg

ergibt aufgrund der ersten Forderung und nach dem Cauchyschen Integralsatz Null

ﬁ%ds:/l—l—/;—/gz(l (A1)

Fiir den Beitrag des zweiten Wegstiicks, dem Halbkreis um den Pol, werden Polar-

koordinaten eingefiihrt (s = w + ue’®)

Aﬂds — a(w) /WO iue®do = —mia(w). (A.2)

s—w ue®
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A. Anhang

Das Cauchysche Hauptintegtral P ldsst sich dadurch nun umformen zu:

/1 * /3 =F /_ :O Safszdds = mia(w) (A.3)

Durch Auflésen nach a(w) und Betrachtung des Realteils ldsst sich dieser mit dem

Imaginérteil verkniipfen.

&e{a(w)}:%P/des: [/Omi{f—(j}dwfo %da}.
(A4)

Durch die Forderung, dass der Imaginédrteil der betrachteten Funktion ungerade

—0o0 —0o0

ist beziiglich reeller w, lasst sich das letzte Integral mit negativen Werten fiir a

umformen zu

S —Ww w

R {a(w)} = %P UOOO Mder/ooo Wd%. (A.5)

Die beiden Integrale lassen sich nun bequem zusammenfassen. Zusétzlich ldsst sich
durch eine analoge Betrachtung des Imaginérteils, eine entsprechende Relation be-

stimmen

R {a(w)} = 2p /0 Tsstal)l (A.6)

SH{a(w)} = —%P/OOO %d& (A.7)
Die Funkiton )
alw)=1———= (A.8)

erfiillt die geforderten Voraussetzungen und die Kramers-Kronig Beziehungen lassen

sich nun auf den Kehrwert der dielektrischen Funktion {ibertragen

R FCE
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A.2. Ausschnitte von Quellcodes der verwendeten Routinen

2
A .3
®
w
Abbildung A.1.: Integrationsweg in der komplexen Halbebene

A.2. Ausschnitte von Quellcodes der verwendeten

Routinen

Im Folgenden werden die Programmcodes gezeigt, die zur Simulation der Spektren
fiir Mefachstreuung und Oberflichenplasmonen programmiert wurden. Die entwi-
ckelten Programmcodes zur Berechnung der dielektrischen Funktion basieren auf

den in dieser Arbeit hergeleiteten Beziehungen und werden daher nicht aufgefiihrt.

A.2.1. Routine zur Simulation von Spektren mit

Mehrfachstreuung

v //Erzeugt Spektren mit Mehrfach und Einfachstreuung. Als Parameter

> //werden der Funktion zwei Referenzen auf leere Spektren idbergeben

s //sowie ein Satz Parameter, der die FEigenschaften der Spektren bestimmt.
4 void multiple scattering (spektrum &SSD,spektrum &PSD,parameter param)
o

6 //Alle Datenarrays leeren

7 SSD.cnts.clear (); PSD.cnts.clear (); SSD.E.clear (); PSD.E.clear ();

8

o //Zusdtzliche Parameter werden definiert

o double SZ = param .EW/1.665;

1 double SP = param .WP/1.665;

double HZ = param .EPCsparam.A0/SZ/1.772;

3 double RINUM =1.23456;

4 double BNOISE=0, RNDNUM=0;

15

=

-

—-
M

-

-
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16

17

18

19

20

21

22

23

24

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

A. Anhang

for (int i=1;i<=param .NCH;i++)

{

//Die Energieskala wird in die Spektren geschrieben
SSD.E.push back(ixparam.EPC-param.OFFS);
PSD.E.push back (is*param.EPC-param.OFFS);

int FAC = 1;
int ORDER = 0;

int PSDA=0;
while (ORDER<15){ //Beriicksichtigung bis zur 15. Ordnung

//Bestimmung von Sigma in Abhdngigkeit von der Streuordnung
double sigma = sqrt (SZ*xSZ+ORDER+SP«SP ) ;

//Berechnung des Ezponenten fir die Ezponetialfunktion
double XPNT = pow ((PSD.E[i—1]-ORDER+param .EP) ,2)/sigma/sigma;
double EXPO;

if (XPNT > 20.0) EXPO = 0.0;

//Berechnung der Ezponentialfunktion
if (XPNT <= 20.0) EXPO — exp(—XPNT);

//Beriicksichtigung der Streuordnung
int DNE = HZxSZ/sigma«EXPO/FACx«pow (param .TNM/param .LAM,ORDER) ;

int helpl = RINUM; double help2=helpl;

s RNDNUM = 2 # (help2-RINUM);

46

47

48

//Rauschen mit "Zufallsgenerator"” erzeugen

double SNOISE = param.FPOISS*(sqrt (DNE)+«RNDNUM) ;

a9 RINUM = 9.8765+RNDNUM;

50

51

J//Wenn der Fall 1. Ordnung eintritt, wird das Single—Scattering

68



A.2. Ausschnitte von Quellcodes der verwendeten Routinen

s2 //Spektrum erstellt

s if (ORDER — 1)

 {

55

s6 //Hintergrundrauschen simulieren

57 BNOISE=param .FBACKxparam . BACK:+RNDNUM;

58

s //SSD wird bei Order=1 erstellt

60 SSD. cnts.push back (DNE+sqrt (SNOISExSNOISE+BNOISE«BNOISE ) ) ;
o)

62

63 //Die einzelnen Beitrige werden aufaddiert
61 PSDA-PSDA{DNE;

6s FAC-FAC* (ORDER | 1);

66 ORDER+}+; //Erhéhung der Ordnung um eins

67 DNE=0;

o)

69

0 //Rauschen wird erzeugt firs PSD Spektrum

71 double SNOISE=param .FPOISS*(sqrt (PSDA)«RNDNUM) ;

72

s //PSD Spektrum wird erzeugt

74 PSD. cnts . push_back (PSDA+sqrt (SNOISExSNOISE+BNOISE«BNOISE)+param .BACK ) ;

75

6}

7 SSD. offset=param .OFFS;
7s PSD. offset=param .OFFS;
79 SSD . xperchan=param .EPC;
go PSD. xperchan=param .FPC;
g1 SSD . beamkv=param .E0;

g2 PSD. beamkv=param .EQ;

83 SSD . points=param .NCH;

sa PSD. points=param .NCH;

85}
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A.2.2. Routine zur Simulation von Spektren mit

Oberflachenplasmonen

v //Erzeugt Spektren mit Oberflichenplasmonen

> //(mit Berechnung der dielektrischen Funktion).

3 //Ubergeben werden der Funktion Referenzen auf die leeren

1 //Spektren und zusdtzlich ein Paket an Parametern,

5 //die zur Erstellung der Spektren notwendig sind.

6

7 void surface plasmons(parameter &param ,spektrum &SSD,spektrum &epsl
s spektrum &eps2, spektrum &REREPS, spektrum &ELF)

o {

10 //Alle Spektren leeren

1 SSD. cnts.clear ();SSD.E. clear ();

12 epsl.cnts.clear ();epsl.E.clear ();

13 eps2.cnts.clear ();eps2.E.clear ();

14 REREPS. cnts . clear ();REREPS.E. clear ();
15 ELF.cnts.clear ();ELF.E. clear ();

16

w7 //Zusdtzliche Parameter werden definiert

1s double B=param .BETA/1000;

19 double T=1000%param.E0*(1+4param.E0/1022.12)/pow(l+param.E0/511.06,2);
20 double TGT=1000*param .E0%(1022.12+param.E0)/(511.06+ param .E0);

21 double RK0=2590%(1+4param.E0/511.06)*sqrt (2+«T/511060);

22 double E;

24 for (int IW=2;IW<=param .NCH- 1;IW-++){

»6 E=param .EPCx(IW—1); //Energiewerte berechnen

»s //Energiewerte schreiben

29 SSD.E.push_ back(E);

30 epsl.E.push back(E);

31 eps2.E.push_ back(E);

32 REREPS.E. push back(E);
33 ELF.E.push back(E);
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34

35 //Berechnung von Real— und Imagindrteil der dielektrischen
s6 //Funktion ohne Oberflichenplasmonen

a7 epsl.cnts.push back(1l.—(param.EPxparam.EP)/(Ex«E+param .WPsxparam .WP) ) ;
as eps2.cnts.push back(param .WP«param .EPsparam .EP/E/

30 (ExE+param .WPsparam .WP) ) ;

40

w //Berechnung der komplexen FEnergy—Loss Funktion

a2 //ohne Oberflachenplasmonen

a3 ELF. cnts.push back(param .EPxparam .EP«Exparam .WP/

1 (pow (ExE—param .EP*param .EP,2) +pow (Exparam .WP;2)));

15 REREPS. cnts.push back(epsl.cnts.back()/(epsl.cnts.back()x
16 epsl.cnts.back()+eps2.cnts.back()xeps2.cnts.back()));

47

s //Berechung der Oberflichenplasmonen

1 double THE = E/TGT;

50

51 double SRFELF = 4xeps2.cnts.back()/(pow(l+epsl.cnts.back(),2)
52 +pow (eps2.cnts . back(),2)) —ELF. cnts.back ();

53

54 double ANGDEP = atan (B/THE)/THE-B/(B«B+THE«THE) ;

55

56 double SRFINT = param .EPCxparam . AOxANGDEP«SRFELF /

st (3.1416%0.0529+RK0+T) ;

58

5o double ANGLOG = log(1+B«B/THE/THE);

60

61 double VOLINT = param.EPCxparam.A0/3.1416x

62 param . TNM/0.0529 /T /2«ELF . cnts . back () *ANGLOG;

63

o1 //Volumeninfomrationen und Oberflicheninformationen zusammenfigen
65 SSD. cnts . push back (VOLINTHSRFINT);

66

o}

68

60 //Zusdtzliche Angaben in die Spektren schreiben
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A. Anhang

70 SSD . offset =0;

n epsl.offset=0;

2 eps2. offset =0;

73 REREPS. offset =0;

72 ELF . offset =0;

75

76 SSD . xperchan=param .EPC;
77 epsl.xperchan=param .EPC;
78 eps2.xperchan=param .EPC;
79 REREPS. xperchan=param .EPC;
so ELF. xperchan=param .FEPC;
81

g2 SSD . points=param .NCH;

g3 epsl.points=param .NCH;

84 eps2.points=param .NCH;

ss REREPS. points=param .NCH;
ss ELF. points=param .NCH;

87

ss 55D . beamkv=param .EO;

so epsl.beamkv=param.EQ;

90 eps2.beamkv=param.EQ;

91 REREPS. beamkv=param .EQ;
92 ELF . beamkv=param .EO;

93

94}
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