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Kapitel 1
Einleitung

Eine Anwendung der energiefilternden Transmissionselektronenmikroskopie
besteht in der Aufzeichnung von Energieverlustspektren. Heute gibt es zahl-
reiche Transmissionselektronenmikroskope, die mit sehr groflen Beschleuni-
gungsspannungen (> 200kV) arbeiten. Fiir Beschleunigungsspannungen die-
ser Groflenordnung lassen sich relativistische Effekte nicht vernachlassigen.
Von Bedeutung sind vor allem die magnetische Wechselwirkung zwischen
den einfallenden und den Atomelektronen sowie die Verzogerung der Wech-
selwirkung aufgrund der endlich grofien Lichtgeschwindigkeit (Retardierungs-
effekt).

Zur quantitativen Analyse diinner Priparate mittels Energieverlustspektren
werden Wirkungsquerschnitte benétigt. In der vorliegenden Arbeit sollen
Wirkungsquerschnitte unter Beriicksichtigung der relativistischen Effekte be-
rechnet werden. Daher wird der Wirkungsquerschnitt, so wie er sich im voll-
relativistischen Propagatormodell in erster Ndherung herleiten 148t, zugrun-
de gelegt. Fiir die Auswertung des Wirkungsquerschnitts braucht man den
Anfangs- und den Endzustand des Atomelektrons, welches durch die Wech-
selwirkung mit dem einfallenden Elektron angeregt wird. Zur Berechnung der
Atomwellenfunktionen werden in der Elektronenenergieverlustspektroskopie

das Wasserstoffmodell und das Zentralfeldmodell herangezogen.



Relativistische Wirkungsquerschnitte sind bisher nur mit dem Wasserstoft-
modell berechnet worden (vgl. [10, 11]). Dieses Modell kann mit hinreichen-
der Genauigkeit jedoch nur im Fall der K-Schalenionisation angewandt wer-
den. Einer solchen Einschrinkung unterliegt das Zentralfeldmodell nicht. Die
vorliegende Arbeit macht es sich zur Aufgabe, relativistische Wirkungsquer-
schnitte fiir K- und L-Schalenionisation auf der Grundlage des Zentralfeld-

modells zu berechnen.

Kapitel 2 befafit sich mit den theoretischen Grundlagen zum relativistischen
Wirkungsquerschnitt. In Kapitel 3 wird ein Ausdruck fiir den relativistischen
Wirkungsquerschnitt unter Verwendung von Darwin-Wellenfunktionen im
Rahmen des Zentralfeldmodells hergeleitet. Dieser Ausdruck wird in Kapitel
4 fiir K- und L-Schalenionisation numerisch ausgewertet. Schlieflich werden

in Kapitel 5 die Ergebnisse zusammengefaflt und diskutiert.



Kapitel 2

Theorie der relativistischen

Wirkungsquerschnitte

Elektronenenergieverlustspektroskopie kann in einem mit einem Energiefil-
ter ausgestatteten Transmissionselektronenmikroskop durchgefiihrt werden.
Dabei wird ein kleiner Probenbereich mit schnellen Elektronen bestrahlt.
Detektiert und in einem Spektrum aufgetragen wird die Intensitét der trans-
mittierten Elektronen in Abhingigkeit vom Energieverlust des einfallenden
Elektrons. Das charakteristische Aussehen eines solchen Energieverlustspek-
trums, wie es in Abbildung 2.1 dargestellt ist, beruht auf den Wechselwir-
kungsprozessen der einfallenden Elektronen mit den Atomen der zu untersu-

chenden Probe.

Der ,,Zero-Loss-Peak® entsteht durch die ungestreuten und die elastisch ge-
streuten Elektronen. Aufgrund der endlichen Energieauflosung des Elektro-
nenmikroskops, die durch die Energieverbreiterung des Elektronenstrahls und
die Energieauflosung von Filter und Detektor zustande kommt, ergibt sich
eine Verbreiterung dieses Peaks. Im Bereich bis zu Energieverlusten von ca.
50 eV sind Strukturen zu beobachten, die auf Plasmonen- und Interband-

anregungen in der Probe zuriickzufiihren sind.



Fiir die qualitative und quantitative Analyse eines Energieverlustspektrums
sind vor allem die Ionisationskanten, anhand derer man eine Elementanalyse
durchfithren kann, interessant. Ionisationskanten beruhen auf der unelasti-
schen Streuung der Primirelektronen und entstehen durch die Ionisation
innerer Schalen der Probenatome. Solche Ionisationskanten finden sich in
einem Energieverlustspektrum bei Energieverlusten der eingestrahlten Elek-
tronen, die grofler als die Plasmaverlustenergien sind. Im Spektrum kénnen
unterschiedliche Kantenformen auftreten, die auf den spezifischen Energie-
zustdnden der Atome der Elemente beruhen. Die Abbildung 2.1 zeigt einige
K-Kanten, die ein typisches Sidgezahnprofil, welches am Kantenbeginn scharf

ansteigt und dann langsam abfillt, aufweisen.
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Abbildung 2.1: Typisches Elektronenenergieverlustspektrum mit Zero-Loss-
Peak, Plasmonenstruktur und dem sich anschlielenden Energiebereich der

charakteristischen Innerschalenverluste.

Aus der Struktur der Kante lassen sich in der qualitativen Analyse Erkennt-
nisse iiber die auftretenden Bindungszustidnde und die Festkorpertruktur der
beteiligten Elemente gewinnen. Die quantitative Analyse hat die Bestim-

mung der stéchiometrischen Zusammensetzung des durchstrahlten Proben

4



bereichs zum Ziel. Dazu werden Wirkungsquerschnitte, die die quantitative
Beschreibung der unelastischen Streuprozesse ermoglichen, benétigt. Besteht
die Probe aus den zwei Elementen A und B, dann gilt fiir das Konzentrati-

onsverhaltnis dieser beiden Elemente in einer diinnen Probe

Na _ 14(8,A4) 05(8,Ap) (2.1)

NB B IB(ﬂaAB) O-A(ﬂa AA) .

Dabei stehen N4 und Np jeweils fiir die Anzahl der Atome der Elemente A
und B, die zum Spektrum beitragen, I4(5,A4) und Iz(3, Ag) sind die iiber

die Energiefenster A4 und Ap integrierten Intensitdten der Elemente A und

B. B bezeichnet den Spektrometer-Akzeptanzwinkel. Schliefilich sind o4 und

op die partiellen Wirkungsquerschnitte von Element A und B.

Der partielle Wirkungsquerschnitt o(3, A) ist ein Ma$ fiir die Wahrschein-
lichkeit, daf} ein Elektron einen Energieverlust im Fenster A erleidet und in
einen Winkel kleiner als 3 gestreut wird. Er hat die Dimension einer Fliche
und ergibt sich aus dem zweifach differentiellen Wirkungsquerschnitt durch

Integration iiber Energiefenster und Spektrometer-Akzeptanzwinkel

o(5.8) = [ i”A aam) [ ’ 40 (%{’AE)) (2.2)

’g

Der doppelt differentielle Wirkungsquerschnitt #(AE) driickt die Wahr-
scheinlichkeit dafiir aus, dafl ein unelastisch gestreutes Elektron einen Ener-
gieverlust im infinitesimalen Intervall [AE, AE + d(AFE)] erleidet und dabei

in das Raumwinkelelement df) gestreut wird.

Zur Bestimmung des Konzentrationsverhéltnisses zweier Elemente A und
B nach Gleichung (2.1) sind neben den experimentell zugéinglichen Mef-
grofien I4(8,A4) und Ip(B, Ag) auch Wirkungsquerschnitte erforderlich.
Wirkungsquerschnittsverhiltnisse lassen sich bei Kenntnis eines Wirkungs-
querschnitts und bekannten Konzentrationsverhéiltnissen ebenfalls mit Hilfe
von Gleichung (2.1) experimentell bestimmen. Bewiihrt haben sich aber auch
theoretisch berechnete Wirkungsquerschnitte. Solche theoretisch berechneten

Wirkungsquerschnitte haben gegeniiber den experimentell bestimmten den
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Vorteil, dafl sie Werte fiir beliebige Energiefensterbreiten und Aperturwin-
kel liefern und nach Erstellung eines entsprechenden Programmes einfacher

zugénglich sind.

2.1 Voraussetzungen

Im Rahmen der relativistischen Propagatortheorie kann man einen Ausdruck
fiir die Streumatrix angeben, welche die zeitliche Entwicking der an dem
Streuprozefl beteiligten Teilchen unter dem Einflufl des zwischen diesen wir-
kenden Wechselwirkungspotentials wiedergibt. Aus der Streumatrix gewinnt
man zunichst die Ubergangsrate, indem man das Betragsquadrat des Matrix-
elementes bildet und durch den Zeitraum des Ubergangs, innerhalb dessen
die am Streuprozef} beteiligten Elektronen vom Anfangs- in den Endzustand
iibergehen, dividiert. Normiert man dann auf die Stromdichte der einfallen-

den Elektronen, so erhélt man den Wirkungsquerschnitt.

Die Herleitung der relativistischen Streumatrix ist ausfiihrlich in [10] be-

schrieben. Man geht dabei von folgenden Annahmen aus:

1. Das Probenpriparat ist diinner als die mittlere freie Wegldnge der
Primérelektronen
= Es findet nur Einfachstreuung der Elektronen auf ihrem Weg durch
die Probe statt.

2. Der Einfufl von Nachbaratomen auf das angeregte Atom ist zu ver-
nachldssigen

= Es kann ein atomares Modell des Streuvorgangs verwendet werden.

3. Eine Wechselwirkung findet nur zwischen dem einfallenden Elektron
und dem Hiillenelektron, das angeregt wird, statt. Die Wechselwirkung
mit dem Atomkern bleibt unberiicksichtigt
= Esist ausreichend, sich auf die Einteilchenwellenfunktionen der Elek-

tronen zu beschrianken.



4. Das angeregte Atomelektron wird ins Kontinuum und nicht in gebun-
dene Zustidnde angehoben
= Die Wellenfunktion des Atomelektrons nach der Streuung wird nur

fiir das kontinuierliche Spektrum berechnet.

5. Die Energie des ionisierten Atomelektrons ist um mindestens zwei Gro-
Benordnungen gréfler als die Verlustenergie des gestreuten Elektrons

= Austauscheffekte sind zu vernachléssigen

6. Die Verweilzeit des Primérelektrons im Potential des Atomelektrons
ist sehr kurz, bzw. die Energie des einfallenden Elektrons ist sehr viel
grofler als die Energie des Wechselwirkungspotentials
= Die relativistische Streumatrix kann in erster Niherung beziiglich

des Wechselwirkungspotentials verwendet werden.

Die Streumatrix in erster Ndherung héngt von den vierdimensionalen ebenen
Dirac-Wellenfunktionen des Atomelektrons vor und nach der Streuung und

vom Viererpotential des elektromagnetischen Feldes

Al = (%A’) (2.3)

mit dem Skalarpotential ® und dem Vektorpotential A ab.

In Coulomb-Eichung ist das skalare Potential identisch mit dem statischen
Coulomb-Potential, das Vektorpotential enthélt die Retardierungsanteile aus
dem Coulomb-Potential und das magnetische Potential. Die Verwendung der
Coulomb-Eichung fiir das Viererpotential fiihrt dann dazu, dafl die Streu-
matrix in einen Anteil zerfillt, der aus dem statischen Coulomb-Potential
stammt, und in einen Anteil, der vom Vektorpotential herriihrt. < m|ei|n >
ist dabei das Matrixelement aus dem Coulomb-Potential und < m|dted |n >
dasjenige aus dem Vektorpotential. Diese beiden Matrixelemente treten auch

im differentiellen Wirkungsquerschnitt auf, der sich schreiben 148t als



do (), AE) LAk ky

= £ 2.4
a0 Bk 24)
N 2
1 1 - 10; o
- Z - < m‘@qu|n > — % < m\d’tezqr|n >
Sn,y8m q ( he )

Der Nachteil, daf§ die Coulomb-Eichung nicht lorentzinvariant ist, 14t sich
dadurch umgehen, da} man ein festes Bezugssystem ansetzt. Dabei wird das

Atom mit dem Atomkern in den Ursprung gelegt.

In der Gleichung (2.4) ist iiber die Spinanfangszustéinde des Atomelektrons
gemittelt, zugleich {iber dessen Spinendzustinde summiert worden. Dies ist
notwendig, da wir uns fiir den Wirkungsquerschnitt der unpolarisierten Elek-
tronen interessieren. AF steht fiir den Energieverlust des Primérelektrons, o
symbolisiert die dimensionslose Feinstrukturkonstante, fiir die gilt
e 1
“= dmeghe ~ 137

(2.5)

5_; ist die auf die Vakuumslichtgeschwindigkeit normierte Geschwindigkeit des
einfallenden Elektrons; es gilt

Vi  DiC

G = T T E (2.6)

Weiter reprisentiert & als Vektor der Dirac-Matrizen den Diracschen Ge-
schwindigkeitsoperator; 7 bezeichnet die Position des Primérelektrons. Der
Einheitsvektor 7 ist ein zu § = k_; — k_} (/5;, k_} stehen fiir den Wellenzahlvektor
des einfallenden Elektrons vor und nach der Streuung) senkrechter Vektor.
Dann stellt ¢ E die Projektion von ﬁ auf eine zu ¢ senkrechte Ebene dar (vgl.
Abbidung 2.2).

Die beiden Terme innerhalb der Betragsstriche in (2.4) interferieren nicht
miteinander. Dies 148t sich durch die unterschiedlichen Auswahlregeln, die
fiir die beiden Matrixelemente gelten, begriinden [6]. Der differentielle Wir-

kungsquerschnitt vereinfacht sich dann zu



do(Q,AE)  , 4k2 ky
= L 2.
dQ TR (2.7)

e

2
Im Folgenden werden die relativistischen nicht mit den ,,rein nichtrelativisti-
schen“ Ausdriicken verglichen, sondern mit sogenannten , kinematisch korri-
gierten nichtrelativistischen®“. Kinematisch korrigierte Rechnungen basieren
auf einem nichtrelativistischen Ansatz, setzen jedoch die relativistische Kine-
matik fiir die kinetische Energie und den Impuls an, beriicksichtigen also die
vom nichtrelativistischen Fall abweichenden Werte fiir die kinetische Energie
und den Impuls des einfallenden Elektrons bei relativistischen Geschwin-
digkeiten desselben. Jedoch beziehen die kinematisch korrigierten Wirkungs-
querschnitte die magnetische Wechselwirkung zwischen den Elektronen sowie
den Einflufl von Retardierungseffekten nicht mit ein. Diese Phiinomene wer-
den in (2.7) durch den zweiten Term ausgedriickt. Der erste Term in dieser
Gleichung entspricht dagegen den kinematisch korrigierten Wirkungsquer-
schnitten, abgesehen davon, dafl im nichtrelativistischen Fall nicht {iber die
Spins summiert wird. Zudem ist zu beriicksichtigen, dafl die Wellenfunktionen
in den kinematisch korrigierten Querschnitten keine spinoriellen Dirac-Felder

sind, sondern Schrodinger-Wellenfunktionen.

Gleichung (2.7) zeigt also die Aufspaltung des Wirkungsquerschnitts in einen
Beitrag, der die statische Coulomb-Wechselwirkung wiedergibt und den nicht-
relativistischen, kinematisch korrigierten Rechnungen entspricht, und in einen
Beitrag, der aus dem Vektorpotential und dem Retardierungsanteil des Cou-
lomb-Potentials stammt und die relativistischen Effekte beschreibt. Misch-
terme zwischen diesen beiden Beitrdgen treten nicht auf. Ein Vergleich mit
den kinematisch korrigierten Ergebnissen aus den nichtrelativistischen Rech-

nungen ist daher einfach maoglich.



2.2 Dipolnidherung

In diesem Abschnitt soll die Dipolnidherung eingefiihrt werden. Die Verhélt-
nisse zwischen relativistischen und kinematisch korrigierten Wirkungsquer-
schnitten in Dipoln&herung stellen eine Kontrollméglichkeit fiir die Wir-
kungsquerschnittsberechnungen nach dem Zentralfeldmodell dar, da sie fiir

kleine Streuwinkel die Verhéltnisse richtig wiedergeben sollten.

Ist der Impulsiibertrag q viel kleiner als der reziproke Wert des mittleren
Bahnradius des Atomelektrons, so kann man die Exponentialfunktion in Glei-
chung (2.7) bis zur niedrigsten nicht verschwindenden Ordnung entwickeln
[6]. Obiges Kriterium wird durch die Verwendung hinreichend kleiner Streu-

winkel erfiillt.

Durch die Einfiihrung der Dipolndherung lassen sich die beiden Matrixele-

mente < m|e@|n > und < m|@te? |n > auf das Dipolmatrixelement
Tam =< m|Fn >

zuriickfiihren. Freie Atome sind im Ensemblemittel kugelsymmetrisch, so dafl
die Projektion des Dipolmatrixelementes in jeder Richtung denselben Wert
annimmt. Fiir kleine Streuwinkel und kleine Energieverluste kann man dann
den gesamten Ausdruck (2.7) durch die Grélen 6, 0g, 8, o und das Dipol-

matrixelement r,,, ausdriicken.

Anhand von Abbildung 2.2 kann man sich die Bedeutung der beiden Winkel
f und 6 veranschaulichen, in der die fiir den Streuprozef charakteristischen
Gréflen dargestellt sind. fg ist der charakteristische Streuwinkel. Fiir diesen

gilt
AFE E; + E,

E; E; +2Ey’
wobei F; die Energie des Primirelektrons, AFE dessen Energieverlust und
Ey = mc? = 511keV die relativistische Ruheenergie des Elektrons darstellt.

m bezeichnet hier und im Folgenden die Ruhemasse des Elektrons.

O = (2.8)
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Abbildung 2.2: Veranschaulichung des unelastischen Streuprozesses

Abbildung 2.2 zeigt, dal der Streuvektor ¢ in eine relativ zum einfallenden
Strahl parallele Komponente k;0g und eine senkrechte Komponente k;0 zer-

legt werden kann, d.h.

¢ = k! (0% +067). (2.9)
Mit (2.8), (2.9) und den Beziehungen

7 3\2 2 0?

tg)° =8 7 (2.10)
E; (E; + 2E,)
2 % 7
T T@meEr .
AE\?

(%) = K262 2 (2.12)

die man sich ebenfalls anhand von Abbildung 2.2 verdeutlichen kann, folgt
fiir den differentiellen Wirkungsquerschnitt in Dipoln&herung

do(Q,AE)  ,r2. 1 0% 0% ('
i et B A P (1 [%(1_52)+02]2). (2.13)

a0 C 5t

Zur Analyse von Energieverlustspektren benotigt man iiber den Aperturwin-

kel des Elektronenmikroskops integrierte Wirkungsquerschnitte. Bei Annah-
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me einer kreisformigen Aperturblende integriert man bis zum Aperturwinkel
0y auf und erhélt
% do

o(AE) = 27 | d—QHdG (2.14)

r2 Zg 32z
= 4ma?2 |In (1 -
il l”( +1—ﬂ3> 1= 1)

. 02
wobel zg = 7
E

Der entsprechende nichtrelativistische, kinematisch korrigierte Wirkungsquer-
schnitt )

o(AE) = 4m2r5—;" In (1 + ) (2.15)

erlaubt mit (2.14) die Bestimmung des Verhéltnisses von relativistischen zu

lediglich kinematisch korrigierten winkelintegrierten (Querschnitten.

Die Abweichungen der relativistischen von den kinematisch korrigierten Wir-
kungsquerschnitten in Dipolndherung sind in Abbildung 4.4 und Abbildung
4.9 zu erkennen. Dort sind die Quotienten aus relativistischen und kinema-
tisch korrigierten winkelintegrierten Wirkungsquerschnitten fiir verschiedene
Einfallsenergien des Priméirelektrons und fiir verschiedene Aperturwinkel ge-
gen den Energieverlust aufgetragen. ' Es zeigt sich, da8 die Abweichungen
umso grofler sind, je grofler der Energieverlust ist. Zudem nehmen sie im Falle
abnehmender Aperturwinkel und im Falle steigender Beschleunigungsspan-

nungen zu.

Die grofien relativistischen Zusatzbeitrédge werden sich auch in der Element-
analyse niederschlagen, in der man zur Bestimmung des Konzentrationsver-
héltnisses zweier Elemente deren Wirkungsquerschnittsverhéltnisse braucht.
Verwendet man blof§ kinematisch korrigierte Wirkungsquerschnitte, erhélt
man umso grofere Fehler, je weiter die Verlustenergien der beteiligten Ele-
mente auseinander liegen. Diese Fehler machen sich bei kleinen Aperturwin-

keln und groflen Beschleunigungsspannungen stédrker bemerkbar.

!Diese Abbildungen findet sich erst in Kapitel 4, weil in ihnen zugleich die Wir-
kungsquerschnittsverhiltnisse nach dem Zentralfeldmodell fiir E,Jemente mit K- und L-

Schalenionisation eingetragen sind.
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In [10, 11] sind neben den Wirkungsquerschnitten in Dipolnidherung auch
K-Schalen Wirkungsquerschnitte im Rahmen eines Wasserstoffmodells be-
rechnet worden. Die in diesem Modell gewonnenen Wirkungsquerschnitts-
verhéltnisse stimmten sehr gut mit den Ergebnissen aus der Dipolndherung

iiberein.

Die Dipolniherung ist, sofern sie giiltig ist, unabhéingig von der Schale,
die ionisiert wird. Daher kann die Dipolndherung auch fiir nicht auf K-
Schalenionisation beschriankte Rechnungen als Maflstab verwendet werden.
Ein solches Modell ist das Zentralfeldmodell, das im weiteren Verlauf die-
ser Arbeit benutzt wird. Bei der Diskussion der in diesem Modell numerisch
berechneten Wirkungsquerschnitte wird mit den Ergebnissen der Dipolnihe-

rung verglichen.

13



Kapitel 3

Analytische Auswertung des
relativistischen
Wirkungsquerschnitts mit

Darwin-Wellenfunktionen

Absolute Werte fiir relativistische Wirkungsquerschnitte sind bisher nur fiir
K-Schalen in einem Wasserstoffmodell berechnet worden [10, 11]. Dabei wur-
den die vollrelativistischen Dirac-Wellenfunktionen durch Darwin-Wellen-
funktionen gendhert. Durch die Wahl von Darwin-Wellenfunktionen vernach-

lassigt man die magnetischen Wechselwirkungen innerhalb des Atoms.

Dirac-Wellenfunktionen lassen sich dann durch Darwin-Wellenfunktionen n&-
hern, wenn die Bindungsenergie E,, des angeregten Elektrons sehr viel kleiner

als die relativistische Ruheenergie des Elektrons ist, also
E, < Ey. (3.1)

In der Elektronenenergieverlustspektroskopie verwendet man {iblicherweise
Spektrometer, die Energieverluste bis ca. 3000 eV aufzeichnen. Die aufge-

zeichneten Energieverluste sind also wesentlich kleiner als die relativistische
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Ruheenergie des Elektrons, so dafl die magnetischen Felder innerhalb des
Atoms vernachlissigt werden konnen. Daher setzt man fiir die Atomelektro-

nen Darwin-Wellenfunktionen an.

In diesem und dem nichsten Kapitel werden die Darwin-Wellenfunktionen
sowohl fiir L-Anregungen als auch K-Anregungen benutzt. Zur Notation sei
anzumerken, daf}, wenn von L-Kanten die Rede ist, Ly3-Kanten gemeint sind.
Diese entstehen durch die Anregung von 2p-Elektronen. K-Kanten sind auf

die Ionisation von 1s-Elektronen zuriickzufiihren.

Ausgeschrieben lauten die Darwin-Wellenfunktionen fiir die beiden Spinrich-

tungen des Atomelektrons

o =

Pni1(P) = Nn Un(7)

2

S|
(o)
NP

+ Qo

‘H
S S
—
Fle
<,
Sl
SN—

N
2

Un (7). (3.2)

o - o

(Pn—%(F) = Ny,

‘H
R

(

2

[\

- 0
me i3z — ay)

‘H
=g

9
ci 0z

3

Die Darwin-Wellenfunktionen bestehen aus Schrodinger-Wellenfunktionen
¥ (7) und einem vierdimensionalen Faktor, dessen Komponenten als Ope-
ratoren auf die Schrédinger-Wellenfunktion wirken. NV, ist ein Normierungs-
faktor.

Wihrend das Wasserstoffmodell nur fiir die K-Schalenionisation sinnvolle
Ergebnisse liefert, ist das Zentralfeldmodell a priori nicht auf bestimmte
Uberginge des Atomelektrons beschrinkt. Das Zentralfeldmodell nimmt ein
radialsymmetrisches Feld innerhalb des Atoms an. Dann 148t sich die Schro-

dinger-Wellenfunktion aufspalten in eine Radial- und eine Winkelfunktion

Yim ist die Kugelflichenfunktion.
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Durch diesen Ansatz der Wellenfunktion klassifiziert man das Atomelek-
tron aufler durch die Hauptquantenzahl n nach Drehimpulsen, d.h. nach
den Quantenzahlen 1 und m. Wie noch gezeigt wird, erreicht man so eine
Trennung von Radial- und Winkelintegration bei der Auswertung der Ma-
trixelemente aus Gleichung (2.7). Die Winkelintegrale lassen sich analytisch
auswerten, die Radialintegrale dagegen miissen numerisch berechnet werden,

da die Radialfunktionen nur numerisch zugénglich sind.

3.1 Die Matrixelemente

Die explizite Auswertung der Matrixelemente aus (2.7) wird im Folgenden
durchgefiihrt. Im einzelnen miissen pro Matrixelement vier Integrale berech-
net werden, entsprechend den méglichen Orientierungen des Spins des Atom-
elektrons vor und nach dem Streuvorgang. Fiir die verschiedenen Spin-Spin-

Kombinationen lauten die Integrale

Peo = [ drgiy (Meop(iah) e, ()

P = [ drgyy (Mateaplia) e,y (7). (34)

Ohne Beschrankung der Allgemeinheit kann man den ¢-Vektor in Richtung
der z-Achse des Koordinatensystems legen. Dann ist ¢ ein Einheitsvektor in

der x-y-Ebene.

Wie in [10] gezeigt wird, lassen sich die Integrale aus Gleichung (3.4) durch
mehrfache partielle Integration vereinfachen. Man erhélt
15 W
P,y = P._ =N, N, l(lo - WIA) - Z(JWL]
hQ
P_|__ = P__l_:—’LNn NK, W(Ix - Zly)

o o . h’ . .
P = p@—_iN, N, o [ (te = ity oy + (b + ity Loy |

o7 Q) % h .
P = (=P®)* =N, N, 5 @ (o — ity)Iy (3.5)
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mit

lo = [ &) € bun(®

~ o , .0
I.’E:l:iy = /d?’?”w:llm/ (f’) eZQZ (a—m :i: Za—y> wnlm(f‘)

;)
I, = / d37°¢:l'm'(7:') 'l ad)nlm(”—“)
In = [ @rdl (7 ¢ Abun(7). (3.6)

Hier bezeichnet x die Wellenzahl des Atomelektrons nach der Streuung.
Aus Gleichung (3.5) tragen zum relativistischen Wirkungsquerschnitt vor
allem die Integrale P,., P, Pj(fi) und P bei. In P, und P__ tut dies
hauptséchlich der erste Term. Fiir die angegebenen Integrale spielen Spin-

Umklappprozesse des Atomelektrons keine Rolle.

Iy ist das Integral, das in den nichtrelativistischen Rechnungen auftritt; es
wird ausfiihrlich in [18] behandelt. Man zerlegt die exp-Funktion nach sphéri-

schen Besselfunktionen, d.h.
¢9* = 3" i [47 (2L + 1)]? i, (qr)Yzo(7). (3.7)
3

Zu beachten ist, dafl die M-Komponente der Kugelflichenfunktion Yz, den
Wert Null annimmt, weil der Vektor ¢ in z-Richtung orientiert ist.

Dann erhélt man bei Ansatz der Wellenfunktion aus Gleichung (3.3)
Io =41 " Ry Yio(@) <U'm/|Yiellm > (3.8)
L
mit dem Radialintegral
R = [ rdr Ro(r) jo(ar) Bualr) (3.9)

und dem Winkelintegral geméi$ [4], Gleichung (4.6.3)

(20 +1)(2L + 1)(20 + 1)1 :
47

'L 'Ll
(—m0m><000>' (310)

17
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Eine Definition der 3j-Symbole findet man in [12], Gleichung (106.14).

Die 3j-Symbole verschwinden nur dann nicht, wenn der Drehimpuls L. der
Dreiecksungleichung
=10 <L <1+l (3.11)

geniigt. Fiir m = 0 muf} zudem die Summe [ + I’ + L gerade sein.

Der Winkelanteil von I ist identisch mit dem des Integrals Iy, denn es gilt

2m
Ia ? Ig, v (3.12)
mit
IE‘n—V = /d37, 1/Jnl’m’ (En - V(T)) ¢nlm- (313)

Iy, v stimmt mit [y bis auf das Radialintegral iiberein. Der Radialanteil von

I, v ist das Integral
Ry = [ 0%dr B () jilkr) (Bu=V(r) Ru(r). (314

Die Integrale I,.;, kénnen auf I, zuriickgefiihrt werden. Wenn man fiir die
exp-Funktion in den Integralen I,.;, und I, die Entwicklung aus (3.7) ansetzt,
so tritt in diesen Integralen das Matrixelement < I'm/|Y.oV ,|lm > auf. Die
Quantenzahlen x und n sind der Einfachheit halber weggelassen. Mit der
Vollstandigkeitsrelation
o 'm" ><"m"| =1 (3.15)
lllmll
148t sich obiges Matrixelement schreiben als
<UI'm/|YoVyu|im >= )" < UI'm/|Yo|l'm" >< "m" |V, [lm > (3.16)
lllmll
mit 4 = 0, = 1. Die sphérischen Komponenten des Nablaoperators sind

definiert als

)
Vo = 5.
1 (9 0
= F— (= +i=]). 1
Va i 2 (&v Z@y) (3:-17)



In [4] ist eine Ableitung des Matrixelementes < I"m"|V,|lm > angegeben.
Dort hat sich jedoch ein Fehler im Exponenten des Vorfaktors eingeschlichen.

Statt m” mufl der Exponent [” lauten. Schlie§lich 148t sich das Matrixelement

A
(s )
"1
(0 0 0)

Hier tritt das Matrixelement < ["0|V,|l0 > auf. Nach [4] verschwindet es

reduzieren zu

<U"m"|V,[lm >= (—=1)"

<1"0[V,ll0>.  (3.18)

nur dann nicht, wenn " die Werte [ + 1 annimmt. Mit dieser Einschréinkung
fiir die Drehimpusquantenzahl " 148t sich Gleichung (3.16) dann wie folgt

schreiben

< l'm'\YLOVu\lm >
= <I'mYoll+1m+p><l+1m+p/V,[im>
+ <Im|Ypoll=1m+pu><l—1m+p|V,|ilm>. (3.19)

In Kugelkoordinaten gilt

0 0 sinf 0
=_— = — - —. 2
Vo 0z Cosear r 00 (3:20)
Mit den Eigenschaften der Legendre-Polynome
QI+1)zP"(z) = (I+m)P"(z)+ (1 -m+1)P7 (z)
(@~ )R () = LPa) — (4 m) P (3:21)
x
und der Substitution
T =cosf = (z* — 1)% = sin 0% (3.22)
erhélt man unter Verwendung von (3.20)
1
<I+10[Vpll0> = 'F 1<§_£>
[(2+1)(2+3)]2 \Or 7
l 0 I+1
<1—=10|Vollo> = T <—+ * ) (3.23)
(2l —1)(2+1)2 \Or T
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wobei folgende Abkiirzungen definiert sind

(% _ 1) - / " r2dr Ry () ju(qr) (% - %) Ry(r)  (3.24)

r 0

<%+l+1) - /°°r2dr Ry () ju(qr) (%H“) Ru(r).

T 0 T

Mit (3.23) und den im Anhang B angegebenen 3j-Symbolen findet man fiir
die Matrixelemente < [ £1 m =+ u|V,|lm > aus (3.19)

(1+1 m‘%‘lm>

- ) (2 )

<l—1m|a%\zm> or 7
= —(—1)l+m[(l+m)(l—m)r (g+z+1>

(20 —-1)(21+1) or r
<l+1mi1‘§—xii§y‘lm>
B i [(Em+1)(I£m+2)]2 (0
= 71 l 21+ 1)(21 + 3) ](E_?>

(1-1m= 1\% +i§y‘lm>

= =D l(l(q;zri I)gl(lj;)n)r (% N l+71> - (B5)

Analog zum nichtrelativistischen Fall (s.Gleichung (3.10)) ergibt sich fiir die
Winkelintegrale aus (3.19)

(20 +1)(2L + 1)(2L + 3)1 :
4

I L [+1 " L 1+1
—(m+u) 0 m+p 00 0

<I'm|Ypoll +1m+pu> = (=1)™** l
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W+ 1)(2L +1)(2 —1)]7
"m|Yoll = 1m+p> = (=1)"* [( + 1)( 47‘: )( )]

( I L l—1>(l’Ll—1>
. (3.26)
—(m+p) 0 m+pu 00 0

Fiir die Terme mit / =1 im 3j-Symbol miissen die Bedingungen

I£1-V|<L<I+140I" A 1+£1+L+1 gerade

erfiillt sein.

Terme

Mit (3.25) und (3.26) erhiilt man schliefilich fiir die in (3.19) auftretenden
o +1)(2L + 1)]%

<llml YLO%‘lm> =—( l( ar (20 + 1)
PoLoi+1\ (L i+1\[(d

(—m() m)(OO 0 )(5_;>
PoLl-1\ (I L i-1 ES

(—m 0 m )(0 0 O )( )]

(2o -y [

PoooL i+l \ [ Li+1\ [0 1
(—chl 0 mil)(O 0 0 )(5_;>
voooL =1\ [V Li-1\(0 I+1
(—mZFIOm:I:I)(OO 0 )(EJF r)]

(3.27)

=

l[(l—l—m-ﬁ-l)(l—m—f-l)]

[V

= [ +m)(l —m)]

<l'm'

[(l£m+1)(£m+2)]

M

D=

— [ Fm)(l Fm)]’
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3.2 Vergleich mit der Dipolniherung

Nach Kapitel 2.1 lassen sich die erforderlichen Matrixelemente fiir kleine
Betriige des Streuvektors ¢ auf das Dipolmatrixelement r,,, zuriickfiihren. Da
wegen der willkiirlichen Festlegung des Vektors ¢ in z-Richtung Uberginge
stets in dieser Richtung erfolgen, braucht man das Dipolmatrixelemet nur
entlang der z-Achse zu betrachten. In Zentralfeldndherung lautet dieses unter

Beachtung von z = rcos#f
Frm = / r2drdYR gy () Yo (7)1 08 0 Ry (1) Y (7). (3.28)

Das Integral verschwindet, sofern nicht die Auswahlregel I’ = [ + 1 erfiillt ist
[15]. Diese Auswahlregel gilt im Falle des Grenziibergangs ¢ — 0 auch fiir
die Matrixelemente aus (3.4), da sie dann auf das Dipolmatrixelement 7,

zuriickgefiihrt werden kénnen. Mit den Bedingungen (s.0)
I=U|<L<I+l A 1+L+1 gerade

H+1-0|<L<I+1+0 AN 1+1+L+1 gerade

sind die Matrixelmente ohne Spin-Umklappprozesse des Atomelektrons aus
dem skalaren Potential (s-ME) und dem Vektorpotential (v-ME) in der Nihe-
rung ¢ — 0 nur fiir die folgenden Drehimpulse /' und L ungleich Null. Wir

unterscheiden die beiden relevanten Falle [ = 0 und | = 1:

s-ME v-ME(I"=1+1) v-ME(I"=1-1)
=0 | I'=1 L=1 I'=1 L=0,2
I=1| I'=0 L=1 I'=0 L=2 I'=0 L=0
=1 | I'=2 L=1 I'=2 1.=0,2,4 I'=2 L=2

Fiir kleine Aperturwinkel sollten die genannten Matrixelemente mit obigen

Drehimpulsen die wesentlichen Beitrige zum Wirkungsquerschnitt liefern.
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3.3 Wirkungsquerschnitte fiir

K-Schalenionisation

Die Bildung des Wirkungsquerschnitts erfordert die Betragsquadratbildung
der Terme aus (3.5). Fiir den Wirkungsquerschnitt muf {iber die verschiede-
nen Spinorientierungen gemittelt und summiert werden. Zusétzlich mufi man
noch iiber m mitteln und {iber m’ summieren, da die diesen Quantenzahlen
entsprechenden Zustinde entartet sind. Schlieflich ist auch iiber I’ zu sum-
mieren, denn der Enddrehimpuls des Atomelektrons ist der Messung nicht

zugénglich.

Hier seien die Betragsquadrate der einzelnen Beitréige fiir den Spezialfall

1 = 0 explizit angefiihrt !

— 222(21’+1)(2L+1)<g ﬁ 8)

2m  h? 2
(L ?WRE"V> (3.29)

ILP = 23 Y @ +1)(2L +1)(2L' + 1)i"(i*)*

I’ L,L/
v (r i ooy

— = 3.30
(000) (000) 8r<37‘> (330

Loso” = 2353 220 + 1) 2L + 1)(2L + 1)i* ()"
U LI

I L1 ' L 1)\ 8

-1 0 1 0 0 0)oOr

L1 ' L1 o\’
(—1 0 1)(000)(5)' (331

In Anhang A finden sich die vollstéindigen Formeln
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In |Py4|? tritt noch folgender Term auf

(10 _ %IA) I = 23 31 + 1)L+ 1) (2L + )it

U LI
2 2
I L' 0 oLl 2m 1 AV
( 0 0 0 ) ( 0 0 0) (RL+ ?WRE"‘V> (E)B'?’z)
mit
0 o0 , 0
5 = /0 r2dr Ry (r) j1(qr) 5 Ry (r) (3.33)
a\ %0 . 9
(E) = /0 7"2d7" R,d/(r) ]L/(QT) E Rnl(r)-
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Kapitel 4

Durchfithrung der

relativistischen Rechnungen

Die Berechnung der Wirkungsquerschnitte erfordert die numerische Lésung

der Radialintegrale

R, = /rzdarl/(r)jL(qr)Rnl(r)

Riye = [ rdrR()islan) 0
Ry, = /r2darl/(r)jL(qr)£Rnl(r)
Ru,_v = / r2dr Ry (1)1 (qr) (B — V(7)) Rou (7). (4.1)

Das erste Integral fillt auch in den nichtrelativistischen HFS-Rechnungen !
an. Die drei anderen Integrale sind relativistische Korrekturterme. Es exis-
tiert bereits ein Programm, mittels dem man das Integral R; berechnen
kann. Dabei handelt es sich um das Programm MATRIX.FOR, das in der
Programmiersprache FORTRANT77 verfaft ist [21].

LHFS steht fiir Hartree-Fock-Slater.
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4.1 Wirkungsquerschnitte in atomaren Ein-

heiten

Bis jetzt wurden alle Formeln in SI-Einheiten notiert. Ein in der Atomphysik
gebrauchliches Einheitensystem ist das Maflsystem der atomaren Einheiten.

Die atomare Lingeneinheit ist der Bohrsche Radius

Amregh?
ap =

= 0.5289A4, (4.2)

moe?

die zu ap gehorige Energieeinheit ist 1AE = 2Ry = 27.2eV.

Im Programm MATRIX.FOR ist die Energie nicht auf die atomare Energie-
einheit, sondern auf 1Ry normiert. Durch die Verwendung dieser Normierung
tritt im Coulomb-Potential ein Faktor 2 auf. Im weiteren wird dieses Einhei-

tensystem zugrunde gelegt.

Da die aus HFS-Rechnungen ermittelten Potentiale wohlbekannt sind, kann
man analytische Fits an diese Potentiale verwenden. Wir verwenden das Po-
tential nach Green, Sellin und Zachor [9], welches die Form
2 Z —1
V(ir)=—- 1 4.3
(r) r {H[exp(r/d)—l]—l—l + } (43)

hat. H und d sind zu wihlende Anpassungsparameter. Bei Verwendung dieses

Potentials braucht man nur das Einteilchen-Eigenwertproblem zu 16sen, da
es Potentialwerte an beliebigen Stiitzstellen liefert [21]. Die zu lésende radiale
Schrédinger-Gleichung lautet dann

02 20 I(l+1)

or?2  ror r2

] Ry (r) = —(E, = V(r))Ru(r). (4.4)

Die radiale Kontinuum-Wellenfunktion R,y ermittelt man gleichfalls durch
Losen der Differentialgleichung aus (4.4) 2. Dabei wird die Energie des Se-
kundérelektrons durch ihre Wellenzahl k ersetzt. k hingt mit dem Energie-

verlust AFE zusammen iiber

AE = E; + k2, (4.5)

?Die numerische Vorgehensweise ist in Weickenmeier [21] erldutert.

26



wobei E der Ionisationsenergie des Atomelektrons entspricht.

Als Wellenfunktion des ionisierten Atomelektrons ist R,y auf eine §-Funktion
normiert, in diesem Fall auf ¢ ("‘;;') Diese Normierung hat zur Folge, dafl im
Ausdruck fiir den differentiellen Wirkungsquerschnitt (2.7) der Faktor 2£ hin-
zugefiigt werden mufl. Um den doppelt differentiellen erkungsquerschmtt
zu erhalten, ist dx durch dE zu substituieren. Nach (4.5) hat man

2kdk = d(AE). (4.6)

In der Literatur finden sich haufig energiedifferentielle Wirkungsquerschnitte.
Fiir diese ist iiber das Raumwinkelelement df2 zu integrieren. Die Integrale
aus (4.1) werden jedoch in den numerischen Rechnungen auf einem expo-
nentiellen g-Gitter mit 2048 Stiitzstellen ausgegeben. Daher wird iiber dieses

q-Gitter unter Beachtung von
di? = MFL40 — 9g2din g (4.7)
7

numerisch integriert.

Der energiedifferentielle Wirkungsquerschnitt lautet dann

d(igE) - ﬂ?m = { ‘< wlm e nim > (4.8)

Sn Sk

l - 2
+ ¢ % ‘< kl'm'|@te’™ |nlm >‘ }dlnq.
4% = Gin 3;

Die Integrationsgrenzen sind in [18], Gleichung (2.1.4) zu finden

T u \?2
2 = e 4.9
i = 7 (T50) (49)
T
qgnaz = 4w72R_y Sin2 (amaw/z) + Q?m'n
mit
AE/Ry (AE/Ry)*

u —

YI'/Ry ~ 2v*(T/Ry)(Eq/Ry)
w = V1+u. (4.10)
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Zwischen der Beschleunigungsenergie E; des einfallenden Elektrons und des-

sen effektiver kinetischer Energie T gilt die Beziehung

1+ (E;/2mc?)

T=F; . 4.11
[14 (E;/mc?)]? (4.11)
(2 148t sich mit Fy und T darstellen als
, v? 2T
=" = (4.12)

! 02 EO )

Anhand von Abb. 2.2 erkennt man die Beziehung
o7\ 2 2 q?nm
(iB) = a2 (1- i) (4.13)

wenn man zusétzlich die fiir kleine Streuwinkel giiltige Gleichung
kibr = Qmin, vgl. (2.9), ausnutzt. Die Relationen (4.12) und (4.13) sind noch

in (4.8) einzusetzen.

In Gleichung (4.8) wurde bereits ausgenutzt, daf gilt
AEN? 5,

(%) = Grin0; (4.14)
Ausgehend vom Programm MATRIX.FOR erhélt man die Programme fiir die
anderen Radialintegrale aus (4.1), indem man in MATRIX.FOR die diskrete
Radialfunktion R,; des Atomelektrons durch %ﬂ, %Rnl und (E, — V(1)) Ry
ersetzt. In diesen Programmen sind dann noch die Betragsquadratbildung
sowie die numerische Integration iiber das diskrete, exponentielle g-Raster
auszufithren. Ausgegeben werden die iiber das Element dlngq integrierten
Betragsquadrate der Radialintegrale in Abhéngigkeit vom Energieverlust fiir
verschiedene Werte von I/, L und L'. Den absoluten Wert fiir den relativisti-
schen energiedifferentiellen Wirkungsquerschnitt liefert schliellich das Pro-
gramm RWQS.FOR, in dem noch die Winkelintegrale berechnet und mit den

Radialintegralen multipliziert werden.
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4.2 Ergebnisse fiir die Wirkungs-

querschnitte der K-Schalenionisation

In den nachstehenden Abbildungen 4.1 bis 4.3 sind energiedifferentielle Wir-
kungsquerschnitte fiir die K-Schalen der Elemente Kohlenstoff, Sauerstoff
und Silizium gegen den Energieverlust fiir Beschleunigungsspannungen von
100, 400 und 1200 kV aufgetragen. Als Aperturwinkel wurde 3 mrad gewé&hlt.
Bei Winkeln dieser Gréf8enordnung ergeben sich nidmlich besonders grofle re-
lativistische Beitrdge. In den Abbildungen sind sowohl die relativistischen
als auch die kinematisch korrigierten energiedifferentiellen Wirkungsquer-
schnitte nach dem Zentralfeldmodell dargestellt. Man erkennt, dafl bei Be-
schleunigungsspannungen von 100 kV relativistische Effekte, abgesehen von
den kinematischen Korrekturen, kaum zum Wirkungsquerschnitt beitragen.
Relativistische Effekte gewinnen an Bedeutung bei steigenden Beschleuni-
gungsspannungen. Zudem sind sie zu gréfleren Energieverlusten hin stirker

ausgepragt.

Die Dipolnéherung wird hier als Kontrollmoglichkeit fiir die Korrektheit der
numerischen Rechnungen benutzt, indem man die Verhéltnisse zwischen re-
lativistischen und kinematisch korrigierten Querschnitten nach dem Zentral-
feldmodell mit den entsprechenden Verhéltnissen nach der Dipolndherung (s.
Kapitel 2.2) vergleicht. Fiir Elemente mit K-Schalenionisation tragen nach
den ausgefithrten numerischen Rechnungen zum Wirkungsquerschnitt vor
allem die Matrixelemente mit den in Kapitel 3.2 angefiihrten Drehimpuls-
kombinationen, die der Dipolndherung entsprechen, bei. Deshalb sollten die
Verhéltnisse nach dem Zentralfeldmodell mit denjenigen nach der Dipolnéhe-
rung, die sich aus den Gleichungen (2.14) und(2.15) ergeben, iibereinstim-

men.

Abbildung 4.4 zeigt explizit die gute Ubereinstimmung der durchgefiihrten
Rechnungen mit der Dipolndherung. Hier sind die Wirkungsquerschnitts-

verhéltnisse der drei oben genannten Elemente am Kantenbeginn in die Dia-
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gramme, die sich aus den Quotienten aus relativistisch und kinematisch kor-
rigierten Querschnitten in Dipoln&herung ergeben, eingetragen. Die Abwei-
chungen sind sehr gering und liegen bei hichstens 2% fiir Aperturwinkel bis
10 mrad.

Schliefllich werden in der Abbildung 4.5 exemplarisch fiir Kohlenstoff die nach
dem Wasserstoffmodell berechneten absoluten relativistischen energiediffe-
rentiellen Wirkungsquerschnitte [10, 11] mit den in dieser Arbeit berechneten
verglichen. Man sieht, da} die Querschnitte nach dem Zentralfeldmodell an
der Kante etwas grofer als die nach dem Wasserstoffmodell berechneten sind.
AuBerdem ist ihr Abfall steiler. Asymptotisch nahern sich beide Querschnitte
wieder an. Da die Querschnitte beider Modelle sich in der Groflenordnung
nahekommen, kann dies als weitere Bestéitigung der durchgefiihrten Rech-

nungen angesehen werden.
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K-Schalen Wirkungsquerschnitte fiir Kohlenstoff bei einer

Apertur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Ver-

gleich relativistisch und kinematisch korrigiert.
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Abbildung 4.2: K-Schalen Wirkungsquerschnitte fiir Sauerstoff bei einer
Apertur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Ver-

gleich relativistisch und kinematisch korrigiert.
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Abbildung 4.3: K-Schalen Wirkungsquerschnitte fiir Silizium bei einer Aper-

tur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Vergleich

relativistisch und kinematisch korrigiert.
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Abbildung 4.4: Verhéltnis von relativistischen Wirkungsquerschnitten in Di-
polndherung zu kinematisch korrigierten fiir die Aperturwinkel 3, 5 und 10
mrad bei Beschleunigungsspannungen von 100, 400 und 1200 kV. Zusitzlich
sind die Verhéltnisse fiir die mit dem ZF-Modell berechneten K-Kanten von

Kohlenstoff, Sauerstoff und Silizium am Kantenbeginn eingetragen.
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Abbildung 4.5: Vergleich der relativistischen K-Schalen Wirkungsquerschnit-
te fiir Kohlenstoff, berechnet nach dem Zentralfeldmodell und dem Wasser-
stoffmodell bei einer Apertur von 3 mrad und verschiedenen Beschleunigungs-

spannungen.
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4.3 Ergebnisse fiir die Wirkungs-

querschnitte der L-Schalenionisation

Nach der Form ihrer Kante unterscheiden sich die L-Kanten der dritten
und vierten Periode. Elemente der dritten Periode haben verzégerte Kan-
ten, die sich als Folge der Dominanz des I'(l’ + 1)-Terms in der radialen
Schrodinger-Gleichung, Gleichung (4.4), ergeben. Die Kanten der Elemen-
te Kalium bis Kupfer der vierten Periode weisen ein scharfes Maximum an
der Ionisationskante auf, bei denen es sich um die sogenannten weiflen Lini-
en handelt. Diese entstehen dadurch, daB Ubergéinge in 3d-Zustéinde gemiB
Dipol-Auswahlregel (I' = 2) bevorzugt werden. In den berechneten L-Kanten
sind diese scharfen Linien jedoch nicht zu erkennen, da Ubergéinge in gebun-

dene Zustidnde nicht mit in die Rechnungen einbezogen werden.

In den Abbildungen 4.6 und 4.7 sind fiir die Elemente Magnesium und Si-
lizium aus der dritten Periode die relativistischen energiedifferentiellen Wir-
kungsquerschnitte zusammen mit den blof} kinematisch korrigierten aufgetra-
gen. Das gerundete Profil der Kanten dieser Elemente ist gut zu erkennen.
Als Element der vierten Periode ist Kalium in Abbildung 4.8 dargestellt. Als
Beschleunigungsspannungen sind wiederum 100, 400 und 1200 kV gewé&hlt

worden. Der Aperturwinkel betrdgt ebenfalls 3 mrad.

Auch fiir Elemente mit L-Schalenionisation werden die Verhéltnisse zwischen
relativistischen und kinematisch korrigierten Wirkungsquerschnitten in Di-
polndherung als Priifstein fiir die numerischen Rechnungen verwendet, indem

diese mit den Verhéltnissen nach dem Zentralfeldmodell verglichen werden.

Wie im Fall der K-Schalenionisation zeigen die numerischen Rechnungen auch
fiir L-Schalenionisation, dafl die Matrixelemente, die nicht den Drehimpuls-
kombinationen aus Tabelle 3.2 entsprechen, nur einen vernachlissigbaren An-
teil am Wirkungsquerschnitt haben. Wie in Abbildung 4.9 ergeben sich fiir
kleine Aperturwinkel dementsprechend auch recht gute Ubereinstimmungen

mit den Verhédltnissen der Dipolndherung. Im Fall der Elemente der dritten
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Periode heift dies, dafl ab dem Maximum der Ionisationskante die Verhéltnis-
se im Rahmen von 5 Prozent iibereinstimmen. Bei den Elementen der vierten
Periode erhilt man bei grofien Beschleunigungsspannungen und einem Aper-
turwinkel von 10 mrad in Kantennéhe gréfere Abweichungen. Am Kanten-
beginn weichen die Verhéltnisse zwischen relativistischen und kinematisch
korrigierten Wirkungsquerschnitten fiir Kalium bei einer Beschleunigungs-
spannung von 1200 kV und einem Aperturwinkel von 10 mrad schon um 10
Prozent von den mit der Dipolndherung berechneten Verhiltnissen ab. Mit
zunehmendem Energieverlust der Kalium-Kante gleichen sich die Verhélt-
nisse jedoch an. Aus Abbildung 4.9 148t sich der Trend erkennen, dafl mit
zunehmendem Aperturwinkel und Energieverlust die Abweichungen der nach
dem Zentralfeldmodell von den in Dipolnidherung berechneten Verhiltnissen

grofler werden.
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Abbildung 4.6: L-Schalen Wirkungsquerschnitte fiir Magnesium bei einer
Apertur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Ver-

gleich relativistisch und kinematisch korrigiert.
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Abbildung 4.7: L-Schalen Wirkungsquerschnitte fiir Silizium bei einer Aper-

tur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Vergleich

relativistisch und kinematisch korrigiert.
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Abbildung 4.8: L-Schalen Wirkungsquerschnitte fiir Kalium bei einer Aper-

tur von 3 mrad und verschiedenen Beschleunigungsspannungen, im Vergleich

relativistisch und kinematisch korrigiert.
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Abbildung 4.9: Verhéltnis von relativistischen Wirkungsquerschnitten in Di-
polndherung zu kinematisch korrigierten fiir die Aperturwinkel 3, 5 und 10
mrad bei Beschleunigungsspannungen von 100, 400 und 1200 kV. Zusétzlich
sind die Verhiltnisse fiir die mit dem ZF-Modell berechneten L-Kanten von

Magnesium, Silizium und Kalium eingetragen.
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Kapitel 5
Zusammenfassung

Ziel dieser Arbeit war es, relativistische Wirkungsquerschnitte auf der Ba-
sis des Zentralfeldmodells fiir K- und L-Schalenionisation zu berechnen. Die
Verwendung des Zentralfeldmodells fiihrt dazu, dafl die auszufithrenden In-
tegrationen in einen Radial- und einen Winkelteil separiert werden konnen.
Die Winkelintegrationen konnen analytisch ausgefiihrt werden, allein die Ra-

dialintegrale miissen numerisch gelost werden.

Zunidchst wurden die fiir die Auswertung der Wirkungsquerschnitte bend-
tigten Atomwellenfunktionen als Darwin-Wellenfunktionen, welche auf Schro-
dinger-Wellenfunktionen zuriickgefiihrt werden kénnen, angesetzt. Aufgrund
der Struktur der Darwin-Wellenfunktionen vereinfachten sich die Rechnun-
gen, da fiir die Berechnung der Schridinger-Wellenfunktionen auf vorhande-
ne Programme zuriickgegriffen werden konnte. Zugleich jedoch bedeutete der
Ansatz von Darwin-Wellenfunktionen eine Nichtberiicksichtigung von relati-
vistischen Effekten innerhalb des Atoms, das angeregt wird. Dies lief} sich
jedoch dadurch rechtfertigen, daf} die zu betrachtenden Energieverluste sehr
klein im Vergleich zur relativistischen Ruheenergie sind, da dann die magne-

tischen Felder innerhalb des Atoms vernachléssigbar klein sind.

Zur numerischen Auswertung der Wirkungsquerschnitte wurde ein Programm

geschrieben. Wie fiir das Wasserstoffmodell ergab sich auch fiir auf der Grund-
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lage des Zentralfeldmodells berechnete relativistische Wirkungsquerschnitte,
daf} ihre Verwendung fiir die Auswertung von Energieverlustspektren umso
notwendiger ist, je grofler der Energieverlust und die Beschleunigungsspan-
nung sind. Besonders grof} sind die relativistischen Beitréige bei Aperturwin-

keln von ca. 3 mrad .

Als Kontrollmafstab fiir die durchgefiihrten numerischen Rechnungen wur-
den die Verhéltnisse von relativistischen und kinematisch korrigierten Wir-
kungsquerschnitten in Dipolndherung verwendet. Fiir kleine Aperturwinkel
erwartete man, dafl die Verhéltnisse nach dem Zentralfeldmodell nicht we-
sentlich von denen der Dipolndherung abweichen. Diese Erwartung wurde fiir
Elemente mit K-Schalenionisation sehr gut erfiillt. Man erhielt Abweichungen
zwischen den Verhiltnissen von hochstens 2 Prozent. Die untersuchten Ele-
mente mit L-Schalenionisation wiesen fiir zunehmende Aperturwinkel schon
groflere Abweichungen auf. Diese lagen mit 10 Prozent aber noch innerhalb

der tolerierbaren Fehlergrenzen.
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Anhang A

Relativistische
Wirkungsquerschnitte mit
Darwin-Wellenfunktionen fiir

beliebige Schalen

Hier seien die Betragsquadrate der fiir die Wirkungsquerschnittsbildung beno-
tigten Integrale aus Gleichung (3.5) angegeben. Betragsquadratbildung der
Terme aus (3.5) ergibt

2 2 A72 n’ 2 h? N% 2
[Pee|” = NnanIO - WIA + (4m202> a1
R h? i
2 an2f B\, 2
|Pi:F| = NnNn (4m262> q Iw+iy (AQ)
o) 2 h? 2
\Piﬁ\ = Nngm Ipviy (A.3)
2
@2 _ aoa2 I 2
P = NZN 4m262\10\ . (A.4)

44



Der erste Term in Gleichung (A.1) lautet ausgeschrieben

2
R2 2 ' L 0
I,— —— 1 @ +1)(2L
0 4m202A nlzz +)<000>
2m h2
(RL+ U V) (A.5)

B, ist die Besetzungszahl der Schale, die ionisiert wird. Es gilt:
B =220+ 1).
Die Summation iiber L geht nur iiber die L-Werte, die unter die Menge

My, ={L;|l -U| < L<I+UANl+1+ L gerade}

fallen. Weiter treten in (A.1) auf

L —BanZ

I LLI

ol 1 ,
l+ (2L + 1)(2L' + 1)i (i"

m

I L 1+1 ' L 1+1
> > {(l—i—m—i—l)(l—m-l—l)( o )(0 0o

m m/=m —m

4 L' [+1 I L' [+1 2_£ 2_£
-m' 0 m 0 0 0 or r or r

. (l+m)(l—m)< I L z—1>(zf L 1-1

-m' 0 m

" L' -1 ' L' 1—1 Jd 1+1 0 [+1
— + — +
-m' 0 m 0 0 0 or T or r
1 ' L 1+1 " L 1+1
=2[(l+m+ 1)l —m+){+m)(l —m)]?
-m' 0 m 00 0
[ VA | I Lol—1 o 1 o I1+1Y
—— =+
—-m' 0 m 0 0 0 or r or r
(A.6)
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und der Mischterm
Iy - iIA I'=B,Y Y Z(—1)l+1+m2l' i 1(2L +1)(2L + 1)L (it
07 4m2e2 # " 2041

'y m m'=m L,L’'

' L 1+1 ' L 1+1 (3_£>’
-m' 0 m 00 0 or
' L 1-1 ' L 1—1 o 1+1)
+ [(I+m)( —m 4
(e m)t )](—m'O m)(OO 0 ><8r 7")}

I L1 l’LlR2mh2R2
' 0 m)\o 00 ot amee )

(A7)

=

{[(l-i—m-l—l)(l—m—l—l)]

N[

In (A.2) und (A.3) hat man noch den Term
|I:v:tzy‘ = By Z Z
I L LI

' L 1+1 ! L [+1
lEm+1)({lEtm+2
Z Z {( I )( "0 m:l:l)(() 0 0

2 1 ,
l+ s (2L + 1) (2L + 1)i"(i")*

m/=m=1 -m )
' L' 1+1 ' L' 1+1 (a l)(@ l)
-m' 0 m=+1 0 0 0 or r)\or r
'L 1—-1 ' L 1—1

+ (Fm—-1)(lFm) /
-m' 0 m=*1 00 0

" L' 1-1 ' L' 1 -1 (24_[—1—1)
-m' 0 m=l1l 0 0 0 T
I'" L [+1 " L' 1—1
0 0
' L [+1 4 L' -1 (2 £><
-m' 0 m=*1 -m' 0 m=£l or r

Hier geht die Summation nur iiber solche Drehimpulse L, die Element der

N

=2[l+tm+1){{xm+2){Fm—-1)1Fm)]

(A.8)

Menge
Mpo ={L;|l+1-0U|<L<I+14+UAl+1+1'+ L gerade}
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sind. In (A.3) taucht nicht mehr der Term Re [(tw—ity) (tz+ity) Iptiy (Ix_iy) *]
(vgl. (3.5)) auf, denn I, 4, und I,_;, sind orthogonal zueinander. Da in beiden
Integralen unterschiedliche Auswahlregeln fiir die magnetische Quantenzahl

m' gelten, verschwindet das Produkt Iy, (1y—iy)*.

DaB |I,4|° = [I,—iy|” gilt, erkennt man leicht, wenn man in |I, ;,|> m durch

-m ersetzt und aulerdem beachtet, daf} gilt

jl j2 j3 — (_1)j1+j2+j3 jl j2 j3 . (Ag)
mi me M3 M mmy T
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Anhang B
Spezielle 3j-Symbole

Hier seien die 3j-Symbole angegeben, die bei der Auswertung der Matrixele-

mente in Kap. 3.1 auftreten. Im einzelnen sind dies:

bl L I+1 2 2
( 0 0 0) = (=1 [(21+1)(21+2)(25+3)1 (1+1)

(B1)
(500 0) = o SRR e
() - ol o
(5_01 (1) é = (—1)ll(2l_1)221(2z+1)rl (B4)
(l—_ml o m) = U G M% o)
( L) = e 1§2§2§ii?§)f ()

—-mF1l £1 m
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Anhang C

Relativistische
Wirkungsquerschnitte mit

Dirac-Wellenfunktionen

In Kapitel 3 wurden die Darwin-Wellenfunktionen eingefiihrt. Mit ihnen
wurde der relativistische Wirkungsquerschnitt aus Gleichung (2.7) nume-
risch berechnet. Die Rechnungen vereinfachten sich insofern, als die Darwin-
Wellenfunktionen aus Schrédinger-Wellenfunktionen aufgebaut sind, so dafl
viele Teile der nichtrelativistischen Rechnungen {ibernommen werden konn-

ten.

Durch die Verwendung von Darwin-Wellenfunktionen vernachléssigte man je-
doch relativistische Effekte innerhalb des Atoms. Hier sollen dagegen die rela-
tivistischen Wirkungsquerschnitte mit den vollrelativistischen Dirac-Wellen-

funktionen soweit ausgewertet werden, wie es analytisch moglich ist.

49



C.1 Die Dirac-Wellenfunktionen fiir ein Zen-

tralpotential

Es wird ein Ein-Elektronen System angenommen. Dann lautet der Diracsche

Hamilton-Operator fiir ein Zentralpotential in atomaren Einheiten
Hp = —icaV + 6 + V(r). (C.1)

Hp ist invariant beziiglich Drehungen und Spiegelungen. Daher kénnen die
Dirac-Wellenfunktionen nach den Eigenwerten der Operatoren 5‘2, j, und
P klassifiziert werden. Hier ist j der Gesamtdrehimpulsoperator und P der
relativistische Paritidtsoperator. Verwendet man fiir die Operatoren & und 3
die Standard-Darstellung, d.h.

. (o ¢ (1o

wobei die Komponenten von & fiir die Paulischen 2 x 2-Spinmatrizen stehen

und 15 die 2 x 2-Einheitsmatrix ist, dann 148t sich die Diracsche-Wellenfunk-

¢z<f)=%( G ) ©3)

iF(r)x2s

Wie im nichtrelativistischen Fall faktorisiert die Eigenfunktion ¢*(7) in einen

tion ansetzen als

Radial- und einen Winkelanteil. Die Spin-Orbit-Eigenfunktionen x* sind das
relativistische Analogon zu den Kugelflaichenfunktionen. Sie sind definiert
durch

¥ = 3 Ol = mym, 1) Y (©4

mit m = :I:%. k ! bezeichnet die Quantenzahl, die fiir die Paritiit 7 und den

Gesamtdrehimpuls j des Atomelektrons steht, denn es gilt

j=lkl—3

7= (-1)" (C.5)

1 sollte hier nicht verwechselt werden mit der Wellenzahl des Sekundirelektrons.
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und

tii >0
l:{ k fir & (C.6)

—k—1 fir k<0

1 ist Eigenwert zum Operator j,, und X1}, sind die Spinoren zum Spin %

Die Radialfunktionen G und F geniigen den radialen Dirac-Gleichungen

(dii + ;) G(r) = (20 - M) F(r)

(2ero - (9 E)ey e

Diese gekoppelten Differentialgleichungen sind numerisch zu 16sen.

C.2 Das relativistische Matrixelement

Das Matrixelement {(m|dZe’|n) kann als Term des Austauschs eines virtuel-
len Photons zwischen den wechselwirkenden Elektronen interpretiert werden.
Dann entspricht ¢ der Ausbreitungsrichtung des Photons und ¢ dessen Pola-

risationsvektor.

In obigem Term beschreibt A = e das Photonenfeld. Dieser Term stellt
eine ebene Welle dar und kann nach dem vollstindigen und orthonorma-

len System der Multipolfelder entwickelt werden. Die Multipolfelder lauten
gemiB [2], Gleichung (4.43)

A e, ™) = (ig)" Veoru(7) Paritit (—1)"*!

— 1_, —

Aiu(e,7) = [q L(L + )] V x Lopy(7)  Paritit  (—1)C*!

- 1_,

An (q,7) = [,/ L+1] e Paritit (—1)%, (C.8)

wobei
o (F) = i8\/4m (2L + 1)j1.(qr) Yopr (7). (C.9)

Die Multipolfelder 16sen die Wellengleichung

(A +¢°) Au(a7) =0 (C10)
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mit A = 0,e, m.

Da ¢ und ¢ senkrecht aufeinander stehen, ist das Photonenfeld A ein trans-
versales Feld. Wegen ¢ t = 0 folgt némlich VA = 0. Daher 188t sich A durch

die beiden transversalen Multipolfelder A¢,, und A™,, ausdriicken
A=t = —— (s450(a, ™) + ATps(q,7)) Digo(R). (C.11)

D%, (R) ist eine unitiire Drehmatrix. R beschreibt die Drehung, welche die

z-Achse in die Richtung von ¢ iiberfiihrt. s kann die Werte +1 annehmen, je

nachdem, ob die transversale Welle rechts- oder links-zirkular polarisiert ist.

Die Felder /Ti o und E’L”M stellen die elektrischen bzw. magnetischen Anteile
des transversalen elektromagnetischen Feldes dar. Dann spaltet das relati-
vistische Matrixelement auch in einen elektrischen und einen magnetischen

Term auf
Mg = (m|aA7n)

(m|@te'T|n) = - i :
M™ = {m|aAT(n)

Setzt man die Dirac-Wellenfunktionen aus Gleichung (C.3) in Mf und M™

ein, dann erh&lt man
(B QAT | gh2) = —i (~1)F 2+ (C.12)
22 4+ 1] Ry (€)b(1, k2, L)C (joLjr; oM 1116y — iy, 0t
(S| @Ay h2) = i¥ 7 (~1)

2] + 11> Ry, (m)b(— k1, ko, L)C (JoLi1; oM p11) O —pg 01

mit den Radialintegralen

Rip(e) = (k1 — ko) / qu—: (F1G2 + G1 F3) (rdir + 1) jr(gr)
b | g (FGs — G1 F) jin(ar)
Ri(m) = (k1 + ks) / driz(qr) (F.Ga + G F) (C.13)

und
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(2z1+1)(2z2+1)}1/2 Ll Ll I
b(ky, ke, L) = (2L 4+ 1 .
(e 1) = ){ L(L+1) L f\o 0o

(C.14)

Fiir elektrische Multipole verschwindet b(k1, ko, L) nur dann nicht, wenn die
Summe l; + Iy + L gerade ist; fiir magnetische Multipole mufl die Summe

L+l,+L ungerade sein. Dabei gilt fiir !

(C.15)

T —k flir k>0
B k—1 fir k<0

Hier sollen einige Bemerkungen zur Auswertung der Matrixelemente ange-

geben werden. Einsetzen der Multipolfelder A¢,, und A7, in M¢ und M

ergibt
21 [4r(2L+1) L
Me = P2 | =2 (@ (Vox L Yiur| 2
" "I\ I+ (o |6 (V x L) jular)Yiu]| 22)
7 | 4m (2L +1 Lo
M™ = it ¥< - aL]L(qr)YLM‘ ﬁ§> (C.16)

L(L +1)

Zuerst soll das Matrixelement M,™ niher betrachtet werden. Setzt man die
Dirac-Wellenfunktionen aus (C.3) ein, so erhilt man, wenn man die Vorfak-

toren, den Faktor I in der Dirac-Funktion und jr(qr) wegliBt

Gy 0 &L Gax!
< ' 1XK,1 _‘_’ 0- YLM ' 2XK,2 > (C']_?)
iF X", GL 0 iFyx",
= i [(Guxd [FLYia| Fox, ) — (Fixs, |FLY | Goxi2)]
= —3 (K)1 =+ l€2) <—I€1/,Ll |YLM| K)Q/,L2> /Tzd’f' (F1G2 + GlFQ) .

Dabei wurde ausgenutzt, daf§ gilt 2

<—K1M1 ‘5EYLM‘ /ﬁ2u2> = (k1 + ko) (=K1 [You| kop2)  (C.18)
</€1M1 |5EYLM‘ - f'€2,U2> = — (k1 + K2) (K1 |[Yium| wopa) -

2In (C.18) benutzt man (&L + 1)x# = —kx# sowie die im folgenden Fufipunkt auf-

gefiihrten Relationen aus.
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Die Auswertung von M ist etwas umfangreicher. Es gilt
i6(VxL)=av éL. (C.19)

Schreibt man V in Polarkoordinaten, also

=7f——1—-Xx1L 2
\Y% el e (C.20)
dann gilt weiter
av 0 _Lsr (C.21)
=p10, | =— — — :
P or r

01
mit p; = ( Lo ) und o, = &7 3 hermitesch. Ausnutzung von

GL GL =1,1% — GL (C.22)
fiihrt schliellich auf
A 0 1\, 1=
za(VxL) = p10, [(5—1—;) L—;L] : (C.23)

Damit ergeben sich bei der Auswertung von M¢ die zwei Terme

Gy o 1\ .- GaxH2
< I R (— + —) &LYLM‘ e > (C.24)
it or r X",
. ) 0o 1
= —i (k1 — K2) (Kipto |Yiu| Kopiz) /7" dr (FiG2 + G1Fy) or + r
und
Gixt 1. - Gaxi
< 1X/~z1 plo'r_]-QLQYLM‘ 2XI€2 > (025)
’[,lelilnl r ZFQX!iQK,Q

= ZL(L + 1) <I€1,LL2 |YLM| K/2,Uz2> /Td’f‘ (F1G2 — GlFQ) .

In (C.17), (C.24) und (C.25) tritt jeweils das Matrixelement (k1 s | Y7ar| £2412)

auf. Fiir dieses gilt

3Wichtig sind die Relationen o, x* = —x*, und 02 = 1
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<’€1M2 |YLM| ’ﬂ2/ﬁ2> =

(_ULHH%{ (2l + 1)(212);2; +1) (22 + 1 }5 CliaLis: paMin)

ly 1 L Iy 1
.2 .1 : 5#1—/12,1\/[' (0'26)
J1 Je 0 0 0

Die umfangreiche Ableitung von (C.26) sei an dieser Stelle weggelassen.

~

N[

Die Koeffizienten C/(j1727; mimam) sind die bekannten Clebsch-Gordan-Ko-
effizienten, die bei der Kopplung der zwei Eigenvektoren [j;m;) und |joms)
zu |jm) als Transformationskoeflizienten auftreten. Sie hingen mit den 3j-

Symbolen zusammen {iber

C(jljgj;mlmzm)z(—1)j1_j2+m\/2j—|—1(jl J2 ) (C.27)

m; Mg —M

&~

Gleichung (C.26) enthilt noch das 6j—Symbol{ o h }.Es tritt auf bei

3 01 2
der Umkopplung von drei Drehimpulsen.

Zu den Drehimpulskopplungskoeffizienten ziehe man z.B. [4] heran.

C.3 Vollrelativistische Wirkungsquerschnitte

Bei der vollrelativistischen Wirkungsquerschnittsbildung muf} {iber die An-
fangszustéinde, d.h iiber uo, gemittelt und iiber die Endzustéinde, also iiber
j1 und py, summiert werden. Mittelung und Summation iiber ps und
enthalten bereits die Mittelung iiber den Spinanfangszustand und die Sum-
mation iiber den Spinendzustand, so daf diese in Gleichung (2.7) wegfallen.
Die Dirac-Wellenfunktionen sind auch durch ihre Paritéit definiert, d.h. sie
sind entweder gerade oder ungerade. Daher mufi mit dem Faktor 2 multi-
pliziert werden. Weiterhin mufl noch mit der Besetzungszahl der Schale, die

ionisiert wird, multipliziert werden.
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Mit der Beziehung

L e 201
C(jaLgr; po, M, py) = (—1)727#2 231117“0(]1]2[/; p, —pg, M) (C.28)

und den Orthogonalitétsrelationen
Z C(j1j2L; M1, — 2, M)C(j1j2Ll; M1, — M2, M’) = Orromm
H1,02
> (Din(®) Dir(R) = 6w (C29)
M
erhdlt man fiir das Betragsquadrat des relativistischen Matrixelementes

o s 2
[(m|ate™|n)|” =

2 2
, i 2L +1 L Iy, 1 L Iy 1
472 2(211+1)m(2l2+1){ . c } ( : 1)

Jji,L 3 e 0 0 0
dr )
(20, + 1){ (L(L + 1)) / q_r(F1G2 — G1F3)j(qr)
d d _ 2
+ (k1 — Ka) / q_:(FlGQ + G F) (7'5 + 1)]L(q7“)}
_ 2 _ 2
_ _ 2L +1 LI, I L I
+ 4 21 4+ 1) (2 + 1
_ 2
2 +1) ((&1 ) | dr(Fng—i-Gng)jL(qr)) (C.30)

Der Mischterm féllt weg, weil noch iiber die beiden méglichen Polarisierungen

(s = +1) der transversalen Welle summiert werden mu$.

Das Betragsquadrat des Matrixelementes (m/|e'® |n) ergibt sich bei Verwen-

dung von Dirac-Wellenfunktionen zu

ey 2
[(meT|n)|” =
Ll W) (L bbb\
4 Y2+ D)L+ 12 +1)] 7T 2
Ji,L 5 J1 )2 0 0 0
2
(2[1 + 1) (/ dT‘(GlGQ + Fng)jL(qr)) . (031)
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