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1 Einleitung

In dieser Arbeit wird der Einflufl von Delokalisations— und Absorptionseffek-
ten auf die Simulation der elektroneninduzierten charakteristischen Rontgen-
emission bei ALCHEMI-Experimenten anhand verschiedener Modelle unter-

sucht.

Hierzu wird im zweiten Kapitel zundchst die ALCHEMI-Methode in ihrer
urspriinglichen Formulierung vorgestellt. Sie ist eine Technik, die Verteilung
von Atomen auf die verschiedenen Positionen in der Einheitszelle kristalli-
ner Festkorper zu bestimmen. In einem Transmissionselektronenmikroskop
werden Einkristalle in geeigneten Channeling—Orientierungen unter verschie-
denen Kippwinkeln bestrahlt. Die durch den Elektronenstrahl induzierte,
charakteristische Rontgenstrahlung, die mit einem EDX-Detektor detektiert
wird, variiert mit der Einstrahlrichtung (Channeling-Effekt). Diese Winkel-
abhéngigkeit wird ausgenutzt, um die Position der Atome zu bestimmen.
Die Stiarken der Methode, welche in den 80er Jahren zu ihrer schnellen Ver-
breitung gefiihrt haben, werden beschrieben. Die Schwichen, vor allem das
Nichtberiicksichtigen von Absorptions— und Delokalisationseffekten, motivie-

ren die Simulation der Rontgenanregung, mit der sich diese Arbeit befafit.

Dazu werden in Kapitel 3 die Grundlagen der dynamischen Theorie der Elek-
tronenbeugung beschrieben. Die Beriicksichtigung der inneren Freiheitsgrade
des Kristalles fiihrt zu einem Ausdruck, der die ,Absorption“ des propagie-
renden Elektronenwellenfeldes beschreibt (Kapitel 3.2).

In Kapitel 4 wird dann ein Ausdruck fiir die Berechnung der induzierten
Rontgenintensitdt hergeleitet. Die Entwicklung der hierzu notwendigen
Ausdriicke fiir die Stromdichte im Kristall und fiir die Anregungswahr-

scheinlichkeit der Rontgenstrahlung wird in Unterkapiteln behandelt.

Die Anwendung der so hergeleiteten Formel fiir die emittierte Rontgenin-
tensitdt auf ein Mineral (Orthopyroxen) und die Bestimmung der Fe-Mg—
Verteilung in diesem Kristall mit der ALCHEMI-Methode sind Inhalt des
Kapitels 5.



2 Beschreibung der
ALCHEMI-Methode

Atom location by channeling enhanced microanalysis (ALCHEMI) ist eine
Technik, mit der die kristallographische Position, die Verteilung und die Art
substitutioneller Fremdatome in vielen Kristallen bestimmt werden kénnen.
Dieses Verfahren nutzt den Elektronenchanneling-Effekt aus, der besagt,
daB sich in den Kristall eingeschossene Elektronen in diesem entlang von
,Kanilen“ ausbreiten, wenn die Orientierung des Kristalles so gewéhlt ist,
daf} die Elektronen nahezu parallel zu Netzebenen bzw. Kristallachsen einfal-
len. Man spricht dann von planarem bzw. axialem Channeling. Eine mathe-
matische Erklirung dieses Phinomens wird im Kapitel 3.1 {iber die dyna-
mische Theorie gegeben, wo mit dem Blochschen Theorem folgt, daf§ die
Elektronen im Kristall stehende Wellen ausbilden, deren Amplituden die
Periodizitdt des Gitters besitzen. Dieses Wellenfeld variiert stark mit der
Einstrahlrichtung der Elektronen, was eine Abhéngigkeit der Sekundéirpro-
zesse, also auch der charakteristischen Rontgenemission, vom Einstrahlwinkel
der Elektronen bewirkt (Abb. 2.1).

Unter der Annahme, daf} die durch schnelle Elektronen induzierte Rontgen-
strahlung lokalisiert am Kernort der Kristallatome entsteht, 148t sich dieses
Signal zur Bestimmung der Atompositionen im Kristall nutzen. Weist der
Kristall in einer Orientierung einen Schichtaufbau zweier Atomsorten auf
(Sorte A auf Ebene A, Sorte O auf Ebene B) und befinden sich Fremdatome
auf einer der beiden Ebenen (A), so ist zu erwarten, dafi sich bei Variation
der Einstrahlrichtung bzw. der Kristallorientierung die Intensitét der charak-
teristischen Rontgenstrahlung der Fremdatome wie die von A &ndert, da die

induzierenden Stromdichten auf beiden Positionen identisch sind.
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Abbildung 2.1: Das ALCHEMI-Prinzip. a) Der experimentelle Aufbau. b) Pro-
jektion der Kristallstruktur mit angedeuteter Intensitdtsver-
teilung der stehenden Elektronenwellen fiir zwei verschiedene
Einstrahlbedingungen. c¢) Resultierendes Rontgenspektrum fiir

diese Einstrahlbedingungen [25]

Dagegen erwartet man fiir die von O stammende Intensitdt in Abhéngigkeit
vom Kippwinkel ein anderes Verhalten. Dieser Effekt bildet die Grundlage
der ALCHEMI-Methode.
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Bevor auf die Technik selbst eingegangen wird, folgt ein kurzer geschichtlicher
Uberblick iiber den Channeling-Effekt und seine Anwendungen in der Trans-
missionselektronenmikroskopie. Eine ausfiihrliche Beschreibung des Channe-
lings, nicht nur des Elektronen—Channelings, findet sich bei Gemmell [17].
Ein dem Channeling—Effekt verwandter Effekt wurde erstmals 1941 von Borr-
mann [6] an der verstirkten Absorption von Réntgenstrahlung durch Quarz-
kristalle bei bestimmten Einstrahlrichtungen beobachtet. Die Intensitdt der
Réntgenstrahlen nimmt nach von Laues Berechnungen [29] auf bestimm-
ten Positionen maximale Werte an. Sind diese Positionen nun mit Atomen
besetzt, deren Absorptionsvermdgen im Bereich der verwendeten Wellenlédnge
besonders grof} ist, so tritt anomal starke Absorption auf, verbunden mit
der verstirkten Emission charakteristischer Fluoreszenzstrahlung. Aus der
Fluoreszenzstrahlung in Abhéngigkeit von der Einstrahlrichtung lassen sich

Riickschliisse auf die Position dieser Atome ziehen [1].

Die Verwendung von Elektronen zur Induzierung der Fluoreszenzstrahlung
hat Vorteile gegeniiber der Verwendung von Rontgenstrahlung. Wesentlich
kleinere Probenbereiche konnen untersucht werden. In diesem Fall sind
sowohl die Voraussetzung eines Einkristalls als auch die Bedingung, daf} die
Fremdatome iiber den gesamten zu untersuchenden Bereich gleichverteilt
sein miissen, da nur eine mittlere Verteilung bestimmt werden kann, leichter

erfiillbar.

Die Verwendung des Elektronenchanneling—Effekts zur Bestimmung von
Fremdatompositionen wurde bereits 1964 von Cowley [11] und 1971 von
Gjgnnes und Hgjer [18] vorgeschlagen. Die schnelle und weite Verbreitung der
Methode wurde jedoch erst 1983 von Spence und Taftg [52] eingeleitet, die
ein quantitatives Auswertungsverfahren zur Bestimmung der Fremdatom-
positionen unter dem bereits genannten Akronym ALCHEMI publizierten.
Fiir einen Uberblick iiber die Fiille der Arbeiten zu diesem Thema, sei an
dieser Stelle auf [25], [26], [22] und fiir Anwendungen in der Mineralogie auf

[7] und [51] verwiesen.

Im weiteren Verlauf dieser Arbeit wird sich zeigen, dafl die Annahme der
streng lokalisierten Rontgenanregung eine zu grobe Vereinfachung der Rea-
litdt darstellt. Je grofler die Ionisationsenergie einer Schale ist, umso loka-

lisierter findet die Réntgenanregung statt. Rossouw et al. [46] konnten zei-



gen, dafl Delokalisationseffekte sogar fiir Ionisationsenergien, die grofler als
10 keV sind, noch zu signifikanten Ergebnisédnderungen fiihrten. Der Feh-
ler kann sogar so grof werden, daf§ unphysikalische Verteilungen berechnet
werden [3], [35]. Diese unphysikalischen Ergebnisse motivieren eine genauere
Betrachtung des Rontgenanregungsprozesses und daran anschliefend seine
Simulation (vgl. Kap. 4). Die Elektronenstromdichte weist aufgrund von
Absorptionseffekten eine Dickenabhingigkeit, die das Ergebnis der Simu-
lation stark beeinfluft. Dadurch wird die Kristalldicke zu einem wichtigen

Parameter werden.

Im folgenden soll das Standardverfahren nach Spence und Taftg [52], das
die Grundlage der meisten ALCHEMI-Experimente darstellt, beschrieben
werden. Auf Weiterentwicklungen und Verbesserungen wird kurz eingegan-
gen. Zur Beschreibung sei im Moment noch einmal von streng lokalisierter
Anregung der charakteristischen Rontgenstrahlung ausgegangen. Es wird nur
der planare Fall betrachtet, d.h., im Beugungsbild werde nur die zu diesen

Ebenen gehorende systematische Reihe an Beugungsreflexen angeregt.

Das ALCHEMI—Verfahren setzt voraus, dafl sich zwei Referenzatomsorten
bei geeigneter Kristallorientierung auf zwei verschiedenen Ebenen (A und
B) befinden'. Die Verteilung einer Fremdatomsorte X auf diese beiden Ebe-
nen soll bestimmt werden. Dazu werden fiir zwei verschiedene Orientierungen
die Intensitdten der Rontgenemission der verschiedenen Elemente A, B und
X aufgenommen. Die eine Orientierung (1) sei eine Channeling—Orientierung
und die andere (2) eine Random—Orientierung. Letztere dient zur ,Normie-
rung®, da bei beliebiger Nichtchanneling-Orientierung davon ausgegangen
wird, dafl die Stromdichten jf) und jg) auf beiden Ebenen identisch sind.
Diese Annahme ist allerdings kritisch und nur sehr schwer zu realisieren. Die
quantitative Auswertung nutzt die Proportionalitdt der Stromdichte jfi’? am
Ort A bzw. B zur resultierenden Rontgenintensitat IX? der Atome A bzw.
B aus. IQ’Z) sei die Rontgenintensitit des Fremdatoms X. Damit ergibt sich

fiir die sechs Intensitéten IX’;? x:

197 = Pynaj?, (2.1)

!Die beiden Atomsorten seien im folgenden nach ihrer jeweiligen Ebene ebenfalls mit A

und B benannt.
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11(31’2) = PB’I’Lle(Bl,z), (22)
192 = Peny (F582 + (1 - F2) 557). (2.3)

Dabei bezeichnet F§ den prozentualen Anteil der Atomsorte X auf A-
Positionen, also die gesuchte Gréfle, jﬁi’? die iiber die Tiefe gemittelte Strom-
dichte auf den A- bzw. B- Positionen bei Kristallorientierung (1) bzw. (2),
na,p,x die Anzahl der Atome in der Einheitszelle, und PA,B,X ist ein Fak-
tor, der die unterschiedlichen Ionisationswahrscheinlichkeiten, Fluoreszenz-

ausbeuten und andere Skalierungsfaktoren beinhaltet.

Hierbei ist zu beachten, daf§ die Formeln (2.1) und (2.2) in dieser einfachen
Form nur dann giiltig sind, wenn der Rontgenanregungsprozefl streng loka-
lisiert ist. Ist diese Einschrinkung nicht mehr méglich, dann mufl man (2.1)

und (2.2) durch Faltungsintegrale

Na,B
149 [ %) Pap(Bp — 7) d¥r (2.4)
m=1 gristall

—

ersetzen (vgl. Kap. 4). P4 p(R,, —7) bezeichnet dabei die Réntgenanregungs-
wahrscheinlichkeit des m—ten Atoms der Sorte A bzw. B am Ort 7. ﬁm ist die
Ortskoordinate der Atome. Damit ist dann auch eine so einfache Beschrei-
bung fiir Ix nicht mehr méglich. Lokalisierte Anregung entspricht der Faltung
mit einer Delta—Funktion, was wieder zu (2.1), (2.2) und (2.3) fiihrt.

Mit der Definition eines Doppelverhiltnisses

PO OIS
R (A, B) = (—‘(41)) / (—‘(42) = —‘(42) / —1(32) : (2.5)
Iy Iy Iy Iy

und der Voraussetzung jff) = jg) ergibt sich fiir F§ nach kurzer Rechnung

_ RUA(X,B)-1
T RU(A,B) -1

Fg (2.6)

Ein Vorteil der Standardmethode liegt in der Unabhéngigkeit der Ergebnisse
von den genauen Abbildungsparametern (Elektronenenergie, Einstrahlwin-

kel, Divergenz, usw.) und der genauen Mefizeit. Diese Unabhingigkeit wird



durch das Verwenden der Doppelverhiltnisse gewé&hrleistet, wodurch sich
die Parameter herauskiirzen. Die Kristalldicke mufl hierbei grofi genug sein,
damit sich der Channeling—Effekt iiberhaupt ausbilden kann, d.h., sie muf}
mindestens 20-30 Atomlagen betragen. Sie sollte aber eine Obergrenze von
ca. 1000 A nicht iiberschreiten, da das Channeling—Verhalten der Elektronen
durch thermisch diffuse Streuung und unelastische Streuprozesse mit zuneh-
mender Tiefe im Kristall abnimmt. Die Winkeldivergenz der Quelle mu$f klein
gegeniiber dem ersten Bragg—Winkel sein, damit sich der Channeling—Effekt
nicht durch die Uberlagerung der sich in verschiedene Richtungen ausbreiten-
den Wellenfelder wegmittelt. Die Verteilung der Fremdatome sollte im gesam-
ten beleuchteten Kristallgebiet konstant sein, da das Ergebnis eine mittlere
Verteilung Fjy liefert. Die Tatsache, da8 experimentelle Parameter in die
Rechnung nicht eingehen, und der relativ geringe apparative Aufwand — es
wird nur ein Transmissionselektronenmikroskop (TEM) mit angeflanschtem
energiedispersivem Rontgendetektor (EDX) benétigt — haben zu einer sehr
schnellen und weiten Verbreitung und Weiterentwicklung der ALCHEMI-
Methode gefiihrt.

Man beachte, da8 in der urspriinglichen Veroffentlichung [52] drei Messun-
gen gefordert wurden, zwei in Channeling—Orientierung, mit positivem bzw.
negativem Anregungsfehler, und eine Random—Messung. Dies fiihrt zu einer
Uberbestimmtheit der Gleichung fiir FZ, die aber unkritisch ist und zu einer
leicht verbesserten Statistik fiihrt.

Diese klassische ALCHEMI-Methode ist in den folgenden Jahren auf axiale
Geometrie ausgedehnt worden [43], [46] und [53]. Auch ist die Bedingung, daf
sich die Referenzatome ausschlielich auf zwei verschiedenen Ebenen befin-
den miissen, abgeschwécht worden [27], [28] und [49]. Fiir einige geschich-
tete Strukturen wurden mit der ALCHEMI-Methode gute Ergebnisse erzielt,
welche mit den Ergebnissen anderer Messungen gut iibereinstimmten. Atom-
positionen fiir Fremdatomkonzentrationen bis hinunter zu 0,1 Atomprozent
konnten bestimmt werden [26]. Die Fragestellungen waren vielfiltig, so wur-
den Ordnungsgrade in Mineralien [49], [55], Positionsbestimmungen von Ver-
unreinigungen in Keramiken [9], Punktdefekte [30] und Dotierungspositionen
[27] in Halbleitern und Legierungszusétze in Supraleitern [56] untersucht, um

nur einige zu nennen.
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Das Problem der delokalisierten Anregung der charakteristischen Rontgen-
strahlung durch ein endliches Wechselwirkungsvolumen bleiben aber bei allen
Anwendungen erhalten. Auch wenn die Ausdehnung des Wechselwirkungsvo-
lumens der Rontgenanregung in eine Richtung nur einige pm betrégt [40], so
fiihrt die Delokalisation der Rontgenanregung, wie bereits angedeutet, doch
zu gewaltigen Fehlern in herkbmmlichen ALCHEMI-Experimenten. Deloka-
lisationseffekte machen sich vor allem dann besonders bemerkbar, wenn fiir
ALCHEMI-Experimente die Rontgenintensitdten von K— und L-Schalen—
Ionisation verschiedener Elemente benutzt werden. In vielen Arbeiten ist
daher versucht worden, die durch die unterschiedliche Delokalisation der K—
und L—Schalen—Anregung hervorgerufenen Fehler durch Korrekturfaktoren
zu minimieren [33], [42], [53]. Diese Korrekturfaktoren Criement-schale Werden

fiir jede Schale jedes Elements eingefiihrt. Damit ergibt sich

MR(M) (X,B) -1
Fj? _ X —Schale (27)

CB_schate p(1,2) 1
CAf,SchaleR (4,B) -1

Der L—Schalen—Korrekturfaktor besitzt dann folgende Gestalt [33]

1 7w
Cx 1= (ﬁ) / (ﬁ) (2.8)
und 148t sich somit aus den im ALCHEMI-Experiment bestimmten Inten-
sitdten berechnen. Diese Korrekturfaktoren sollen den Grad der Delokalisa-
tion der L-Schalen angeben und diese auf die K-Schalenanregung zuriickrech-
nen. Sie beinhalten die unterschiedliche Grofie des Wechselwirkungsvolumens
des Elektronenstrahls mit den Kristallatomen. Fiir die K-Schale wird keine
Korrektur eingefiihrt. Es wird fiir sie also weiterhin von streng lokalisierter
Anregung ausgegangen, indem man die K-Korrekturfaktoren auf 1 setzt.
Wie Niichter [40] zeigen konnte, variiert jedoch auch das Verhéiltnis der
K-Schalen— zur L—Schalen—Strahlung eines Elements mit dem Einfallswin-
kel. Die Definition der Korrekturfaktoren ist formal analog mit der der R-
Doppelverhéltnisse. Diese Vorgehensweise hat noch weitere Nachteile. Die
Korrekturfaktoren sind nur dann zugénglich, wenn beide, d.h. K— und L-
Linien im Spektrum vorhanden sind; dann kann man aber genausogut direkt

die K-Linien verwenden. Wie Rossouw et al. an GaAs zeigen konnte, ist aber



auch eine Korrektur der K-Linien notwendig [46]. Demnach wire eine kompli-
ziertere Berechnung der Korrekturfaktoren nétig, welche die Zusammenset-
zung der Probe, ihre Dicke, die unelastische Streuung des Elektronenstrahls

und die Einstrahlrichtung mit einbezieht.

Ein anderes Problem der Standardmethode ist die Dickenabhéngigkeit der
Ergebnisse. Sind die Voraussetzung, dafi die Fremdatome exakt auf den Ebe-
nen der Referenzatome sitzen, oder die Bedingung, dafl im Random-Fall
die Stromdichten auf beiden Ebenen identisch sind, nicht mehr einhundert-
prozentig erfiillt, so werden die berechneten Verteilungen dickenabhingig.
Urspriinglich wurde davon ausgegangen, daf die Kristalldicke keine kritische

Grofle ist, was sich leider als unzutreffend erwies.

Unelastische Wechselwirkungen und thermisch diffuse Streuung fiihren
zusdtzlich zu einer Abschwéchung des Channeling-Effekts mit zunehmender
Kristalldicke, wodurch die relative Unsicherheit der Ergebnisse grofler wird,
da in der Formel fiir F{ (2.6) implizit Stromdichtedifferenzen stecken. Diese
Abschwichung des Channeling—Effekts 148t sich durch einen unelastischen
,Untergrund“ im Wellenfeld der elastisch gestreuten Elektronen erkléren.
Dieser Untergrund kann anndhernd durch ebene Wellen beschreiben, deren
Intensitdt mit der Tiefe zunimmt [19] (vgl. 3.53). Diese Elektronen weisen
dann keinerlei Channeling-Verhalten mehr auf, tragen aber trotzdem zur
Gesamtrontgenintensitét bei. Dieser ,,Offset® ist additiv und fast unabhéngig
von der Einstrahlrichtung. Damit wird die Kristalldicke zu einer kritischen
Grofle fiir die Simulation von ALCHEMI-Experimenten. Eine genauere
Betrachtung dieses — im folgenden als Absorption bezeichneten — Effektes
und seiner Auswirkungen auf die Rontgenemission findet sich in Kapitel 3.2
und in Kapitel 5.2.

Zusammenfassend 148t sich sagen, daf} sich die Einfliisse der Delokalisations—
und Absorptionseffekte auf ALCHEMI-Experimente nicht durch Doppel-

verhiltnisse eliminieren lassen.

Eine alternative Methode zur Elektronen—Channeling—Mikroanalyse wurde
von Rossouw et al. publiziert [48]. Dieses Verfahren benutzt multivariable,
statistische Standardprozeduren, um sowohl die Konzentration als auch die
Verteilung von Fremdatomen zu bestimmen. Sie bendétigt aber die Mes-

sung vieler Emissionsspektren unter Zonenachsen—Orientierungen und ist
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daher experimentell sehr aufwendig. Niichter et al. veroffentlichten ein weite-
res alternatives Verfahren, das Intensitédtsverhdltnisse gemessener Emissions-
spektren fiir verschiedene Einstrahlwinkel durch errechnete Werte anfittet.
Als Fitparameter werden z. B. die Fremdatomverteilung und die Kristalldicke
benutzt [39], [40].

In der vorliegenden Arbeit soll die charakteristische Rontgenemission
moglichst exakt simuliert werden, um daraus geeignete Channeling—
Orientierungen zu bestimmen. Dann sollten wenige Messungen geniigen, um
die Fremdatomverteilung zu bestimmen. Die Kristalldicke und die chemische
Zusammensetzung des Materials miissen bekannt sein. Wichtig ist auch, die
Kristallorientierung moglichst genau zu kennen. Diese kann aber aus den

Kikuchi-Linien im Beugungsbild sehr exakt bestimmt werden.



3 Elektronenbeugung

In diesem Kapitel werden allgemein die theoretischen Grundlagen der Elek-
tronenbeugung behandelt. Zun&chst wird die dynamische Theorie vorgestellt,
die in ihrer einfachsten Form den Kristall als starres, periodisches Gitter
betrachtet. Es folgt die Beriicksichtigung der inneren Freiheitsgrade, die eine
exponentielle Dampfung der Wellenfunktion bewirkt, was stérungstheore-
tisch im Unterkapitel Absorption gezeigt wird. Eine Betrachtung des Zwei-
strahlfalles schliefilich verdeutlicht am einfachen Beispiel die in den vorher-

gegangenen Abschnitten erzielten Ergebnisse.

3.1 Dynamische Theorie

Durchdringen Elektronen einen Kristall, so werden sie sowohl elastisch als
auch unelastisch gestreut. In diesem Abschnitt werden die unelastischen
Streuprozesse ignoriert. Der Kristall wird als starres Objekt ohne innere Frei-
heitsgrade aufgefafit, was einer reinen Potentialstreuung entspricht. Elasti-
sche Streuprozesse lassen sich durch unterschiedliche Methoden beschreiben,

durch die kinematische und die dynamische Theorie.

Die kinematische Theorie ist eine Theorie der Einfachstreuung, die auf der
1. Bornschen Niherung basiert. In der Transmissionselektronenmikroskopie
ist es hdufig nicht moglich, die Proben so diinn zu priaparieren, dal man Mehr-
fachstreuprozesse ausschliefen kann. Dazu miifite die Objektdicke kleiner als
die mittlere elastische freie Wegldnge sein. Der in dieser Arbeit betrachtete
Channeling—Effekt 148t sich nur durch elastische Mehrfachstreuung beschrei-

ben, also durch wiederholtes Anwenden der kinematischen Theorie auf die

11
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diinnen Schichten, in die man den Kristall in Gedanken unterteilt (Multi-
Slice-Verfahren), oder durch die dynamische Theorie. Im folgenden wird nur

noch die dynamische Theorie betrachtet.

Die dynamische Theorie 16st die Schrédingergleichung im Prinzip exakt und
beinhaltet daher auch alle Mehrfachstreuanteile. Strenggenommen miifite
aufgrund der hohen Geschwindigkeit der Priméirelektronen (v/c = 0.70 bei
200 keV) die Dirac-Gleichung gelost werden. Fujiwara [16] hat aber schon
1961 gezeigt, daB fiir ndherungsweise zur Oberflichennormalen parallele Ein-
strahlung die Losung der Schrédinger—Gleichung eine gute Naherung ergibt,
sofern man relativistische Ausdriicke fiir die Elektronenmasse und die Wel-
lenzahl einsetzt. Im folgenden wird eine kurze Herleitung der nichtrelativi-
stischen Theorie angegeben. Eine ausfiihrliche Beschreibung findet sich bei
[34] und [57].

Die Wellenfunktion ¥(7) eines schnellen Elektrons im Kristall, das vor dem
Einfall durch seine kinetische Energie ' und seinen Wellenvektor k charak-

terisiert wird, ist Losung der Schridingergleichung

{a+ iL—T:(V(F) +B)}uE) =0 (3.1)

Hierbei ist A der Laplace—Operator, m die relativistische Elektronenmasse
und A das durch 27 dividierte Plancksche Wirkungsquantum. Das Kristall-
potential V(7) ist periodisch und kann daher als Fourierreihe geschrieben

werden

V(F) = ZVgeXp[iﬁf']. (3.2)

g

Der Vektor g bezeichnet einen reziproken Gittervektor. Er ist definiert durch
die Millerschen Indizes h, k, I und die Basisvektoren 51, 52 und gg des rezipro-
ken Gitters:

G = hby + kby + lbs. (3.3)

Die Vektoren 5, sind gegeben durch die Basisvektoren a;, i=1,2,3, des realen
Gitters:
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L2
bi = —&; x @ i, j, k zyklisch, (3.4)
EZ

wobei Vgz = d; (d X d3) das Volumen der Einheitszelle ist. Gemifi dem
Blochschen Theorem [24] muf} die Lsung der Schrédingergleichung fiir ein
gitterperiodisches Potential das Produkt aus einer ebenen Welle und einer
Funktion sein, die die gleiche Periodizitit wie das Potential besitzt. Spezielle

Losungen haben daher die Form

V(7Y = explikD7] u(kW), 7) (3.5)

mit einer gitterperiodischen Funktion u der Gestalt

w(k9,7) = > Cﬁ(];(j)) expli gr]. (3.6)

g

Fiir Cg(E(j)) wird im folgenden kurz ngj ) geschrieben. Mit den Definitionen

2
Ug"_ mn

=7V (3.7)

und
2 2
K2 .= h—? (E+Vp) = h—"jE + U, (3.8)
erhilt man durch Einsetzen der Fourierzerlegung des Potentials (3.2) und der
Wellenfunktion (3.5) in die Schrédingergleichung die Dispersionsgleichung

der dynamischen Theorie
[k~ (59 + )| ¢ + Y vz, =0 (3.9)

Die speziellen Losungen der Schrédingergleichung ¥\ () nennt man Bloch-

wellen. Abbildung 3.1 zeigt diese schematisch.

Fiir eine exakte Losung der Schrédingergleichung bendtigt man unendlich
viele Blochwellen. Dies ist in der Praxis natiirlich nicht durchfiihrbar, so daf}
man sich auf eine endliche Anzahl N beschrinken mufl. Dadurch wird die

Dispersionsgleichung (3.9) zu einem N—dim. Problem.



14 3. ELEKTRONENBEUGUNG

einfallende
Partialwelle

E|

Kristalloberflache

k” +g  Blochwelle Nrj

Abbildung 3.1: Blochwelle im Kristall (schematisch)[54]

Die allgemeine Losung W() setzt sich aus einer Linearkombination aller

Blochwellen zusammen

() = Z NGO (7). (3.10)

Die Anregungskoeffizienten €U) werden durch die Randbedingungen
bestimmt. Eine Randbedingung ist der stetige Ubergang der Wellen-
funktion bei Eintritt des Elektrons in den Kristall. Zu beachten ist, daf}
das Elektron sowohl in den Kristall eindringen, als auch reflektiert werden
kann. Die Reflexion wird vernachléssigt, da experimentelle Beobachtungen
gezeigt haben, daf} bei Beschleunigungsspannungen iiber 10 keV und nahezu
senkrechter Einstrahlung nur wenige Prozent der Elektronen zuriickgestreut
werden [38]. Beide Bedingungen sind fiir ALCHEMI-Experimente erfiillt.

Fiir die folgenden Rechnungen wird das Koordinatensystem so gewahlt, dafl
die z—Achse in den Kristall hineinzeigt und die x— und y—Achsen in der

Kristalloberfliche liegen.

Die Randbedingung des stetigen Ubergangs lautet nun bei Einstrahlung einer
ebenen Welle

exp[iEF’]‘ =) eV exp[iE(j)F]ZC’gg) exp[ig'F]‘ e (3.11)

—

J g
Diese Bedingung ist auf der gesamten Kristalloberflache, d.h. fiir alle x und

y, nur dann erfiillbar, wenn gilt:

kW) =k, und kY =k, (3.12)
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und

1= Ze(j)C’éj),
J

0= edcY), fiir §#0. (3.13)

J

Die Gleichungen (3.12) legen die Transversalkomponenten von k) fest, so
daB nur noch kY) bestimmt werden muf. Die Wellenvektoren im Kristall

unterscheiden sich also vom Vakuumwellenvektor nur in ihrer z—Komponente:

kY =k, + 40, (3.14)

Da der Potentialkoeffizient V von der Grofenordnung 10 eV ist und Elek-
tronenenergien von mehreren 10 keV verwandt werden, kann man (3.8) in

guter Ndherung durch

K2~ k? (3.15)

ersetzen. Dies fiihrt zu einer Vereinfachung der Dispersionsgleichung (3.9).
Strahlt man parallel oder unter kleinen Winkeln (typisch < 20 mrad) zu einer
Zonenachse (uvw) ein, die vereinbarungsgemif in z—Richtung liegt, dann
werden nur Reflexe aus der reziproken Gitterebene senkrecht zur Zonenachse
angeregt, der 0. Laue—Zone. Fiir die Millerschen Indizes eines solchen Reflexes

mit § = hb; + kby + by gilt:

uh + vk + wl = 0. (3.16)

Da die Wahl des Basissystems prinzipiell keine Auswirkungen auf die Theorie
hat, soll im folgenden der Einfachheit halber angenommen werden, dafl unter

kleinen Winkeln zur (001)-Zonenachse eingestrahlt wird. Dann gilt g, = 0.

Die Dispersionsgleichung nimmt dann folgende Gestalt an

[0 — (2k5+ ¢%)| CY + 3 U,;C;j_) =0, (3.17)

h#0

h
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mit
o) = (kf — kgj)Z) — (2kz’y(j) + fy(j)2) . (3.18)

Damit nichttriviale Losungen existieren, mufl die Koeffizientendeterminante
verschwinden. Dies liefert ein Polynom vom Grad N fiir die oY) und damit

2N Lgsungen fiir die Werte von )

_ (4)
D = k1 Jk2— o)~k k, (1 - ;‘—kz> , (3.19)
, (4)
VD = k= K2 — o) = —k, —k, <1 - ;%2) . (3.20)
(9)

Fiir 75"/ erhdlt man somit Blochwellen, welche sich in —z-Richtung ausbrei-
ten, also riickgestreute Elektronen darstellen. Da aber nur Vorwirtsstreuung
betrachtet werden soll, mufl man diese Losungen verwerfen. Fiir 'yfj ) schreiben

wir in Zukunft kurz 4. Die Annahme vV) < k, fiihrt zu o) ~ —2k,7\.

Einsetzen in (3.9) liefert die linearisierte Dispersionsgleichung

1
2%k,

[v(j) + (2E§+ gz)] c¥

1 )
@ _
i 2—kz E Us Cg_ﬁ =0. (3.21)

R£0

Diese Gleichung stellt ein N—dimensionales, lineares Eigenwertproblem dar,
wobei N die Anzahl der beriicksichtigten Blochwellen ist. Die Eigenwerte
sind vU), und die dazugehorigen Eigenvektoren bestehen aus den Entwick-

lungskoeftizienten C gﬁj ),

In Matrixschreibweise lautet diese Eigenwertgleichung:

%50) = Azl (3.22)

M= —— (265 + o%) (3.23)

Uy - (3.24)
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Da das Kristallpotential reell ist, gilt

U_;= U (3.25)

Damit ist die Matrix M hermitesch. Eigenwerte hermitescher Matrizen sind

reell und die Eigenvektoren bilden mit folgender Normierung

ZC 9 =4 (3.26)

) _
Z c7 Cﬁ’ =04 (3.27)
j
ein Orthonormalsystem. Sind die Potentialkoeffizienten reell, so ist M sym-

metrisch, und auch die Eigenvektoren werden reell.

Fafit man die Gleichungen (3.13) fiir die Anregungskoeffizienten zusammen,

so erhdlt man das Gleichungssystem

C’é” 032) e
of=|c c? .|| |. (3.28)

Multiplikation mit der komplex konjugierten und transponierten Matrix

ergibt

i) = i, (3.29)

Damit ergibt sich fiir die ungeddmpfte Gesamtwellenfunktion ¥need:(7) bei

nahezu senkrechter Einstrahlung:

punged: () — ZC exp [17(9 ] ZC’gg) exp [i (k + ﬁ)F] . (3.30)

g
Die Rechenzeit fiir die Berechnung der Blochwellenkoeffizienten ngj ) und der
Eigenwerte v\/) steigt mit der dritten Potenz der Anzahl N der in der Eigen-
wertrechnung beriicksichtigten Reflexe! an. Stallknecht [54] hat versucht,

!Die Anzahl der beriicksichtigten Reflexe § ist in der linearisierten Theorie gleich der
Anzahl der betrachteten Blochwellen.
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die Rechenzeit zu minimieren, indem er zwischen ,stark angeregten“ und
,schwicher angeregten® Reflexen unterschied und letztere aus der , exakten®
Eigenwertrechnung herausnahm, um ihren Einflufl auf das Elektronenwel-
lenfeld storungstheoretisch zu beriicksichtigen. Da sich der Einsatz dieser
Methode jedoch erst bei einer sehr groflen Anzahl von Reflexen lohnt, werden
in der vorliegenden Arbeit die Koeffizienten und Eigenwerte aller betrachte-

ten Blochwellen ,exakt“ berechnet.

Fiir die Berechnung der Potentialkoeffizienten Uz wird auf [57] verwiesen.

3.2 Absorption

Die im vorangegangenen Abschnitt diskutierte dynamische Theorie behan-
delt den Kristall als starres Gebilde. Im idealisierten Fall eines unendlich
ausgedehnten Kristalls gibt es dann fiir die eingeschossenen Elektronen nur
diskrete erlaubte Streurichtungen, die Bragg—Reflexe. Summiert man die
Stromdichte in den Reflexen auf, so erhidlt man die Einfallsstromdichte. In
realen Kristallen werden aber durch unelastische Streuung innere Freiheits-
grade angeregt, wodurch Elektronen in Streurichtungen zwischen den Refle-
xen gestreut werden und einen Energieverlust erleiden. In der energiefiltern-
den Elektronenmikroskopie kann man solche Elektronen durch einen Energie-
filter ausblenden. Fiir den Beobachter sind diese Elektronen verschwunden,

so als wiren sie im Kristall absorbiert worden.

Physikalisch korrekt miiite man alle unelastisch gestreuten Elektronen wie-
der als Blochwellen betrachten. Da weder die Streuwinkel noch der erlittene
Energieverlust genau bekannt sind, miiite man iiber beide Groflen integrie-

ren. In dieser Arbeit soll aber ein einfacheres Modell betrachtet werden.

Die scheinbare Absorption 148t sich mathematisch durch eine in Ausbrei-
tungsrichtung geddmpfte Wellenfunktion der eingeschossenen Elektronen
beschreiben. Von Moliere wurde 1939 phinomenologisch ein komplexes
Kristallpotential eingefiihrt, das die Didmpfungseffekte erzwingt [36]. Eine
quantenmechanische Rechtfertigung wurde 1957 von Yoshioka [60] aus der
Storungstheorie geliefert. Im folgenden sollen kurz die Voraussetzungen,
Néherungen und das Ergebnis dieses Ansatzes referiert werden. Fiir eine

genauere Betrachtung siehe [60] und [57].
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Die zeitunabhéngige Schrodinger—Gleichung fiir den Gesamtzustand ® des

Kristalls und des eingeschossenen Elektrons lautet

H® = E3. (3.31)

Dabei ist F die Gesamtenergie des Systems. Der Hamiltonoperator

H=H,+Hyx+H (3.32)

besteht aus drei Termen:

e H,: kinetische Energie des Elektrons H, = — A

e Hy: Kristallhamiltonoperator

! L
e H': Wechselwirkungsoperator H' = n? (Z 7 L 2k )

2mam \ 2 Tl 2 IRl
ag bezeichnet den Wasserstoffradius. Der Wechselwirkungsoperator besteht
dabei aus zwei Termen, die die Wechselwirkung des eingeschossenen Elek-
trons mit den [ Kristallelektronen und mit den L Kernen beschreiben. Zj
ist die Kernladungszahl des k—ten Atoms. Das vollstidndige, orthonormierte

System der Eigenfunktionen a, von Hg sei bekannt

Hya,, = €,an, (3.33)

dabei ist €, die Energie des n—ten Anregungszustands des Kristalls. Eine

Produktentwicklung der Gesamtwellenfunktionen fiihrt zu

— —

‘I’(F,Fl,...,Fl,Rl,...,ﬁL) =Zgon(f')an(f'l,...,Fl,Rl,...,RL). (334)

Dabei beschreiben ¢y (7) die elastisch gestreuten Elektronen und ¢, (7), n >
1, die unelastisch gestreuten Elektronen, bei deren Streuung der Kristall in
den Zustand a, iibergeht. Die Wellenfunktionen ¢, (7) sind nicht normiert.
Bei verschwindender Wechselwirkung H' (elastische Streuung) verbliebe der
Kristall im Anfangszustand aq. Die Gesamtwellenfunktion wire dann @gay.
Fafit man H' als kleine Stérung auf, so ist ¢, < p. Setzt man (3.34) in

die Schrédingergleichung (3.31) ein, multipliziert mit a,, integriert iiber alle
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Kristallkoordinaten und nutzt die Orthonormiertheit der a, aus, so ergibt

sich ein gekoppeltes Differentialgleichungssystem

{He + (em — E) + H;nm} Pm = — Z Hrlnn‘Pn’ (3.35)

n#m

mit H) . = (an|H'|a,). Dieses kann formal aufgespalten werden in

{84k, -0, on="0 5 o sm#0 (3.30)
und ’
{840 o= 55 2 B (3.37)
mit
B2 = 2;1—’;‘ (B —ep) (3.38)

Da man an der ,elastischen“ Wellenfunktion ¢, interessiert ist und ¢,, < g
vorausgesetzt ist, nimmt man fiir die Inhomogenitit in (3.36) in erster
N&herung nur Ausdriicke der Gestalt H) o mit (Stérungstheorie erster
Ordnung). Die Losung der entstehenden Differentialgleichung mittels Green-
scher Funktion

_ lexp [ k|7 — 7]

(3.39)

A7 |7 — 7|
fiilhrt zu einem Integralausdruck fiir ¢,,(7). Dieser wird fiir die Inhomoge-

nitét in (3.37) eingesetzt. Dies fithrt nach einer kurzen Rechnung zu einer

erweiterten Dispersionsgleichung der dynamischen Theorie

(k6 — (k+3)"] Co+ X U; 5C; = — 3 VizCi (3.40)
i h
mit
V. — 2m [@raTaF e [{(E+R)F —i(F+9)7F]  (3.41)
gh — Vh2 ! P I .

und dem Kern des Integrals

exp [ik,|7 — 7]

R m 1 (= ey
A(r,7") = — 2 Z HOn(T )Hno(T )
2mwh

n#0 T - FI|

(3.42)
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Die linke Seite der Gleichung (3.40) ist analog zur Gleichung (3.9). Die Poten-
tialkoeffizienten Uj; beschreiben die elastische Streuung ebener Wellen am
Potential V, bei der die Kristallzustinde unveridndert bleiben. Die rechte
Seite der Gleichung (3.40) hat kein Analogon in der gewdhnlichen dynami-
schen Theorie. Durch die Koeffizienten V; wird der Einfluff der unelastischen

Wechselwirkung der eingeschossenen Elektronen im Kristall eingefiihrt.

Die Losung des Integrals (3.41) fiihrt zu

Vi = Ul +iUl (3.43)

gh’
wobei U_(I;*IE eine in H' quadratisch kleine Korrektur zu U i ist, welche die Her-
mitizitdt der Dispersionsgleichung nicht stért und im folgenden weggelassen
wird. Die U!;,ﬁ fiihren dazu, dafl das Eigenwertproblem nicht ldnger hermi-
tesch ist. Damit werden auch die Eigenwerte komplex, was einer Dampfung

der Wellenfunktion in Ausbreitungsrichtung entspricht.

Die korrigierte Dispersionsgleichung lautet also:

o, 2 . . .
[kg - (k9 + g) ] CP + YU, ;09 +1 Y ULCY =0 (3.44)
f i
mit
k2 + Uy ~ k2. (3.45)

Die Randbedingung des stetigen Ubergangs der Wellenfunktion an den

Grenzflichen fiithrt zu

ED =k + 99 +i g9 = k+ (49 +ipD)e,. (3.46)

k bezeichnet den Wellenvektor des einfallenden Elektrons. Einsetzen von
(3.46) in (3.44) und anschlieBende Linearisierung fiihrt zu einer korrigier-
ten, linearisierten Dispersionsgleichung. Die Losung dieses nichthermiteschen
Eigenwertproblems ist numerisch sehr aufwendig. Mit den Uberlegungen von
Rossouw u.a. [47] ergibt sich nach Weickenmeier [57] fiir die u() folgende

gute Naherungslosung:

G — L S oiret)
ud = S utcdey). (3.47)

— gh 9
g)h
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Damit ergibt sich fiir die gedimpfte Gesamtwellenfunktion W& (7) bei

nahezu senkrechter Einstrahlung folgende Gleichung

\Ilged. (,’;») — ZcéJ)* exp [(—,U,(]) + 17(1))2] Z CQ) exp [1 (E—{— g)F] . (348)

J g

Fiir eine exakte Berechnung der Uz und U 5_”,71 miifite man die Kristallzustdnde
a, kennen. In der Praxis ist man an guten Ndherungslosungen interessiert.
Bei der unelastischen Wechselwirkung der Primérelektronen mit dem Kri-
stall dominieren drei Prozesse: die elektronische Anregung, die Plasmonen-
streuung und die thermisch diffuse Streuung (TDS) auch Phononenstreuung

genannt. Also ist

Ul = Ugi(hf’) + U;‘,::”‘“) + U;_(,::’h""). (3.49)

U;%’las) wurde schon 1957 von Yoshioka [60] behandelt. Fiir die Plasmonen-
streuung, den in Vorwiértsrichtung dominierenden Term, und fiir die elek-
tronische Anregung gilt, daf} die Streuwinkel sehr klein im Vergleich zum
Braggwinkel sind. Fiir die Berechnung der Blochwellen liefert die Phononen-
streuung den dominanten Beitrag, da fiir die meisten Elemente der stark
temperaturabhingige Einflul der Phononenstreuung auf die Absorptionspo-
tentiale schon fiir den ersten Braggwinkel iiberwiegt (vgl. [44]). Die genaue
Berechnung der U;*E lese man bei Weickenmeier [58] nach. Eine zentrale Rolle
bei dieser Berechnung spielen die atomaren Streuamplituden f(g), welche
durch die Verwendung eines Zentralfeldmodells nicht mehr von der Richtung
von ¢, sondern nur noch vom Betrag ¢ abhidngen. Fiir eine analytische Inte-
gration reichen die in [13] tabellierten Werte fiir f(s) mit s = ¢/4m bzw.
eine beliebig geartete Interpolation nach [4] nicht aus. Weickenmeier verwen-
det eine Fitfunktion, die fiir s — oo die richtige Asymptotik aufweist und

analytisch integrierbar ist. Als geeignet hat sich die Funktion
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unged. ged. ges.
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Abbildung 3.2: Uber eine Tiefe von 1000 A gemittelte Intensititen der Elek-
tronenwellen in der Einheitszelle von Orthopyroxen MgFeSi;Og
entlang der (010)-Richtung fiir a) die ungeddmpfte Blochwelle,
b) die gedimpfte Blochwelle und c) fiir die geddmpfte Bloch-
welle unter Beriicksichtigung des unelastischen Offsets; senk-

rechte Einstrahlung.

138 )
fs)=5 Z;Ai (1-exp [-Bis?]) (3.50)
0,02395ZA 7"
it A= 3.51
ml 3(1+V) (3:51)
und Aj3=VA;, i=1,23 (3.52)
erwiesen. Die nétigen Fitparameter B, ..., Bg, V sind fiir die Elemente 1—98

in [58] tabelliert.

Die Dampfung der Blochwellen fiihrt zu einer Abnahme der Elektronenstrom-
dichte mit der Tiefe. Die unelastisch gestreuten Elektronen werden aber kei-
neswegs absorbiert, sondern breiten sich mehr oder weniger in Strahlrichtung
aus, da die Riickstreuung vernachlissigt wird. Diese Ausbreitung findet in
Form von Blochwellen mit der um AF reduzierten Energie statt. Da aber
weder der erfahrene Energieverlust AE noch der Streuwinkel #, und damit die
neue Ausbreitungsrichtung, bekannt sind, lassen sich diese Wellen nur schwer

berechnen. Der uns interessierende Wechselwirkungsprozef}, die Entstehung
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charakteristischer Rontgenstrahlung findet, aber im Kristall statt, also lie-
fern auch diese Elektronen einen Beitrag, der nicht vernachlissigt werden
kann. Hall hat gezeigt [19], dafl es ausreichend ist, diese unelastisch gestreu-
ten Elektronen durch ebene Wellen zu beschreiben, deren Intensitdt mit der
Tiefe anwéchst, so dafl die Gesamtintensitdt erhalten bleibt. Dies fiihrt zu

folgendem Ausdruck fiir die Intensitit der unelastisch gestreuten Elektronen

“I’I(F)P —1— z ‘G(j)\zexp [—2/1'(j)z] . (3.53)
J

Sie liefert einen nicht vernachlédssigbaren ,,Offset“~Untergrund zur Blochwel-
lenintensitdt und damit auch zum charakteristischen Rontgensignal, wie die
Abbildung 3.2 verdeutlichen soll. Die genaue Berechnung der Rontgeninten-

sitdt wird in Kapitel 4 durchgefiihrt.

3.3 Der Zweistrahlfall

Vom Zweistrahlfall spricht man, wenn aufler dem 000-Reflex nur noch ein
weiterer Reflex g angeregt ist. Aufgrund der hohen Einfallsenergie der Elek-
tronen ist dies aber in der Elektronenmikroskopie kaum zu realisieren; hier
werden schnell 15 — 100 Reflexe angeregt. Da er aber analytisch leicht 16sbar
ist und die wichtigsten Ergebnisse der dynamischen Theorie klar zum Aus-

druck bringt, soll er hier diskutiert werden.

Im Zweistrahlfall nimmt die Dispersionsgleichung (3.21) folgende einfache
Gestalt an:

BN GTo N %%Cﬁj) =0
(3.54)
%%Céj) 4 (_7(1)+s§) Cg@ =0,
wobei

ein Maf fiir den Anregungsfehler des Reflexes g ist. Dieses homogene, lineare
Gleichungssystem fiir C(gfgl hat nur dann eine nichttriviale Lésung, wenn die

Koeffizientendeterminante null ist:



3.3. DER ZWEISTRAHLFALL 25

U2
=0 i=12 (3.56)

() _

Losung dieser quadratischen Gleichung fiihrt fiir die Eigenwerte 4\9) zu

. U\ 2
Y@ = § |s5— (=1) (F‘l) + 52
2
1 1 3.57
= s 17y (3) + =2 (3:57)
= % ['w —(-1)' V1 +w2] .
&
Dabei ist {5 := % die energieabhingige Extinktionsldnge, die ein Maf} fiir

die Periodizitdt der Blochwelle in z—Richtung ist. Der Parameter w := s3&;
charakterisiert die Verkippung aus der Bragglage (w = 0). Fiir die Matrix C

der Eigenvektoren erhélt man nach kurzer Rechnung [45]:

C(gl) 032) %
C= , 3.58
- (C;> ¢ ) "\ oos(®) —sin®) (3%

mit der Substitution w = cot(g).

Fiir die zwei Blochwellen
2 (7) = C§H exp [i D7) + O exp [i (K2 + )7 (3.59)
ergibt sich damit:

¥ (7) = sin(B/2) exp [iEN7] + cos(8/2) exp [i (V) + §)7|  (3.60)

und
T (7) = cos(3/2) exp [i E(2)r] — sin(B/2) exp |i [ (K ﬂ)F] (3.61)

Fiir eine Einstrahlrichtung, die genau dem ersten Braggwinkel entspricht
(w = 0), bewegt sich die Superposition der ebenen Wellen in Richtung
der Winkelhalbierenden, die parallel zur reflektierenden Gitterebene h,k,1
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ist (vgl. Abb. 3.3). Sie zeigt Interferenzstreifen parallel zur reflektierenden
Ebene, hier als x-Richtung bezeichnet, mit einer Periodizitit, die gleich dem

Gitterabstand dyy; ist.

Fiir die Aufenthaltswahrscheinlichkeitsdichten |¥()(z)|?> der Blochwellen

erhilt man

WM (2)|? o cos? (mz/dp)
W@ (2)|?  sin® (72 /dpgr) - (3.62)

Wie Abbildung 3.3 zeigt, fiihrt dies fiir die Blochwelle 1 zu Amplitudenma-
xima auf den Gitterebenen und fiir Blochwelle 2 zu Maxima auf den Zwi-
schengitterebenen. Dies ist entscheidend fiir die Dadmpfung der Blochwellen

und damit auch fiir die Entstehung der Sekundéreffekte. Es ist offensichtlich,

Blochwelle 1 Blochwelle 2

P ) P (x)f

IVigriiy

O
> O O C
O O O C
O O O O O

reflektieende Gitteebenen

4 2

O

O
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Abbildung 3.3: Amplitudenquadrat (Wechselwirkungswahrscheinlichkeit mit
den Atomen) der Blochwellen 1 und 2 im Zweistrahlfall fiir
Braggbedingung mit Bduchen bzw. Knoten auf den Gitterebe-
nen [45]
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dal die Wechselwirkungswahrscheinlichkeit der Blochwelle 1 mit den Kri-
stallatomen wesentlich hoher ist als die der Blochwelle 2. Dieses Verhalten

liefert uns den Schliissel zum Verstdndnis des Channeling—Effekts.

Die Winkelabhingigkeit der C’gg ) nach (3.58) und damit auch der Anregungs-
koeffizienten V) nach (3.29) fiihrt dazu, daB auch die Blochwellenintensitéten
auf den Gitter— bzw. Zwischengitterplatzen winkelabhéngig sind. Dieses Ver-
halten verdeutlicht die Abbildung 3.4.

1

LS |

1.0

0.5

0 0, 20,
Kippwinkel

Abbildung 3.4: Variation der Blochwellenintensitidt auf den Gitter— (——) bzw.
Zwischengitterplitzen (——) im Zweistrahlfall bei Verdnderung

der Probenorientierung in der Umgebung der ersten Bragg—Lage
(0 ist der Bragg—Winkel) nach [55].

Damit haben wir die theoretischen Grundlagen zum Verstdndnis der
ALCHEMI-Methode diskutiert und wollen nun im néchsten Kapitel die

Rontgenintensitit berechnen.



4 Berechnung der relativen

Rontgenintensitit

Trifft ein schnelles Elektron auf ein Objekt, so gibt es prinzipiell zwei Mecha-

nismen der Rontgenstrahlentstehung:

a)

Erzeugung von Bremsstrahlung. Die eingeschossenen Elektronen wechsel-
wirken mit dem Coulomb-Feld des Kerns und der Innerschalenelektronen.
Die dabei iibertragene Energiedifferenz wird an ein Photon der Energie
AE = hv abgegeben. Das dabei entstehende Rontgenspektrum ist ein
kontinuierliches Spektrum und erstreckt sich auf der Energieachse von
E, der Energie der einfallenden Elektronen, bis hinunter zu 0 eV. Dieses
Spektrum liefert einen Untergrund zur interessierenden, charakteristischen
Strahlung, der leicht subtrahiert werden kann, und wird daher in Zukunft

nicht weiter betrachtet.

Ionisation einer inneren Schale (charakteristische Strahlung). Die Ionisa-
tion einer inneren Schale ist mit einem Energieverlust AE des Strahlelek-
trons verbunden und erzeugt eine , Liicke“ in der ionisierten Schale. Dazu
mufl die Elektronenenergie E grofler sein als die Ionisationsenergie E,,; der
ionisierten Schale mit den Quantenzahlen n und [. Die Liicke in der inne-
ren Schale wird durch ein Elektron einer anderen Schale aufgefiillt. Die
Energiedifferenz, z. B. Ex — Er, kann als Rontgenquant mit der diskreten
Energie Er = hv = Ex — Ep emittiert werden. Dabei sind die quan-
tenmechanischen Auswahlregeln (Al = +1 und Aj = 0,£1) zu beachten,
welche nur wenige Uberginge erlauben. Die Wellenlingen A = he/ER sind
in [2] tabelliert.

28
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E, v Coster — Kronig w1
isati & 2 5/2
lonisation Q 5 55
‘ 3 1 3/2
® Elektron 1 1/2
Energieverlust | | E=AE-E, 0 1/2
AE>E, v
1 3/2
_1_ 2 11/2
Emission ® / \a—l ® 0 1/2
ho

Rontgenquant Auger — Elektron

E,=E(—E, E,=E,-2E, 1 g YY YV Y 10 1/2

Abbildung 4.1: Schematische Darstellung der méglichen Ubergiinge im Kristall
[45]

Nicht jede Ionisation einer inneren Schale fiihrt zur Emission eines Rontgen-
quants. Dieser Prozefl wird nur mit einer Wahrscheinlichkeit w, der Rontgen-
fluoreszenzausbeute, beobachtet. Weiter existieren zwei alternative Prozesse,
die unterschiedliche Auswirkungen auf das Rontgenspektrum haben. Bei der
Auger-Elektronen-Emission wird durch die Ubergangsenergie ein Elektron
einer dufleren Schale ionisiert, was zu einer Verminderung der Rontgeninten-
sitdt fiihrt. Dagegen wird beim Coster—Kronig-Ubergang die durch die Ioni-
sation entstandene Liicke mit einem hoéherenergetischen Elektron der glei-
chen Hauptquantenzahl aufgefiillt. Die Ubergangsenergie fiihrt zur Ionisa-
tion eines Elektrons des kontinuierlichen Spektrums. Dies fiihrt z. B. zu einer
Verstirkung der Lz—Linie gegeniiber den L;— und Ly—Linien im Réntgenspek-

trum.

Abbildung 4.1 zeigt schematisch diese drei méglichen Uberginge. Die Auger—
Elektronenausbeute, und damit auch die Rontgenfluoreszenzausbeute, weist
eine starke Ordnungszahlabhingigkeit auf, wie Abbildung 4.2 verdeutlicht.
Fiir leichte Elemente und die Anregung hoherer Schalen findet bevorzugt
Auger-Elektronenemission statt. Dieses Verhalten verldngert die Mefzeiten

fiir die Aufzeichnung von Rontgenspektren.
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Abbildung 4.2: Auger-Elektronenausbeute a und Rontgenfluoreszenzausbeute
w =1 — a als Funktion der Ordnungszahl Z fiir die K-, L- und
M-Schale [15]

Da fiir ALCHEMI-Experimente nur die relativen RoOntgenintensitédten
bendtigt werden und das Verhéltnis der Ausbeuten unabhingig von der
Einstrahlrichtung ist, brauchen diese Konkurrenzeffekte im folgenden nicht
weiter beachtet zu werden. Aus diesem Grund kénnen wir zur Berechnung
der relativen Rontgenintensititen statt der Rontgenemissionswahrscheinlich-
keit auch die Ionisationswahrscheinlichkeit der betreffenden inneren Schalen

verwenden.

Wechselwirkungen der Rontgenquanten mit dem Objekt (ZAF-Korrektur)
werden nicht beriicksichtigt, da die Objektdicken wesentlich kleiner als die
mittlere freie Weglidnge der Rontgenquanten gewé&hlt sind, so dafi diese das

Objekt ungestort verlassen.

Zur Berechnung der relativen Rontgenintensitit gehen wir von einer
punktférmigen Elektronenquelle aus, d.h. der Beleuchtung mit einer
ebenen Welle, deren Ausbreitungsrichtung parallel zur Oberflichennormalen
eines planparallelen Kristalles ist; auflerdem wird jeder Einflul des &ufleren
Magnetfeldes vernachléssigt. Die relative charakteristische Rontgenintensitét
Ix einer Atomsorte X im Kristall!, die durch die eingeschossenen Elektronen
induziert wird, 148t sich dann durch ein Faltungsintegral der lokalen Strom-

dichte j(7) mit der Anregungswahrscheinlichkeit P(7) der Kristallatome

1Mit Ix ist genauer die Intensitiit gemeint, die aus einer Schale der Atomsorte X stammt.
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und eine anschliefende Summation iiber alle Kristallatome beschreiben [10],
[21]

Ix x % / §(7)-Px(Ro — 7) d°r. (4.1)
m=1 K ristall

Dabei bezeichnen Nx die Anzahl der Atome der Sorte X im Kristall und
Px(R, — 7) die Anregungswahrscheinlichkeit des m-ten Atoms dieser
Sorte, das sich am Ort R,, befindet. Da es sich bei dem zu untersuchenden
Objekt um einen Einkristall handelt, ist es ausreichend, die charakteristische
Rontgenstrahlentstehung in einer Einheitszelle zu berechnen. Hierbei ist zu
beachten, dafl die Einfliisse der Absorption mit der Kristalldicke zunehmen
und die Stromdichte im Kristall mit der Extinktionsldnge ¢ oszilliert. Da
die Periodizitdt dieser Oszillation wesentlich grofler ist als die Ausdehnung
der Einheitszelle in Ausbreitungsrichtung der Elektronen, ist es ausrei-
chend, die iiber die Tiefe ¢ gemittelte Elektronenstromdichte zu berechnen,
welche die Einfliisse der Absorption enthilt. Diese Annahmen reduzieren

die Berechnung der relativen Rontgenintensitdt auf ein zweidimensionales
Problem:

Y [GENPGEY - 7) (42)
v=1gy

g bezeichnet die Projektion von 7 auf die Kristalloberfliche, n, die Anzahl
der Atome der Sorte X in der Einheitszelle. Die periodische Kristallstruk-
tur 148t sich nun durch eine zweidimensionale, diskrete Fouriertransforma-
tion mit Transformationsvektor § ausnutzen. Aus dem Faltungsintegral wird
durch die Fouriertransformation eine Multiplikation der Fouriertransformier-
ten der iiber die Tiefe gemittelten Stromdichte mit der Anregungswahr-
scheinlichkeit im Fourierraum. Die Anregungswahrscheinlichkeiten fiir die
verschiedenen Atome einer Atomsorte sollen sich nur durch ihren Aufpunkt
unterscheiden, welcher der Atomposition dieses Atoms in der Einheitszelle
entspricht. Aus dem Verschiebungssatz der Fouriertransformation folgt, dafl
sich eine solche Verschiebung durch einen Phasenfaktor vor der Fourier-
transformierten der Anregungswahrscheinlichkeit fiir ein Atom im Ursprung

ausdriicken 148t. Damit erhalten wir fiir die relative Rontgenintensitéit
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Ix & G0 Y eap [-155)] BE). (4.3)
6 14

Die Summation iiber v erstreckt sich iiber alle X—Atome in der Einheits-
zelle und §®) bezeichnet die Projektion ihrer Lage auf die Kristalloberfliche.
Diese Formel ist identisch mit der Formel, die von Hugo aus der Proportiona-
litdt des Rontgensignals zum Wirkungsquerschnitt hergeleitet hat [23]. Der
zweidimensionale Transformationsvektor 6 nimmt die Werte der reziproken
Gittervektoren in der 0. Lauezone an. Der genaue Zusammenhang zwischen

§ und den reziproken Gittervektoren § wird spiter deutlich (4.11).

Im Abschnitt 4.1 wird nun zunachst (j(8));, die Fouriertransformierte der
iiber die Tiefe gemittelten Stromdichte, berechnet. Danach, im Abschnitt 4.2,
folgt die Berechnung von ]5(5 ), der Anregungswahrscheinlichkeit im Fourier-

raum, anhand verschiedener Modelle.

4.1 Berechnung der Stromdichte

In diesem Abschnitt soll die Elektronenstromdichte im Fourierraum iiber die
Tiefe gemittelt werden. Die Elektronenstromdichte j(7) im Kristall wird mit
der Wellenfunktion ¥(') aus der dynamischen Theorie (Kap. 3) berechnet,
und zwar zundchst mit der ungeddmpften Wellenfunktion (3.30), dann mit
der geddmpften, welche die unelastisch gestreuten Elektronen als im Kristall
absorbiert betrachtet (3.48), schliefilich mit der geddmpften unter zusétzli-
cher Beriicksichtigung der unelastisch gestreuten Elektronen, die in Wirklich-
keit keineswegs absorbiert werden, sondern zur Stromdichte einen Beitrag in
Form eines Offsets liefern (Abb. 3.2). Allgemein gilt fiir die Stromdichte

ik
3(F) = 5= [U(F)grad¥* (F) — ¥ (F)grad ¥ ()] . (4.4)

mo
Durch die nahezu senkrechte Einstrahlung der Elektronen auf die Kristall-
oberfliche sind die Eigenwerte 'y(j) vernachldssigbar klein gegeniiber dem
Vakuumwellenvektor k. Dies fiihrt fiir die Elektronenstromdichte zu der ein-

fachen Formel
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hk hk

(7)) ~ — U (7)P*(7F) = — |¥(7)| . 4.5

() = W) = ()| (4.5)

Die Elektronenstromdichte ist also proportional zum Amplitudenbetragsqua-
drat der Wellenfunktion.

Im folgenden werden zuerst die Berechnungen fiir die ungeddmpfte, elastische
Wellenfunktion durchgefiihrt. Einsetzen von (3.30) in (4.5) fiihrt zu

§(7)uneed = {ZC exp [17 ]ZC’gj)exp [i(g’-i- E)F]}
. {Z C'(gi)* exp [ify(i)z] Z C’g) exp [i (E + E)F] }

it Gh

7

Durch Aufspalten der Ortskoordinaten erhilt man

](ﬁ, Z)unged. e Z Z COi)Cé’j)C,%i)*
i g
~exp |i ('V(’) —y9)z] exp [i (§ - h)A], (4.7)

da die reziproken Gittervektoren g und h nach Konstruktion in der 0. Laue-

zone liegen, also g, = h, = 0 ist. Mittelung iiber die Tiefe fiihrt zu

1
(5,2t =

z=0
Bk /
== 5 ofref e e exp [i (5 - k)] / exp [i (Y9 — 79)2] dz
0 .75 7g7h z=0
@) @]
hk o) oD e sy o] SR [FOD O] — 1
= CoPrCV el O exp |i(G— h —
mOt]zgh " ©e " [ (g )p] 1(’7(]) - 7(1))

Nun wird noch die Periodizitdt des Kristalls ausgenutzt und eine zweidi-

mensionale Fouriertransformation durchgefiihrt. Als Transformationsvariable
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diene §. Damit folgt fiir die iiber die Tiefe gemittelte Stromdichte im Fou-

rierraum

GEpiret = / (5,2 exp [i67] dp
1 €XD [i (v9) — ,y(i))t] _1

= — Y cfrefefeir——
Z i (,Y(J) — ,y(z))

J, ig.h

-/exp[i(gﬁ—ﬁ#—g)ﬁ]d*

(4.9)

Diese Integration iiber g ist eine der Definitionsgleichungen fiir die Delta—
Distribution, deshalb ist

- % AT BE <~ e ) ) e P [0 = 7] -1
GE et = Yo Yed
: ot ]Eg:h o Co i (@ — 40
5(G—h+9),

(4.10)

damit wird aus der Summation iiber § und A eine Einfachsumme, und zwar

nur noch fiir diejenigen g, fiir die gilt

Gg=h-6. (4.11)

Diese Gleichung liefert uns den Zusammenhang zwischen dem Transfor-
mationsvektor 4 und den reziproken Gittervektoren. Zu beachten ist, daf}
in unseren Blochwellenrechnungen nur eine begrenzte Zahl an Reflexen
beriicksichtigt wird, und daher auch die Zahl der § endlich bleibt. Die
Eigenvektoren der nicht beriicksichtigten Reflexe werden konsequenterweise
auf Null gesetzt, da deren Beitrag ja vernachléssigt wird. Fiir die iiber die

Tiefe gemittelte Stromdichte im Fourierraum erhalten wir damit folgenden
Ausdruck

(G(8))imeet =

T exp |1 fy Yt 1
4 thC'OJ)*C'OZ C’SL EC’(’)* [ o ) ] . (4.12)
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Nun beziehen wir in unsere Rechnungen die Absorptionseffekte mit ein, d. h.,
wir setzen nun die Wellenfunktion aus (3.48) in die Gleichung (4.5) fiir die
Stromdichte ein und erhalten mit vollkommen analogen Uberlegungen fiir die

iiber die Tiefe gemittelte Stromdichte

- ed. hk 1 )% 1 j 7)*
G, et = = X cpree e

j7i7§5h

] exp [(—(M(j) + ) i) — ,y(i))) t] 1

exp [i (7~ B)p (19 ¥ 4O 1 i(79 —40)

(4.13)
Im Fourierraum ergibt sich daraus
~, 2\ ge 4m2hk N Yo (i
Gt = T2y ofrefodef
mot 3k
exp [(—(M(j) + ) i (D — ,y(i))) t] -1
. . (4.14)

—(pY9) 4+ p@) 41 (40 — )

Dabei erzwingen die p eine Dadmpfung der Stromdichte mit zunehmender

Kristalltiefe, so dafi die Gesamtintensitdt nicht mehr erhalten bleibt.

Jetzt bleibt noch die Betrachtung des unelastischen Offsets. Das zur unelasti-
schen Stromdichte proportionale Amplitudenbetragsquadrat von ¥'(7), der
Wellenfunktion der unelastisch gestreuten Elektronen, haben wir bereits in
Gleichung (3.53) berechnet, so dafl wir dieses nur noch iiber die Tiefe mitteln
und anschlieflend fouriertransformieren miissen. Zu beachten ist, dal (3.53)

nur von der Tiefe abhingt.

Y o Rk N .
7T =yt = (1 - 216" exp [—m’)z]) . (419)
J

(4.16)

, €XD [—2u(j)t] -1
—2/_1,(.7) )

(Nt = 25 (t - ¥ icd]
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Wie nicht anders zu erwarten, fiihrt die Tiefenmittelung zu einem konstanten
Offset. Die Fouriertransformierte einer konstanten Funktion ist eine Delta—

Distribution:

L 2 o« exp |—2uWt —1 .
wwmﬁzﬁﬂﬁ@—szFp[’t] )ﬁm, (417
J

mot —2,u(.7)
also
Ar2hk o oexp | —2ut] — 1 .
e vofs UL R o2t p ”(.)] fiir§ =0
(JreN = t i —2uV (4.18)

0 fiird # 0

Damit haben wir nun alle Terme hergeleitet, die wir zur Berechnung der
Gesamtstromdichte benétigen. Diese ist die Summe der geddmpften elasti-
schen Stromdichte (4.14) und des unelastischen Offsets (4.18), da wir vor-

aussetzen, dafl sich diese beiden Wellenfelder interferenzfrei bewegen:

GEONE = GE)N + (7(8)) . (4.19)

4.2 Berechnung der Anregungswahrschein-

lichkeit

Zu Beginn dieses Abschnitts sei noch einmal ausdriicklich darauf hingewie-
sen, daf es fiir die Berechnung der relativen Rontgenintensitét, die fiir die
Simulation von ALCHEMI-Experimenten bené6tigt wird, ausreichend ist, die
Auslose— bzw. Ionisationswahrscheinlichkeit einer Schale zu betrachten. Dies
ist moglich, da die Proportionalitdtsfaktoren bereits durch die Bildung von
Einfachverhéltnissen I{!)/I(?) herausgekiirzt werden. Es ist daher nicht nétig,
diese in die Rechnung mit einzubeziehen. Obwohl weiter von Anregungswahr-
scheinlichkeit gesprochen wird, werden nur die Ionisationswahrscheinlichkei-

ten berechnet.

Zur Berechnung der Anregungswahrscheinlichkeit stehen einige mehr oder

weniger geeignete Modelle zur Verfiigung, welche nun n&her betrachtet wer-
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den. Die Anregungswahrscheinlichkeit wird nur fiir ein Atom im Koordi-
natenursprung berechnet, da eine Verschiebung der Atome in der Fourier-
transformation lediglich zu einem zusdtzlichen Phasenfaktor fiihrt und die

Wechselwirkung mit anderen Atomen vernachldssigt wird.
1. 6—Anregung:

Das einfachste Modell zur Beschreibung der Anregungswahrscheinlichkeit
ist die J-Anregung, d.h. die charakteristische Rontgenstrahlung entstehe

am Kernort lokalisiert

P3(7) = 6(7). (4.20)

Einfliisse des thermischen Verhaltens der Atome und die Ausdehnung
des Wechselwirkungsvolumens zwischen einstrahlenden Elektronen und
Kristallelektronen werden nicht beriicksichtigt. Diese Beschreibung
der Rontgenstrahlentstehung ist in der urspriinglichen ALCHEMI-
Formulierung benutzt worden und hat zu unphysikalischen Ergebnissen
gefilhrt. Um die Effekte der Delokalisation deutlich zu machen, wird
das Modell der 6—Anregung von uns zu Vergleichsrechnungen herangezo-
gen. Mit diesem Modell lassen sich K- und L—Schalen—Anregung nicht

unterscheiden. Fouriertransformation fiihrt zu

P'(§)=1. (4.21)
2. Gaufiférmige Anregung:

(a) Beriicksichtigung der thermischen Vibration:

Dieses Modell geht weiterhin davon aus, dafl die Rontgenstrahlung am
Kernort lokalisiert entsteht, beriicksichtigt aber die Einfliisse der Tem-
peratur auf die Bewegung der Atomkerne. Der Debye—Waller—Faktor,
in den die mittlere quadratische Auslenkung u? der Atome aus der
Ruhelage eingeht, ist ein Ma$ fiir die thermische Bewegung der Atom-
kerne. Die Wurzel der mittleren quadratischen Auslenkung wird als
Standardabweichung in eine gaufiférmige Anregungswahrscheinlichkeit

eingesetzt



38

4. BERECHNUNG DER RELATIVEN RONTGENINTENSITAT

2

P@(5) = —— exp l;{;] . (4.22)

Im Fourierraum:

(4.23)

- u26?
:

P®(§) = exp l——
Da uns fiir Pyroxen keine Debye—Waller—Faktoren vorlagen, haben wir
fiir eine Abschitzung der Auswirkungen der thermische Vibration die
elementaren mittleren quadratischen Auslenkungen aus [44] verwendet,

welche in Tabelle 4.1 zusammengefafit sind.

Element | u? in pm? | Ionisationsenergie Stolparameter
E;in eV bin pm | b in pm
0O K- 532 35,91
Mg 185 K- 1305 16,78 23,20
Si 45 K- 1839 12,61 | 14,88
Fe 50 K- 7113 4,27 9,37
Los— 715 27,89 29,10

Tabelle 4.1: Mittlere quadratische Auslenkung u? bei 293 K nach [44], Tonisati-

onsenergien F; nach [14] und daraus berechnete Stofiparameter der
Ionisation b (4.29) und b' (4.32) fiir die verwendeten Elemente bei
200 £V Beschleunigungsspannung

(b) Beriicksichtigung des endlichen Volumens der K— und L—Schalen nach

Pennycook [42]:

Dieses Modell bezieht nun das endliche Wechselwirkungsvolumen zwi-
schen einstrahlenden Elektronen und Atomelektronen mit in die Rech-

nung ein.

Die Ionisation einer inneren Schale ist von mehreren Parametern
abhingig, der kinetischen Energie E der Strahlelektronen, der Ionisa-
tionsenergie F; der inneren Schale, der bei der Ionisation iibertragenen
Energie AE > FE; und dem Stoflparameter b zwischen Strahlelektron
und Schalenelektron. Beim Stoflproze kann der Stofiparameter fiir

eine Tonisation grofler sein als die Ausdehnung der Schale, die weit
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unter 100 pm betrigt. Eine Abschdtzung der moéglichen Stoiparameter

148t sich aus der Unschérferelation gewinnen:

Az-Ap ~ h. (4.24)

Hierbei wird Az mit dem Stoflparameter b gleichgesetzt, und Ap =
RAE ist der Impulsiibertrag. Craven et al. [12] errechneten fiir einen
Energieverlust AE eines schnellen Elektrons der Geschwindigkeit v,

daf3 der minimale Impulsiibertrag Ak,,;, gegeben ist durch:

h2
5 kAEk (4.25)
also AL
Akpin = — 4.26
P (4.26)

fiir einen Streuwinkel © = 0. Fiir Streuung in kleine Winkel © erhilt
man fiir den transversalen Impulsiibertrag niherungsweise k©. Dies
fiihrt zu

9mE
AR~ ARZ,, + k0% = T (07 + 03), (4.27)

min h2

mit der Elektronenenergie £ und dem charakteristischen inelastischen
Streuwinkel O = %. Fiir den Stofiparameter b erhdlt man damit

folgenden streuwinkelabhingigen Ausdruck:

m ~1/2
b(O) = [2th (e +e3)] . (4.28)

Die emittierte Rontgenstrahlung ist isotrop, und die Detektionswahr-
scheinlichkeit ist unabhingig vom Streuwinkel des ionisierenden Elek-
trons. Fiir den mittleren quadratischen Stofiparameter der Rontgen-
emission erhilt man nach Pennycook [42] unter diesen Voraussetzungen
durch eine gewichtete Integration iiber alle Streuwinkel und die volle

Integration iiber alle moglichen Energieiibertrige AE > E;:

B E 16E\1 /2
r—7ray —
b i) [ln (—Z> In ( ) )] . (4.29)
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Hierbei wird vorausgesetzt, dafl die Ionisationsenergie E; wesentlich
kleiner ist als die kinetische Energie E des ionisierenden Elektrons.
Bei der Berechnung des Stoiparameters wurde von einer vollstindigen
Impuls— und Energieerhaltung des Strahlelektrons ausgegangen. Der
Ausdruck fiir den Stofparameter divergiert deshalb, wenn die Ionisati-

onsenergie gegen null geht.

Dieser Stoflparameter wird als halbe Halbwertsbreite in eine Gaufi—-
Anregung eingesetzt. Mit o = b/+v/2(n2 folgt

VIn2 —p%In2
P®(5) = : 4.30
#)=% = | (4:30)
Fiir die Fouriertransformierte gilt dann:
~ o _62b2
P®(§) = : 4.31
B =ew |G (431

Die nach (4.29) berechneten Stofiparameter b der verwendeten Ele-

mente sind in Tabelle 4.1 zusammengefaflt.

Beriicksichtigung sowohl der thermischen Vibration nach (a) als auch
der endlichen Ausdehnung nach (b):

Die nach Gleichung (4.29) abgeschitzten Halbwertsbreiten liegen fiir
hohere Ionisationsenergien unter 20 pm, also im Bereich der Schwin-
gungsamplituden der Atome. Durch diese Schwingung wird die Auf-
enthaltswahrscheinlichkeit der Schalenelektronen verbreitert. Ein Min-
deststofiparameter b’ fiir die Tonisation einer Schale ergibt sich dann aus
einer Faltung der Aufenthaltswahrscheinlichkeit mit der Anregungs-

wahrscheinlichkeit zu

b = Vb2 + 2u2in2. (4.32)

Fiir die Anregungswahrscheinlichkeit gilt dann:

PCY(7)

Vin2 [_p 21"2] (4.33)

OV o Y
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und

= _521"2] . (4.34)

PO =
(0) = exp l 4in2

Die nach (4.32) berechneten Stofiparameter b’ der verwendeten Ele-

mente finden sich ebenfalls in Tabelle 4.1.

3. Berechnung der Ionisationswahrscheinlichkeit mittels Ubergangsmatrix-

elementen nach von Hugo:

Fiir die Rontgenanregungswahrscheinlichkeit leitet von Hugo [22] aus der
Proportionalitdt zwischen Rontgenintensitdt und Wirkungsquerschnitt in

erster Ordnung Stérungstheorie folgenden Ausdruck her

— d’¢’.  (4.35)
Q- (¢ ~d)

n

Die Herleitung dieser Gleichung soll hier nicht wiederholt werden. Die
Bedeutung der einzelnen Terme wird aber kurz beschrieben. In (4.35)

bezeichnet

Q =(k+h)—(K+R) (4.36)

den Streuvektor des schnellen Elektrons mit dem Wellenvektor k + A vor
dem Streuprozef und &' + k' danach. k und A’ sind reziproke Gittervekto-
ren. Der Einflufl der Blochwelleneigenwerte v) und vU") auf den Streuvek-
tor wird vernachléssigt, so dafl der Streuvektor unabhingig von der Num-
mer j der einzelnen Blochwellenfelder ist. Gestrichene Gréflen bezeichnen

generell Groflen nach der Streuung.

M (Q, K) ist das Ubergangsmatrixelement fiir ein Atom, welches durch das
einfallende Elektron unter Emission eines Sekundérelektrons mit dem Wel-
lenvektor K in einen angeregten Zustand iibergeht, wobei das einfallende
Elektron um den Streuvektor Q abgelenkt wird. Die Integration tiber d{2z
beriicksichtigt, dafl die Richtung des emittierten Sekundérelektrons nicht
bekannt ist.
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Die Integration [...x2p(R)dk ist eine Integration iiber alle méglichen
Energieverluste, die zur Ionisation des Atoms fiihren, wobei jeder Ener-
gieverlust mit der Zustandsdichte p(K) gewichtet ist. Diese 148t sich aus
dem Energieverlustspektrum der Ionisationskante bestimmen und ist ein
MaSf dafiir, wieviele Atome durch den Anregungsprozef in einen Zustand
|R) iibergehen. €' ist der Streuwinkel des einfallenden Elektrons. Die Inte-
gration iiber alle moglichen Streuwinkel ist notwendig, da aus dem cha-

rakteristischen Rontgenspektrum der Streuwinkel nicht zu erkennen ist.

Das Ubergangsmatrixelement

M (Q",E) = <Fo" exp [i Q"F']

0) (4.37)

wurde fiir die K-Schalen—Tonisation bereits von Maslen [32] und von Ros-
souw et al. [46] analytisch berechnet. |0) beschreibt den Grundzustand
des Atoms und |K) einen angeregten Zustand, der durch den Wellenvektor
K des emittierten Sekundéirelektrons charakterisiert wird. Die genannten
Autoren benutzen die Hartree-Fock—Naherung, worin K die Slaterdeter-

minante der entsprechenden Einelektronenwellenfunktionen ist.

Fiir einen festen Energieverlust, d. h. fiir festes x, haben Maslen et al. [32]
die Anregungswahrscheinlichkeit fiir die K—Schalen—Ionisation bereits mit
Hilfe eines (e, 2e)-Streumodells des Wasserstoffs berechnet. Sie konnten
zeigen, dafl die Anregungswahrscheinlichkeit stark mit dem Energiever-
lust variiert. Deshalb mufiten sie noch iiber alle méglichen Energieverlu-
ste integrieren. Aufgrund des damit verbundenen hohen Rechenaufwandes
hat von Hugo [23] auf die explizite Behandlung des Einflusses der Rich-
tung des Sekundérelektrons verzichtet und die Vollstdndigkeitsrelation der

gebundenen Zustidnde der Atomelektronen ausgenutzt.

Damit folgt fiir das Integral
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Die Summation bzw. Integration erstreckt sich dabei {iber alle Zusténde,
welche im Grundzustand nicht besetzt sind. Die Vollstdndigkeitsrelation

fiir die Einelektronenwellenfunktionen 148t sich schreiben als

)
)| = 1= 3 il (4.39)
n!)#[0),ens| £) 1)=(0)
Da fiir die K-Schalen-Tonisation die Anzahl der Uberginge vom
|1s)~Zustand (= |0)-Zustand) zu hoheren Schalen mit zunehmender
Hauptquantenzahl n rasch abnimmt, verwendet von Hugo neben den
Ubergiingen innerhalb der K-Schale nur die zwischen der K- und
L-Schale des Atoms. Als Zustandswellenfunktionen werden die radial-
symmetrischen Losungen fiir wasserstoffdhnliche Atome verwendet. Dabei
ist das Koordinatensystem so gewdhlt, dafl dessen z—Richtung mit dem
Streuvektor @' zusammenfillt. Daher bleiben nur die Integrale iiber
Zustédnde mit der magnetischen Quantenzahl m = 0 iibrig, also {iber die
Zusténde |1s0), [2s0) und |2p0).

Mit diesen Einschrinkungen und (4.39) folgt dann fiir (4.38):

Die Ausfiihrung dieser Integrale ist analytisch moglich. Die Integration
iiber alle Streuwinkel ' 143t sich bis auf eine Integration iiber ellipti-

sche Integrale analytisch 16sen. Fiir ]51((” H)(g ) erhilt von Hugo folgenden
Ausdruck?:

2Hier sind nur die fiihrenden Terme aufgefithrt, und auf den Term T(L), der bei der
Beriicksichtigung des Ubergangs in die L-Schale auftritt, wird verzichtet, da der Einflufl

dieses Terms auf das Ergebnis gering ist.
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" 4 {_ U(U? + 2T?)

(v-H) /3y
P 0) (U2 +T2)2V/U2 + 1

= (kOp)? In (U +v0?+1)

1+

1 1 U N U?
n —_— —_—
UvU?2 +4T2+1 472 +1 472 + 1

U* +30T? + U? + 2T* I <2U2 +2T?% + 14 24/U% + 2U2T2 + U? +T4>

VU 1 20T y U2 + T* VAT? + 1
T? 2 2
AT? + 1 [4U2+4T2+1 U4+ 4T? + 1
T? 37?2
C(AT2+1)(U24+4T? +1)  (4U2 +4T2 + 1)
6U* — 4UT? — 2T7?% — 10T*
AU? +4T? 4+ 1)(U* + 2U0T? + U? + T4)]

+ T,

_|_

T

mit den normierten Groflen

Z'mee? \’ 5
— (7476071%%) und U = 2|k 9|E. (4.42)
Hierbei bezeichnen:
Z' : reduzierte Kernladungszahl Z — =
mo : Ruhemasse des Elektrons
e :  Elementarladung des Elektrons
€o : Dielektrizitdtskonstante
k  : Betrag des Wellenvektors des einfallenden Elektrons
fr : charakteristischer inelastischer Streuwinkel

Der Argumentation aus Abschnitt 4.2.2 folgend, wird auch dieser Term
fiir die Ionisationswahrscheinlichkeit mit der thermischen Vibration im

Fourierraum multipliziert. Damit folgt:

Pr(8) = exp l-ﬁl PP (§). (4.43)

Hiermit haben wir nun die wichtigsten Modelle fiir die Berechnung der Ioni-
sationswahrscheinlichkeit beschrieben, deren Auswirkungen auf das berech-
nete Rontgensignal und die Intensitdtsverhéltnisse in Kapitel 5.3 behandelt

werden.

(4.41)



5 Durchfiihrung der Simulation

fiir Orthopyroxen

In diesem Kapitel werden die theoretischen Ergebnisse auf das Beispiel
Orthopyroxen (Mg, Fe’"),S1,0¢ angewendet und der Einflul der verschie-
denen Modelle auf die berechnete relative Rontgenintensitdt untersucht.
Soweit nichts Gegenteiliges angegeben ist, wurden die Modellrechnungen
fiir eine Kristalldicke von 1000 A und eine Beschleunigungsspannung von
200 kV durchgefiihrt. Fiir die Blochwellenberechnung wurde eine syste-
matische Reihe zum 020-Reflex mit 21 Strahlen (Reflexen) verwendet.
Die Einstrahlrichtung ist parallel oder unter kleinen Winkeln zur (001)-

Zonenachse.

5.1 Die Probe

Pyroxene sind eine wichtige Gruppe gesteinsbildender Mineralien in magma-
tischen und metamorphischen Gesteinen. In der Geologie sind sie als Geoba-
rometer bzw. Geothermometer von Interesse. Sie werden unterteilt in mono-
kline und rhombische Vertreter, deren allgemeine chemische Klassifikation
XYZ50¢ lautet. Sie gehoren zu der groflen Gruppe der Silikate. Einige mogli-
che Elemente auf den verschiedenen Positionen sind:

X (M2-Position): Na, Ca, Mn?*, Fe?>* Mg, Li

Y (M1-Position): Mn?*, Fe?t, Mg, Fe3*, Al, Cr, Ti

Z : Si, (Al)
Die X-Position wird im folgenden als M2-Position bezeichnet und die Y-
Position als M1-Position. Die wichtigsten chemischen Unterschiede basieren
auf der Besetzung der M2-Positionen [8]. Fiir eine umfassende Beschreibung

der Struktur und der chemischen Variation der Pyroxene sei an dieser Stelle

45
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auf [8] verwiesen. Eine gute Einfiihrung in die Kristallographie findet sich in
[5]
Im folgenden werden nur noch Mg—Fe-Pyroxene betrachtet, insbesondere

das Orthopyroxen. Je nach Mg— und Fe—Anteil sind mehrere Bezeichnungen

geldufig:
- Enstantit Mg, Si»O6 (Pbca)
- Ferrosilit (Fe?t 581,06 (Pbca)

- Orthopyroxen (Mg, Fe?* ),Si,0¢ (Pbca)

Die fiir die Rechnung verwendeten Strukturdaten des Orthopyroxens
(Mg, Fe®" )38i304 sind aus [37] entnommen. Etwas unterschiedliche Daten
finden sich auch bei [20] und [59]. Die Raumgruppe ist Pbca (D33, auch
V}5). Die Einheitszelle (EZ) ist orthorhombisch primitiv. Die EZ wird cha-
rakterisiert durch die drei Basisvektoren aj, a3 und a3, deren Richtungen mit
den Koordinatenachsen zusammenfallen. Das Symmetriezentrum befindet
sich in der Mitte der EZ. Die Lingen der Basisvektoren sind a; = 18,224,
as = 8,81A und a3 = 5,17A. Die relativen Positionen x,y,z der Atome zeigt
Tabelle 5.1.

x/a1 y/as z/as
M1 0,376 0,654 0,866
M2 0,377 0,485 0,361
Si(A) 0,272 0,341 0,049
Si(B) 0,474 0,337 0,799
O(1A) 0,183 0,339 0,035
O(2A) 0,312 0,502 0,043
O(3A) 0,304 0,225 0,830
O(1B) 0,563 0,338 0,801
O(2B) 0,434 0,484 0,688
O(3B) 0,447 0,196 0,600

Tabelle 5.1: relative Atomkoordinaten in Orthopyroxen [37]

.1 1 . = 1 - 1 .
T,Y,2; §+ §_yaz’ z, - §_$)ya§+za

1 1

2 2 L5~

+ Y,

N N

+9,

N[—= N|—

Z, 23
-z, Z3

Q=

+2 3+T,Y,5—2

8

Y ’z7

Tabelle 5.2: iquivalente Atompositionen fiir die Pbca—Raumgruppe nach [31]
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M2 M1 M1 M2 M1 M1 M2 M1 M1 M2 M1 M1 M2

Abbildung 5.1: Projektion der Atompositionen zweier EZ des Orthopyroxens
MgFeSi,0¢ auf die Oberfliche des Kristalls fiir eine Einstrah-
lung in (001)-Richtung

Alle Atome des Orthopyroxens befinden sich auf generellen Positionen, d. h.,
zu jeder Atomposition x,y,z ergeben sich aus Symmetrieiiberlegungen sieben
weitere dquivalente Atompositionen, die in Tabelle 5.2 aufgefiihrt sind. Die
EZ besteht also aus 80 Atomen.

Fiir die Wahl des Orthopyroxens als Beispielsubstanz gibt es zwei physikali-

sche Griinde:

1. Mg und Fe sind auf zwei nichtdquivalente Kristallpositionen (M1 und M2)
verteilt. Die prozentuale Verteilung, die fiir die Mineralogen und Geologen
interessant ist, kann also mit der ALCHEMI-Methode bestimmt werden.
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2. Mit Mg und Fe befindet sich ein leichtes und ein mittelschweres Element in
dem Kristall. Damit ist eine Untersuchung der Ordnungszahlabhéngigkeit

der Delokalisation moglich.

Die Suche nach einer geeigneten Channeling—Orientierung ergab fiir Pyro-
xen einen , Schichtaufbau“ der M1- und M2-Positionen beziiglich der (010)-
Ebenen, wie Abbildung 5.1 verdeutlicht. In dieser Projektion zeigt sich folgen-
der Schichtaufbau: M1, M2, M1, M1, M2, M1, also eine planare Geometrie.
Die Si—Atome befinden sich fast exakt auf den mit M1-Atomen besetzten

Ebenen.

5.2 Absorptionseffekte

In diesem Abschnitt wird der Einflufl der unelastischen Streuung (Absorption
und Offset) auf die iiber die Tiefe gemittelte Stromdichte und somit auf die
relative Rontgenintensitdt untersucht. Damit Delokalisationseffekte keinen
Einflu} auf die Berechnungen haben, wird in diesem Abschnitt noch einmal
von d—Anregung ausgegangen. Fiir Orthopyroxen wird MgFeSi;Og angenom-
men, d.h., Fe befinde sich ausschliefllich auf den M1-Positionen und Mg auf

den M2-Positionen.

Abbildung 5.2 zeigt die iiber die Tiefe gemittelte Stromdichte im Ortsraum fiir
die drei, in Kap. 4.1 berechneten Stromdichten (4.8), (4.13) und (4.19) fiir
drei verschiedene Einstrahlbedingungen. Die Berechnungen erstrecken sich
iiber die Linge einer EZ in @,—Richtung. Alle Stromdichten sind gleich ska-
liert und beginnen im Koordinatenursprung bei 0 Am 2. Die iiber die Tiefe
gemittelte Stromdichte ist gitterperiodisch. Die Periodenlénge entspricht der
halben Ausdehnung der Einheitszelle in (010)—Richtung, da die Einheitszelle
in der Projektion auf diese Achse eine hGhere Periode besitzt, wie man in
Abbildung 5.3 gut erkennen kann. Die Variation der Einstrahlrichtung hat
eine Verschiebung der Stromdichtemaxima zu anderen Ortskoordinaten und
eine Verdnderung des Kurvenverlaufs zur Folge. Die Periodizitét bleibt aber

erhalten.
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000,

1.06

260,
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49

a) ungedampft b) gedampft C) gesamt

yinA

Abbildung 5.2: Uber eine Tiefe von 1000 A gemittelte Stomdichte im Orts-

raum fiir a) ohne Absorption (,ungedimpft*), b) mit Absorp-
tion (,geddmpft“) und c) mit Offset (,gesamt“) fiir drei ver-
schiedene Einstrahlbedingungen 6; = 0.005 = 0.00420, 62 = 05
und 8; = 2,60

®©® @©ococooc®@ EC ©oooc® G ® wm1

I T T T T T T T T T 1 O M2
5 4 3 2 1 0 1 2 3 4 5|9 si
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Abbildung 5.3: Projektion der Einheitszelle des Orthopyroxens auf die y—Achse

Der Vergleich mit der Projektion der EZ auf die (010)-Richtung (Abb. 5.3)

ermoglicht eine Abschitzung der Wechselwirkungswahrscheinlichkeit fiir die

verschiedenen Einstrahlrichtungen. So ist fiir § = 2.66y9¢ die Erzeugung eines
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Mg-Rontgenquants wahrscheinlicher als fiir & = 0.00p, da auf den Mg-

Positionen (M2-Positionen) im ersten Fall die Stromdichte grofler ist.

Die Einfliisse der Absorption fiihren zu einer Abschwichung der gemittel-
ten Stromdichte. Die Struktur der Kurven bleibt aber erhalten. Der Off-
set, die von den unelastisch gestreuten Elektronen verursachte Verschiebung
der gedampften Kurve zu einer hoheren mittleren Stromdichte, sorgt fiir die
Erhaltung der Gesamtstromdichte, so daf fiir die Integration iiber eine EZ

gilt:

+4.405A +4.405A
(J(y))imetdy = / () dy. (5.1)
y=—4.405A y=—4.405A

Abbildung 5.4 zeigt exemplarisch die Auswirkungen unseres Absorptions-
modells auf das fiir # = 0.00p auf eins normierte Intensitdtsverhiltnis des
Mg-Signals zum Si—Signal. Dieses Diagramm zeigt sehr deutlich, welch star-
ken Effekt die Beriicksichtigung der Absorption und des additiven Offsets
in der Berechnung der iiber die Tiefe gemittelten Stromdichte auf das Inten-
sitdtsverhdltnis hat. Fiir einen Kippwinkel # = 2.560p reduziert sich das Inten-

sitétsverhiltnis von (In,/Is:i)*"** = 10,4 auf nur noch (In,/Is:)?** = 3,0.

Die Abbildung 5.5 zeigt die normierten Intensitdtsverhéltnisse

I 6=2.50p I 6=0.00p
(7)) /() 52)

in Abhéngigkeit von der Kristalldicke. Absorption und Offset sind berticksich-
tigt. Hier zeigt sich deutlich die Abhéngigkeit der normierten Inten-
sitdtsverhdltnisse und damit des maximalen ,Kontrastes“ von der Kristall-
dicke. Dadurch wird ersichtlich, welch kritische Grofle die Kristalldicke fiir
die Simulation von ALCHEMI-Experimenten ist. Eine genaue Kenntnis
der realen Dicke ist also fiir eine erfolgreiche Simulation unerldflich. Das
normierte Mg—Si-Verhiltnis wird maximal, wenn die Kristalldicke ca. 800 A

betrigt.
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Abbildung 5.4: Kippwinkelserie des normierten Intensitétsverhaltnisses Iy, /Is;
fiir die ungeddmpfte Stromdichte, die geddmpfte und die

gesamte Stromdichte; —Anregung
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Abbildung 5.5: Normierte Intensitdtsverhaltnisse ( Mg) / (ﬂ in

Ig; Is;

Abhingigkeit von der Kristalldicke fiir (j(p));**; —Anregung

Zusammenfassend 148t sich sagen, dal der Einflu der Absorption und des
Offsets der unelastisch gestreuten Elektronen auf die berechnete relative
Rontgenintensitdt und die interessierenden Intensitédtsverhéltnisse stérker ist

als erwartet.
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5.3 Delokalisationseffekte

In diesem Abschnitt wird der Einflufl der verschiedenen Modelle zur Beschrei-
bung der Anregungswahrscheinlichkeit aus Kapitel 4.2 auf die Berechnung
der RoOntgenintensitdt und der Intensitdtsverhéltnisse im ALCHEMI-

Experiment untersucht.

Fiir Mg und Fe erhalten wir fiir die normierten Anregungswahrscheinlich-
keiten der drei Modelle im Fourierraum, manifestiert in den Gleichungen
(4.21), (4.34) und (4.43), die Kurvenverldufe in Abbildung 5.6. Je flacher die
Kurve im Fourierraum ist, desto lokalisierter ist die Anregung. Unabhéngig
vom Modell wird deutlich, dal die Anregung fiir Fex wie erwartet stirker

lokalisiert ist als die fiir Mg, da Fe die groflere Ordnungszahl besitzt.
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Abbildung 5.6: Normierte Anregungswahrscheinlichkeiten im Fourierraum fiir

Mg und Fe fiir die drei verschiedenen Modelle.
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Fiir kleine reziproke Vektoren liegt der Kurvenverlauf fiir die Anregung
mittels Ubergangsmatrixelementen nach von Hugo leicht unter der Gauf-
anregung und unter der J—Anregung, die eine obere Schranke bildet. In
der Asymptotik, also fiir grole reziproke Vektoren, unterscheiden sich die
Modelle. Die Gauflkurve konvergiert schnell gegen null, wihrend die Kon-
vergenz fiir die Anregung mittels Ubergangsmatrixelementen langsamer ist.
Dieses Verhalten sollte aber nur dann Einflul auf die berechnete Rontgen-
intensitdt haben, wenn hoéher indizierte Reflexe noch stark angeregt sind,
und/oder wenn die Einheitszelle sehr klein ist, da die Linge des reziproken
Vektors dann einem niedriger indizierten Reflex entspricht. Zum Beispiel
entspricht in Pyroxen die Linge eines reziproken Vektors von 15 A~!
ungefédhr der Linge des reziproken Gittervektors zum 43 0 0—, 0 21 0— oder
0 0 12-Reflex.

Um die Einfliisse der Anregungswahrscheinlichkeit von denen der Absorption
zu trennen, wird in diesem Abschnitt die Berechnung der Stromdichte fiir sol-
che Einstrahlwinkel durchgefiihrt, bei denen die M1— und M2-Positionen in
der Projektion ununterscheidbar sind, d.h., Intensitdtsunterschiede in den
Signalen sind ausschliefllich auf den unterschiedlichen Grad der Delokalisa-

tion der Rontgenanregung zuriickzufiihren.

Fiir MgFeSisOg—Pyroxen fiihren wir die Berechnungen zunichst mit einer
systematischen Reihe zum 200-Reflex in (001)-Einstrahlrichtung durch. Die
Abbildung 5.1 zeigt die Projektion der Einheitszelle in dieser Richtung. Ansch-
lieflend fiihren wir die Berechnungen noch mit einer systematischen Reihe
zum 002-Reflex in (100)-Einstrahlrichtung durch. Abbildung 5.7 zeigt die
Projektion der Einheitszelle unter diesen Bedingungen. Alle iibrigen Bedin-

gungen sind identisch mit denen zu Beginn dieses Kapitels genannten.

Im realen Kristall sind die Projektionen der M1- und M2-Positionen auf die
x— bzw z—Achse nicht exakt identisch, wie Tabelle 5.1 zeigt. Um fiir unsere
Delokalisationsbetrachtungen exakte Ubereinstimmung zu erreichen, haben
wir die M2—Positionen in x— bzw. z—Richtung um max. 1% auf die Werte der

M1-Positionen verschoben.
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Abbildung 5.7: Projektion der Atompositionen des Orthopyroxens M gFeSi,Og
auf die Oberfliche des Kristalls fiir eine Einstrahlung in (100)—
Richtung
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Abbildung 5.8: Normierte Intensitdtsverhiltnisse
(Ingy ) Ire)’ / (Ingg /Ipe)?="%% fiir Pyroxen in Abhéngigkeit von
der Einstrahlrichtung fiir die verschiedenen Modelle. Die M2—-

x—Position ist auf die M1-x-Position verschoben. Stromdichte-

berechnungen mit (4.19); systematische Reihe zu 200.
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Fiir die normierten Intensitétsverhéltnisse (Iarq/I re) / (Ing/I )P 000200 i
Abhéngigkeit von der Einstrahlrichtung erhalten wir das Ergebnis in Abbil-
dung 5.8. Wie aufgrund der groBen Linge des Basisvektors a; = 18.21A zu
erwarten war, ist in dieser Richtung der Einflu} der Delokalisation auf das
berechnete Intensititsverhéltnis sehr gering (ca. 1.0%). Das Ergebnis ist fast
unabhingig von der Wahl des Anregungsmodells, selbst die 6—Anregung lie-
fert akzeptable Werte.

Etwas anders sieht das Ergebnis aus, wenn wir nun mit einer systematischen
Reihe zu 002 rechnen, also mit Reflexen in Richtung des @;—Basisvektors des
realen Gitters (a3 = 5.17A) (Abbildung 5.10).

Fiir die Intensitdt des relativen Rontgensignals in Abhéngigkeit vom Kipp-
winkel erhalten wir das in Abbildung 5.9 dargestellte Ergebnis.

Zu erkennen ist, dafl die Unterschiede zwischen den Modellen fiir Mg grofer
sind als fiir Fe. Dies steht in guter Ubereinstimmung mit der Ordnungszahl-
abhéingigkeit der Delokalisation. Die Fe-Ionisation ist lokalisierter als die

Mg-Ionisation.

Fiir die normierten Intensitétsverhéltnisse (Inrq/I re) / (Ing/I e )P 000002 iy

Abbildung 5.10 ergibt sich aus den Kurven von Abbildung 5.9 ein maximaler
Unterschied zur Geraden der é—Funktion von immerhin schon 5.4% je nach
Wahl des Modells. Auffillig ist, dafl die gaufiférmige Ionisationswahrschein-
lichkeit zu grofleren Abweichungen fiihrt, als das Modell nach von Hugo. Fiir
das Tonisationsmodell nach von Hugo erhalten wir immerhin Abweichungen

von 3.5% gegeniiber der —Anregung.

Eine weitere Moglichkeit die Auswirkungen der Delokalisation zu beob-
achten, liefert das Intensitdtsverhdltnis der K—Schalen zu L-Schalen. Fiir
die L-Schalen-Ionisation stand uns nur ein Modell mit Gauflverteilung zur
Verfiigung. Mit den Kurven aus Abbildung 5.9 folgt fiir das normierte K- zu
L—Verhéltnis von Eisen das in Abbildung 5.11 abgebildete Ergebnis.
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5. DURCHFUHRUNG DER SIMULATION FUR ORTHOPYROXEN
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Abbildung 5.9: Intensitét des berechneten Fe— und Mg-Signals fiir Pyroxen in

Abhéngigkeit von der Einstrahlrichtung fiir die verschiedenen
Modelle. Die M2—x—Position ist auf die M1-x—Position verscho-
ben; systematische Reihe zu 002.
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Normierte Intensitdtsverhiltnisse
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von der Einstrahlrichtung fiir die verschiedenen Modelle.
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002.
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Normiertes Intensitdtsverhéltnis
(IFe—K/IFe—L)G/(IFe—K/IFe—L)9:0'06’002

fiir Pyroxen in Abhédngigkeit von der Einstrahlrichtung. Die
M2-z—Position ist auf die M1-z—Position verschoben. Strom-

dichteberechnungen mit (4.19); systematische Reihe zu 002.



58 5. DURCHFUHRUNG DER SIMULATION FUR ORTHOPYROXEN

Zusammenfassend 148t sich sagen, dafl die Rontgenanregung fiir schwerere
Elemente lokalisierter stattfindet als fiir leichte Elemente. Die Auswirkun-
gen der Delokalisation auf das bei ALCHEMI-Experimenten interessierende
Intensitdtsverhaltnis nehmen mit zunehmender Gréfle der EZ stark ab, so
daf sie nur fiir kleine EZ mefibar sein sollten. Die bereits publizierten Expe-
rimente, die mit dem Standardverfahren zu unphysikalischen Verteilungen
gefiihrt haben, sind vorwiegend an einfachen Kristallen mit kleiner EZ durch-
gefiihrt worden; siehe z. B. Bentley mit NizAl [3] oder Miller et al. ebenfalls
an einer A3B-Legierung [35].

5.4 Berechnung der Fe-Mg—Verteilung

In diesem Abschnitt kommen wir wieder zuriick zur wurspriinglichen
ALCHEMI-Idee. Hier soll die Verteilung von Fe und Mg auf die M1-
bzw. M2-Position berechnet werden. Als Beispielsubstanz dient wieder
(Mg,Fe)5SisOg, d.h., Fe und Mg liegen in einem Mengenverhéltnis von 1:1
vor und verteilen sich auf die M1- und M2-Positionen. Diese Verteilung soll
nun bestimmt werden. In einem Experiment kénnte dieses Mengenverhéltnis

z. B. nafichemisch bestimmt werden.

Eine geeignete Kristallorientierung ist die (001)-Richtung. Dann bilden die
M1- und M2-Positionen beziiglich der (010)-Ebenen einen Schichtaufbau,
den Abbildung 5.1 verdeutlicht. Mit dem Standardverfahren aus Kapitel 2
wiirde man das Si-Signal als Referenzsignal verwenden, da die Si-Positionen
in der Projektion auf die y—Achse fast den M1-Positionen entsprechen. Da
die Si—Positionen gegeniiber den M1-Positionen jedoch leicht verschoben sind
fiihrt eine Untersuchung mit der Standardmethode nach [50] zu einem Feh-
ler von ca. 10% im Ergebnis. Zu beachten ist, dafl sich die Gesamtrontgen-
intensitdt eines Elements, z.B. Fe, nicht in die Anteile aus den einzelnen
Positionen — M1 und M2 — zerlegen 148t, sondern immer das Summensignal
detektiert wird.

Fiir das gegebene Mengenverhiltnis (Mg:Fe = 1:1) haben wir die normierten
Intensitétsverhaltnisse (Inrg/Isi)?/(Intg/Isi)?="%p90 in Abhiingigkeit vom
Kippwinkel und von der Fe-Mg-Verteilung auf die M1- und M2-Position

berechnet.
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Abbildung 5.12: Normierte Intensitdtsverhéltnisse
(IMg/IS,-)e / (IJVIg/ISi)QZO'O‘g020 fiir Pyroxen in Abhingigkeit
von der Einstrahlrichtung fiir verschiedene Mg—Anteile auf den

M1-Positionen

Die Grofle, mit der wir die Verteilung charakterisieren, ist der Mg—Anteil auf
der M1-Position. Ein Mg-Anteil auf der M1-Position von 0% entspricht dem
in Abbildung 5.1 dargestellten Kristall.

Das Ergebnis fiir das normierte Intensitdtsverh&ltnis des Mg-Signals zum
Si-Signal zeigt die Abbildung 5.12. Die Berechnungen sind mit der iiber die
Tiefe gemittelten Gesamtstromdichte aus (4.19) und der Ionisationswahr-

scheinlichkeit nach von Hugo (4.43) durchgefiihrt worden.

Diese Kurvenschar zeigt iiber einen weiten Kippwinkelbereich einen mono-
tonen Abfall des Intensitdtsverhéltnisses fiir eine Zunahme des Mg-Anteils
auf der M1-Position. Ein Verhalten also, das die Bestimmung der Vertei-
lung ermoglicht. Fiir die weiteren Intensitidtsverhiltnisse Fe/Si und Mg/Fe
— fiir die Gauflanregung stehen zusitzlich noch Fe-L/Si und Mg/Fe-L zur
Verfiigung — erstreckt sich diese Monotonie nicht {iber den gesamten Kur-
venverlauf. Fiir einen festen Kippwinkel zeigen aber auch diese Kurven in

Abhingigkeit von der Verteilung einen charakteristischen Verlauf.
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Abbildung 5.13: Normierte Intensitdtsverhéltnisse
(Ia/T5)" > [ (14/I5)"~**"™ fixr Pyroxen in Abhiingig-
keit von der Besetzung der M1-Positionen mit Mg fiir die
verschiedenen Verhéltnisse. Ionisationswahrscheinlichkeit nach

von Hugo [22]

Als Beispiel haben wir in Abbildung 5.13 das normierte Intensitidtsverhiltnis
(I4/1p)%=2%5%0020 /(I ,/15)%=00 fiir die verschiedenen Elemente A = Mg, Mg,
Fe und B = Si, Fe, Si aufgetragen.

Abbildung 5.14 zeigt diese Verhéltnisse noch einmal fiir eine gaufiférmige
Anregung, da bei diesem etwas einfacheren Modell auch Werte fiir die Fe—
L-Schalen-Rontgenintensitét vorliegen. Hier wird noch einmal der geringe
Einflufl der Delokalisation fiir diesen Kristall deutlich, da sich die Kurven fiir
die Fe-L Intensitdten kaum von denen fiir die Fe—K Intensitédten unterschei-

den.

Im Idealfall liefle sich mit diesen drei bzw. fiinf Verhéltnissen direkt die Ver-
teilung von Fe und Mg in einem Pyroxen—Kristall bestimmen, indem man
die experimentell bestimmten, normierten Verhéiltnisse in die theoretischen
Kurven eintrigt. Alle Punkte sollten dann auf einer Geraden parallel zur
Intensitdtsachse liegen, und der Schnittpunkt dieser Geraden mit der x—
Achse gibt die Verteilung an. In der Praxis wird man sich aber nicht auf
eine Messung allein verlassen, sondern das oben beschriebene Verfahren mit

mehreren Kippwinkeln wiederholen.
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Abbildung 5.14: Normierte Intensitdtsverhéltnisse
(Iy/Ig) =250 / (I4/I5)°="%* fiir Pyroxen in Abhéingigkeit
von der Besetzung der M1-Positionen mit Mg. Gaufférmige

Ionisationswahrscheinlichkeit nach (4.34)

Der Vorteil dieses Verfahrens liegt darin, dafl man im Gegensatz zum Stan-
dardverfahren den gesamten Informationsgehalt der Spektren ausnutzt, da
man jede Linie des Rontgenspektrums zur Bestimmung der Verhé&ltnisse ver-
wenden kann. Auflerdem werden noch Absorptions— und Delokalisationsef-

fekte briicksichtigt.

Wichtig ist, dafl man im Experiment die Kristalldicke und die Kristallori-
entierung sehr exakt bestimmt, da beide Gréflen einen groflen Einflufl auf
das Ergebnis haben, wie z. B. die Abbildungen 5.5 und 5.12 zeigen. Sind diese
beiden Groflen hinreichend genau bestimmt, sollte es moglich sein, durch
Vergleich mit den theoretischen Kurven die exakte Fe—-Mg—Verteilung auf die

M1- und M2-Positionen zu bestimmen.



6 Zusammenfassung

Die ALCHEMI-Idee 1483t sich fiir viele Kristalle nur dann zur Bestimmung
von Atompositionen in der Einheitszelle nutzen, wenn man die elektronen-
induzierte Rontgenintensitdt mit hoher Genauigkeit simulieren kann. In die-
ser Arbeit wurde der Einflufl verschiedener Modelle zur Beschreibung von
Absorptions— und Delokalisationseffekten auf die berechnete Rontgeninten-

sitdt untersucht.

Im Rahmen unserer Untersuchungen hat sich herausgestellt, dafl die
Dampfung der elastischen Wellenfunktion durch unelastische Wechsel-
wirkungen bei der Simulation nicht ignoriert werden darf. Insbesondere
mufl die Phononenstreuung in die Rechnung mit einbezogen werden. Da
die unelastisch gestreuten Elektronen nicht wirklich im Kristall absorbiert
werden und ebenfalls einen Beitrag zur Gesamtstromdichte liefern, muf} ein
Offset eingefiihrt werden. Die Ddmpfung und der Offset haben zur Folge,
dal die berechneten Intensitdten und Intensitdtsverhiltnisse eine enorme
Kristalldickenabhéngigkeit aufweisen. Fiir eine erfolgreiche Simulation ist

also die genaue Kenntnis der Kristalldicke unverzichtbar.

Bei der Untersuchung der Delokalisation des Rontgenanregungsprozesses hat
sich herausgestellt, daf} die berechneten Intensitdtsverhéltnisse aufler von der
Ordnungszahl der Atome (je hoher die Ordnungszahl, desto lokalisierter die
Roéntgenanregung) auch stark von der Grofe der Einheitszelle abhéngen. Der
Einflul der Delokalisation auf die Intensitdtsverhéltnisse ist um so gréfler, je
kleiner die Einheitszelle ist und je einfacher die Kristallstruktur ist. So waren
in unserer Beispielsubstanz die Einfliisse der Delokalisation auf das Ergeb-
nis kleiner, als wir urspriinglich erwartet hatten, da Orthopyroxen eine sehr
grofe, komplexe Einheitszelle besitzt. Die Einfliisse der thermischen Vibra-
tion auf die GroBle des Wechselwirkungsvolumens sind nicht zu vernachléssi-

gen.
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Eine genaue Simulation der relativen Rontgenintensitédt, in dieser Arbeit
beispielhaft fiir Orthopyroxen durchgefiihrt, erméglicht die Untersuchung
vieler Kristalle mit der ALCHEMI-Methode auch dann, wenn eine Unter-
suchung mit der Standardmethode nicht moglich ist. Die Probleme der
Absorption und der Delokalisation werden mit der Simulation iiberwunden.
Dadurch steigt aber leider auch der experimentelle Aufwand fiir ALCHEMI-
Experimente, da die Kristalldicke und die Kristallorientierung sehr genau

bestimmt werden miissen.

Interessant wire es, die simulierten Intensitdtsverhéltnisse experimentell zu
bestédtigen, was im Rahmen dieser Arbeit leider nicht méglich war. Sollte die
Ubereinstimmung hinreichend gut sein, so lieen sich unsere Programme zu
einem neuen Planungs— und Auswerteverfahren fiir ALCHEMI-Experimente
ausbauen. Damit lieflen sich dann Atomverteilungen in vielen Kristallen

bestimmen, fiir die das fehleranfillige Standardverfahren nicht geeignet ist.
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