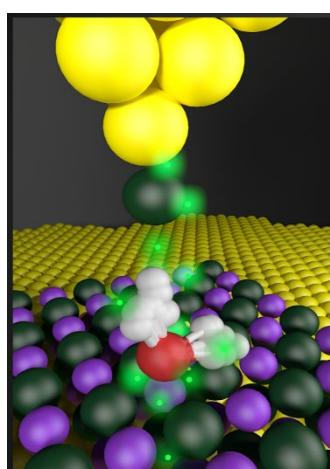


Montag, 24.11.2025 um 15:15 Uhr
R87, Wilhelm-Klemm-Str. 10

Atomic-scale insights into ice and water via high-resolution SPM



Dr. Jiani Hong

International Center for Quantum Materials, School of Physics
Peking University, China

© Jiani Hong

Water is fundamental to life, yet as a many-body quantum system with a complex hydrogen-bond network and strong nuclear quantum effects, it still poses many open questions. Recently, we developed hydrogen-sensitive scanning probe microscopy (SPM) based on higher-order electrostatic forces¹, successfully applying it to interfacial water/ice systems. We begin from 3D bulk hexagonal ice (ice Ih) and its surfaces. By developing a universal high-resolution imaging method for insulating surfaces, we are able to directly image ice Ih surfaces at the atomic scale². These measurements reveal unique superstructures and premelting phenomena at the ice surface. By lowering the dimensionality, we then identify an intrinsic 2D ice I phase³, an interlocked double bilayer, stabilized on weakly interacting substrates such as Au(111), graphene, and hBN. We show that subtle changes in surface electrostatics can switch the superlubricity of 2D ice I on or off⁴. By ion doping, we can also stabilize and control a variety of more complex and intriguing ice phases^{5,6}. Finally, we address how ice evolves from disordered to ordered states, both in the oxygen skeleton and in the coherently ordered proton subsystem. These findings offer new insights into phase behavior and physicochemical properties of ice, providing a deeper understanding of its fundamental nature and potential applications in materials science.

References:

- [1] Jinbo Peng, Jing Guo, Prokop Hapala, Duanyun Cao, Runze Ma, Bowei Cheng, Limei Xu, Martin Ondracek, Pavel Jelinek, Enge Wang & Ying Jiang, *Nature Communications*, 2018, 9:122.
- [2] Jiani Hong, Ye Tian, Tiancheng Liang, Ximeng Liu, Yizhi Song, Dong Guan, Zixiang Yan, Jiadong Guo, Binze Tang, Duanyun Cao, Jing Guo, Ji Chen, Ding Pan, Li-Mei Xu, EnGe Wang and Ying Jiang, *Nature*, 2024, 630: 375.
- [3] Runze Ma, Duanyun Cao, Chongqin Zhu, Ye Tian, Jinbo Peng, Jing Guo, Ji Chen, XinZheng Li, Joseph S. Francisco, Xiao Cheng Zeng, Li-Mei Xu, En-Ge Wang and Ying Jiang, *Nature* 2020, 577: 60.
- [4] Da Wu, Zhengpu Zhao, Bo Lin, Yizhi Song, Jiajie Qi, Jian Jiang, Zifeng Yuan, Bowei Cheng, Mengze Zhao, Ye Tian, Zhichang Wang, Muhong Wu, Ke Bian, Kaihui Liu, Limei Xu, Xiaocheng Zeng, Enge Wang, and Ying Jiang, *Science*, 2024, 384: 1254.
- [5] Ye Tian, Jiani Hong, Duanyun Cao, Sifan You, Yizhi Song, Bowei Cheng, Zhichang Wang, Dong Guan, Ximeng Liu, Zhengpu Zhao, Xin-Zheng Li, Li-Mei Xu, Jing Guo, Ji Chen, EnGe Wang and Ying Jiang, *Science* 2022, 377: 315.
- [6] Ye Tian, Yizhi Song, Yijie Xia, Jiani Hong, Yupeng Huang, Runze Ma, Sifan You, Dong Guan, Duanyun Cao, Mengze Zhao, Ji Chen, Chen Song, Kaihui Liu, Limei Xu, Yiqin Gao, Enge Wang and Ying Jiang, *Nature Nanotechnology* 2023, 19: 479.