

**Impact of Microstructure and Geometric Length Scales
on Miniaturized Tensile Tests of Advanced Steels**

Master's thesis

submitted in fulfillment of the requirements for the degree of

Master of Science in Physics

at the WWU Münster

and

Máster Universitario en Ciencia y

Tecnología de Nuevos Materiales

at the Universidad de Sevilla

by

Jonas Finn Kutschmann

Münster, January 2018

First Examiner: Prof. Dr. Gerhard Wilde

Second Examiner: Prof. Dr. Joaquín Ramírez Rico

Abstract

Impact of Microstructure and Geometric Length Scales
on Miniaturized Tensile Tests of Advanced Steels
by

Jonas Finn Kutschmann, Bachelor of Science
WWU Münster, January 2018

Major Professor: Prof. Dr. Gerhard Wilde

Department: Institute of Materials Physics, Münster

Industry Partner: thyssenkrupp Steel Europe AG, Duisburg

In this work the mechanical properties of advanced steels are characterized by a miniaturized tensile test and compared to the results of other mechanical testing methods. Eleven steel grades were provided by *thyssenkrupp* and miniaturized specimens were cut with a dog-bone shape contour. The specimen dimensions have a constant gauge length of 4 mm, the gauge width is varying from 0.16 mm to 0.50 mm and gauge thicknesses between 1.45 mm and 0.18 mm were used. For one type of steel the dimensions were severely changed to verify an occurring size effect. The microstructure of the materials was quantitatively investigated by EBSD.

The tensile test results were correlated to Vickers hardness measurements, average grain size and *thyssenkrupp* database values for the ultimate tensile strength. Some steels reproduce the macro-scale results well in miniaturized testing whereas others show a significant drop in the performance. The overall performance of the miniaturized tensile tests were evaluated by the ultimate tensile strength and the fracture strain for one type of steel by varying the geometrical dimensions. The results indicate the importance of the standard deviation of the grain size distribution for a more independent evaluation of the size effect.

Contents

1. Introduction	1
2. Theory	3
2.1. Introduction to Steel	3
2.2. Deformation	6
2.2.1. Elastic deformation	6
2.2.2. Plastic deformation	6
Dislocations	7
Critical Shear Stress	8
Grain boundaries	9
Grain Size Refinement	10
2.3. Flow Curve Evaluation	11
2.4. Testing on a Micro Scale	13
3. Measurement Techniques	16
3.1. Electron backscatter diffraction	16
3.2. Uni-axial Tensile Test	19
3.3. Vickers Hardness Testing	20
3.4. Three Point Bending Test	22
3.5. Density and Ultrasonic Measurements	23
4. Material and Preparation	25
4.1. Raw Materials	25
4.2. Specimen Cutting	26
4.3. Etching	27
4.4. Grinding and Polishing	28

Contents

5. Technical Requirements and Specimen Preparation Influences	30
5.1. Miniaturized uni-axial Tensile Test Machine	30
5.1.1. Shoulder Slip and Thickness Limitation	34
5.2. Measurement Accuracy Estimation	35
5.2.1. Force and Elongation Error	35
5.2.2. Geometrical Dimension Error	37
5.2.3. Point of Origin	37
5.3. Reproducibility	38
6. Results and Comparison: Advanced Steels in Miniturized Tensile Test	40
6.1. Microstructure Characterization of the Raw Material	40
6.2. Miniaturized Tensile Test of Advanced Steels	43
6.2.1. Performance Classification	45
6.2.2. Validation by Hall-Petch	47
6.3. Comparison to other Measurement Techniques	49
6.3.1. Macro Tensile Test	49
6.3.2. Three Point Bending	50
6.3.3. Vickers Hardness	52
6.3.4. Ultrasonic and Density Measurement	56
6.3.5. Materials Database	57
7. Results and Discussion: Specimen Size Effect	60
7.1. Microstructure Limitation by Specimen Edges	60
7.2. Microstructure during Testing	64
7.3. Microstructure after Specimen Failure	66
7.4. Miniaturized Tensile Testing	70
7.5. Discussion	75
8. Summary	79
9. Outlook	80
A. Appendix	83