Material Physik

Microstructure Evolution and Diffusion in Nanostructured Alloys

Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Physik an der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster

> vorgelegt von Reeti Singh aus Moradabad, Indien - 2011 -

Dekan:

Erster Gutachter:

Zweiter Gutachter:

Tag der mündlichen Prüfung:

Tag der Promotion:

Prof. Dr. Tilmann Kuhn

Prof. Dr. Gerhard Wilde

Prof. Dr. Guido Schmitz

ABSTRACT

Predicting and manipulating materials properties from the knowledge of their microstructure and thermodynamic characteristics are in the focus of intensive research in the field of Materials Science and Engineering. Nanostructured materials synthesized by severe plastic deformation have attracted great interest due to its unusual mechanical, electrical, optical and magnetic properties and/or this combination. In the present study an equiatomic NiTi alloy, deformed by high-pressure torsion (HPT) was investigated. The as-prepared bulk NiTi alloy consists of both amorphous and nanocrystalline phases. A homogenous nanocrystalline NiTi alloy was obtained by thermal treatment. During post-deformation thermal annealing, some typical microstructural changes take place. Crystallization and structural changes during annealing were investigated by transmission electron microscopy, differential scanning calorimetry (DSC), X-ray diffraction, Atomic force microscopy and scanning electron microscopy. To investigate the effect of microstructure on the grain boundary diffusion, ⁴⁴Ti and ⁵⁶Fe tracer diffusion in HPT-deformed NiTi and mechanically alloyed 14YWT steel, respectively, was studied by using radiotracer technique.

The DSC signals observed during continuous heating experiments indicate an unusually large separation between the crystallization and the growth stages. A detailed analysis of the evolution of the enthalpy release upon annealing reveals reproducibly non-monotonous trends with annealing temperature and time, which were interpreted in the terms of suggest the reverse amorphization during annealing. This behavior, that also causes a large variation of the nanocrystals size after annealing at higher temperatures, is discussed with respect to the nanoscale microstructural heterogeneity after initial deformation processing.

The grain boundary diffusion behavior in nanocrystalline NiTi and 14YWT reveals the presence of interconnected porosity; those natures are of different origin. It has been shown that grain boundary sliding and grain rotation are the possible causes for developing porosity and other surface irregularities in case of nanocrystalline NiTi. In case of nanocrystalline 14YWT, the porosity/incorporated by sintering of oxide powders affected the diffusion process and introduces a hierarchy of internal interfaces. The grain boundary diffusion coefficient and the diffusivity along internal surfaces were determined in the so-called type C-C, C-B and B-B kinetic regimes of interface diffusion in a hierarchical microstructure.

ZUSAMMENFASSUNG

Vorhersage und Kontrolle von Materialeigenschaften basierend auf Kenntnissen der Mikrostruktur und der thermodynamischen Eigenheiten sind im Fokus intensiver Forschung im Bereich der Materialwissenschaften und des Ingenieurwesens. Nanostrukturierte Materialien welche durch schwere plastische Deformation synthetisiert wurden gewinnen großes Interesse aufgrund ihrer mechanischen, elektrischen, optischen und magnetischen Eigenschaften und/oder deren Kombination. In der vorliegenden Studie wurde eine mittels Hochdruck-Torsion (HPT) deformierte äquiatomare NiTi Legierung untersucht. Die so präparierten massiven NiTi Legierungen sind Zweiphasig, bestehend aus einer amorphen und einer kristallinen Phase. Homogen nanokristallines NiTi wurde durch thermische Behandlung erhalten. Während des Glühens nach Deformation treten typische mikrostrukturelle Änderungen auf. Die Kristallisation und strukturelle Änderungen während der Glühung wurden mittels Transmissionselektronenmikroskopie, dynamischer Differenzkalorimetrie Rasterkraftmikroskopie (DSC), Röntgenbeugung, und Rasterelektronenmikroskopie untersucht. Um die Effekte der Mikrostruktur auf die Korngrenzendiffusion zu erfassen, wurden ⁴⁴Ti Isotope in HPT deformierten NiTi und ⁵⁶Fe Isotope in mechanisch legierten 14YWT Stahl mit der Radiotracer Methode untersucht.

Das DSC Signal von Heizexperimenten mit konstanter Heizrate zeigt eine ungewöhnlich große Trennung der Kristallisation und der Wachstumsphase. Eine detaillierte Analyse der Entwicklung der Enthalpieabgabe führt zu einem reproduzierbaren nicht-monotonen Trend mit der Temperatur und Zeit des Heizens, welcher interpretiert wird als eine umgekehrte Amorphisierung. Dieses Verhalten, welches auch eine große Schwankung der Größe der Nanokristalle nach Glühen bei höheren Temperaturen verursacht, wird diskutiert im Bezug auf nanoskalige mikrostrukturelle Heterogenitäten nach der vorangegangenen Deformation.

Die Korngrenzendiffusion in nanokristallinem NiTi und 14YWT zeigt die Existenz perkolierender Porosität; deren Ursprung ist verschiedenartig. Im Fall von nanokristallinem NiTi wurde gezeigt, dass Korngrenzengleiten und Kornrotation mögliche Gründe für das Entwickeln von Porosität und anderen Oberflächenirregularitäten sein kann. Im Fall von nanokristallinem 14YWT, die Porosität eingetragen durch das Sintern von Oxid Pulver affektiert die Hierarchie der internen Grenzflächen. Die Koeffizienten der Korngrenzendiffusion und die Diffusion entlang interner Grenzflächen wird determiniert durch die sogenannten C-C, C-B und B-B Typen der kinetischen Bereiche der Grenzflächendiffusion in einer hierarchischen Mikrostruktur.

Contents

Acronyms	I
List of symbols	II
Chapter 1- Introduction	1
1.1 Motivation and goal of research	2
Chapter 2- Theoretical background	5
2.1 The state of the art	5
2.2 Severe plastic deformation method	7
2.2.1 High pressure torsion	7
2.2.2 Equal channel angular pressing	7
2.2.3 Repeated cold rolling	8
2.3 A structure model of nanostructured material	9
2.4 Characteristics of recrystallization	12
2.4.1 Nucleation or start of recrystallization	13
2.4.2 Growth of recrystallized regions	16
2.5 Johnson-Mehl-Avrami-Kolmogorov kinetics 1	17
2.6 Fundamentals of grain boundary diffusion 1	18
2.6.1 Basic equation of grain boundary diffusion	18
2.6.2 Classification of diffusion kinetics	21
Chapter 3- Material processing and characterization technique	24
3.1 High pressure torsion	24
3.2 Material specifications	26
3.2.1 NiTi alloy	26
3.2.2 14YWT alloy	27
3.3 Characterization techniques	29
3.3.1 Transmission electron microscopy (TEM) 2	29
3.3.2 X-ray diffraction (XRD)	31
3.3.3 Differential scanning calorimetry (DSC)	34
3.3.4 Atomic force microscopy (AFM)	36
3.3.5 Scanning electron microscopy (SEM)	37
3.3.6 Radiotracer technique	38

Chapter 4- Microstructure evolution during thermal treatment	41
4.1 Microstructure of as-prepared NiTi	41
4.1.1 TEM observations	41
4.1.2 X-ray analysis	42
4.2 Microstructure evolution	43
4.2.1 TEM observations	44
4.2.2 Calorimetric observations	49
4.2.3 X-ray analysis	50
4.3 Crystallization kinetics during isothermal annealing	52
4.4 Effect of aging	56
4.5 Discussion	59
4.6 Summary	65
Chapter 5- Heterogeneity of microstructure evolution during annealing	67
5.1 ⁴⁴ Ti-tracer diffusion in HPT-deformed NiTi alloy	67
5.2 Evolution of surface roughness	69
5.3 Grain boundary sliding and grain rotation	71
5.3.1 Experimental details	71
5.3.2 Microstructure of NiTi alloy with/without Au-nanodots	72
5.3.3 Computation of global transformation matrix and strain tensors	733
5.3.4 Imaging of linear transformation after annealing	76
5.4 Discussion	80
5.5 Summary	80
Chapter 6- Grain boundary diffusion in nanocrystalline 14YWT alloy	82
6.1 High creep strength of 14YWT steel	82
6.2 Grain boundary in C-type kinetic regimes	83
6.3 Volume fraction of percolating porosity	85
6.4 Hierarchical microstructure and diffusion regimes	88
6.5 Grain boundary diffusion in C-C, C-B and B-B kinetic regimes	90
6.5.1 C-C kinetic regimes	90
6.5.2 C-B kinetic regimes	91
6.5.3 B-B kinetic regimes	93
6.6 Diffusion and creep	95
6.7 Summary	98
Chapter 7- Summary and outlook	99

Appendix	101
A.1 Investigation of inner part of HPT-deformed NiTi disc	101
A.2 X-ray photon spectroscopic (XPS) measurements	102
A.3 Martensitic transformation behavior in NiTi alloy (50.6 at %)	103
A.4 Ultra-thin alumina membranes	104
A.5 Dilatation, rotation and shear components of reference sample	105
List of figures	106
List of tables	112
Bibliography	113
Acknowledgement	122
Curriculum Vitae	124