Mechanisms of Time Dependent Plasticity in Ultra-Fine Grained Copper after Severe Plastic Deformation

Jörn Leuthold - 2016 - Institut für Materialphysik

Mechanisms of Time Dependent Plasticity in Ultra-Fine Grained Copper after Severe Plastic Deformation

Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Physik der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster

> vorgelegt von Jörn Leuthold aus Münster - 2016 -

Dekan: Erster Gutachter: Zweiter Gutachter: Tag der mündlichen Prüfung: Tag der Promotion: Prof. Dr. Christian Weinheimer Prof. Dr. Gerhard Wilde PD Dr. Sergiy V. Divinski

Contents

Contents							
Ał	Abbreviations						
1	Intr	oductio	n		1		
2	Met	hods of	severe pla	astic deformation	3		
	2.1	Severe	plastic de	formation techniques	3		
		2.1.1	High pre	ssure torsion	3		
		2.1.2	Equal ch	annel angular pressing	6		
3	Mic	Microstructural evolution during SPD					
	3.1	Funda	mental cor	ncepts of crystallography in fcc metals	9		
		3.1.1	The face	centered cubic crystal lattice	9		
		3.1.2	Definitio	n and representation of crystallographic orientation and misori-			
			entation		10		
		3.1.3	Vacancie	es, dislocations and grain boundaries	12		
	3.2	Grain l	ooundaries	s in polycrystals	12		
		3.2.1	Low ang	le grain boundaries	13		
		3.2.2	High ang	gle grain boundaries	14		
			3.2.2.1	Coincidence site lattice (CSL) and O-lattice	14		
			3.2.2.2	Displacement shift complete (DSC) lattice, O2-lattice and grain	16		
			2 2 2 2 2		16		
	2.2	Miana	3.2.2.3	Iexture	10		
	5.5		Electron	hadkagetter diffraction	20		
		5.5.1	3311	Grain size	20		
			3.3.1.1	Grain boundary misorientation distribution	22		
			3313	Grain average misorientation distribution	22		
			3314	Grain orientation spread local orientation spread and orienta-			
			0.0.111	tion deviation mapping	22		
	3.4	Initial	material.	use as index impring	24		
	3.5	3.5 Development of the microstructure at different stages of high pressure torsic					
		3.5.1	Results a	and Discussion	26		
			3.5.1.1	Shear strain $\gamma = 0$	26		
			3.5.1.2	Shear strain in the range of $\gamma = 5 - 10$	27		

			3.5.1.3 Shear strain $\gamma = 15$	27				
			3.5.1.4 Shear strain in the range of $\gamma = 20$ to $\gamma = 80$	28				
			3.5.1.5 Twin boundaries in the deformed microstructure	29				
		3.5.2	Discussion of the mechanisms of grain refinement	31				
	3.6	Textur	of HPT Samples	33				
4	Rec	rystalliz	ation of SPD-processed fcc metals	35				
	4.1	Recrys	stallization kinetics					
	4.2	Therm	nermal stability of ufg Cu					
		4.2.1 Texture development during recrystallization						
		4.2.2	Grain boundaries in annealed HPT Cu	39				
		4.2.3	Distribution of Σ 3 and Σ 9 boundaries after annealing	40				
	4.3	Grain	boundary engineering in ufg copper					
	4.4	Strain localization in ECAP deformed nickel						
		4.4.1	Analysis by grain size and grain orientation spread	48				
		4.4.2	Comparative analysis of the development of texture components associ-	-				
			ated with ECAP	49				
		4.4.3	Spatial distribution of orientations of the ideal fibers	51				
		4.4.4	Microstructural properties of the initial state and after annealing	53				
		4.4.5		54				
	4.5	Textur	microstructure correlation in HPT Cu	55				
5	Plas	tic pror	erties of HPT-processed Cu	59				
	5.1	Funda	Fundamentals of plasticity 50					
		5.1.1	Elastic deformation	59				
			5.1.1.1 The stress-strain curve	61				
			5.1.1.2 Mechanisms of plastic deformation	62				
			5.1.1.3 The critical shear stress	63				
			5.1.1.4 Work hardening	64				
			5.1.1.5 Mechanical twinning	65				
			5.1.1.6 Plastic deformation of polycrystals	65				
		5.1.2	Hall-Petch equation	67				
		5.1.3	Crossglide of screw dislocations	67				
5.2		Nanoindentation testing of HPT deformed Cu						
		5.2.1	Experimental setup	70				
		5.2.2	Nanoindentation mapping	70				
		5.2.3	Nanoindentation measurements on HPT-Cu	71				
		5.2.4	Load relaxation nanoindentation tests	72				
	5.3	Tensile	Tensile Experiments 7					
	0.10	531	5.3.1 Experimental setun					
		532	Results and discussion of tensile experiments of HPT Cu	77				
		0.0.2	5.3.2.1 Texture hardening in HPT Cu	78				
6	Cree	ep expe	iments on HPT-processed Cu	83				
-	6.1	The th	The theory and mechanisms of creep deformation					
		6.1.1	Power law creep and strain rate sensitivity	83				
		6.1.2	On the power law description of low-stress uni-axial steady-state high-	55				
		J.1.4	homologous-temperature deformation	84				

	6.1.3 Mechanisms of creep							
			6.1.3.1	Dislocation creep	85			
			6.1.3.2	Nabarro-Herring creep	87			
			6.1.3.3	Coble creep	88			
			6.1.3.4	Grain boundary sliding	88			
	6.2 Tensile creep tests of ufg copper			ts of ufg copper	89			
		6.2.1	Experime	ental	89			
		6.2.2	Results		90			
		6.2.3	Discussio	on	91			
	6.2.4 Discussion				93			
	6.3 Diffusion in HPT Cu				94			
	6.3.1 Fundamentals of bulk and grain boundary diffusion				94			
	6.4 Results of 63 Ni radio tracer experiments of HPT Cu				96			
	6.5	Microstructural characterization after creep						
	6.6 Digital image correlation			101				
		6.6.1	The appl	ication UTAMs for marking of the surface	103			
		6.6.2	Analysis	of the local strain field	104			
		6.6.3	Results o	of DIC of creep deformed ufg copper	106			
	6.7	Results	and discu	assion	108			
7	Sum	mary			113			
8	Zusa	sammenfassung						
Bi	Bibliography							
Le	Lebenslauf							

Publikationen	129
Danksagung	131
Erklärung	133

Chapter 7

Summary

In this work the mechanisms of time dependent plastic deformation in an ufg-microstructure after severe plastic deformation were investigated. It has been observed that dynamic recrystallization has a strong influence on the evolution of the microstructure during HPT deformation. It was confirmed experimentally that a correlation between the evolution of the components of texture and the local distribution of stored energy in the form of defects, which strongly affect the recrystallization kinetics, exists in the microstructure. This was attributed to a localisation of shear strain during SPD processing. In preceding studies it was observed that after SPD a hierarchic microstructure is present, in which high energy grain boundaries are associated with enhanced diffusion kinetics. By the use of a specifically designed miniature tensile testing machine it was demonstrated that at high strain rates plastic deformation is carried by slip of dislocations. However, in creep measurements in the temperature range of 293K to 423K a time dependent straining of the sample, which, based on the determined activation energy, is associated with a grain boundary mediated process. Due to application of a advanced analysis by digital image correlation, in which a high density of markers on the surface was achieved by utilization of a porous ultra thin alumina membrane, a localization of shear strain in mesoscopic shear bands was found. The result indicates that rate controlling mechanism of grain boundary sliding, which potentially is correlated, based on the observation of a similar scale dependence, with the inhomogeneous distribution of defects and, therefore, the stored energy. The accommodation mechanism necessary to compensate for the misfit is highly temperature dependent due to the onset of recrystallisation in the microstructure. In this context the unexpectedly high stress exponent was discussed, which potentially is explained by the rotation of the preferred orientation of high energy boundaries, a dislocation creep by grain boundary associated dislocation or may also be combination of both processes. In this work starting points for further research on the mechanism of creep in ufg-materials after SPD have been identified.

Chapter 8

Zusammenfassung

In dieser Arbeit wurden die Mechanismen der zeitabhängigen plastischen Verformung in einer ultrafeinkörnigen Mikrostruktur nach schwerer plastischer Deformation untersucht. Dabei wurde festgestellt, dass die dynamische Rekristallisation während der HPT-Verformung einen erheblichen Einfluss auf die sich ausbildende Mikrostruktur des Materials hat. Es wurde experimentell nachgewiesen, dass es dabei einen Zusammenhang zwischen dem Auftreten bestimmter Komponenten der Textur und der lokalen Energieverteilung in Form von Defekten in der Mikrostruktur, die die Rekristallisationkinetik stark beeinflussen, besteht. Dies wurde auf eine Lokalisation der Scherdehnung während der SPD-Behandlung zurückgeführt. In vorausgegangenen Arbeiten wurde festgestellt, dass nach SPD eine hierarchische Mikrostruktur vorliegt, in der Hochenergie-Korngrenzen eine beschleunigte Diffusionskinetik bewirken. Mit Hilfe einer speziell konzipierten Miniatur-Zugmaschine wurde experimentell gezeigt, dass die Plastizät bei hohen Dehnraten durch das Gleiten von Versetzungen getragen ist. Hingegen ist bei Kriechmessungen im Temperaturbereich von 293K bis 423K eine zeitabhängige Dehnung festgestellt worden, die Aufgrund ihrer Aktivierungsenergie mit einem Korngrenzen basierten Prozess in Verbindung gebracht werden konnte. Durch Anwendung einer weiterentwickelten Methode der digitalen Bildkorrelation, in der durch Verwendung einer porösen ultradünnen Aluminiumoxid Membran eine sehr hohe Dichte an Markierungspunkten erzeugt werden konnte, konnte eine Lokalisation der Dehnung in mesoskopischen Scherbändern festgestellt werden. Dieses Ergebnis deutet auf einen ratenkontrollierenden Mechanismus des Korngrenzengleitens hin, der aufgrund der gleichen Skalenabhängigkeit mit der inhomogenen Defektverteilung, und damit der gespeicherten Energie, in Verbindung zu stehen scheint. Der Akkommodationsprozess, der bei Korngrenzengleiten notwendig ist, um die entstehende Fehlpassung auszugleichen, ist aufgrund der eintretenden Rekristallisation der Mikrostruktur stark temperaturabhängig. In diesem Zusammenhang wurde der unerwartet hohe Spannungsexponent diskutiert, der möglicherweise mit einer Rotation der Vorzugsrichtung der hochenergetischen Korngrenzen oder einem durch Korngrenzendiffusion getragenen Versetzungskriechen oder auch einer Kombination dieser beiden Prozesse

erklärt werden kann. In dieser Arbeit wurden Ansatzpunkte aufgezeigt um den genauen Mechanismus des Kriechens in ultrafeinkörnigen Materialien genauer zu erforschen.