

Analysis of Mechano-Chemical Coupling on Grain Boundaries and Precipitation by Analytical TEM and Atomistic Simulations

Yulia Buranova - 2017 -

Institut für Materialphysik

Analysis of Mechano-Chemical Coupling on Grain Boundaries and Precipitation by Analytical TEM and Atomistic Simulations

Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Physik der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster

> vorgelegt von Yulia Buranova aus Kazan - 2017 -

Dekan: Erster Gutachter: Zweiter Gutachter: Tag der mündlichen Prüfung: Tag der Promotion: Prof. Dr. Christian Weinheimer Prof. Dr. Gerhard Wilde PD Dr. Sergiy V. Divinski

Contents

Abbreviations Introduction					
	1.1	GB description	4		
		1.1.1 Crystallographic description	4		
		1.1.2 Other approaches	5		
	1.2	Basic GB thermodynamics. GB energy	8		
	1.3	GB excess volume	9		
		1.3.1 Available models of GB expansion	9		
	1.4	GB properties	14		
		1.4.1 Solute segregation	15		
		1.4.2 Mobility of grain boundaries	15		
		1.4.3 GB interaction with obstacles and GB hardening	15		
	1.5	GBs in polycrystalline materials. SPD materials.	17		
	1.6	GB complexions	18		
	1.7	Mechano-Chemical Coupling	19		
2	Mat	cerials and Techniques	21		
	2.1	Materials	21		
		2.1.1 Investigated Samples	21		
		2.1.2 Severe plastic deformation	22		
	2.2	Transmission electron microscopy	24		
		2.2.1 A basic setup of CTEM and STEM	24		
		2.2.2 Analytical electron microscopy	26		
		2.2.3 Image formation in (S)TEM	28		
	2.3	TEM samples preparation	30		
		2.3.1 Specific traits of aluminum samples preparation for TEM	31		
		2.3.2 General scheme	31		
		2.3.3 Preparation of cylinders	32		
		2.3.4 Wire - Saw	32		
		2.3.5 Mechanical polishing (pre-thinning)	32		
		2.3.6 Electrochemical polishing	33		
		2.3.7 Ion polishing	34		
3	Met	hods of investigations: Computer simulations	37		
	3.1	Atomistic simulations	37		
	3.2	TEM images simulations	41		

	3.3	Additional programs	44
		3.3.1 Geometric phase analysis	44
	3.4	Previous theoretical grain boundary studies	45
4	Inve	estigation of single GBs: structure, energy and excess volume	49
	4.1	Theoretical investigations	49
		4.1.1 GB excess volume	53
	4.2	[100] Symmetrically tilted grain boundaries	54
	4.3	[110] Symmetrically tilted grain boundaries	57
	4.4	[111] Symmetrically tilted grain boundaries	59
	4.5	GB width	60
	4.6	Theoretical results summary	61
	4.7	Experimental investigations of GB structure	63
	4.8	Conclusions	65
5	CD	avagg volume. Europimontal approach	67
J	GD 5 1	Theoretical basis — Phase images	67
	0.1	5.1.1 Calculations on the simulated CBs	70
	5.0	Theoretical basis HAADE STEM	70 79
	0.2	1 neoretical basis - HAADF-STEM 5.2.1 Currente la mithan comprise	10
		5.2.1 Orystals with vacancies	70
		5.2.2 Simulated GBs	18
	F 0	5.2.3 Robustness of the method	80
	5.3	Experiment	83
	5.4	Conclusions	85
6	GB	interaction with precipitates. General overview of the samples.	87
6	GB 6.1	interaction with precipitates. General overview of the samples. Introduction	87 87
6	GB 6.1 6.2	interaction with precipitates. General overview of the samples. Introduction	87 87 88
6	GB 6.1 6.2 6.3	interaction with precipitates. General overview of the samples. Introduction Introduction Influence of ECAP on Aluminum and Aluminum alloys Introduction Current Investigation Introduction	87 87 88 90
6	GB 6.1 6.2 6.3	interaction with precipitates. General overview of the samples. Introduction Introduction Influence of ECAP on Aluminum and Aluminum alloys Introduction Current Investigation Introduction 6.3.1 Microstructure characterization	87 87 88 90 91
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1Microstructure characterizationExperimental results	87 87 88 90 91 92
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1Microstructure characterizationExperimental results6.4.1EBSD analysis	87 87 88 90 91 92 92
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1Microstructure characterizationExperimental results6.4.1EBSD analysis6.4.2DSC investigations	 87 87 88 90 91 92 92 93
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1 Microstructure characterizationExperimental results6.4.1 EBSD analysis6.4.2 DSC investigations6.4.3 TEM investigations	 87 87 88 90 91 92 92 93 98
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1 Microstructure characterizationExperimental results6.4.1 EBSD analysis6.4.2 DSC investigations6.4.3 TEM investigations6.4.4 Alloy Recrystallization	87 88 90 91 92 92 93 98 101
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1 Microstructure characterizationExperimental results6.4.1 EBSD analysis6.4.2 DSC investigations6.4.3 TEM investigations6.4.4 Alloy Recrystallization6.4.5 An influence of shear and compression stresses	87 87 88 90 91 92 92 93 98 101
6	GB 6.1 6.2 6.3 6.4	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1 Microstructure characterizationExperimental results6.4.1 EBSD analysis6.4.2 DSC investigations6.4.3 TEM investigations6.4.4 Alloy Recrystallization6.4.5 An influence of shear and compression stressesDiscussion	87 88 90 91 92 92 93 98 101 101
6	GB 6.1 6.2 6.3 6.4 6.5 6.6	interaction with precipitates. General overview of the samples.IntroductionInfluence of ECAP on Aluminum and Aluminum alloysCurrent Investigation6.3.1 Microstructure characterizationExperimental results6.4.1 EBSD analysis6.4.2 DSC investigations6.4.3 TEM investigations6.4.4 Alloy Recrystallization6.4.5 An influence of shear and compression stressesDiscussionConclusions	87 87 88 90 91 92 93 93 98 101 101 104
6	GB 6.1 6.2 6.3 6.4 6.4 6.5 6.6 GB	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions	87 87 88 90 91 92 93 98 101 101 104
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Interaction with precipitates. Thermo-mechanical-chemical coupling in alloys.	87 87 88 90 91 92 93 98 101 101 104 107 L09
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Interaction with precipitates. Thermo-mechanical-chemical coupling in alloys. Introduction	 87 87 88 90 91 92 93 98 101 104 107 L09 109
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Interaction with precipitates. Thermo-mechanical-chemical coupling in alloys. Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures	 87 87 88 90 91 92 93 98 101 101 104 107
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Interaction with precipitates. Thermo-mechanical-chemical coupling in alloys. Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures 7.1.2 Al ₆ Mn precipitates	 87 87 88 90 91 92 92 93 98 101 101 104 107 109 109 112
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures 7.1.2 Al ₆ Mn precipitates	87 87 88 90 91 92 93 93 98 101 101 104 107 L09 109 109 112 113
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures 7.1.2 Al ₆ Mn precipitates 7.1.3 Atomistic modeling 7.1.4 Methods of imaging	87 87 88 90 91 92 93 98 101 101 104 107 109 109 112 113 113
6	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures 7.1.2 Al ₆ Mn precipitates 7.1.3 Atomistic modeling 7.1.4 Methods of imaging	 87 87 88 90 91 92 93 98 101 104 107 109 109 109 112 113 116
7	 GB 6.1 6.2 6.3 6.4 6.5 6.6 GB Al-a 7.1 	interaction with precipitates. General overview of the samples. Introduction Influence of ECAP on Aluminum and Aluminum alloys Current Investigation 6.3.1 Microstructure characterization Experimental results 6.4.1 EBSD analysis 6.4.2 DSC investigations 6.4.3 TEM investigations 6.4.4 Alloy Recrystallization 6.4.5 An influence of shear and compression stresses Discussion Conclusions Introduction 7.1.1 Al ₃ Sc precipitates and Core-Shell structures 7.1.2 Al ₆ Mn precipitates 7.1.3 Atomistic modeling 7.1.4 Methods of imaging 7.1.5 Investigation of the chemical structure 7.1.6 Particles critical size	87 87 88 90 91 92 93 98 101 101 104 107 109 109 112 113 113 116 117

7.2	Experimental investigations	120		
	7.2.1 Deformed states	123		
	7.2.2 Annealed states	130		
7.3	Al3Sc@Al6Mn structures	132		
7.4	Core-Shell anisotropy	133		
7.5	Interaction of precipitates with grain boundaries	135		
7.6	Formation and evolution of Al_3Sc precipitates $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	137		
7.7	Thermo-dynamic and mechanical coupling	140		
7.8	Conclusions	141		
Summary				
Zusammenfassung				
Appen	Appendix			
Literature				
CV / Lebenslauf				
Acknowledgements				
Erklärung				

Summary

This work is focused on the investigation of Grain Boundaries (GBs) and their interaction with defects which are produced during the deformation processes. These defects define the evolution of the microstructure via the mechano-chemical coupling, including the formation of new phases. Direct experimental methods and atomistic simulations were used in the analysis in this work. For clarity, this work is separated into two parts.

In the first part (Chapters 4 & 5) the basic properties of investigated GBs were presented and the two new methods of the GB excess volume investigations were proposed.

- 1. It is shown that the GB energy is correlated with the GB excess volume. The relation between the GB energy and excess volume is close to linear. However, GBs of different zone axes have different slopes, thus, it is impossible to predict the GB energy from the GB excess volume and vice versa.
- 2. It is shown that the excess volume of a dislocation is mainly localized in its core.
- 3. It is shown that the GB excess volume can be investigated experimentally by means of Transmission Electron Microscopy. The simulations of the Phase Signal (the part of the Exit Wave - after the electron-sample interaction) show that it can be used for the direct determination of the GB excess volume. Unfortunately, this method was difficult to perform experimentally (it requires a C_s -corrected TEM with the highest vacuum, drifting correction and a corresponding software) and the work was concentrated on the second method.
- 4. The second method is based on the HAADF-STEM signal. The simulations show that this method has several restrictions. First of all the sample itself should be chemically pure (< 0.1 ppm for light atoms, otherwise a definition of the excess volume should be reconsidered), it should not be thicker than 30 nm and there should not be any sample preparation artifacts (i.e. grooving). Additionally, as the HAADF-STEM signal

is largely influenced by the so-called channeling effect, the sample should be rotated in a way that both grain interiors shows that same signal contrast, thus they have the same dechanneling level. In the case of the two crystals, which have no twist component, they can be oriented in the zone axis.

In the second part (Chapters 6 & 7) an investigation of the UFG-microstructure after the ECAP process was performed. An Al-based alloy, containing Mg, Sc, Mn and other solutes, was chosen for this investigation, as it was shown that the SPD processing of this type of the alloy can significantly influence the formation of the second-phase precipitates. In this work an alloy microstructure evolution and corresponding precipitate evolution was investigated.

- ECAP processing at elevated temperatures of AA5024 Al-based alloy gives rise to a significant grain refinement (to about 300 nm) with an almost ideal GB misorientation distribution.
- 2. A combination of temperature and deformation processes can significantly change the microstructure of the alloy and the distribution of the Al₆Mn precipitates.
- 3. Severe deformation at temperatures above 300°C was found to induce triple junction Mg segregation and a minor GB segregation. Only a few percent of grain boundaries revealed a significant Mg coverage after severe deformation. A model of triple junction segregation which refers to the inverse Kirkendall effect for grain boundary diffusion is suggested.
- 4. A bimodal microstructure of the alloy after the static annealing of the ECAP-processed sample shows a large recrystallized zones together with the small grains. This is attributed to the local differences in the distribution or chemical composition of the second-phase precipitates.
- 5. It was found that the active GB motion during the deformation can influence the formation and evolution of the second-phase precipitates, that can change the macroproperties of the material.
- 6. The precipitates can lose their coherency with the matrix during the severe plastic deformation. This decreases generally grain boundary pinning effect and promotes recrystallization.

- 7. The precipitates are found to maintain their coherence with the matrix after the interaction with dislocations and low-angle grain boundaries as it is revealed by atomistic simulations and by the so-called Geometric Phase Analysis of the local strain fields.
- 8. Different kinds of the Al₃(Sc,Zr) precipitates structure were found, including the precipitates with the core-shell structure, the precipitate with the uniform distribution of Sc and Zr, and the precipitates which had Zr or Ti cores.
- 9. The presence of the precipitates with the uniform distribution of the Sc and Zr is explained by the echanced diffusion flux of Sc and Zr in the Al matrix during the SPD process.
- 10. It is shown that some of the precipitate types, formed during the deformation, are unstable during the following treatments. This leads to their faster dissolution and the fast coarsening of other particles.

These results show that a complex chemo-, mechanic- and thermodinamic interaction (i.e. properties coupling) takes place in this material.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Korngrenzen und der Wechselwirkungen von Defekten an Korngrenzen welche bei der Deformation ablaufen und über eine mechano-chemische Kopplung die Evolution der Mikrostruktur, inklusive der Entstehung neuer Ausscheidungsphasen, bestimmen. Dabei wurden in dieser Arbeit sowohl direkte, experimentelle Methoden als auch atomistische Simulationen zur Analyse eingesetzt. Zur besseren Lesbarkeit ist die Arbeit in zwei Teile untergliedert:

Im ersten Teil (Kapitel 4&5) werden die grundlegenden Eigenschaften der untersuchten Korngrenzen dargestellt und zwei neue Methoden für die experimentelle Untersuchung von Korngrenz-Exzess-Volumina vorgestellt.

- Es wurde gezeigt, dass eine Beziehung zwischen den Korngrenzenergien und dem Korngrenzvolumen besteht. Diese Abhängigkeit zwischen den Korngrenzenergien und Korngrenzvolumina ist nahezu linear. Die Kippkorngrenze hat unterschiedliche Steigungen, wenn das angrenzende Gitter verschiedene Zonenachsen hat. Daher ist es nicht möglich die Korngrenzenergien bei einem bekannten Korngrenzvolumen vorherzusagen, und umgekehrt.
- Es wurde gezeigt, dass das Korngrenzvolumen im Kern von Korngrenzenversetzungen lokalisiert ist.
- 3. Es wurde gezeigt, dass das Korngrenzvolumen experimentell mittels

Transmissionselektronenmikroskopie untersucht werden kann. Die Simulation des Phasenkontrastes (ein Teil der Austrittswelle des Elektrons) zeigt, dass man dies für eine direkte experimentelle Untersuchung von Korngrenzvolumina nutzen kann. Es ist jedoch schwierig, diese Methode experimentell durchzuführen (es wird ein TEM mit Aberration-Korrektur, Hoch Vakuum, Drift-Korrektur und eine spezielle Software benötigt). Daher konzentriert sich diese Arbeit auf eine alternative, ebenfalls hier neu entwickelte Methode.

4. Diese Methode verwendet das HAADF-Signal des STEMs (eng. Scanning Transmission Electron Microscopy). Die Simulationen zeigen, dass diese Methode mehrere Einschränkungen hat. Zum einen muss die Probe chemisch rein sein (¡0.1 ppm für leichte Atome, ansonsten sollte die Definition des Korngrenzvolumens neu überprüft werden). Sie muss dünner als 30 nm sein und darf keine Artefakte der Probenpräparation beinhalten (z.B. Auskehlen). Zusätzlich wird das HAADF-Signal des STEMs wesentlich von dem so genannten Gitterführungseffekt (eng. Channelling effect) beeinflusst. Daher muss die Probe so orientiert sein, dass die beiden Körner denselben Kontrast haben. Im Falle der Kippkorngrenzen (d.h. keine Dreh-Komponente) können die Körner in Zonenachsen orientiert werden.

Im zweiten Teil (Kapitel 6&7) wird eine ultrafeinkörnige Struktur plastischer Hochdeformation mittels "equal channel angular pressing (ECAP)" untersucht. Für die Untersuchung wird eine Aluminium-Legierung, die Mg, Sc, Zr, Mn und andere Elemente beinhaltet, ausgewählt, da gezeigt wurde, dass die starke plastische Deformation von diesen Legierungen Auswirkungen auf die Entstehung von sekundären Partikeln haben kann. In dieser Arbeit wird die Entwicklung der Mikrostruktur der Legierung sowie die Entstehung intermetallischer Phasen untersucht.

- Es wird gezeigt, dass das ECAP-Verfahren von AA5024 Al-Legierungen bei erhöhten Temperaturen zu einer wesentlichen Kornverfeinerung (ungefähr 300 nm) führt. Die Orientierungsbeziehung von Korngrenzen ist fast ideal stochastisch.
- Die Kombination von Deformation und Temperatur kann die Mikrostruktur der Legierung und die Verteilung der Al6Mn Partikel wesentlich verändern.
- 3. Es wurde gezeigt, dass die starke Deformation bei Temperaturen über 300°C zu einer Tripel-Liniensegregation von Magnesium führt. Die Korngrenzsegregation ist gering. Es wird ein Modell für die Tripel-Liniensegregation vorgeschlagen, dass den inversen Kirkendall Effekt in Verbindung mit der Korngrenzdiffusion bringt.
- 4. Die bimodale Mikrostruktur der Legierung nach dem ECAP-Verfahren und dem Glühen zeigt große rekristallisierte Zonen zusammen mit kleinen Körner. Dies ist auf die lokalen Unterschiede der Verteilung oder die chemische Komposition der zweiten Phase zurückzuführen.

- 5. Es wurde festgestellt, dass die aktive Korngrenzbewegung während der Deformation Auswirkungen auf die Entstehung und Entwicklung der sekundären Partikel hat. Dies kann die Eigenschaften von des Materials, insbesondere die mechanischen Eigenschaften, verändern.
- 6. Die auf Al₃Sc-basierten Partikel können während der Deformation ihre Größe, Verteilung, Kohärenz mit der Matrix und die chemische Struktur verändern. Das kann die Korngrenzverankerung vermindern und die Rekristallisation fördern.
- 7. Es wurde gezeigt, dass die Partikel die Kohärenz mit der Matrix beibehalten können, wenn sie mit Versetzungen oder Kleinwinkel-Korngrenzen wechselwirken. Dieser Effekt wurde bei Computer Simulationen und mit der sogenannten Geometrischen Phasenanalyse (eng. Geometric Phase Analysis) überprüft.
- 8. Unterschiedliche Sorten von Al₃(Sc,Zr) Partikel wurden gefunden. Dazu gehören Partikel mit einer Kern-Schale (eng. Core-Shell) Struktur, sowie Partikel, die eine gleichmäßige Verteilung von Sc und Zr haben, sowie Partikel mit Zr oder Ti-reichen Zentren.
- 9. Die Anwesenheit von Partikeln mit gleichmäßiger Verteilung von Sc und Zr wurde mit einem vergrößerten Diffusionsfluss von Sc und Zr in Al während der Deformation erklärt.
- 10. Es wurde gezeigt, dass einige Sorten von Partikeln nach der Deformation während der weiteren Behandlungen instabil sind. Dies kann zu einer schnellen Auflösung dieser und einer raschen Vergröberung der anderen Partikel führen.

Die Ergebnisse zeigen, dass in diesem Material (AA5024 Al-Legierung) eine komplexe chemische, mechanische und thermodynamische Kopplung entstehen kann.